National Library of Energy BETA

Sample records for nox ozone season

  1. NOx Emission Reduction and its Effects on Ozone during the 2008 Olympic Games

    SciTech Connect (OSTI)

    Yang, Qing; Wang, Yuhang; Zhao, Chun; Liu, Zhen; Gustafson, William I.; Shao, Min

    2011-07-15

    We applied a daily-assimilated inversion method to estimate NOx (NO+NO2) emissions for June-September 2007 and 2008 on the basis of the Aura Ozone Monitoring Instrument (OMI) observations of nitrogen dioxide (NO2) and model simulations using the Regional chEmistry and trAnsport Model (REAM). Over urban Beijing, rural Beijing, and the Huabei Plain, OMI column NO2 reductions are approximately 45%, 33%, and 14%, respectively, while the corresponding anthropogenic NOx emission reductions are only 28%, 24%, and 6%, during the full emission control period (July 20 Sep 20, 2008). The emission reduction began in early July and was in full force by July 20, corresponding to the scheduled implementation of emission controls over Beijing. The emissions did not appear to recover after the emission control period. Meteorological change from summer 2007 to 2008 is the main factor contributing to the column NO2 decreases not accounted for by the emission reduction. Model simulations suggest that the effect of emission reduction on ozone concentrations over Beijing is relatively minor using a standard VOC emission inventory in China. With an adjustment of the model emissions to reflect in situ observations of VOCs in Beijing, the model simulation suggests a larger effect of the emission reduction.

  2. OTC NOx baseline emission inventory, 1990

    SciTech Connect (OSTI)

    1995-07-01

    The objective of this effort was to compile and quality assure a data base of NOx emissions from fossil fuel-fired boilers and indirect heat exchanges greater than or equal to 250 million British thermal units per hour (MMBtu/hr) capacity and electric generating units greater than or equal to 15 megawatts (MW) in the Northeast Ozone Transport Region (OTR). Emissions for the period May 1 through September 30, 1990 (referred to as the 5-month summer season) were compiled and will be used as a basis for emission reduction targeting and trading.

  3. The role of EPA`s Acid Rain Division in the Ozone Transport Commission`s NOx budget program

    SciTech Connect (OSTI)

    Schary, C.; Culligan, K.

    1997-12-31

    The Ozone Transport Commission`s (OTC) Nitrogen Oxides (NO{sub x}) Budget Program will implement the emissions reduction goal of the 1994 Memorandum of Understanding between its twelve member states and the District of Columbia. The program will achieve its significant NO{sub x} reductions from electric utilities and industrial boilers using a {open_quotes}cap-and-trade{close_quotes} approach modeled after the US Environmental Protection Agency`s sulfur dioxide emissions trading under the Acid Rain Program. The similarity of the two programs has led to the development of an important partnership between the OTC states and EPA`s Acid Rain Division, Over the past two years, Acid Rain Program staff have shared their technical expertise and assisted extensively in the development of the program`s rules. Leveraging the investment EPA made in the systems used to run the Acid Rain Program, the OTC states have asked the Acid Rain Division to administer the data systems for them, and together are working to expand its existing Emissions Tracking System and to modify a clone of the sulfur dioxide Allowance Tracking System, to fulfill the unique requirements of the NO{sub x} Budget Program. This partnership is an important example of the new type of cooperation and sharing of expertise and resources that should develop between EPA and states as they launch multi-state programs to address regional pollution problems that defy a single-state solution.

  4. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ozone Formation as a Function of NOx Reductions Summary and Implications for Air Quality Impacts The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment

  5. Potential for savings in compliance costs for reducing ground-level ozone possible by instituting seasonal versus annual nitric oxide emission limits

    SciTech Connect (OSTI)

    Lookman, A.A.

    1996-12-31

    Ground-level ozone is formed in the atmosphere from its precursor emissions, namely nitric oxide (NO{sub x}) and volatile organic compounds (VOC), with its rate of formation dependent on atmospheric conditions. Since ozone levels tend to be highest during the summer months, seasonal controls of precursors have been suggested as a means of reducing the costs of decreasing ozone concentrations to acceptable levels. This paper attempts to quantify what the potential savings if seasonal control were instituted for coal-fired power plants, assuming that only commercially available NO{sub x} control technologies are used. Cost savings through seasonal control is measured by calculating the total annualized cost of NO{sub x} removal at a given amount of seasonal control for different target levels of annual control. For this study, it is assumed that trading of NO{sub x} emissions will be allowed, as has been proposed by the Ozone Transportation Commission (OTC). The problem has been posed as a binary integer linear programming problem, with decision variables being which control to use at each power plant. The results indicate that requiring annual limits which are lower than seasonal limits can substantially reduce compliance costs. These savings occur because requiring stringent compliance only on a seasonal basis allows power plants to use control methods for which the variable costs are paid for only part of the year, and through the use of gas-based controls, which are much cheaper to operate in the summer months.

  6. A simulation approach of ozone season emissions to optimize a fossil utility's options

    SciTech Connect (OSTI)

    Weiss, M.D.; Masoniello, R.; DeNavas, J.; Fasca, T.; Jones, M.

    2000-07-01

    This paper describes PREACT--an approach to choose a mix of pollution control that optimizes economic and environmental alternatives for NOx compliance. The Predictive Real (Time) Emission and Allowance Compliance Tool (PREACT) is a computer program that allows the user to predict key emission parameters and optimize the maximization of net profits while managing emissions compliance. The program allows simulations of various compliance scenarios for NOx emission reductions in order to maintain both State and Federal NOx allocation of allowances on the fossil fired generating units in the Pepco system. The program uses real time data that is interfaced through a Local Area Network system to update forecasts of emissions. It also provides the user with an understanding of the production energy net profits that results from the simulation. The BTU used and fuel quantities are also outputs of the simulation. This paper describes the principle of the tool, which is to learn from past history and modify emissions forecasts considering up-to-date information on a unit profile. NOx emissions, operating options, fuel changes, technology retrofits, and any other opportunities for reducing emissions; considering feedback from real time information are used to modify the forecast. Other factors such as the market price of energy and the production costs of energy will also allow the user to modify the forecast through simulation. The last activity, which requires redefinition, is how to make decisions in real time considering the many opportunities to minimize the incremental cost to maintain emission compliance. The necessary management processes have been installed to maintain the risk management levels that the company wishes to maintain.

  7. Ozone transport commission developments

    SciTech Connect (OSTI)

    Joyce, K.M.

    1995-08-01

    On September 27, 1994, the states of the Ozone Transport Commission (OTC) signed an important memorandum of understanding (MOU) agreeing to develop a regional strategy for controlling stationary sources of nitrogen oxide emissions. Specifically, the states of the Ozone Transport Region, OTR, agreed to propose regulations for the control of NOx emissions from boilers and other indirect heat exchangers with a maximum gross heat input rate of at least 250 million BTU per hour. The Ozone Transport Region was divided into Inner, Outer and Northern Zones. States in the Outer Zone agreed to reduce NOx emissions by 55%. States in the Inner Zone agreed to reduce NOx emissions 65%. Facilities in both zones have the option to emit NOx at a rate no greater than 0.2 pounds per million Btu by May 1, 1999. This option provides fairness for the gas-fired plants which already have relatively low NOx emissions. Additionally, States in the Inner and Outer Zones agreed to reduce their NOx emissions by 75% or to emit NOx at a rate no greater than 0.15 pounds per million BTU by May 1, 2003. The Northern Zone States agree to reduce their rate of NOx emissions by 55% from base year levels by May 1, 2003, or to emit NOx at a rate no greater than 0.2 pounds per million BTU. As part of this MOU, States also agreed to develop a regionwide trading mechanism to provide a cost-effective mechanism for implementing the reductions.

  8. Controlling NOx emission from industrial sources

    SciTech Connect (OSTI)

    Srivastava, R.K.; Nueffer, W.; Grano, D.; Khan, S.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, and the NOx SIP Call rulemakings. In addition to these regulations, the recent Interstate Air Quality Rulemaking proposal and other bills in the Congress are focusing on additional reductions of NOx. Industrial combustion sources accounted for about 18016 of NOx emissions in the United States in 2000 and constituted the second largest emitting source category within stationary sources, only behind electric utility sources. Based on these data, reduction of NOx emissions from industrial combustion sources is an important consideration in efforts undertaken to address the environmental concerns associated with NOx. This paper discusses primary and secondary NOx control technologies applicable to various major categories of industrial sources. The sources considered in this paper include large boilers, furnaces and fired heaters, combustion turbines, large IC engines, and cement kilns. For each source category considered in this paper, primary NOx controls are discussed first, followed by a discussion of secondary NOx controls.

  9. DOE's Studies of Weekday/Weekend Ozone Pollution in Southern...

    Broader source: Energy.gov (indexed) [DOE]

    Ozone Formation as a Function of NOx Reductions Summary and Implications for Air Quality Impacts Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S.

  10. Low NOx combustion

    DOE Patents [OSTI]

    Kobayashi; Hisashi , Bool, III; Lawrence E.

    2007-06-05

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  11. Low NOx combustion

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.

    2008-10-21

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  12. Compact Potentiometric NOx Sensor | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    pm023_singh_2011_p.pdf More Documents & Publications Compact Potentiometric O2/NOx Sensor Compact Potentiometric NOx Sensor Compact Potentiometric NOx Sensor

  13. Cost analysis for compliance with EPA's regional NOx emissions reductions for fossil-fired power generation

    SciTech Connect (OSTI)

    Smith, D.; Mann, A.; Ward, J.; Ramezan, M.

    1999-07-01

    To achieve a more stringent ambient-air ozone standard promulgated in 1997, the U.S. EPA has established summer NOx emissions limits for fossil-fired electric power generating units in the Ozone Transport Rulemaking region, consisting of 22 eastern and midwestern states and the District of Columbia. These jurisdictions are required to submit State Implementation Plans by September 1999 in response to EPA's rule, with compliance required by 2007. There are 1757 affected units in this region. In the present study, projected state-by-state growth rates for power production are used to estimate power production and NOx emissions by unit in the year 2007. NOx emissions reductions expected by January 1, 2000 due to Title IV compliance are estimated, leaving a substantial balance of emissions reductions to be achieved by post-combustion NOx control. Cost estimates are developed for achieving these remaining reductions.

  14. Ceramatec NOx Sensor and NOx Catalyst Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Ceramatec, Inc., Advanced Ionic Technologies PDF icon 2004_deer_nair.pdf More Documents & Publications Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Pt-free, Perovskite-based Lean NOx Trap Catalysts Active Soot Filter Regeneration

  15. Further improvement of conventional diesel NOx aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Further improvement of conventional diesel NOx aftertreatment concepts as pathway for SULEV Further improvement of conventional diesel NOx aftertreatment concepts as pathway for ...

  16. Measurement and Characterization of NOx Adsorber Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Adsorber Regeneration and Desulfation Measurement and Characterization of NOx Adsorber Regeneration and Desulfation 2003 DEER Conference Presentation: Oak Ridge National ...

  17. Greenhouse gas emissions trading in U.S. States: observations and lessons from the OTC NOx Budget Program

    SciTech Connect (OSTI)

    Andrew Aulisi; Alexander E. Farrell; Jonathan Pershing; Stacy VanDeveer

    2005-07-01

    A number of U.S. states are considering market-based policies to reduce emissions of greenhouse gases (GHGs). The experience gained from emissions trading for sulfur dioxide and oxides of nitrogen (NOx) offers a useful body of information and data to draw on to design a GHG emissions trading system. This report examines NOx trading under the Ozone Transport Commission (OTC) NOx Budget Program, which resulted principally from the leadership, decisions, and actions by a group of states, ultimately becoming the first multilateral cap-and-trade system for emissions of air pollutants. 72 refs.

  18. Transient Dynamometer Testing of a Single Leg NOx Adsorber Combined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single Leg NOx Adsorber Combined with a Fuel Processor for Enhanced NOx Control Transient Dynamometer Testing of a Single Leg NOx Adsorber Combined with a Fuel Processor for ...

  19. Measurement and Characterization of Lean NOx Adsorber Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Adsorber Regeneration and Desulfation and Controlling NOx from Multi-mode Measurement and Characterization of Lean NOx Adsorber Regeneration and Desulfation and ...

  20. DOE - Fossil Energy: Knocking the NOx Out of Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-Knocking Out NOx An Energy Lesson Cleaning Up Coal Knocking the NOx Out of Coal - How NOx Forms - Formation of NOx - Air is mostly nitrogen molecules (green in the above diagram) ...

  1. NOx adsorber and method of regenerating same

    DOE Patents [OSTI]

    Endicott, Dennis L.; Verkiel, Maarten; Driscoll, James J.

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  2. Satellite-observed US power plant NOx emission reductions and their impact on air quality - article no. L22812

    SciTech Connect (OSTI)

    Kim, S.W.; Heckel, A.; McKeen, S.A.; Frost, G.J.; Hsie, E.Y.; Trainer, M.K.; Richter, A.; Burrows, J.P.; Peckham, S.E.; Grell, G.A.

    2006-11-29

    Nitrogen oxide (NOx) emissions resulting from fossil fuel combustion lead to unhealthy levels of near-surface ozone (O{sub 3}). One of the largest U.S. sources, electric power generation, represented about 25% of the U.S. anthropogenic NOx emissions in 1999. Here we show that space-based instruments observed declining regional NOx levels between 1999 and 2005 in response to the recent implementation of pollution controls by utility companies in the eastern U.S. Satellite-retrieved summertime nitrogen dioxide (NO{sub 2}) columns and bottom-up emission estimates show larger decreases in the Ohio River Valley, where power plants dominate NOx emissions, than in the northeast U.S. urban corridor. Model simulations predict lower O{sub 3} across much of the eastern U.S. in response to these emission reductions.

  3. ARM - Measurement - Ozone Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Ozone Concentration The atmospheric concentration or volume mixing ratio (mole fraction) of Ozone Categories Atmospheric State Instruments The above measurement is...

  4. Method And Apparatus For Regenerating Nox Adsorbers

    DOE Patents [OSTI]

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  5. Process-scale modeling of elevated wintertime ozone in Wyoming.

    SciTech Connect (OSTI)

    Kotamarthi, V. R.; Holdridge, D. J.; Environmental Science Division

    2007-12-31

    Measurements of meteorological variables and trace gas concentrations, provided by the Wyoming Department of Environmental Quality for Daniel, Jonah, and Boulder Counties in the state of Wyoming, were analyzed for this project. The data indicate that highest ozone concentrations were observed at temperatures of -10 C to 0 C, at low wind speeds of about 5 mph. The median values for nitrogen oxides (NOx) during these episodes ranged between 10 ppbv and 20 ppbv (parts per billion by volume). Measurements of volatile organic compounds (VOCs) during these periods were insufficient for quantitative analysis. The few available VOCs measurements indicated unusually high levels of alkanes and aromatics and low levels of alkenes. In addition, the column ozone concentration during one of the high-ozone episodes was low, on the order of 250 DU (Dobson unit) as compared to a normal column ozone concentration of approximately 300-325 DU during spring for this region. Analysis of this observation was outside the scope of this project. The data analysis reported here was used to establish criteria for making a large number of sensitivity calculations through use of a box photochemical model. Two different VOCs lumping schemes, RACM and SAPRC-98, were used for the calculations. Calculations based on this data analysis indicated that the ozone mixing ratios are sensitive to (a) surface albedo, (b) column ozone, (c) NOx mixing ratios, and (d) available terminal olefins. The RACM model showed a large response to an increase in lumped species containing propane that was not reproduced by the SAPRC scheme, which models propane as a nearly independent species. The rest of the VOCs produced similar changes in ozone in both schemes. In general, if one assumes that measured VOCs are fairly representative of the conditions at these locations, sufficient precursors might be available to produce ozone in the range of 60-80 ppbv under the conditions modeled.

  6. Modeling analyses of the effects of changes in nitrogen oxides emissions from the electric power sector on ozone levels in the eastern United States

    SciTech Connect (OSTI)

    Edith Gego; Alice Gilliland; James Godowitch

    2008-04-15

    In this paper, we examine the changes in ambient ozone concentrations simulated by the Community Multiscale Air Quality (CMAQ) model for summer 2002 under three different nitrogen oxides (NOx) emission scenarios. Two emission scenarios represent best estimates of 2002 and 2004 emissions; they allow assessment of the impact of the NOx emissions reductions imposed on the utility sector by the NOx State Implementation Plan (SIP) Call. The third scenario represents a hypothetical rendering of what NOx emissions would have been in 2002 if no emission controls had been imposed on the utility sector. Examination of the modeled median and 95th percentile daily maximum 8-hr average ozone concentrations reveals that median ozone levels estimated for the 2004 emission scenario were less than those modeled for 2002 in the region most affected by the NOx SIP Call. Comparison of the 'no-control' with the '2002' scenario revealed that ozone concentrations would have been much higher in much of the eastern United States if the utility sector had not implemented NOx emission controls; exceptions occurred in the immediate vicinity of major point sources where increased NO titration tends to lower ozone levels. 13 refs., 8 figs., 2 tabs.

  7. Investigation on continuous soot oxidation and NOx reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on continuous soot oxidation and NOx reduction by SCR coated DPF Investigation on continuous soot oxidation and NOx reduction by SCR coated DPF Evaluation of CSI catalyst for NOx ...

  8. NOx Sensor Development | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon pm005_glass_2011_o.pdf More Documents & Publications NOxsensor development NOx sensor development Electrochemical NOxSensor for Monitoring Diesel Emissions

  9. Reduce NOx and Improve Energy Efficiency

    SciTech Connect (OSTI)

    2005-05-01

    The U.S. Department of Energy's NOx and Energy Assessment Tool (NxEAT) is available at no charge to help the petroleum refining and chemicals industries develop a cost-effective, plant-wide strategy for NOx reduction and energy efficiency improvements.

  10. Compact Potentiometric NOx Sensor | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pmp_16_singh.pdf More Documents & Publications Compact Potentiometric NOx Sensor Compact Potentiometric O2/NOx

  11. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC CRADA: NOx Control &...

  12. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference ...

  13. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

  14. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Vehicle Technologies ...

  15. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2015: Cummins-ORNLFEERC Emissions CRADA: NOx ...

  16. Enhanced High and Low Temperature Performance of NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Low Temperature Performance of NOx Reduction Materials Enhanced High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells Program and ...

  17. The Impact of Lubricant Formulation on the Performance of NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Formulation on the Performance of NOx Adsorber Catalysts The Impact of Lubricant Formulation on the Performance of NOx Adsorber Catalysts PDF icon 2005deerwhitacre.pdf More ...

  18. Development of Materials Analysis Tools for Studying NOx Adsorber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studying NOx Adsorber Catalysts A cooperative research and development agreement with Cummins Engine Company Development of Materials Analysis Tools for Studying NOx Adsorber ...

  19. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  20. Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants 2005 Diesel Engine ...

  1. Spatiotemporal Distribution of NOx Storage: a Factor Controlling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spatiotemporal Distribution of NOx Storage: a Factor Controlling NH3 and N2O Selectivities over a Commercial LNT Catalyst Spatiotemporal Distribution of NOx Storage: a Factor ...

  2. Functionality of Commercial NOx Storage-Reduction Catalysts and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Functionality of Commercial NOx Storage-Reduction Catalysts and the Development of a Representative Model Functionality of Commercial NOx Storage-Reduction Catalysts and the ...

  3. Fuel Processor Enabled NOx Adsorber Aftertreatment System for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions ...

  4. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor Company PDF ...

  5. Deactivation mechanisms of NOx storage materials arising from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mechanisms of NOx storage materials arising from thermal aging and sulfur poisoning Deactivation mechanisms of NOx storage materials arising from thermal aging and sulfur poisoning ...

  6. A Systematic Investigation of Parameters Affecting Diesel NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber Catalyst Performance A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber Catalyst ...

  7. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2014: Cummins-ORNLFEERC Emissions CRADA: NOx ...

  8. NOx Adsorber Regeneration Phenomena In Heavy Duty Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber Regeneration Phenomena In Heavy Duty Applications NOx Adsorber Regeneration ... More Documents & Publications Fuel-Borne Reductants for NOx Aftertreatment: Preliminary ...

  9. Parametric Study of NOx Adsorber Regeneration in Transient Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parametric Study of NOx Adsorber Regeneration in Transient Cycles Parametric Study of NOx Adsorber Regeneration in Transient Cycles 2002 DEER Conference Presentation: Oak Ridge ...

  10. Oxidation State Optimization for Maximum Efficiency of NOx Adsorber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Oxidation State Optimization for Maximum Efficiency of NOx Adsorber Catalysts Presentation given at the 16th ...

