Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Ozone Weekend Effect in California: Evidence Supporting NOx Emission Reductions  

E-Print Network (OSTI)

Ozone is typically higher on weekends (WE) than on weekdays (WD) at many of California’s air-monitoring stations. Sometimes called the “ozone WE effect, ” this phenomenon occurs despite substantially lower estimates of WE emissions for the major ozone precursors – volatile organic compounds (VOC) and oxides of nitrogen (NOx). Compared to WD emissions, WE emissions of NOx decrease more (proportionally) than do the WE emissions of VOC. Because the WE increases in ozone coincide with the relatively large WE reductions in NOx, some conclude that regulations that would reduce NOx emissions on all days would undermine ozone attainment efforts by causing ozone to decrease more slowly (or even to increase). At this time, public discussion of the ozone WE effect has mostly reflected the viewpoint that NOx emission reductions would not help reduce ambient ozone levels. A large body of published research from this perspective has accumulated over the last 10 to 20 years. Nevertheless, the presently available scientific evidence can also lead to the conclusion that NOx emission reductions may be needed to maintain or even to expedite progress toward attainment

Lawrence C. Larsen

2003-01-01T23:59:59.000Z

2

Annual and Seasonal Global Variation in Total Ozone and Layer-Mean Ozone,  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Ozone » Total Ozone and Layer-Mean Ozone Atmospheric Trace Gases » Ozone » Total Ozone and Layer-Mean Ozone Annual and Seasonal Global Variation in Total Ozone and Layer-Mean Ozone, 1958-1987 (1991) DOI: 10.3334/CDIAC/atg.ndp023 data Data Investigators J. K. Angell, J. Korshover, and W. G. Planet Description For 1958 through 1987, this data base presents total ozone variations and layer mean ozone variations expressed as percent deviations from the 1958 to 1977 mean. The total ozone variations were derived from mean monthly ozone values published in Ozone Data for the World by the Atmospheric Environment Service in cooperation with the World Meteorological Organization. The layer mean ozone variations are derived from ozonesonde and Umkehr observations. The data records include year, seasonal and annual

3

OVERVIEW: TROPOSPHERIC OZONE, SMOG AND OZONE-NOx-VOC SENSITIVITY. Dr. Sanford Sillman  

E-Print Network (OSTI)

. MERMCI and the Waste System Authority of Montgomery County (WSA) evaluated the different NOx reduction-Catalytic Reduction (SNCR) system. The NOxOUT® process is a post combustion NOx reduction method that reduces NOx. Such modifications have been successfully employed to achieve 25-70% reduction in NOx from fossil-fueled combusters

Sillman, Sanford

4

Radiative forcing from aircraft NOx emissions: mechanisms and seasonal dependence  

E-Print Network (OSTI)

), a Babcock Power Inc. company, has developed a new, innovative, high-efficiency NOX reduction technology into a single unit and provides the maximum NOX reduction and heat recovery practical. The paper will describe emissions. A new system for the reduction of NOX emissions to levels hereby unheard of for US WTE boilers

Stevenson, David

5

EVALUATION OF OBSERVATION-BASED METHODS FOR ANALYZING OZONE PRODUCTION AND OZONE-NOX-VOC SENSITIVITY  

E-Print Network (OSTI)

summertime For example: Reduce NOx emissions More reduction of NOy deposition Less reduction of NOy export Less reduction of NOy burden The non-linearity indicates that anthropogenic NOx emission reductions/3 of BL O3 production change exists as change of direct O3 export to the FT 23% reduction of surface NOx

Sillman, Sanford

6

OBSERVATION-BASED METHODS (OBMS) FOR ANALYZING URBAN/REGIONAL OZONE PRODUCTION AND OZONE-NOx-VOC SENSITIVITY.  

E-Print Network (OSTI)

and reduction ofFormation and reduction of NOxNOx during burner combustionduring burner combustion ·· LowLow NOxNOx gas treatment forFlue gas treatment for NOxNOx reduction: SCR, SNCR, otherreduction: SCR, SNCR, other OF TECHNOLOGY ENE-47.153 Selective catalyticSelective catalytic reduction (SCR) ofreduction (SCR) of NOxNOx /1

Sillman, Sanford

7

A cost-effectiveness analysis of alternative ozone control strategies : flexible nitrogen oxide (NOx) abatement from power plants in the eastern United States  

E-Print Network (OSTI)

Ozone formation is a complex, non-linear process that depends on the atmospheric concentrations of its precursors, nitrogen oxide (NOx) and Volatile Organic Compounds (VOC), as well as on temperature and the available ...

Sun, Lin, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

8

A Cost-Effectiveness Analysis of Alternative Ozone Control Strategies: Flexible Nitrogen Oxide (NOx) Abatement  

E-Print Network (OSTI)

hydrolysis of N2O5, and ultimately leads to the computed reduction in NOx levels. 4. Effects of the different in the source magnitude of LtNOx can lead to a substantial10 reduction in the computed lifetimes of these trace. This increase of O3 at higher altitudes is responsible for the reduction of surface NOx levels simulated at high

9

Atmospheric Environment 39 (2005) 28292838 Diurnal and seasonal cycles of ozone precursors observed from  

E-Print Network (OSTI)

characteristics. Ethane and propane, largely originated from leakage of natural gas or liquefied petroleum gases); Non-methane hydrocarbons (NMHCs); Liquefied petroleum gases (LPG); Temperature inversion ARTICLE) and nitrogen oxides (NO+NO2 ¼ NOx), ozone is photochemically pro- duced and can accumulate to hazardous levels

Wingenter, Oliver W.

10

Key Issues in the Design of NOx Emission Trading Programs to Reduce Ground-Level Ozone  

Science Conference Proceedings (OSTI)

As NOx control requirements grow more stringent and expensive, interest in emission trading as a means of controlling costs and increasing flexibility has risen. This report provides background information for and analysis of the design of emission trading programs for control of nitrogen oxides (NOx) from stationary sources, including fossil fuel electric generating plants.

1994-10-07T23:59:59.000Z

11

Seasonal Differences in the Trend of Total Ozone and Contributions from Tropospheric and Stratospheric Layers  

Science Conference Proceedings (OSTI)

Based on an average of the total-ozone changes determined by means of linear regression at individual Dobson stations within climatic zones, trends of total ozone for each of the four seasons have been evaluated for five climatic zones, and the ...

J. K. Angell

1987-04-01T23:59:59.000Z

12

Seasonal and Diurnal Variations of Ozone near the Mesopause from Observations of the 11.072-GHz Line  

Science Conference Proceedings (OSTI)

Ground-based observations of the 11.072-GHz line of ozone were made from January 2008 through January 2009. These observations provide an estimate of the diurnal and seasonal variations of ozone in the mesopause region. The 11-GHz line is more ...

A. E. E. Rogers; M. Lekberg; P. Pratap

2009-10-01T23:59:59.000Z

13

Some theoretical results concerning O3-NOx-VOC chemistry and NOx-VOC indicators  

E-Print Network (OSTI)

of modi®ed aircraft NOx emissions, a signi- ®cant reduction of the aircraft-induced NOx and ozone emissions are given in Fig. 6 for the reference year 1990. The reduction of the NOx perturbation is largest-day and future impact of NOx emissions 1073 #12;In July, a maximum reduction between 10 and 20 pptv is found

Sillman, Sanford

14

Energy Savings and NOx Emissions Reduction Potential from the 2012 Federal Legislation to Phase Out Incandescent Lamps in Texas  

E-Print Network (OSTI)

This report provides detailed information about the potential savings from the 2012 Federal Legislation to phase out incandescent lamps and the NOx emissions reduction from the replacement of incandescent bulbs with Compact Fluorescent Lamps (CFL). In Texas, this analysis includes the savings estimates from both the annual and Ozone Season Day (OSD) NOx reductions. The NOx emissions reduction in this analysis are calculated using estimated emissions factors for 2007 from the US Environmental Protection Agency (US EPA) eGRID database, which had been specially prepared for this purpose.

Liu, Zi; Baltazar, Juan Carlos; Haberl, Jeff; Soman, Rohit

2010-03-01T23:59:59.000Z

15

Ozone  

NLE Websites -- All DOE Office Websites (Extended Search)

and Umkehr observations (Angell et al.) The Forest Responses to Anthropogenic Stress (FORAST) (McLaughlin et al.) Ozone EnrichmentAspen FACE Experiment - Rhinelander, Wisconsin...

16

Influence of Ceria on the NOx Storage/Reduction Behavior of Lean NOx Trap Catalysts  

E-Print Network (OSTI)

ACPD 8, 4911­4947, 2008 NOx-induced ozone loss processes B. Vogel et al. Title Page Abstract mesospheric NOx during Arctic Winter 2003/2004 B. Vogel 1 , P. Konopka 1 , J.-U. Groo� 1 , R. M¨uller 1 , B on behalf of the European Geosciences Union. 4911 #12;ACPD 8, 4911­4947, 2008 NOx-induced ozone loss

Pennycook, Steve

17

Ozone  

SciTech Connect

The author discusses the debate over whether concern about a hole in the ozone layer in Antarctic is real or science fiction. There is a growing consensus that efforts must be taken to protect the ozone layer. The issue now is not whether chlorofluorocarbons (CFCs) should be controlled and regulated but how much and how soon. The United States has urged that the production of dangerous CFCs, and any other chemicals that affect the ozone layer, be restricted immediately to current levels and that their use be reduced 95 percent over the next decade. The American position was too strong for many European nations and the Japanese. Negotiations at an international conference on the matter broke down. The breakdown is due in part to a more acute concern for environmental matters in the United States than exists in many countries. Meanwhile CFCs are linked to another environmental problem that equally threatens the world - the Greenhouse Effect. The earth is in a natural warming period, but man could be causing it to become even warmer. The Greenhouse Effect could have a catastrophic impact on mankind, although nothing has been proven yet.

1988-06-01T23:59:59.000Z

18

Abatement of Air Pollution: The Clean Air Interstate Rule (CAIR) Nitrogen Oxides (Nox) Ozone Season Trading Program (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations may apply to fossil-fuel fired emission units, and describe nitrogen emission allocations that owners of such units must meet. The regulations also contain provisions for...

19

Repeatability of the Seasonal Variations of Ozone near the Mesopause from Observations of the 11.072-GHz Line  

Science Conference Proceedings (OSTI)

Ground-based observations of the 11.072-GHz line of ozone were made from January 2008 through the middle of September 2011 to estimate the maximum in the nighttime ozone in the upper mesosphere at an altitude of about 95 km for a region centered ...

A. E. E. Rogers; P. Erickson; V. L. Fish; J. Kittredge; S. Danford; J. M. Marr; M. B. Arndt; J. Sarabia; D. Costa; S. K. May

2012-10-01T23:59:59.000Z

20

Advanced NOx Emissions Control: Control Technology - Second Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

In Situ Device for Real-Time Catalyst Deactivation Measurements in Full-Scale SCR Systems In Situ Device for Real-Time Catalyst Deactivation Measurements in Full-Scale SCR Systems To support trends in the electric generating industry of moving from seasonal to year-round operation of Selective Catalytic Reduction (SCR) for control of NOx and mercury, as well as extending the time between generating unit outages, Fossil Energy Research Corporation (FERCo) is developing technology to determine SCR catalyst activity and remaining life without requiring an outage to obtain and analyze catalyst samples. FERCo intends to use SCR catalyst performance results measured with their in situ device at Alabama PowerÂ’s Plant Gorgas during the 2005 and 2006 ozone seasons, along with EPRIÂ’s CatReactTM catalyst management software, to demonstrate the value of real-time activity measurements with respect to the optimization of catalyst replacement strategy. Southern Company and the Electric Power Research Institute are co-funding the project.

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Time and location differentiated NOX control in competitive electricity markets using cap-and-trade mechanisms  

E-Print Network (OSTI)

Due to variations in weather and atmospheric chemistry, the timing and location of nitrogen oxide (NOX) reductions determine their effectiveness in reducing ground-level ozone, which adversely impacts human health. Electric ...

Martin, Katherine C.

2007-01-01T23:59:59.000Z

22

Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Preliminary Report: Integrated NOx Emissions Savings from EE/RE Programs Statewide  

E-Print Network (OSTI)

The Energy Systems Laboratory (ESL), at the Texas Engineering Experiment Station of the Texas A&M University System, in fulfillment of its responsibilities under Texas Health and Safety Code Ann. 388.003 (e), Vernon Supp. 2002, submits this sixth annual report, ‘Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan (Preliminary Report)’ to the Texas Commission on Environmental Quality. In this preliminary report the NOx emissions savings from the energy-efficiency programs from multiple Texas State Agencies working under Senate Bill 5 and Senate Bill 7 in a uniform format to allow the TECQ to consider the combined savings for Texas’ State Implementation Plan (SIP) planning purposes. This required that the analysis should include the cumulative savings estimates from all projects projected through 2020 for both the annual and Ozone Season Day (OSD) NOx reductions. The NOx emissions reduction from all these programs were calculated using estimated emissions factors for 2007 from the US Environmental Protection Agency (US EPA) eGRID database, which had been specially prepared for this purpose. In 2007 the cumulative total annual electricity savings from all programs is 12,591,561 MWh/yr (8,326 tons-NOx/year). The total cumulative OSD electricity savings from all programs is 37,421 MWh/day, which would be a 1,559 MW average hourly load reduction during the OSD period (25.05 tons-NOx/day). By 2013 the total cumulative annual electricity savings from will be 28,802,074 MWh/year (18,723 tons-NOx/year). The total cumulative OSD electricity savings from all programs will be 88,560 MWh/day, which would be 3,690 MW average hourly load reduction during the OSD period (58.47 tons-NOx/day).

Degelman, L.; Mukhopadhyay, J.; McKelvey, K.; Montgomery, C.; Baltazar-Cervantes, J. C.; Liu, Z.; Gilman, D.; Culp, C.; Yazdani, B.; Haberl, J. S.

2008-08-29T23:59:59.000Z

23

Low NOx combustion  

DOE Patents (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi, Hisashi (Putnam Valley, NY); Bool, III, Lawrence E. (Aurora, NY)

2008-10-21T23:59:59.000Z

24

Low NOx combustion  

DOE Patents (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi; Hisashi (Putnam Valley, NY), Bool, III; Lawrence E. (Aurora, NY)

2007-06-05T23:59:59.000Z

25

IEP - Advanced NOx Emissions Control: NOx Reduction Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

NOx Reduction Technologies NOx reduction technologies can be grouped into two broad categories: combustion modifications and post-combustion processes. Some of the more important...

26

NETL: Advanced NOx Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Advanced NOx Emissions Control Innovations for Existing Plants Advanced NOx Emissions Control Adv....

27

Observation-Based Assessment of the Impact of Nitrogen Oxides Emissions Reductions on Ozone Air Quality over the Eastern United States  

Science Conference Proceedings (OSTI)

Ozone is produced by chemical interactions involving nitrogen oxides (NOx) and volatile organic compounds in the presence of sunlight. At high concentrations, ground-level ozone has been shown to be harmful to human health and to the environment. ...

Edith Gégo; P. Steven Porter; Alice Gilliland; S. Trivikrama Rao

2007-07-01T23:59:59.000Z

28

Tropospheric ozone and El Nio-Southern Oscillation: Influence of atmospheric dynamics, biomass burning emissions, and future climate  

E-Print Network (OSTI)

to a reduction in lightning NOx emissions. Using the same coupled model as used in this study (HadAM3-STOCHEM) we NOx emissions over these land regions (Figure 5c; see also Figure 7b). The reduction in the lightning a reduction in UT NOx over Indonesia) depict much more extensive changes that are similar to their ozone

29

CART Decision-Tree Statistical Analysis and Prediction of Summer Season Maximum Surface Ozone for the Vancouver, Montreal, and Atlantic Regions of Canada  

Science Conference Proceedings (OSTI)

Prediction of daily maximum surface ozone (O3) concentration was begun by Environment Canada in the spring of 1993 for the Vancouver, Montreal, and Atlantic regions in order to advise the public of expected air quality. Forecasts have been issued ...

William R. Burrows; Mario Benjamin; Stephen Beauchamp; Edward R. Lord; Douglas McCollor; Bruce Thomson

1995-08-01T23:59:59.000Z

30

NOx | OpenEI  

Open Energy Info (EERE)

NOx NOx Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx SO2 sulfur dioxide emissions

31

Retrofit NOx Control Guidelines for Gas- and Oil-Fired Boilers  

Science Conference Proceedings (OSTI)

Ground-level ozone concentrations continue to exceed the federal health-based standard in many parts of the country, especially urban areas. This condition led Congress to include in the Clean Air Act Amendments of 1990 a requirement that states with nonattainment regions implement regulations to reduce NOx from all sources, including utility boilers. By providing a summary and analysis of all the available information on NOx control techniques for gas-and oil-fired boilers, this document can help utilit...

1994-01-01T23:59:59.000Z

32

The evolution of NOx control policy for coal-fired power plants in the United States  

Science Conference Proceedings (OSTI)

Emissions of nitrogen oxides (NOx) contribute to formation of particulate matter and ozone, and also to acidification of the environment. The electricity sector is responsible for about 20% of NOx emissions in the United States, and the sector has been the target of both prescriptive (command-and-control) and flexible (cap-and-trade) approaches to regulation. The paper summarises the major NOx control policies affecting this sector in the USA, and provides some perspectives as to their effectiveness. While both prescriptive and flexible approaches continue to play an important role, significant new proposals have wholly embraced a cap-and-trade approach. 20 refs., 7 figs., 2 tabs.

Dallas Burtraw; David A. Evans

2003-12-15T23:59:59.000Z

33

Reductions in ozone concentrations due to controls on variability in industrial flare emissions in Houston, Texas  

E-Print Network (OSTI)

High concentrations of ozone in the Houston/Galveston area are associated with industrial plumes of highly reactive hydrocarbons, mixed with NOx. The emissions leading to these plumes can have significant temporal variability, ...

Nam, Junsang

2007-01-01T23:59:59.000Z

34

The effect of variability in industrial emissions on ozone formation in Houston, Texas  

E-Print Network (OSTI)

Ambient observations have indicated that high concentrations of ozone observed in the Houston/Galveston area are associated with plumes of highly reactive hydrocarbons, mixed with NOx, from industrial facilities. Ambient ...

Webster, Mort David

2007-01-01T23:59:59.000Z

35

Ground-level ozone in eastern North America : its formation and transport  

E-Print Network (OSTI)

Ozone (Os), a natural component of the troposphere, is augmented by photochemical processes involving manmade emissions of nitrogen oxides (NOx) and volatile organic compounds (VOCs). Sufficiently high concentrations of ...

Zemba, Stephen G.

1990-01-01T23:59:59.000Z

36

A Novel Technology for the Reduction of NOx on Char by Microwaves  

E-Print Network (OSTI)

The emphasis on reduction of NOx as a precursor to street level ozone has increased the need for technologies capable of reducing NOx (>95%) to very low levels in major metropolitan areas from a wide variety of sources. Technology offerings available today may not always be appropriate for every desired application in the utility and industrial sectors. This paper will discuss a new technology under development that has promise to address many of the specialized needs of some of these applications. The technology is directed at NOx reduction but may also address other pollutants like SO2. The technology employees char, a heat treated and devolitilized form of coal, to adsorb NOx from the flue (or waste) gas. Adsorption of greater than 99% has been demonstrated on a lab scale and appears very feasible for scale-up. Microwave energy properly applied to the char loaded with NOx converts the NOx via carbon reduction to nitrogen and carbon dioxide. The role of microwave energy in the efficient destruction of the NOx selectively to nitrogen and CO2 differentiates this technology from other technologies that may generate significant byproducts like CO or N2O. The basic principles of the technology, applications where it is appropriate, and a comparison to other NOx technologies are included in the paper as well as the developmental status and plans.

Buenger, C.; Peterson, E.

1994-04-01T23:59:59.000Z

37

Seasonal Simulation of Tropospheric Ozone over the Midwestern and Northeastern United States: An Application of a Coupled Regional Climate and Air Quality Modeling System  

Science Conference Proceedings (OSTI)

The impacts of air pollution on the environment and human health could increase as a result of potential climate change. To assess such possible changes, model simulations of pollutant concentrations need to be performed at climatic (seasonal) ...

Ho-Chun Huang; Xin-Zhong Liang; Kenneth E. Kunkel; Michael Caughey; Allen Williams

2007-07-01T23:59:59.000Z

38

Sensitivity Analysis of Ozone Formation and Transport for a Central  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensitivity Analysis of Ozone Formation and Transport for a Central Sensitivity Analysis of Ozone Formation and Transport for a Central California Air Pollution Episode Title Sensitivity Analysis of Ozone Formation and Transport for a Central California Air Pollution Episode Publication Type Journal Article Year of Publication 2008 Authors Jin, Ling, Shaheen R. Tonse, Daniel S. Cohan, Xianglei Mao, Robert A. Harley, and Nancy J. Brown Journal Environmental Science & Technology Volume 42 Start Page 3683 Issue 10 Pagination 3683-3689 Date Published 05/2008 Abstract We developed a first- and second-order sensitivity analysis approach with the decoupled direct method to examine spatial and temporal variations of ozone-limiting reagents and the importance of local vs upwind emission sources in the San Joaquin Valley of central California for a 5 day ozone episode (Jul 29th to Aug 3rd, 2000). Despite considerable spatial variations, nitrogen oxides (NOx) emission reductions are overall more effective than volatile organic compound (VOC) control for attaining the 8 h ozone standard in this region for this episode, in contrast to the VOC control that works better for attaining the prior 1 h ozone standard. Interbasin source contributions of NOx emissions are limited to the northern part of the SJV, while anthropogenic VOC (AVOC) emissions, especially those emitted at night, influence ozone formation in the SJV further downwind. Among model input parameters studied here, uncertainties in emissions of NOx and AVOC, and the rate coefficient of the OH + NO2 termination reaction, have the greatest effect on first-order ozone responses to changes in NOx emissions. Uncertainties in biogenic VOC emissions only have a modest effect because they are generally not collocated with anthropogenic sources in this region.

39

NETL: Advanced NOx Emissions Control: Control Technology - NOx Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions from Multi-Burners Emissions from Multi-Burners The University of Utah working with Reaction Engineering International and Brigham Young University is investigating a project that consists of integrated experimental, theoretical and computational modeling efforts. The primary objective is to evaluate NOx formation/destruction processes as they occur in multi-burner arrays, a geometry almost always utilized in utility practice. Most controlled experimental work examining NOx has been conducted on single burners. The range of potential intra-burner interactions are likely to provide added degrees of freedom for reducing NOx. The resultant findings may allow existing utilities to arrange fuel and air distribution to minimize NOx. In new applications, orientation of individual burners within an array may also be altered to reduce NOx. Comprehensive combustion codes will be modified to incorporate the latest submodels of nitrogen release and heterogeneous chemistry. Comparison of pilot scale experiments and simulations will be utilized to validate/develop theory.

40

Interpreting Remote Sensing NOx Measurements  

E-Print Network (OSTI)

Interpreting Remote Sensing NOx Measurements Robert Slott, Consultant, Donald Stedman and Saj tailpipe emissions (HC, CO, NOx) are changing with time hUse remote sensing hMeasurements in at least 4 of the year at each location hUniform QC/QA and data reporting Paper # 2001-01-3640 #12;Remote Sensing

Denver, University of

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Proceedings: 2000 NOx Controls Workshop  

Science Conference Proceedings (OSTI)

The 2000 EPRI workshop on nitrogen oxide (NOx) controls for utility boilers provided a medium for member utilities to augment their knowledge of recent operating experience and developments on NOx control technologies. The event focused on improving methods of compliance with emission regulations mandated by the Clean Air Act Amendments (CAAA) of 1990 without jeopardizing efficiency and plant performance.

2001-04-10T23:59:59.000Z

42

IEP - Advanced NOx Emissions Control: Control Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

forms at high temperatures during fossil fuel combustion (see How NOx is Formed ). The primary sources of NOx emissions in the United States are motor vehicles, power plants,...

43

Industry-Utility Collaborative Efforts to Address Environmental Concerns- Dispatching for Localized NOx Reduction  

E-Print Network (OSTI)

Environmental pressures are causing many companies to rethink how they do business. Like many other areas of the country, the Gulf Coast petrochemical corridors, including those served by Gulf States Utilities, are classified as non attainment for ozone. Some people believe this classification leads to a bad environmental image. Such an image stifles further economic development and forces existing industries to renovate or close. Sixty four industrial plants located near Baton Rouge were ordered by the Louisiana Department of Environmental Quality to submit both short-term plans, which will be enforced this summer, and long- term plans to reduce ozone precursors. This paper describes a collaborative approach industry and the utility can use to help meet these objectives. The approach involves dispatching NOx-producing equipment (e.g., boilers and gas turbines) to achieve minimum NOx production during ozone alert periods and purchasing supplemental power under a special tariff to replace any loss in self-generated power.

Hamilton, D. E.; Helmick, R. W.; Lambert, W. J.

1991-06-01T23:59:59.000Z

44

NETL: Advanced NOx Emissions Control: Control Technology - Model for NOx  

NLE Websites -- All DOE Office Websites (Extended Search)

Model for NOx Emissions in Biomass Cofiring Model for NOx Emissions in Biomass Cofiring Southern Research Institute is developing a validated tool or methodology to accurately and confidently design and optimize biomass-cofiring systems for full-scale utility boilers to produce the lowest NOX emissions and the least unburned carbon. The computer model will be validated through an extensive set of tests at the 6 MMBtu/hr pilot combustor in the Southern Company/Southern Research Institute Combustion Research Facility. Full-scale demonstration testing can be compared to the model for further validation. The project is designed to balance the development of a systematic and expansive database detailing the effects of cofiring parameters on NOx formation with the complementary modeling effort that will yield a capability to predict, and therefore optimize, NOx reductions by the selection of those parameters. The database of biomass cofiring results will be developed through an extensive set of pilot-scale tests at the Southern Company/Southern Research Institute Combustion Research Facility. The testing in this program will monitor NOx, LOI, and other emissions over a broad domain of biomass composition, coal quality, and cofiring injection configurations to quantify the dependence of NOx formation and LOI on these parameters. This database of cofiring cases will characterize an extensive suite of emissions and combustion properties for each of the fuel and injection configuration combinations tested.

45

Greenhouse gas emissions trading in U.S. States: observations and lessons from the OTC NOx Budget Program  

Science Conference Proceedings (OSTI)

A number of U.S. states are considering market-based policies to reduce emissions of greenhouse gases (GHGs). The experience gained from emissions trading for sulfur dioxide and oxides of nitrogen (NOx) offers a useful body of information and data to draw on to design a GHG emissions trading system. This report examines NOx trading under the Ozone Transport Commission (OTC) NOx Budget Program, which resulted principally from the leadership, decisions, and actions by a group of states, ultimately becoming the first multilateral cap-and-trade system for emissions of air pollutants. 72 refs.

Andrew Aulisi; Alexander E. Farrell; Jonathan Pershing; Stacy VanDeveer [World Resources Institute, Washington, DC (United States). Sustainable Enterprise Program

2005-07-01T23:59:59.000Z

46

Hole in the ozone layer?  

NLE Websites -- All DOE Office Websites (Extended Search)

Hole in the ozone layer? Hole in the ozone layer? Name: Kelley Location: N/A Country: N/A Date: N/A Question: Is there really a hole in the ozone layer? Replies: That depends on what one means by a "hole". There is a thinning of the layer that is particularly severe during certain seasons at the poles. But the ozone layer is thinning most everywhere. The thinning around the south pole of earth is particularly stunning, and has been referred to as a hole even though some ozone still exists there, it is much less concentrated. As you may know, this ozone destruction is probably due to human release of pollutants such as clorofluorocarbons (CFCs) an due to natural sources such as chemicals from volcanic eruptions. CFCs are used is cooling systems such as refrigerators and air conditioning. There is an international agreement to phase out the use of these destructive chemicals but they won't be banned entirely for years for fears of losing money. Meanwhile the ozone layer thins and we are exposed to increasingly higher doses of cancer causing radiation

47

Ozone, skin cancer, and the SST  

SciTech Connect

In 1971, the U.S. Congress cut off funding for development of supersonic transport aircraft prototypes when it was argued that the pollution created by SSTs could reduce the stratospheric ozone content and increase the incidence of skin cancer. At present, the theory of ozone depletion is in a rather uncertain state. Two examples of this are cited. First, ozone depletion may depend more on the availability of surfaces of aerosols and particles than on the content of chlorine. Second, it has been discovered that NO(x) can tie up active chlorine and thus reduce depletion from that source. We are therefore left with the paradoxical result that under certain circumstances SSTs flying in the lower stratospheric can actually counteract, at least partially, any ozone-depleting effects of CFCs. A recent study by scientists at the Brookhaven National Laboratory showed that melanoma rates would not be affected by changes in the ozone layer. If these results are confirmed, then much of the fear associated with ozone depletion disappears. It is difficult to tell how all this will affect a future supersonic transport program, since it is not clear whether a fleet of SSTs will increase or offset ozone depletion.

Singer, S.F.

1994-07-01T23:59:59.000Z

48

Surface Ozone Pattern in Hong Kong  

Science Conference Proceedings (OSTI)

Surface ozone (O3) and its precursors in rural and urban areas of Hong Kong are analyzed through the seasonal, temporal, and spatial variation patterns. The seasonal O3 shows a unique pattern with a major peak in autumn and a trough in summer. ...

L. Y. Chan; C. Y. Chan; Y. Qin

1998-10-01T23:59:59.000Z

49

NOx Control for Utility Boiler OTR Compliance  

Science Conference Proceedings (OSTI)

Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), the Babcock and Wilcox Company (B and W), and Fuel Tech teamed together to investigate an integrated solution for NO{sub x} control. The system is comprised of B and W's DRB-4Z{trademark} ultra low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NOxOUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. Development of the low-NO{sub x} burner technology has been a focus in B and W's combustion program. The DRB-4Z{trademark} burner is B and W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by controlled mixing of the fuel and air. Based on data from several 500 to 600 MWe boilers firing PRB coal, NOx emissions levels of 0.15 to 0.20 lb/ 106 Btu have been achieved from the DRB-4Z{trademark} burners in combination with overfire air ports. Although NOx emissions from the DRB-4Z{trademark} burner are nearing the Ozone Transport Rule (OTR) level of 0.15 lb NO{sub x}/106 Btu, the utility boiler owners can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them. Large-scale testing is planned in B and W's 100-million Btu/hr Clean Environment Development Facility (CEDF) that simulates the conditions of large coal-fired utility boilers. The objective of the project is to achieve a NO{sub x} level below 0.15 lb/106 Btu (with ammonia slip of less than 5 ppm) in the CEDF using PRB coal and B and W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner in combination with dual zone overfire air ports and Fuel Tech's NO{sub x}OUT{reg_sign}. During this period B and W prepared and submitted the project management plan and hazardous substance plan to DOE. The negotiation of a subcontract for Fuel Tech has been started.

Hamid Farzan

2003-12-31T23:59:59.000Z

50

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS  

SciTech Connect

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

2001-10-10T23:59:59.000Z

51

Near-Zero NOx Technology  

E-Print Network (OSTI)

Miura Boiler is a world leader in boiler technology with manufacturing facilities in Japan, China, Korea, Taiwan and Brantford, Ontario. The company, which began operations in 1927, is committed to technologies that save fuel, reduce harmful emissions, and conserve natural resources. Recently the company announced the development of a technology that dramatically reduces the nitrogen oxide (NOx) concentration in the exhaust gas of gas-fired steam boilers to below 1ppm (at O2=0% equivalent) compared to over 30ppm of conventional US boilers. This “near-zero NOx” breakthrough will be available in North America by 2010 and represents yet another first in Miura’s “green technology” achievements.

Utzinger, M.

2008-01-01T23:59:59.000Z

52

NOx Reduction through Efficiency Gain  

E-Print Network (OSTI)

Benz Air Engineering and the CompuNOx system focus on a controls approach to minimize emissions without exposing steam generation plants to an unbearable financial burden. With minimal system changes we use thorough system analysis in conjunction with a novel control design to deliver a comprehensive boiler controls retrofit that provides reductions in emissions as well as substantial cost savings. Combining mechanical engineering expertise with substantial experience in control engineering in over 200 retrofits this system achieves astonishing results with short payback time, making CompuNOx a feasible solution for emission mandates and cost savings.

Benz, R.; Thompson, R.; Staedter, M.

2007-01-01T23:59:59.000Z

53

Control of NOx by combustion process modifications  

E-Print Network (OSTI)

A theoretical and experimental study was carried out to determine lower bounds of NOx emission from staged combustion of a 0.7%N #6 fuel oil. Thermodynamic and chemical kinetic calculations have shown minimum NOx emissions ...

Ber?, J. M.

1981-01-01T23:59:59.000Z

54

NOx Compliance Using the NOxOUT SNCR Process in the 1200 TPD Montgomery County  

E-Print Network (OSTI)

or RDF. NOx reduction by use of catalytic reduction and ammonia injection are clearly impractical research in this area, so that we can understand the principles of NOx reduction sufficiently to fill our·lined in cinerator by Hiraoka [2] reveals a reduction from 150 ppm NOx to below 100 ppm NOx (at 12% O2) by using

Columbia University

55

4, 62396281, 2004 lightning-NOx on  

E-Print Network (OSTI)

accurate model responses under the 25% VOC or NOx emission reduction scenarios but inaccurate results under the 75% NOx emission reduction scenario. OSAT predicts accurate model responses under the 25% VOC emission reduction scenario, but inaccurate responses under the 25% and 75% NOx emission reduction

Paris-Sud XI, Université de

56

NETL: Advanced NOx Emissions Control: Control Technology - Ultra Low-NOx  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra Low NOx Integrated System Ultra Low NOx Integrated System TFS 2000(tm) Low NOx Firing System Project Summary: ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important,

57

THERMAL DeNOx: A COMMERCIAL SELECTIVE NONCATALYTIC NOx REDUCTION PROCESS FOR  

E-Print Network (OSTI)

THERMAL DeNOx: A COMMERCIAL SELECTIVE NONCATALYTIC NOx REDUCTION PROCESS FOR WASTE when high NOx reduction is required. To illustrate the cost effectiveness, investment and operating in cinerators. INTRODUCTION THERMAL DeNO", a selective noncatalytic NO" reduction process, was invented just

Columbia University

58

NETL: Advanced NOx Emissions Control: Control Technology - NOx Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Options and Integration Control Options and Integration Reaction Engineering International (REI) is optimizing the performance of, and reduce the technical risks associated with the combined application of low-NOx firing systems (LNFS) and post combustion controls through modeling, bench-scale testing, and field verification. Teaming with REI are the University of Utah and Brown University. During this two-year effort, REI will assess real-time monitoring equipment to evaluate waterwall wastage, soot formation, and burner stoichiometry, demonstrate analysis techniques to improve LNFS in combination with reburning/SNCR, assess selective catalytic reduction catalyst life, and develop UBC/fly ash separation processes. The REI program will be applicable to coal-fired boilers currently in use in the United States, including corner-, wall-, turbo-, and cyclone-fired units. However, the primary target of the research will be cyclone boilers, which are high NOx producing units and represent about 20% of the U.S. generating capacity. The results will also be applicable to all U.S. coals. The research will be divided into four key components:

59

Low NOx Advanced Vortex Combustor  

SciTech Connect

A lean-premixed advanced vortex combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory in Morgantown, WV. All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx /CO/unburned hydrocarbon (UHC) emissions of 4/4/0 ppmv (all emissions corrected to 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated marked acoustic dynamic stability over a wide range of operating conditions, which potentially makes this approach significantly more attractive than other lean-premixed combustion approaches. In addition, the measured 1.75% pressure drop is significantly lower than conventional gas turbine combustors, which could translate into an overall gas turbine cycle efficiency improvement. The relatively high velocities and low pressure drop achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

Edmonds, R.G. (Ramgen Power Systems, Inc., Bellevue, WA); Williams, J.T. (Ramgen Power Systems, Inc., Bellevue, WA); Steele, R.C. (EPRI); Straub, D.L.; Casleton, K.H.; Bining, Avtar (California Energy Commission, Sacramento, CA)

2008-05-01T23:59:59.000Z

60

UREA INFRASTRUCTURE FOR UREA SCR NOX REDUCTION  

DOE Green Energy (OSTI)

Urea SCR is currently the only proven NOX aftertreatment for diesel engines - high NOX reduction possible - some SCR catalyst systems are robust against fuel sulfur - durability has been demonstrated - many systems in the field - long history in other markets - Major limitations to acceptance - distribution of urea solution to end user - ensuring that urea solution is added to vehicle.

Bunting, Bruce G.

2000-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Correlation of Ozone and Meteorology with Hydrogen Peroxide in Urban and Rural Regions of North Carolina  

Science Conference Proceedings (OSTI)

Gas-phase hydrogen peroxide (H2O2) and ozone (O3) along With other trace gases and meteorology were monitored in two distinct regimes of high- and low-NOx (urban and rural) areas in North Carolina during the summer of 1991 as part of the Southern ...

Viney P. Aneja; Mita Das

1995-08-01T23:59:59.000Z

62

IEP - Advanced NOx Emissions Control: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP - Advanced NOx Emissions Control Regulatory Drivers Regulatory Drivers for Existing Coal-Fired Power Plants Regulatory and legislative requirements have predominantly driven the need to develop NOx control technologies for existing coal-fired power plants. The first driver was the Title IV acid rain program, established through the 1990 Clean Air Act Amendments (CAAA). This program included a two-phase strategy to reduce NOx emissions from coal-fired power plants – Phase I started January 1, 1996 and Phase II started January 1, 2000. The Title IV NOx program was implemented through unit-specific NOx emission rate limits ranging from 0.40 to 0.86 lb/MMBtu depending on the type of boiler/burner configuration and based on application of LNB technology.

63

Calculation of NOx Emissions Reductions From Energy Efficient Residential Building Construction in Texas  

E-Print Network (OSTI)

Four areas in Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because ozone pollution levels exceed the National Ambient Air Quality Standard (NAAQS) maximum allowable limits. These areas face severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction in non-attainment and affected counties. This paper reviews the calculation methods and presents results that show the 2003 annual electricity and natural gas savings and NOx reductions from implementation of the 2000 IECC to single-family and multi-family residences in 2003, which use a code-tracable DOE-2 simulation. A discussion of the development of a web-based emissions reductions calculator is also discussed.

Haberl, J. S.; Culp, C.; Gilman, D.; Yazdani, B.; Fitzpatrick, T.; Muns, S.

2006-05-23T23:59:59.000Z

64

Calculation of Nox Emissions Reductions from Energy Efficient Residential Building Construction in Texas  

E-Print Network (OSTI)

Four areas in Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because ozone pollution levels exceed the National Ambient Air Quality Standard (NAAQS) maximum allowable limits. These areas face severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction in non-attainment and affected counties. This paper reviews the calculation methods and presents results that show the 2003 annual electricity and natural gas savings and NOx reductions from implementation of the 2000 IECC to single-family and multi-family residences in 2003, which use a code-traceable DOE-2 simulation. A discussion of the development of a web-based emissions reductions calculator is also discussed.

Haberl, J.; Culp, C.; Gilman, D.; Baltazar-Cervantes, J. C.; Yazdani, B.; Fitzpatrick, T.; Muns, S.; Verdict, M.

2004-01-01T23:59:59.000Z

65

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst  

DOE Green Energy (OSTI)

Improve NOx regeneration calibration developed in DECSE Phase I project to understand full potential of NOx adsorber catalyst over a range of operating temperatures. Develop and demonstrate a desulfurization process to restore NOx conversion efficiency lost to sulfur contamination. Investigate effect of desulfurization process on long-term performance of the NOx adsorber catalyst.

Tomazic, Dean

2000-08-20T23:59:59.000Z

66

Ammonia-Free NOx Control System  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the January 1 to March 31, 2004 time period.

S. Wu; Z. Fan; R. Herman

2004-03-31T23:59:59.000Z

67

Ammonia-Free NOx Control System  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the April 1 to June 30, 2004 time period.

Zhen Fan; Song Wu; Richard G. Herman

2004-06-30T23:59:59.000Z

68

In-Situ Combustion NOx Analyzer Sensor  

Science Conference Proceedings (OSTI)

This report contains a review of the different technologies currently available for measuring nitrogen oxide (NOx) in the flue gas stream including chemiluminescence, photometric, Fourier transform infrared (FTIR) and electrochemical cells. Reviews of how NOx is produced, the detrimental effects, and Environmental Protection Agency (EPA) Code of Federal Regulations (CFR) Title 40 test protocols are also included. A survey to gather information and to evaluate the most promising available technologies for...

2005-12-21T23:59:59.000Z

69

Advancements in low NOx tangential firing systems  

Science Conference Proceedings (OSTI)

The most cost effective method of reducing nitrogen oxide emissions when burning fossil fuels, such as coal, is through in-furnace NOx reduction processes. ABB Combustion Engineering, Inc. (ABB CE), through its ABB Power Plant Laboratories has been involved in the development of such low NOx pulverized coal firing systems for many years. This development effort is most recently demonstrated through ABB CE`s involvement with the U.S. Department of Energy`s (DOE) {open_quotes}Engineering Development of Advanced Coal Fired Low-Emission Boiler Systems{close_quotes} (LEBS) project. The goal of the DOE LEBS project is to use {open_quotes}near term{close_quotes} technologies to produce a commercially viable, low emissions boiler. This paper addresses one of the key technologies within this project, the NOx control subsystem. The foundation for the work undertaken at ABB CE is the TFS 2000{trademark} firing system, which is currently offered on a commercial basis. This system encompasses sub-stoichiometric combustion in the main firing zone for reduced NOx formation. Potential enhancements to this firing system focus on optimizing the introduction of the air and fuel within the primary windbox to provide additional horizontal and vertical staging. As is the case with all in-furnace NOx control processes, it is necessary to operate the system in a manner which does not decrease NOx at the expense of reduced combustion efficiency.

Hein, R. von; Maney, C.; Borio, R. [and others

1996-12-31T23:59:59.000Z

70

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect

Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2004-04-01T23:59:59.000Z

71

Effects of Emissions Reductions on Ozone Predictions by the Regional Oxidant Model during the July 1988 Episode  

Science Conference Proceedings (OSTI)

The U.S. Environmental Protection Agency Regional Oxidant Model, ROM2.2, was applied to a 2?10 July 1988 episode to test the regional episodic ozone response to different combinations of the across-the-board nitrogen oxides (NOx) and volatile ...

Shao-Hang Chu; William M. Cox

1995-03-01T23:59:59.000Z

72

NETL: News Release - DOE-Funded Technology Slashes NOx, Costs...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 7, 2005 DOE-Funded Technology Slashes NOx, Costs in Coal-Fired Cyclone Boiler Utility Reconsiders Plans to Install Standard NOx-control Technology After Successful Field...

73

Methodology to Calculate NOx Emissions Reductions from the Implementation of the 2000 IECC/IRC Conservation Code in Texas  

E-Print Network (OSTI)

Four areas in Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because ozone levels exceed the National Ambient Air Quality Standard (NAAQS) maximum allowable limits. These areas face severe sanctions if attainment is not reached by 2007. Four additional areas in the state are also approaching national ozone limits (i.e., affected areas). In 2001, the Texas State Legislature formulated and passed the Texas Emissions Reduction Plan (TERP), to reduce ozone levels by encouraging the reduction of emissions of NOx by sources that are currently not regulated by the state. An important part of this legislation is the State's energy efficiency program, which includes reductions in energy use and demand that are associated with the adoption of the 2001 IECC, which represents one of the first times that the EPA is considering emissions reductions credits from energy conservation - an important new development for building efficiency professionals, since this could pave the way for documented procedures for financial reimbursement for building energy conservation from the state's emissions reductions funding. This paper provides a detailed discussion of the procedures that have been used to calculate the electricity savings and NOx reductions from residential construction in non-attainment and affected counties using the eGRID database. The previous paper by Haberl et al. (2004) presents results from the application of the methodology that is detailed in this paper.

Haberl, J. S.; Im, P.; Culp, C.

2004-01-01T23:59:59.000Z

74

Calculation of NOx Emission Reduction from Implementation of the 2000 IECC/IRC Conservation Code in Texas  

E-Print Network (OSTI)

Four areas in Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because ozone levels exceed the National Ambient Air Quality Standard (NAAQS) maximum allowable limits. These areas face severe sanctions if attainment is not reached by 2007. Four additional areas in the state are also approaching national ozone limits (i.e., affected areas)1. In 2001, the Texas State Legislature formulated and passed Senate Bill 5 to reduce ozone levels by encouraging the reduction of emissions of NOx by sources that are currently not regulated by the state2. An important part of this legislation is the State's energy efficiency program, which includes reductions in energy use and demand that are associated with the adoption of the 2001 IECC3, which represents one of the first times that the EPA is considering emissions reductions credits from energy conservation - an important new development for building efficiency professionals, since this could pave the way for documented procedures for financial reimbursement for building energy conservation from the state's emissions reductions funding. This paper reviews the procedures that have been used to calculate the electricity savings from residential construction in non-attainment and affected counties. Results are presented that show the annual electricity savings and NOx reductions from implementation of the 2001 IECC to single family residences in 2002, which use the DOE-2 simulation program.

Turner, W. D.; Yazdani, B.; Im, P.; Verdict, M.; Bryant, J.; Fitzpatrick, T.; Haberl, J. S.; Culp, C.

2003-01-01T23:59:59.000Z

75

Clean Cities ozone air quality attainment and maintenance strategies that employ alternative fuel vehicles, with special emphasis on natural gas and propane  

DOE Green Energy (OSTI)

Air quality administrators across the nation are coming under greater pressure to find new strategies for further reducing automotive generated non-methane hydrocarbon (NMHC) and nitrogen oxide (NOx) emissions. The US Environmental Protection Agency (EPA) has established stringent emission reduction requirements for ozone non-attainment areas that have driven the vehicle industry to engineer vehicles meeting dramatically tightened standards. This paper describes an interim method for including alternative-fueled vehicles (AFVs) in the mix of strategies to achieve local and regional improvements in ozone air quality. This method could be used until EPA can develop the Mobile series of emissions estimation models to include AFVs and until such time that detailed work on AFV emissions totals by air quality planners and emissions inventory builders is warranted. The paper first describes the challenges confronting almost every effort to include AFVs in targeted emissions reduction programs, but points out that within these challenges resides an opportunity. Next, it discusses some basic relationships in the formation of ambient ozone from precursor emissions. It then describes several of the salient provisions of EPA`s new voluntary emissions initiative, which is called the Voluntary Mobile Source Emissions Reduction Program (VMEP). Recent emissions test data comparing gaseous-fuel light-duty AFVs with their gasoline-fueled counterparts is examined to estimate percent emissions reductions achievable with CNG and LPG vehicles. Examples of calculated MOBILE5b emission rates that would be used for summer ozone season planning purposes by an individual Air Quality Control Region (AQCR) are provided. A method is suggested for employing these data to compute appropriate voluntary emission reduction credits where such (lighter) AFVs would be acquired. It also points out, but does not quantify, the substantial reduction credits potentially achievable by substituting gaseous-fueled for gasoline-fueled heavy-duty vehicles. Finally, it raises and expands on the relevance of AFVs and their deployment to some other provisions embedded in EPA`s current guidance for implementing 1-hour NAAQS--standards which currently remain in effect--as tools to provide immediate reductions in ozone, without waiting for promised future clean technologies.

Santini, D.J.; Saricks, C.L.

1998-08-04T23:59:59.000Z

76

Steam effect on NOx reduction over lean NOx trap Pt–BaO/Al2O3 ...  

Science Conference Proceedings (OSTI)

Compared to dry atmosphere, steam promoted NOx reduction; however, under ... stored NOx over Pt–BaO/Al2O3 suggest that steam causes NH3 formation over ...

77

Novel Application of Air Separation Membranes Reduces Engine NOx Emissions  

Nitrogen oxide (NOx) emissions pose risks to human health, and so they need to be reduced. One very effective tool for reducing engine in-cylinder temperature and, hence NOx emissions (NOx is a strong function of temperature), is Exhaust Gas ...

78

(plexiglass) covers (negligible transmittance at 290320 nm). NOx emission decreased  

E-Print Network (OSTI)

that the controlling NOx formation and reduction reactions are insensi- tive to coal rank. This observation has been as the initial NOx level in- creases suggests that the char/NO reduction step(s) is more temperature sensitive concentrations cannot be reduced to levels ap- proaching 0 ppm without the use of downstream NOx reduction

79

Meteorology-induced variations in the spatial behavior of summer ozone pollution in Central California  

SciTech Connect

Cluster analysis was applied to daily 8 h ozone maxima modeled for a summer season to characterize meteorology-induced variations in the spatial distribution of ozone. Principal component analysis is employed to form a reduced dimension set to describe and interpret ozone spatial patterns. The first three principal components (PCs) capture {approx}85% of total variance, with PC1 describing a general spatial trend, and PC2 and PC3 each describing a spatial contrast. Six clusters were identified for California's San Joaquin Valley (SJV) with two low, three moderate, and one high-ozone cluster. The moderate ozone clusters are distinguished by elevated ozone levels in different parts of the valley: northern, western, and eastern, respectively. The SJV ozone clusters have stronger coupling with the San Francisco Bay area (SFB) than with the Sacramento Valley (SV). Variations in ozone spatial distributions induced by anthropogenic emission changes are small relative to the overall variations in ozone amomalies observed for the whole summer. Ozone regimes identified here are mostly determined by the direct and indirect meteorological effects. Existing measurement sites are sufficiently representative to capture ozone spatial patterns in the SFB and SV, but the western side of the SJV is under-sampled.

Jin, Ling; Harley, Robert A.; Brown, Nancy J.

2010-06-23T23:59:59.000Z

80

NETL: Advanced NOx Emissions Control: Control Technology - Methane de-NOx  

NLE Websites -- All DOE Office Websites (Extended Search)

METHANE de-NOx® METHANE de-NOx® The Gas Technology Institute (GTI) is teaming with the All-Russian Thermal Engineering Institute and DB Riley to develop a pulverized-coal (PC)-combustion system that is an extension of IGT's METHANE de-NOx® technology. The technology is composed of a novel PC burner design using natural gas fired coal preheating developed and demonstrated in Russia, LNBs with internal combustion staging, and additional natural gas injection with overfire air. The coal is preheated at elevated temperatures (up to 1500oF) in oxygen deficient conditions prior to combustion. Coal preheat releases fuel-bound nitrogen together with volatiles present in the coal. These conditions promote the conversion of fuel-bound nitrogen to molecular nitrogen rather than to NOx.

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Impacts of NOx Controls on Mercury Controllability  

Science Conference Proceedings (OSTI)

Past tests have led researchers and air pollution regulators to hypothesize that nitrogen oxides (NOx) controls can enhance mercury capture by particulate collection devices and sulfur dioxide (SO2) scrubbers. This technology review presents results obtained to date from a comprehensive program designed to confirm, qualify, and quantify these hypotheses.

2002-03-13T23:59:59.000Z

82

NOx Sensor for Direct Injection Emission Control  

DOE Green Energy (OSTI)

The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the sensor.

Betteridge, William J

2006-02-28T23:59:59.000Z

83

AMMONIA-FREE NOx CONTROL SYSTEM  

DOE Green Energy (OSTI)

This report describes a novel NOx control system that has the potential to drastically reduce cost, and enhance performance, operation and safety of power plant NOx control. The new system optimizes the burner and the furnace to achieve very low NOx levels and to provide an adequate amount of CO, and uses the CO for reducing NO both in-furnace and over a downstream AFSCR (ammonia-free selective catalytic reduction) reactor. The AF-SCR combines the advantages of the highly successful SCR technology for power plants and the TWC (three-way catalytic converter) widely used on automobiles. Like the SCR, it works in oxidizing environment of combustion flue gas and uses only base metal catalysts. Like the TWC, the AF-SCR removes NO and excess CO simultaneously without using any external reagent, such as ammonia. This new process has been studied in a development program jointed funded by the US Department of Energy and Foster Wheeler. The report outlines the experimental catalyst work performed on a bench-scale reactor, including test procedure, operating conditions, and results of various catalyst formulations. Several candidate catalysts, prepared with readily available transition metal oxides and common substrate materials, have shown over 80-90% removal for both NO and CO in oxidizing gas mixtures and at elevated temperatures. A detailed combustion study of a 400 MWe coal-fired boiler, applying computational fluid dynamics techniques to model boiler and burner design, has been carried out to investigate ways to optimize the combustion process for the lowest NOx formation and optimum CO/NO ratios. Results of this boiler and burner optimization work are reported. The paper further discusses catalyst scale-up considerations and the conceptual design of a 400 MWe size AF-SCR reactor, as well as economics analysis indicating large cost savings of the ammonia-free NOx control process over the current SCR technology.

Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

2006-06-01T23:59:59.000Z

84

Source Contributions to VOC's to Ozone Formation in Southeast Texas Using a Source-oriented Air Quality Model  

E-Print Network (OSTI)

Houston-Galveston-Brazoria area is in severe non-attainment status for ozone compliance. Source-oriented mechanistic modeling was used to determine the major sources of VOCs that contributes to ozone formation during the Texas Air Quality Study (TexAQS) from August 16, 2000 to September 7, 2000. Environmental Protection Agency (EPA)?s Community Scale Air Quality Model (CMAQ) version 4.6 was used as a host model to include a revised Statewide Air Pollution Research Center (SAPRC99) photochemical mechanism with source-oriented extensions to track the contributions of Volatile Organic Compounds (VOCs) emissions from diesel engines, biogenic sources, highway gasoline vehicles, fuel combustion, off-highway gasoline engines, solvent utilization and petrochemical industries to ozone formation in the atmosphere. Source-oriented emissions needed to drive the model were generated using a revised Sparse Matrix Operator Kernel Emissions (SMOKE) model version 2.4. VOC/NOx ratios are found to be a critical factor in the formation of ozone. Highest ozone formation rates were observed for ratios from 5-15. The contributions of VOC to ozone formation were estimated based on the linear relationship between the rate of NO to NO2 conversion due to radicals generated from VOC oxidation and the rate of net ozone formation. Petroleum and other industrial sources are the largest anthropogenic sources in the urban Houston region and contribute to 45% of the ozone formation in the HGB area. Highway gasoline vehicles make contributions of approximately 28% to ozone formation. Wildfires contribute to as much 11% of ozone formation on days of high wildfire activity. The model results show that biogenic emissions account for a significant amount of ozone formation in the rural areas. Both highway and off-highway vehicles contribute significantly to ozone formation especially in the downwind region. Diesel vehicles do not contribute significantly to ozone formation due to their low VOC emissions.

Krishnan, Anupama

2010-05-01T23:59:59.000Z

85

On the Relation between Atmospheric Ozone and Sunspot Number  

Science Conference Proceedings (OSTI)

Based on data from the Dobson network, between 1960 and 1987 there has been a zero-lag correlation of 0.48 between the 112 unsmoothed seasonal values of sunspot number and global total ozone, significant at the 1% level taking into account the ...

J. K. Angell

1989-11-01T23:59:59.000Z

86

ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS  

Science Conference Proceedings (OSTI)

ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and related combustion performance. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive Powder River Basin coal (PRB) to a moderately reactive Midwestern bituminous coal (HVB) to a less reactive medium volatile Eastern bituminous coal (MVB). Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis.

Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

2002-12-30T23:59:59.000Z

87

Integrated assessment of the spatial variability of ozone impacts from emissions of nitrogen oxides  

Science Conference Proceedings (OSTI)

This paper examines the ozone (O{sub 3}) damages caused by nitrogen oxides (NOx) emissions in different locations around the Atlanta metropolitan area during a summer month. Ozone impacts are calculated using a new integrated assessment model that links pollution emissions to their chemical transformation, transport, population exposures, and effects on human health. It was found that increased NOx emissions in rural areas around Atlanta increase human exposure to ambient O{sub 3} twice as much as suburban emissions. However, increased NOx emissions in central city Atlanta actually reduce O{sub 3} exposures. For downtown emissions, the reduction in human exposures to O{sub 3} from titration by NO in the central city outweighs the effects from increased downwind O{sub 3}. The results indicate that the marginal damage from NOx emissions varies greatly across a metropolitan area. The results raise concerns if cap and trade regulations cause emissions to migrate toward higher marginal damage locations. 22 refs., 4 figs., 2 tabs.

Daniel Q. Tong; Nicholas Z. Muller; Denise L. Mauzerall; Robert O. Mendelsohn [Princeton University, Princeton, NJ (United States). Science, Technology and Environmental Policy Program, Woodrow Wilson School of Public and International Affairs

2006-03-01T23:59:59.000Z

88

NOx Reduction with Natural Gas for Lean Large-Bore Engine Applications Using Lean NOx Trap Aftertreatment  

SciTech Connect

Large-bore natural gas engines are used for distributed energy and gas compression since natural gas fuel offers a convenient and reliable fuel source via the natural gas pipeline and distribution infrastructure. Lean engines enable better fuel efficiency and lower operating costs; however, NOx emissions from lean engines are difficult to control. Technologies that reduce NOx in lean exhaust are desired to enable broader use of efficient lean engines. Lean NOx trap catalysts have demonstrated greater than 90% NOx reduction in lean exhaust from engines operating with gasoline, diesel, and natural gas fuels. In addition to the clean nature of the technology, lean NOx traps reduce NOx with the fuel source of the engine thereby eliminating the requirement for storage and handling of secondary fuels or reducing agents. A study of lean NOx trap catalysts for lean natural gas engines is presented here. Testing was performed on a Cummins C8.3G (CG-280) engine on a motor dynamometer. Lean NOx trap catalysts were tested for NOx reduction performance under various engine operating conditions, and the utilization of natural gas as the reductant fuel source was characterized. Engine test results show that temperature greatly affects the catalytic processes involved, specifically methane oxidation and NOx storage on the lean NOx trap. Additional studies on a bench flow reactor demonstrate the effect of precious metal loading (a primary cost factor) on lean NOx trap performance at different temperatures. Results and issues related to the potential of the lean NOx trap technology for large-bore engine applications will be discussed.

Parks, JE

2005-02-11T23:59:59.000Z

89

Ozone in Michigan's Environment 1876–1880  

Science Conference Proceedings (OSTI)

Atmospheric ozone was monitored in Michigan during the late 1880's using Schoenbein's test paper. A conversion chart was constructed to relate the Schoenbein ozone scale at various relative humidifies to ozone levels indicated by a Dasibi ozone ...

Dale E. Linvill; W. J. Hooker; Brian Olson

1980-11-01T23:59:59.000Z

90

Radiation and Ozone  

Science Conference Proceedings (OSTI)

Radiation is the driving force for the general circulation of the atmosphere and controls the Earth's climate. Ozone is responsible for the warm stratosphere and protects life on Earth from harmful solar ultraviolet radiation. In July 1959, the ...

G. Ohring; R. D. Bojkov; H-J. Bolle; R. D. Hudson; H. Volkert

2009-11-01T23:59:59.000Z

91

Operational Flexibility Guidelines for Gas Turbine Low NOx Combustion Systems  

Science Conference Proceedings (OSTI)

Gas turbine low-NOx combustion systems can differ in hardware from manufacturer to manufacturer, but the principle is the same. Low-NOx combustors reduce peak flame temperatures by mixing fuel and air before combustion and by keeping the fuel-to-air ratio as low (lean) as possible, while still maintaining combustion stability over the broadest possible operating range. Low-NOx combustion systems are inherently more complex than diffusion combustion systems, a fact that impacts operational flexibility, re...

2011-12-14T23:59:59.000Z

92

NETL: Advanced NOx Emissions Control: Control Technology - Mercury...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Speciation from NOx Control University of North Dakota Energy and Environmental Research Center (UNDEERC) is addressing the impact that selective catalytic reduction (SCR),...

93

Aminoguanidine inhibits aortic hydrogen peroxide production, VSMC NOX activity and hypercontractility in diabetic mice  

E-Print Network (OSTI)

likely via a reduction in NOX-linked hypercontractility.signif- icant reduction in VSMC NOX activity remains to beNOX-derived O 2•- in diabetic VSMC might underlie AG reduction

Oak, Jeong-Ho; Youn, Ji-Youn; Cai, Hua

2009-01-01T23:59:59.000Z

94

Ozone Modeling Using Neural Networks  

Science Conference Proceedings (OSTI)

Ozone models for the city of Tulsa were developed using neural network modeling techniques. The neural models were developed using meteorological data from the Oklahoma Mesonet and ozone, nitric oxide, and nitrogen dioxide (NO2) data from ...

Ramesh Narasimhan; Joleen Keller; Ganesh Subramaniam; Eric Raasch; Brandon Croley; Kathleen Duncan; William T. Potter

2000-03-01T23:59:59.000Z

95

Stratospheric ozone in the planetary boundary layer  

Science Conference Proceedings (OSTI)

The impact of stratospheric ozone associated with rapid transport processes at remote Whiteface Mountain, New York was studied using /sup 7/Be as a stratospheric tracer. The seasonal variation of /sup 7/Be concentration suggests that the greatest impact of stratospheric ozone at Whiteface Mountain occurs during late spring and early summer consistent with the time when the impact of tropopause folding should be maximum. This is also the time when tropospheric photochemical ozone production is likely to be maximum. The analysis of 33 cases with peak /sup 7/Be > 175 fCi/m/sup 3/ shows strong correlation between averaged O/sub 3/ and /sup 7/Be concentration. Assuming peak /sup 7/Be is associated with rapid transport we estimate 12 ppbv as the 24th average increased O/sub 3/ due to tropopause folding events. Also the average SO/sub 4/2/sup -/ concentration peaked a day after /sup 7/Be suggesting the backside of the weather system responsible for rapid subsidence also favors transport to this site from distant urban-industrial centers. Thus, photochemical pollution episodes may be intensified by stratospheric subsidence.

Dutkiewicz, V.A.; Husain, L.; Rusheed, A.

1980-01-01T23:59:59.000Z

96

Observations of Transport Processes for Ozone and Ozone Precursors during the 1991 Lake Michigan Ozone Study  

Science Conference Proceedings (OSTI)

The Lake Michigan Air Quality Region (LMAQR) continues to experience ozone concentrations in urban and rural areas above the federal standard of 125 ppb. During the summer of 1991, the LMAQR states sponsored the Lake Michigan Ozone Study, which ...

Timothy S. Dye; Paul T. Roberts; Marcelo E. Korc

1995-08-01T23:59:59.000Z

97

Assessment of Alternative Post-Combustion NOx Controls Technologies  

Science Conference Proceedings (OSTI)

As emission control requirements continually become stricter, power producers need new, efficient, cost-effective approaches to reduce NOx and other atmospheric pollutants. This report focuses on alternative emerging and commercial post-combustion NOx controls applications other than the industry standard selective catalytic reduction (SCR) technology.

2008-12-01T23:59:59.000Z

98

NOx reduction by electron beam-produced nitrogen atom injection  

DOE Patents (OSTI)

Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

Penetrante, Bernardino M. (San Ramon, CA)

2002-01-01T23:59:59.000Z

99

Estimation of Annual Reductions of NOx Emissions in ERCOT for the HB3693 Electricity Savings Goals  

E-Print Network (OSTI)

Increasing the level of energy efficiency in Texas, as proposed by House Bill 3693, an Act related to energy demand, energy load, energy efficiency incentives, energy programs and energy performance measures, would reduce the amount of electricity demanded from Texas utilities. Since approximately eighty-eight percent of electricity generated in Texas is from plants powered by fossil fuels, such as coal and natural gas, this decrease would also reduce the air pollution that would otherwise be associated with burning these fuels. This report presents the potential emission reductions of nitrogen oxides (NOx) that would occur in the Electric Reliability Council of Texas (ERCOT) region if new energy efficiency targets for investor owned utilities are established for 2010 and 2015. These energy efficiency targets are the subject of a feasibility study as prescribed by Texas House Bill 3693. This report describes the details of the methodology, data and assumptions used, and presents the results of the analysis. The total energy savings targets for utilities within ERCOT are 745,710 megawatt-hours (MWh) by 2010 under the 30 percent reduction of growth scenario and 1,788,953 MWh by 2015 under the 50 percent reduction of growth scenario. The total projected annual NOx emissions reductions from these electricity savings are 191 tons in 2010 and 453 tons in 2015, or converting the annual totals into average daily avoided emissions totals, 0.5 tons per day by 2010 and 1.25 tons per day by 2015. The average avoided emission rate is approximately 0.51 pounds (lb) of NOx reduced per MWh of electricity savings. While House Bill 3693 is an Act related to energy and does not target emissions levels, the energy efficiency improvements would achieve air pollution benefits that could positively affect air quality and human health. The emissions reductions projected to result in 2010 and 2015 are comparable to the Texas Emission Reduction Program (TERP) Energy-Efficiency Grants Program, which does target emission reductions and estimated 2005 annual NOx emissions reductions of about 89 tons. While the projected emissions reductions are small compared to the total emission reductions needed to bring the state’s non-attainment areas into attainment of the national ambient air quality standards for ozone, they can be a part of an overall strategy to reduce emissions and improve human health in Texas.

Diem, Art; Mulholland, Denise; Yarbrough, James; Baltazar, Juan Carlos; Im, Piljae; Haberl, Jeff

2008-12-01T23:59:59.000Z

100

NETL: Emissions Characterization - Adv. Low-NOx Burner Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Low-NOx Burner Emissions Characterization Advanced Low-NOx Burner Emissions Characterization The goal of this work is to develop a comprehensive, high-quality database characterizing PM2.5 emissions from utility plants firing high sulfur coals. The specific objectives are to: 1) develop and test an ultra low-NOx pulverized coal burner for plug-in retrofit applications without boiler wall tube modifications, 2) assess the impact of low-NOx PC burner operation on NOx and PM2.5 emissions, and 3) provide high-quality data to ensure that future PM2.5 regulations are based on good scientific information. The work will be performed in the Clean Environment Development Facility (CEDF), a 100 million Btu/hr near-full-scale facility located at the Alliance Research Center. Related Papers and Publications:

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Air Pollution Control Regulations: No. 41 - Nox Budget Trading Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - Nox Budget Trading 41 - Nox Budget Trading Program (Rhode Island) Air Pollution Control Regulations: No. 41 - Nox Budget Trading Program (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations establish a budget trading program for nitrogen oxide emissions, setting NOx budget units for generators and an NOx Allowance Tracking System to account for emissions. These regulations apply to units that serve generators with a nameplate capacity greater than 15 MWe and sell any amount of electricity, as well as to units that have a maximum

102

Ozone decomposing filter  

DOE Patents (OSTI)

In an improved ozone decomposing air filter carbon fibers are held together with a carbonized binder in a perforated structure. The structure is made by combining rayon fibers with gelatin, forming the mixture in a mold, freeze-drying, and vacuum baking.

Simandl, Ronald F. (Farragut, TN); Brown, John D. (Harriman, TN); Whinnery, Jr., LeRoy L. (Dublin, CA)

1999-01-01T23:59:59.000Z

103

Ozone depletion and health  

SciTech Connect

This book presents the state of knowledge of the ozone layer and the greenhouse effect. Deleterious effects of ultra-violet radiation on humans, animals, and plants are discussed. Alternatives to chloro-fluoro-carbons and political responses to the scientific discoveries are also addressed.

Russell-Jones, R.; Wigley, T.

1989-01-01T23:59:59.000Z

104

HETEROGENEOUS NOX CHEMISTRY IN POLLUTED URBAN ATMOSPHERES: IMPLICATIONS FOR THE FORMATION OF PARTICLES AND OZONE AND  

E-Print Network (OSTI)

; Gillette, 1997; Perry et al., 1997; Zhang et al., 1997; Prospero, 1999; Zhang and Carmichael, 1999; deReus

Dabdub, Donald

105

Ion-mobility Spectrometry Based NOx Sensor - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

NPNS > Sensors and NPNS > Sensors and Instrumentation and NDE > Energy System Application > DOE Office of Transportation Technologies > Ion-mobility Spectrometry Based NOx Sensor Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Overview DOE Office of Fossil Energy DOE Office of Transportation Technologies Ion-mobility Spectrometry Based NOx Sensor DOE Office of Power Technology Work for Others Safety-Related Applications Homeland Security Applications Biomedical Applications Millimiter Wave Group Papers Other NPNS Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sensors and Instrumentation and Nondestructive Evaluation Ion-mobility Spectrometry Based NOx Sensor

106

Modeling of NOx formation in circular laminar jet flames  

E-Print Network (OSTI)

Emissions of oxides of nitrogen (NOx) from combustion devices is a topic of tremendous current importance. The bulk of the review of NOx emissions has been in the field of turbulent jet flames. However laminar jet flames have provided much insight into the relative importance of NOx reaction pathways in non premixed combustion for various flame conditions. The existing models include detailed chemistry kinetics for various species involved in the flame. These detailed models involve very complex integration of hundreds of chemical reactions of various species and their intermediates. Hence such models are highly time consuming and also normally involve heavy computational costs. This work proposes a numerical model to compute the total production of NOx in a non-premixed isolated circular laminar jet flame. The jet consists of the fuel rich inner region and the O2 rich outer region. The model estimates both thermal NOx and prompt NOx assuming single step kinetics for NOx formation and a thin flame model. Further the amount of air entrainment by jet depends upon the Sc number of fuel. The higher the Sc number, the higher is the air entrained which lowers the flame temperature and hence NOx formation. With increasing Sc number, flame volume increases which leads to an increase in the NOx formation. The effect of the Sc number variation on the net production of NOx and flame structure is also investigated. The effect of equilibrium chemistry for CO2 CO + 1/2 O2 and H2O H2 +1/2 O2 on total NOx emission is studied. Also the effect of both CO2 and H2O equilibrium is considered simultaneously and the net x NO formation for propane is 45 ppm. The split between pre-flame and post-flame regions is also investigated. For Propane, 96% of NO emissions occur in the pre-flame region and about 4% in the post-flame region. The model predictions are compared with experimental values of NOx missions reported elsewhere.

Siwatch, Vivek

2005-12-01T23:59:59.000Z

107

NOx Emissions Reductions from Implementation of the 2000 IECC/IRC Conservation Code to Residential Construction in Texas  

E-Print Network (OSTI)

Four areas in Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because ozone levels exceed the National Ambient Air Quality Standard (NAAQS) maximum allowable limits. These areas face severe sanctions if attainment is not reached by 2007. Four additional areas in the state are also approaching national ozone limits (i.e., classified as affected areas). In 2001, the Texas State Legislature formulated and passed the Texas Emissions Reduction Plan (TERP), to reduce ozone levels by encouraging the reduction of emissions of NOx by sources that are currently not regulated by the state. An important part of this legislation is the State's energy efficiency program, which includes reductions in energy use and demand that are associated with the adoption of the 2000 IECC1, which represents one of the first times that the EPA is considering emissions reductions credits from energy conservation - an important new development for building efficiency professionals. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from residential construction in nonattainment and affected counties2. Results are presented that show the annual electricity and natural gas savings and NOx reductions from implementation of the 2000 IECC to singlefamily and multi-family residences in 2003, which use a code-traceable DOE-2 simulation. A second paper provides a detailed discussion of the methods used to calculate the emissions 1 This includes the 2001 Supplement to the 2000 IECC and 2000 IRC (IRC 2000, IECC 2001). 2 The procedures outlined in this paper were developed and used in the Laboratory's 2002 and 2003 Annual Report to the TCEQ to satisfy the requirements of the Senate Bill 5 Legislation. In 2003 the Laboratory was awarded a grant from the EPA, which is administered through the TCEQ, to expand the development of these procedures into a webbased tool that would provide state and local authorities with accurate emissions reductions for use in preparing State Implementation Plans. reductions using the eGRID database (Haberl et al. 2004).

Haberl, J. S.; Im, P.; Culp, C.; Yazdani, B.; Fitzpatrick, T.

2004-01-01T23:59:59.000Z

108

Quantification of Variability and Uncertainty in Hourly NOx Emissions from Coal-Fired Power Plants  

E-Print Network (OSTI)

1 Quantification of Variability and Uncertainty in Hourly NOx Emissions from Coal-Fired Power to quantify variability and uncertainty for NOx emissions from coal-fired power plants. Data for hourly NOx Uncertainty, Variability, Emission Factors, Coal-Fired Power Plants, NOx emissions, Regression Models

Frey, H. Christopher

109

PERFORMANCE OF NOx CONTROL TECHNOLOGIES ON THREE CALIFORNIA WASTE-TO-ENERGY  

E-Print Network (OSTI)

catalytic reduction (SNCR) technology. There is a sub stantial volume of literature available discussing NOx in the first three undergrate zones on the SERRF units. Preliminary indications were that some NOx reduction) to quantify the effect of FGR's contribution to NOx reduction during simultaneous FGRIThermal DeNOx use; (b

Columbia University

110

Use of Simulation To Optimize NOx Abatement by Absorption and Selective Catalytic Reduction  

E-Print Network (OSTI)

Use of Simulation To Optimize NOx Abatement by Absorption and Selective Catalytic Reduction Andrew the effect of the ammonia feed ratio on the NOx reduction efficiency for the SCR model. Optimal NOx removal NOx in an inert gas slows its absorption in the absorber and its reduction in the SCR because

Liu, Y. A.

111

NETL: Advanced NOx Emissions Control: Control Technology - ALTA...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the burner design is to achieve homogeneity of the combustion products in the boiler. Not only does this create ideal conditions for combustion-related NOx control, it...