  11. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  12. Two Catalyst Formulations - One Solution for NOx After-treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst Formulations - One Solution for NOx After-treatment Systems Two Catalyst Formulations - One Solution for NOx After-treatment Systems Low-temperature SCR combined with ...

  13. Selective ammonia slip catalyst enabling highly efficient NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    slip catalyst enabling highly efficient NOx removal requirements of the future Selective ammonia slip catalyst enabling highly efficient NOx removal requirements of the future A ...

  14. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents ...

  15. Transmural Catalysis - High Efficiency Catalyst Systems for NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Transmural Catalysis - High Efficiency Catalyst Systems for NOx Adsorbers and SCR Presentation ...

  16. Development on simultaneous reduction system of NOx and PM from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on simultaneous reduction system of NOx and PM from a diesel engine Development on simultaneous reduction system of NOx and PM from a diesel engine 2003 DEER Converence ...

  17. Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for ...

  18. Selective reduction of NOx in oxygen rich environments with plasma...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies Selective reduction of NOx in oxygen rich environments with ...

  19. Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities and Differences Between ... More Documents & Publications Spatiotemporal Distribution of NOx Storage: a Factor ...

  20. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CLEERS Coordination & Development of Catalyst Process Kinetic Data CumminsORNL-FEERC CRADA: NOx Control ...

  1. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite...

    Office of Scientific and Technical Information (OSTI)

    Book: Understanding NOx SCR Mechanism and Activity on CuChabazite Structures throughout the Catalyst Life Cycle Citation Details In-Document Search Title: Understanding NOx SCR...

  2. Cost Analysis of NOx Control Alternatives for Stationary Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of ...

  3. Electrochemical NOxSensor for Monitoring Diesel Emissions | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy PDF icon pm_02_glass.pdf More Documents & Publications NOxsensor development Electrochemical NOx Sensors for Monitoring Diesel Emissions NOx Sensor Development

  4. ARM - Measurement - Ozone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ozone Ozone measurements are given in Dobson units and are integers with 3...

  5. ARM - Campaign Instrument - ozone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsozone Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Ozone Monitor (OZONE) Instrument...

  6. Anthropogenic emissions of NOx over China: Reconciling the difference of inverse modeling results using GOME-2 and OMI measurements

    SciTech Connect (OSTI)

    Gu, Dasa; Wang, Yuhang; Smeltzer, Charles; Boersma, K. Folkert

    2014-06-27

    Inverse modeling using satellite observations of nitrogen dioxide (NO2) columns has been extensively used to estimate nitrogen oxides (NOx) emissions in China. Recently, the Global Ozone Monitoring Experiment-2 (GOME-2) and Ozone Monitoring Instrument (OMI) provide independent global NO2 column measurements on a nearly daily basis at around 9:30 and 13:30 local time across the equator, respectively. Anthropogenic NOx emission estimates by applying previously developed monthly inversion (MI) or daily inversion (DI) methods to these two sets of measurements show substantial differences. We improve the DI method by conducting model simulation, satellite retrieval, and inverse modeling sequentially on a daily basis. After each inversion, we update anthropogenic NOx emissions in the model simulation with the newly obtained a posteriori results. Consequently, the inversion-optimized emissions are used to compute the a priori NO2 profiles for satellite retrievals. As such, the a priori profiles used in satellite retrievals are now coupled to inverse modeling results. The improved procedure was applied to GOME-2 and OMI NO2 measurements in 2011. The new daily retrieval-inversion (DRI) method estimates an average NOx emission of 6.9 Tg N/yr over China, and the difference between using GOME-2 and OMI measurements is 0.4 Tg N/yr, which is significantly smaller than the difference of 1.3 Tg N/yr using the previous DI method. Using the more consistent DRI inversion results, we find that anthropogenic NOx emissions tend to be higher in winter and summer than spring (and possibly fall) and the weekday-to-weekend emission ratio tends to increase with NOx emission in China.

  7. Influence of Ceria on the NOx Storage/Reduction Behavior of Lean NOx Trap Catalysts

    SciTech Connect (OSTI)

    Ji, Yaying; Choi, Jae-Soon; Toops, Todd J; Crocker, Dr. Mark; Naseri, Mojghan

    2008-01-01

    The effect of La2O3-stabilized ceria incorporation on the functioning of fully formulated lean NOx trap catalysts was investigated. Monolithic catalysts were prepared, corresponding to loadings of 0, 50 and 100 g CeO2/L, together with a catalyst containing 100 g/L of ceria-zirconia (Ce0.7Zr0.3O2). Loadings of the other main components (Pt, Rh and BaO) were held constant. Catalyst evaluation was performed on a bench flow reactor under simulated diesel exhaust conditions, employing NOx storage/reduction cycles. NOx storage efficiency in the temperature range 150-350 C was observed to increase with ceria loading, resulting in higher NOx conversion levels. At 150 C, high rich phase NOx slip was observed for all of the catalysts, resulting from an imbalance in the rates of nitrate decomposition and NOx reduction. Optimal NOx conversion was obtained in the range 250-350 C for all the catalysts, while at 450 C high rich phase NOx slip from the most highly loaded ceria-containing catalyst resulted in lower NOx conversion than for the ceria-free formulation. N2O was the major NOx reduction product at 150 C over all of the catalysts, although low NOx conversion levels limited the N2O yield. At higher temperatures N2 was the main product of NOx reduction, although NH3 formation was also observed. Selectivity to NH3 decreased with increasing ceria loading, indicating that NH3 is consumed by reaction with stored oxygen in the rear of the catalyst.

  8. Effect of reductive treatments on Pt behavior and NOx storage in lean NOx trap catalysts

    SciTech Connect (OSTI)

    Wang, Xianqin; Kim, Do Heui; Kwak, Ja Hun; Wang, Chong M.; Szanyi, Janos; Peden, Charles HF

    2011-10-01

    Lean NOx trap (LNT) catalysts represent a promising approach to meet increasingly stringent NOx emission regulations on diesel and other lean-burn engines. Pt material properties, including dispersion and particle size, are known to be important factors in determining NOx uptake performance, since Pt provides active sites for NO oxidation to NO2 necessary for storing NOx as nitrates, and for the reduction of nitrates to N2. In this work, the physicochemical properties of Pt in Pt-BaO/Al2O3 LNT catalysts, such as the Pt accessible surface area and particle size, were investigated by using various tools, such as irreversible volumetric H2 chemisorption, high resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD), following successive reductive treatments at elevated temperatures. NOx uptake activities were also measured to establish a relationship between the properties of Pt and NOx storage following identical high-temperature reductive treatments. We find that the reductive treatments of Pt-BaO/Al2O3 lean NOx trap catalysts at temperatures up to 500 C promote a significant increase in NOx uptake explained, in part, by an induced close interaction between Pt and BaO phases in the catalyst, thus enabling facilitation of the NOx storage process.

  9. NOX: An Object-Oriented Nonlinear Solver

    Energy Science and Technology Software Center (OSTI)

    2002-11-15

    NOX is a C++ object-oriented library for the solving nonlinear equations. It can be used with an linear algebra package and includes interfaces to Epetra and PETSc.

  10. NOx sensor development | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon pm005_glass_2012_o.pdf More Documents & Publications NOxsensor development NOx Sensor Development Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress Report

  11. Ammonia-Free NOx Control System

    SciTech Connect (OSTI)

    Zhen Fan; Song Wu; Richard G. Herman

    2004-06-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia. This report describes the work performed during the April 1 to June 30, 2004 time period.

  12. Parametric Study of NOx Adsorber Regeneration in Transient Cycles |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Oak Ridge National Laboratory PDF icon 2002_deer_west.pdf More Documents & Publications Combining Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Measurement and Characterization of NOx Adsorber Regeneration and Desulfation Measurement and Characterization of Lean NOx Adsorber Regeneration and Desulfation and Controlling NOx from Multi-mode

  13. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

  14. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    Ray Chamberland; Aku Raino; David Towle

    2006-09-30

    For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing firing system technologies do not provide a means to meet current or anticipated regulations absent the use of an SCR. The DOE/ALSTOM program performed large pilot scale combustion testing in ALSTOM's Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut. During this work, the near-field combustion environment was optimized to maximize NOx reduction while minimizing the impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down under globally reducing conditions. Initially, ALSTOM utilized computational fluid dynamic modeling to evaluate a series of burner and/or near field stoichiometry controls in order to screen promising design concepts in advance of the large pilot scale testing. The third and final test, to be executed, will utilize several variants of the best nozzle tip configuration and compare performance with 3 different coals. The fuels to be tested will cover a wide range of coals commonly fired at US utilities. The completion of this work will provide sufficient data to allow ALSTOM to design, construct, and demonstrate a commercial version of an enhanced combustion low NOx pulverized coal burner. A preliminary cost/performance analysis of the developed enhanced combustion low NOx burner applied to ALSTOM's state-of-the-art TFS 2000 firing system was performed to show that the burner enhancements is a cost effective means to reduce NOx.

  15. System and method for diagnosing EGR performance using NOx sensor

    DOE Patents [OSTI]

    Mazur, Christopher John

    2003-12-23

    A method and system for diagnosing a condition of an EGR valve used in an engine system. The EGR valve controls the portion exhaust gases produced by such engine system and fed back to an intake of such engine system. The engine system includes a NOx sensor for measuring NOx in such exhaust. The method includes: determining a time rate of change in NOx measured by the NOx sensor; comparing the determined time rate of change in the measured NOx with a predetermined expected time rate of change in measured NOx; and determining the condition of the EGR valve as a function of such comparison. The method also includes: determining from NOx measured by the NOx sensor and engine operating conditions indications of instances when samples of such measured NOx are greater than an expected maximum NOx level for such engine condition and less than an expected minimum NOx level for such engine condition; and determining the condition of the EGR valve as a function of a statistical analysis of such indications. The method includes determining whether the NOx sensor is faulty and wherein the EGR condition determining includes determining whether the NOx sensor is faulty.

  16. Clean Cities ozone air quality attainment and maintenance strategies that employ alternative fuel vehicles, with special emphasis on natural gas and propane

    SciTech Connect (OSTI)

    Santini, D.J.; Saricks, C.L.

    1998-08-04

    Air quality administrators across the nation are coming under greater pressure to find new strategies for further reducing automotive generated non-methane hydrocarbon (NMHC) and nitrogen oxide (NOx) emissions. The US Environmental Protection Agency (EPA) has established stringent emission reduction requirements for ozone non-attainment areas that have driven the vehicle industry to engineer vehicles meeting dramatically tightened standards. This paper describes an interim method for including alternative-fueled vehicles (AFVs) in the mix of strategies to achieve local and regional improvements in ozone air quality. This method could be used until EPA can develop the Mobile series of emissions estimation models to include AFVs and until such time that detailed work on AFV emissions totals by air quality planners and emissions inventory builders is warranted. The paper first describes the challenges confronting almost every effort to include AFVs in targeted emissions reduction programs, but points out that within these challenges resides an opportunity. Next, it discusses some basic relationships in the formation of ambient ozone from precursor emissions. It then describes several of the salient provisions of EPA`s new voluntary emissions initiative, which is called the Voluntary Mobile Source Emissions Reduction Program (VMEP). Recent emissions test data comparing gaseous-fuel light-duty AFVs with their gasoline-fueled counterparts is examined to estimate percent emissions reductions achievable with CNG and LPG vehicles. Examples of calculated MOBILE5b emission rates that would be used for summer ozone season planning purposes by an individual Air Quality Control Region (AQCR) are provided. A method is suggested for employing these data to compute appropriate voluntary emission reduction credits where such (lighter) AFVs would be acquired. It also points out, but does not quantify, the substantial reduction credits potentially achievable by substituting gaseous-fueled for gasoline-fueled heavy-duty vehicles. Finally, it raises and expands on the relevance of AFVs and their deployment to some other provisions embedded in EPA`s current guidance for implementing 1-hour NAAQS--standards which currently remain in effect--as tools to provide immediate reductions in ozone, without waiting for promised future clean technologies.

  17. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis ...

  18. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to beh

  19. Lean-NOx Catalyst Development for Diesel Engine Applications | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 2 DEER Conference Presentation: Caterpillar Inc. PDF icon 2002_deer_park.pdf More Documents & Publications Lean NOx Catalysis Research and Development Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

  20. Thermal Deactivation Mechanisms of Fully-Formed Lean NOx Trap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deactivation Mechanisms of Fully-Formed Lean NOx Trap Catalysts Aged by LeanRich Cycling Thermal Deactivation Mechanisms of Fully-Formed Lean NOx Trap Catalysts Aged by LeanRich ...

  1. Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air Cutting NOx from Diesel Engines with Membrane-Generated Nitrogen-Enriched Air 2005 Diesel Engine ...

  2. Compact Potentiometric O2/NOx Sensor | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon pm043_singh_2012_o.pdf More Documents & Publications Compact Potentiometric NOx Sensor Compact Potentiometric NOx

  3. Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine

    Broader source: Energy.gov (indexed) [DOE]

    Emissions Control | Department of Energy 04 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Catalytica Energy Systems PDF icon 2004_deer_catalytica.pdf More Documents & Publications Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx Control Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Retrofit Diesel Emissions Control System Providing 50% NOxControl

  4. Electrochemical NOx Sensors for Monitoring Diesel Emissions | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy A unique electrochemical sensing strategy correlating the level of NOx with an impedance-based signal shows promise for sensitivity, stability, and accuracy while incorporating single-cell structures and simple electronics into low-cost designs PDF icon deer10_woo.pdf More Documents & Publications NOxsensor development NOx sensor development Electrochemical NOxSensor for Monitoring Diesel Emissions

  5. NOx Emission Reduction by Oscillating Combustion

    SciTech Connect (OSTI)

    2005-09-01

    This project focuses on a new technology that reduces NOx emissions while increasing furnace efficiency for both air- and oxygen-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace.

  6. NOx Aftertreatment Using Ethanol as Reductant

    Broader source: Energy.gov [DOE]

    The hydrocarbon-SCR that was developed using ethanol and E85 as the reductant showed high NOx reduction, no need for thawing, use of existing infrastructure, and reduced system cost making it a viable alternative to urea-based SCR

  7. Durability of NOx Absorbers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DEER Conference Presentation: EmeraChem LLC PDF icon 2002_deer_parks.pdf More Documents & Publications Cleaner Vehicles, Cleaner Fuel & Cleaner Air APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project Update LNT + SCR Aftertreatment for Medium-Heavy Duty Applications: A Systems Approach

  8. NOx Sensor for Direct Injection Emission Control

    SciTech Connect (OSTI)

    Betteridge, William J

    2006-02-28

    The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the sensor.

  9. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and related combustion performance. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive Powder River Basin coal (PRB) to a moderately reactive Midwestern bituminous coal (HVB) to a less reactive medium volatile Eastern bituminous coal (MVB). Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis.

  10. NOx Reduction with Natural Gas for Lean Large-Bore Engine Applications Using Lean NOx Trap Aftertreatment

    SciTech Connect (OSTI)

    Parks, JE

    2005-02-11

    Large-bore natural gas engines are used for distributed energy and gas compression since natural gas fuel offers a convenient and reliable fuel source via the natural gas pipeline and distribution infrastructure. Lean engines enable better fuel efficiency and lower operating costs; however, NOx emissions from lean engines are difficult to control. Technologies that reduce NOx in lean exhaust are desired to enable broader use of efficient lean engines. Lean NOx trap catalysts have demonstrated greater than 90% NOx reduction in lean exhaust from engines operating with gasoline, diesel, and natural gas fuels. In addition to the clean nature of the technology, lean NOx traps reduce NOx with the fuel source of the engine thereby eliminating the requirement for storage and handling of secondary fuels or reducing agents. A study of lean NOx trap catalysts for lean natural gas engines is presented here. Testing was performed on a Cummins C8.3G (CG-280) engine on a motor dynamometer. Lean NOx trap catalysts were tested for NOx reduction performance under various engine operating conditions, and the utilization of natural gas as the reductant fuel source was characterized. Engine test results show that temperature greatly affects the catalytic processes involved, specifically methane oxidation and NOx storage on the lean NOx trap. Additional studies on a bench flow reactor demonstrate the effect of precious metal loading (a primary cost factor) on lean NOx trap performance at different temperatures. Results and issues related to the potential of the lean NOx trap technology for large-bore engine applications will be discussed.

  11. Catalytic effects of minerals on NOx emission from coal combustion

    SciTech Connect (OSTI)

    Yao, M.Y.; Che, D.F.

    2007-07-01

    The catalytic effects of inherent mineral matters on NOx emissions from coal combustion have been investigated by a thermo-gravimetric analyzer (TGA) equipped with a gas analyzer. The effect of demineralization and the individual effect of Na, K, Ca, Mg, and Fe on the formation of NOx are studied as well as the combined catalytic effects of Ca + Na and Ca + Ti. Demineralization causes more Fuel-N to retain in the char, and reduction of NOx mostly. But the mechanistic effect on NOx formation varies from coal to coal. Ca and Mg promote NOx emission. Na, K, Fe suppress NOx formation to different extents. The effect of transition element Fe is the most obvious. The combination of Ca + Na and Ca + Ti can realize the simultaneous control of sulfur dioxide and nitrogen oxides emissions.

  12. Super Duty Diesel Truck with NOx Aftertreatment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Super Duty Diesel Truck with NOx Aftertreatment Super Duty Diesel Truck with NOx Aftertreatment A profile of a Ford-Energy Department program to develop a three-stage aftertreatment technology, which cleans the vehicle exhaust emissions. This profile is part of the U.S. Drive 2011 Accomplishment Report. PDF icon U.S. DRIVE Highlights of Technical Accomplishments 2011: Super Duty Diesel Truck with NOx Aftertreatment More Documents & Publications Development of the 2011MY Ford Super Duty

  13. High Luminosity, Low-NOx Burner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Luminosity, Low-NOx Burner High Luminosity, Low-NOx Burner High-Efficiency Burner Lowers Costs and Emissions in Oxy-Fuel Glass Melters Glass melters use combustion systems to produce molten glass. While significant progress has been made in developing oxy-fuel combustion systems, current technologies provide low flame luminosity and generate relatively high NOX emissions in the presence of even small amounts of nitrogen in the combustion process. With the help of a grant from AMO,

  14. Measurement and Characterization of NOx Adsorber Regeneration and

    Broader source: Energy.gov (indexed) [DOE]

    Desulfation | Department of Energy 3 DEER Conference Presentation: Oak Ridge National Laboratory PDF icon 2003_deer_huff.pdf More Documents & Publications Exploring Advanced Combustion Regimes for Efficiency and Emissions Combining Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects

  15. Deactivation mechanisms of NOx storage materials arising from thermal aging

    Broader source: Energy.gov (indexed) [DOE]

    and sulfur poisoning | Department of Energy Presents the reliationship between Pt particle size and NOx storage performance over model catalysts. Novel reaction protocol designed to decouple effects of thermal deactivation and incomplete desulfation. PDF icon deer08_muntean.pdf More Documents & Publications Mechanisms of Sulfur Poisoning of NOx Adsorber (LNT) Materials Investigation of Aging Mechanisms in Lean NOx Traps CLEERS Coordination & Development of Catalyst Process Kinetic

  16. Enhanced High Temperature Performance of NOx Storage/Reduction (NSR)

    Broader source: Energy.gov (indexed) [DOE]

    Materials | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace026_peden_2011_o.pdf More Documents & Publications Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials Mechanisms of Sulfur Poisoning of NOx Adsorber (LNT) Materials

  17. Unique Catalyst System for NOx Reduction in Diesel Exhaust |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unique Catalyst System for NOx Reduction in Diesel Exhaust Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, ...

  18. Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx Abatement Catalysts Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER ...

  19. Power Generating Stationary Engines Nox Control: A Closed Loop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) ...

  20. Passive Catalytic Approach to Low Temperature NOx Emission Abatement

    Broader source: Energy.gov [DOE]

    Numerically evaluated and optimized proposed state-of-the-art passive catalytic technology designed to reduce NOx released during vehicle cold start portion of the FTP-75 cycle

  1. Durability Evaluation of an Integrated Diesel NOx Adsorber A...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck Desulfurization Fuel Filter Update on Diesel Exhaust Emission Control ...

  2. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (LNT) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction...

  3. DeNOx characteristics using two staged radical injection techniques

    SciTech Connect (OSTI)

    Kambara, S.; Kumano, Y.; Yukimura, K.