112

NETL: Advanced NOx Emissions Control: Control Technology - Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

product. The FFR concept solves this problem. The technology increases the efficiency of NOx reduction in coal reburning and decreases carbon-in ash. FFR can achieve the same...

113

NETL: Advanced NOx Emissions Control: Control Technology - Dense...  

NLE Websites -- All DOE Office Websites (Extended Search)

air (ROFA(tm)) and ROTAMIX(tm) systems. Baseline NOx emission rates with the ROFA system ranged from 0.17 to 0.26 lbMMBtu. During DPRCS testing the micronized coal feed...

114

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration  

Science Conference Proceedings (OSTI)

Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

Choi, Jae-Soon [ORNL; Prikhodko, Vitaly Y [ORNL; Partridge Jr, William P [ORNL; Parks, II, James E [ORNL; Norman, Kevin M [ORNL; Huff, Shean P [ORNL; Chambon, Paul H [ORNL; Thomas, John F [ORNL

2010-01-01T23:59:59.000Z

115

Status of the Development and Assessment of Advanced NOx Catalysts  

Science Conference Proceedings (OSTI)

This is an interim report summarizing the status of EPRI's advanced nitrogen oxides (NOx) reduction catalyst development efforts in 2000. Concepts for that are more effective, lower cost, and may not have the problems associated with the standard vanadium pentoxide - titanium dioxide (V2O5-TiO2) NOx selective catalytic reduction (SCR) catalysts that have been assessed under this program. The primary efforts in 2000 included further development of an ultra-high efficiency (UHE) catalyst, determining wheth...

2000-11-27T23:59:59.000Z

116

NOx reduction aftertreatment system using nitrogen nonthermal plasma desorption  

Science Conference Proceedings (OSTI)

In the flue emission from an internal combustion system using diffusing combustion such as coal or oil fuel boiler, incinerator, or diesel engine, around 10% oxygen is usually included. It is difficult to reduce the NOx in the emission completely using catalysts or plasma alone because part of the NO is oxidized under an O{sub 2}-rich environment. In order to overcome these difficulties, we propose a new aftertreatment system of NOx included in the exhaust gas of the combustion system using nonthermal plasma (NTP) desorption and reduction. In this system, exchangeable adsorbent columns are equipped. As an initial step to realize such kind of aftertreatment system, the basic characteristics of the N{sub 2} NTP desorption and NOx reduction were examined experimentally using a pulse corona NTP reactor. After several adsorption/desorption processes, the amount of NOx adsorbed becomes equal to that of the NOx desorbed, that is, all the NO, was desorbed in a single desorption process. It is confirmed that the NOx complete reduction using N{sub 2} NTP desorption is possible not only for a simulated exhaust gas but for a real diesel engine gas. The effective specific energy density can be decreased down to 22 Wh/m{sup 3}.

Okubo, M.; Inoue, M.; Kuroki, T.; Yamamoto, T. [University of Osaka Prefecture, Osaka (Japan). Dept. of Mechanical Engineering

2005-08-01T23:59:59.000Z

117

Aeroderivative Gas Turbines Can Meet Stringent NOx Control Requirements  

E-Print Network (OSTI)

Gas Turbines operating in the United States are required to meet federally mandated emission standards. This article will discuss how General Electric's LM industrial aeroderivative gas turbines are meeting NOx requirements as low as 25 parts per million using steam injection. The article will also describe the technical aspects of how water or steam injection can be used to supress NOx, what emission levels GE will guarantee and detail some recently obtained test results. The side benefits of water or steam injection for controlling NOx emissions will be discussed. Steam injection has a very favorable effect on engine performance raising both the power output and efficiency. As an example, full steam injection in the GE LM5000 gas turbine increases the power output from 34 MW to 52 MW while lowering the heat rate from 9,152 Btu/kWh to 7,684 Btu/kWh when fired on natural gas. Water injection increases power output at a slightly decreased thermal efficiency. When steam is injected, NOx can be controlled to 25 ppm (referenced to 15 percent O2) which is sufficient to comply with the most stringent requirements imposed in areas where water or steam injection is considered best available control technology (BACT). Selective Catalytic Reduction (SCR) systems are currently employed in areas with Lowest Achievable Emissions Requirements. SCRs have been proposed as BACT in several areas such as the Bay area of California and the state of New Jersey. These systems are expensive to install and operate, and this cost impact can cause many projects to become economically non-viable. Cost comparisons for NOx removal using an SCR in combination with the steam injection will demonstrate the large incremental cost incurred when NOx is controlled using an SCR. Lastly, a case will be made for not imposing SCR as BACT in that it would close the door on further research and development for better, cost-effective methods of NOx control.

Keller, S. C.; Studniarz, J. J.

1987-09-01T23:59:59.000Z

118

Examination of the Effects of Sea Salt Aerosols on Southeast Texas Ozone and Secondary Organic Aerosol  

E-Print Network (OSTI)

Despite decades of study, we still do not fully understand aerosols and their interactions among gases or other aerosols in the atmosphere. Among their impacts, they influence radiative transfer in the atmosphere and contribute to cloud formation. There are many different types of aerosols, including dust particles, soot particles, and microscopic particles containing inorganic compounds such as sulfates. Most of these particles have natural origins, but many are anthropogenic. The eventual purpose of this research is to examine sea salt aerosols and their impact on polluted environments. Sea salt aerosols act as Cloud Condensation Nuclei (CCN) as well as providing a surface for heterogeneous reactions. Such reactions have implications for trace gases such as ozone, reactive nitrogen, mercury, and sulfur containing compounds. Urban areas are most impacted by these trace gases, which is a concern because ozone especially affects the health of citizens. Experiments have three basic parts. First we generate mono-disperse 3 aerosols. That aerosol is then injected into the aerosol chambers with sea salt aerosols and prescribed concentrations of trace gases to characterize relevant interactions. However, those chambers are still under construction and not used during my study. The processed aerosols are then analyzed with a tandem differential mobility analyzer (TDMA) and other equipment. Different concentrations of sea salt aerosols, Cl, NOx, and other gases were planned to be introduced during the experiments. Concentrations of other gases and intensity of solar radiation would mimic those outside. Because these reactions have proved to increase localized concentrations of ozone in other work, this could have important implications. Future work will be designed to find study these interactions. This is important because the EPA has considered tightening the standards for both ozone and particulate matter. Industries would then need to reduce emissions or move farther from current sources of Cl or NOx pollution.

Benoit, Mark David

2013-05-01T23:59:59.000Z

119

NETL: Advanced NOx Emissions Control: Control Technology - SCNR Field  

NLE Websites -- All DOE Office Websites (Extended Search)

SNCR Field Demonstration SNCR Field Demonstration American Electric Power (AEP), in conjunction with the U.S. Department of Energy, FuelTech, the Ohio Coal Development Office, and fourteen EPRI member utilities, performed a full-scale demonstration of a urea-based Selective Non-Catalytic Reduction (SNCR) system at Cardinal Unit 1. Cardinal Unit 1 is a 600MWe opposed-wall dry bottom pulverized coal-fired boiler that began service in 1967. This unit burns eastern bituminous high-sulfur coal, (3.72%S). This unit was retrofitted with low NOx burners (LNB's) during its scheduled fall 1998 outage and the SNCR system was installed concurrently. SNCR is a post-combustion NOx control process developed to reduce NOx emissions from fossil-fuel combustion systems. SNCR processes involve the injection of a chemical containing nitrogen into the combustion products, where the temperature is in the range of 1600°F - 2200°F (870°C - 1205°C). In this temperature range, the chemical reacts selectively with NOx in the presence of oxygen, forming primarily nitrogen and water. Although a number of chemicals have been investigated and implemented for SNCR NOx reduction, urea and ammonia have been most widely used for full-scale applications.

120

Lean NOx catalysis for gasoline fueled European cars  

SciTech Connect

There is increasing interest in operating gasoline fueled passenger cars lean of the stoichiometric air/fuel (A/F) ratio to improve fuel economy. These types of engines will operate at lean A/F ratios while cruising at partial load, and return to stoichiometric or even rich conditions when more power is required. The challenge for the engine and catalyst manufacturer is to develop a system which will combine the high activity rates of a state-of-the-art three-way catalyst (TWC) with the ability to reduce nitrogen oxides (NOx) in the presence of excess oxygen. The objective is to achieve the future legislative limits (EURO III/IV) in the European Union. Recent developments in automotive pollution control catalysis show that the use of NOx adsorption materials is a suitable way to reduce NOx emissions of gasoline-fueled lean-burn engines. However, the primary task for the implementation of this technology in the European market will be to improve the catalyst`s high-temperature stability and to decrease its susceptibility to sulfur poisoning. Outlined here are results of a recent R and D program to achieve NOx reduction under lean-burn gasoline engine conditions. Model gas test results as well as engine bench data are used for discussion of the parameters which control NOx adsorption efficiency under various conditions.

NONE

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Chemical Consequences of Heme Distortion and the Role of Heme Distortion in Signal Transduction of H-NOX Proteins  

E-Print Network (OSTI)

T. tengcongensis (Tt H-NOX), the reduction potential wasdesign of Tt H-NOX to broaden the reduction potential rangewith Tt H-NOX show that the reduction potential is

Olea, Jr., Charles

2010-01-01T23:59:59.000Z

122

Electrochemical NOx Sensor for Monitoring Diesel Emissions  

Science Conference Proceedings (OSTI)

Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies ( 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

Woo, L Y; Glass, R S

2008-11-14T23:59:59.000Z

123

NETL: Advanced NOx Emissions Control: Control Technology - Optimized Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimized Fuel Injector Design Optimized Fuel Injector Design This project includes fundamental research and engineering development of low NOx burners and reburning fuel injectors. The team of Reaction Engineering International (REI), the University of Utah, Brown University and DB Riley, Inc., will develop fundamental information on low NOx burners. The work has two phases. In the first phase, the University of Utah will examine two-phase mixing and near-field behavior of coal injectors using a 15-million Btu/hr bench-scale furnace, Brown University will examine char deactivation and effectiveness of reburning, and REI will develop a comprehensive burner model using the data produced by the University of Utah and Brown University. In the second phase, an optimized injector design will be tested at the 100-million Btu/hr Riley Coal Burner Test Facility. It is anticipated that this work will provide improved hardware designs and computer simulation models for reduced NOx emissions and minimized carbon loss.

124

A methodology to evaluate energy savings and NOx emissions reductions from the adoption of the 2000 International Energy Conservation Code (IECC) to new residences in non-attainment and affected counties in Texas  

E-Print Network (OSTI)

Currently, four areas of Texas have been designated by the United States Environmental Protection Agency (EPA) as non-attainment areas because they exceeded the national one-hour ground-level ozone standard of 0.12 parts-per-million (ppm). Ozone is formed in the atmosphere by the reaction of Volatile Organic Compounds (VOCs) and Nitrogen Oxides (NOx) in the presence of heat and sunlight. In May 2002, The Texas State Legislature passed Senate Bill 5, the Texas Emissions Reduction Plan (TERP), to reduce the emissions of NOx by several sources. As part of the 2001 building energy performance standards program which is one of the programs in the TERP, the Texas Legislature established the 2000 International Energy Conservation Code (IECC) as the state energy code. Since September 1, 2001, the 2000 IECC has been required for newly constructed single and multifamily houses in Texas. Therefore, this study develops and applies portions of a methodology to calculate the energy savings and NOx emissions reductions from the adoption of the 2000 IECC to new single family houses in non-attainment and affected counties in Texas. To accomplish the objectives of the research, six major tasks were developed: 1) baseline data collection, 2) development of the 2000 IECC standard building simulation, 3) projection of the number of building permits in 2002, 4) comparison of energy simulations, 5) validation and, 6) NOx emissions reduction calculations. To begin, the 1999 standard residential building characteristics which are the baseline construction data were collected, and the 2000 IECC standard building characteristics were reviewed. Next, the annual and peak-day energy savings were calculated using the DOE-2 building energy simulation program. The building characteristics and the energy savings were then crosschecked using the data from previous studies, a site visit survey, and utility billing analysis. In this thesis, several case study houses are used to demonstrate the validation procedure. Finally, the calculated electricity savings (MWh/yr) were then converted into the NOx emissions reductions (tons/yr) using the EPA's eGRID database. The results of the peak-day electricity savings and NOx emissions reductions using this procedure are approximately twice the average day electricity savings and NOx emissions reductions.

Im, Piljae

2003-12-01T23:59:59.000Z

125

Study of Lean NOx Technology for Diesel Emission Control  

DOE Green Energy (OSTI)

Diesel engines because of their reliability and efficiency are a popular mobile source. The diesel engine operates at higher compression ratios and with leaner fuel mixtures and produces lower carbon monoxide and hydrocarbon emissions. The oxygen-rich environment leads to higher nitrogen oxides in the form of NO. Catalysts selectively promoting the reduction of NOx by HCs in a lean environment have been termed lean NOx catalyst ''LNC''. The two groups that have shown most promise are, Copper exchanged zeolite Cu/ZSM5, and Platinum on alumina Pt/Al2O3.

Mital, R.

2000-08-20T23:59:59.000Z

126

NOx Solutions for Biodiesel: Final Report; Report 6 in a Series of 6  

DOE Green Energy (OSTI)

A number of studies have shown substantial particulate matter (PM) reductions for biodiesel, but also a significant increase in nitrogen oxides (NOx) emissions. This study examines a number of approaches for NOx reduction from biodiesel.

McCormick, R. L.; Alvarez, J. R.; Graboski, M. S.

2003-02-01T23:59:59.000Z

127

What are the Seasons?  

Science Conference Proceedings (OSTI)

The concept of dividing the year into four seasons is reexamined to appraise critically the relative merit of two commonly used definitions of the seasons: 1) the astronomical definition, and 2) the meteorological breakdown into four three-month ...

Kevin E. Trenberth

1983-11-01T23:59:59.000Z

128

Seasonal thermal energy storage  

DOE Green Energy (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

129

Influence of combustion parameters on NOx production in an industrial boiler  

E-Print Network (OSTI)

Influence of combustion parameters on NOx production in an industrial boiler M.A. Habib a,*, M; accepted 14 April 2007 Available online 24 June 2007 Abstract NOx formation during the combustion process occurs mainly through the oxidation of nitrogen in the combustion air (thermal NOx) and through oxidation

Aldajani, Mansour A.

130

Applied Catalysis B: Environmental 37 (2002) 2735 NOx reduction by urea under lean conditions over  

E-Print Network (OSTI)

Applied Catalysis B: Environmental 37 (2002) 27­35 NOx reduction by urea under lean conditions over using a single step sol­gel process (designated as 2% Pt-SG) and tested its activity for NOx reduction and hydrothermally stable in the range of 150­500 C in the reduction of NOx by hy- drocarbons or oxygenated

Gulari, Erdogan

131

Hydrogen peroxide-producing NADH oxidase (nox-1) from Lactococcus lactis  

E-Print Network (OSTI)

to either water in a four-electron reduction (nox-2 enzymes) or to hydrogen peroxide in a two-electron reduction (nox-1 enzymes).3 Recently, we published the characterization of a novel water- forming NADH the reduction of oxygen to hydrogen peroxide with the help of NADH oxidase (nox-1) from Lactococ- cus lactis (L

Bommarius, Andreas

132

Measurements of NOX produced by rocket-triggered lightning M. Rahman,1  

E-Print Network (OSTI)

with reductions in NOx and VOC emissions are presented and analyzed in this study. Finally, a combination per- formed with the validated model. The first involves a reduction in NOx emissions of 50 emission reduction scenarios at 17:00 LT. (A) 50% NOx reduction emission scenario, (B) 50% VOC reduction

Slatton, Clint

133

NATURAL GAS REBURNING TECHNOLOGY FOR NOx REDUCTION FROM MSW COMBUSTION SYSTEMS  

E-Print Network (OSTI)

NATURAL GAS REBURNING TECHNOLOGY FOR NOx REDUCTION FROM MSW COMBUSTION SYSTEMS ABSTRACf CRAIG A series, injection of up to 15% (HHV basis) natural gas reduced NOx by 50-70% while maintain ing, Illinois DAVID G. LINZ Gas Research Institute Chicago, Illinois ducing NOx emISSIons from municipal solid

Columbia University

134

Microbial removal of nitrogen oxides from flue gas: The BioDeNOx-process  

E-Print Network (OSTI)

W) facilities. NOx levels below 60 ppm (7% O2) have been reliably achieved, which is a reduction of 70% below combustion controls to maximize NOx reduction and minimize ammonia slip. A simplified version of the process forward in the reduction of NOx emissions from EfW facilities. INTRODUCTION Emissions from U.S. Energy

Dekker, Cees

135

Assessment of NOx Reduction Potential from Combustion Modifications at Illinois Power -- Baldwin Unit 1  

Science Conference Proceedings (OSTI)

Cyclone boilers have recently become regulated with respect to NOx emissions due to the adoption of Title IV -- Group 2 NOx emission limits for cyclones of 0.86 lb/MBtu. This project explored the NOx reduction potential of cyclone biasing on a bituminous coal-fired cyclone boiler.

1998-06-24T23:59:59.000Z

136

Electrochemical NOx Sensor for Monitoring Diesel Emissions  

SciTech Connect

Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies (< 1 Hz) as the sensing signal and attribute the measured response to interfacial phenomena. Work by our group has also investigated using phase angle as the sensing signal at somewhat higher frequencies (10 Hz). The higher frequency measurements would potentially allow for reduced sampling times during sensor operation. Another potential advantage of impedance-metric NO{sub x} sensing is the similarity in response to NO and NO{sub 2} (i.e., total-NO{sub x} sensing). Potentiometric NO{sub x} sensors typically show higher sensitivity to NO2 than NO, and responses that are opposite in sign. However, NO is more stable than NO{sub 2} at temperatures > 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

Woo, L Y; Glass, R S

2008-11-14T23:59:59.000Z

137

NETL: Advanced NOx Emissions Control: Control Technology - ALTA for Cyclone  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Scale Demonstration of ALTA NOx Control for Cyclone-Fired Boilers Full-Scale Demonstration of ALTA NOx Control for Cyclone-Fired Boilers The primary goal of this project was to evaluate a technology called advanced layered technology application (ALTA) as a means to achieve NOx emissions below 0.15 lb/MMBtu in a cyclone boiler. Reaction Engineering International (REI) conducted field testing and combustion modeling to refine the process design, define the optimum technology parameters, and assess system performance. The ALTA NOx control technology combines deep staging from overfire air, rich reagent injection (RRI), and selective non-catalytic reduction (SNCR). Field testing was conducted during May-June 2005 at AmerenUE's Sioux Station Unit 1, a 500 MW cyclone boiler unit that typically burns an 80/20 blend of Powder River Basin subbituminous coal and Illinois No. 6 bituminous coal. Parametric testing was also conducted with 60/40 and 0/100 blends. The testing also evaluated process impacts on balance-of-plant issues such as the amount of unburned carbon in the ash, slag tapping, waterwall corrosion, ammonia slip, and heat distribution.

138

Mechanisms of Sulfur Poisoning of NOx Adsorber Materials  

Science Conference Proceedings (OSTI)

This annual report will review progress of the initial 4 months of a three-year effort between Cummins Engine Company and Pacific Northwest National Laboratory to understand and improve the performance and sulfur tolerance of the materials used in the NOx adsorber after-treatment technology in order to meet both performance and reliability standards required for diesel engines. The goal of this project is to enable NOx after-treatment technologies that will meet both EPA 2007 emission standards and customer cost, reliability and durability requirements. The project will consist of three phases. First, the efforts will focus on understanding the current limitation of capture, regeneration and durability of existing NOx adsorber materials, especially with respect to their sulfur tolerance. With this developing understanding, efforts will also be focused on the optimization of the NOx absorber chemical and material properties to increase performance and durability over many regeneration cycles. We anticipate that improved materials will be tested and evaluated, in partnership with Cummins, on diesel vehicle engines over expected operating conditions.

Kim, Do Heui; Chin, Ya-Huei; Muntean, George G.; Peden, Charles HF; Stork, Kevin; Broering, L. C.; Stafford, R. J.; Stang, J. H.; Chen, H.-Y.; Cooper, B.; Hess, H.; Lafyatis, D.

2004-10-01T23:59:59.000Z

139

NOx, SOx & CO{sub 2} mitigation using blended coals  

Science Conference Proceedings (OSTI)

Estimates of potential CO{sub 2} reduction achievable through the use of a mixture of bituminous and subbituminous (PRB) coals, whilst attaining NOx and SOx compliance are presented. The optimization considerations to provide satisfactory furnace, boiler and unit performance with blended coal supplies to make such operation feasible are discussed. 6 refs., 7 figs., 1 tab.

Labbe, D.

2009-11-15T23:59:59.000Z

140

The Chemistry of the Thermal DeNOx Process: A Review of the Technology's Possible Application to control of NOx from Diesel Engines  

DOE Green Energy (OSTI)

This paper presents a review of the Thermal DeNOx process with respect to its application to control of NOx emissions from diesel engines. The chemistry of the process is discussed first in empirical and then theoretical terms. Based on this discussion the possibilities of applying the process to controlling NOx emissions from diesel engines is considered. Two options are examined, modifying the requirements of the chemistry of the Thermal DeNOx process to suit the conditions provided by diesel engines and modifying the engines to provide the conditions required by the process chemistry. While the former examination did not reveal any promising opportunities, the latter did. Turbocharged diesel engine systems in which the turbocharger is a net producer of power seem capable of providing the conditions necessary for NOx reduction via the Thermal DeNOx reaction.

Lyon, Richard

2001-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS  

DOE Green Energy (OSTI)

Currently CARB estimates on road diesel vehicles contribute 50% of the NOX and 78% of the particulates being discharged from mobile sources. Diesel emissions obviously must be reduced if future air quality targets are to be met. A critical technological barrier exists because there are no commercial technologies available, which can reduce NOX from diesel (lean), exhaust containing 5-15% O2 concentration. One promising approach to reducing NOX and particulates from diesel exhaust is to use a combination of plasma with catalyst. Plasma can be generated thermally or non-thermally. Thermal plasma is formed by heating the system to an exceedingly high temperature (>2000 C). High temperature requirements for plasma makes thermal plasma inefficient and requires skillful thermal management and hence is considered impractical for mobile applications. Non-thermal plasma directs electrical energy into the creation of free electrons, which in turn react with gaseous species thus creating plasma. A combination of non-thermal plasma with catalysts can be referred to Plasma Assisted Catalysts or PAC. PAC technology has been demonstrated in stationary sources where non-thermal plasma catalysis is carried out in presence of NH3 as a reductant. In stationary applications NO is oxidized to HNO3 and then into ammonium nitrate where it is condensed and removed. This approach is impractical for mobile application because of the ammonia requirement and the ultimate mechanism by which NOX is removed. However, if a suitable catalyst can be found which can use onboard fuel as reductant then the technology holds a considerable promise. NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS Ralph Slone, B. Bhatt and Victor Puchkarev NOXTECH INC. In addition to the development of an effective catalyst, a non-thermal plasma reactor needs be scaled and demonstrated along with a reliable and cost effective plasma power source and onboard HC source needs to be proven. Under the work sponsored by DOE and SCAQMD Noxtech is developing a cost effective and reliable PAC system for mobile applications. The goal of the program is to develop a suitable catalyst with the ability to remove high levels of NOx at reasonable space velocities. This new catalyst will then be used to scale the technology to treat exhaust from 80Hp engine and eventually to demonstrate the technology on 200 and 400 Hp engine applications. Using the 2004 EPA proposed regulation as a standard, it is clear in order for PAC system to be commercially viable it needs to remove NOX by 70% or better. It is further assumed from past experience that 30,000 HR-1 space velocities are necessary to ensure a good compact design.

Bhatt, B.

2000-08-20T23:59:59.000Z

142

Enhanced High Temperature Performance of NOx Reduction Catalyst Materials  

Science Conference Proceedings (OSTI)

Two primary NOx after-treatment technologies have been recognized as the most promising approaches for meeting stringent NOx emission standards for diesel vehicles within the Environmental Protection Agency’s (EPA’s) 2007/2010 mandated limits, NOx Storage Reduction (NSR) and NH3 selective catalytic reduction (SCR); both are, in fact being commercialized for this application. However, in looking forward to 2015 and beyond with expected more stringent regulations, the continued viability of the NSR technology for controlling NOx emissions from lean-burn engines such as diesels will require at least two specific, significant and inter-related improvements. First, it is important to reduce system costs by, for example, minimizing the precious metal content while maintaining, even improving, performance and long-term stability. A second critical need for future NSR systems, as well as for NH3 SCR, will be significantly improved higher and lower temperature performance and stability. Furthermore, these critically needed improvements will contribute significantly to minimizing the impacts to fuel economy of incorporating these after-treatment technologies on lean-burn vehicles. To meet these objectives will require, at a minimum an improved scientific understanding of the following things: i) the various roles for the precious and coinage metals used in these catalysts; ii) the mechanisms for these various roles; iii) the effects of high temperatures on the active metal performance in their various roles; iv) mechanisms for higher temperature NOx storage performance for modified and/or alternative storage materials; v) the interactions between the precious metals and the storage materials in both optimum NOx storage performance and long term stability; vi) the sulfur adsorption and regeneration mechanisms for NOx reduction materials; vii) materials degradation mechanisms in CHA-based NH3 SCR catalysts. The objective of this CRADA project between PNNL and Cummins, Inc. is to develop a fundamental understanding of the above-listed issues. Model catalysts that are based on literature formulations are the focus of the work being carried out at PNNL. In addition, the performance and stability of more realistic high temperature NSR catalysts, supplied by JM, are being studied in order to provide baseline data for the model catalysts that are, again, based on formulations described in the open literature. For this short summary, we will primarily highlight representative results from our recent studies of the stability of candidate high temperature NSR materials.

Gao, Feng; Kim, Do Heui; Luo, Jinyong; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai Ying; Hess, Howard ..

2012-12-31T23:59:59.000Z

143

Modeling The NOx Emissions In A Low NOx Burner While Fired With Pulverized Coal And Dairy Biomass Blends  

E-Print Network (OSTI)

New regulations like the Clean Air Interstate Rule (CAIR) will pose greater challenges for Coal fired power plants with regards to pollution reduction. These new regulations plan to impose stricter limits on NOX reduction. The current regulations by themselves already require cleanup technology; newer regulations will require development of new and economical technologies. Using a blend of traditional fuels & biomass is a promising technology to reduce NOX emissions. Experiments conducted previously at the Coal and Biomass energy lab at Texas A&M reported that dairy biomass can be an effective Reburn fuel with NOX reduction of up to 95%; however little work has been done to model such a process with Feedlot Biomass as a blend with the main burner fuel. The present work concerns with development of a zero dimensional for a low NOx burner (LNB) model in order to predict NOX emissions while firing a blend of Coal and dairy biomass. Two models were developed. Model I assumes that the main burner fuel is completely oxidized to CO,CO2,H20 and fuel bound nitrogen is released as HCN, NH3, N2; these partially burnt product mixes with tertiary air, undergoes chemical reactions specified by kinetics and burns to complete combustion. Model II assumes that the main burner solid fuel along with primary and secondary air mixes gradually with recirculated gases, burn partially and the products from the main burner include partially burnt solid particles and fuel bound nitrogen partially converted to N2, HCN and NH3. These products mix gradually with tertiary air, undergo further oxidation-reduction reactions in order to complete the combustion. The results are based on model I. Results from the model were compared with experimental findings to validate it. Results from the model recommend the following conditions for optimal reduction of NOx: Equivalence Ratio should be above 0.95; mixing time should be below 100ms. Based on Model I, results indicate that increasing percentage of dairy biomass in the blend increases the NOx formation due to the assumption that fuel N compounds ( HCN, NH3) do not undergo oxidation in the main burner zone. Thus it is suggested that model II must be adopted in the future work.

Uggini, Hari

2012-05-01T23:59:59.000Z

144

NOx versus VOC limitation of O3 production in the Po valley: Local and integrated view based  

E-Print Network (OSTI)

- 14 #12;emissions and for NOx and VOC emissions reduced by 35%. Before 1300 a NOx reduction is seen north of downtown Milan, the NOx and VOC reduction curves cross. Before this time, O3 is VOC- sensitive reduction) is greater than zero, a VOC emissions reduction is more effective than a NOx emissions reduction

145

Modeling NOx emissions from coal-fired utility boilers using support vector regression with ant colony optimization  

Science Conference Proceedings (OSTI)

Modeling NO"x emissions from coal fired utility boiler is critical to develop a predictive emissions monitoring system (PEMS) and to implement combustion optimization software package for low NO"x combustion. This paper presents an efficient NO"x emissions ... Keywords: Ant colony optimization, Artificial neural networks, Combustion modeling, NOx emissions modeling, Support vector regression

Hao Zhou; Jia Pei Zhao; Li Gang Zheng; Chun Lin Wang; Ke Fa Cen

2012-02-01T23:59:59.000Z

146

Seasonal tropical cyclone forecasts  

E-Print Network (OSTI)

Seasonal forecasts of tropical cyclone activity in various regions have been developed since the first attempts in the early 1980s by Neville

Suzana J. Camargo; Anthony G. Barnston; Philip J. Klotzbach; Christopher W. Landsea

2007-01-01T23:59:59.000Z

147

COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR  

SciTech Connect

Coal-fired electric utilities are facing a serious challenge with regards to curbing their NO{sub x} emissions. At issue are the NO{sub x} contributions to the acid rain, ground level ozone, and particulate matter formation. Substantial NO{sub x} control requirements could be imposed under the proposed Ozone Transport Rule, National Ambient Air Quality Standards, and New Source Performance Standards. McDermott Technology, Inc. (MTI), Babcock and Wilcox (B and W), and Fuel Tech are teaming to provide an integrated solution for NO{sub x} control. The system will be comprised of an ultra low-NO{sub x} pulverized coal (PC) burner technology plus a urea-based, selective non-catalytic reduction (SNCR) system. This system will be capable of meeting a target emission limit of 0.15 lb NO{sub x}/10{sup 6} Btu and target ammonia (NH3) slip level targeted below 5 ppmV for commercial units. Our approach combines the best available combustion and post-combustion NO{sub x} control technologies. More specifically, B and W's DRB-4Z TM ultra low-NO{sub x} PC burner technology will be combined with Fuel Tech's NO{sub x}OUT (SNCR) and NO{sub x}OUT Cascade (SNCR/SCR hybrid) systems and jointly evaluated and optimized in a state-of-the-art test facility at MTI. Although the NO{sub x}OUT Cascade (SNCR/SCR hybrid) system will not be tested directly in this program, its potential application for situations that require greater NO{sub x} reductions will be inferred from other measurements (i.e., SNCR NO{sub x} removal efficiency plus projected NO{sub x} reduction by the catalyst based on controlled ammonia slip). Our analysis shows that the integrated ultra low-NO{sub x} burner and SNCR system has the lowest cost when the burner emissions are 0.25 lb NO{sub x}/10{sup 6} Btu or less. At burner NO{sub x} emission level of 0.20 lb NO{sub x}/10{sup 6} Btu, the levelized cost per ton of NO{sub x} removed is 52% lower than the SCR cost.

Hamid Farzan

2001-07-01T23:59:59.000Z

148

LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE  

SciTech Connect

In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

2004-08-01T23:59:59.000Z

149

DYNAMOMETER EVALUATION OF PLASMA-CATALYST FOR DIESEL NOX REDUCTION  

DOE Green Energy (OSTI)

A three-stage plasma-catalyst system was developed and tested on an engine dynamometer. Previous laboratory testing suggested high NOx efficiency could be obtained. With hexene reductant added to the exhaust, over 90% NOx reduction was observed. However, with diesel or Fischer-Tropsch reductant the catalyst efficiency rapidly dropped off. Heating the catalyst in air removed brown deposit from the surface and restored conversion efficiency. Following the engine tests, the used catalysts were evaluated. BET surface area decreased, and TPD revealed significant storage. This storage appears to be partly unburned diesel fuel that can be removed by heating to around 250-300 C, and partly hydrocarbons bonded to the surface that remain in place until 450-500 C. Laboratory testing with propene reductant demonstrated that the catalyst regains efficiency slowly even when operating temperature does not exceed 300 C. This suggests that control strategies may be able to regenerate the catalyst by occasional moderate heating.

Hoard, J; Schmieg, S; Brooks, D; Peden, C; Barlow, S; Tonkyn, R

2003-08-24T23:59:59.000Z

150

Ozone Conference II: Abstract Proceedings  

Science Conference Proceedings (OSTI)

Ozone Conference II: Pre- and Post-Harvest Applications Two Years After Gras, was held September 27-28, 1999 in Tulare, California. This conference, sponsored by EPRI's Agricultural Technology Alliance and Southern California Edison's AgTAC facility, was coordinated and organized by the on-site ATA-AgTAC Regional Center. Approximately 175 people attended the day-and-a-half conference at AgTAC. During the Conference twenty-two presentations were given on ozone food processing and agricultural applications...

1999-11-24T23:59:59.000Z

151

Demonstration of a NOx Control System for Stationary Diesel Engines  

Science Conference Proceedings (OSTI)

California has over 26,000 stationary diesel engines, mostly in emergency power and direct drive applications. In the past few years, various incentive programs in the state have resulted in the change-out of older, dirtier engines for newer, cleaner models or replacement with electric motors. Emissions reductions can be accomplished by equipping existing engines with controls for nitrogen oxides (NOx) and particulate matter (PM). The retrofit systems currently available, however, either are not cost com...

2005-06-30T23:59:59.000Z

152

Coal Blending for NOx Reductions and Performance Improvements  

Science Conference Proceedings (OSTI)

Following its formation and initial meeting in 1995, the Alabama Fuels Development Consortium (AFDC) identified its highest priority as mitigating the adverse effects of burning low-volatile Alabama coals. These adverse effects included increased NOx emissions and flame instability. A pilot-scale AFDC study in 1995 and larger-scale projects conducted in partnership with EPRI in 1996 (Shoal Creek/Mina Pribbenow Blend Firing Demonstration) and 1997 (Shoal Creek/Mina Pribbenow Blend Milling Demonstration) m...

2004-09-20T23:59:59.000Z

153

A Comparison of Total Column Ozone Values Derived from the Global Ozone Monitoring Experiment (GOME), the Tiros Operational Vertical Sounder (TOVS), and the Total Ozone Mapping Spectrometer (TOMS)  

Science Conference Proceedings (OSTI)

A comparison of total column ozone data retrieved from the Global Ozone Monitoring Experiment (GOME), the Tiros Operational Vertical Sounder (TOVS), and the Total Ozone Mapping Spectrometer (TOMS) for the years 1996, 1997, 1998, and 1999 is ...

Gary K. Corlett; Paul S. Monks

2001-05-01T23:59:59.000Z

154

Ozone Reductions Using Residential Building Envelopes  

SciTech Connect

Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

Walker, Iain S.; Sherman, Max; Nazaroff, William W.

2009-02-01T23:59:59.000Z

155

Ultra Low NOx Catalytic Combustion for IGCC Power Plants  

DOE Green Energy (OSTI)

In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia reduction in fuel allowing potential reductions in the burner NOx production. These reductions of NOx emissions and expanded alternative fuel capability make the rich catalytic combustor uniquely situated to provide reductions in capital costs through elimination of requirements for SCR, operating costs through reduction in need for NOx abating dilution, SCR operating costs, and need for co-firing fuels allowing use of lower value but more available fuels, and efficiency of an engine through reduction in dilution flows.

Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

2008-03-31T23:59:59.000Z

156

TSD- aa Trends in Measured 1-h Ozone Concentrations over the OTR  

E-Print Network (OSTI)

Trends in raw and meteorologically adjusted 1-hour ozone were calculated at several AQS monitoring sites in the Northeast. A summary of the analysis is provided below, and a detailed description of the met-adjustment procedure is outlined in Milanchus et al. (1998) and references contained including those related to the Kolmogorov-Zurbenko (KZ) method used in this analysis to estimate trends. Data Ozone time series were obtained at many monitoring sites in the Northeastern United States. From these data, log of daily maximum one hour ozone were calculated. In addition, several meteorological variables were obtained from National Weather service stations in the Northeast. These included surface temperature, dew point and specific humidity with dew point depression being calculated. Daily maximum values were calculated for each of the meteorological variable times series. The time span of data considered for both ozone and meteorological variables was from 1985 to 2005. In addition, this analysis focused on the ozone season (April 15 through October 15) of each year.

Modeling Domain

2007-01-01T23:59:59.000Z

157

Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications  

DOE Green Energy (OSTI)

Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation

Parks, II, James E [ORNL; Storey, John Morse [ORNL; Theiss, Timothy J [ORNL; Ponnusamy, Senthil [ORNL; Ferguson, Harley Douglas [ORNL; Williams, Aaron M [ORNL; Tassitano, James B [ORNL

2007-09-01T23:59:59.000Z

158

NOx Control Options and Integration for US Coal Fired Boilers  

DOE Green Energy (OSTI)

This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

2006-06-30T23:59:59.000Z

159

Additives for NOx emissions control from fixed sources. Final report, Aug 88-Feb 89  

SciTech Connect

This project tested several additives and catalysts as potential additive/catalyst combinations for a new NOx abatement process. The goal was to identify an effective, economical NOx emissions control process for application to post combustion, exhaust gas streams from jet engine test cells (JETC) and incinerators. The most useful results from this project are that: (1) an additive was identified that achieved gas-phase removal, with no catalyst, of NOx at temperatures as low as 350 deg C, and (2) good NOx removals can be achieved with additive: NOx ratios less than one. These results offer good possibilities for new low-temperature (350 to 500 deg C) gas phase NOx reduction processes of the selective noncatalytic reduction (SNR) type for both JETCs and incinerators.

Ham, D.O.; Moniz, G.; Gouveia, M.

1989-12-01T23:59:59.000Z

160

EPRI 2002 Workshop on Combustion-Based NOx Controls for Coal-Fired Boilers  

Science Conference Proceedings (OSTI)

The Workshop on Combustion-Based NOx Controls for Coal-Fired Boilers, formerly the Workshop on NOx Controls for Utility Boilers, was the sixth in a series sponsored by EPRI and offered attendees a comprehensive picture of recent developments and full-scale applications of control technologies for nitrogen oxides (NOx). The workshop took place on October 24-25, 2002, in Atlanta, Georgia.

2003-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Atlantic Hurricane Season of 1979  

Science Conference Proceedings (OSTI)

A general summary of the 1979 hurricane season is presented. Included are highlights of the season, comparisons of activity in recent years with long-term averages, and comment on large-scale atmospheric features which prevailed during the season ...

Paul J. Hebert

1980-07-01T23:59:59.000Z

162

TransForum v8n2 - DeNOX Catalyst License  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Fuel Technologies Gets Worldwide License for Argonne-developed Diesel DeNOX Catalyst Argonne chemist Chris Marshall (front) displays a container of the catalyst while...

163

Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System  

DOE Green Energy (OSTI)

Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

2006-05-01T23:59:59.000Z

164

NETL: PPII - Integration of Low-NOx Burners with an Optimization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion - Project Brief PDF-72KB Sunflower Electric Power Corp., Garden City, Finney County, KS PROJECT...

165

Impact of Lubricant Formulation on the Performance of NOx Adsorber Catalysts (Presentation)  

DOE Green Energy (OSTI)

Discusses the impact of lubricant formulation on the performance of oxides of nitrogen (NOx) Adsorber Catalysts, including background/motivation for study, experimental design, and results.

Whitacre, S. D.

2005-08-25T23:59:59.000Z

166

Using hydroponic biomass to regulate NOx emissions in long range space travel  

E-Print Network (OSTI)

Using Hydroponic Biomass to Regulate NOx Emissions in Longprepared from hydroponic biomass prohibits high surface areapotato stalk are inedible biomass that can be continuously

2002-01-01T23:59:59.000Z

167

EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

472: Commercial Demonstration fo the Low Nox BurnerSeparated Over-Fire Air (LNBSOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power...

168

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

2008-12-01T23:59:59.000Z

169

Antarctic Ozone Transport and Depletion in Austral Spring 2002  

Science Conference Proceedings (OSTI)

The ozone budget in the Antarctic region during the stratospheric warming in 2002 is studied, using ozone analyses from the Royal Netherlands Meteorological Institute (KNMI) ozone-transport and assimilation model called TM3DAM. The results show a ...

Peter Siegmund; Henk Eskes; Peter van Velthoven

2005-03-01T23:59:59.000Z

170

Lean NOx Trap Modeling in Vehicle Systems Simulations  

DOE Green Energy (OSTI)

A one-dimensional model for simulating lean NOx trap (LNT) performance is developed and validated using both steady state cycling data and transient data from FTP testing cycles. The model consists of the conservation equations for chemical species and energy in the bulk flow, energy of the solid walls, O2 storage and NOx storage (in the form of nitrites and nitrates). Nitrites and nitrates are formed by diffusion of NO and NO2, respectively, into sorbent particles (assumed to be hemi-spherical in shape) along with O2 and their formation rates are controlled by chemical kinetics as well as solid-phase diffusion rates of NOx species. The model also accounts for thermal aging and sulfation of LNTs. Empirical correlations are developed on the basis of published experimental data to capture these effects. These empirical correlations depend on total mileage for which the LNT has been in use, the mileage accumulated since the last desulfation event in addition to the freshly degreened catalyst characteristics. The model has been used in studies of vehicle systems (integration, performance etc.) including hybrid powertrain configurations. Since the engines in hybrid vehicles turn on and off multiple number of times during single drive cycles, the exhaust systems may encounter multiple cold start transients. Accurate modeling of catalyst warm-up and cooling is, therefore, very important to simulate LNT performance in such vehicles. For this purpose, the convective heat loss from the LNT to the ambient is modeled using a Nusselt number correlation that includes effects of both forced convection and natural convection (with later being important when vehicle is stationary). Using the model, the fuel penalty associated with operating LNTs on small diesel engine powered car during FTP drive cycles is estimated.

Gao, Zhiming [ORNL; Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Conklin, Jim [ORNL

2010-09-01T23:59:59.000Z

171

Three-Dimensional Composite Nanostructures for Lean NOx Emission Control  

SciTech Connect

This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

Gao, Pu-Xian

2013-07-31T23:59:59.000Z

172

Summary of NOx Emissions Reduction from Biomass Cofiring  

DOE Green Energy (OSTI)

NOx emissions from commercial- and pilot-scale biomass/coal cofiring demonstrations are reduced as the percentage of energy supplied to the boiler by the biomass fuel is increased. This report attempts to provide a summary of the NO{sub x} emissions measured during recent biomass/coal cofiring demonstrations. These demonstrations were carried out at the commercial and pilot-scales. Commercial-scale tests were conducted in a variety of pulverized fuel boiler types including wall-fired, T-fired, and cyclone furnaces. Biomass input ranged up to 20% on a mass basis and 10% on an energy basis.

Dayton, D.

2002-05-01T23:59:59.000Z

173

SOx/NOx sorbent and process of use  

DOE Patents (OSTI)

An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

1993-01-19T23:59:59.000Z

174

Y-12 Plant Stratospheric Ozone Protection plan  

SciTech Connect

The Y-12 Plant staff is required by Lockheed Martin Energy Systems (Energy Systems) (formerly Martin Marietta Energy Systems) standard ESS-EP-129 to develop and implement a Stratospheric Ozone Protection Program which will minimize emissions of ozone-depleting substances to the environment and maximize the use of ozone-safe alternatives in order to comply with Title VI of the 1990 Clean Air Act (CAA) Amendments and the implementing regulations promulgated by the Environmental Protection Agency (EPA). This plan describes the requirements, initiatives, and accomplishments of the Y-12 Plant Stratospheric Ozone Protection Program.

NONE

1995-09-01T23:59:59.000Z

175

Laboratory measurement of secondary pollutant yields from ozone...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory measurement of secondary pollutant yields from ozone reaction with HVAC filters. Title Laboratory measurement of secondary pollutant yields from ozone reaction with HVAC...

176

Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related Emission Requirements (Ohio) Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related Emission...

177

Calibration of the Ogawa ozone passive sampler for aircraft cabins...  

NLE Websites -- All DOE Office Websites (Extended Search)

Calibration of the Ogawa ozone passive sampler for aircraft cabins. Title Calibration of the Ogawa ozone passive sampler for aircraft cabins. Publication Type Journal Article Year...

178

Iron catalysis in oxidation by ozone - Energy Innovation Portal  

Bookmark Iron catalysis in oxidation by ozone - Energy Innovation Portal on Google; Bookmark Iron catalysis in oxidation by ozone - Energy Innovation ...

179

Temporal and Spatial Variations of NOx and Ozone Concentrations in Seoul during the Solar Eclipse of 22 July 2009  

Science Conference Proceedings (OSTI)

The temporal and spatial variations of NO, NO2, and O3 concentrations in Seoul, South Korea, during the solar eclipse of 22 July 2009 are investigated by analyzing data measured at 25 environmental monitoring stations. The NO2 concentration ...

Kyung-Hwan Kwak; Young-Hee Ryu; Jong-Jin Baik

2011-03-01T23:59:59.000Z

180

Defensive Investments and the Demand for Air Quality: Evidence from the NOx Budget Program and Ozone Reductions  

E-Print Network (OSTI)

Willingness to pay for air quality is a function of health and the costly defensive investments that contribute to health, but there is little research assessing the empirical importance of defensive investments. The setting ...

Deschênes, Olivier

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Defensive Investments and the Demand for Air Quality: Evidence from the NOx Budget Program and Ozone Reductions  

E-Print Network (OSTI)

The economic costs of environmental regulations have been widely debated since the U.S. began to restrict pollution emissions more than four decades ago. Using detailed production data from nearly 1.2 million plant ...

Deschênes, Olivier

2012-07-15T23:59:59.000Z

182

Advanced NOx Emissions Control: Control Technology - Second Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Second Generation Advanced Reburning Second Generation Advanced Reburning General Electric - Energy and Environmental Research Corporation (GE-EER) is carrying out a two Phase research program to develop novel Advanced Reburning (AR) concepts for high efficiency and low cost NOx control from coal-fired utility boilers. AR technologies are based on combination of basic reburning and N-agent/promoter injections. Phase I of the project was successfully completed and EER was selected to continue to develop AR technology during Phase II. Phase I demonstrated that AR technologies are able to provide effective NOx control for coal-fired combustors. Three technologies were originally envisioned for development: AR-Lean, AR-Rich, and Multiple Injection AR (MIAR). Along with these, three additional technologies were identified during the project: reburning plus promoted SNCR; AR-Lean plus promoted SNCR; and AR-Rich plus promoted SNCR. The promoters are sodium salts, in particular sodium carbonate. These AR technologies have different optimum reburn heat input levels and furnace temperature requirements. For full scale application, an optimum technology can be selected on a boiler-specific basis depending on furnace temperature profile and regions of injector access.

183

2004 Conference on Reburning for NOX Control Reburning on Trial  

NLE Websites -- All DOE Office Websites (Extended Search)

2004 Conf. on Reburning for NOx Control Reburning on Trial 2004 Conf. on Reburning for NOx Control Reburning on Trial May 18, 2004 Table of Contents Disclaimer Papers and Presentations Reburning Overview Commercial Reburning Experience Biomass Reburning Other Applications of Reburning Posters Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

184

NOx Control Options and Integration for US Coal Fired Boilers  

Science Conference Proceedings (OSTI)

This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without excessive downtime by the end of the quarter.

Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

2003-06-30T23:59:59.000Z

185

ULTRA LOW NOx CATALYTIC COMBUSTION FOR IGCC POWER PLANTS  

Science Conference Proceedings (OSTI)

Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using PCI's two-stage (catalytic / gas-phase) combustion process for syngas fuel. In this process, the first stage is a Rich-Catalytic Lean-burn (RCL{trademark}) catalytic reactor, wherein a fuel-rich mixture contacts the catalyst and reacts while final and excess combustion air cool the catalyst. The second stage is a gas-phase combustor, wherein the catalyst cooling air mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During the reporting period, PCI successfully achieved NOx = 0.011 lbs/MMBtu at 10 atm pressure (corresponding to 2.0 ppm NOx corrected to 15% O{sub 2} dry) with near-zero CO emissions, surpassing the project goal of baseload conditions corresponding to Tampa Electric's Polk Power Station operation on 100% syngas (no co-firing of natural gas).

Lance L. Smith

2004-03-01T23:59:59.000Z

186

Three-Dimensional Composite Nanostructures for Lean NOx Emission Control  

DOE Green Energy (OSTI)

In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

Gao, Pu-Xian

2013-07-31T23:59:59.000Z

187

Experimental Study of Non-thermal Plasma Injection System Converting NOx in Simulated Diesel Emissions  

Science Conference Proceedings (OSTI)

In order to study the removal effect of non-thermal plasma (NTP) after-treatment system on diesel engine harmful emissions, a dielectric barrier discharge (DBD) plasma reactor is designed, and the NOx removal effect is studied under the conditions of ... Keywords: Non-thermal Plasma(NTP), Dielectric Barrier Discharge(DBD, Diesel Engine, Nox

Jing Wang; Yixi Cai; Jun Wang; Dongli Ran

2010-11-01T23:59:59.000Z

188

Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade Architecture  

E-Print Network (OSTI)

Active NOX Control of Cogen Gas Turbine Exhaust using a Nonlinear Feed Forward with Cascade control, cogeneration, gas turbine, model based control, feed forward, cascade ABSTRACT Presented is a model based strategy for controlling the NOX concentration of natural gas turbine emissions

Cooper, Doug

189

NOx Adsorbers for Heavy Duty Truck Engines-Testing and Simulation  

DOE Green Energy (OSTI)

This feasibility study of NOx adsorbers in heavy-duty diesel engines examined three configurations (dual-leg, single-leg and single-leg-bypass) in an integrated experimental setup, composed of a Detroit Diesel Class-8 truck engine, a catalyzed diesel particulate filter and the NOx absorber system. The setup also employed a reductant injection concept, sensors and advanced control strategies.

Hakim, N; Hoelzer, J.; Liu, Y.

2002-08-25T23:59:59.000Z

190

Diesel Fuel Sulfur Effects on the Performance of Lean NOx Catalysts  

DOE Green Energy (OSTI)

Evaluate the effects of diesel fuel sulfur on the performance of low temperature and high temperature Lean-NOx Catalysts. Evaluate the effects of up to 250 hours of aging on the performance of the Lean-NOx Catalysts with different fuel sulfur contents.

Ren, Shouxian

2000-08-20T23:59:59.000Z

191

Retrofit NOx Control Guidelines for Gas- and Oil-Fired Boilers Version 2.0  

Science Conference Proceedings (OSTI)

This document reviews and summarizes NOx control technologies to help utility engineering and operating staff evaluate and select appropriate retrofit strategies for natural gas- and oil-fired boilers. In addition to general discussions of the various technologies, the document includes an accompanying database on diskette with detailed information on 239 NOx retrofits.

1997-08-19T23:59:59.000Z

192

NATURAL GAS REBURNING TECHNOLOGY FOR NOx REDUCTION FROM MSW COMBUSTION SYSTEMS  

E-Print Network (OSTI)

NATURAL GAS REBURNING TECHNOLOGY FOR NOx REDUCTION FROM MSW COMBUSTION SYSTEMS Discussion by CRAIG's increased turbulent mixing is on the CO profile and what the incremental NOx reduction experienced was from that this alone would contribute to a significant reduction in the NO", generated. The authors are careful

Columbia University

193

THE EFFECT OF SULFUR ON METHANE PARTIAL OXIDATION AND REFORMING PROCESSES FOR LEAN NOX TRAP CATALYSIS  

Science Conference Proceedings (OSTI)

Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping after NOx purge. Creating the rich exhaust conditions for regeneration can be accomplished by catalytic partial oxidation of methane in the exhaust system. Furthermore, catalytic reforming of partial oxidation exhaust can enable increased quantities of H2 which is an excellent reductant for lean NOx trap regeneration. It is critical to maintain clean and efficient partial oxidation and reforming processes to keep the lean NOx trap functioning properly and to reduce extra fuel consumption from the regeneration process. Although most exhaust constituents do not impede partial oxidation and reforming, some exhaust constituents may negatively affect the catalysts and result in loss of catalytic efficiency. Of particular concern are common catalyst poisons sulfur, zinc, and phosphorous. These poisons form in the exhaust through combustion of fuel and oil, and although they are present at low concentrations, they can accumulate to significant levels over the life of an engine system. In the work presented here, the effects of sulfur on the partial oxidation and reforming catalytic processes were studied to determine any durability limitations on the production of reductants for lean NOx trap catalyst regeneration.

Parks, II, James E [ORNL; Ponnusamy, Senthil [ORNL

2006-01-01T23:59:59.000Z

194

Effects of Fuel's Distribution on NOx Emissions in Iron Ore Sintering  

Science Conference Proceedings (OSTI)

The law of NOx emission in the sintering process indicates that the NOx mainly emits ... Effects of Reducer and Slag Concentrations in the Iron-carbon Nuggets ... Factors Affecting the Mixing Characteristics of Molten Steel in the RH Refining Process ... Simulation Calculation on Calciotherimic Reduction of Titanium Dioxide.

195

Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications  

Science Conference Proceedings (OSTI)

Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation

Parks, II, James E [ORNL; Storey, John Morse [ORNL; Theiss, Timothy J [ORNL; Ponnusamy, Senthil [ORNL; Ferguson, Harley Douglas [ORNL; Williams, Aaron M [ORNL; Tassitano, James B [ORNL

2007-09-01T23:59:59.000Z

196

NETL: PPII - Integration of Low-NOx Burners with an Optimization Plan for  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion - Project Brief [PDF-72KB] Sunflower Electric Power Corp., Garden City, Finney County, KS PROJECT FACT SHEET Achieving New Source Performance Standards (NSPS) Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion [PDF-260KB] (Oct 2008) PROGRAM PUBLICATIONS Final Report Achieving NSPS Emission Standards Through Integration of Low NOx Burners with an Optimization Plan for Boiler Combustion [PDF-3.4MB] (June 2006) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Achieving New Source Performance Standards (NSPS) Emission Standards through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion: A DOE Assessment [PDF-1.4MB] (Nov 2006)

197

EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

472: Commercial Demonstration fo the Low Nox Burner/Separated 472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas SUMMARY The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower's Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas.

198

Modeling of NOx Destruction Options for INEEL Sodium-Bearing Waste Vitrification  

SciTech Connect

Off-gas NOx concentrations in the range of 1-5 mol% are expected as a result of the proposed vitrification of sodium-bearing waste at the Idaho National Engineering and Environmental Laboratory. An existing kinetic model for staged combustion (originally developed for NOx abatement from the calcination process) was updated for application to vitrification offgas. In addition, two new kinetic models were developed to assess the feasibility of using selective non-catalytic reduction (SNCR) or high-temperature alone for NOx abatement. Each of the models was developed using the Chemkin code. Results indicate that SNCR is a viable option, reducing NOx levels to below 1000 ppmv. In addition, SNCR may be capable of simultaneously reducing CO emissions to below 100 ppmv. Results for using high-temperature alone were not as promising, indicating that a minimum NOx concentration of 3950 ppmv is achievable at 3344°F.

Wood, Richard Arthur

2001-09-01T23:59:59.000Z

199

The Influence of Flue Gas Recirculation on the Formation of NOx in the Process of Coal Grate-Fired  

Science Conference Proceedings (OSTI)

With the improvement of environmental protection requirements, the problems of NOx emission from industrial boiler become more and more notable. To explore a real effective method of low NOx combustion, the article discusses the influence of flue gas ... Keywords: flue gas recirculation, grate-fired, temperature, Nox

Li Xu; Jianmin Gao; Guangbo Zhao; Laifu Zhao; Zhifeng Zhao; Shaohua Wu

2011-03-01T23:59:59.000Z

200

Sulfur Poisoning and Regeneration of NOx Storage-Reduction Cu/K2Ti2O5 Qiang Wang,*,  

E-Print Network (OSTI)

aiming at NOx emission reduction are less effective in controlling the fate of char-N than volatile designated LNCFSTM level I, II and III, as shown in Figure 4.29, resulted in NOx reductions of 20% for levels and fuel quality and economic factors related to boiler age and size. An impression of what NOx reductions

Guo, John Zhanhu

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Optimal statistical model for forecasting ozone  

Science Conference Proceedings (OSTI)

The objective of this paper is to apply time series analysis and multiple regression method to ozone data in order to obtain the optimal statistical model for forecasting next day ozone level. The best estimated model is then used to produce one-step ... Keywords: ARMA (p, q), Durbin-Watson Statistic, MAPE, R-square, multiple regression

M. Abdollahian; R. Foroughi; N. Debnath

2006-04-01T23:59:59.000Z

202

Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines  

SciTech Connect

Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.

Nigel N. Clark

2006-12-31T23:59:59.000Z

203

"Season" "Monsoon" 199119942003  

E-Print Network (OSTI)

" " 1 "Mausim" "Season" "Monsoon" 1930 1934 19441948 1962) 199119942003 2:1-27 J194418:1-20 M1948, 15(4) M 1962,155169 M1991362pp Ding Yihui, Monsoon over China [M], Kluwer on the variabilities of the East Asian monsoon and their causes. Adv. Atmos. Sci.[J], 2003, 20,:5569 Ramage CS, Monsoon

Qian, Weihong

204

The Variability of Seasonality  

Science Conference Proceedings (OSTI)

Seasons are the complex nonlinear response of the physical climate system to regular annual solar forcing. There is no a priori reason why they should remain fixed/invariant from year to year, as is often assumed in climate studies when ...

S. Pezzulli; D. B. Stephenson; A. Hannachi

2005-01-01T23:59:59.000Z

205

Nitrogen Oxides (NOx), Why and How They are Controlled  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Quality EPA 456/F-99-006R Air Quality EPA 456/F-99-006R Environmental Protection Planning and Standards November 1999 Agency Research Triangle Park, NC 27711 Air EPA-456/F-99-006R November 1999 Nitrogen Oxides (NOx), Why and How They Are Controlled Prepared by Clean Air Technology Center (MD-12) Information Transfer and Program Integration Division Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711 ii DISCLAIMER This report has been reviewed by the Information Transfer and Program Integration Division of the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents of this report reflect the views and policies of the U.S. Environmental Protection Agency. Mention of trade

206

NOx Control Options and Integration for US Coal Fired Boilers  

DOE Green Energy (OSTI)

This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

2003-12-31T23:59:59.000Z

207

SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES  

DOE Green Energy (OSTI)

The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus the baseline and finding the ratio between the injected NO amounts. It was observed that the air/fuel ratio, injected NO quantity and engine operating points affected the NOx decomposition rates of the natural gas engine. A highest NOx decomposition rate of 27% was measured from this engine. A separate exploratory tests conducted with a gasoline engine with a low air/fuel ratio yielded results that suggested, that high NOx decomposition rates may be possible if a normally lean burn engine were operated at conditions closer to stoichiometric, with high exhaust gas recirculation (EGR) for a brief period of time during the NOx decomposition phase and with a wider range of air/fuel ratios. Chemical kinetic model predictions using CHEMKIN were performed to relate the experimental data with the established rate and equilibrium models. NOx decomposition rates from 35% to 42% were estimated using the CHEMKIN software. This provided insight on how to maximize NOx decomposition rates for a large bore engine. In the future, the modeling will be used to examine the effect of higher NO{sub 2}/NO ratios that are associated with lower speed and larger bore lean burn operation.

Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

2005-01-01T23:59:59.000Z

208

NETL: News Release - DOE Selects Five NOx-Control Projects to Combat Acid  

NLE Websites -- All DOE Office Websites (Extended Search)

November 5, 2004 November 5, 2004 DOE Selects Five NOx-Control Projects to Combat Acid Rain and Smog Industry Partners to Focus on Reducing Emissions While Cutting Energy Costs PITTSBURGH, PA - Continuing efforts to cut acid rain and smog-producing nitrogen oxides (NOx) have prompted the U.S. Department of Energy to partner with industry experts to develop advanced NOx-control technologies. With the selection of five new NOx-control projects, the Energy Department continues as a leader in developing advanced technologies to achieve environmental compliance for the nation's fleet of coal-fired power plants. Although today's NOx-control workhorses, such as low-NOx burners and selective catalytic reduction (SCR), have been successfully deployed to address existing regulations, proposed regulations will require deeper cuts in NOx emissions, at a greater number of generating facilities. Many of the smaller affected plants will not be able to cost-effectively use today's technologies; these are the focus of the advanced technologies selected in this announcement.

209

Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission  

DOE Green Energy (OSTI)

Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine program’s goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

2007-10-01T23:59:59.000Z

210

Global NOx Measurements in Turbulent Nitrogen-Diluted Hydrogen Jet Flames  

DOE Green Energy (OSTI)

Turbulent hydrogen diffusion flames diluted with nitrogen are currently being studied to assess their ability to achieve the DOE Turbine Program’s aggressive emissions goal of 2 ppm NOx in a hydrogen-fueled IGCC gas turbine combustor. Since the unstrained adiabatic flame temperatures of these diluted flames are not low enough to eliminate thermal NOx formation the focus of the current work is to study how the effects of flame residence time and global flame strain can be used to help achieve the stated NOx emissions goal. Dry NOx measurements are presented as a function of jet diameter nitrogen dilution and jet velocity for a turbulent hydrogen/nitrogen jet issuing from a thin-lipped tube in an atmospheric pressure combustor. The NOx emission indices from these experiments are normalized by the flame residence time to ascertain the effects of global flame strain and fuel Lewis Number on the NOx emissions. In addition dilute hydrogen diffusion flame experiments were performed in a high-pressure combustor at 2 4 and 8 atm. The NOx emission data from these experiments are discussed as well as the results from a Computational Fluid Dynamics modeling effort currently underway to help explain the experimental data.

Weiland, N.T.; Strakey, P.A.

2007-03-01T23:59:59.000Z

211

ENVIRONMENTAL CHAMBER STUDIES OF OZONE IMPACTS OF COATINGS VOCs Final Report to the California Air Resources Board Contract No. 07-339 By  

E-Print Network (OSTI)

An environmental chamber and modeling study was conducted to reduce uncertainties in atmospheric ozone impacts for volatile organic compounds (VOCs) emitted from coatings. Some coatings VOCs (Texanol ® and low-aromatic petroleum distillates) have near-zero or negative incremental ozone reactivities in chamber experiments, but calculations show positive ozone impacts in the atmosphere. Modeling indicated that experiments with increased light intensity and added H2O2 should give reactivities that better correlate with those in the atmosphere. After upgrading our chamber’s light source, experiments to test the new method performed as expected, and gave good correlations between experimental and atmospheric MIR values for the VOCs tested. These experiments also appear to be more sensitive to effects of VOCs on secondary organic aerosol (SOA) formation than previous experiments. Such experiments should be included in future environmental chamber reactivity studies, though other types of experiments are also needed for adequate mechanism evaluation. Experiments were also conducted to assess ozone impacts of ethyl methyl ketone oxime (EMKO), and soy ester solvents. The EMKO results indicated it has both radical sinks and NOx sources in its mechanism, and has no measurable impact on SOA formation. The EMKO mechanism that simulated the data gave a negative MIR of-1.27 gm O3 /gm VOC, but positive MOIR and EBIR values of

William P. L. Carter

2011-01-01T23:59:59.000Z

212

Laboratory measurement of secondary pollutant yields from ozone reaction with HVAC filters.  

E-Print Network (OSTI)

from Ozone Reaction with HVAC Filters Hugo Destaillats,from Ozone Reaction with HVAC Filters Hugo Destaillatsfrom Ozone Reaction with HVAC Filters Hugo Destaillats

Destaillats, Hugo

2012-01-01T23:59:59.000Z

213

Atlantic Hurricane Season of 2003  

Science Conference Proceedings (OSTI)

The 2003 Atlantic hurricane season is described. The season was very active, with 16 tropical storms, 7 of which became hurricanes. There were 49 deaths directly attributed to this year’s tropical cyclones.

Miles B. Lawrence; Lixion A. Avila; John L. Beven; James L. Franklin; Richard J. Pasch; Stacy R. Stewart

2005-06-01T23:59:59.000Z

214

Atlantic Hurricane Season of 1992  

Science Conference Proceedings (OSTI)

The 1992 hurricane season is summarized, including accounts of individual storms. Six tropical storms were tracked, of which four became hurricanes. In addition, one subtropical storm formed during the year. The season will be remembered most, ...

Max Mayfield; Lixion Avila; Edward N. Rappaport

1994-03-01T23:59:59.000Z

215

Atlantic Hurricane Season of 2009  

Science Conference Proceedings (OSTI)

The 2009 Atlantic season was marked by below-average tropical cyclone activity with the formation of nine tropical storms, the fewest since the 1997 Atlantic hurricane season. Of these, three became hurricanes and two strengthened into major ...

Robert J. Berg; Lixion A. Avila

2011-04-01T23:59:59.000Z

216

Atlantic Hurricane Season of 1993  

Science Conference Proceedings (OSTI)

The 1993 hurricane season is summarized. and individual tropical storms and hurricanes are described. Overall, the season was relatively inactive, but tropical storms and hurricanes were responsible for a large number of deaths in South America, ...

Richard J. Pasch; Edward N. Rappaport

1995-03-01T23:59:59.000Z

217

Assessment of Impacts of Retrofit NOx Controls on Gas/Oil Boilers  

Science Conference Proceedings (OSTI)

In 1997, when EPRI issued the version 2 of its Retrofit NOx Control Guidelines for Gas- and Oil-Fired Boilers (EPRI report TR-108181), it was thought the most common NOx controls installed on gas and oil-fired boilers would include low NOx burners; selective catalytic reduction (SCR); and other vendor supplied, hardware-intensive approaches. In the years that followed, however, most of the gas and oil power generating fleet opted for less hardware intensive, more cost-effective approaches, with Induced F...

2007-02-07T23:59:59.000Z

218

Development of METHANE de-NOX reburning process. Quarterly report, October 1 - December 31, 1999  

DOE Green Energy (OSTI)

The use of biomass and wood waste solids and sludges as fuel is often hampered by their low heating values and the presence of bound nitrogen that result in inefficient combustion and high NOx emission. Cofiring supplemental fuel through auxiliary burners helps with improving the combustion effectiveness and NOx reduction, but the benefits are limited to the fractional heat input of the auxiliary fuel. Demonstration tests have shown over 60% reduction in NOx, CO and VOC emissions, and a 2% increase in boiler thermal efficiency using only 8 to 13% natural gas.

NONE

1999-12-31T23:59:59.000Z

219

Impacts of Low-NOx Regulations on Chillers: Commercial Cooling Update, Issue 15, September 1996  

Science Conference Proceedings (OSTI)

The 1990 Clean Air Act Amendments and local air quality rules are affecting the cost and operation of all chillers. This document takes a close look at the cost and source energy use impacts of NOx regulations on chillers and provides a summary of findings. Four chiller types are examined: electric centrifugal, direct- fired absorber, engine driven with a lean-burn engine and engine driven by nonselective catalytic reduction. A table is provided that compares energy use, NOx, and first costs of low-NOx c...

1996-10-30T23:59:59.000Z

220

Four seasons of giving  

NLE Websites -- All DOE Office Websites (Extended Search)

Kurt's Column Kurt's Column Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Four seasons of giving We value a culture of giving and appreciate our employees' on-going volunteerism throughout Northern New Mexico and even nationwide. January 1, 2013 dummy image Read our archives. Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email We value a culture of giving and appreciate our employees' on-going volunteerism throughout Northern New Mexico and even nationwide. So, as the Lab, its employees, and retirees wrap up this year's season, I'm happy to say this is not our only time of giving. Programs such as our Science Education Community Service Time efforts mean that whenever school is in

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Definition: Reduced Sox, Nox, And Pm-2.5 Emissions | Open Energy  

Open Energy Info (EERE)

Sox, Nox, And Pm-2.5 Emissions Sox, Nox, And Pm-2.5 Emissions Jump to: navigation, search Dictionary.png Reduced Sox, Nox, And Pm-2.5 Emissions Functions that provide this benefit can lead to avoided vehicle miles, decrease the amount of central generation needed to their serve load (through reduced electricity consumption, reduced electricity losses, more optimal generation dispatch), and or reduce peak generation. These impacts translate into a reduction in pollutant emissions produced by fossil-based electricity generators and vehicles.[1] Related Terms electricity generation, reduced electricity losses, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An in LikeLike UnlikeLike You like this.Sign Up to see what your friends like. line Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_Sox,_Nox,_And_Pm-2.5_Emissions&oldid=502508

222

Modelling of catalytic aftertreatment of NOx emissions using hydrocarbon as a reductant.  

E-Print Network (OSTI)

??Hydrocarbon selective catalytic reduction (HC-SCR) is emerging as one of the most practical methods for the removal of nitrogen oxides (NOx) from light-duty-diesel engine exhaust… (more)

Sawatmongkhon, Boonlue

2012-01-01T23:59:59.000Z

223

A design strategy applied to sulfur resistant lean NOx̳ automotive catalysts  

E-Print Network (OSTI)

Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

Tang, Hairong

2005-01-01T23:59:59.000Z

224

LBNL's Low-NOx Combustion Technologies for Heat and Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Us Department Contacts Media Contacts LBNL's Low-NOx Combustion Technologies for Heat and Power Generation Speaker(s): Robert Cheng Date: February 2, 1999 - 12:00pm Location: Bldg....

225

Demonstration of a Low-NOx Heavy-Duty Natural Gas Engine  

DOE Green Energy (OSTI)

Results of a Next Generation Natural Gas Vehicle engine research project: A Caterpillar C-12 natural gas engine with Clean Air Power Dual-Fuel technology and exhaust gas recirculation demonstrated low NOx and PM emissions.

Not Available

2004-02-01T23:59:59.000Z

226

Microsoft Word - 41892_Praxair_Low NOx_Factsheet_Rev 0a_01-09...  

NLE Websites -- All DOE Office Websites (Extended Search)

Low NOx Emissions in a Fuel Flexible Gas Turbine FACT SHEET Revision 0a Jan. 9, 2004 Page 1 of 4 I. PROJECT DESCRIPTION A. Objective: The objective of this project is to design a...

227

Climate Co-benefits of Tighter SO2 and NOx Regulations in China  

E-Print Network (OSTI)

Air pollution has been recognized as a significant problem in China. In its Twelfth Five Year Plan (FYP), China proposes to reduce SO2 and NOx emissions significantly, and here we investigate the cost of achieving those ...

Nam, Kyung-Min

2012-10-01T23:59:59.000Z

228

Program on Technology Innovation: Field Evaluations of Entrained Flow NOx Catalyst Concept  

Science Conference Proceedings (OSTI)

EPRI has been actively evaluating and developing advanced catalyst concepts for NOx reduction that are more effective and have potential in achieving near zero emissions. The concept called NOMERCTM involves the entrained flow of pulverized SCR catalyst for NOx reduction combined with activated carbon injection for removing mercury from the flue gas stream at coal-fired utilities. The entrained flow removal process is a novel concept and has been proven to work in a previous proof of concept test. This r...

2006-03-27T23:59:59.000Z

229

An Assessment of Alternative NOx Monitoring Technologies for Coal-Fired Boiler Applications  

Science Conference Proceedings (OSTI)

This report reviews the applicability of alternate measurement technologies to measure NOx in coal-fired boiler applications using optical techniques in general, and tunable diode laser spectroscopy in particular. Increasingly stringent regulations of NOx emission limits on this class of boilers make accurate, reliable, cost effective measurement techniques of growing importance. Existing commercial instrumentation used for CEMS applications, do not entirely satisfy industry requirements and needs for pr...

2005-12-12T23:59:59.000Z

230

Assessment of Impacts of NOx Reduction Technologies on Coal Ash Use: Volume 1: North American Perspective  

Science Conference Proceedings (OSTI)

This two-volume report provides documentation about physical and chemical effects combustion and post-combustion low-NOx technologies have on coal fly ash. U.S., European, and, to a lesser degree, Japanese experience is discussed. The report assesses the effect of low-NOx technologies on fly ash markets in a general manner. Options for beneficiating fly ash for specific markets also appear.

1997-01-04T23:59:59.000Z

231

Retrofit NOx Controls for Coal-Fired Utility Boilers - 2000 Update  

Science Conference Proceedings (OSTI)

During the last four years (1996-2000), NOx control retrofits increased significantly in response to further tightening of NOx regulations. Approximately one hundred complete burner retrofits of wall- and T-fired boilers were implemented during this period, bringing the total burner retrofits to 357. Also, 32 burner component modification BCM) projects were implemented. Other control options included combustion optimization in more than two hundred boilers, thirteen reburns, five selective non-catalytic ...

2000-12-15T23:59:59.000Z

232

NOx Reduction Study at New York Power Authority's Charles Poletti Station  

Science Conference Proceedings (OSTI)

This engineering study assessed the feasibility and economics of obtaining significant NOx reduction levels at New York Power Authoritys Charles Poletti Station through one or more of a variety of approaches. Specific NOx reduction technologies included in the assessment were: 30 Unit De-Rate Induced Flue Gas Recirculation (IFGR) IFGR +30 De-Rate Selective Non-Catalytic Reduction (SNCR) IFGR +SNCR IFGR +SNCR +30 De-Rate Selective Catalytic Reduction (SCR) A number of windbox re-powering options, ...