    2009-06-15

    Ammonia radical injection using pulsed dielectric barrier discharge (DBD) plasma has been investigated as a means to control NOx emissions from combustors. When DBD plasma-generated radicals (NH{sub 2}, NH, N, and H) are injected into a flue gas containing nitrogen oxide (NOx), NOx is removed efficiently by chain reactions in the gas phase. However, because the percentage of NOx removal gradually decreases with increasing oxygen concentrations beyond 1% O{sub 2}, improvement of the DeNOx (removal of nitrogen oxide) characteristics at high O{sub 2} concentrations was necessary for commercial combustors. A two-staged injection of the DeNOx agent was developed based on the detailed mechanisms of electron impact reactions and gas phase reactions. A concentration of H radical was observed to play an important role in NOx formation and removal. The effects of applied voltages, oxygen concentrations, and reaction temperatures on NOx removal were investigated under normal and staged injection. NOx removal was improved by approximately 20% using staged injection at O{sub 2} concentrations of 1 to 4%.

  4. NOx Abatement Research and Development CRADA with Navistar Incorporate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abatement Research and Development CRADA with Navistar Incorporated NOx Abatement Research and Development CRADA with Navistar Incorporated 2009 DOE Hydrogen Program and Vehicle ...

  5. Novel Application of Air Separation Membranes Reduces NOx Emissions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application of Air Separation Membranes Reduces NOx Emissions Technology available for licensing: Selective permeation of gases using an air separation membrane. Can be retrofitted to ...

  6. Ultra-Low NOx Premixed Industrial Burner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pollution Reduction and Energy Efficiency Typically reduces NOx to less than 10 ppm without compromising energy efficiency. Contact Information Curtis Taylor (765) 254-1141 ...

  7. Tropospheric ozone in east Asia

    SciTech Connect (OSTI)

    Phadnis, M.J.

    1996-12-31

    An analysis of the observed data for the tropospheric ozone at mid latitudes in east Asia is done. There are three ways by which the tropospheric ozone is calculated, namely: (1) Ozonesonde measurements, (2) Fishman`s method of Residual Ozone and (3) TOMS measurements - an indirect method of calculating tropospheric ozone. In addition the surface ozone values at the network sites in Japan is also considered. The analysis of data is carried out for a period of twelve years from 1979 to 1991. In general it is observed that the tropospheric ozone is more in summer than winter, obviously because of the larger tropopause height in summer. On an average for the period of the analysis, the ozone values are at a high of about 60 DU (dobson units). While in winter the values go down to around 30 DU. Also a time series analysis shows an increasing trend in the values over the years. The ozonesonde values are correlated more to the TOMS tropospheric ozone values. For the stations analyzed in Japan, the TOMS tropospheric ozone values are generally greater than the ozonesonde values. The analysis of the average monthly surface ozone in Japan shows highs in spring and lows in summer. This can be attributed to movement of pollutant laden fronts towards Japan during spring. The highs for surface ozone are about 50 DU while the lows are around 20 DU.

  8. Ozone decomposing filter

    DOE Patents [OSTI]

    Simandl, Ronald F.; Brown, John D.; Whinnery, Jr., LeRoy L.

    1999-01-01

    In an improved ozone decomposing air filter carbon fibers are held together with a carbonized binder in a perforated structure. The structure is made by combining rayon fibers with gelatin, forming the mixture in a mold, freeze-drying, and vacuum baking.

  9. Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx Control Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for ...

  10. Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with ...

  11. AMMONIA-FREE NOx CONTROL SYSTEM (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: AMMONIA-FREE NOx CONTROL SYSTEM Citation Details In-Document Search Title: AMMONIA-FREE NOx CONTROL SYSTEM This report describes a novel NOx control system that ...

  12. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2002-01-01

    This quarterly technical progress report will summarize work accomplished for the Program in the seventh quarter October-December 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes, Task 3 - Economic Evaluation and Task 4 - Program Management. Computational fluid dynamic (CFD) modeling of oxygen injection strategies was performed during the quarter resulting in data that suggest the oxygen injection reduces NOx emissions while reducing LOI. Pilot-scale testing activities concluded at the University of Utah this quarter. Testing demonstrated that some experimental conditions can lead to NOx emissions well below the 0.15 lb/MMBtu limit. Evaluation of alternative OTM materials with improved mechanical properties continued this quarter. Powder procedure optimization continued and sintering trial began on an element with a new design. Several OTM elements were tested in Praxair's single tube high-pressure test facility under various conditions. A modified PSO1d element demonstrated stable oxygen product purity of >98% and oxygen flux of 68% of target. Updated test results and projected economic performance have been reviewed with the Utility Industrial Advisors. The economic comparison remains very favorable for O{sub 2} enhanced combustion. Discussions regarding possible Beta sites have been held with three other utilities in addition to the industrial advisors. Proposals will be prepared after the completion of full scale burner testing. Beta test cost estimating work has been initiated.

  13. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2003-04-01

    This quarterly technical progress report will summarize work accomplished for the Program through the twelfth quarter, January-March 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Pilot scale experiments conducted at the University of Utah explored both the effectiveness of oxygen addition and the best way to add oxygen with a scaled version of Riley Power's newest low NOx burner design. CFD modeling was done to compare the REI's modeling results for James River Unit 3 with the NOx and LOI results obtained during the demonstration program at that facility. Investigation of an alternative method of fabrication of PSO1d elements was conducted. OTM process development work has concluded with the completion of a long-term test of a PSO1d element Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Proposals have been submitted for two additional beta test sites. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

  14. Novel Application of Air Separation Membranes Reduces NOx Emissions |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Application of Air Separation Membranes Reduces NOx Emissions Technology available for licensing: Selective permeation of gases using an air separation membrane. Can be retrofitted to existing engines Significantly reduces NOx emissions (as much as 70%) with just a 2% nitrogen enrichment of intake air PDF icon air_separation_membranes

  15. NOx Adsorber Regeneration Phenomena In Heavy Duty Applications | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 3 DEER Conference Presentation: Oak Ridge National Laboratory PDF icon 2003_deer_west.pdf More Documents & Publications Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project Update

  16. NOx reduction by electron beam-produced nitrogen atom injection

    DOE Patents [OSTI]

    Penetrante, Bernardino M.

    2002-01-01

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  17. A Systematic Investigation of Parameters Affecting Diesel NOx Adsorber

    Broader source: Energy.gov (indexed) [DOE]

    Catalyst Performance | Department of Energy 2002 DEER Conference Presentation: Dephi Corporation PDF icon 2002_deer_dou.pdf More Documents & Publications Pt-free, Perovskite-based Lean NOx Trap Catalysts Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Cleaner Vehicles, Cleaner Fuel & Cleaner Air

  18. Enhanced High Temperature Performance of NOx Storage/Reduction (NSR)

    Broader source: Energy.gov (indexed) [DOE]

    Materials | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace026_peden_2012_o.pdf More Documents & Publications Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials

  19. Functionality of Commercial NOx Storage-Reduction Catalysts and the

    Broader source: Energy.gov (indexed) [DOE]

    Development of a Representative Model | Department of Energy toops1.pdf More Documents & Publications Pre-Competitive Catalysis Research: Fundamental Sulfation/Desulfation Studies of Lean NOx Traps Spatiotemporal Distribution of NOx Storage: a Factor Controlling NH3 and N2O Selectivities over a Commercial LNT Catalyst CLEERS Coordination & Development of Catalyst Process Kinetic Data

  20. Ammonia-Free NOx Control System (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction ...

  1. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control PDF icon ...

  2. Synergies of High-Efficiency Clean Combustion and Lean NOx Trap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts investigation of potential ...

  3. Safe and compact ammonia storage/delivery systems for SCR-DeNOX...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and compact ammonia storagedelivery systems for SCR-DeNOX in automotive units Safe and compact ammonia storagedelivery systems for SCR-DeNOX in automotive units Presentation ...

  4. Ozone Risk Assessment Utilities

    Energy Science and Technology Software Center (OSTI)

    1999-08-10

    ORAMUS is a user-friendly, menu-driven software system that calculates and displays user-selected risk estimates for health effects attributable to short-term exposure to tropospheric ozone. Inputs to the risk assessment are estimates of exposure to ozone and exposure-response relationships to produce overall risk estimates in the form of probability distributions. Three fundamental models are included: headcount risk, benchmark risk, and hospital admissions. Exposure-response relationships are based on results of controlled human exposure studies. Exposure estimates aremore » based on the EPA''s probabilistic national ambient air quality standards (NAAQS) exposure model, pNEM/Osub3, which simulates air quality associated with attainment of alternative NAAQS. Using ORAMUS, risk results for 27 air quality scenarios, air quality in 9 urban areas, 33 health endpoints, and 4 chronic health endpoints can be calculated.« less

  5. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2001-04-01

    This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes and Task 4 - Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the first year. OTM material characterization was completed. 100% of commercial target flux was demonstrated with OTM disks. The design and assembly of Praxair's single tube high-pressure test facility was completed. The production of oxygen with a purity of better than 99.5% was demonstrated. Coal combustion testing was conducted at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. The injector for oxygen enhanced coal based reburning was conducted at Praxair. Combustion modeling with Keystone boiler was completed. Pilot-scale combustion test furnace simulations continued this quarter.

  6. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2003-08-01

    This quarterly technical progress report will summarize work accomplished for the Program through the thirteenth quarter, April-June 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with project objectives. REI's model was modified to evaluate mixing issues in the upper furnace of a staged unit. Analysis of the results, and their potential application to this unit is ongoing. Economic evaluation continues to confirm the advantage of oxygen-enhanced combustion. A contract for a commercial demonstration has been signed with the Northeast Generation Services Company to supply oxygen and license the oxygen enhanced low NOx combustor technology for use at the 147-megawatt coal fired Mt. Tom Station in Holyoke, MA. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

  7. Nonaqueous ozonation of vulcanized rubber

    DOE Patents [OSTI]

    Serkiz, Steven M.

    1999-01-01

    A process and resulting product is provided in which a solid particulate, such as vulcanized crumb rubber, has the surface functional groups oxidized by ozonation using a nonpolar solvent. The ozonation process renders the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger loading levels of the treated crumb rubber can be used in new rubber mixtures.

  8. Benchmark Reaction Mechanisms and Kinetics for Lean NOx Traps...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon acep01larson.pdf More Documents & Publications Development of Chemical Kinetic Models for Lean NOx ...

  9. Novel Catalysts for Nox Reduction with Reductants Produced in...

    Broader source: Energy.gov (indexed) [DOE]

    ID:9130) Project ID:18519 Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck Progress on Acidic Zirconia Mixed Oxides for Efficient NH3-SCR Catalysis

  10. Lean NOx Catalysis Research and Development | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    3 DEER Conference Presentation: Caterpillar, Inc. PDF icon 2003_deer_park.pdf More Documents & Publications Lean-NOx Catalyst Development for Diesel Engine Applications Fuel Effects on Emissions Control Technologies

  11. Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

    SciTech Connect (OSTI)

    Choi, Jae-Soon; Prikhodko, Vitaly Y; Partridge Jr, William P; Parks, II, James E; Norman, Kevin M; Huff, Shean P; Chambon, Paul H; Thomas, John F

    2010-01-01

    Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

  12. Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 1999 | Department of Energy Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. This study compares the costs of the principal emission control technologies being employed or nearing commercialization for control of oxides of

  13. NOx reduction aftertreatment system using nitrogen nonthermal plasma desorption

    SciTech Connect (OSTI)

    Okubo, M.; Inoue, M.; Kuroki, T.; Yamamoto, T.

    2005-08-01

    In the flue emission from an internal combustion system using diffusing combustion such as coal or oil fuel boiler, incinerator, or diesel engine, around 10% oxygen is usually included. It is difficult to reduce the NOx in the emission completely using catalysts or plasma alone because part of the NO is oxidized under an O{sub 2}-rich environment. In order to overcome these difficulties, we propose a new aftertreatment system of NOx included in the exhaust gas of the combustion system using nonthermal plasma (NTP) desorption and reduction. In this system, exchangeable adsorbent columns are equipped. As an initial step to realize such kind of aftertreatment system, the basic characteristics of the N{sub 2} NTP desorption and NOx reduction were examined experimentally using a pulse corona NTP reactor. After several adsorption/desorption processes, the amount of NOx adsorbed becomes equal to that of the NOx desorbed, that is, all the NO, was desorbed in a single desorption process. It is confirmed that the NOx complete reduction using N{sub 2} NTP desorption is possible not only for a simulated exhaust gas but for a real diesel engine gas. The effective specific energy density can be decreased down to 22 Wh/m{sup 3}.

  14. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2002-08-01

    This quarterly technical progress report will summarize work accomplished for the Program through the ninth quarter April-June 2002 in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Full-scale testing using the Industrial Boiler Simulation Facility (ISBF) at Alstom Power was completed. The pilot scale experiments to evaluate the effect of air preheat and transport air stoichiometric ratio (SR) on NOx emissions were conducted at the University of Utah. Combustion modeling activities continued with full-scale combustion test furnace simulations. An OTM element was tested in Praxair's single tube high-pressure test facility and two thermal cycles were completed. PSO1d elements of new dimension were tested resulting in a lower flux than previous PSO1d elements of different dimensions, however, no element deformation was observed. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Two potential host beta sites have been identified and proposals submitted.

  15. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2002-04-01

    This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2002 in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the second year. The first round of pilot scale testing with 3 bituminous coals was completed at the University of Utah. Full-scale testing equipment is in place and experiments are underway. Coal combustion lab-scale testing was completed at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. Combustion modeling activities continued with pilot-scale combustion test furnace simulations. 75% of target oxygen flux was demonstrated with small PSO1 tube in Praxair's single tube high-pressure test facility. The production of oxygen with a purity of better than 99.999% was demonstrated. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Two potential host sites have been identified.

  16. Promising Technology: Ozone Laundry System for Multiload Clothes Washers

    Broader source: Energy.gov [DOE]

    These laundry systems use ozone as the chemical cleaning agent. The system generates ozone by electrifying oxygen in the air, and then dissolves the ozone in water.

  17. ARM - Measurement - Ozone Column Abundance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Column Abundance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ozone Column Abundance The vertically integrated amount of ozone (commonly measured in Dobson Unit, 1 DU = 134 mmol/m^2) Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  18. 2015 Open Season

    Broader source: Energy.gov [DOE]

    Open Season which will run from Monday, November 9, 2015 through Monday, December 14, 2015.  During the annual Open Season period employees can enroll, change, or cancel an existing enrollment in...

  19. Emissions of nitrogen oxides from US urban areas: estimation from Ozone Monitoring Instrument retrievals for 2005-2014

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Z.; Streets, D. G.; de Foy, B.; Lamsal, L. N.; Duncan, B. N.; Xing, J.

    2015-05-28

    Satellite remote sensing of tropospheric nitrogen dioxide (NO2) can provide valuable information for estimating surface nitrogen oxides (NOx) emissions. Using an exponentially-modified Gaussian (EMG) method and taking into account the effect of wind on observed NO2 distributions, we estimate three-year moving-average emissions of summertime NOx from 35 US urban areas directly from NO2 retrievals of the Ozone Monitoring Instrument (OMI) during 2005–2014. Following the conclusions of previous studies that the EMG method provides robust and accurate emission estimates under strong-wind conditions, we derive top-down NOx emissions from each urban area by applying the EMG method to OMI data with windmore » speeds greater than 3–5 m s-1. Meanwhile, we find that OMI NO2 observations under weak-wind conditions (i.e., < 3 m s-1) are qualitatively better correlated with the surface NOx source strength in comparison to all-wind OMI maps; and therefore we use them to calculate the satellite-observed NO2 burdens of urban areas and compare with NOx emission estimates. The EMG results show that OMI-derived NOx emissions are highly correlated (R > 0.93) with weak-wind OMI NO2 burdens as well as bottom-up NOx emission estimates over 35 urban areas, implying a linear response of the OMI observations to surface emissions under weak-wind conditions. The simultaneous, EMG-obtained, effective NO2 lifetimes (~3.5 ± 1.3 h), however, are biased low in comparison to the summertime NO2 chemical lifetimes. In general, isolated urban areas with NOx emission intensities greater than ~ 2 Mg h-1 produce statistically significant weak-wind signals in three-year average OMI data. From 2005 to 2014, we estimate that total OMI-derived NOx emissions over all selected US urban areas decreased by 49%, consistent with reductions of 43, 47, 49, and 44% in the total bottom-up NOx emissions, the sum of weak-wind OMI NO2 columns, the total weak-wind OMI NO2 burdens, and the averaged NO2 concentrations, respectively, reflecting the success of NOx control programs for both mobile sources and power plants. The decrease rates of these NOx-related quantities are found to be faster (i.e., -6.8 to -9.3% yr-1) before 2010 and slower (i.e., -3.4 to -4.9% yr-1) after 2010. For individual urban areas, we calculate the R values of pair-wise trends among the OMI-derived and bottom-up NOx emissions, the weak-wind OMI NO2 burdens, and ground-based NO2 measurements; and high correlations are found for all urban areas (median R = 0.8), particularly large ones (R up to 0.97). The results of the current work indicate that using the EMG method and considering the wind effect, the OMI data allow for the estimation of NOx emissions from urban areas and the direct constraint of emission trends with reasonable accuracy.« less

  20. Relation between Atmospheric Ozone and Geomagnetic Disturbances...

    Office of Scientific and Technical Information (OSTI)

    This involves a decrease of ozone in the 50 to 65 deg N region and an increase south of 50 deg N. Two or three days after the storm, the ozone amount increases in the 50 to 65 deg ...

  1. Co-firing coal-water slurry in low-NOx burners: Experience at...

    Office of Scientific and Technical Information (OSTI)

    Conference: Co-firing coal-water slurry in low-NOx burners: Experience at Penelecs Seward Station Citation Details In-Document Search Title: Co-firing coal-water slurry in low-NOx ...

  2. Development of a Stand-Alone Urea-SCR System for NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines Stand-alone urea ...

  3. Initial Results of the DeNOx SCR System by Urea Injection in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5 Bus Initial Results of the DeNOx SCR System by Urea Injection in the Euro 5 Bus 2005 Diesel Engine Emissions ...

  4. The Effects of Hydrocarbons on NOx Reduction over Fe-based SCR Catalyst

    Broader source: Energy.gov [DOE]

    Study of effects of hydrocarbons on ammonia storage and NOx reduction over a commercial Fe-zeolite SCR catalyst to understand catalyst behaviors at low temperatures and improve NOx reduction performance and reduce system cost

  5. Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, 2015 Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels - Fact Sheet, ...

  6. Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Presentation given ...

  7. NH3 generation over commercial Three-Way Catalysts and Lean-NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    over commercial Three-Way Catalysts and Lean-NOx Traps NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps Research to identify most promising catalytic ...

  8. APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy Duty NOx AdsorberDPF Project: Heavy Duty Linehaul Platform Project Update APBF-DEC Heavy Duty NOx AdsorberDPF Project: Heavy Duty Linehaul Platform Project Update 2003 DEER ...

  9. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR System for Retrofit of In-Use Trucks Diesel NOx-PM Reduction with Fuel Economy Increase by ...

  10. Simultaneously Low-Engine-Out NOx and PM with Highly Diluted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simultaneously Low-Engine-Out NOx and PM with Highly Diluted Diesel Combustuion Simultaneously Low-Engine-Out NOx and PM with Highly Diluted Diesel Combustuion 2002 DEER Conference ...

  11. Effect of Engine-Out NOx Control Strategies on PM Size Distribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-Out NOx Control Strategies on PM Size Distribution in Heavy-Duty Diesel Engines Developed for 2010 Effect of Engine-Out NOx Control Strategies on PM Size Distribution in ...

  12. APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEC Heavy-Duty NOx AdsorberDPF Project: Catalyst Aging Study APBF- DEC Heavy-Duty NOx AdsorberDPF Project: Catalyst Aging Study 2004 Diesel Engine Emissions Reduction (DEER) ...

  13. AMMONIA-FREE NOx CONTROL SYSTEM (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: AMMONIA-FREE NOx CONTROL SYSTEM Citation Details In-Document Search Title: AMMONIA-FREE NOx CONTROL SYSTEM You are accessing a document from the Department of ...

  14. Impacts from a fossil fuel power plant on ozone levels in Memphis, Tennessee

    SciTech Connect (OSTI)

    Mueller, S.F.; Bailey, E.M.

    1998-12-31

    The Tennessee Valley Authority (TVA) Allen power plant is located on the Mississippi River in the southwest corner of Memphis, Tennessee. Allen has three coal-fired cyclone boilers with a rated capacity of 272 MW each. It is a Phase 2 plant under Title IV of the Clean Air Act and is the largest single source of NO{sub x} in the Memphis area. TVA plans to reduce Allen NOx emissions through a combination of burning low-sulfur coal (which has the benefit of reducing NO{sub x} emissions while also reducing SO{sub 2} emissions) and installing gas re-burn technology. A modeling study using the SAI, Inc., UAM-V photochemical model was conducted to examine the potential impacts of NO{sub x} reductions on ozone levels in the Memphis area. A series of four model simulations were made in which different Allen emissions scenarios were examined. The focus period of the photochemical modeling was 11--14 July 1995 when measurements in and near Memphis indicated peak hourly ozone levels of 135--140 ppb. This analysis primarily examined computed impacts within 50 km of Memphis. Allen was computed to contribute as much as 20--30 ppb to ground ozone levels 20-50 km downwind using its NO{sub x} emission rate before Title IV compliance. After compliance it was computed to contribute only about 10--20 ppb. At the same time, maximum daily ozone reductions due to Allen NO{sub x} titration of ozone were between 30 and 60 ppb. These benefits will be reduced by 30--50% after Title IV compliance, and are expected to occur within 30 km of the plant. More model grid cells indicated dis-benefits (net ground-level ozone increases) than benefits on three of the four episode days using the Title IV compliance emission rate. Significant ozone dis-benefits were expected because of the well-documented NO titration of ozone within plumes having a high ratio of NO to volatile organic compounds.

  15. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated

    Broader source: Energy.gov (indexed) [DOE]

    Lean NOx Catalysis | Department of Energy 03 DEER Conference Presentation: Pacific Northwest National Laboratory PDF icon 2003_deer_aardahl.pdf More Documents & Publications Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies Lean-NOx Catalyst Development for Diesel Engine Applications

  16. Lean NOx Reduction with Dual Layer LNT/SCR Catalysts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Results show that a series of dual layer catalysts with a bottom layer of LNT catalyst and a top layer of SCR catalyst can carry out coupled ammonia generation and NOx reduction, achieving high NOx conversion with minimal ammonia slip PDF icon deer12_harold.pdf More Documents & Publications Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction

  17. Pt-free, Perovskite-based Lean NOx Trap Catalysts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Perovskite-based lean NOx catalysts shown to achieve comparable NOx reduction performance as commercial platinum based counterpart PDF icon deer10_qi.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Metal Oxide Nano-Array Catalysts for Low Temperature Diesel Oxidation Lean NOx Reduction with Dual Layer LNT/SCR Catalysts Spatiotemporal Distribution of NOx Storage: a Factor Controlling NH3 and N2O Selectivities over a Commercial LNT Catalyst

  18. Selective reduction of NOx in oxygen rich environments with plasma-assisted

    Broader source: Energy.gov (indexed) [DOE]

    catalysis: Catalyst development and mechanistic studies | Department of Energy 3 DEER Conference Presentation: Pacific Northwest National Laboratory PDF icon 2003_deer_peden.pdf More Documents & Publications Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction

  19. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    SciTech Connect (OSTI)

    Woo, L Y; Glass, R S

    2008-11-14

    Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies (< 1 Hz) as the sensing signal and attribute the measured response to interfacial phenomena. Work by our group has also investigated using phase angle as the sensing signal at somewhat higher frequencies (10 Hz). The higher frequency measurements would potentially allow for reduced sampling times during sensor operation. Another potential advantage of impedance-metric NO{sub x} sensing is the similarity in response to NO and NO{sub 2} (i.e., total-NO{sub x} sensing). Potentiometric NO{sub x} sensors typically show higher sensitivity to NO2 than NO, and responses that are opposite in sign. However, NO is more stable than NO{sub 2} at temperatures > 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

  20. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy PDF icon 2002_deer_aardahl.pdf More Documents & Publications Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies

  1. APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging Study |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: National Renewable Energy Laboratory PDF icon 2004_deer_whitacre.pdf More Documents & Publications APBF-DEC Light-duty NOx Adsorber/DPF Project Status of APBF-DEC NOx Adsorber/DPF Projects APBF-DEC NOx Adsorber/DPF Project: SUV/Pick-Up Platform

  2. APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform

    Broader source: Energy.gov (indexed) [DOE]

    Project Update | Department of Energy Ricardo Inc., Chicago Technical Center PDF icon deer_2003_may.pdf More Documents & Publications Status of APBF-DEC NOx Adsorber/DPF Projects APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging Study APBF-DEC Light-duty NOx Adsorber/DPF Project

  3. APBF-DEC Light-duty NOx Adsorber/DPF Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    FEV Technology, Inc. PDF icon deer_2003_tomazic.pdf More Documents & Publications Status of APBF-DEC NOx Adsorber/DPF Projects APBF-DEC NOx Adsorber/DPF Project: SUV/Pick-Up Platform APBF- DEC Heavy-Duty NOx Adsorber/DPF Project: Catalyst Aging Study

  4. NOx, SOx & CO{sub 2} mitigation using blended coals

    SciTech Connect (OSTI)

    Labbe, D.

    2009-11-15

    Estimates of potential CO{sub 2} reduction achievable through the use of a mixture of bituminous and subbituminous (PRB) coals, whilst attaining NOx and SOx compliance are presented. The optimization considerations to provide satisfactory furnace, boiler and unit performance with blended coal supplies to make such operation feasible are discussed. 6 refs., 7 figs., 1 tab.

  5. Low NOx combustion using cogenerated oxygen and nitrogen streams

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, Lawrence E.; Snyder, William J.

    2009-02-03

    Combustion of hydrocarbon fuel is achieved with less formation of NOx by feeding the fuel into a slightly oxygen-enriched atmosphere, and separating air into oxygen-rich and nitrogen-rich streams which are fed separately into the combustion device.

  6. Enhanced High Temperature Performance of NOx Reduction Catalyst Materials

    SciTech Connect (OSTI)

    Gao, Feng; Kim, Do Heui; Luo, Jinyong; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai Ying; Hess, Howard ..

    2012-12-31

    Two primary NOx after-treatment technologies have been recognized as the most promising approaches for meeting stringent NOx emission standards for diesel vehicles within the Environmental Protection Agencys (EPAs) 2007/2010 mandated limits, NOx Storage Reduction (NSR) and NH3 selective catalytic reduction (SCR); both are, in fact being commercialized for this application. However, in looking forward to 2015 and beyond with expected more stringent regulations, the continued viability of the NSR technology for controlling NOx emissions from lean-burn engines such as diesels will require at least two specific, significant and inter-related improvements. First, it is important to reduce system costs by, for example, minimizing the precious metal content while maintaining, even improving, performance and long-term stability. A second critical need for future NSR systems, as well as for NH3 SCR, will be significantly improved higher and lower temperature performance and stability. Furthermore, these critically needed improvements will contribute significantly to minimizing the impacts to fuel economy of incorporating these after-treatment technologies on lean-burn vehicles. To meet these objectives will require, at a minimum an improved scientific understanding of the following things: i) the various roles for the precious and coinage metals used in these catalysts; ii) the mechanisms for these various roles; iii) the effects of high temperatures on the active metal performance in their various roles; iv) mechanisms for higher temperature NOx storage performance for modified and/or alternative storage materials; v) the interactions between the precious metals and the storage materials in both optimum NOx storage performance and long term stability; vi) the sulfur adsorption and regeneration mechanisms for NOx reduction materials; vii) materials degradation mechanisms in CHA-based NH3 SCR catalysts. The objective of this CRADA project between PNNL and Cummins, Inc. is to develop a fundamental understanding of the above-listed issues. Model catalysts that are based on literature formulations are the focus of the work being carried out at PNNL. In addition, the performance and stability of more realistic high temperature NSR catalysts, supplied by JM, are being studied in order to provide baseline data for the model catalysts that are, again, based on formulations described in the open literature. For this short summary, we will primarily highlight representative results from our recent studies of the stability of candidate high temperature NSR materials.

  7. The Chemistry of the Thermal DeNOx Process: A Review of the Technology's Possible Application to control of NOx from Diesel Engines

    SciTech Connect (OSTI)

    Lyon, Richard

    2001-08-05

    This paper presents a review of the Thermal DeNOx process with respect to its application to control of NOx emissions from diesel engines. The chemistry of the process is discussed first in empirical and then theoretical terms. Based on this discussion the possibilities of applying the process to controlling NOx emissions from diesel engines is considered. Two options are examined, modifying the requirements of the chemistry of the Thermal DeNOx process to suit the conditions provided by diesel engines and modifying the engines to provide the conditions required by the process chemistry. While the former examination did not reveal any promising opportunities, the latter did. Turbocharged diesel engine systems in which the turbocharger is a net producer of power seem capable of providing the conditions necessary for NOx reduction via the Thermal DeNOx reaction.

  8. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  9. Ozone Reductions Using Residential Building Envelopes

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  10. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Bob Hurt; Eric Eddings

    2001-01-31

    This is the second Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The focus of our efforts during the last three months have been on: (1) Completion of a long term field test for Rich Reagent Injection (RRI) at the Conectiv BL England Station Unit No.1, a 130 MW Cyclone fired boiler; (2) Extending our Computational Fluid Dynamics (CFD) based NOx model to accommodate the chemistry for RRI in PC fired boilers; (3) Design improvements and calibration tests of the corrosion probe; and (4) Investigations on ammonia adsorption mechanisms and removal processes for Fly Ash.

  11. LOW NOx EMISSIONS IN A FUEL FLEXIBLE GAS TURBINE

    SciTech Connect (OSTI)

    Raymond Drnevich; James Meagher; Vasilis Papavassiliou; Troy Raybold; Peter Stuttaford; Leonard Switzer; Lee Rosen

    2004-08-01

    In alignment with Vision 21 goals, a study is presented here on the technical and economic potential for developing a gas turbine combustor that is capable of generating less that 2 ppm NOx emissions, firing on either coal synthesis gas or natural gas, and being implemented on new and existing systems. The proposed solution involves controlling the quantity of H2 contained in the fuel. The presence of H2 leads to increased flame stability such that the combustor can be operated at lower temperatures and produce less thermal NOx. Coal gas composition would be modified using a water gas shift converter, and natural gas units would implement a catalytic partial oxidation (CPOX) reactor to convert part of the natural gas feed to a syngas before fed back into the combustor. While both systems demonstrated technical merit, the economics involved in implementing such a system are marginal at best. Therefore, Praxair has decided not to pursue the technology any further at this time.

  12. Small, Inexpensive Combined NOx Sensor and O2 Sensor

    SciTech Connect (OSTI)

    W. N. Lawless; C. F. Clark, Jr.

    2008-09-08

    It has been successfully demonstrated in this program that a zirconia multilayer structure with rhodium-based porous electrodes performs well as an amperometric NOx sensor. The sensitivity of the sensor bodies operating at 650 to 700 C is large, with demonstrated current outputs of 14 mA at 500 ppm NOx from sensors with 30 layers. The sensor bodies are small (4.5 x 4.2 x 3.1 mm), rugged, and inexpensive. It is projected the sensor bodies will cost $5 - $10 in production. This program has built on another successful development program for an oxygen sensor based on the same principles and sponsored by DOE. This oxygen sensor is not sensitive to NOx. A significant technical hurdle has been identified and solved. It was found that the 100% Rh electrodes oxidize rapidly at the preferred operating temperatures of 650 - 700 C, and this oxidation is accompanied by a volume change which delaminates the sensors. The problem was solved by using alloys of Rh and Pt. It was found that a 10%/90% Rh/Pt alloy dropped the oxidation rate of the electrodes by orders of magnitude without degrading the NOx sensitivity of the sensors, allowing long-term stable operation at the preferred operating temperatures. Degradation in the sensor output caused by temperature cycling was identified as a change in resistance at the junction between the sensor body and the external leads attached to the sensor body. The degradation was eliminated by providing strong mechanical anchors for the wire and processing the junctions to obtain good electrical bonds. The NOx sensors also detect oxygen and therefore the fully-packaged sensor needs to be enclosed with an oxygen sensor in a small, heated zirconia chamber exposed to test gas through a diffusion plug which limits the flow of gas from the outside. Oxygen is pumped from the interior of the chamber to lower the oxygen content and the combination of measurements from the NOx and oxygen sensors yields the NOx content of the gas. Two types of electronic control units were designed and built. One control unit provides independent constant voltages to the NOx and oxygen sensors and reads the current from them (that is, detects the amount of test gas present). The second controller holds the fully-assembled sensor at the desired operating temperature and controllably pumps excess oxygen from the test chamber. While the development of the sensor body was a complete success, the development of the packaging was only partially successful. All of the basic principles were demonstrated, but the packaging was too complex to optimize the operation within the resources of the program. Thus, no fully-assembled sensors were sent to outside labs for testing of cross-sensitivities, response times, etc. Near the end of the program, Sensata Technologies of Attleboro, MA tested the sensor bodies and confirmed the CeramPhysics measurements as indicated in the following attached letter. Sensata was in the process of designing their own packaging for the sensor and performing cross-sensitivity tests when they stopped all sensor development work due to the automotive industry downturn. Recently Ceramatec Inc. of Salt Lake City has expressed an interest in testing the sensor, and other licensing opportunities are being pursued.

  13. Novel Application of Air Separation Membranes Reduces Engine NOx Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Find More Like This Return to Search Novel Application of Air Separation Membranes Reduces Engine NOx Emissions Alternative to Exhaust Gas Recirculation that involves the nitrogen enrichment of intake air. Argonne National Laboratory Contact ANL About This Technology <p> Schematic representation of the air separation process through a membrane module</p> Schematic representation of the air separation process through

  14. Lower Freezing DEF For Higher NOx Reduction Attainment | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy NOx emissions data from bench-scale experiments and Class III truck operated using a low freezing point diesel exhaust fluid PDF icon deer11_highfield.pdf More Documents & Publications Urea Mixing Design -- Simulation and Test Investigation 3rd Generation SCR System Using Solid Ammonia Storage and Direct Gas Dosing Urea SCR and DPF System for Deisel Sport Utility Vehicle Meeting Tier II Bin 5

  15. NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy This report provides the results of an analytical and experimental sA PDF icon 2002_deer_hakim.pdf More Documents & Publications Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration Cleaner Vehicles, Cleaner Fuel & Cleaner Air

  16. Development of Materials Analysis Tools for Studying NOx Adsorber Catalysts

    Broader source: Energy.gov (indexed) [DOE]

    A cooperative research and development agreement with Cummins Engine Company | Department of Energy 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_watkins.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Catalyst Characterization (Agreement ID:9130) Project ID:18519 Mechanisms of Sulfur Poisoning of NOx Adsorber (LNT) Materials Morphology and Composition cycle of BaO/Al2O3 NSR Catalysts during NO2

  17. Effect of Biodiesel Blends on NOx Emissions | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_pedersen.pdf More Documents & Publications Key Benefits in Using Ethanol-Diesel Blends Diesel Injection Shear-Stress Advanced Nozzle (DISSAN) Lean NOx Trap Formulation Effect on Performance with In-Cylinder Regeneration

  18. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    SciTech Connect (OSTI)

    Schneider, William

    2014-08-29

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  19. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    SciTech Connect (OSTI)

    Parks, II, James E; Storey, John Morse; Theiss, Timothy J; Ponnusamy, Senthil; Ferguson, Harley Douglas; Williams, Aaron M; Tassitano, James B

    2007-09-01

    Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial oxidation and reforming chemistry, and the effects of sulfur poisons on the partial oxidation, reformer, and lean NOx trap catalysts. The initial work on NOx reduction efficiency demonstrated that NOx emissions <0.1 g/bhp-hr (the ARES goal) can be achieved with the lean NOx trap catalyst technology. Subsequent work focused on cost and size optimization and durability issues which addressed two specific ARES areas of interest to industry ('Cost of Power' and 'Availability, Reliability, and Maintainability', respectively). Thus, the research addressed the approach of the lean NOx trap catalyst technology toward the ARES goals as shown in Table 1-1.

  20. ULTRA LOW NOx CATALYTIC COMBUSTION FOR IGCC POWER PLANTS

    SciTech Connect (OSTI)

    Lance L. Smith

    2004-03-01

    Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using PCI's two-stage (catalytic / gas-phase) combustion process for syngas fuel. In this process, the first stage is a Rich-Catalytic Lean-burn (RCL{trademark}) catalytic reactor, wherein a fuel-rich mixture contacts the catalyst and reacts while final and excess combustion air cool the catalyst. The second stage is a gas-phase combustor, wherein the catalyst cooling air mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During the reporting period, PCI successfully achieved NOx = 0.011 lbs/MMBtu at 10 atm pressure (corresponding to 2.0 ppm NOx corrected to 15% O{sub 2} dry) with near-zero CO emissions, surpassing the project goal of < 0.03 lbs/MMBtu NOx. These emissions levels were achieved at scaled (10 atm, sub-scale) baseload conditions corresponding to Tampa Electric's Polk Power Station operation on 100% syngas (no co-firing of natural gas).

  1. Discharge cell for ozone generator

    DOE Patents [OSTI]

    Nakatsuka, Suguru

    2000-01-01

    A discharge cell for use in an ozone generator is provided which can suppress a time-related reduction in ozone concentration without adding a catalytic gas such as nitrogen gas to oxygen gas as a raw material gas. The discharge cell includes a pair of electrodes disposed in an opposed spaced relation with a discharge space therebetween, and a dielectric layer of a three-layer structure consisting of three ceramic dielectric layers successively stacked on at least one of the electrodes, wherein a first dielectric layer of the dielectric layer contacting the one electrode contains no titanium dioxide, wherein a second dielectric layer of the dielectric layer exposed to the discharge space contains titanium dioxide in a metal element ratio of not lower than 10 wt %.

  2. OPEN SEASON CHECK LIST

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FSAFEDS brochure https:www.fsafeds.comGEMFSAFEDSFormsOPM- FSA-OVTF-10-031.pdf Talk to an FSAFEDS representative Open Season benefits fair Contact your agency HR staff...

  3. Ultra Low NOx Catalytic Combustion for IGCC Power Plants

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2008-03-31

    In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia reduction in fuel allowing potential reductions in the burner NOx production. These reductions of NOx emissions and expanded alternative fuel capability make the rich catalytic combustor uniquely situated to provide reductions in capital costs through elimination of requirements for SCR, operating costs through reduction in need for NOx abating dilution, SCR operating costs, and need for co-firing fuels allowing use of lower value but more available fuels, and efficiency of an engine through reduction in dilution flows.

  4. Mario Molina, Chlorofluorocarbons (CFCs), and Ozone Depletion

    Office of Scientific and Technical Information (OSTI)

    Prize-winning Research, Massachusetts Institute of Technology (MIT) The Science and Policies of the Ozone Layer -- A Historical Perspective, IDEaS - Nobel Laureate Mario J....

  5. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected in a pilot scale furnace and soot behavior predicted by the CFD model showed good agreement. Field and laboratory tests were performed for SCR catalysts used for coal and biomass co-firing applications. Fundamental laboratory studies were performed to better understand mechanisms involved with catalyst deactivation. Field tests with a slip stream reactor were used to create catalyst exposed to boiler flue gas for firing coal and for co-firing coal and biomass. The field data suggests the mechanisms leading to catalyst deactivation are, in order of importance, channel plugging, surface fouling, pore plugging and poisoning. Investigations were performed to better understand the mechanisms involved with catalyst regeneration through mechanical or chemical methods. A computer model was developed to predict NOx reduction across the catalyst in a SCR. Experiments were performed to investigate the fundamentals of ammonia/fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. Measurements were performed for ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes. This work resulted in the first fundamental ammonia isotherms on carbon-containing fly ash samples. This work confirms industrial reports that aqueous solution chemistry takes place upon the introduction of even very small amounts of water, while the ash remains in a semi-dry state.

  6. Ozone contactor hydraulic considerations in meeting CT disinfection...

    Office of Scientific and Technical Information (OSTI)

    Optimization of ozone dose and contact time for CT calculations was performed in the pilot plant. Operational guidelines for the application of ozone in Union Hills pilot plant ...

  7. The Weekend Ozone Effect - The Weekly Ambient Emissions Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment 2003 DEER Conference ...

  8. Reformulated Gasoline Use Under the 8-Hour Ozone Rule

    Reports and Publications (EIA)

    2002-01-01

    This paper focuses on the impact on gasoline price and supply when additional ozone non-attainment areas come under the new 8-hour ozone standard.

  9. Effect of Ventilation Strategies on Residential Ozone Levels...

    Office of Scientific and Technical Information (OSTI)

    Effect of Ventilation Strategies on Residential Ozone Levels Citation Details In-Document Search Title: Effect of Ventilation Strategies on Residential Ozone Levels You are...