2006-08-01T23:59:59.000Z

233

Procedure to Calculate NOx Reductions Using the Emissions & Generation Resource Integrated Database (E-Grid) Spreadsheet  

E-Print Network (OSTI)

In this report a detailed description of the procedure to calculate NOx reductions from energy savings due to the 2000 IECC code implementation in single family residences using the United States Environmental Protect Agency's (USEPA's) Emissions and Generation Resource Integrated Database (E-GRID) is presented. This procedure is proposed for calculating county-wide NOx reductions in pounds per MWh for Energy Efficiency and Renewable Energy projects (EE/RE) implemented in each Power Control Area (PCA) in the ERCOT region.

Haberl, J. S.; Im, P.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Verdict, M.; Turner, W. D.

2003-01-01T23:59:59.000Z

234

Rich Reagent Injection Technology for NOx Control in Cyclone-Fired Boilers  

Science Conference Proceedings (OSTI)

This report summarizes multiple demonstration projects that have led to commercial development of the Rich Reagent Injection (RRI) technology. RRI was developed by Reaction Engineering International (REI) with funding from EPRI and U.S. DOE National Energy Technology Laboratory (DOE-NETL). Prior to RRI, most NOx reduction efforts that focused on modifying combustion to reduce NOx formation in fossil-fuel-fired boilers and furnaces involved air or fuel staging. Even with significant levels of furnace stag...

2006-11-06T23:59:59.000Z

235

Mitigation of Sulfur Effects on a Lean NOx Trap Catalyst by Sorbate Reapplication  

DOE Green Energy (OSTI)

Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping. Natural gas combusted over partial oxidation catalysts in the exhaust can be used to obtain the rich exhaust conditions necessary for catalyst regeneration. Thus, the lean NOx trap technology is well suited for lean natural gas engine applications. One potential limitation of the lean NOx trap technology is sulfur poisoning. Sulfur compounds directly bond to the NOx trapping sites of the catalyst and render them ineffective; over time, the sulfur poisoning leads to degradation in overall NOx reduction performance. In order to mitigate the effects of sulfur poisoning, a process has been developed to restore catalyst activity after sulfur poisoning has occurred. The process is an aqueous-based wash process that removes the poisoned sorbate component of the catalyst. A new sorbate component is reapplied after removal of the poisoned sorbate. The process is low cost and does not involve reapplication of precious metal components of the catalyst. Experiments were conducted to investigate the feasibility of the washing process on a lean 8.3-liter natural gas engine on a dynamometer platform. The catalyst was rapidly sulfur poisoned with bottled SO2 gas; then, the catalyst sorbate was washed and reapplied and performance was re-evaluated. Results show that the sorbate reapplication process is effective at restoring lost performance due to sulfur poisoning. Specific details relative to the implementation of the process for large stationary natural gas engines will be discussed.

Parks, II, James E [ORNL

2007-01-01T23:59:59.000Z

236

Baseline Ozone Results from 1923 to 1955  

Science Conference Proceedings (OSTI)

Baseline total atmospheric ozone values have been derived, using the Chappuis band, from historical data for 11 Smithsonian sites, including both Northern and Southern Hemispheres. The main baselines consist of 1194 and 970 days respectively for ...

Ronald J. Angione; Robert G. Roosen

1983-08-01T23:59:59.000Z

237

Climatological effects of atmospheric ozone: A review  

Science Conference Proceedings (OSTI)

The paper presents some results of model estimates of ozone (O/sub 3/) climatological effects. Specific issues involved in O/sub 3/ climate study and future research needs are discussed. (ACR)

Wang, W.C.

1984-01-01T23:59:59.000Z

238

Tropospheric Ozone in Louisiana and Synoptic Circulation  

Science Conference Proceedings (OSTI)

Tropospheric ozone (O3) is a pollutant of increasing concern in many urban areas in the United States. There is an increasing need to understand the geographical and meteorological properties associated with O3, particularly because of the ...

Robert V. Rohli; Michelle M. Russo; Anthony J. Vega; John B. Cole

2004-10-01T23:59:59.000Z

239

Fundamental Study of Low NOx Combustion Fly Ash Utilization  

SciTech Connect

This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over forty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives.

E. M. Suubert; I. Kuloats; K. Smith; N. Sabanegh; R.H. Hurt; W. D. Lilly; Y. M. Gao

1997-05-01T23:59:59.000Z

240

Global Variation in Total Ozone and Layer-Mean Ozone: An Update Through 1981  

Science Conference Proceedings (OSTI)

Total-ozone variations have been updated through 1981 for four regions in north temperate latitudes, the five climatic zones, both hemispheres, and the world. Also updated through 1981 are ozone values in height layers 32–48 km, 24–32 km, 16–24 ...

J. K. Angell; J. Korshover

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Discovery of New NOx Reduction Catalysts for CIDI Engines Using Combinatorial Techniques  

SciTech Connect

This project for the discovery of new lean reduction NOx catalysts was initiated on August 16th, 2002 and is now into its fourth year. Several materials have already been identified as NOx reduction catalysts for possible future application. NOx reduction catalysts are a critical need in the North American vehicle market since these catalysts are needed to enable both diesels and lean gasoline engines to meet the 2007-2010 emission standards. Hydrocarbon selective catalytic reduction (SCR) is a preferred technology since it requires no infrastructure changes (as may be expected for urea SCR) and most likely has the simplest engine control strategy of the three proposed NOx reduction approaches. The use of fast throughput techniques and informatics greatly enhances the possibility of discovering new NOx reduction catalysts. Using fast throughput techniques this project has already screened over 3000 new materials and evaluates hundreds of new materials a month. Evaluating such a high number of new materials puts this approach into a very different paradigm than previous discovery approaches for new NOx reduction catalysts. With so much data on materials it is necessary to use statistical techniques to identify the potential catalysts and these statistical techniques are needed to optimize compositions of the multi-component materials that are identified under the program as possible new lean NOx catalysts. Several new materials have conversions in excess of 80% at temperatures above 300 C. That is more than twice the activity of previous HC SCR materials. These materials are candidates for emission control on heavy-duty systems (i.e.; over 8500 pounds gross weight). Tests of one of the downselected materials on an engine dynamometer show NOx reductions greater than 80% under some conditions even though the net NOx reductions on the HWFET and the US06 cycles were relatively low. The program is scheduled to continue until the end of the 2006 calendar year. Work in the final year will focus on continued discovery and identity of candidate materials, and also on refining the engine operating strategies to increase NOx reduction over a full engine cycle.

Blint, Richard J

2005-08-15T23:59:59.000Z

242

Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines  

Science Conference Proceedings (OSTI)

Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer review meeting at Argonne National Laboratories, in-cylinder pressure was measured to calculate engine indicated mean effective pressure (IMEP) changes due to NOx injections and EGR variations, and to observe conditions in the cylinder. The third experimental campaign gathered NOx decomposition data at 800, 1200 and 1800 rpm. EGR was added via an external loop, with EGR ranging from zero to the point of misfire. The air/fuel ratio was set at both stoichiometric and slightly rich conditions, and NOx decomposition rates were calculated for each set of runs. Modifications were made to the engine exhaust manifold to record individual exhaust temperatures. The three experimental campaigns have provided the data needed for a comprehensive model of NOx decomposition during the combustion process, and data have confirmed that there was no significant impact of injected NO on in-cylinder pressure. The NOx adsorption system provided by Sorbent Technologies Corp. (Twinsburg, OH), comprised a NOx adsorber, heat exchanger and a demister. These components were connected to the engine, and data were gathered to show both the adsorption of NOx from the engine, and desorption of NOx from the carbon-based sorbent material back into the engine intake, using a heated air stream. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a bench top adsorption system was constructed and instrumented with thermocouples and the system output was fed into a NOx analyzer. The temperature of this apparatus was controlled while gathering data on the characteristics of the sorbent material. These data were required for development of a system model. Preliminary data were gathered in 2005, and will continue in early 2006. To assess the economic benefits of the proposed SNR technology the WVU research team has been joined in the last quarter by Dr Richard Turton (WVU-Chemical Engineering), who is modeling, sizing and costing the major components. The tasks will address modeling and preliminary design of the heat exchanger, demister and NOx sorbent chamber s

Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

2005-12-28T23:59:59.000Z

243

Seasonal Tips | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Savers seasonal website and learn great ways to reduce your energy bill. Tips range from small changes you can make immediately, such as closing your drapes, to...

244

Atlantic Hurricane Season of 1990  

Science Conference Proceedings (OSTI)

The 1990 hurricane season is summarized, including accounts of individual storms. Fourteen tropical stormswere tracked of which eight became hurricanes. Only one storm, Marco, hit the United States.

Max Mayfield; Miles B. Lawrence

1991-08-01T23:59:59.000Z

245

Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1  

SciTech Connect

A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

Marc A. Cremer; Bradley R. Adams

2006-06-30T23:59:59.000Z

246

Atmospheric Environment 41 (2007) 36843701 A numerical study of an autumn high ozone episode over  

E-Print Network (OSTI)

of Kaohsiung Case NOC-A: Case NOC-B: Case NOC-C NOx ¼ 0, NMHC ¼ 0 NOx ¼ 0 NMHC ¼ 0 O3 reduction over KHM (%) 41 NOTN-C: NOx ¼ 0, NMHC ¼ 0 NOx ¼ 0 NMHC ¼ 0 O3 reduction over KHM (%) 21 14 10 O3 reduction over PTR 25­28 October 2002 NOx and NMHCs emissions reduction (%) 75 50 25 Located north of KH TN KH TN KH TN

247

METHANE de-NOX for Utility PC Boilers  

SciTech Connect

The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable to minimize the need for overfire air by maximizing NO{sub x} reduction in the burner. The proposed combustion concept aims to greatly reduce NO{sub x} emissions by incorporating a novel modification to conventional or low-NO{sub x} PC burners using gas-fired coal preheating to destroy NO{sub x} precursors and prevent NO{sub x} formation. A concentrated PC stream enters the burner, where flue gas from natural gas combustion is used to heat the PC up to about 1500 F prior to coal combustion. Secondary fuel consumption for preheating is estimated to be 3 to 5% of the boiler heat input. This thermal pretreatment releases coal volatiles, including fuel-bound nitrogen compounds into oxygen-deficient atmosphere, which converts the coal-derived nitrogen compounds to molecular N{sub 2} rather than NO. Design, installation, shakedown, and testing on Powder River Basin (PRB) coal at a 3-million Btu/h pilot system at RPI's (Riley Power, Inc.) pilot-scale combustion facility (PSCF) in Worcester, MA demonstrated that the PC PREHEAT process has a significant effect on final O{sub x} formation in the coal burner. Modifications to both the pilot system gas-fired combustor and the PC burner led to NO{sub x} reduction with PRB coal to levels below 0.15 lb/million Btu with CO in the range of 35-112 ppmv without any furnace air staging.

Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

2005-09-30T23:59:59.000Z

248

NOx Control Options and Integration for US Coal Fired Boilers  

SciTech Connect

This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both 0% and 1% vanadia catalysts. During this quarter, the slipstream reactor at Rockport operated for 720 hours on flue gas. Catalyst exposure time reached 4500 hours since installation. The reactor is out of service at the Rockport plant and plans are being made to move it to the Gadsden Plant. At Gadsden, modifications have begun in preparation for installation of the slipstream reactor next quarter.

Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

2004-06-30T23:59:59.000Z

249

Controlling diesel NOx & PM emissions using fuel components and enhanced aftertreatment techniques: developing the next generation emission control system.  

E-Print Network (OSTI)

??The following research thesis focuses on methods of controlling nitrogen oxides (NO(X)) and particulate matter (PM) emissions emitted from a low temperature diesel exhaust. This… (more)

Gill, Simaranjit Singh

2012-01-01T23:59:59.000Z

250

Effects of Ozone Heating on Forced Equatorial Kelvin Waves  

Science Conference Proceedings (OSTI)

An equatorial beta-plane model of the stratosphere is used to examine the effects of longwave radiational cooling, ozone photochemistry, and ozone advection on the linear spatial modulation of forced equatorial Kelvin waves. The model atmosphere ...

Robert S. Echols; Terrence R. Nathan

1996-01-01T23:59:59.000Z

251

Relations between Meteorology and Ozone in the Lake Michigan Region  

Science Conference Proceedings (OSTI)

The field program phase of the Lake Michigan Ozone Study (LMOS) took place during the summer of 1991. Observed ozone concentrations and weather variables have been analyzed for the Lake Michigan region and the eastern United States for four 1991 ...

Steven R. Hanna; Joseph C. Chang

1995-03-01T23:59:59.000Z

252

Determination of Total Ozone Amount from TIROS Radiance Measurements  

Science Conference Proceedings (OSTI)

Total ozone amounts are determined from atmospheric radiances measured by the TIROS Operational Vertical Sounder (TOVS). The retrieval procedure is one of linear regression where total ozone amounts derived from Dobson spectrophotometer ...

Walter G. Planet; David S. Crosby; James H. Lienesch; Michael L. Hill

1984-02-01T23:59:59.000Z

253

Vertical Structure of the Anomalous 2002 Antarctic Ozone Hole  

Science Conference Proceedings (OSTI)

Ozone estimates from observations by the NOAA-16 Solar Backscattered Ultraviolet (SBUV/2) instrument and Television Infrared Observation Satellite (TIROS-N) Operational Vertical Sounder (TOVS) are used to describe the vertical structure of ozone ...

S. Kondragunta; L. E. Flynn; A. Neuendorffer; A. J. Miller; C. Long; R. Nagatani; S. Zhou; T. Beck; E. Beach; R. McPeters; R. Stolarski; P. K. Bhartia; M. T. DeLand; L.-K. Huang

2005-03-01T23:59:59.000Z

254

Surface Ozone During the Second Half of the Nineteenth Century  

Science Conference Proceedings (OSTI)

During the last few years, increases in tropospheric ozone concentration have been detected and the need for more study has been recognized. There is very little knowledge about surface ozone background concentrations prior to the advent of ...

Rumen D. Bojkov

1986-03-01T23:59:59.000Z

255

Space and Time Scales in Ambient Ozone Data  

Science Conference Proceedings (OSTI)

This paper describes the characteristic space and time scales in time series of ambient ozone data. The authors discuss the need and a methodology for cleanly separating the various scales of motion embedded in ozone time series data, namely, ...

S. T. Rao; I. G. Zurbenko; R. Neagu; P. S. Porter; J. Y. Ku; R. F. Henry

1997-10-01T23:59:59.000Z

256

Iron Catalysis in Oxidations by Ozone - Energy Innovation Portal  

Wind Energy; Partners (27) Visual Patent Search; Success Stories; News; Events; Industrial Technologies Iron Catalysis in Oxidations by Ozone Ames ...

257

OZONE PRODUCTION IN URBAN PLUMES.  

SciTech Connect

Ozone levels observed during a field campaign in Houston were significantly higher than that observed in Phoenix or Philadelphia. An examination of the slope of O{sub x} versus NO{sub z} in the urban plumes shows that NO{sub x} is used 2 to 3 times more efficiently in Houston as compared with Phoenix and Philadelphia. Representative values of OPEx are 7-12, 3, and 4, in Houston, Phoenix, and Philadelphia. Aircraft observations have been used to calculate P(O{sub 3})/P(NO{sub z}). Values in Houston are significantly higher than in Phoenix and Philadelphia. We show that P(O{sub 3})/P(NO{sub z}) is proportional to a VOC/NO{sub 2}-OH reactivity ratio. High values of P(O{sub 3})/P(NO{sub z}) in Houston are due to emissions of reactive olefins from the ship channel region. It is significant that high values of P(O{sub 3})/P(NO{sub z}) occur at NO{sub x} levels up to several 10's of ppb. Not only is the chemistry efficient but it will be long lasting. The occurrence of high NO{sub x} and high OPEx is fostered by the co-location of VOC and NO{sub x} sources in the Houston industrial areas.

KLEINMAN,L.

2001-09-17T23:59:59.000Z

258

Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines  

Science Conference Proceedings (OSTI)

It is widely recognized that future NOx and PM emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion methodology with an aftertreatment technology will be required. In this study, NOx reduction, fuel efficiency, and regeneration performance of lean NOx trap (LNT) were evaluated for four operating conditions. The combustion approaches included baseline engine operation with and without EGR, two exhaust enrichment methods (post injection and delayed injection), and one advanced combustion mode to enable high efficiency clean combustion (HECC). A 1.7 liter 4-cylinder diesel engine was operated under five conditions, which represent key interest points for light-duty diesel operation. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable. HECC was also reached under more moderate loads and the exhaust temperatures were high enough to enable even further NOx reductions by the LNT. At high loads HECC becomes difficult but the LNT performance improves and acceptable regeneration can be met with enrichment methodologies.

Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Kass, Michael D [ORNL; Huff, Shean P [ORNL

2008-01-01T23:59:59.000Z

259

Feasibility of plasma aftertreatment for simultaneous control of NOx and particulates  

DOE Green Energy (OSTI)

Plasma reactors can be operated as a particulate trap or as a NOx converter. Particulate trapping in a plasma reactor can be accomplished by electrostatic precipitation. The soluble organic fraction of the trapped particulates can be utilized for the hydrocarbon-enhanced oxidation of NO to NO2 . The NO2 can then be used to non-thermally oxidize the carbon fraction of the particulates. The oxidation of the carbon fraction by NO2 can lead to reduction of NOx or backconversion of NO2 to NO. This paper examines the hydrocarbon and electrical energy density requirements in a plasma for maximum NOx conversion in both heavy-duty and light-duty diesel engine exhaust. The energy density required for complete oxidation of hydrocarbons is also examined and shown to be much greater than that required for maximum NOx conversion. The reaction of NO2 with carbon is shown to lead mainly to backconversion of NO2 to NO. These results suggest that the combination of the plasma with a catalyst will be required to reduce the NOx and oxidize the hydrocarbons. The plasma reactor can be operated occasionally in the arc mode to thermally oxidize the carbon fraction of the particulates.

Brusasco, R M; Merritt, B T; Penetrante, B; Pitz, W J; Vogtlin, G E

1999-08-24T23:59:59.000Z

260

Ozonization of humic acids in brown coal oxidized in situ  

SciTech Connect

The effect of the ozonization of humic acids in chloroform and glacial acetic acid media on the yield and component composition of the resulting products was studied. The high efficiency of ozonization in acetic acid was found. Water-soluble low-molecular-weight substances were predominant among the ozonization products.

S.A. Semenova; Yu.F. Patrakov; M.V. Batina [Russian Academy of Sciences, Kemerovo (Russia). Institute of Coal and Coal Chemistry

2008-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Liquid-phase ozonation of fusainized components of SS coal  

SciTech Connect

Stepwise ozonation of leaning fusainized components of fossil coal of SS grade in acetic acid was studied. The dynamics of accumulation of oxygen-containing groups in the course of ozonation was examined, and the main pathways of the reaction of ozone with structural fragments of the coal substance were revealed.

Semenova, S.A.; Patrakov, Y.F. [Russian Academy of Sciences, Kemerovo (Russian Federation)

2007-11-15T23:59:59.000Z

262

Atlantic Hurricane Season of 2002  

Science Conference Proceedings (OSTI)

The 2002 Atlantic hurricane season is summarized. Although the season's total of 12 named storms was above normal, many of these were weak and short-lived. Eight of the named cyclones made landfall in the United States, including Lili, the first ...

Richard J. Pasch; Miles B. Lawrence; Lixion A. Avila; John L. Beven; James L. Franklin; Stacy R. Stewart

2004-07-01T23:59:59.000Z

263

Atlantic Hurricane Season of 1998  

Science Conference Proceedings (OSTI)

The 1998 hurricane season in the Atlantic basin is summarized, and the individual tropical storms and hurricanes are described. It was an active season with a large number of landfalls. There was a near-record number of tropical cyclone–related ...

Richard J. Pasch; Lixion A. Avila; John L. Guiney

2001-12-01T23:59:59.000Z

264

Seasonal Tips | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seasonal Tips Seasonal Tips Seasonal Tips January 23, 2012 - 11:30am Addthis Amanda McAlpin I've often wished I lived in one of those fabulous places where it's 72 degrees and sunny year-round. But unfortunately, most of us don't. And to stay comfortable, we need heat and hot coffee in the winter, and air-conditioning and lemonade in the summer. Luckily, part of the Energy Savers site is dedicated to helping us save energy during all four seasons. Bring up the dedicated Energy Savers seasonal website and learn great ways to reduce your energy bill. Tips range from small changes you can make immediately, such as closing your drapes, to information on modifications you can make to your home for even larger benefits. There is even information on assistance for energy-savings improvements to your home.

265

ODD NITROGEN PROCESSES  

E-Print Network (OSTI)

of ozone towards reduction by NOx in the 25 to 32 km rangethe larger NOx injections ozone column reduction shows theon the predicted ozone reduction due to NOx increases and to

Johnston, Harold S.

2013-01-01T23:59:59.000Z

266

DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY  

Science Conference Proceedings (OSTI)

Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non-catalytic reduction. The FIR burner was previously demonstrated on firetube and watertube boilers, and these units are still operating at several industrial and commercial boiler sites in sizes ranging from 2.5 to 60 million Btu/h. This report covers the development of an innovative combustion system suitable for natural gas or coke-oven gas firing within the steel industry. The prototype FIR burner was evaluated on a 20 million Btu/h watertube boiler. Acceptable burner performance was obtained when firing natural gas and simulated coke-oven gas doped with ammonia. The laboratory data reveals a direct relationship between NOx formation and the ammonia concentration in the fuel. In addition, NOx formation increases as the primary stoichiometric ratio (PSR) increases. Representative ammonia concentrations, as documented in the steel industry, ranged from 200 to 500 vppm. When the laboratory burner/boiler was operated with 500 vppm ammonia in the fuel, NOx emissions ranged from 50 to 75 vppm. This, conservatively, is 75% less than state-of-the-art burner performance. When the burner is operated with 200 vppm ammonia in the fuel, the corresponding NOx emissions would range from 30 to 45 vppm, 84% less than present burner technology. During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million Btu/h, NOx emissions where 33 vppm and increased at full load; 144 million Btu

Cygan, David

2006-12-28T23:59:59.000Z

267

Effect of Ventilation Strategies on Residential Ozone Levels  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of Ventilation Strategies on Residential Ozone Levels Effect of Ventilation Strategies on Residential Ozone Levels Title Effect of Ventilation Strategies on Residential Ozone Levels Publication Type Journal Article LBNL Report Number LBNL-5889E Year of Publication 2012 Authors Walker, Iain S., and Max H. Sherman Journal Building and Environment Volume 59 Start Page 456 Pagination 456-465 Date Published 01/2013 Keywords ashrae standard 62,2, filtration, infiltration, mechanical ventilation, ozone, simulation Abstract Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone---associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reduce concentrations of indoor---generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air---exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.

268

Removal of NOx or its conversion into harmless gases by charcoals and composites of metal oxides  

SciTech Connect

In recent years, much attention has been devoted to environmental problems such as acid rain, photochemical smog and water pollution. In particular, NOx emissions from factories, auto mobiles, etc. in urban areas have become worse. To solve these problems on environmental pollution on a global scale, the use of activated charcoal to reduce air pollutants is increasing. However, the capability of wood-based charcoal materials is not yet fully known. The removal of NOx or its conversion into harmless gases such as N{sub 2} should be described. In this study, the adsorption of NO over wood charcoal or metal oxide-dispersed wood charcoal was investigated. In particular, carbonized wood powder of Sugi (Cryptomeria japonica D. Don) was used to study the effectivity of using these materials in adsorbing NOx. Since wood charcoal is chemically stable, metal oxide with the ability of photocatalysis was dispersed into wood charcoal to improve its adsorption and capability to use the light energy effectively.

Ishihara, Shigehisa; Furutsuka, Takeshi [Kyoto Univ. (Japan)

1996-12-31T23:59:59.000Z

269

Heavy-Duty Emissions Control: Plasma-Facilitated vs Reformer-Assisted Lean NOx Catalysis  

DOE Green Energy (OSTI)

Progress has been made in the control of combustion processes to limit the formation of environmentally harmful species, but lean burn vehicles, such as those powered by diesel engines used for the majority of commercial trucking and off-road applications, remain a major source of nitrogen oxides (NOx) and particulate matter (PM) emissions. Tighter control of the combustion process coupled with exhaust gas recirculation has brought emissions in line with 2004 targets worldwide. Additional modifications to the engine control system, somewhat limited NOx control, and PM filters will likely allow the 2007 limits to be met for the on-highway regulations for heavy-duty engines in the United States. Concern arises when the NOx emission limit of 0.2 g/bhphr set for the year 2010 is considered.

(1)Aardahl, C; (1)Rozmiarek, R; (1)Rappe, K; (1)Mendoza, D (2)Park, P

2003-08-24T23:59:59.000Z

270

SELECTIVE CATALYTIC REDUCTION OF DIESEL ENGINE NOX EMISSIONS USING ETHANOL AS A REDUCTANT  

DOE Green Energy (OSTI)

NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400 C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.

(1)Kass, M; Thomas, J; Lewis, S; Storey, J; Domingo, N; Graves, R (2) Panov, A

2003-08-24T23:59:59.000Z

271

Seasonal Prediction of Air Temperature Associated with the Growing-Season Start of Warm-Season Crops across Canada  

Science Conference Proceedings (OSTI)

Seasonal prediction of growing-season start of warm-season crops (GSSWC) is an important task for the agriculture sector to identify risks and opportunities in advance. On the basis of observational daily surface air temperature at 210 stations ...

Zhiwei Wu; Hai Lin; Ted O’Brien

2011-08-01T23:59:59.000Z

272

Excellent Sulfur Resistance of Pt/BaO/CeO2 Lean NOx Trap Catalysts  

SciTech Connect

In this work, we investigated the NOx storage behavior of Pt-BaO/CeO2 catalysts, especially in the presence of SO2. High surface area CeO2 (~ 110 m2/g) with a rod like morphology was synthesized and used as a support. The Pt-BaO/CeO2 sample demonstrated slightly higher NOx conversion in the entire temperature range studied compared with Pt-BaO/?-Al2O3. More importantly, this ceria-based catalyst showed higher sulfur tolerance than the alumina-based one. The time of complete NOx uptake was maintained even after exposing the sample to ~3 g/L of SO2. The same sulfur exposure, on the other hand, eliminated the complete NOx uptake time on the alumina-based NOx storage catalysts. TEM images show no evidence of either Pt sintering or BaS phase formation during reductive de-sulfation up to 600°C on the ceria based catalyst, while the same process over the alumina-based catalyst resulted in both a significant increase in the average Pt cluster size and the agglomeration of a newly-formed BaS phase into large crystallites. XPS results revealed the presence of about 5 times more residual sulfur after reductive de-sulfation at 600°C on the alumina based catalysts in comparison with the ceria-based ones. All of these results strongly support that, besides their superior intrinsic NOx uptake properties, ceria based catalysts have a) much higher sulfur tolerance and b) excellent resistance against Pt sintering when they are compared to the widely used alumina based catalysts.

Kwak, Ja Hun; Kim, Do Heui; Szanyi, Janos; Peden, Charles HF

2008-10-21T23:59:59.000Z

273

Sulfur Management of NOx Adsorber Technology for Diesel Light-Duty Vehicle and Truck Applications  

DOE Green Energy (OSTI)

Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure. With the use of a disposable SOx trap to remove large portion of the sulfur poisons from the exhaust, the NOx adsorber catalyst can be protected and the numbers of de-sulfation events can be greatly reduced. Spectroscopic techniques, such as DRIFTS and Raman, have been used to monitor the underlying chemical reactions during NOx trapping/ regeneration and de-sulfation periods, and provide a fundamental understanding of NOx storage capacity and catalyst degradation mechanism using model catalysts. This paper examines the sulfur effect on two model NOx adsorber catalysts. The chemistry of SOx/base metal oxides and the sulfation product pathways and their corresponding spectroscopic data are discussed. SAE Paper SAE-2003-01-3245 {copyright} 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

Fang, Howard L.; Wang, Jerry C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

2003-10-01T23:59:59.000Z

274

NOx Reduction Assessment for Tangentially Fired Boilers Burning Powder River Basin Coal  

Science Conference Proceedings (OSTI)

The objective of this project was to assess the feasibility of and the most cost-effective approaches for reducing nitrous oxide (NOx) emissions for tangentially fired boilers burning Powder River Basin (PRB) coal in order to achieve average NOx emission rates of 0.15 lb/mmBtu (110 ppm), or lower. This is typically achievable by a deep level of combustion air staging, which may be possible if operational issues experienced during low combustion air operation (for example, slagging) can be mitigated. Acc...

2010-01-20T23:59:59.000Z

275

USE OF A DIESEL FUEL PROCESSOR FOR RAPID AND EFFICIENT REGENERATION OF SINGLE LEG NOX ADSORBER SYSTEMS  

DOE Green Energy (OSTI)

Lean NOx adsorber systems are one of the primary candidate technologies for the control of NOx from diesel engines to meet the 2007-2010 US emissions regulations, which require a 90% reduction of NOx from the 2004 regulations. Several of the technical challenges facing this technology are regeneration at low exhaust temperatures and the efficient use of diesel fuel to minimize fuel penalty. A diesel processor system has been developed and tested in a single leg NOx adsorber configuration on a diesel engine test stand. During NOx adsorber regeneration, this fuel processor system performs reduces the exhaust O2 level to zero and efficiently processes the diesel fuel to H2 and CO. Combined with a Nox adsorber catalyst, this system has demonstrated NOx reduction above 90%, regeneration of the NOx adsorber H2/CO pulses as short as 1 second and fuel penalties in the 3 to 4% range at 50% load. This fuel processor system can also be used to provide the desulfation cycle required with sulfur containing fuels as well as providing thermal management for PM filter regeneration.

Betta, R; Cizeron, J; Sheridan, D; Davis, T

2003-08-24T23:59:59.000Z

276

Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission  

E-Print Network (OSTI)

Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls from coal-fired power plants in the U.S. at typical operating conditions with and without the presence this, a novel method for collection and isotopic analysis of coal-fired stack NOx emission samples

Elliott, Emily M.

277

Soft-Sensor Modeling on NOx Emission of Power Station Boilers Based on Least Squares Support Vector Machines  

Science Conference Proceedings (OSTI)

The online monitoring for NOx emission of coal-fired boilers in power plants is more difficult to achieve. The soft-sensor technology of artificial neural network (ANN) method that was commonly used has not strong generalization ability, but support ... Keywords: NOx emission, support vector machines, soft sensor, modeling, power station boilers

Feng Lei-hua; Gui Wei-hua; Yang Feng

2009-10-01T23:59:59.000Z

278

Seasonality and Its Effects on Crop Markets  

E-Print Network (OSTI)

Understanding crop seasonality can improve a producer's marketing skills and options. The causes of seasonality and its effects on price changes are discussed.

Tierney Jr., William I.; Waller, Mark L.; Amosson, Stephen H.

1999-07-12T23:59:59.000Z

279

Atlantic Hurricane Season of 2006  

Science Conference Proceedings (OSTI)

The 2006 Atlantic hurricane season is summarized and the year’s tropical cyclones are described. A verification of National Hurricane Center official forecasts during 2006 is also presented. Ten cyclones attained tropical storm intensity in 2006. ...

James L. Franklin; Daniel P. Brown

2008-03-01T23:59:59.000Z

280

Atlantic Hurricane Season of 2007  

Science Conference Proceedings (OSTI)

The 2007 Atlantic hurricane season had 15 named storms, including 14 tropical storms and 1 subtropical storm. Of these, six became hurricanes, including two major hurricanes, Dean and Felix, which reached category 5 intensity (on the Saffir–...

Michael J. Brennan; Richard D. Knabb; Michelle Mainelli; Todd B. Kimberlain

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Atlantic Hurricane Season of 2008  

Science Conference Proceedings (OSTI)

The 2008 Atlantic hurricane season is summarized and the year’s tropical cyclones are described. Sixteen named storms formed in 2008. Of these, eight became hurricanes with five of them strengthening into major hurricanes (category 3 or higher on ...

Daniel P. Brown; John L. Beven; James L. Franklin; Eric S. Blake

2010-05-01T23:59:59.000Z

282

Atlantic Hurricane Season of 1997  

Science Conference Proceedings (OSTI)

The 1997 Atlantic hurricane season is summarized and the year’s tropical storms, hurricanes, and one subtropical storm are described. The tropical cyclones were relatively few in number, short lived, and weak compared to long-term climatology. ...

Edward N. Rappaport

1999-09-01T23:59:59.000Z

283

Atlantic Hurricane Season of 1980  

Science Conference Proceedings (OSTI)

A summary of the 1980 hurricane season is presented. Eleven named tropical cyclones were tracked, of which nine reached hurricane force. Allen, an intense storm, affected a number of Caribbean countries before making landfall on the Texas coast.

Miles B. Lawrence; Joseph M. Pelissier

1981-07-01T23:59:59.000Z

284

Atlantic Hurricane Season of 2005  

Science Conference Proceedings (OSTI)

The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, including 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. ...

John L. Beven II; Lixion A. Avila; Eric S. Blake; Daniel P. Brown; James L. Franklin; Richard D. Knabb; Richard J. Pasch; Jamie R. Rhome; Stacy R. Stewart

2008-03-01T23:59:59.000Z

285

Atlantic Hurricane Season of 2004  

Science Conference Proceedings (OSTI)

The 2004 Atlantic hurricane season is summarized, and the year’s tropical and subtropical cyclones are described. Fifteen named storms, including six “major” hurricanes, developed in 2004. Overall activity was nearly two and a half times the long-...

James L. Franklin; Richard J. Pasch; Lixion A. Avila; John L. Beven II; Miles B. Lawrence; Stacy R. Stewart; Eric S. Blake

2006-03-01T23:59:59.000Z

286

Atlantic Hurricane Season of 1989  

Science Conference Proceedings (OSTI)

A general overview of the 1989 hurricane season is presented. Eleven named tropical cyclones were tracked, seven of which reached hurricane strength. Three hurricanes and a tropical storm struck the U.S. mainland. The large Cape Verde-type ...

Bob Case; Max Mayfield

1990-05-01T23:59:59.000Z

287

Atlantic Hurricane Season of 1985  

Science Conference Proceedings (OSTI)

A summary of the 1985 hurricane season is presented, including detailed accounts of individual hurricanes. There were eleven named tropical cyclones, seven of which reached hurricane force. A record-typing six hurricanes crossed the U.S. ...

Robert A. Case

1986-07-01T23:59:59.000Z

288

Atlantic Hurricane Season of 1984  

Science Conference Proceedings (OSTI)

A summary of the 1984 Atlantic hurricane season is given. Twelve tropical cyclones and one subtropical cyclone were tracked in the North Atlantic–Caribbean–Gulf of Mexico region. Diana was a landfalling hurricane on the North Carolina coast and ...

Miles B. Lawrence; Gilbert B. Clark

1985-07-01T23:59:59.000Z

289

Sampling Errors in Seasonal Forecasting  

Science Conference Proceedings (OSTI)

The limited numbers of start dates and ensemble sizes in seasonal forecasts lead to sampling errors in predictions. Defining the magnitude of these sampling errors would be useful for end users as well as informing decisions on resource ...

Stephen Cusack; Alberto Arribas

2009-03-01T23:59:59.000Z

290

Atlantic Hurricane Season of 1987  

Science Conference Proceedings (OSTI)

The general overview of the 1987 hurricane season in the North Atlantic is presented together with detailed accounts of all named storms. In addition, an unnamed tropical storm and a tropical depression that required watches and/or warnings on ...

Robert A. Case; Harold P. Gerrish

1988-04-01T23:59:59.000Z

291

Atlantic Hurricane Season of 1988  

Science Conference Proceedings (OSTI)

The 1988 hurricane season is summarized, including accounts of individual storms. Twelve tropical storms were tracked, of which five became hurricanes Gilbert and Joan were devastating hurricanes in the Caribbean Sea and Gulf of Mexico, and ...

Miles B. Lawrence; James M. Gross

1989-10-01T23:59:59.000Z

292

Atlantic Hurricane Season of 2000  

Science Conference Proceedings (OSTI)

The 2000 Atlantic hurricane season is summarized and the year's tropical and subtropical cyclones are described. While overall activity was very high compared to climatology, with 15 cyclones attaining tropical (or subtropical) storm intensity, ...

James L. Franklin; Lixion A. Avila; Jack L. Beven; Miles B. Lawrence; Richard J. Pasch; Stacy R. Stewart

2001-12-01T23:59:59.000Z

293

Atlantic Hurricane Season of 1994  

Science Conference Proceedings (OSTI)

The 1994 Atlantic hurricane season had only three hurricanes forming from just seven tropical storms. Several of these tropical cyclones, however, caused loss of life and great damage. Gordon, as a tropical storm, produced floods that killed more ...

Lixion A. Avila; Edward N. Rappaport

1996-07-01T23:59:59.000Z

294

Modeling study of ozone seasonal cycle in lower troposphere over Zifa Wang,1  

E-Print Network (OSTI)

://segdl.org/ #12;Donev, 1992 . Let function F represent the relationship between pa- rameters m and data d

295

Nuclear conflict and ozone depletion Quick summary  

E-Print Network (OSTI)

Nuclear conflict and ozone depletion Quick summary o Regional nuclear war could cause global which traps pollutants o Nuclear weapons cause explosions, which then causes things around the vicinity to start burning, which in turn releases black carbon; it is not the nuclear material or fallout causing

Toohey, Darin W.

296

Ozone Conservation and Entrainment in Cumulus Congestus  

Science Conference Proceedings (OSTI)

This study demonstrates that ozone mixing ratio (O3) is conserved during moist convection and can be used as a tracer for cloud entrainment studies. The approach used is to apply mixing line analysis to pairs of liquid water potential temperature ...

R. Pearson Jr.; C. J. Weaver

1989-07-01T23:59:59.000Z

297

Improved performance of NOx reduction by H2 and CO over a Pd/Al2O3 catalyst at low temperatures under lean-burn conditions  

E-Print Network (OSTI)

Improved performance of NOx reduction by H2 and CO over a Pd/Al2O3 catalyst at low temperatures 4 June 2004; accepted 6 June 2004 Available online 28 July 2004 Abstract Selective reduction of NOx of lean-burn vehicle exhaust. Macleod and Lambert [9] found that Pd/Al2O3 promotes lean NOx reduction

Gulari, Erdogan

298

2008 Draft Season Summary.  

DOE Green Energy (OSTI)

This report describes investigations into predation by piscivorous colonial waterbirds on juvenile salmonids (Oncorhynchus spp.) from throughout the Columbia River basin during 2008. East Sand Island in the Columbia River estuary again supported the largest known breeding colony of Caspian terns (Hydroprogne caspia) in the world (approximately 10,700 breeding pairs) and the largest breeding colony of double-crested cormorants (Phalacrocorax auritus) in western North America (approximately 10,950 breeding pairs). The Caspian tern colony increased from 2007, but not significantly so, while the double-crested cormorant colony experienced a significant decline (20%) from 2007. Average cormorant nesting success in 2008, however, was down only slightly from 2007, suggesting that food supply during the 2008 nesting season was not the principal cause of the decline in cormorant colony size. Total consumption of juvenile salmonids by East Sand Island Caspian terns in 2008 was approximately 6.7 million smolts (95% c.i. = 5.8-7.5 million). Caspian terns nesting on East Sand Island continued to rely primarily on marine forage fishes as a food supply. Based on smolt PIT tag recoveries on the East Sand Island Caspian tern colony, predation rates were highest on steelhead in 2008; minimum predation rates on steelhead smolts detected passing Bonneville Dam averaged 8.3% for wild smolts and 10.7% for hatchery-raised smolts. In 2007, total smolt consumption by East Sand Island double-crested cormorants was about 9.2 million juvenile salmonids (95% c.i. = 4.4-14.0 million), similar to or greater than that of East Sand Island Caspian terns during that year (5.5 million juvenile salmonids; 95% c.i. = 4.8-6.2 million). The numbers of smolt PIT tags recovered on the cormorant colony in 2008 were roughly proportional to the relative availability of PIT-tagged salmonids released in the Basin, suggesting that cormorant predation on salmonid smolts in the estuary was less selective than tern predation. Cormorant predation rates in excess of 30%, however, were observed for some groups of hatchery-reared fall Chinook salmon released downstream of Bonneville Dam. Implementation of the federal plan 'Caspian Tern Management to Reduce Predation of Juvenile Salmonids in the Columbia River Estuary' was initiated in 2008 with construction by the Corps of Engineers of two alternative colony sites for Caspian terns in interior Oregon: a 1-acre island on Crump Lake in the Warner Valley and a 1-acre island on Fern Ridge Reservoir near Eugene. We deployed Caspian tern social attraction (decoys and sound systems) on these two islands and monitored for Caspian tern nesting. Caspian terns quickly colonized the Crump Lake tern island; about 430 pairs nested there, including 5 terns that had been banded at the East Sand Island colony in the Columbia River estuary, over 500 km to the northwest. No Caspian terns nested at the Fern Ridge tern island in 2008, but up to 9 Caspian terns were recorded roosting on the island after the nesting season. There were two breeding colonies of Caspian terns on the mid-Columbia River in 2008: (1) about 388 pairs nested at the historical colony on Crescent Island in the McNary Pool and (2) about 100 pairs nested at a relatively new colony site on Rock Island in the John Day Pool. Nesting success at the Crescent Island tern colony was only 0.28 young fledged per breeding pair, the lowest nesting success recorded at that colony since monitoring began in 2000, while only three fledglings were raised at the Rock Island tern colony. The diet of Crescent Island Caspian terns consisted of 68% salmonid smolts; total smolt consumption was estimated at 330,000. Since 2004, total smolt consumption by Crescent Island terns has declined by 34%, due mostly to a decline in colony size, while steelhead consumption has increased 10% during this same period. In 2008, approximately 64,000 steelhead smolts were consumed by Caspian terns nesting at Crescent Island. Based on smolt PIT tag recoveries on the Crescent Island Caspian tern colony, the average

Roby, Daniel D. [USGS - Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University; Collis, Ken [Real Time Research, Inc.; Lyons, Donald E. [USGS - Oregon Cooperative Fish and Wildlife Research Unit, Oregon State University

2009-07-08T23:59:59.000Z

299

Investigation Of Synergistic NOx Reduction From Cofiring And Air Staged Combustion Of Coal And Low Ash Dairy Biomass In A 30 Kilowatt Low NOx Furnace  

E-Print Network (OSTI)

Alternate, cost effective disposal methods must be developed for reducing phosphorous and nitrogen loading from land application of animal waste. Cofiring coal with animal waste, termed dairy biomass (DB), is the proposed thermo-chemical method to address this concern. DB is evaluated as a cofired fuel with Wyoming Powder River Basin (PRB) sub-bituminous coal in a small-scale 29 kW_(t) low NO_(x) burner (LNB) facility. Fuel properties, of PRB and DB revealed the following: a higher heating value of 29590 kJ/kg for dry ash free (DAF) coal and 21450 kJ/kg for DAF DB. A new method called Respiratory Quotient (RQ), defined as ratio of carbon dioxide moles to oxygen moles consumed in combustion, used widely in biology, was recently introduced to engineering literature to rank global warming potential (GWP) of fuels. A higher RQ means higher CO_(2) emission and higher GWP. PRB had an RQ of 0.90 and DB had an RQ of 0.92. For comparison purposes, methane has an RQ of 0.50. For unknown fuel composition, gas analyses can be adapted to estimate RQ values. The LNB was modified and cofiring experiments were performed at various equivalence ratios (phi) with pure coal and blends of PRB-DB. Standard emissions from solid fuel combustion were measured; then NO_(x) on a heat basis (g/GJ), fuel burnt fraction, and fuel nitrogen conversion percentage were estimated. The gas analyses yielded burnt fraction ranging from 89% to 100% and confirmed an RQ of 0.90 to 0.94, which is almost the same as the RQ based on fuel composition. At the 0.90 equivalence ratio, unstaged pure coal produced 653 ppm (377 g/GJ) of NOx. At the same equivalence ratio, a 90-10 PRB:LADB blended fuel produced 687 ppm (397 g/GJ) of NO_(x). By staging 20% of the total combustion air as tertiary air (which raised the equivalence ratio of the main burner to 1.12), NO_(x) was reduced to 545 ppm (304 g/GJ) for the 90-10 blended fuel. Analysis of variance showed that variances were statistically significant because of real differences between the independent variables (equivalence ratio, percent LADB in the fuel, and staging intensity).

Lawrence, Benjamin Daniel

2013-08-01T23:59:59.000Z

300

Formation of N2O and NO2 Across Conventional DeNOx SCR Catalysts  

Science Conference Proceedings (OSTI)

This project investigated the formation of N2O and NO2 across conventional DeNOx selective catalytic reduction (SCR) catalysts. N2O is a particularly strong greenhouse gas, and both N2O and NO2 may adversely impact downstream processes. Additional data related to their formation or reduction across SCR catalysts is desirable.

2009-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Numerical Investigation into the Anomalous Slight NOx Increase when Burning Biodiesel: A New (Old) Theory  

DOE Green Energy (OSTI)

Biodiesel is a notable alternative to petroleum derived diesel fuel because it comes from natural domestic sources and thus reduces dependence on diminishing petroleum fuel from foreign sources, it likely lowers lifecycle greenhouse gas emissions, and it lowers an engine's emission of most pollutants as compared to petroleum derived diesel. However, the use of biodiesel often slightly increases a diesel engine's emission of smog forming nitrogen oxides (NO{sub x}) relative to petroleum diesel. In this paper, previously proposed theories for this slight NOx increase are reviewed, including theories based on biodiesel's cetane number, which leads to differing amounts of charge preheating, and theories based on the fuel's bulk modulus, which affects injection timing. This paper proposes an additional theory for the slight NO{sub x} increase of biodiesel. Biodiesel typically contains more double bonded molecules than petroleum derived diesel. These double bonded molecules have a slightly higher adiabatic flame temperature, which leads to the increase in NOx production for biodiesel. Our theory was verified using numerical simulations to show a NOx increase, due to the double bonded molecules, that is consistent with observation. Further, the details of these numerical simulations show that NOx is predominantly due to the Zeldovich mechanism.

Ban-Weiss, G A; Chen, J Y; Buchholz, B A; Dibble, R W

2007-01-30T23:59:59.000Z

302

A Numerical Investigation into the Anomalous Slight NOx Increase when Burning Biodiesel: A New (Old) Theory  

SciTech Connect

Biodiesel is a notable alternative to petroleum derived diesel fuel because it comes from natural domestic sources and thus reduces dependence on diminishing petroleum fuel from foreign sources, it likely lowers lifecycle greenhouse gas emissions, and it lowers an engine's emission of most pollutants as compared to petroleum derived diesel. However, the use of biodiesel often slightly increases a diesel engine's emission of smog forming nitrogen oxides (NO{sub x}) relative to petroleum diesel. In this paper, previously proposed theories for this slight NOx increase are reviewed, including theories based on biodiesel's cetane number, which leads to differing amounts of charge preheating, and theories based on the fuel's bulk modulus, which affects injection timing. This paper proposes an additional theory for the slight NO{sub x} increase of biodiesel. Biodiesel typically contains more double bonded molecules than petroleum derived diesel. These double bonded molecules have a slightly higher adiabatic flame temperature, which leads to the increase in NOx production for biodiesel. Our theory was verified using numerical simulations to show a NOx increase, due to the double bonded molecules, that is consistent with observation. Further, the details of these numerical simulations show that NOx is predominantly due to the Zeldovich mechanism.

Ban-Weiss, G A; Chen, J Y; Buchholz, B A; Dibble, R W

2007-01-30T23:59:59.000Z

303

Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction  

DOE Green Energy (OSTI)

Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

Boyd, Rodney

2007-08-08T23:59:59.000Z

304

Experiment Study on Adsorption Characteristics of SO2, NOx by Biomass Chars  

Science Conference Proceedings (OSTI)

Different kinds of biomass chars of the wheat straws, rice straw, cotton straw collected at Nanjing, China, were pyrolysed in a fixed bed reactor at different temperatures and heating rates. The specific area and pore structure, micromorphology of different ... Keywords: Biomass char, Pyrolysis, Adsorption efficiency, SO2, NOx

Fei Lu; Ping Lu

2010-12-01T23:59:59.000Z

305

Cyclone Boiler Reburn NOx Control Improvements via Cyclone Design Improvements and Advanced Air Staging  

E-Print Network (OSTI)

Eastman Kodak owns three Babcock & Wilcox coal fired cyclone boilers and one Combustion Engineering pulverized coal boiler located at Kodak Park in Rochester, New York. Duke Energy Generation Services (DEGS) operates and maintains the steam and electric generation equipment for Kodak and has primary responsibility for related capital project development and execution. The Kodak plant is capable of generating approximately 1,900,000 pounds of steam and 130 MW’s of electrical power. To achieve the required level of NOx control, Kodak chose The Babcock & Wilcox (B&W) Company's, Natural Gas Reburn technology for the three cyclone boilers. The relatively low capital cost of the system and reasonable cost of natural gas in the mid 1990’s made Natural Gas Reburn an economic fit for the RACT requirements of 0.60#’s/Mmbtu NOx. The run up in natural gas prices since 2002 has increased the cost of NOx removed from ~ $2000/ton to ~$5000/ton based on fuel expense alone. In an effort to curtail the cost of control, Duke Energy Generations Services and Kodak implemented a series of projects that integrated Cyclone Design Improvements and Advancements in Air Staging along with ESP inlet flue modifications that resulted in decreasing the Natural Gas required for NOx control ~ 40% from baseline levels saving the plant several million dollars per year in fuel expense. Significant improvements in opacity and filterable PM were also realized by these changes.

Morabito, B.; Nee, B.; Goff, V.; Maringo, G.

2008-01-01T23:59:59.000Z

306

Evaluation of Oil-Fired Gas Turbine Selective Catalytic Reduction (SCR) NOx Control  

Science Conference Proceedings (OSTI)

Utilities are experiencing increasing regulatory pressure to equip oil-fired power generation units with selective catalytic reduction (SCR) control systems. This report addresses factors utilities may wish to evaluate when justifying an NOx reduction system other than SCR or ensuring successful implementation of an SCR system.

1990-12-17T23:59:59.000Z

307

State of Knowledge Assessment for Waterwall Wastage with Low NOx Burners  

Science Conference Proceedings (OSTI)

Many utilities have experienced high corrosion rates of waterwall tubing in coal-fired steam plants following retrofit of low NOx systems with separated over-fire air (SOFA) ports. This report provides information on the currently applied materials solutions and their costs.

1997-09-11T23:59:59.000Z

308

Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS:  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: products, effect of UV irradiation, water and coadsorbed K+ Title Chemistry of NOx on TiO2 surfaces studied by ambient pressure XPS: products, effect of UV irradiation, water and coadsorbed K+ Publication Type Journal Article Year of Publication 2013 Authors Rosseler, Olivier, Mohamad Sleiman, Nahuel V. Montesinos, Andrey Shavorskiy, Valerie Keller, Nicolas Keller, Marta I. Litter, Hendrik Bluhm, Miquel Salmeron, and Hugo Destaillats Journal J. Phys. Chem. Lett. Volume 4 Start Page 536 Issue 3 Pagination 536-541 Date Published 01/2013 Abstract Self-cleaning surfaces containing TiO2 nanoparticles have been postulated to efficiently remove NOx from the atmosphere. However, UV irradiation of NOx adsorbed on TiO2 also was shown to form harmful gas-phase byproducts such as HONO and N2O that may limit their depolluting potential. Ambient pressure XPS was used to study surface and gas-phase species formed during adsorption of NO2 on TiO2 and subsequent UV irradiation at λ = 365 nm. It is shown here that NO3-, adsorbed on TiO2 as a byproduct of NO2 disproportionation, was quantitatively converted to surface NO2 and other reduced nitrogenated species under UV irradiation in the absence of moisture. When water vapor was present, a faster NO3- conversion occurred, leading to a net loss of surface-bound nitrogenated species. Strongly adsorbed NO3- in the vicinity of coadsorbed K+ cations was stable under UV light, leading to an efficient capture of nitrogenated compounds.

309

Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles  

SciTech Connect

The control of NOx (NO and NO2) emissions from so-called ‘lean-burn’ vehicle engines remains a challenge. In this program, we have been developing a novel plasma/catalyst technology for the remediation of NOx under lean (excess oxygen) conditions, specifically for compression ignition direct injection (CIDI) diesel engines that have significant fuel economy benefits over conventional stoichiometric gasoline engines. Program efforts included: (1) improving the catalyst and plasma reactor efficiencies for NOx reduction; (2) studies to reveal important details of the reaction mechanism(s) that can then guide our catalyst and reactor development efforts; (3) evaluating the performance of prototype systems on real engine exhaust; and (4) studies of the effects of the plasma on particulate matter (PM) in real diesel engine exhaust. Figure 1 is a conceptual schematic of a plasma/catalyst device, which also shows our current best understanding of the role of the various components of the overall device for reducing NOx from the exhaust of a CIDI engine. When this program was initiated, it was not at all clear what the plasma was doing and, as such, what class of catalyst materials might be expected to produce good results. With the understanding of the role of the plasma (as depicted in Figure 1) obtained in this program, faujasite zeolite-based catalysts were developed and shown to produce high activity for NOx reduction of plasma-treated exhaust in a temperature range expected for light-duty diesel engines. These materials are the subject of a pending patent application, and were recognized with a prestigious R&D100 Award in 2002. In addition, PNNL staff were awarded a Federal Laboratory Consortium (FLC) Award in 2003 “For Excellence in Technology Transfer”. The program also received the DOE’s 2001 CIDI Combustion and Emission Control Program Special Recognition Award and 2004 Advanced Combustion Engine R&D Special Recognition Award.

Barlow, Stephan E.; Kwak, Ja Hun; Peden, Charles HF; Szanyi, Janos; Tonkyn, Russell G.; Howden, Ken; Hoard, John W.; Cho, Byong; Schmieg, Steven J.; Brooks, David J.; Nunn, Steven; Davis, Patrick

2004-12-31T23:59:59.000Z

310

NOx reduction with the use of feedlot biomass as a reburn fuel  

E-Print Network (OSTI)

Coal fired power plants produce NOx at unacceptable levels. In order to control these emissions without major modifications to the burners, additional fuel called reburn fuel is fired under rich conditions (10-30 % by heat) after the coal burners. Additional air called overfire air (about 20 % of total air) is injected in order to complete combustion. Typically reburn fuel is natural gas (NG). From previous research at TAMU, it was found that firing feedlot biomass (FB) as reburn fuel lowers the NOx emission at significant levels compared to NG. The present research was conducted to determine the optimum operating conditions for the reduction of NOx. Experiments were performed in a small scale 29.3 kW (100,000 BTU/hr) reactor using low ash partially composted FB (LA PC FB) with equivalence ratio ranging from 1 to 1.15. The results of these experiments show that NOx levels can be reduced by as much as 90% - 95 % when firing pure LA PC FB and results are almost independent of. The reburn fuel was injected with normal air and then vitiated air (12.5 % O2); further the angles of reburn injector were set normal to the main gas flow and at 45-degrees upward. For LA PC FB no significant changes were observed; but high ash PC FB revealed better reductions with 45-degrees injector and vitiated air. This new technology has the potential to reduce NOx emissions in coal fired boilers located near cattle feedlots and also relieves the cattle industry of the waste.

Goughnour, Paul Gordon

2006-08-01T23:59:59.000Z

311

Interannual Variability and Trends of Extratropical Ozone. Part I: Northern Hemisphere  

Science Conference Proceedings (OSTI)

The authors apply principal component analysis (PCA) to the extratropical total column ozone from the combined merged ozone data product and the European Centre for Medium-Range Weather Forecasts assimilated ozone from January 1979 to August ...

Xun Jiang; Steven Pawson; Charles D. Camp; J. Eric Nielsen; Run-Lie Shia; Ting Liao; Varavut Limpasuvan; Yuk L. Yung

2008-10-01T23:59:59.000Z

312

Quality of Total Ozone Measured by the Focused Sun Method Using a Brewer Spectrophotometer  

Science Conference Proceedings (OSTI)

Strong ozone depletions and large natural variations in total ozone have been observed at high latitudes. Accurate measurements of total ozone are important so as not to misinterpret the involved processes and to track correctly the variations. ...

Weine Josefsson

2003-01-01T23:59:59.000Z

313

Waste Coal Fines Reburn for NOx and Mercury Emission Reduction  

SciTech Connect

Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury capture. During July, August, and September 2007, BES designed, procured, installed, and tested the slurry injection system at Beaver Valley. Slurry production was performed by Penn State University using equipment that was moved from campus to the Beaver Valley site. Waste coal fines were procured from Headwaters Inc. and transported to the site in Super Sacks. In addition, bituminous coal was pulverized at Penn State and trucked to the site in 55-gallon drums. This system was operated for three weeks during August and September 2007. NO{sub x} emission data were obtained using the plant CEM system. Hg measurements were taken using EPA Method 30B (Sorbent Trap method) both downstream of the electrostatic precipitator and in the stack. Ohio Lumex Company was on site to provide rapid Hg analysis on the sorbent traps during the tests. Key results from these tests are: (1) Coal Fines reburn alone reduced NO{sub x} emissions by 0-10% with up to 4% heat input from the CWS. However, the NO{sub x} reduction was accompanied by higher CO emissions. The higher CO limited our ability to try higher reburn rates for further NO{sub x} reduction. (2) Coal Fines reburn with Urea (Carbon enhanced SNCR) decreased NO{sub x} emissions by an additional 30% compared to Urea injection only. (3) Coal slurry injection did not change Hg capture across the ESP at full load with an inlet temperature of 400-430 F. The Hg capture in the ESP averaged 40%, with or without slurry injection; low mercury particulate capture is normally expected across a higher temperature ESP because any oxidized mercury is thought to desorb from the particulate at ESP temperatures above 250 F. (4) Coal slurry injection with halogen salts added to the mixing tank increased the Hg capture in the ESP to 60%. This significant incremental mercury reduction is important to improved mercury capture with hot-side ESP operation and wherever hindrance from sulfur oxides limit mercury reduction, because the higher temperature is above sulfur oxide dew point interference.

Stephen Johnson; Chetan Chothani; Bernard Breen

2008-04-30T23:59:59.000Z

314

NRC symposium explores links between greenhouse gases, stratospheric ozone  

SciTech Connect

Two important climatic issues stratospheric ozone depletion and greenhouse gas increase and the apparent connection between them led to the holding in March 1988 of a Joint Symposium on Ozone Depletion, Greenhouse Gases and Climate Change. This symposium was primarily concerned with the linkages between ozone depletion and increasing greenhouse gases and with their combined effect in causing climate change to occur on a global scale. The presentations review the current state of knowledge about stratospheric ozone depletion, discuss the probable effect of predicted greenhouse gas increase on future ozone trends, summarize observational data on changing atmospheric chemistry and associated atmospheric temperatures, and describe the continuing effort to model and predict future scenarios of climatic change relative to ozone and greenhouse gases in both the stratosphere and the troposphere.

1989-04-01T23:59:59.000Z

315

Extreme value analysis for evaluating ozone control strategies Brian Reich1  

E-Print Network (OSTI)

% reduction in mobile-source NOx, = (-0.5, 0, 0, 0, 0, 0) S2: a 50% reduction in point-source NOx, = (0, -0.5, 0, 0, 0, 0) S3: a 15% reduction in mobile, point, and other-source NOx, = (-0.15, -0.15, -0.15, 0://www.epa.gov/ttn/ecas/regdata/RIAs/452 R 08 003.pdf), which con- siders reductions of 30% to 90% for both VOC and NOx. We display

Reich, Brian J.

316

Atmospheric Environment 38 (2004) 14251436 A development of ozone abatement strategies for the Grenoble  

E-Print Network (OSTI)

with reductions in NOx and VOC emissions are presented and analyzed in this study. Finally, a combination per- formed with the validated model. The first involves a reduction in NOx emissions of 50 emission reduction scenarios at 17:00 LT. (A) 50% NOx reduction emission scenario, (B) 50% VOC reduction

317

In-Situ Electrical Studies on Ozone Functionalization of Graphene  

Science Conference Proceedings (OSTI)

It is found that the ozone molecules at 300 K are reversibly physisorbed on the surface of graphene and the physisorption bonding is removed immediately after  ...

318

The Cost of Crop Damage Caused by Ozone Air Pollution From Motor Vehicles  

E-Print Network (OSTI)

L. (1982). Assessment of crop loss from ozone. Journal of1984). Assessing impacts of ozone on agricultural crops: II.crop yield functions and alternative exposure statistics.

Murphy, James; Delucchi, Mark; McCubbin, Donald; Kim, H.J.

1999-01-01T23:59:59.000Z

319

Ozone, Air Pollution, and Respiratory Health  

E-Print Network (OSTI)

Of the outdoor air pollutants regulated by the Clean Air Act of 1970 (and recently revised in 1990), ozone has been the one pollutant most difficult to control within the federal standards. The known human health effects are all on the respiratory system. At concentrations of ozone which occur during summer air-pollution episodes in many urban metropolitan areas of the United States, a portion of the healthy population is likely to experience symptoms and reversible effects on lung function, particularly if exercising heavily outdoors. More prolonged increase in airway responsiveness and the presence of inflammatory cells and mediators in the airway lining fluid may also result from these naturally occurring exposures. Serial exposures to peak levels of ozone on several consecutive days are more characteristic of pollution episodes in the Northeast United States and may be associated with recurrent symptoms. No "high-risk " or more sensitive group has been found, in contrast to the case of sulfur dioxide, to which asthmatics are more susceptible than normals. The occurrence of multiple exposure episodes within a single year over many years in some areas of California has led to studies looking for chronic effects of ozone exposure on the lung. To date, no conclusive studies have been reported, although further work is under way. Much of what we know about the effects of this gas on the lung are based on controlled exposures to pure gas within an environmental exposure laboratory. Interactions between substances which commonly co-occur in air-pollution episodes are also under investigation.

William S

1991-01-01T23:59:59.000Z

320

Ozone and UV for Grain Milling Systems  

Science Conference Proceedings (OSTI)

Recognizing the current concerns with food safety, First Energy Services and EPRI collaborated in a project to investigate the feasibility of using ozone as a substitute for chlorinated water to control bacteria and mold at the Harvest States Amber Milling facility in Huron, Ohio. Traditionally, chlorinated water is used to control bacteria and mold in grain processing. Since chlorine usage can be costly and because chlorine presents problems in storage and safe handling of chlorine gas, the project part...

2000-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

An Assessment of Tropospheric Ozone Pollution  

Science Conference Proceedings (OSTI)

This assessment was prepared as an initiative of the North American Research Strategy for Tropospheric Ozone (NARSTO). The NARSTO partnership is a non-binding, tri-national public/private alliance, open to science agencies, regulatory agencies, regulated industries, academic institutions, environmentalists, and public interests groups in Canada, Mexico, and the United States. The NARSTO mission is to plan, coordinate, and facilitate comprehensive, long-term, policy-relevant scientific research and assess...

2000-09-25T23:59:59.000Z

322

HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS  

DOE Green Energy (OSTI)

Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures. This fuel penalty improvement is accompanied by a dramatic drop in slipped hydrocarbon emissions, which decreased by 90% or more. Significant advantages are demonstrated across a wide range of engine conditions and temperatures. The study also indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel based regeneration is not effective, such as those typical of idle conditions. Two vehicles, a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber regeneration tests.

Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

2003-08-24T23:59:59.000Z

323

A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application  

DOE Green Energy (OSTI)

Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed. Development of the NOx adsorber technology is discussed. Spectroscopic techniques are applied to understand the underlying chemical reactions over the catalyst surface during NOx trapping and regeneration periods. In-situ surface probes are useful in providing not only thermodynamic and kinetics information required for model development but also a fundamental understanding of storage capacity and degradation mechanisms. The distribution of various nitration/sulfation species is related to surface basicity. Surface displacement reactions of carbonates also play roles in affecting the trapping capability of NOx adsorbers. When ultralow-S fuel is used as a reductant during the regeneration, sulfur induced performance degradation is still observed in an aged catalyst. Other possible sources related to catalyst deactivation include incomplete reduction of surface nitration, coke formation derived from incomplete hydrocarbon burning, and lubricant formulations. Sulfur management and the direction of future work for the successful implementation of such integrated engine and aftertreatment technology are discussed. SAE Paper SAE-2002-01-2889 {copyright} 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

Fang, Howard L.; Huang, Shyan C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

2002-10-01T23:59:59.000Z

324

Atlantic Hurricane Season of 2011  

Science Conference Proceedings (OSTI)

The 2011 Atlantic season was marked by above-average tropical cyclone activity with the formation of 19 tropical storms. Seven of the storms became hurricanes and four became major hurricanes (category 3 or higher on the Saffir–Simpson hurricane ...

Lixion A. Avila; Stacy R. Stewart

2013-08-01T23:59:59.000Z

325

Atlantic Hurricane Season of 1999  

Science Conference Proceedings (OSTI)

The 1999 Atlantic basin hurricane season produced 4 tropical storms and 8 hurricanes for a total of 12 named tropical cyclones. Seven of these affected land. Hurricane Floyd—the deadliest U.S. hurricane since Agnes in 1972—caused a disastrous ...

Miles B. Lawrence; Lixion A. Avila; Jack L. Beven; James L. Franklin; John L. Guiney; Richard J. Pasch

2001-12-01T23:59:59.000Z

326

Atlantic Hurricane Season of 1996  

Science Conference Proceedings (OSTI)

A summary of the 1996 Atlantic hurricane season is given, and the individual tropical storms and hurricanes are described. This was the second active year in a row with a large number of intense hurricanes. Hurricane Fran, which hit the coast of ...

Richard J. Pasch; Lixion A. Avila

1999-05-01T23:59:59.000Z

327

Atlantic Hurricane Season of 1995  

Science Conference Proceedings (OSTI)

The 1995 Atlantic hurricane season is described. There were eight tropical storms and 11 hurricanes for a total of 19 named tropical cyclones in the Atlantic basin during 1995. This is the second-largest number of tropical storms and hurricanes ...

M. B. Lawrence; B. M. Mayfield; L. A. Avila; R. J. Pasch; E. N. Rappaport

1998-05-01T23:59:59.000Z

328

The Effect of Coal Chlorine on Waterwall Wastage in Coal-Fired Boilers with Staged Low-NOx Combustion Systems  

Science Conference Proceedings (OSTI)

Several boilers retrofitted with nitrogen oxides reducing (low-NOx) burner systems have experienced severe waterwall wastage. In this report, the link between chlorine in coal and accelerated wastage will be explored.

2002-10-09T23:59:59.000Z

329

Development of the High-Pressure Direct-Injected, Ultra Low-NOx Natural Gas Engine: Final Report  

DOE Green Energy (OSTI)

Subcontractor report details work done by Cummins and Westport Innovations to develop a heavy-duty, low-NOx, high-pressure direct-injection natural gas engine for the Next Generation Natural Gas Vehicle activity.

Duggal, V. K.; Lyford-Pike, E. J.; Wright, J. F.; Dunn, M.; Goudie, D.; Munshi, S.

2004-05-01T23:59:59.000Z

330

Heavy-duty diesel vehicle Nox? aftertreatment in 2010 : the infrastructure and compliance challenges of urea-SCR  

E-Print Network (OSTI)

Increasingly stringent heavy-duty vehicle emission regulations are prompting the use of PM and NOx aftertreatment systems in the US, the EU and Japan. In the US, the EPA Highway Diesel Rule, which will be fully implemented ...

Bodek, Kristian M

2008-01-01T23:59:59.000Z

331

Development of a Low NOx Burner System for Coal Fired Power Plants Using Coal and Biomass Blends  

E-Print Network (OSTI)

The low NOx burner (LNB) is the most cost effective technology used in coal-fired power plants to reduce NOx. Conventional (unstaged) burners use primary air for transporting particles and swirling secondary air to create recirculation of hot gases. LNB uses staged air (dividing total air into primary, secondary and tertiary air) to control fuel bound nitrogen from mixing early and oxidizing to NOx; it can also limit thermal NOx by reducing peak flame temperatures. Previous research at Texas A&M University (TAMU) demonstrated that cofiring coal with feedlot biomass (FB) in conventional burners produced lower or similar levels of NOx but increased CO. The present research deals with i) construction of a small scale 29.31 kW (100,000 BTU/hr) LNB facility, ii) evaluation of firing Wyoming (WYO) coal as the base case coal and cofiring WYO and dairy biomass (DB) blends, and iii) evaluating the effects of staging on NOx and CO. Ultimate and Proximate analysis revealed that WYO and low ash, partially composted, dairy biomass (LA-PC-DB-SepS) had the following heat values and empirical formulas: CH0.6992N0.0122O0.1822S0.00217 and CH_1.2554N_0.0470O_0.3965S_0.00457. The WYO contained 3.10 kg of Ash/GJ, 15.66 kg of VM/GJ, 0.36 kg of N/GJ, and 6.21 kg of O/GJ while LA-PC-DB-SepS contained 11.57 kg of Ash/GJ, 36.50 kg of VM/GJ, 1.50 kg of N/GJ, and 14.48 kg of O/GJ. The construction of a LNB nozzle capable of providing primary, swirled secondary and swirled tertiary air for staging was completed. The reactor provides a maximum residence time of 1.8 seconds under hot flow conditions. WYO and DB were blended on a mass basis for the following blends: 95:5, 90:10, 85:15, and 80:20. Results from firing pure WYO showed that air staging caused a slight decrease of NOx in lean regions (equivalence ratio, greater than or equal to 1.0) but an increase of CO in rich regions (=1.2). For unstaged combustion, cofiring resulted in most fuel blends showing similar NOx emissions to WYO. Staged cofiring resulted in a 12% NOx increase in rich regions while producing similar to slightly lower amounts of NOx in lean regions. One conclusion is that there exists a strong inverse relationship between NOx and CO emissions.

Gomez, Patsky O.

2009-05-01T23:59:59.000Z

332

Simulation of catalytic oxidation and selective catalytic NOx reduction in lean-exhaust hybrid vehicles  

DOE Green Energy (OSTI)

We utilize physically-based models for diesel exhaust catalytic oxidation and urea-based selective catalytic NOx reduction to study their impact on drive cycle performance of hypothetical light-duty diesel powered hybrid vehicles. The models have been implemented as highly flexible SIMULINK block modules that can be used to study multiple engine-aftertreatment system configurations. The parameters of the NOx reduction model have been adjusted to reflect the characteristics of Cu-zeolite catalysts, which are of widespread current interest. We demonstrate application of these models using the Powertrain System Analysis Toolkit (PSAT) software for vehicle simulations, along with a previously published methodology that accounts for emissions and temperature transients in the engine exhaust. Our results illustrate the potential impact of DOC and SCR interactions for lean hybrid electric and plug-in hybrid electric vehicles.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Chakravarthy, Veerathu K [ORNL

2012-01-01T23:59:59.000Z

333

DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY  

DOE Green Energy (OSTI)

During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million Btu/h, NOx emissions where 33 vppm and increased at full load; 144 million Btu

Cygan, David

2006-12-28T23:59:59.000Z

334

DIESEL REFORMERS FOR LEAN NOX TRAP REGENERATION AND OTHER ON-BOARD HYDROGEN APPLICATIONS  

DOE Green Energy (OSTI)

Many solutions to meeting the 2007 and 2010 diesel emissions requirements have been suggested. On board production of hydrogen for in-cylinder combustion and exhaust after-treatment provide promising opportunities for meeting those requirements. Other benefits may include using syngas to rapidly heat up exhaust after-treatment catalysts during engine startup. HydrogenSource's development of a catalytic partial oxidation reformer for generating hydrogen from ultra-low sulfur diesel fuel is presented. The system can operate on engine exhaust and diesel fuel with no water tank. Test data for hydrogen regeneration of a lean NOx trap is presented showing 90% NOx conversion at temperatures as low as 150 degrees C and 99% conversion at 300 degrees C. Finally, additional efforts required to fully understand the benefits and commercial challenges of this technology are discussed.

Mauss, M; Wnuck, W

2003-08-24T23:59:59.000Z

335

Impacts on Regenerated Catalyst on Mercury Oxidation, DeNOX Activity, and SO2-to-SO3 Conversion - Addendum  

Science Conference Proceedings (OSTI)

This report includes NOX activity, SO2 conversion, and chemical analysis bench-scale results for 24 different catalyst samples. The sample set analyzed in the test program represents one of the largest ever assembled constituting both regenerated and new catalyst exposed at full scale. This report is an addendum to EPRI Report 1012657, Impacts on Regenerated Catalyst on Mercury Oxidation, DeNOX Activity, and SO2-to-SO3 Conversion.

2007-07-19T23:59:59.000Z

336

Development of METHANE de-NOX Reburn Process for Wood Waste and Biomass Fired Stoker Boilers - Final Report - METHANE de-NOX Reburn Technology Manual  

Science Conference Proceedings (OSTI)

The overall objective of this project was to demonstrate the effectiveness of the METHANE de-NOX® (MdN) Reburn process in the Forest Products Industry (FPI) to provide more efficient use of wood and sludge waste (biosolids) combustion for both energy generation and emissions reduction (specifically from nitrogen oxides (NOx)) and to promote the transfer of the technology to the wide range of wood waste-fired stoker boilers populating the FPI. This document, MdN Reburn Commercial Technology Manual, was prepared to be a resource to promote technology transfer and commercialization activities of MdN in the industry and to assist potential users understand its application and installation requirements. The Manual includes a compilation of MdN commercial design data from four different stoker boiler designs that were baseline tested as part of the development effort. Design information in the Manual include boiler CFD model studies, process design protocols, engineering data sheets and commercial installation drawings. Each design package is unique and implemented in a manner to meet specific mill requirements.