  10. Effect of Ventilation Strategies on Residential Ozone Levels...

    Office of Scientific and Technical Information (OSTI)

    Effect of Ventilation Strategies on Residential Ozone Levels Citation Details In-Document Search Title: Effect of Ventilation Strategies on Residential Ozone Levels Authors:...

  11. Reactivity of Ozone with Solid Potassium Iodide Investigated...

    Office of Scientific and Technical Information (OSTI)

    Reactivity of Ozone with Solid Potassium Iodide Investigated by Atomic Force Microscopy Citation Details In-Document Search Title: Reactivity of Ozone with Solid Potassium...

  12. Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Gas Technology Institute (GTI), June 2011 | Department of Energy Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Presentation on Flexible CHP System with Low NOx, CO, and VOC Emissions, given by David Cygan of the Gas Technology Institute, at the U.S. DOE Industrial Distributed Energy Portfolio

  13. Flexible CHP System with Low NOx, CO and VOC Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Flexible CHP System with Low NOx, CO and VOC Emissions Flexible CHP System with Low NOx, CO and VOC Emissions Introduction A combined heat and power (CHP) system can be a financially attractive energy option for many industrial and commercial facilities. This is particularly the case in areas of the country with high electricity rates. However, regions with air quality concerns often have strict limits on criteria pollutants, such as nitrogen oxide (NOx), carbon monoxide (CO), and

  14. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite Structures throughout the Catalyst Life Cycle

    SciTech Connect (OSTI)

    Ribeiro, Fabio; Delgass, Nick; Gounder, Rajmani; Schneider, William F.; Miller, Jeff; Yezerets, Aleksey; McEwen, Jean-Sabin; Peden, Charles HF; Howden, Ken

    2014-12-09

    Oxides of nitrogen (NOx) compounds contribute to acid rain and photochemical smog and have been linked to respiratory ailments. NOx emissions regulations continue to tighten, driving the need for high performance, robust control strategies. The goal of this project is to develop a deep, molecular level understanding of the function of Cu-SSZ-13 and Cu-SAPO-34 materials that catalyze the SCR of NOx with NH3.

  15. High-Throughput Program for the Discovery of NOx Reduction Catalysts |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 04 Diesel Engine Emissions Reduction (DEER) Conference Presentation: General Motors Corporation PDF icon 2004_deer_blint.pdf More Documents & Publications WA_02_042_GENERAL_MOTORS_POWER_TRAIN_DIV_Waiver_of_Domestic_.pdf Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Lean-NOx Catalyst Development for Diesel Engine Applications

  16. Flexible CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 Flexible CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 The Gas Technology Institute, in collaboration with Cannon Boiler Works, Integrated CHP Systems Corp., Capstone Turbine Corporation, Johnston Boiler Company, and Inland Empire Foods has developed a Flexible Combined Heat and Power (FlexCHP) system that incorporates a supplemental Ultra-Low-NOx (ULN) burner into a 65 kW microturbine

  17. APBF-DEC NOx Adsorber/DPF Project: SUV/Pick-Up Platform | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Southwest Research Institute PDF icon 2003_deer_webb.pdf More Documents & Publications Status of APBF-DEC NOx Adsorber/DPF Projects Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with Ultralow-Sulfur Fuel APBF-DEC Light-duty NOx Adsorber/DPF Project

  18. Combining Low-Temperature Combustion with Lean-NOx Trap Yields Progress

    Broader source: Energy.gov (indexed) [DOE]

    Toward Targets of Efficient NOx Control for Diesels | Department of Energy 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_huff.pdf More Documents & Publications Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects Reductant Utilization in a LNT + SCR System Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts

  19. Effect of Thermal Aging on NO oxidation and NOx storage in a

    Broader source: Energy.gov (indexed) [DOE]

    Fully-Formulated Lean NOx Trap | Department of Energy Thermal aging of LNT has numerous material and chemical effects PDF icon deer09_toops.pdf More Documents & Publications Impacts of Biodiesel on Emission Control Devices NOx Abatement Research and Development CRADA with Navistar Incorporated Thermal Deactivation Mechanisms of Fully-Formed Lean NOx Trap Catalysts Aged by Lean/Rich Cycling

  20. Propane-Diesel Dual Fuel for CO2 and Nox Reduction

    Broader source: Energy.gov [DOE]

    Test results show significant CO2 and NOx emission reductions, fuel economy gains, and overall energy savings with propane injection in a diesel engine.

  1. Lean NOx Trap Formulation Effect on Performance with In-Cylinder...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Trap Formulation Effect on Performance with In-Cylinder Regeneration Strategies Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference ...

  2. Impact of Lubricant Formulation on the Performance of NOx Adsorber Catalysts (Presentation)

    SciTech Connect (OSTI)

    Whitacre, S. D.

    2005-08-25

    Discusses the impact of lubricant formulation on the performance of oxides of nitrogen (NOx) Adsorber Catalysts, including background/motivation for study, experimental design, and results.

  3. Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH...

    Broader source: Energy.gov (indexed) [DOE]

    and Other Reductants Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted with SCR NOx Adsorber Regeneration Phenomena In Heavy Duty Applications

  4. Effect of Thermal Aging on NO oxidation and NOx storage in a...

    Broader source: Energy.gov (indexed) [DOE]

    Thermal aging of LNT has numerous material and chemical effects PDF icon deer09toops.pdf More Documents & Publications Impacts of Biodiesel on Emission Control Devices NOx ...

  5. Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System

    SciTech Connect (OSTI)

    Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

    2006-05-01

    Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

  6. Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

  7. Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology ...

  8. The Effects of Hydrocarbons on NOx Reduction over Fe-based SCR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and NOx reduction over a commercial Fe-zeolite SCR catalyst to understand catalyst ... Hydrocarbon Inhibition and HC Storage Modeling in Fe-Zeolite Catalysts for HD Diesel ...

  9. Two Catalyst Formulations- One Solution for NOx After-treatment Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Low-temperature SCR combined with standard high-temperature SCR catalyst formulation in one system provides high NOx conversion over wide temperature range.

  10. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect (OSTI)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

  11. SOX/NOX sorbent and process of use

    DOE Patents [OSTI]

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1995-01-01

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilized spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  12. Sox/Nox Sorbent And Process Of Use

    DOE Patents [OSTI]

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1995-06-27

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 650.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and spray dried to form the stabilized spheroidal alumina particles having a particle size of less than 500 microns. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  13. SOx/NOx sorbent and process of use

    DOE Patents [OSTI]

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1993-01-19

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  14. Sox/Nox Sorbent And Process Of Use

    DOE Patents [OSTI]

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1996-12-17

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 650.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and spray dried to form the stabilized spheroidal alumina particles having a particle size of less than 500 microns. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  15. SOx/NOx sorbent and process of use

    DOE Patents [OSTI]

    Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

    1993-01-19

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  16. SOX/NOX sorbent and process of use

    DOE Patents [OSTI]

    Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

    1995-05-09

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilized spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths. 3 figs.

  17. Ammonia storage and delivery systems for NOx aftertreatment | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Poster presenation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_johannessen.pdf More Documents & Publications 3rd Generation SCR System Using Solid Ammonia Storage and Direct Gas Dosing Safe and compact ammonia storage/delivery systems for SCR-DeNOX in automotive units Urea SCR and

  18. Preparing for Hurricane Season

    Broader source: Energy.gov [DOE]

    Hurricane season in the Atlantic begins today and will last through November 30. As the lead Federal agency responsible for coordinating the response to major energy disruptions, the Department of Energy works closely with other Federal agencies, State, local and tribal governments, and our partners in the private sector to prepare for all types of disasters – including hurricanes and other severe weather.

  19. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-06-30

    This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without excessive downtime by the end of the quarter.

  20. NOx Adsorbers for Heavy Duty Truck Engines-Testing and Simulation

    SciTech Connect (OSTI)

    Hakim, N; Hoelzer, J.; Liu, Y.

    2002-08-25

    This feasibility study of NOx adsorbers in heavy-duty diesel engines examined three configurations (dual-leg, single-leg and single-leg-bypass) in an integrated experimental setup, composed of a Detroit Diesel Class-8 truck engine, a catalyzed diesel particulate filter and the NOx absorber system. The setup also employed a reductant injection concept, sensors and advanced control strategies.

  1. Investigation of Aging Mechanisms in Lean NOx Traps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_26_crocker.pdf More Documents & Publications Pt-free, Perovskite-based Lean NOx Trap Catalysts CLEERS Coordination & Development of Catalyst Process Kinetic Data Lean NOx Reduction with Dual Layer LNT/SCR Catalysts

  2. Lean NOx Traps - Microstructural Studies of Real World and Model Catalysts

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy 05 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_narula.pdf More Documents & Publications Low Temperature Emission Control Pre-Competitive Catalysis Research: Fundamental Sulfation/Desulfation Studies of Lean NOx Traps Investigation of Aging Mechanisms in Lean NOx Traps

  3. An Improvement of Diesel PM and NOx Reduction System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon 2005_deer_watanabe.pdf More Documents & Publications Development on simultaneous reduction system of NOx and PM from a diesel engine An Improvement of Diesel PM and NOx Reduction System New Diesel Emissions Control Strategy for U.S. Tier 2

  4. Development of Chemical Kinetic Models for Lean NOx Traps | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace035_larson_2011_o.pdf More Documents & Publications Development of Chemical Kinetic Models for Lean NOx Traps Benchmark Reaction Mechanisms and Kinetics for Lean NOx Traps CLEERS Coordination & Development of Catalyst Process Kinetic Data

  5. Development on simultaneous reduction system of NOx and PM from a diesel

    Broader source: Energy.gov (indexed) [DOE]

    engine | Department of Energy 03 DEER Converence Presentation: Toyota Motor Corporation PDF icon 2003_deer_watanabe.pdf More Documents & Publications An Improvement of Diesel PM and NOx Reduction System An Improvement of Diesel PM and NOx Reduction System EPA Mobile Source Rule Update

  6. Modeling of NOx Destruction Options for INEEL Sodium-Bearing Waste Vitrification

    SciTech Connect (OSTI)

    Wood, Richard Arthur

    2001-09-01

    Off-gas NOx concentrations in the range of 1-5 mol% are expected as a result of the proposed vitrification of sodium-bearing waste at the Idaho National Engineering and Environmental Laboratory. An existing kinetic model for staged combustion (originally developed for NOx abatement from the calcination process) was updated for application to vitrification offgas. In addition, two new kinetic models were developed to assess the feasibility of using selective non-catalytic reduction (SNCR) or high-temperature alone for NOx abatement. Each of the models was developed using the Chemkin code. Results indicate that SNCR is a viable option, reducing NOx levels to below 1000 ppmv. In addition, SNCR may be capable of simultaneously reducing CO emissions to below 100 ppmv. Results for using high-temperature alone were not as promising, indicating that a minimum NOx concentration of 3950 ppmv is achievable at 3344F.

  7. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    DOE Patents [OSTI]

    Park, Paul W.

    2004-03-16

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  8. Four seasons of giving

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kurt's Column Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Four seasons of giving We value a culture of giving and appreciate our employees' on-going volunteerism throughout Northern New Mexico and even nationwide. January 1, 2013 dummy image Read our archives. Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email We value a culture of giving and appreciate our

  9. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.

  10. Use of North American and European air quality networks to evaluate global chemistry-climate modeling of surface ozone

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schnell, J. L.; Prather, M. J.; Josse, B.; Naik, V.; Horowitz, L. W.; Cameron-Smith, P.; Bergmann, D.; Zeng, G.; Plummer, D. A.; Sudo, K.; et al

    2015-04-16

    We test the current generation of global chemistry-climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1° × 1° grid cells, allowing commensurate model-measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (~ 15:00) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is less successfully matched. The observedmore » summertime diurnal range (~ 25 ppb) is underestimated in all regions by about 7 ppb, and the observed seasonal range (~ 21 ppb) is underestimated by about 5 ppb except in the most polluted regions where it is overestimated by about 5 ppb. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80% of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The observed linear relationship showing increases in ozone by up to 6 ppb for larger-sized episodes is also matched.« less

  11. Thermo Scientific Ozone Analyzer Instrument Handbook (Technical...

    Office of Scientific and Technical Information (OSTI)

    The primary measurement output from the Thermo Scientific Ozone Analyzer is the concentration of the analyte (O3) reported at 1-s resolution in units of ppbv in ambient air. Note ...

  12. Low NOx nozzle tip for a pulverized solid fuel furnace

    DOE Patents [OSTI]

    Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

    2014-04-22

    A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

  13. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  14. SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES

    SciTech Connect (OSTI)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

    2005-01-01

    The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus the baseline and finding the ratio between the injected NO amounts. It was observed that the air/fuel ratio, injected NO quantity and engine operating points affected the NOx decomposition rates of the natural gas engine. A highest NOx decomposition rate of 27% was measured from this engine. A separate exploratory tests conducted with a gasoline engine with a low air/fuel ratio yielded results that suggested, that high NOx decomposition rates may be possible if a normally lean burn engine were operated at conditions closer to stoichiometric, with high exhaust gas recirculation (EGR) for a brief period of time during the NOx decomposition phase and with a wider range of air/fuel ratios. Chemical kinetic model predictions using CHEMKIN were performed to relate the experimental data with the established rate and equilibrium models. NOx decomposition rates from 35% to 42% were estimated using the CHEMKIN software. This provided insight on how to maximize NOx decomposition rates for a large bore engine. In the future, the modeling will be used to examine the effect of higher NO{sub 2}/NO ratios that are associated with lower speed and larger bore lean burn operation.

  15. Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission

    SciTech Connect (OSTI)

    Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

    2007-10-01

    Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine programs goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

  16. DOE/NETL's advanced NOx emissions control technology R & D program

    SciTech Connect (OSTI)

    Lani, B.W.; Feeley, T.J. III; Miller, C.E.; Carney, B.A.; Murphy, J.T.

    2006-11-15

    Efforts are underway to provide more cost-effective options for coal-fired power plants to meet stringent emissions limits. Several recently completed DOE/NETL R & D projects were successful in achieving the short-term goal of controlling NOx emissions at 0.15 lb/MMBtu using in-furnace technologies. In anticipation of CAIR and possible congressional multi-pollutant legislation, DOE/NETL issued a solicitation in 2004 to continue R & D efforts to meet the 2007 goal and to initiate R & D targeting the 2010 goal of achieving 0.10 lb/MMBtu using in-furnace technologies in lieu of SCR. As a result, four new NOx R & D projects are currently underway and will be completed over the next three years. The article outlines: ALSTOM's Project on developing an enhanced combustion, low NOx burner for tangentially-fired boilers; Babcock and Wilcox's demonstration of an advanced NOx control technology to achieve an emission rate of 0.10 lb/MMBtu while burning bituminous coal for both wall- and cyclone-fired boilers; Reaction Engineering International's (REI) full-scale field testing of advanced layered technology application (ALTA) NOx control for cyclone fired boilers; and pilot-scale testing of ALTA NOx control of coal-fired boilers also by REI. DOE/NETL has begun an R & D effort to optimize performance of SCR controls to achieve the long term goal of 0.01 lb/MMBtu NOx emission rate by 2020. 1 fig.

  17. Global NOx Measurements in Turbulent Nitrogen-Diluted Hydrogen Jet Flames

    SciTech Connect (OSTI)

    Weiland, N.T.; Strakey, P.A.

    2007-03-01

    Turbulent hydrogen diffusion flames diluted with nitrogen are currently being studied to assess their ability to achieve the DOE Turbine Programs aggressive emissions goal of 2 ppm NOx in a hydrogen-fueled IGCC gas turbine combustor. Since the unstrained adiabatic flame temperatures of these diluted flames are not low enough to eliminate thermal NOx formation the focus of the current work is to study how the effects of flame residence time and global flame strain can be used to help achieve the stated NOx emissions goal. Dry NOx measurements are presented as a function of jet diameter nitrogen dilution and jet velocity for a turbulent hydrogen/nitrogen jet issuing from a thin-lipped tube in an atmospheric pressure combustor. The NOx emission indices from these experiments are normalized by the flame residence time to ascertain the effects of global flame strain and fuel Lewis Number on the NOx emissions. In addition dilute hydrogen diffusion flame experiments were performed in a high-pressure combustor at 2 4 and 8 atm. The NOx emission data from these experiments are discussed as well as the results from a Computational Fluid Dynamics modeling effort currently underway to help explain the experimental data.

  18. Water relations of differentially irrigated cotton exposed to ozone

    SciTech Connect (OSTI)

    Temple, P.J.

    1990-01-01

    The field study was conducted to test the hypothesis that plants chronically exposed to O{sub 3} may be more susceptible to drought because O{sub 3} typically inhibits root growth and increases shoot-root ratios in plants. Cotton was grown in open-top chambers on Hanford coarse sandy loam in Riverside, CA. Plants were grown under three irrigation regimes: Optimum water for lint production (OW), suboptimum or moderate drought stress (SO), and severely drought stressed (SS) and were exposed to seasonal 12 h (0800-2000) O{sub 3} centrations of 0.015, 0.074, 0.094, or 0.111/microLL. Leaf xylem pressure potentials Psi(sub 1) and soil water content Theta(sub v) were measured weekly from June to October. Mean seasonal Psi(sub 1) increased from -1.89 MPa to -1.72 MPa in low to high O{sub 3} treatments, averaged across soil water regimes. Ozone had no effect on seasonal water use of cotton, but water use efficiency was significantly reduced by O{sub 3} in OW and SO, but not in SS treatments. Drought-stressed plants extracted proportionally greater amounts of water from deeper in the soil profile than OW cotton, and O{sub 3} had no apparent effect on this redistribution of roots in the soil. Since O{sub 3} had no apparent effect on the ability of drought-stressed cotton to maintain Psi(sub 1) and to increase root growth relative to shoot growth, this suggests that O{sub 3} may have little or no effect on the potential of cotton to adapt to or tolerate drought.

  19. NOx/O2 Sensors for High-Temperature Applications | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory NOx/O2 Sensors for High-Temperature Applications Technology available for licensing: Low-cost bifunctional high-temperature NOx/oxygen sensor that provides real-time sensing inside a combustion chamber without the requirement of a reference air supply. Placement in combustion chamber provide accurate oxygen-sensing, extremely low drift 2-10% energy saving from sensor optimization of air-flow ratio and fuel oil viscosity PDF icon high-temp_NOx-O2_sensor

  20. NOx reduction technology for natural-gas-industry prime movers. Special report, August 1990

    SciTech Connect (OSTI)

    Castaldini, C.

    1990-08-01

    The applicability, performance, and costs are summarized for state-of-the-art NOx emission controls for prime movers used by the natural gas industry to drive pipeline compressors. Nearly 7700 prime movers of 300 hp or greater are in operation at compressor stations. NOx control technologies for application to reciprocating engines are catalytic reduction, engine modification, exhaust gas recirculation, and pre-stratified charge. Technologies discussed for application to gas turbines are catalytic reduction, water or steam injection, and low-NOx combustors.

  1. Impact of isoprene and HONO chemistry on ozone and OVOC formation in a semirural South Korean forest

    SciTech Connect (OSTI)

    Kim, Saewung; Kim, So-Young; Lee, Meehye; Shim, Heeyoun; Wolfe, Glenn; Guenther, Alex B.; He, Amy; Hong, Youdeog; Han, Jinseok

    2014-01-01

    Rapid urbanization and economic development in East Asia in past decades has led to photochemical air pollution problems such as excess photochemical ozone and aerosol formation. Asian megacities such as Seoul, Tokyo, Shanghai, Gangzhou, and Beijing are surrounded by densely forested areas and recent research has consistently demonstrated the importance of biogenic volatile organic compounds from vegetation in determining oxidation capacity in the suburban Asian megacity regions. Uncertainties in constraining tropospheric oxidation capacity, dominated by hydroxyl radical concentrations, undermine our ability to assess regional photochemical air pollution problems. We present an observational dataset of CO, NOX, SO2, ozone, HONO, and VOCs (anthropogenic and biogenic) from Taehwa Research Forest (TRF) near the Seoul Metropolitan Area (SMA) in early June 2012. The data show that TRF is influenced both by aged pollution and fresh BVOC emissions. With the dataset, we diagnose HOx (OH, HO2, and RO2) distributions calculated with the University of Washington Chemical Box Model (UWCM v 2.1). Uncertainty from unconstrained HONO sources and radical recycling processes highlighted in recent studies is examined using multiple model simulations with different model constraints. The results suggest that 1) different model simulation scenarios cause systematic differences in HOX distributions especially OH levels (up to 2.5 times) and 2) radical destruction (HO2+HO2 or HO2+RO2) could be more efficient than radical recycling (HO2+NO) especially in the afternoon. Implications of the uncertainties in radical chemistry are discussed with respect to ozone-VOC-NOX sensitivity and oxidation product formation rates. Overall, the VOC limited regime in ozone photochemistry is predicted but the degree of sensitivity can significantly vary depending on the model scenarios. The model results also suggest that RO2 levels are positively correlated with OVOCs production that is not routinely constrained by observations. These unconstrained OVOCs can cause higher than expected OH loss rates (missing OH reactivity) and secondary organic aerosol formation. The series of modeling experiments constrained by observations strongly urge observational constraint of the radical pool to enable precise understanding of regional photochemical pollution problems in the East Asian megacity region.