J. Rabovitser; B. Bryan; S. Wohadlo; S. Nester; J. Vaught; M. Tartan (Gas Technology Institute) L. Szymanski; R. Glickert (ESA Environmental Solutions)

2007-12-31T23:59:59.000Z

337

Catalyst Management Handbook for Coal-Fired Selective Catalytic Reduction NOx Control  

Science Conference Proceedings (OSTI)

This report provides guidelines for operators of coal-fired power plants equipped with selective catalytic reduction (SCR) NOx-control processes. These control processes define when to exchange or replace catalyst, while minimizing power-production cost impacts from SCR process equipment.BackgroundSelective catalytic reduction (SCR) is deployed on most major coal-fired generating units in the United States. Over 225 units, totaling 140 GW of ...

2012-12-14T23:59:59.000Z

338

Fuel Nozzle Flow Testing Guideline for Gas Turbine Low-NOx Combustion Systems  

Science Conference Proceedings (OSTI)

The evolution of dry low-NOx (DLN) gas turbine combustion systems capable of achieving single-digit emission levels requires precise control of the fuel/air ratio within each combustor. The primary means of maintaining the required fuel/air ratio control is through flow testing designed to ensure even distribution of fuel to both individual fuel nozzles and combustion chambers around the gas turbine. This report provides fuel nozzle flow testing guidelines for advanced gas turbine ...

2012-12-31T23:59:59.000Z

339

Reduction of NOx Emissions in Alamo Area Council of Government Projects  

E-Print Network (OSTI)

This reports summarizes the electricity, natural gas and NOx emissions reductions from retrofit measures reported as part of the AACOG emissions reduction effort. The electricity and natural gas savings were collected by the Brooks Energy and Sustainability Laboratory (BESL), and reported to the Energy Systems Laboratory (ESL). The ESL then assembled these data for processing by eGRID. The results from BESL’s data collection efforts and the eGRID analysis are contained in this report.

Haberl, J. S.; Zhu, Y.; Im, P.

2004-01-01T23:59:59.000Z

340

Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Hydrocarbon and NOx Adsorber  

SciTech Connect

We presents a study of the potential for using low-cost sorbent materials (i.e. Ag-Beta-zeolite and Fe-Mn-Zr transition metal oxides) to temporally trap hydrocarbons (HCs) and nitrogen oxides (NOx) emissions during cold-start periods in HEVs and PHEVs over transient driving cycles. The adsorption behavior of the candidate sorbent materials was characterized in our laboratory flow reactor experiments. The parameters were then used to develop a one-dimensional, transient device model which has been implemented in the Powertrain Systems Analysis Toolkit (PSAT) to simulate a passive HC and NOx absorber device. The results show that such an absorber can substantially reduce HC and NOx emissions by storing them when the 3-way catalyst is too cool to function and re-releasing them when the exhaust temperature rises. These improved emission controls do not involve any penalty in fuel consumption or require any change in engine operation. The cost of these sorbent materials is also much less than conventional 3-way catalysts.

Gao, Zhiming [ORNL; Kim, Miyoung [ORNL; Choi, Jae-Soon [ORNL; Daw, C Stuart [ORNL; Parks, II, James E [ORNL; Smith, David E [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High-Efficiency, High-Capacity, Low-NOx Aluminum Melting Using Oxygen-Enhanced Combustion  

SciTech Connect

This report describes the development and application of a novel oxygen enhanced combustion system with an integrated vacuum swing adsorption (VSA) oxygen supply providing efficient, low NOx melting in secondary aluminum furnaces. The mainstay of the combustion system is a novel air-oxy-natural gas burner that achieves high productivity and energy efficiency with low NOx emissions through advanced mixing concepts and the use of separate high- and low-purity oxidizer streams. The technology was installed on a reverberatory, secondary aluminum melting plant at the Wabash Aluminum Alloy's Syracuse, N.Y. plant, where it is currently in operation. Field testing gave evidence that the new burner technology meets the stringent NOx emissions target of 0.323 lb NO2/ton aluminum, thus complying with regulations promulgated by Southern California's South Coast Air Quality Management District (SCAQMD). Test results also indicated that the burner technology exceeded fuel efficiency and melting capacity goals. Economic modeling showed that the novel air-oxy-fuel (ADF) combustion technology provides a substantial increase in furnace profitability relative to air-fuel operation. Model results also suggest favorable economics for the air-oxy-fuel technology relative to a full oxy-fuel conversion of the furnace.

D'Agostini, M.D.

2000-06-02T23:59:59.000Z

342

Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control  

DOE Green Energy (OSTI)

Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

2011-04-20T23:59:59.000Z

343

Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control  

DOE Green Energy (OSTI)

Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

2010-09-15T23:59:59.000Z

344

Sequential high temperature reduction, low temperature hydrolysis for the regeneration of sulfated NOx trap catalysts  

SciTech Connect

We describe a new method that minimizes irreversible Pt sintering during the desulfation of sulfated Pt/BaO/Al2O3 lean NOx trap (LNT) catalysts. While it is known that the addition of H2O to H2 promotes desulfation, we find that the significant and irreversible Pt sintering arising from the presence of water is unavoidable. Control of precious metal sintering is considered to be one of the critical issues in the development of durable LNT catalysts. The new method described here is a sequential desulfation process: the first step is to reduce the sulfates with hydrogen only at higher temperatures to form BaS, followed by a treatment of the thus reduced sample with water at low to moderate temperatures to convert BaS to BaO and H2S. The data showed that Pt sintering was significantly inhibited due to the absence of H2O during the desulfation at high temperatures, and also demonstrates the similar NOx uptake with the desulfated sample cooperatively with H2 and H2O. Therefore, the sequential desulfation process may find applications in realistic systems to inhibit the irreversible sintering of the Pt in the lean NOx trap catalyst, leading to a longer catalyst life.

Kim, Do Heui; Kwak, Ja Hun; Wang, Xianqin; Szanyi, Janos; Peden, Charles HF

2008-07-15T23:59:59.000Z

345

Massive global ozone loss predicted following regional nuclear conflict  

E-Print Network (OSTI)

Massive global ozone loss predicted following regional nuclear conflict Michael J. Mills* , Owen B a chemistry-climate model and new estimates of smoke produced by fires in contemporary cities to calculate the impact on stratospheric ozone of a regional nuclear war between developing nuclear states involving 100

346

Atmospheric Environment 41 (2007) 31513160 Ozone removal by HVAC filters  

E-Print Network (OSTI)

Atmospheric Environment 41 (2007) 3151­3160 Ozone removal by HVAC filters P. Zhao, J.A. Siegel�, R May 2006; accepted 14 June 2006 Abstract Residential and commercial HVAC filters that have been loaded of the relative importance of HVAC filters as a removal mechanism for ozone in residential and commercial

Siegel, Jeffrey

347

Proceedings: Indoor Air 2005 OZONE REMOVAL BY RESIDENTIAL HVAC FILTERS  

E-Print Network (OSTI)

Proceedings: Indoor Air 2005 2366 OZONE REMOVAL BY RESIDENTIAL HVAC FILTERS P Zhao1,2 , JA Siegel1, Austin, Texas 78758, USA ABSTRACT HVAC filters have a significant influence on indoor air quality% for Filter #2 at a face velocity of 0.81 cm/s. The potential for HVAC filters to affect ozone concentrations

Siegel, Jeffrey

348

The 1983 and 1985 Anomalies in Ozone Distribution in Perspective  

Science Conference Proceedings (OSTI)

Studies of the amount of total ozone at many observatories show that the negative 1983 deviation from the long-term average exceeded 2?, and was the greatest in magnitude for an annual deviation in their entire record., the total ozone in ...

Rumen D. Bojkov

1987-10-01T23:59:59.000Z

349

Ozonated Laundry: An Analysis of Its Applications and Market Potential  

Science Conference Proceedings (OSTI)

Electric utilities can create value for their customers and revenues for themselves by promoting new energy-intensive technologies. This report focuses on one such electrotechnology, ozonated laundry. It describes the current state of the technology and its economic prospects and explores how utilities can benefit from increased marketplace acceptance of ozonated laundry.

1998-12-23T23:59:59.000Z

350

Autoregressive forecast of monthly total ozone concentration: A neurocomputing approach  

Science Conference Proceedings (OSTI)

The present study endeavors to generate autoregressive neural network (AR-NN) models to forecast the monthly total ozone concentration over Kolkata (22^o34', 88^o22'), India. The issues associated with the applicability of neural network to geophysical ... Keywords: Autoregressive moving average, Autoregressive neural network, Monthly total ozone, Predictive model

Goutami Chattopadhyay; Surajit Chattopadhyay

2009-09-01T23:59:59.000Z

351

An Analysis of Tropopause Pressure and Total Ozone Correlations  

Science Conference Proceedings (OSTI)

The relationship between total ozone and tropopause pressure is analyzed using 4 years (1979–82) of Nimbus-7 total ozone data and NMC global analyses of tropopause on a 5° by 5° grid. The fields are separated into medium (synoptic) and large ...

Siegfried D. Schubert; Marie-Jeanne Munteanu

1988-03-01T23:59:59.000Z

352

ANNUAL SUMMARY: Atlantic Hurricane Season of 2001  

Science Conference Proceedings (OSTI)

Activity during the 2001 hurricane season was similar to that of the 2000 season. Fifteen tropical storms developed, with nine becoming hurricanes and four major hurricanes. Two tropical depressions failed to become tropical storms. Similarities ...

John L. Beven II; Stacy R. Stewart; Miles B. Lawrence; Lixion A. Avila; James L. Franklin; Richard J. Pasch

2003-07-01T23:59:59.000Z

353

Eastern North Pacific Hurricane Season of 2008  

Science Conference Proceedings (OSTI)

The hurricane season of 2008 in the eastern North Pacific basin is summarized, and the individual tropical cyclones are described. Official track and intensity forecasts of these cyclones are also evaluated. The 2008 eastern North Pacific season ...

Eric S. Blake; Richard J. Pasch

2010-03-01T23:59:59.000Z

354

Eastern North Pacific Hurricane Season of 2010  

Science Conference Proceedings (OSTI)

The 2010 eastern North Pacific hurricane season was one of the least active seasons on record. Only seven named storms developed, which is the lowest number observed at least since routine satellite coverage of that basin began in 1966. ...

Stacy R. Stewart; John P. Cangialosi

2012-09-01T23:59:59.000Z

355

Specification of United States Summer Season Precipitation  

Science Conference Proceedings (OSTI)

The specification of summer season precipitation in the contiguous United States from summer season fields of 700 mb height, sea level pressure (SLP) and Pacific sea surface temperature (SST) was carried out using stepwise multiple linear ...

John R. Lanzante; Robert P. Harnack

1982-12-01T23:59:59.000Z

356

Eastern North Pacific Hurricane Season of 1999  

Science Conference Proceedings (OSTI)

The 1999 hurricane season in the eastern North Pacific is summarized, and individual tropical storms and hurricanes are described. Producing only nine named storms, the season tied 1996 as the second least active on record. Hurricane Dora was the ...

John L. Beven II; James L. Franklin

2004-04-01T23:59:59.000Z

357

NCEP Dynamical Seasonal Forecast System 2000  

Science Conference Proceedings (OSTI)

The new National Centers for Environmental Prediction (NCEP) numerical seasonal forecast system is described in detail. The new system is aimed at a next-generation numerical seasonal prediction in which focus is placed on land processes, initial ...

Masao Kanamitsu; Arun Kumar; Hann-Ming Henry Juang; Jae-Kyung Schemm; Wanqui Wang; Fanglin Yang; Song-You Hong; Peitao Peng; Wilber Chen; Shrinivas Moorthi; Ming Ji

2002-07-01T23:59:59.000Z

358

Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado  

Science Conference Proceedings (OSTI)

Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. Toward the end of the program, a Second Generation gas injection system was installed. Higher injector gas pressures were used that eliminated the need for flue gas recirculation as used in the first generation design. The Second Generation GR resulted in similar NOX reduction performance as that for the First Generation. With an improvement in the LNB performance in combination with the new gas injection system , the reburn gas could be reduced to 12.5% of the total boiler heat input to achieve al 64?40 reduction in NO, emissions. In addition, the OFA injectors were modified to provide for better mixing to lower CO emissions.

None

1998-07-01T23:59:59.000Z

359

An Update through 1985 of the Variations in Global Total Ozone and North Temperate Layer-Mean Ozone  

Science Conference Proceedings (OSTI)

Total-ozone variations in five climatic zones and the world as a whole, as well as ozone variations in tropospheric and stratospheric layers of the north temperate zone, have been updated through 1985 by means of Dobson, ozonesonde and Umkehr ...

J. K. Angell

1988-01-01T23:59:59.000Z

360

Natural gas storage withdrawal season review - Today in Energy ...  

U.S. Energy Information Administration (EIA)

The natural gas industry considers two seasons in storage operation–the withdrawal season, from November 1 through March 31; and the injection season, from April 1 ...

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant  

E-Print Network (OSTI)

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

2001-01-01T23:59:59.000Z

362

Ozone depletion, greenhouse gases, and climate change: Proceedings  

SciTech Connect

This symposium was primarily concerned with the linkages between ozone depletion and increasing greenhouse gases and with their combined effect in causing climate change to occur on a global scale. The presentations in these proceedings review the current state of knowledge about stratospheric ozone depletion, discuss the probable effect of predicted greenhouse gas increase on future ozone trends, summarize observational data on changing atmospheric chemistry and associated atmospheric temperatures, and describe the continuing effort to model and predict future scenarios of climatic change relative to ozone and greenhouse gases in both the stratosphere and the troposphere. Some of the questions and answers that followed the presentations have been included when they highlight noteworthy points that were not covered in the presentation itself. The request by the National Climate Program Office for a symposium on the above related issues is included. The symposium agenda and participants are given. As well as a glossary of special terms and abbreviations. In summary, the Joint Symposium on Ozone Depletion, Greenhouse Gases, and Climate Change reviewed the magnitude and causes of stratospheric ozone depletion and examined the connections that exist between this problem and the impending climate warming to increasing greenhouse gases. The presentations of these proceedings indicate that the connections are real and important, and that the stratospheric ozone depletion and tropospheric greenhouse warming problems must be studied as parts of an interactive global system rather than as more or less unconnected events.

1989-01-01T23:59:59.000Z

363

Laboratory Measurement of Secondary Pollutant Yields from Ozone Reaction  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Measurement of Secondary Pollutant Yields from Ozone Reaction Laboratory Measurement of Secondary Pollutant Yields from Ozone Reaction with HVAC Filters Title Laboratory Measurement of Secondary Pollutant Yields from Ozone Reaction with HVAC Filters Publication Type Conference Proceedings Year of Publication 2009 Authors Destaillats, Hugo, Wenhao Chen, Michael G. Apte, Nuan Li, Michael Spears, Jérémie Almosni, Jianshun Zheng, and William J. Fisk Conference Name Proceedings of the Healthy Buildings 2009 Conference Conference Location Syracuse, NY Keywords building-related symptoms, hvac filter, ozone, ptr-ms, secondary pollutants Abstract We used Proton Transfer Reaction - Mass Spectrometry (PTR-MS) and conventional sampling methods to monitor and identify trace level organic pollutants formed in heterogeneous reactions between ozone and HVAC filters in real time. Experiments were carried out using a bench-scale flow tube reactor operating with dry air and humidified air (50% RH), at realistically high ozone concentrations (150 ppbv). We explored different filter media (i.e., fiberglass and cotton/polyester blends) and different particle loadings (i.e., clean filter and filters loaded with particles for 3 months at the Lawrence Berkeley National Laboratory and the Port of Oakland, CA). Detailed emission dynamics of very low levels of certain organic pollutants from filter media upon ozone exposure in the presence of moisture have been obtained and analyzed.

364

Determination of total ozone from DMSP multichannel filter radiometer measurements  

Science Conference Proceedings (OSTI)

The multichannel filter radiometer (MFR) infrared sensor was first flown in 1977 on a Defense Meteorological Satellite Program (DMSP) Block 5D series satellite operated by the US Air Force. The first four satellites in this series carried MFR sensors from which total atmospheric column ozone amounts may be derived. The last MFR sensor ceased operating on February 16, 1980. The series of four sensors spans a data period of nearly three years. The MFR sensor measures infrared radiances for 16 channels. Total ozone amounts are determined from sets of radiance measurements using an empirical relationship that is developed using linear regression analysis. Total ozone is modeled as a linear combination of terms involving functions of the MFR radiances for four channels (1, 3, 7 and 16) and the secant of the zenith angle. The ozone retrieval methodology is described schematically. The ozone retrieval model is developed through regression analysis using sets of simulated MFR radiances derived from detailed radiative transfer calculations. The MFR total ozone data are compared with independent ground-based Dobson measurements in order to evaluate the ozone retrieval methodology. Many Dobson observatories have been providing their daily measurements of total ozone which are taken close in time to DMSP overpass times. MFR total ozone data are compared with Dobson measurements taken between January 1 and February 15, 1979, and the results are summarized. Comparisons were made where the MFR and Dobson measurements are within 300 km and 300 minutes of each other. Percentages are computed with respect to the Dobson values. The MFR data were processed using a preliminary methodology, and the data will be reprocessed in the near future.

Luther, F.M.; Weichel, R.L.

1980-09-01T23:59:59.000Z

365

Near-Zero NOx Combustion Technology for ATS Mercury 50 Gas Turbine  

SciTech Connect

A project to demonstrate a near-zero NOx, catalytic combustion technology for natural gas-fired, industrial gas turbines is described. In a cooperative effort between Solar Turbines Incorporated and Precision Combustion Incorporated (PCI), proof-of-concept rig testing of PCI's fuel-rich catalytic combustion technology has been completed successfully. The primary technical goal of the project was to demonstrate NOx and CO emissions below 5ppm and 10 ppm, respectively, (corrected to 15% O{sub 2}) at realistic gas turbine operating conditions. The program consisted of two tasks. In the first task, a single prototype RCL{trademark} (Rich Catalytic Lean Burn) module was demonstrated at Taurus 70 (7.5 Mw) operating conditions (1.6 MPa, 16 atm) in a test rig. For a Taurus 70 engine, eight to twelve RCL modules will be required, depending on the final system design. In the second task, four modules of a similar design were adapted to a Saturn engine (1 Mw) test rig (600 kPa, 6 atm) to demonstrate gas turbine light-off and operation with an RCL combustion system. This project was initially focused on combustion technology for the Mercury 50 engine. However, early in the program, the Taurus 70 replaced the Mercury. This substitution was motivated by the larger commercial market for an ultra-low NOx Taurus 70 in the near-term. Rig tests using a single prototype RCL module at Taurus 70 conditions achieved NOx emissions as low as 0.75 ppm. A combustor turndown of approximately 110C (200F) was achieved with NOx and CO emissions below 3 ppm and 10 ppm, respectively. Catalyst light-off occurred at an inlet temperature of 310C (590F). Once lit the module remained active at inlet air temperatures as low as 204C (400F). Combustor pressure oscillations were acceptably low during module testing. Single module rig tests were also conducted with the Taurus 70 module reconfigured with a central pilot fuel injector. Such a pilot will be required in a commercial RCL system for turbine light-off and transient operation. At and near simulated full load engine conditions, the pilot operated at low pilot fueling rates without degrading overall system emissions. In the second project task, a set of four Taurus 70 modules was tested in an existing Saturn engine rig. The combustion system allowed smooth engine startup and load variation. At steady state conditions (between 82% and 89.7% engine speed; 32% and 61% load), NOx and CO emissions were below 3ppm and 10ppm, respectively. Rig limitations unrelated to the RCL technology prevented low emissions operation outside of this speed range. Combustor pressure oscillations were low, below 0.25 % (peak-to-peak) of the mean combustor pressure.

Kenneth Smith

2004-12-31T23:59:59.000Z

366

Quarterly report July 1 - September 30, 1999 [Development of METHANE de-NOX{reg_sign} reburning process  

DOE Green Energy (OSTI)

The use of biomass and wood waste solids and sludges as fuel is often hampered by their low heating values and the presence of bound nitrogen that result in inefficient combustion and high NOx emissions. Cofiring supplemental fuel through auxiliary burners helps with improving the combustion effectiveness and NOx reduction, but the benefits are limited to the fractional heat input of the auxiliary fuel. IGT has developed a recess called METHANE de-NOX{reg_sign} , which has shown substantially greater economic, energy and environmental benefits than traditional cofiring methods in demonstrations with both MSW- and coal-fired stoker boilers. In this process, auxiliary fuel such as natural gas or oil is injected directly into the lower region of the primary flame zone just above the grate. This increases and stabilizes the average combustion temperature, which improves combustion of high-moisture fuels, provides more uniform temperature profiles and reduced peak temperature, and reduces the availability of oxygen to reduce NOx formation. This is in contrast to conventional reburning, where natural gas is injected above the primary combustion zone after the majority of NOx has already been formed.

NONE

1999-09-30T23:59:59.000Z

367

Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related Emission Requirements (Ohio) Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related Emission Requirements (Ohio) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter defining the roles of the Ohio Environmental Protection Agency gives specific detail on the regulation point-source air pollution for a variety of industries and pollutants.

368

Effect of ozone on growth and assimilate partitioning in parsley  

SciTech Connect

Parsley (Petroselinum crispum (Mill.) Nym. cv. Banquet) incurred leaf injury, reduced growth, and altered assimilate partitioning after exposures to 20 pphm ozone. Total plant dry weight and root dry weight were decreased 23% and 43% respectively, with little effect on leaves. The relative growth rate of fumigated plants was reduced after the initial ozone exposure but leveled off at a steady state above that of the control plants when plant dry weights reached about 4.5 g. Ozone appeared to have its greatest effect on growth during initial exposures. 15 references, 3 figures, 1 table.

Oshima, R.J.; Bennett, J.P.; Braegelmann, P.K.

1978-05-01T23:59:59.000Z

369

Exposure-Relevant Ozone Chemistry in Occupied Spaces  

SciTech Connect

Ozone, an ambient pollutant, is transformed into other airborne pollutants in the indoor environment. In this dissertation, the type and amount of byproducts that result from ozone reactions with common indoor surfaces, surface residues, and vapors were determined, pollutant concentrations were related to occupant exposure, and frameworks were developed to predict byproduct concentrations under various indoor conditions. In Chapter 2, an analysis is presented of secondary organic aerosol formation from the reaction of ozone with gas-phase, terpene-containing consumer products in small chamber experiments under conditions relevant for residential and commercial buildings. The full particle size distribution was continuously monitored, and ultrafine and fine particle concentrations were in the range of 10 to>300 mu g m-3. Particle nucleation and growth dynamics were characterized.Chapter 3 presents an investigation of ozone reactions with aircraft cabin surfaces including carpet, seat fabric, plastics, and laundered and worn clothing fabric. Small chamber experiments were used to determine ozone deposition velocities, ozone reaction probabilities, byproduct emission rates, and byproduct yields for each surface category. The most commonly detected byproducts included C1?C10 saturated aldehydes and skin oil oxidation products. For all materials, emission rates were higher with ozone than without. Experimental results were used to predict byproduct exposure in the cabin and compare to other environments. Byproduct levels are predicted to be similar to ozone levels in the cabin, which have been found to be tens to low hundreds of ppb in the absence of an ozone converter. In Chapter 4, a model is presented that predicts ozone uptake by and byproduct emission from residual chemicals on surfaces. The effects of input parameters (residue surface concentration, ozone concentration, reactivity of the residue and the surface, near-surface airflow conditions, and byproduct yield) were explored. In Chapter 5, the reaction of ozone with permethrin, a residual insecticide used in aircraft cabins, to form phosgene is investigated. A derivatization technique was developed to detect phosgene at low levels, and chamber experiments were conducted with permethrin-coated cabin materials. It was determined that phosgene formation, if it occurs in the aircraft cabin, is not likely to exceed the relevant, health-based phosgene exposure guidelines.

Coleman, Beverly Kaye

2009-04-01T23:59:59.000Z

370

Ozone generation by rock fracture: Earthquake early warning?  

Science Conference Proceedings (OSTI)

We report the production of up to 10 ppm ozone during crushing and grinding of typical terrestrial crust rocks in air, O{sub 2} and CO{sub 2} at atmospheric pressure, but not in helium or nitrogen. Ozone is formed by exoelectrons emitted by high electric fields, resulting from charge separation during fracture. The results suggest that ground level ozone produced by rock fracture, besides its potential health hazard, can be used for early warning in earthquakes and other catastrophes, such as landslides or land shifts in excavation tunnels and underground mines.

Baragiola, Raul A.; Dukes, Catherine A.; Hedges, Dawn [Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

2011-11-14T23:59:59.000Z

371

A Study on the Planetary Wave Transport of Ozone during the Late February 1979 Stratospheric Warming Using the SAGE Ozone Observation and Meteorological Information  

Science Conference Proceedings (OSTI)

Ozone data from the Stratospheric Aerosol and Gas Experiment (SAGE) have been used in conjunction with meteorological information to study the ozone transport near 55°N due to planetary waves during the late February 1979 stratospheric warming. ...

Pi-Huan Wang; M. P. McCormick; W. P. Chu

1983-10-01T23:59:59.000Z

372

Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials  

Science Conference Proceedings (OSTI)

This annual report describes progress on a CRADA project aimed at developing a fundamental understanding of candidate next generation NSR materials for NOx after-treatment for light-duty lean-burn (including diesel) engines. Model catalysts that are based on literature formulations are the focus of the work being carried out at PNNL. In addition, the performance and stability of a realistic high temperature NSR catalyst, supplied by JM, is being studied in order to provide baseline data for the model catalysts that are, again, based on formulations described in the open literature.

Kim, Do Heui; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Chen, Hai Ying; Hess, Howard ..

2012-02-08T23:59:59.000Z

373

Comparison of NOx Removal Efficiencies in Compost Based Biofilters Using Four Different Compost Sources  

Science Conference Proceedings (OSTI)

In 1998, 3.6 trillion kilowatt-hours of electricity were generated in the United States. Over half of this was from coal-fired power plants, resulting in more than 8.3 million tons of nitrogen oxide (NOx) compounds being released into the environment. Over 95% of the NOx compounds produced during coal combustion are in the form of nitric oxide (NO). NOx emission regulations are becoming increasingly stringent, leading to the need for new, cost effective NOx treatment technologies. Biofiltration is such a technology. NO removal efficiencies were compared in compost based biofilters using four different composts. In previous experiments, removal efficiencies were typically highest at the beginning of the experiment, and decreased as the experiments proceeded. This work tested different types of compost in an effort to find a compost that could maintain NO removal efficiencies comparable to those seen early in the previous experiments. One of the composts was wood based with manure, two were wood based with high nitrogen content sludge, and one was dairy compost. The wood based with manure and one of the wood based with sludge composts were taken directly from an active compost pile while the other two composts were received in retail packaging which had been out of active piles for an indeterminate amount of time. A high temperature (55-60°C) off-gas stream was treated in biofilters operated under denitrifying conditions. Biofilters were operated at an empty bed residence time of 13 seconds with target inlet NO concentrations of 500 ppmv. Lactate was the carbon and energy source. Compost was sampled at 10-day intervals to determine aerobic and anaerobic microbial densities. Compost was mixed at a 1:1 ratio with lava rock and calcite was added at 100g/kg of compost. In each compost tested, the highest removal efficiencies occurred within the first 10 days of the experiment. The wood based with manure peaked at day 3 (77.14%), the dairy compost at day 1 (80.74%), the active wood based with sludge at day 5 (68.15%) and the inactive wood based with sludge at day 9 (63.64%, this compost was frozen when received). These levels gradually decreased throughout the remainder of the experiment until they fell between 40% and 60%. Decreasing removal efficiency was characteristic of all the composts tested, regardless of their makeup or activity state prior to testing. Although microbial densities and composition between composts may have differed, there was little change in densities within each experiment.

Lacey, Jeffrey Alan; Lee, Brady Douglas; Apel, William Arnold

2001-06-01T23:59:59.000Z

374

Comprehensive Community NOx Emission Reduction Methodology: Overview and Results from the Application to a Case Study Community  

E-Print Network (OSTI)

This paper reports on the development of a methodology to estimate energy use in a community and its associated effects on air pollution. This methodology would allow decision makers to predict the impacts of various energy conservation options and efficiency programs on air pollution reduction, which will help local governments and their residents understand how to reduce pollution and mange the information collection needed to accomplish this. This paper presents a broad overview of a community-wide energy use and NOx emissions inventory process and discusses detailed procedures used to calculate the residential sector's energy use and its associated NOx emissions. In an effort to better understand community-wide energy use and its associated NOx emissions, the City of College Station, Texas, was selected as a case study community to demonstrate the application of this methodology.

Sung, Y. H.; Haberl, J. S.

2004-08-01T23:59:59.000Z

375

Sensitivity of Surface Ozone Simulation to Cumulus Parameterization  

Science Conference Proceedings (OSTI)

Different cumulus schemes cause significant discrepancies in simulated precipitation, cloud cover, and temperature, which in turn lead to remarkable differences in simulated biogenic volatile organic compound (BVOC) emissions and surface ozone ...

Zhining Tao; Allen Williams; Ho-Chun Huang; Michael Caughey; Xin-Zhong Liang

2008-05-01T23:59:59.000Z

376

Isentropic Cross-Tropopause Ozone Transport in the Northern Hemisphere  

Science Conference Proceedings (OSTI)

This paper investigates isentropic ozone exchange between the extratropical lower stratosphere and the subtropical upper troposphere in the Northern Hemisphere. The quantification method is based on the potential vorticity (PV) mapping of ...

P. Jing; D. M. Cunnold; H. J. Wang; E-S. Yang

2004-05-01T23:59:59.000Z

377

Indoor Surface Chemistry: Ozone Reaction with Nicotine Sorbed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Surface Chemistry: Ozone Reaction with Nicotine Sorbed to Model Materials Speaker(s): Hugo Destaillats Date: May 19, 2005 - 12:00pm Location: Bldg. 90 During this seminar,...

378

Global Health and Economic Impacts of Future Ozone Pollution  

E-Print Network (OSTI)

We assess the human health and economic impacts of projected 2000-2050 changes in ozone pollution using the MIT Emissions Prediction and Policy Analysis-Health Effects (EPPA-HE) model, in combination with results from the ...

Webster, Mort D.

379

Total Ozone Determination from the Backscattered Ultraviolet (BUV) Experiment  

Science Conference Proceedings (OSTI)

The algorithm used to derive total ozone from the Nimbus 4 Backscattered Ultraviolet (BUV) experiment is described. A seven-year global data set with more than one million retrievals has been produced and archived using this algorithm. The ...

K. F. Klenk; P. K. Bhartia; V. G. Kaveeshwar; R. D. McPeters; P. M. Smith; A. J. Fleig

1982-11-01T23:59:59.000Z

380

Mesoscale Meteorology and High Ozone in the Northeast United States  

Science Conference Proceedings (OSTI)

This study examines the relationship between mesoscale meteorological conditions and high-ozone days in the northeastern United States. It is proposed that the leeside trough and the sea-breeze front are two mesoscale features that can be ...

Robert S. Gaza

1998-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Ozone Dilemma: a reference handbook (Contemporary World Issues Series)  

E-Print Network (OSTI)

Dilemma: a reference handbook By David E. Newton Reviewed byDilemma: a reference handbook (Contemporary World IssuesThe Ozone Dilemma: a reference handbook is targeted at both

Li, Haipeng

1997-01-01T23:59:59.000Z

382

An Intercomparison of Ground-Based Total Ozone Instruments  

Science Conference Proceedings (OSTI)

Five ground-based total ozone spectrophotometers were intercompared at Wallops Island, Virginia between October 1979 and January 1981. The tests were conducted to evaluate the stability and accuracy of each instrument over an extended time ...

C. L. Parsons; J. C. Gerlach; M. E. Williams

1982-05-01T23:59:59.000Z

383

Ozone-initiated chemistry in an occupied simulated aircraft cabin  

NLE Websites -- All DOE Office Websites (Extended Search)

nonanal, decanal, 4-oxopentanal (4-OPA), 6-methyl-5-hepten-2-one (6-MHO), formic acid and acetic acid, with 0.25 to 0.30 moles of quantified product volatilized per mole of ozone...

384

Biofouling Control With Ozone at the Bergen Generating Station  

Science Conference Proceedings (OSTI)

Tests were conducted to evaluate the effectiveness of ozone as an alternative to chlorine for condenser biofouling control in a once-through cooling system. A pilot-scale test facility with three model condensors simulated condenser operation and conditions at the Bergen station. Both ozone and chlorine were tested. The minimum effective level of each was determined by daily measurements of heat transfer coefficients across model condenser tubes and/or water-side pressure drop. Final evaluation was based...

1980-11-01T23:59:59.000Z

385

Probabilistic aspects of meteorological and ozone regional ensemble forecasts  

SciTech Connect

This study investigates whether probabilistic ozone forecasts from an ensemble can be made with skill; i.e., high verification resolution and reliability. Twenty-eight ozone forecasts were generated over the Lower Fraser Valley, British Columbia, Canada, for the 5-day period 11-15 August 2004, and compared with 1-hour averaged measurements of ozone concentrations at five stations. The forecasts were obtained by driving the CMAQ model with four meteorological forecasts and seven emission scenarios: a control run, {+-} 50% NO{sub x}, {+-} 50% VOC, and {+-} 50% NO{sub x} combined with VOC. Probabilistic forecast quality is verified using relative operating characteristic curves, Talagrand diagrams, and a new reliability index. Results show that both meteorology and emission perturbations are needed to have a skillful probabilistic forecast system--the meteorology perturbation is important to capture the ozone temporal and spatial distribution, and the emission perturbation is needed to span the range of ozone-concentration magnitudes. Emission perturbations are more important than meteorology perturbations for capturing the likelihood of high ozone concentrations. Perturbations involving NO{sub x} resulted in a more skillful probabilistic forecast for the episode analyzed, and therefore the 50% perturbation values appears to span much of the emission uncertainty for this case. All of the ensembles analyzed show a high ozone concentration bias in the Talagrand diagrams, even when the biases from the unperturbed emissions forecasts are removed from all ensemble members. This result indicates nonlinearity in the ensemble, which arises from both ozone chemistry and its interaction with input from particular meteorological models.

Monache, L D; Hacker, J; Zhou, Y; Deng, X; Stull, R

2006-03-20T23:59:59.000Z

386

Ozone in the Troposphere and Stratosphere, part 1  

Science Conference Proceedings (OSTI)

This is the first part of a 2-part Conference Publication. This document contains papers presented at the 1992 Quadrennial Ozone Symposium held at the Charlottesville, Virginia, from June 4-13, 1992. The papers cover topics in both Tropospheric and Stratospheric research. These topics include ozone trends and climatology, ground based, aircraft, balloon, rocket and satellite measurements, Arctic and Antarctic research, global and regional modeling, and volcanic effects. Separate abstracts have been prepared for articles from this report.

Hudson, R.D.

1994-04-01T23:59:59.000Z

387

Ozone in the troposphere and stratosphere, part 2  

Science Conference Proceedings (OSTI)

This is the second of a 2-part Conference Publication. This document contains papers presented at the 1992 Quadrennial Ozone Symposium held at Charlottesville, Virginia, from June 4-13, 1992. The papers cover topics in both Tropospheric and Stratospheric research. These topics include ozone trends and climatology, ground based, aircraft, balloon, rocket and satellite measurements, Arctic and Antarctic research, global and regional modeling, and volcanic effects. Separate abstracts have been prepared for articles from this report.

Hudson, R.D.

1994-04-01T23:59:59.000Z

388

Interannual Variability of the Antarctic Ozone Hole in a GCM. Part I: The Influence of Tropospheric Wave Variability  

Science Conference Proceedings (OSTI)

To study the interannual variability of the Antarctic ozone hole, a physically realistic parameterization of the chemistry responsible for severe polar ozone loss has been included in the GISS GCM. The ensuing ozone hole agrees well with ...

Drew T. Shindell; Sun Wong; David Rind

1997-09-01T23:59:59.000Z

389

Delayed Southern Hemisphere climate change induced by stratospheric ozone recovery, as projected by the CMIP5 models  

Science Conference Proceedings (OSTI)

Stratospheric ozone is expected to recover by the end of this century due to the regulation of ozone depleting substances by the Montreal Protocol. Targeted modeling studies have suggested that the climate response to ozone recovery will greatly ...

Elizabeth A. Barnes; Nicholas W. Barnes; Lorenzo M. Polvani

390

Method for control of NOx emission from combustors using fuel dilution  

SciTech Connect

A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.