  2. Leveraging Seasonal Opportunities for Marketing Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seasonal Opportunities for Marketing Energy Efficiency Leveraging Seasonal Opportunities for Marketing Energy Efficiency Better Buildings Residential Network Peer Exchange Call ...

  3. Ammonia-Free NOx Control System (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    DE-FC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration ...

  4. Demonstration of a Low-NOx Heavy-Duty Natural Gas Engine

    SciTech Connect (OSTI)

    Not Available

    2004-02-01

    Results of a Next Generation Natural Gas Vehicle engine research project: A Caterpillar C-12 natural gas engine with Clean Air Power Dual-Fuel technology and exhaust gas recirculation demonstrated low NOx and PM emissions.

  5. NH3 generation over commercial Three-Way Catalysts and Lean-NOx Traps

    Broader source: Energy.gov [DOE]

    Research to identify most promising catalytic formulations and operation for the in-situ generation of NH3, storage on a downstream SCR catalyst, and utilized to reduce the remaining NOx

  6. Flexible CHP System with Low NOx, CO and VOC Emissions - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    has developed a Flexible Combined Heat and Power (FlexCHP) system that incorporates a supplemental Ultra-Low-NOx (ULN) burner into a 65 kW microturbine and a heat recovery boiler. ...

  7. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-04-30

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. A series of field tests for RRI at the Ameren Sioux Unit No.1 have demonstrated that RRI can provide up to 30% NOx reduction over the use of over fire air in large scale (480MW) cyclone fired utility boilers. The field tests and modeling results are in good agreement. Final data analysis has been completed for tests performed at Eastlake Power Station of a real-time waterwall corrosion monitoring system. The tests demonstrated that corrosion could be measured accurately in real-time in normal boiler operations, and an assessment of waterwall wastage could be made without impacting boiler availability. Detailed measurements of soot volume fraction have been performed for a coal burner in a pilot scale test furnace. The measured values are in good agreement with the expected trends for soot generation and destruction. Catalysts from four commercial manufacturers have been ordered and one of the samples was received this quarter. Several in situ analyses of vanadium-based SCR catalyst systems were completed at BYU. Results to date indicate that the system produces results that represent improvements compared to literature examples of similar experiments. Construction of the catalyst characterization system (CCS) reactor is nearly complete, with a few remaining details discussed in this report. A literature review originally commissioned from other parties is being updated and will be made available under separate cover as part of this investigation. Fabrication of the multi-catalyst slipstream reactor was completed during this quarter and shakedown testing was begun at the University of Utah pilot-scale coal furnace. Talks continued with two utilities that have expressed interest in hosting a demonstration.

  8. Investigation on continuous soot oxidation and NOx reduction by SCR coated

    Broader source: Energy.gov (indexed) [DOE]

    DPF | Department of Energy Evaluation of CSI catalyst for NOx removal and soot oxidation. PDF icon deer09_iretskaya.pdf More Documents & Publications Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications Two Catalyst Formulations - One Solution for NOx After-treatment Systems SCR-DPF Integrations for Diesel ExhaustPerformance and Perspectives for High SCR Loadings

  9. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for

    Broader source: Energy.gov (indexed) [DOE]

    Heavy-Duty Diesel Engines | Department of Energy 11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace032_partridge_2011_o.pdf More Documents & Publications Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle

  10. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for

    Broader source: Energy.gov (indexed) [DOE]

    Heavy-Duty Diesel Engines | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_32_partridge.pdf More Documents & Publications Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CLEERS Coordination & Development of Catalyst Process Kinetic Data Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for

  11. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for

    Broader source: Energy.gov (indexed) [DOE]

    Heavy-Duty Diesel Engines | Department of Energy 12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace032_partridge_2012_o.pdf More Documents & Publications Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines,

  12. Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Focus is the heavy duty, US dynamometer certification using the Duramax 6.6 liter diesel PDF icon deer09_blint.pdf More Documents & Publications Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Development of HC-SCR System Using Diesel Fuel as a Reductant

  13. Iron Catalysis in Oxidations by Ozone - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Iron Catalysis in Oxidations by Ozone Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Ozone is used commercially for treatment of potable and non-potable water, and as an industrial oxidant. ISU and Ames Laboratory researchers have developed a method for using iron in ozone oxidation that significantly improves the speed of oxidation reactions. Description Ozone is recognized as potent and effective oxidizing agent, and has a

  14. Relation between Atmospheric Ozone and Geomagnetic Disturbances (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Relation between Atmospheric Ozone and Geomagnetic Disturbances Citation Details In-Document Search Title: Relation between Atmospheric Ozone and Geomagnetic Disturbances Results are given for a study of the behavior of the mean meridional distribution of total ozone over 15 European stations (38 to 78 deg N) during severe magnetic storms. The storms studied were 14 severe geomagnetic disturbance; in 1957, 1958, and 1959, and the ozone distributions were studied

  15. Method of preparing doped oxide catalysts for lean NOx exhaust

    DOE Patents [OSTI]

    Park, Paul W.

    2004-03-09

    The lean NOx catalyst includes a substrate, an oxide support material, preferably .gamma.-alumina deposited on the substrate and a metal or metal oxide promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium cerium, and vanadium, and oxides thereof, and any combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between 80 and 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to about 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  16. Release of Ammonium and Mercury from NOx Controlled Fly Ash

    SciTech Connect (OSTI)

    Schroeder, K.T.; Cardone, C.R.; Kim, A.G

    2007-07-01

    One of the goals of the Department of Energy is to increase the reuse of coal utilization byproducts (CUB) to 50% by 2010. This will require both developing new markets and maintaining traditional ones such as the use of fly ash in concrete. However, the addition of pollution control devices can introduce side-effects that affect the marketability of the CUB. Such can be the case when NOx control is achieved using selective catalytic or non-catalytic reduction (SCR or SNCR). Depending on site-specific details, the ammonia slip can cause elevated levels of NH3 in the fly ash. Disposal of ammoniated fly ash can present environmental concerns related to the amount of ammonia that might be released, the amount of water that might become contaminated, and the extent to which metals might be mobilized by the presence of the ammonia. Ammonia retained in fly ash appears to be present as either an ammonium salt or as a chemisorbed species. Mercury in the leachates correlated to neither the amount of leachable ammonium nor to the total amount of Hg in the ash. The strongest correlation was between the decreases in the amount of Hg leached with increased LOI.

  17. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Connie Senior; Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-12-31

    This is the eighteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Safety equipment for ammonia for the SCR slipstream reactor at Plant Gadsden was installed. The slipstream reactor was started and operated for about 1400 hours during the last performance period. Laboratory analysis of exposed catalyst and investigations of the sulfation of fresh catalyst continued at BYU. Thicker end-caps for the ECN probes were designed and fabricated to prevent the warpage and failure that occurred at Gavin with the previous design. A refurbished ECN probe was successfully tested at the University of Utah combustion laboratory. Improvements were implemented to the software that controls the flow of cooling air to the ECN probes.

  18. NOx Control Options and Integration for US Coal Fired Boilers

    SciTech Connect (OSTI)

    Mike Bockelie; Kevin Davis; Connie Senior Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-09-30

    This is the seventeenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. The SCR slipstream reactor was assembled and installed at Plant Gadsden this quarter. Safety equipment for ammonia had not been installed at the end of the quarter, but will be installed at the beginning of next quarter. The reactor will be started up next quarter. Four ECN corrosion probes were reinstalled at Gavin and collected corrosion data for approximately one month. Two additional probes were installed and removed after about 30 hours for future profilometry analysis. Preliminary analysis of the ECN probes, the KEMA coupons and the CFD modeling results all agree with the ultrasonic tube test measurements gathered by AEP personnel.

  19. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Bob Hurt; Eric Eddings

    2001-07-27

    This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. A Rich Reagent Injection (RRI) design has been developed for a cyclone fired utility boiler in which a field test of RRI will be performed later this year. Initial evaluations of RRI for PC fired boilers have been performed. Calibration tests have been developed for a corrosion probe to monitor waterwall wastage. Preliminary tests have been performed for a soot model within a boiler simulation program. Shakedown tests have been completed for test equipment and procedures that will be used to measure soot generation in a pilot scale test furnace. In addition, an initial set of controlled experiments for ammonia adsorption onto fly ash in the presence of sulfur have been performed that indicates the sulfur does enhance ammonia uptake.

  20. Use of North American and European air quality networks to evaluate global chemistry–climate modeling of surface ozone

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schnell, J. L.; Prather, M. J.; Josse, B.; Naik, V.; Horowitz, L. W.; Cameron-Smith, P.; Bergmann, D.; Zeng, G.; Plummer, D. A.; Sudo, K.; et al

    2015-09-25

    We test the current generation of global chemistry–climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1° × 1° grid cells, allowing commensurate model–measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (~ 15:00 local time (LT)) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is less successfullymore » matched. The observed summertime diurnal range (~ 25 ppb) is underestimated in all regions by about 7 ppb, and the observed seasonal range (~ 21 ppb) is underestimated by about 5 ppb except in the most polluted regions, where it is overestimated by about 5 ppb. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80 % of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The models also match the observed linear relationship between episode size and a measure of episode intensity, which shows increases in ozone abundance by up to 6 ppb for larger-sized episodes. We conclude that the skill of the models evaluated here provides confidence in their projections of future surface ozone.« less

  1. Discovery of New NOx Reduction Catalysts for CIDI Engines Using Combinatorial Techniques

    SciTech Connect (OSTI)

    Blint, Richard J

    2005-08-15

    This project for the discovery of new lean reduction NOx catalysts was initiated on August 16th, 2002 and is now into its fourth year. Several materials have already been identified as NOx reduction catalysts for possible future application. NOx reduction catalysts are a critical need in the North American vehicle market since these catalysts are needed to enable both diesels and lean gasoline engines to meet the 2007-2010 emission standards. Hydrocarbon selective catalytic reduction (SCR) is a preferred technology since it requires no infrastructure changes (as may be expected for urea SCR) and most likely has the simplest engine control strategy of the three proposed NOx reduction approaches. The use of fast throughput techniques and informatics greatly enhances the possibility of discovering new NOx reduction catalysts. Using fast throughput techniques this project has already screened over 3000 new materials and evaluates hundreds of new materials a month. Evaluating such a high number of new materials puts this approach into a very different paradigm than previous discovery approaches for new NOx reduction catalysts. With so much data on materials it is necessary to use statistical techniques to identify the potential catalysts and these statistical techniques are needed to optimize compositions of the multi-component materials that are identified under the program as possible new lean NOx catalysts. Several new materials have conversions in excess of 80% at temperatures above 300 C. That is more than twice the activity of previous HC SCR materials. These materials are candidates for emission control on heavy-duty systems (i.e.; over 8500 pounds gross weight). Tests of one of the downselected materials on an engine dynamometer show NOx reductions greater than 80% under some conditions even though the net NOx reductions on the HWFET and the US06 cycles were relatively low. The program is scheduled to continue until the end of the 2006 calendar year. Work in the final year will focus on continued discovery and identity of candidate materials, and also on refining the engine operating strategies to increase NOx reduction over a full engine cycle.

  2. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28

    Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer review meeting at Argonne National Laboratories, in-cylinder pressure was measured to calculate engine indicated mean effective pressure (IMEP) changes due to NOx injections and EGR variations, and to observe conditions in the cylinder. The third experimental campaign gathered NOx decomposition data at 800, 1200 and 1800 rpm. EGR was added via an external loop, with EGR ranging from zero to the point of misfire. The air/fuel ratio was set at both stoichiometric and slightly rich conditions, and NOx decomposition rates were calculated for each set of runs. Modifications were made to the engine exhaust manifold to record individual exhaust temperatures. The three experimental campaigns have provided the data needed for a comprehensive model of NOx decomposition during the combustion process, and data have confirmed that there was no significant impact of injected NO on in-cylinder pressure. The NOx adsorption system provided by Sorbent Technologies Corp. (Twinsburg, OH), comprised a NOx adsorber, heat exchanger and a demister. These components were connected to the engine, and data were gathered to show both the adsorption of NOx from the engine, and desorption of NOx from the carbon-based sorbent material back into the engine intake, using a heated air stream. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a bench top adsorption system was constructed and instrumented with thermocouples and the system output was fed into a NOx analyzer. The temperature of this apparatus was controlled while gathering data on the characteristics of the sorbent material. These data were required for development of a system model. Preliminary data were gathered in 2005, and will continue in early 2006. To assess the economic benefits of the proposed SNR technology the WVU research team has been joined in the last quarter by Dr Richard Turton (WVU-Chemical Engineering), who is modeling, sizing and costing the major components. The tasks will address modeling and preliminary design of the heat exchanger, demister and NOx sorbent chamber s

  3. Genotypic variability in ponderosa pine responses to combined ozone and drought stresses

    SciTech Connect (OSTI)

    Temple, P.J.

    1995-06-01

    Five-year-old ponderosa (Pinus ponderosa Laws.) seedlings from 18 half-sib and one full-sib families obtained from the California Tree Improvement Program were harvested after 1, 2, and 3 growing seasons of exposure to three levels of ozone (O{sub 3}) and two levels of available soil water (ASW) in open-top chambers in the California Sierras. Seedlings were evaluated for O{sub 3} injury symptoms, biomass, and radial growth in response to these stresses. Ozone injury responses were highly variable across families, but family rankings for O{sub 3} injury were consistent across years. Family rankings for O{sub 3} injury were highly correlated with those for reductions in biomass and radial growth for trees in the high ASW treatment, but drought-stressed trees showed no consistent relation between foliar 03 injury and reductions in growth. After three seasons of exposure to 88 ppb O{sub 3}, foliar biomass of the three most susceptible families averaged 60% less than trees in the low-O{sub 3} control, while O{sub 3} had no effect on growth of the three most resistant families. Variability across families of growth responses to drought was significantly less than the variability in seedling responses to O{sub 3}.

  4. Two-stage Catalytic Reduction of NOx with Hydrocarbons

    SciTech Connect (OSTI)

    Umit S. Ozkan; Erik M. Holmgreen; Matthew M. Yung; Jonathan Halter; Joel Hiltner

    2005-12-21

    A two-stage system for the catalytic reduction of NO from lean-burn natural gas reciprocating engine exhaust is investigated. Each of the two stages uses a distinct catalyst. The first stage is oxidation of NO to NO{sub 2} and the second stage is reduction of NO{sub 2} to N{sub 2} with a hydrocarbon. The central idea is that since NO{sub 2} is a more easily reduced species than NO, it should be better able to compete with oxygen for the combustion reaction of hydrocarbon, which is a challenge in lean conditions. Early work focused on demonstrating that the N{sub 2} yield obtained when NO{sub 2} was reduced was greater than when NO was reduced. NO{sub 2} reduction catalysts were designed and silver supported on alumina (Ag/Al{sub 2}O{sub 3}) was found to be quite active, able to achieve 95% N{sub 2} yield in 10% O{sub 2} using propane as the reducing agent. The design of a catalyst for NO oxidation was also investigated, and a Co/TiO{sub 2} catalyst prepared by sol-gel was shown to have high activity for the reaction, able to reach equilibrium conversion of 80% at 300 C at GHSV of 50,000h{sup -1}. After it was shown that NO{sub 2} could be more easily reduced to N{sub 2} than NO, the focus shifted on developing a catalyst that could use methane as the reducing agent. The Ag/Al{sub 2}O{sub 3} catalyst was tested and found to be inactive for NOx reduction with methane. Through iterative catalyst design, a palladium-based catalyst on a sulfated-zirconia support (Pd/SZ) was synthesized and shown to be able to selectively reduce NO{sub 2} in lean conditions using methane. Development of catalysts for the oxidation reaction also continued and higher activity, as well as stability in 10% water, was observed on a Co/ZrO{sub 2} catalyst, which reached equilibrium conversion of 94% at 250 C at the same GHSV. The Co/ZrO{sub 2} catalyst was also found to be extremely active for oxidation of CO, ethane, and propane, which could potential eliminate the need for any separate oxidation catalyst. At every stage, catalyst synthesis was guided by the insights gained through detailed characterization of the catalysts using many surface and bulk analysis techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, Temperature-programmed Reduction, Temperature programmed Desorption, and Diffuse Reflectance InfraRed Fourier Transform Spectroscopy as well as steady state reaction experiments. Once active catalysts for each stage had been developed, a physical mixture of the two catalysts was tested for the reduction of NO with methane in lean conditions. These experiments using a mixture of the catalysts produced N2 yields as high as 90%. In the presence of 10% water, the catalyst mixture produced 75% N{sub 2} yield, without any optimization. The dual catalyst system developed has the potential to be implemented in lean-burn natural gas engines for reducing NOx in lean exhaust as well as eliminating CO and unburned hydrocarbons without any fuel penalty or any system modifications. If funding continues, future work will focus on improving the hydrothermal stability of the system to bring the technology closer to application.

  5. Impact of isoprene and HONO chemistry on ozone and OVOC formation in a semirural South Korean forest

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, S.; Kim, S. -Y.; Lee, M.; Shim, H.; Wolfe, G. M.; Guenther, A. B.; He, A.; Hong, Y.; Han, J.

    2015-04-29

    Rapid urbanization and economic development in East Asia in past decades has led to photochemical air pollution problems such as excess photochemical ozone and aerosol formation. Asian megacities such as Seoul, Tokyo, Shanghai, Guangzhou, and Beijing are surrounded by densely forested areas, and recent research has consistently demonstrated the importance of biogenic volatile organic compounds (VOCs) from vegetation in determining oxidation capacity in the suburban Asian megacity regions. Uncertainties in constraining tropospheric oxidation capacity, dominated by hydroxyl radical, undermine our ability to assess regional photochemical air pollution problems. We present an observational data set of CO, NOx, SO2, ozone, HONO,more » and VOCs (anthropogenic and biogenic) from Taehwa research forest (TRF) near the Seoul metropolitan area in early June 2012. The data show that TRF is influenced both by aged pollution and fresh biogenic volatile organic compound emissions. With the data set, we diagnose HOx (OH, HO2, and RO2) distributions calculated using the University of Washington chemical box model (UWCM v2.1) with near-explicit VOC oxidation mechanisms from MCM v3.2 (Master Chemical Mechanism). Uncertainty from unconstrained HONO sources and radical recycling processes highlighted in recent studies is examined using multiple model simulations with different model constraints. The results suggest that (1) different model simulation scenarios cause systematic differences in HOx distributions, especially OH levels (up to 2.5 times), and (2) radical destruction (HO2 + HO2 or HO2 + RO2) could be more efficient than radical recycling (RO2 + NO), especially in the afternoon. Implications of the uncertainties in radical chemistry are discussed with respect to ozone–VOC–NOx sensitivity and VOC oxidation product formation rates. Overall, the NOx limited regime is assessed except for the morning hours (8 a.m. to 12 p.m. local standard time), but the degree of sensitivity can significantly vary depending on the model scenarios. The model results also suggest that RO2 levels are positively correlated with oxygenated VOCs (OVOCs) production that is not routinely constrained by observations. These unconstrained OVOCs can cause higher-than-expected OH loss rates (missing OH reactivity) and secondary organic aerosol formation. The series of modeling experiments constrained by observations strongly urge observational constraint of the radical pool to enable precise understanding of regional photochemical pollution problems in the East Asian megacity region.« less

  6. Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1

    SciTech Connect (OSTI)

    Marc A. Cremer; Bradley R. Adams

    2006-06-30

    A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

  7. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-31

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.

  8. Climatological simulations of ozone and atmospheric aerosols in the Greater Cairo region

    SciTech Connect (OSTI)

    Steiner, A. L.; Tawfik, A. B.; Shalaby, A.; Zakey, A. S.; Abdel Wahab, M. M.; Salah, Z.; Solmon, F.; Sillman, S.; Zaveri, Rahul A.

    2014-04-16

    An integrated chemistry-climate model (RegCM4-CHEM) simulates present-day climate, ozone and tropospheric aerosols over Egypt with a focus on Greater Cairo (GC) region. The densley populated GC region is known for its severe air quality issues driven by high levels of anthropogenic pollution in conjuction with natural sources such as dust and agricultural burning events. We find that current global emission inventories underestimate key pollutants such as nitrogen oxides and anthropogenic aerosol species. In the GC region, average-ground-based NO2 observations of 40-60 ppb are substantially higher than modeled estimates (5-10 ppb), likely due to model grid resolution, improper boundary layer representation, and poor emissions inventories. Observed ozone concentrations range from 35 ppb (winter) to 80 ppb (summer). The model reproduces the seasonal cycle fairly well, but modeled summer ozone is understimated by approximately 15 ppb and exhibits little interannual variability. For aerosols, springtime dust events dominate the seasonal aerosol cycle. The chemistry-climate model captures the springtime peak aerosol optical depth (AOD) of 0.7-1 but is slightly greater than satellite-derived AOD. Observed AOD decreases in the summer and increases again in the fall due to agricultural burning events in the Nile Delta, yet the model underestimates this fall observed AOD peak, as standard emissions inventories underestimate this burning and the resulting aerosol emissions. Our comparison of modeled gas and particulate phase atmospheric chemistry in the GC region indicates that improved emissions inventories of mobile sources and other anthropogenic activities are needed to improve air quality simulations in this region.

  9. Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control Concept

    Broader source: Energy.gov [DOE]

    Experimental results show low-emissions potential - possibly T2/B2 (SULEV) NOx with low-emitting engines and system optimization.

  10. Thermal Deactivation Mechanisms of Fully-Formed Lean NOx Trap Catalysts Aged by Lean/Rich Cycling

    Broader source: Energy.gov [DOE]

    Catalysts in fully formulated lean NOx traps are aged and evaluated in a bench-flow reactor using simulated diesel engine exhaust.

  11. Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the Midwestern and Northeastern United States

    SciTech Connect (OSTI)

    E.M. Elliott; C. Kendall; S.D. Wanke; D.A. Burns; E.W. Boyer; K. Harlin; D.J. Bain; T.J. Butler

    2007-11-15

    Global inputs of NOx are dominated by fossil fuel combustion from both stationary and vehicular sources and far exceed natural NOx sources. However, elucidating NOx sources to any given location remains a difficult challenge, despite the need for this information to develop sound regulatory and mitigation strategies. We present results from a regional-scale study of nitrogen isotopes (15N) in wet nitrate deposition across 33 sites in the midwestern and northeastern U.S. We demonstrate that spatial variations in 15N are strongly correlated with NOx emissions from surrounding stationary sources and additionally that 15N is more strongly correlated with surrounding stationary source NOx emissions than pH, SO{sub 4}{sup 2-}, or NO{sub 3}{sup -} concentrations. Although emission inventories indicate that vehicle emissions are the dominant NOx source in the eastern U.S., our results suggest that wet NO{sub 3}{sup -} deposition at sites in this study is strongly associated with NOx emissions from power plants. This suggests that large areas of the landscape potentially receive atmospheric NOy deposition inputs in excess of what one would infer from existing monitoring data alone. Moreover, we determined that spatial patterns in 15N values are a robust indicator of stationary NOx contributions to wet NO{sub 3}{sup -} deposition and hence a valuable complement to existing tools for assessing relationships between NO{sub 3}{sup -} deposition, regional emission inventories, and for evaluating progress toward NOx reduction goals. 44 refs., 3 figs.

  12. Understanding the Distributed Intra-Catalyst Impact of Sulfation on Water Gas Shift in a Lean NOx Trap Catalyst

    Broader source: Energy.gov [DOE]

    The Lean NOx Trap catalyst is an aftertreatment technology for abatement of nitrogen-oxide emissions from lean-burn vehicle engines.

  13. Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines

    SciTech Connect (OSTI)

    Parks, II, James E; Prikhodko, Vitaly Y; Kass, Michael D; Huff, Shean P

    2008-01-01

    It is widely recognized that future NOx and PM emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion methodology with an aftertreatment technology will be required. In this study, NOx reduction, fuel efficiency, and regeneration performance of lean NOx trap (LNT) were evaluated for four operating conditions. The combustion approaches included baseline engine operation with and without EGR, two exhaust enrichment methods (post injection and delayed injection), and one advanced combustion mode to enable high efficiency clean combustion (HECC). A 1.7 liter 4-cylinder diesel engine was operated under five conditions, which represent key interest points for light-duty diesel operation. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable. HECC was also reached under more moderate loads and the exhaust temperatures were high enough to enable even further NOx reductions by the LNT. At high loads HECC becomes difficult but the LNT performance improves and acceptable regeneration can be met with enrichment methodologies.

  14. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    SciTech Connect (OSTI)

    Peterson, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankat; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Camou, Alejandro; Aul, Christopher

    2013-09-30

    This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

  15. Simulation of NOx emission in circulating fluidized beds burning low-grade fuels

    SciTech Connect (OSTI)

    Afsin Gungor

    2009-05-15

    Nitrogen oxides are a major environmental pollutant resulting from combustion. This paper presents a modeling study of pollutant NOx emission resulting from low-grade fuel combustion in a circulating fluidized bed. The simulation model accounts for the axial and radial distribution of NOx emission in a circulating fluidized bed (CFB). The model results are compared with and validated against experimental data both for small-size and industrial-size CFBs that use different types of low-grade fuels given in the literature. The present study proves that CFB combustion demonstrated by both experimental data and model predictions produces low and acceptable levels of NOx emissions resulting from the combustion of low-grade fuels. Developed model can also investigate the effects of different operational parameters on overall NOx emission. As a result of this investigation, both experimental data and model predictions show that NOx emission increases with the bed temperature but decreases with excess air if other parameters are kept unchanged. 37 refs., 5 figs., 5 tabs.

  16. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    SciTech Connect (OSTI)

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non-catalytic reduction. The FIR burner was previously demonstrated on firetube and watertube boilers, and these units are still operating at several industrial and commercial boiler sites in sizes ranging from 2.5 to 60 million Btu/h. This report covers the development of an innovative combustion system suitable for natural gas or coke-oven gas firing within the steel industry. The prototype FIR burner was evaluated on a 20 million Btu/h watertube boiler. Acceptable burner performance was obtained when firing natural gas and simulated coke-oven gas doped with ammonia. The laboratory data reveals a direct relationship between NOx formation and the ammonia concentration in the fuel. In addition, NOx formation increases as the primary stoichiometric ratio (PSR) increases. Representative ammonia concentrations, as documented in the steel industry, ranged from 200 to 500 vppm. When the laboratory burner/boiler was operated with 500 vppm ammonia in the fuel, NOx emissions ranged from 50 to 75 vppm. This, conservatively, is 75% less than state-of-the-art burner performance. When the burner is operated with 200 vppm ammonia in the fuel, the corresponding NOx emissions would range from 30 to 45 vppm, 84% less than present burner technology. During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million Btu/h, NOx emissions where 33 vppm and increased at full load; 144 million Btu/h, to 49 vppm. CO emissions fluctuated with the oxygen content and remained below 135 vppm during all tests. The boiler’s maximum output was not achieved due to a limitation dictated by the host site natural gas supply. The FIR burner benefits the public by simultaneously addressing the problems of air pollution and energy conservation through a low-NOx combustion technology that does not increase energy consumption. Continuing activities include the negotiation of a license with Hamworthy Peabody Combustion, Incorporated (Hamworthy Peabody) to commercialize the FIR burner for steel industry applications. Hamworthy Peabody is one of the largest U.S. manufacturers of combustion equipment for boilers in the Steel Industry, and has stated their intention to commercialize the FIR burner.

  17. Total integrated NOx compliance for existing pulverized coal-fired units

    SciTech Connect (OSTI)

    Camody, G.; Lewis, R.; Cohen, M.B.; Buschmann, J.; Hilton, R.; Larsson, A.C.; Tobiasz, R.

    1999-07-01

    The EPA Title 1 NOx emission limits along with the corresponding OTR regulations are mandating coal-fired NOx emission levels below 0.15 lb/MBtu. For tangentially fired units, experience has shown that the technology is currently available to achieve these limits. The question for each unit owner-operator becomes; what is the most economical technology or combination of technologies to achieve the required results? This paper provides a brief overview of Combustion Engineering, Inc.'s (ABB C-E) latest NOx control technologies, both in-furnace and post-combustion, for tangential coal-fired steam generators. The paper further reviews options of both stand-alone and combined multiple technologies to achieve the most cost-effective NOx compliance, while maintaining the high levels of unit efficiency and performance that is required to by successful in their deregulated power industry. Current operational data of both in-furnace and SCR NOx reduction systems are presented, as well as the latest historical cost data for the systems.

  18. A Woman of All Seasons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Woman of All Seasons Pittsburgh, Pa. - Lilas Soukup, a 35-year employee at NETL, has been recognized by the Pittsburgh Federal Executive Board (FEB) as the 2013 Woman of the Year....

  19. Four Seasons Windpower, LLC | Open Energy Information

    Open Energy Info (EERE)

    Seasons Windpower, LLC Jump to: navigation, search Name: Four Seasons Windpower, LLC Address: 1697 Wilbur Road Place: Medina, Ohio Zip: 44256 Sector: Solar, Wind energy Product:...

  20. Effect of Engine-Out NOx Control Strategies on PM Size Distribution in

    Broader source: Energy.gov (indexed) [DOE]

    Heavy-Duty Diesel Engines Developed for 2010 | Department of Energy A distinct relationship was found between engine-out and SCR-out PM distributions for single-mode testing. PDF icon deer08_ardanese.pdf More Documents & Publications Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations Advanced HD Engine Systems and Emissions Control Modeling and Analysis Can We Accurately Measure In-Use Emissions

  1. Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline

    Broader source: Energy.gov (indexed) [DOE]

    Engine Equipped with a Lean-NOx Trap | Department of Energy Lean-burn improves PFI fuel economy by ~3% relative to best stoichiometric VCT/EGR conditions, when used in combination with VCT & EGR. PDF icon deer09_lymburner.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing SmartCatalyst Systems Emissions Control for Lean Gasoline

  2. USE OF A DIESEL FUEL PROCESSOR FOR RAPID AND EFFICIENT REGENERATION OF SINGLE LEG NOX ADSORBER SYSTEMS

    SciTech Connect (OSTI)

    Betta, R; Cizeron, J; Sheridan, D; Davis, T

    2003-08-24

    Lean NOx adsorber systems are one of the primary candidate technologies for the control of NOx from diesel engines to meet the 2007-2010 US emissions regulations, which require a 90% reduction of NOx from the 2004 regulations. Several of the technical challenges facing this technology are regeneration at low exhaust temperatures and the efficient use of diesel fuel to minimize fuel penalty. A diesel processor system has been developed and tested in a single leg NOx adsorber configuration on a diesel engine test stand. During NOx adsorber regeneration, this fuel processor system performs reduces the exhaust O2 level to zero and efficiently processes the diesel fuel to H2 and CO. Combined with a Nox adsorber catalyst, this system has demonstrated NOx reduction above 90%, regeneration of the NOx adsorber H2/CO pulses as short as 1 second and fuel penalties in the 3 to 4% range at 50% load. This fuel processor system can also be used to provide the desulfation cycle required with sulfur containing fuels as well as providing thermal management for PM filter regeneration.

  3. Mario Molina, Chlorofluorocarbons (CFCs), and Ozone Depletion

    Office of Scientific and Technical Information (OSTI)

    Mario Molina, Chlorofluorocarbons (CFCs), and Ozone Depletion Resources with Additional Information In 1973 Mario Molina ... was a postdoctoral researcher working in the laboratory of F. Sherwood Rowland at the University of California at Irvine ... when he made an unsettling discovery. He had been investigating a class of compounds called chlorofluorocarbons, or CFCs. CFCs were used as refrigerants, aerosol sprays, and in making plastic foams. Molina wondered what happened to them once they

  4. Ozone contactor hydraulic considerations in meeting CT disinfection

    Office of Scientific and Technical Information (OSTI)

    requirements (Journal Article) | SciTech Connect Ozone contactor hydraulic considerations in meeting CT disinfection requirements Citation Details In-Document Search Title: Ozone contactor hydraulic considerations in meeting CT disinfection requirements Tracer studies were performed in bench and pilot scale ozone diffusion contactors to determine actual contact times for the bench and pilot scale units and to characterize the flow pattern through these reactors. It was recognized that the

  5. Small, Inexpensive Combined NOx and O2 Sensor

    SciTech Connect (OSTI)

    W. Lawless; C. Clark

    2008-09-01

    It has been successfully demonstrated in this program that a zirconia multilayer structure with rhodium-based porous electrodes performs well as an amperometric NO{sub x} sensor. The sensitivity of the sensor bodies operating at 650 to 700 C is large, with demonstrated current outputs of 14 mA at 500 ppm NO{sub x} from sensors with 30 layers. The sensor bodies are small (4.5 x 4.2 x 3.1 mm), rugged, and inexpensive. It is projected the sensor bodies will cost $5-$10 in production. This program has built on another successful development program for an oxygen sensor based on the same principles and sponsored by DOE. This oxygen sensor is not sensitive to NO{sub x}. A significant technical hurdle has been identified and solved. It was found that the 100% Rh electrodes oxidize rapidly at the preferred operating temperatures of 650-700 C, and this oxidation is accompanied by a volume change which delaminates the sensors. The problem was solved by using alloys of Rh and Pt. It was found that a 10%/90% Rh/Pt alloy dropped the oxidation rate of the electrodes by orders of magnitude without degrading the NO{sub x} sensitivity of the sensors, allowing long-term stable operation at the preferred operating temperatures. Degradation in the sensor output caused by temperature cycling was identified as a change in resistance at the junction between the sensor body and the external leads attached to the sensor body. The degradation was eliminated by providing strong mechanical anchors for the wire and processing the junctions to obtain good electrical bonds. The NO{sub x} sensors also detect oxygen and therefore the fully-packaged sensor needs to be enclosed with an oxygen sensor in a small, heated zirconia chamber exposed to test gas through a diffusion plug which limits the flow of gas from the outside. Oxygen is pumped from the interior of the chamber to lower the oxygen content and the combination of measurements from the NO{sub x} and oxygen sensors yields the NO{sub x} content of the gas. Two types of electronic control units were designed and built. One control unit provides independent constant voltages to the NOx and oxygen sensors and reads the current from them (that is, detects the amount of test gas present). The second controller holds the fully-assembled sensor at the desired operating temperature and controllably pumps excess oxygen from the test chamber. While the development of the sensor body was a complete success, the development of the packaging was only partially successful. All of the basic principles were demonstrated, but the packaging was too complex to optimize the operation within the resources of the program. Thus, no fully-assembled sensors were sent to outside labs for testing of cross-sensitivities, response times, etc. Near the end of the program, Sensata Technologies of Attleboro, MA tested the sensor bodies and confirmed the CeramPhysics measurements as indicated in the following attached letter. Sensata was in the process of designing their own packaging for the sensor and performing cross-sensitivity tests when they stopped all sensor development work due to the automotive industry downturn. Recently Ceramatec Inc. of Salt Lake City has expressed an interest in testing the sensor, and other licensing opportunities are being pursued.

  6. DOE SC ARM TR 179 Thermo Scientific Ozone Analyzer Instrument...

    Office of Scientific and Technical Information (OSTI)

    ... data increment. Ozone - Mixing volume of O3 in ambient air (no water vapor correction). ... However, the supplied pressure regulator only supplies consistent gauge pressure, not ...

  7. Ozone Removal by Filters Containing Activated Carbon: A Pilot...

    Office of Scientific and Technical Information (OSTI)

    in a commercial building heating, ventilating, and air conditioning (HVAC) system. ... measurements of ozone concentrations in the air upstream and downstream of the filters. ...

  8. Ozone depletion, developing countries, and human rights: Seeking better ground on which to fight for protection of the ozone layer

    SciTech Connect (OSTI)

    Williams, V.

    1995-12-31

    I urge you not to take a complacent view of the situation. The state of depletion of the ozone layer continues to be alarming... In February, 1993, the ozone levels over North America and most of Europe were 20 percent below normal... Even now, millions of tons of CFC [chlorofluorocarbon] products are en route to their fatal stratospheric rendezvous... This exponential increase calls for increased reflection on the state of the ozone layer and calls for bold decisions.

  9. Weekend/Weekday Ozone Study in the South Coast Air Basin | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. ...

  10. A Numerical Investigation into the Anomalous Slight NOx Increase when Burning Biodiesel: A New (Old) Theory

    SciTech Connect (OSTI)

    Ban-Weiss, G A; Chen, J Y; Buchholz, B A; Dibble, R W

    2007-01-30

    Biodiesel is a notable alternative to petroleum derived diesel fuel because it comes from natural domestic sources and thus reduces dependence on diminishing petroleum fuel from foreign sources, it likely lowers lifecycle greenhouse gas emissions, and it lowers an engine's emission of most pollutants as compared to petroleum derived diesel. However, the use of biodiesel often slightly increases a diesel engine's emission of smog forming nitrogen oxides (NO{sub x}) relative to petroleum diesel. In this paper, previously proposed theories for this slight NOx increase are reviewed, including theories based on biodiesel's cetane number, which leads to differing amounts of charge preheating, and theories based on the fuel's bulk modulus, which affects injection timing. This paper proposes an additional theory for the slight NO{sub x} increase of biodiesel. Biodiesel typically contains more double bonded molecules than petroleum derived diesel. These double bonded molecules have a slightly higher adiabatic flame temperature, which leads to the increase in NOx production for biodiesel. Our theory was verified using numerical simulations to show a NOx increase, due to the double bonded molecules, that is consistent with observation. Further, the details of these numerical simulations show that NOx is predominantly due to the Zeldovich mechanism.

  11. Performance of Johnson Matthey EGRT’ Emission Control System for NOx and

    Broader source: Energy.gov (indexed) [DOE]

    PM Emission Reduction in Retrofit Applications Part 1 | Department of Energy chatterjee1.pdf More Documents & Publications Performance of Johnson Matthey EGRT’ Emission Control System for NOx and PM Emission Reduction in Retrofit Applications Part 2 SCRT Technology for Retrofit of Heavy-Duty Diesel

  12. Performance of Johnson Matthey EGRT’ Emission Control System for NOx and

    Broader source: Energy.gov (indexed) [DOE]

    PM Emission Reduction in Retrofit Applications Part 2 | Department of Energy chatterjee2.pdf More Documents & Publications Performance of Johnson Matthey EGRT’ Emission Control System for NOx and PM Emission Reduction in Retrofit Applications Part 1 Development and Field Demonstrations of the Low NO2 ACCRT’ System for Retrofit

  13. Impact of sulfation and desulfation on NOx reduction using Cu-chabazite SCR catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brookshear, Daniel William; Nam, Jeong -Gil; Nguyen, Ke; Toops, Todd J.; Binder, Andrew J.

    2015-06-05

    This bench reactor study investigates the impact of gaseous sulfur on the NOx reduction activity of Cu-chabazite SCR (Cu-CHA) catalysts at SO2 concentrations representative of marine diesel engine exhaust. After two hours of 500 ppm SO2 exposure at 250 and 400 °C in the simulated diesel exhaust gases, the NOx reduction activity of the sulfated Cu-CHA SCR catalysts is severely degraded at evaluation temperatures below 250 °C; however, above 250 °C the impact of sulfur exposure is minimal. EPMA shows that sulfur is located throughout the washcoat and along the entire length of the sulfated samples. Interestingly, BET measurements revealmore » that the sulfated samples have a 20% decrease in surface area. Moreover, the sulfated samples show a decrease in NOx/nitrate absorption during NO exposure in a DRIFTS reactor which suggests that Cu sites in the catalyst are blocked by the presence of sulfur. SO2 exposure also results in an increase in NH3 storage capacity, possibly due to the formation of ammonium sulfate species in the sulfated samples. In all cases, lean thermal treatments as low as 500 °C reverse the effects of sulfur exposure and restore the NOx reduction activity of the Cu-CHA catalyst to that of the fresh condition.« less

  14. Durability Evaluation of an Integrated Diesel NOx Adsorber A/T Subsystem at

    Broader source: Energy.gov (indexed) [DOE]

    Light-Duty Operation | Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Inc. and Johnson-Matthey PDF icon 2004_deer_li.pdf More Documents & Publications Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck Desulfurization Fuel Filter Update on Diesel Exhaust Emission Control Technology and Regulations

  15. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials

    SciTech Connect (OSTI)

    Beale, Andrew M.; Gao, Feng; Lezcano-Gonzalez, Ines; Peden, Charles HF; Szanyi, Janos

    2015-10-05

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade a renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3 SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptional high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ~5 years that lead to the introduction of these catalysts into practical application. The review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetics studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that are still need to be addressed in automotive exhaust control catalysis. Funding A.M.B. and I.L.G. would like to thank EPSRC for funding. F.G., C.H.F.P. and J.Sz. gratefully acknowledge financial support from the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program.