Schefer, Robert W. (Alamo, CA); Keller, Jay O (Oakland, CA)

2007-01-16T23:59:59.000Z

391

APBF-DEC NOx Adsorber/DPF Project: Light-Duty Passenger Car Platform  

DOE Green Energy (OSTI)

A 1.9L turbo direct injection (TDI) diesel engine was modified to achieve the upcoming Tier 2 Bin 5 emission standard in combination with a NOx adsorber catalyst (NAC) and a diesel particulate filter (DPF). The primary objective for developing this test bed is to investigating the effects of different fuel sulfur contents on the performance of an advanced emission control system (ECS) in a light-duty application. During the development process, the engine-out emissions were minimized by applying a state-of-the-art combustion system in combination with cooled exhaust gas recirculation (EGR). The subsequent calibration effort resulted in emission levels requiring 80-90 percent nitrogen-oxide (NOx) and particulate matter (PM) conversion rates by the corresponding ECS. The strategy development included ean/rich modulation for NAC regeneration, as well as, the desulfurization of the NAC and the regeneration of the DPF. Two slightly different ECS were investigated and calibrated. The initial vehicle results in an Audi A4 station wagon over the federal test procedure (FTP), US 06, and the highway fuel economy test (HFET) cycle indicate the potential of these configuration to meet the future Tier 2 emission standard.

Tomazic, D; Tatur, M; Thornton, M

2003-08-24T23:59:59.000Z

392

Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction  

Science Conference Proceedings (OSTI)

The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

Boyd, Rodney

2007-08-08T23:59:59.000Z

393

Urea for SCR-based NOx Control Systems and Potential Impacts to Ground Water Resources  

DOE Green Energy (OSTI)

One of the key challenges facing manufacturers of diesel engines for light- and heavy-duty vehicles is the development of technologies for controlling emissions of nitrogen oxides, In this regard, selective catalytic reduction (SCR) systems represent control technology that can potentially achieve the NOx removal efficiencies required to meet new U.S. EPA standards. SCR systems rely on a bleed stream of urea solution into exhaust gases prior to catalytic reduction. While urea's role in this emission control technology is beneficial, in that it supports reduced NOx emissions, it can also be an environmental threat to ground water quality. This would occur if it is accidentally released to soils because once in that environmental medium, urea is subsequently converted to nitrate--which is regulated under the U.S. EPA's primary drinking water standards. Unfortunately, nitrate contamination of ground waters is already a significant problem across the U.S. Historically, the primary sources of nitrate in ground waters have been septic tanks and fertilizer applications. The basic concern over nitrate contamination is the potential health effects associated with drinking water containing elevated levels of nitrate. Specifically, consumption of nitrate-contaminated water can cause a blood disorder in infants known as methemoglobinemia.

Layton, D.

2002-01-03T23:59:59.000Z

394

Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx  

DOE Green Energy (OSTI)

The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

2003-08-24T23:59:59.000Z

395

The Seasonal Cycle of Interannual Variability and the Dynamical Imprint of the Seasonally Varying Mean State  

Science Conference Proceedings (OSTI)

Various aspects of the seasonal cycle of interannual variability of the observed 300-hPa streamfunction are documented and related to dynamical influences of the seasonality of the mean circulation. The stochastically excited nondivergent ...

Grant Branstator; Jorgen Frederiksen

2003-07-01T23:59:59.000Z

396

ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE  

SciTech Connect

At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing dissolution equilibrium, and then decomposed to {le} 100 Parts per Million (ppm) oxalate. Since AOP technology largely originated on using ultraviolet (UV) light as a primary catalyst, decomposition of the spent oxalic acid, well exposed to a medium pressure mercury vapor light was considered the benchmark. However, with multi-valent metals already contained in the feed, and maintenance of the UV light a concern; testing was conducted to evaluate the impact from removing the UV light. Using current AOP terminology, the test without the UV light would likely be considered an ozone based, dark, ferrioxalate type, decomposition process. Specifically, as part of the testing, the impacts from the following were investigated: (1) Importance of the UV light on the decomposition rates when decomposing 1 wt% spent oxalic acid; (2) Impact of increasing the oxalic acid strength from 1 to 2.5 wt% on the decomposition rates; and (3) For F-area testing, the advantage of increasing the spent oxalic acid flowrate from 40 L/min (liters/minute) to 50 L/min during decomposition of the 2.5 wt% spent oxalic acid. The results showed that removal of the UV light (from 1 wt% testing) slowed the decomposition rates in both the F & H testing. Specifically, for F-Area Strike 1, the time increased from about 6 hours to 8 hours. In H-Area, the impact was not as significant, with the time required for Strike 1 to be decomposed to less than 100 ppm increasing slightly, from 5.4 to 6.4 hours. For the spent 2.5 wt% oxalic acid decomposition tests (all) without the UV light, the F-area decompositions required approx. 10 to 13 hours, while the corresponding required H-Area decompositions times ranged from 10 to 21 hours. For the 2.5 wt% F-Area sludge, the increased availability of iron likely caused the increased decomposition rates compared to the 1 wt% oxalic acid based tests. In addition, for the F-testing, increasing the recirculation flow rates from 40 liter/minute to 50 liter/minute resulted in an increased decomposition rate, suggesting a better use of ozone.

Ketusky, E.; Subramanian, K.

2012-02-29T23:59:59.000Z

397

Eastern North Pacific Hurricane Season of 2004  

Science Conference Proceedings (OSTI)

The 2004 eastern North Pacific hurricane season is reviewed. It was a below-average season in terms of number of systems and landfalls. There were 12 named tropical cyclones, of which 8 became hurricanes. None of the tropical storms or hurricanes ...

Lixion A. Avila; Richard J. Pasch; John L. Beven II; James L. Franklin; Miles B. Lawrence; Stacy R. Stewart

2006-03-01T23:59:59.000Z

398

Original article Seasonal fluctuations of cosmopolitan  

E-Print Network (OSTI)

Original article Seasonal fluctuations of cosmopolitan inversion frequencies in a natural 1989) Summary - Seasonal changes in the frequencies of cosmopolitan inversions and In(3R)C have been as being responsible for the geographic cline of the cosmopolitan inversions. Without ignoring

Recanati, Catherine

399

Seasonally Stratified Analysis of Simulated ENSO Thermodynamics  

Science Conference Proceedings (OSTI)

Using outputs from the SINTEX-F1 coupled GCM, the thermodynamics of ENSO events and its relation with the seasonal cycle are investigated. Simulated El Niño events are first classified into four groups depending on during which season the Niño-...

Tomoki Tozuka; Jing-Jia Luo; Sebastien Masson; Toshio Yamagata

2007-09-01T23:59:59.000Z

400

Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers  

SciTech Connect

This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of the boiler. When combined with SNCR, a NO{sub x} emission rate of 0.12-0.14 lb/MBtu can be expected when implementing a full ALTA system on this unit. Cost effectiveness of the full ALTA system was estimated at $2,152/ton NO{sub x} removed; this was less than 75% of the cost estimated for an SCR system on a unit of this size.

Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

2008-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES  

SciTech Connect

Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.

NEIL K. MCDOUGALD

2005-04-30T23:59:59.000Z

402

DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES  

SciTech Connect

Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.

NEIL K. MCDOUGALD

2005-04-30T23:59:59.000Z

403

Analysis of Strategies for Multiple Emissions from Electric Power SO2, NOX, CO2, Mercury and RPS  

Reports and Publications (EIA)

At the request of the Subcommittee, EIA prepared an initial report that focused on the impacts of reducing power sector NOx, SO2, andCO2 emissions.2 The current report extends the earlier analysis to add the impacts of reducing power sector Hg emissions and introducing RPS requirements.

J. Alan Beamon

2001-07-01T23:59:59.000Z

404

Proceedings of the Combustion Institute, Volume 29, 2002/pp. 11151121 LABORATORY INVESTIGATION OF AN ULTRALOW NOx PREMIXED  

E-Print Network (OSTI)

by the Office of Industrial Technology of the U.S. Department of Energy for year 2020, a new approach was supported by the U.S. Department of Energy, Office of Industrial Technology, and the California Institute INVESTIGATION OF AN ULTRALOW NOx PREMIXED COMBUSTION CONCEPT FOR INDUSTRIAL BOILERS DAVID LITTLEJOHN,1 ADRIAN J

Knowles, David William

405

Impact of Surfaces on Ozone-Terpene Conversion Rates in Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Surfaces on Ozone-Terpene Conversion Rates in Buildings Speaker(s): Glenn Morrison Date: March 5, 2007 - 4:00pm Location: 90-3122 Indoor surface reactions of ozone with...

406

Transport, Radiative, and Dynamical Effects of the Antarctic Ozone Hole: A GFDL “SKYHI” Model Experiment  

Science Conference Proceedings (OSTI)

The GFDL “SKYHI” general circulation model has been used to simulate the effect of the Antarctic “ozone hole” phenomenon on the radiative and dynamical environment of the lower stratosphere. Both the polar ozone destruction and photochemical ...

J. D. Mahlman; L. J. Umscheid; J. P. Pinto

1994-02-01T23:59:59.000Z

407

Climate Change and the Middle Atmosphere. Part IV: Ozone Response to Doubled CO2  

Science Conference Proceedings (OSTI)

Parameterized stratospheric ozone photochemistry has been included in the Goddard Institute for Space Studies (GISS) GCM to investigate the coupling between chemistry and climate change for the doubled CO2 climate. The chemical ozone response is ...

Drew T. Shindell; David Rind; Patrick Lonergan

1998-05-01T23:59:59.000Z

408

Global Ozone Observations from the UARS MLS: An Overview of Zonal-Mean Results  

Science Conference Proceedings (OSTI)

Global ozone observations from the Microwave Limb Sounder (MLS) aboard the Upper Atmosphere Research Satellite (UARS) are presented, in both vertically resolved and column abundance formats. The authors review the zonal-mean ozone variations ...

Lucien Froidevaux; Joe W. Waters; William G. Read; Lee S. Elson; Dennis A. Flower; Robert F. Jarnot

1994-10-01T23:59:59.000Z

409

Isolation of the Ozone QBO in SAGE II Data by Singular-Value Decomposition  

Science Conference Proceedings (OSTI)

Detailed structure of the global quasi-biennial oscillation (QBO) in ozone is analyzed using Stratospheric Aerosol and Gas Experiment II ozone and nitrogen dioxide data. Emphasis is placed on the midlatitude QBO, in particular its vertical ...

William J. Randel; Fei Wu

1996-09-01T23:59:59.000Z

410

On the Role of Ozone in the Stability of Rossby Normal Modes  

Science Conference Proceedings (OSTI)

The role of ozone in the linear stability of Rossby normal modes is examined in a continuously stratified, extratropical baroclinic atmosphere. The flow is described by coupled equations for the quasi-geostrophic potential vorticity and ozone ...

Terrence R. Nathan

1989-07-01T23:59:59.000Z

411

A Process-Analysis Based Study of the Ozone Weekend Effect  

NLE Websites -- All DOE Office Websites (Extended Search)

A Process-Analysis Based Study of the Ozone Weekend Effect Title A Process-Analysis Based Study of the Ozone Weekend Effect Publication Type Journal Article Year of Publication...

412

Predicting Total Ozone Based on GTS Data: Applications for South American High-Latitude Populations  

Science Conference Proceedings (OSTI)

A regular occurrence during the 1990s has been the excursion of the edge of the springtime Antarctic ozone hole over the southernmost region of the South American continent. Given the essential role of atmospheric ozone in absorbing incoming ...

Anna E. Jones; Tanya Bowden; John Turner

1998-05-01T23:59:59.000Z

413

Stratospheric Temperature and Radiative Forcing Response to 11-Year Solar Cycle Changes in Irradiance and Ozone  

Science Conference Proceedings (OSTI)

The 11-yr solar cycle temperature response to spectrally resolved solar irradiance changes and associated ozone changes is calculated using a fixed dynamical heating (FDH) model. Imposed ozone changes are from satellite observations, in contrast ...

L. J. Gray; S. T. Rumbold; K. P. Shine

2009-08-01T23:59:59.000Z

414

Tobacco smoke aging in the presence of ozone: a room-sized chamber...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tobacco smoke aging in the presence of ozone: a room-sized chamber study Title Tobacco smoke aging in the presence of ozone: a room-sized chamber study Publication Type Journal...

415

Comparison of three vertically resolved ozone data sets: climatology, trends and radiative forcings  

E-Print Network (OSTI)

Climate models that do not simulate changes in stratospheric ozone concentrations require the prescription of ozone fields to accurately calculate UV fluxes and stratospheric heating rates. In this study, three different ...

Hassler, B.

416

Association of the Laminated Vertical Ozone Structure with the Lower-Stratospheric Circulation  

Science Conference Proceedings (OSTI)

In this study the examination of the role of the atmospheric circulation in the lower stratosphere in relation to the laminated structure of ozone in the subtropical atmosphere is attempted. This analysis is based on the vertical ozone profile ...

C. Varotsos; P. Kalabokas; G. Chronopoulos

1994-04-01T23:59:59.000Z

417

Total Ozone Variations 1970-74 Using Backscattered Ultraviolet (BUV) and Ground-Based Observations  

Science Conference Proceedings (OSTI)

The most long-lived satellite set of ozone observations, to date, is that derived from the Backscatter Ultraviolet (BUV) ozone sensor on Nimbus 4 and extends from April 1970 through 1976. Unfortunately, this experiment suffered spacecraft power ...

A. J. Miller; R. M. Nagatani; T. G. Rogers; A. J. Fleig; D. F. Heath

1982-05-01T23:59:59.000Z

418

Wintertime Ozone Fluxes and Profiles above a Subalpine Spruce–Fir Forest  

Science Conference Proceedings (OSTI)

High rural concentrations of ozone (O3) are thought to be stratospheric in origin, advected from upwind urban sources, or photochemically generated locally by natural trace gas emissions. Ozone is known to be transported vertically downward from ...

Karl Zeller

2000-01-01T23:59:59.000Z

419

The Role of Vertical Mixing in the Temporal Evolution of Ground-Level Ozone Concentrations  

Science Conference Proceedings (OSTI)

Aircraft measurements taken during the North American Research Strategy for Tropospheric Ozone-Northeast field study reveal the presence of ozone concentration levels in excess of 80 ppb on a regional scale in the nocturnal residual layer during ...

Jian Zhang; S. Trivikrama Rao

1999-12-01T23:59:59.000Z

420

IMPROVING ANTARCTIC TOTAL OZONE PROJECTIONS BY A PROCESS-ORIENTED MULTIPLE DIAGNOSTIC ENSEMBLE REGRESSION  

Science Conference Proceedings (OSTI)

Accurate projections of stratospheric ozone are required, because ozone changes impact on exposures to ultraviolet radiation and on tropospheric climate. Unweighted multi-model ensemble mean (uMMM) projections from chemistry-climate models (CCMs) ...

Alexey Yu. Karpechko; Douglas Maraun; Veronika Eyring

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Interannual Variations of Total Ozone at Northern Midlatitudes Correlated with Stratospheric EP Flux and Potential Vorticity  

Science Conference Proceedings (OSTI)

At northern midlatitudes over the 1979–2002 time period, column ozone trends are observed to have maximum negative amplitudes in February and March. Here, the portion of the observed ozone interannual variability and trends during these months ...

L. L. Hood; B. E. Soukharev

2005-10-01T23:59:59.000Z

422

Reconstruction and Simulation of Stratospheric Ozone Distributions during the 2002 Austral Winter  

Science Conference Proceedings (OSTI)

Satellite-based solar occultation measurements during the 2002 austral winter have been used to reconstruct global, three-dimensional ozone distributions. The reconstruction method uses correlations between potential vorticity and ozone to derive ...

C. E. Randall; G. L. Manney; D. R. Allen; R. M. Bevilacqua; J. Hornstein; C. Trepte; W. Lahoz; J. Ajtic; G. Bodeker

2005-03-01T23:59:59.000Z

423

Ozone reduces crop yields and alters competition with weeds such as yellow nutsedge  

E-Print Network (OSTI)

DT (eds. ). Assessment of Crop Loss from Air Pollutants:Ambient ozone and adverse crop re- sponse: An evaluation ofthe effects of ozone on crops and trees. In: Lefohn AS (

Grantz, David A.; Shrestha, Anil

2005-01-01T23:59:59.000Z

424

Longitude-Dependent Decadal Changes of Total Ozone in Boreal Winter Months during 1979–92  

Science Conference Proceedings (OSTI)

A statistical analysis shows that the decadal change of zonally asymmetric total ozone (Total Ozone Mapping Spectrometer data) has a distinct spatial similarity with the decadal change of the 300-hPa geopotential patterns during December–February ...

Dieter Peters; Günter Entzian

1999-04-01T23:59:59.000Z

425

Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel  

Science Conference Proceedings (OSTI)

A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

2012-11-20T23:59:59.000Z

426

Power generation systems for NOx reduction. CRADA final report for CRADA Number Y-1292-0111  

SciTech Connect

The Cooperative Research and Development Agreement (CRADA) No. Y1292-0111, between Allison Gas Turbine Division of General Motors Corporation and Lockheed Martin Energy Systems, under contract to the US Department of Energy, is entitled ``Power Generation Systems for NOx Reduction``. The objective of this effort was to design, develop, and demonstrate an integrated turbine genset suitable for high efficiency power generation requirements. The result of this effort would have been prototype generator hardware including controllers for testing and evaluation by Allison Gas Turbine Division. The generator would have been coupled to a suitably sized and configured gas turbine engine, which would operate on a laboratory load bank. This effort leads to extensive knowledge and design capability in the most efficient and high power density generator design for mobile power generation and potentially to commercialization of these advanced technologies.

Adams, D.J. [Lockheed Martin Energy Research Corp., Oak Ridge, TN (United States); Berenyi, S.G. [General Motors Corp., Indianapolis, IN (United States). Allison Gas Turbine Div.

1996-04-30T23:59:59.000Z

427

Method for reducing NOx during combustion of coal in a burner  

DOE Patents (OSTI)

An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

Zhou, Bing (Cranbury, NJ); Parasher, Sukesh (Lawrenceville, NJ); Hare, Jeffrey J. (Provo, UT); Harding, N. Stanley (North Salt Lake, UT); Black, Stephanie E. (Sandy, UT); Johnson, Kenneth R. (Highland, UT)

2008-04-15T23:59:59.000Z

428

Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel  

DOE Patents (OSTI)

A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

Steele, Robert C. (Woodinville, WA); Edmonds, Ryan G. (Renton, WA); Williams, Joseph T. (Kirkland, WA); Baldwin, Stephen P. (Winchester, MA)

2009-10-20T23:59:59.000Z

429

Clean Air Interstate Rule (released in AEO2009)  

Reports and Publications (EIA)

CAIR is a cap-and-trade program promulgated by the EPA in 2005, covering 28 eastern U.S. States and the District of Columbia [29]. It was designed to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions in order to help States meet their National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter (PM2.5) and to further emissions reductions already achieved through the Acid Rain Program and the NOx State Implementation Plan call program. The rule was set to commence in 2009 for seasonal and annual NOx emissions and in 2010 for SO2 emissions.

Information Center

2009-03-31T23:59:59.000Z

430

The Use of Ozone as an Antimicrobial Agent: Agricultural and Food Processing Technical Assessment  

Science Conference Proceedings (OSTI)

Ozone treatment, a highly effective disinfectant long used in Europe, deactivates even the most stubborn organisms. Food processors can use ozone to disinfect raw fruits and vegetables during processing or to disinfect water used for washing foods and food plant equipment. Food researchers and regulators have confirmed ozone as safe. In 1997, EPRI convened an expert panel that submitted a Generally Recognized as Safe (GRAS) affirmation of ozone in food applications to the U.S. Food and Drug Administratio...

2001-11-08T23:59:59.000Z

431

Demonstration of an Ozone System at a Hospital Laundry Facility: Long Beach Medical Center  

Science Conference Proceedings (OSTI)

In its role as a powerful oxidant and biocide, ozone works in the context of laundry facilities to boost the cleaning activity of the various chemicals and chemical compounds. To be used in laundry operations, ozone must be introduced into the wash water via one of the ozone laundry systems available on the market today. This report highlights and quantifies the benefits of an ozone laundry system at the 134-bed Long Beach Medical Center (LBMC) in Long Beach, New York.

2007-08-31T23:59:59.000Z

432

Using hydroponic biomass to regulate NOx emissions in long range space travel  

DOE Green Energy (OSTI)

The incineration of wastes is one of the most promising reclamation technologies being developed for life support in long range space travel. However, incineration in a closed environment will build up hazardous NOx if not regulated. A technology that can remove NOx under microgravity conditions without the need of expendables is required. Activated carbon prepared from inedible wheat straw and sweet potato stalk that were grown under hydroponic conditions has been demonstrated to be able to adsorb NO and reduce it to N{sub 2}. The high mineral content in the activated carbon prepared from hydroponic biomass prohibits high surface area production and results in inferior NO adsorption capacity. The removal of mineral from the carbon circumvents the aforementioned negative effect. The optimal production conditions to obtain maximum yield and surface area for the activated carbon have been determined. A parametric study on the NO removal efficiency by the activated carbon has been done. The presence of oxygen in flue gas is essential for effective adsorption of NO by the activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. The NO adsorption capacity and the duration before it exceeds the Space Maximum Allowable Concentration were determined. After the adsorption of NO, the activated carbon can be regenerated for reuse by heating the carbon bed under anaerobic conditions to above 500 C, when the adsorbed NO is reduced to N{sub 2}. The regenerated activated carbon exhibits improved NO adsorption efficiency. However, regeneration had burned off a small percentage of the activated carbon.

Xu, X.H.; Shi, Y.; Chang, S.G.; Fisher, J.; Pisharody, S.; Moran, M.; Wignarajah, K.

2002-02-01T23:59:59.000Z

433

Formation of NOx precursors during Chinese pulverized coal pyrolysis in an arc plasma jet  

Science Conference Proceedings (OSTI)

The formation of NOx precursors (HCN and NH{sub 3}) from the pyrolysis of several Chinese pulverized coals in an arc plasma jet was investigated through both thermodynamic analysis of the C-H-O-N system and experiments. Results of thermodynamic analysis show that the dominant N-containing gaseous species is HCN together with a small amount of ammonia above the temperature of 2000 K. The increase of H content advances the formation of HCN and NH{sub 3}, but the yields of HCN and NH{sub 3} are decreased with a high concentration of O in the system. These results are accordant with the experimental data. The increasing of input power promotes the formation of HCN and NH{sub 3} from coal pyrolysis in an arc plasma jet. Tar-N is not formed during the process. The yield of HCN changes insignificantly with the changing of the residence time of coal particles in the reactor, but that of NH{sub 3} decreases as residence times increase because of the relative instability at high temperature. Adsorption and gasification of CO{sub 2} on the coal surface also can restrain the formation of HCN and NH{sub 3} compare to the results in an Ar plasma jet. Yields of HCN and NH{sub 3} are sensitive to the coal feeding rate, indicating that NOx precursors could interact with the nascent char to form other N-containing species. The formation of HCN and NH{sub 3} during coal pyrolysis in a H{sub 2}/Ar plasma jet are not dependent on coal rank. The N-containing gaseous species is released faster than others in the volatiles during coal pyrolysis in an arc plasma jet, and the final nitrogen content in the char is lower than that in the parent coal, which it is independent of coal type. 16 refs., 9 figs., 1 tab.

Wei-ren Bao; Jin-cao Zhang; Fan Li; Li-ping Chang [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology

2007-08-15T23:59:59.000Z

434

Development of an ozone climatology for Harris County, Texas  

SciTech Connect

The Houston Regional Monitoring Corporation (HRM) has performed continuous ambient air quality and meteorological monitoring in the Ship Channel area of east Harris County since August 1981. The HRM monitoring network is one of the largest Environmental Protection Agency (EPA) approved Prevention of Significant Deterioration (PSD) monitoring network in the United States operated by an industrial group. As an adjunct to its monitoring. HRM has funded extensive meteorological and statistical analyses of ozone monitoring data in Harris County. One of the goals of these studies was to determine those meteorological conditions responsible for the formation of elevated ozone concentrations in Harris County. The analyses performed included the use of principal component analysis and cluster analysis. These analysis techniques have individually been applied to ozone and air quality research problems. The combined use of these techniques in this analysis, however, is a unique application of these statistical tools to an ozone air quality analysis. As a result of these analyses, a climatology of those episodes conducive to elevated ozone formation in Harris County was developed.

Balentine, H.W.; Carter, J.C. (Radian Corp., Austin, TX (USA)); Preston, J. (Tenneco Polymers, Houston, TX (US))

1987-01-01T23:59:59.000Z

435

Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity  

DOE Green Energy (OSTI)

Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

2012-10-01T23:59:59.000Z

436

Operations Evaluation Report -- Pressurized Ozonation System, North Mississippi Medical Center Laundry Operations  

Science Conference Proceedings (OSTI)

This report describes ozone and its benefits in healthcare laundry operations. In particular, case studies of two ozone applications -- one in a 650-bed regional medical center and another in a 131-bed skilled nursing and rehabilitation facility -- highlight and quantify ozone's benefits.

2005-03-22T23:59:59.000Z

437

Microsoft Word - S08364_SeasonalVariation  

Office of Legacy Management (LM)

Groundwater Groundwater Constituents and Seasonal Variation at the Riverton, Wyoming, Processing Site February 2012 LMS/RVT/S08364 This page intentionally left blank U.S. Department of Energy Evaluation of Groundwater Constituents and Seasonal Variation, Riverton, Wyoming February 2012 Doc. No. S08364 Page 1 Evaluation of Groundwater Constituents and Seasonal Variation at the Riverton, Wyoming, Processing Site Executive Summary Historical groundwater monitoring at the Riverton site included collecting samples for a variety of analyses, including general water quality, inorganics, metals, and radionuclides. Evaluations of these constituents were conducted and presented in past documents, which resulted in four constituents of concern (COCs). This paper presents a reevaluation of 47 constituents using

438

Secondary pollutants from ozone reactions with ventilation filters and  

NLE Websites -- All DOE Office Websites (Extended Search)

Secondary pollutants from ozone reactions with ventilation filters and Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives Title Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives Publication Type Journal Article Year of Publication 2011 Authors Destaillats, Hugo, Wenhao Chen, Michael G. Apte, Nuan Li, Michael Spears, Jérémie Almosni, Gregory Brunner, Jianshun(Jensen) Zhang, and William J. Fisk Journal Atmospheric Environment Volume 45 Start Page 3561 Issue 21 Pagination 3561-3568 Keywords commercial building ventilation & indoor environmental quality group, commercial building ventilation and indoor environmental quality group, energy analysis and environmental impacts department, indoor environment department, indoor environment group

439

Investigation of formaldehyde and acetaldehyde sampling rate and ozone  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation of formaldehyde and acetaldehyde sampling rate and ozone Investigation of formaldehyde and acetaldehyde sampling rate and ozone interference for passive deployment of Waters Sep-Pak XPoSure samplers Title Investigation of formaldehyde and acetaldehyde sampling rate and ozone interference for passive deployment of Waters Sep-Pak XPoSure samplers Publication Type Journal Article Year of Publication 2013 Authors Mullen, Nasim A., Marion L. Russell, Melissa M. Lunden, and Brett C. Singer Journal Atmospheric Environment Volume 80 Pagination 184-189 Date Published 12/2013 Keywords aldehyde; exposure; indoor air quality; passive sampler; residential Abstract This study investigated formaldehyde and acetaldehyde passive sampling rates and ozone interference for the DNPH-based Waters Sep-Pak XPoSure sampler. Previous studies have shown that ozone interferes with active sampling by this cartridge. Our study included one laboratory and six field experiments conducted in Northern California homes. Passive sampling rates of 1.10 ± 0.09 and 0.86 ± 0.10 mL/min determined for formaldehyde and acetaldehyde are lower than previously reported. In a controlled laboratory experiment there were small, statistically insignificant impacts of subsequent ozone exposure on formaldehyde and acetaldehyde mass passively collected on the samplers. This sampler is inexpensive, easy to deploy and to transport by mail, and has a high sampling capacity when used passively; it is suitable for a wide-range of monitoring applications. However, the passive sampling rate remains in question given the internally consistent, but different results obtained in our study and the previous study.

440

Smart Grid Week: Hurricane Season and the Department's Efforts...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Season and the Department's Efforts to Make the Grid More Resilient to Power Outages Smart Grid Week: Hurricane Season and the Department's Efforts to Make the Grid More...

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Reproducibility of Seasonal Land Surface Climate  

Science Conference Proceedings (OSTI)

In this study, the sensitivity of the continental seasonal climate to initial conditions is estimated from an ensemble of decadal simulations of an atmospheric general circulation model with the same specifications of radiative forcings and ...

Thomas J. Phillips

2006-02-01T23:59:59.000Z

442

Model Fidelity versus Skill in Seasonal Forecasting  

Science Conference Proceedings (OSTI)

The relation between skill and fidelity of seasonal mean hindcasts of surface temperature by seven coupled atmosphere–ocean models is investigated. By definition, fidelity measures the agreement between model and observational climatological ...

Timothy DelSole; Jagadish Shukla

2010-09-01T23:59:59.000Z

443

Propane: A Mid-heating Season Assessment  

Gasoline and Diesel Fuel Update (EIA)

9, 2001 9, 2001 Propane - A Mid-Heating Season Assessment by David Hinton and Alice Lippert, Petroleum Division, Office of Oil and Gas, Energy Information Administration In early October 2000, the Energy Information Administration (EIA) forecast that heating fuel markets would be expected to start the season with much higher prices and lower inventories than in recent years. While this assessment was true for both the heating oil and natural gas markets, propane markets actually began the season with adequate supplies but with high prices. Since EIA's forecast, propane inventories have plunged nearly 20 million barrels from their peak during the first half of the 2000-01 heating season while propane prices have continued to soar even higher than expected during this same period. This report will analyze some

444

Predictability of Seasonal Precipitation Using Joint Probabilities  

Science Conference Proceedings (OSTI)

This paper tests whether seasonal mean precipitation is predictable using a new method that estimates and analyzes joint probabilities. The new estimation method is to partition the globe into boxes, pool all data within the box to estimate a ...

M. Tugrul Yilmaz; Timothy DelSole

2010-04-01T23:59:59.000Z

445

Lagged Ensembles, Forecast Configuration, and Seasonal Predictions  

Science Conference Proceedings (OSTI)

An analysis of lagged ensemble seasonal forecasts from the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), is presented. The focus of the analysis is on the construction of lagged ensemble forecasts ...

Mingyue Chen; Wanqiu Wang; Arun Kumar

2013-10-01T23:59:59.000Z

446

On the Seasonality of the Hadley Cell  

Science Conference Proceedings (OSTI)

The annual march of the climatological mean meridional circulations (MMCs) in the NCEP–NCAR reanalyses is dominated by two components of roughly comparable mean-squared amplitude: 1) a seasonally invariant pair of “Hadley cells” with rising ...

Ioana M. Dima; John M. Wallace

2003-06-01T23:59:59.000Z

447

Lagged Ensembles, Forecast Configuration, and Seasonal Predictions  

Science Conference Proceedings (OSTI)

An analysis of lagged ensemble seasonal forecasts from the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) is presented. The focus of the analysis is on the construction of lagged ensemble forecasts ...

Mingyue Chen; Wanqiu Wang; Arun Kumar

448

Causes of Robust Seasonal Land Precipitation Changes  

Science Conference Proceedings (OSTI)

Historical simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5) archive are used to calculate the zonal mean change in seasonal land precipitation for the second half of the twentieth century in response to a range of ...

Debbie Polson; Gabriele C. Hegerl; Xuebin Zhang; Timothy J. Osborn

449

Eastern North Pacific Hurricane Season of 1996  

Science Conference Proceedings (OSTI)

The National Hurricane Center (a component of the Tropical Prediction Center) tracked nine tropical storms, five of which became hurricanes, during the 1996 eastern North Pacific hurricane season. Five tropical storms or hurricanes made landfall ...

Max Mayfield; Edward N. Rappaport

1998-12-01T23:59:59.000Z

450

Eastern North Pacific Hurricane Season of 1993  

Science Conference Proceedings (OSTI)

The National Hurricane Center tracked 14 tropical storms, 10 of which became hurricanes, during the 1993 eastern North Pacific hurricane season. Four named tropical cyclones and one tropical depression made landfall in Mexico. A general overview ...

Lixion A. Avila; Max Mayfield

1995-03-01T23:59:59.000Z

451

Eastern North Pacific Hurricane Season of 1997  

Science Conference Proceedings (OSTI)

The hurricane season of the eastern North Pacific basin is summarized and individual tropical cyclones are described. The number of tropical cyclones was near normal. Hurricane Pauline’s rainfall flooding killed more than 200 people in the ...

Miles B. Lawrence

1999-10-01T23:59:59.000Z

452

Eastern North Pacific Hurricane Season of 2009  

Science Conference Proceedings (OSTI)

The 2009 eastern North Pacific hurricane season had near normal activity, with a total of 17 named storms, of which seven became hurricanes and four became major hurricanes. One hurricane and one tropical storm made landfall in Mexico, directly ...

Todd B. Kimberlain; Michael J. Brennan

2011-06-01T23:59:59.000Z

453

Eastern North Pacific Hurricane Season of 2011  

Science Conference Proceedings (OSTI)

Overall activity during the 2011 eastern North Pacific hurricane season was near average. Of the 11 tropical storms that formed, 10 became hurricanes and 6 reached major hurricane strength (category 3 or stronger on the Saffir–Simpson hurricane ...

Eric S. Blake; Todd B. Kimberlain

2013-05-01T23:59:59.000Z

454

Eastern North Pacific Hurricane Season of 2006  

Science Conference Proceedings (OSTI)

The hurricane season of 2006 in the eastern North Pacific basin is summarized, and the individual tropical cyclones are described. Also, the official track and intensity forecasts of these cyclones are verified and evaluated. The 2006 eastern ...

Richard J. Pasch; Eric S. Blake; Lixion A. Avila; John L. Beven; Daniel P. Brown; James L. Franklin; Richard D. Knabb; Michelle M. Mainelli; Jamie R. Rhome; Stacy R. Stewart

2009-01-01T23:59:59.000Z

455

Estimation of Errors in Seasonal Cycles  

Science Conference Proceedings (OSTI)

A formula is first given for the error in a 2-harmonic seasonal curve of best fit through a set of N oceanographic data points, assuming the departures from the true mean are independent random numbers.

J. S. Godfrey; K. R. Ridgway

1985-08-01T23:59:59.000Z

456

Potential Economic Value of Seasonal Hurricane Forecasts  

Science Conference Proceedings (OSTI)

This paper explores the potential utility of seasonal Atlantic hurricane forecasts to a hypothetical property insurance firm whose insured properties are broadly distributed along the U.S. Gulf and East Coasts. Using a recently developed hurricane ...

Kerry Emanuel; Fabian Fondriest; James Kossin

2012-04-01T23:59:59.000Z

457

Baroclinic Eddy Equilibration under Specified Seasonal Forcing  

Science Conference Proceedings (OSTI)

Baroclinic eddy equilibration under a Northern Hemisphere–like seasonal forcing is studied using a modified multilayer quasigeostrophic channel model to investigate the widely used “quick baroclinic eddy equilibration” assumption and to ...

Yang Zhang; Peter H. Stone

2010-08-01T23:59:59.000Z

458

A Consensus Model for Seasonal Hurricane Prediction  

Science Conference Proceedings (OSTI)

The authors apply a procedure called Bayesian model averaging (BMA) for examining the utility of a set of covariates for predicting the distribution of U.S. hurricane counts and demonstrating a consensus model for seasonal prediction. Hurricane ...

Thomas H. Jagger; James B. Elsner

2010-11-01T23:59:59.000Z

459

Richardson Number Statistics in the Seasonal Thermocline  

Science Conference Proceedings (OSTI)

Statistics of Richardson number in the seasonal thermocline are determined for a simple model and from experiments over the continental shelf. The model consists of normally distributed and uncorrelated density gradient and shear (such as may be ...

Laurie Padman; Ian S. F. Jones

1985-07-01T23:59:59.000Z

460

Characteristics of the Northern Australian Rainy Season  

Science Conference Proceedings (OSTI)

A trend of increasing rainfall over much of north and northwest Australia over recent decades has contrasted with decreases over much of the rest of the continent. The increases have occurred during the summer months when the rainy season is ...

I. N. Smith; L. Wilson; R. Suppiah

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nox ozone season" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Analysis, anaerobic treatment and ozonation of wool scouring wastewater  

SciTech Connect

Wool scouring effluents (WSE) were analyzed by high-resolution gas chromatography-mass spectrometry (HRGC-MS), and then exposed to anaerobic biological treatment using laboratory scale fixed-bed filters. This resulted in a nearly 50% reduction in chemical oxygen demand (COD). Ozonation of the effluent from the biological step led to an even further decrease in total organic carbon (TOC). The fatty acid content of the WSE was affected by both biological tre