  16. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect (OSTI)

    1995-09-01

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  17. Effect of air-staging on anthracite combustion and NOx formation

    SciTech Connect (OSTI)

    Weidong Fan; Zhengchun Lin; Youyi Li; Jinguo Kuang; Mingchuan Zhang

    2009-01-15

    Experiments were carried out in a multipath air inlet one-dimensional furnace to assess NOx emission characteristics of the staged combustion of anthracite coal. These experiments allowed us to study the impact of pulverized coal fineness and burnout air position on emission under both deep and shallow air-staged combustion conditions. We also studied the impact of char-nitrogen release on both the burning-out process of the pulverized coal and the corresponding carbon content in fly ash. We found that air-staged combustion affects a pronounced reduction in NOx emissions from the combustion of anthracite coal. The more the air is staged, the more NOx emission is reduced. In shallow air-staged combustion (f{sub M} = 0.85), the fineness of the pulverized coal strongly influences emissions, and finer coals result in lower emissions. Meanwhile, the burnout air position has only a weak effect. In the deep air-staged combustion (f{sub M} = 0.6), the effect of coal fineness is smaller, and the burnout air position has a stronger effect. When the primary combustion air is stable, NOx emissions increase with increasing burnout air. This proves that, in the burnout zone, coal char is responsible for the discharge of fuel-nitrogen that is oxidized to NOx. The measurement of secondary air staging in a burnout zone can help inhibit the oxidization of NO caused by nitrogen release. Air-staged combustion has little effect on the burnout of anthracite coal, which proves to be suitable for air-staged combustion. 31 refs., 11 figs., 1 tab.

  18. A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application

    SciTech Connect (OSTI)

    Fang, Howard L.; Huang, Shyan C.; Yu, Robert C.; Wan, C. Z.; Howden, Ken

    2002-10-01

    Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed. Development of the NOx adsorber technology is discussed. Spectroscopic techniques are applied to understand the underlying chemical reactions over the catalyst surface during NOx trapping and regeneration periods. In-situ surface probes are useful in providing not only thermodynamic and kinetics information required for model development but also a fundamental understanding of storage capacity and degradation mechanisms. The distribution of various nitration/sulfation species is related to surface basicity. Surface displacement reactions of carbonates also play roles in affecting the trapping capability of NOx adsorbers. When ultralow-S fuel is used as a reductant during the regeneration, sulfur induced performance degradation is still observed in an aged catalyst. Other possible sources related to catalyst deactivation include incomplete reduction of surface nitration, coke formation derived from incomplete hydrocarbon burning, and lubricant formulations. Sulfur management and the direction of future work for the successful implementation of such integrated engine and aftertreatment technology are discussed. SAE Paper SAE-2002-01-2889 {copyright} 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

  19. New operation strategy for driving the selectivity of NOx reduction to N2, NH3 or N2O during lean/rich cycling of a lean NOx trap catalyst

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mráček, David; Koci, Petr; Choi, Jae -Soon; Partridge, Jr., William P.

    2015-09-08

    Periodical regeneration of NOx storage catalyst (also known as lean NOx trap) by short rich pulses of CO, H2 and hydrocarbons is necessary for the reduction of nitrogen oxides adsorbed on the catalyst surface. Ideally, the stored NOx is converted into N2, but N2O and NH3 by-products can be formed as well, particularly at low-intermediate temperatures. The N2 and N2O products are formed concurrently in two peaks. The primary peaks appear immediately after the rich-phase inception, and tail off with the breakthrough of the reductant front accompanied by NH3 product. In addition, the secondary N2 and N2O peaks then appearmore » at the rich-to-lean transition as a result of reactions between surface-deposited reductants/intermediates (CO, HC, NH3, — NCO) and residual stored NOx under increasingly lean conditions.« less

  20. Laboratory evaluation of a reactive baffle approach to NOx control. Final technical report, February-April 1993

    SciTech Connect (OSTI)

    Nelson, S.G.; Van Stone, D.A.; Little, R.C.; Peterson, R.A.

    1993-09-01

    Vermiculite, vermiculite coated with magnesia, and activated carbon sorbents have successfully removed NOx (and carbon monoxide and particles) from combustion exhausts in a subscale drone jet engine test cell (JETC), but back pressure so generated elevated the temperature of the JETC and of the engine. The objective of this effort was to explore the feasibility of locating the sorbents in the face of the duct or of baffles parallel to the direction of flow within the ducts. Jet engine test cells (JETCs) are stationary sources of oxides of nitrogen (NOx), soot, and unburned or partially oxidized carbon compounds that form as byproducts of imperfect combustion. Regulation of NOx emissions is being considered for implementation under the Clean Air Act Amendments of 1990. Several principles have been examined as candidate methods to control NOx emissions from JETCs.

  1. Simulation of catalytic oxidation and selective catalytic NOx reduction in lean-exhaust hybrid vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Chakravarthy, Veerathu K

    2012-01-01

    We utilize physically-based models for diesel exhaust catalytic oxidation and urea-based selective catalytic NOx reduction to study their impact on drive cycle performance of hypothetical light-duty diesel powered hybrid vehicles. The models have been implemented as highly flexible SIMULINK block modules that can be used to study multiple engine-aftertreatment system configurations. The parameters of the NOx reduction model have been adjusted to reflect the characteristics of Cu-zeolite catalysts, which are of widespread current interest. We demonstrate application of these models using the Powertrain System Analysis Toolkit (PSAT) software for vehicle simulations, along with a previously published methodology that accounts for emissions and temperature transients in the engine exhaust. Our results illustrate the potential impact of DOC and SCR interactions for lean hybrid electric and plug-in hybrid electric vehicles.

  2. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    DOE Patents [OSTI]

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  3. Real-World Studies of Ambient Ozone Formation as a Function of NOx Reductions … Summary and Implications for Air Quality Impacts

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  4. Metal-supported De-NOx SCR Catalysts Prepared by Room Temperature Aerosol

    Broader source: Energy.gov (indexed) [DOE]

    Deposition for Potential Marine Applications | Department of Energy Presents preparation of SCR catalyst coatings on cost effective metallic substrates using aerosol deposition technique and their catalytic De-NOx performance PDF icon p-06_choi.pdf More Documents & Publications Impact of Biodiesel on the Near-term Performance and Long-term Durability of Advanced Aftertreatment Systems Future Trends for DPFƒSCR On-Filter (SCRF) Development of Optimal Catalyst Designs and Operating

  5. NOx reduction in combustion with concentrated coal streams and oxygen injection

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.; Snyder, William J.

    2004-03-02

    NOx formation in the combustion of solid hydrocarbonaceous fuel such as coal is reduced by obtaining, from the incoming feed stream of fuel solids and air, a stream having a ratio of fuel solids to air that is higher than that of the feed steam, and injecting the thus obtained stream and a small amount of oxygen to a burner where the fuel solids are combusted.

  6. A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration and

    Broader source: Energy.gov (indexed) [DOE]

    Desulfation | Department of Energy 04 Diesel Engine Emissions Reduction (DEER) Conference: ArvinMeritor PDF icon 2004_deer_crane.pdf More Documents & Publications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment

  7. Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions |

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency This project integrated a gas-fired, simple-cycle 100 kilowatt (kW) microturbine (SCMT) with a new ultra-low nitrogen oxide (NOx) gas-fired burner (ULNB) to develop a combined heat and power (CHP) assembly called the Boiler Burner Energy System Technology (BBEST). Introduction CHP systems can achieve significant gains in fuel efficiency for power generation and reductions in

  8. Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Consumption Using High and Low Engine-Out NOx Calibrations | Department of Energy Development and validation of a simple strategy-based technique using four engine parameters to minimize emissions and fuel consumption PDF icon deer08_shade.pdf More Documents & Publications Diesel Emission Control Technology Review Low Emissions Potential of EGR-SCR-DPF and Advanced Fuel Formulation - A Progress Report Hydrocarbon fouling of SCR during Premixed Charge Compression Ignition (PCCI)

  9. Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine

    Broader source: Energy.gov (indexed) [DOE]

    Diesel Engines | Department of Energy Stand-alone urea SCR system was developed for marine diesel engines and showed a 50-percent reduction in NOx. PDF icon deer08_bedick.pdf More Documents & Publications Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations Selective Catalytic Reduction and Exhaust Gas Recirculation Systems Optimization

  10. Diesel Particulate Filter Technology for Low-Temperature and Low-NOx/PM

    Broader source: Energy.gov (indexed) [DOE]

    Applications | Department of Energy 4 DEER Conference Presentation: Johnson-Matthey Catalysts PDF icon 2004_deer_chatterjee.pdf More Documents & Publications Performance of Johnson Matthey EGRT’ Emission Control System for NOx and PM Emission Reduction in Retrofit Applications Part 1 Aftertreatment Modeling Status, Futur Potential, and Application Issues Exhaust Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine

  11. Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 03 DEER Conference Presentation: Oak Ridge National Laboratory PDF icon 2003_deer_thomas.pdf More Documents & Publications Ag-Al2O3 Catalyst HC-SCR: Performance with Light Alcohols and Other Reductants Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted with SCR NOx Adsorber Regeneration Phenomena In Heavy Duty Applications

  12. Evaluation of microporous carbon filters as catalysts for ozone decomposition

    SciTech Connect (OSTI)

    Whinnery, L.; Coutts, D.; Shen, C.; Adams, R. [Sandia National Labs., Livermore, CA (United States); Quintana, C.; Showalter, S. [Sandia National Labs., Albuquerque, NM (United States)

    1994-12-31

    Ozone is produced in small quantities in photocopiers and laser printers in the workplace and large quantities in industrial waste water treatment facilities. Carbon filters are commonly used to decompose this unwanted ozone. The three most important factors in producing a filter for this purpose are flow properties, efficiency, and cost. Most ozone decomposition applications require very low back-pressure at modest flow rates. The tradeoff between the number of pores and the size of the pores will be discussed. Typical unfiltered emissions in the workplace are approximately 1 ppm. The maximum permissible exposure limit, PEL, for worker exposure to ozone is 0.1 ppm over 8 hours. Several methods have been examined to increase the efficiency of ozone decomposition. Carbon surfaces were modified with catalysts, the surface activated, and the surface area was increased, in attempts to decompose ozone more effectively. Methods to reduce both the processing and raw material costs were investigated. Several sources of microporous carbon were investigated as ozone decomposition catalysts. Cheaper processing routes including macropore templating, faster drying and extracting methods were also studied.

  13. Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A; Toops, Todd J

    2014-01-01

    A commercial three-way catalyst (TWC) was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential low cost approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. NH3 generation was evaluated at different air-fuel equivalence ratios at multiple engine speed and load conditions. Near complete conversion of NOX to NH3 was achieved at =0.96 for nearly all conditions studied. At the =0.96 condition, HC emissions were relatively minimal, but CO emissions were significant. Operation at AFRs richer than =0.96 did not provide more NH3 yield and led to higher HC and CO emissions. Results of the reductant conversion and consumption processes were used to calculate a representative fuel consumption of the engine operating with an ideal passive SCR system. The results show a 1-7% fuel economy benefit at various steady-state engine speed and load points relative to a stoichiometric engine operation.

  14. Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-15

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

  15. MODELING COMPETITIVE ADSORPTION IN UREA-SCR CATALYSTS FOR EFFECTIVE LOW TEMPERATURE NOX CONTROL

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-17

    Although the SCR technology exhibits higher NOx reduction efficiency over a wider range of temperatures among the lean NOx reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. For example, it is well known that the ammonia coverage on catalyst surface is critical for NOx reduction efficiency. However, the level of ammonia storage is influenced by competitive adsorption by other species, such as H2O and NO2. Moreover, hydrocarbon species that slip through the upstream DOC during the cold-start period can also inhibit the SCR performance, especially at low temperatures. Therefore, a one-dimensional detailed kinetic model that can account for the effects of such competitive adsorption has been developed based on steady state surface isotherm tests on a commercial Fe-zeolite catalyst. The model is developed as a C language S-function and implemented in Matlab/Simulink environment. Rate kinetics of adsorption and desorption of each of the adsorbents are determined from individual adsorption tests and validated for a set of test conditions that had all the adsorbents in the feed gas.

  16. Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2011-04-20

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbates storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

  17. Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Hydrocarbon and NOx Adsorber

    SciTech Connect (OSTI)

    Gao, Zhiming; Kim, Miyoung; Choi, Jae-Soon; Daw, C Stuart; Parks, II, James E; Smith, David E

    2012-01-01

    We presents a study of the potential for using low-cost sorbent materials (i.e. Ag-Beta-zeolite and Fe-Mn-Zr transition metal oxides) to temporally trap hydrocarbons (HCs) and nitrogen oxides (NOx) emissions during cold-start periods in HEVs and PHEVs over transient driving cycles. The adsorption behavior of the candidate sorbent materials was characterized in our laboratory flow reactor experiments. The parameters were then used to develop a one-dimensional, transient device model which has been implemented in the Powertrain Systems Analysis Toolkit (PSAT) to simulate a passive HC and NOx absorber device. The results show that such an absorber can substantially reduce HC and NOx emissions by storing them when the 3-way catalyst is too cool to function and re-releasing them when the exhaust temperature rises. These improved emission controls do not involve any penalty in fuel consumption or require any change in engine operation. The cost of these sorbent materials is also much less than conventional 3-way catalysts.

  18. Q2 Q3 Season Q2 Q3 Season Q2 Q3 Season

    U.S. Energy Information Administration (EIA) Indexed Site

    Q2 Q3 Season Q2 Q3 Season Q2 Q3 Season Nominal Prices (dollars per gallon) WTI Crude Oil (Spot) a 1.38 1.11 1.24 0.99 1.00 1.00 -28.1 -9.8 -19.8 Brent Crude Oil Price (Spot) 1.47 1.20 1.33 1.00 1.00 1.00 -32.1 -16.7 -25.1 U.S. Refiner Average Crude Oil Cost 1.37 1.14 1.25 0.97 0.98 0.97 -29.3 -14.0 -22.3 Wholesale Gasoline Price b 2.01 1.84 1.93 1.53 1.46 1.50 -23.9 -20.9 -22.4 Wholesale Diesel Fuel Price b 1.89 1.61 1.75 1.31 1.36 1.34 -30.6 -15.5 -23.5 Regular Gasoline Retail Price c 2.67 2.60

  19. Exposure-Relevant Ozone Chemistry in Occupied Spaces

    SciTech Connect (OSTI)

    Coleman, Beverly Kaye

    2009-04-01

    Ozone, an ambient pollutant, is transformed into other airborne pollutants in the indoor environment. In this dissertation, the type and amount of byproducts that result from ozone reactions with common indoor surfaces, surface residues, and vapors were determined, pollutant concentrations were related to occupant exposure, and frameworks were developed to predict byproduct concentrations under various indoor conditions. In Chapter 2, an analysis is presented of secondary organic aerosol formation from the reaction of ozone with gas-phase, terpene-containing consumer products in small chamber experiments under conditions relevant for residential and commercial buildings. The full particle size distribution was continuously monitored, and ultrafine and fine particle concentrations were in the range of 10 to>300 mu g m-3. Particle nucleation and growth dynamics were characterized.Chapter 3 presents an investigation of ozone reactions with aircraft cabin surfaces including carpet, seat fabric, plastics, and laundered and worn clothing fabric. Small chamber experiments were used to determine ozone deposition velocities, ozone reaction probabilities, byproduct emission rates, and byproduct yields for each surface category. The most commonly detected byproducts included C1?C10 saturated aldehydes and skin oil oxidation products. For all materials, emission rates were higher with ozone than without. Experimental results were used to predict byproduct exposure in the cabin and compare to other environments. Byproduct levels are predicted to be similar to ozone levels in the cabin, which have been found to be tens to low hundreds of ppb in the absence of an ozone converter. In Chapter 4, a model is presented that predicts ozone uptake by and byproduct emission from residual chemicals on surfaces. The effects of input parameters (residue surface concentration, ozone concentration, reactivity of the residue and the surface, near-surface airflow conditions, and byproduct yield) were explored. In Chapter 5, the reaction of ozone with permethrin, a residual insecticide used in aircraft cabins, to form phosgene is investigated. A derivatization technique was developed to detect phosgene at low levels, and chamber experiments were conducted with permethrin-coated cabin materials. It was determined that phosgene formation, if it occurs in the aircraft cabin, is not likely to exceed the relevant, health-based phosgene exposure guidelines.

  20. Ofloxacin induces apoptosis via ?1 integrin-EGFR-Rac1-Nox2 pathway in microencapsulated chondrocytes

    SciTech Connect (OSTI)

    Sheng, Zhi-Guo; Huang, Wei; Liu, Yu-Xiang; Yuan, Ye; Zhu, Ben-Zhan

    2013-02-15

    Quinolones (QNs)-induced arthropathy is an important toxic side-effect in immature animals leading to the restriction of their therapeutic use in pediatrics. Ofloxacin, a typical QN, was found to induce the chondrocytes apoptosis in the early phase (1248 h) of arthropathy in our previous study. However, the exact mechanism(s) is unclear. Microencapsulated juvenile rabbit joint chondrocytes, a three-dimensional culture system, is utilized to perform the present study. Ofloxacin, at a therapeutically relevant concentration (10 ?g/ml), disturbs the interaction between ?1 integrin and activated intracellular signaling proteins at 12 h, which is inhibited when supplementing Mg{sup 2+}. Intracellular reactive oxygen species (ROS) significantly increases in a time-dependent manner after exposure to ofloxacin for 1248 h. Furthermore, ofloxacin markedly enhances the level of activated Rac1 and epidermal growth factor receptor (EGFR) phosphorylation, and its inhibition in turn reduces the ROS production, apoptosis and Rac1 activation. Silencing Nox2, Rac1 or supplementing Mg{sup 2+} inhibits ROS accumulation, apoptosis occurrence and EGFR phosphorylation induced by ofloxacin. However, depletion of Nox2, Rac1 and inhibition of EGFR do not affect ofloxacin-mediated loss of interaction between ?1 integrin and activated intracellular signaling proteins. In addition, ofloxacin also induces Vav2 phosphorylation, which is markedly suppressed after inactivating EGFR or supplementing Mg{sup 2+}. These results suggest that ofloxacin causes Nox2-mediated intracellular ROS production by disrupting the ?1 integrin function and then activating the EGFR-Vav2-Rac1 pathway, finally resulting in apoptosis within 1248 h exposure. The present study provides a novel insight regarding the potential role of Nox-driven ROS in QNs-induced arthropathy. - Highlights: ? Ofloxacin induces Nox2-driven ROS in encapsulated chondrocyte at 1248 h. ? Ofloxacin stimulates ROS production via the ?1 integrin-EGFR-Vav2-Rac1 pathway. ? Ofloxacin induces ROS-dependent apoptosis in encapsulated chondrocyte at 1248 h.

  1. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    SciTech Connect (OSTI)

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. Toward the end of the program, a Second Generation gas injection system was installed. Higher injector gas pressures were used that eliminated the need for flue gas recirculation as used in the first generation design. The Second Generation GR resulted in similar NOX reduction performance as that for the First Generation. With an improvement in the LNB performance in combination with the new gas injection system , the reburn gas could be reduced to 12.5% of the total boiler heat input to achieve al 64?40 reduction in NO, emissions. In addition, the OFA injectors were modified to provide for better mixing to lower CO emissions.

  2. ARM - Field Campaign - 1999 Northeast Corridor Ozone & Particulate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 1999 Northeast Corridor Ozone & Particulate Study 1999.07.23 - 1999.08.11 Lead...

  3. New Particle-Hunting Season at CERN's LHC Begins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Particle-Hunting Season at CERN's LHC Begins

  4. Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

    SciTech Connect (OSTI)

    Harold, Michael; Crocker, Mark; Balakotaiah, Vemuri; Luss, Dan; Choi, Jae-Soon; Dearth, Mark; McCabe, Bob; Theis, Joe

    2013-09-30

    Oxides of nitrogen in the form of nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) commonly referred to as NO{sub x}, is one of the two chemical precursors that lead to ground-level ozone, a ubiquitous air pollutant in urban areas. A major source of NO{sub x} is generated by equipment and vehicles powered by diesel engines, which have a combustion exhaust that contains NO{sub x} in the presence of excess O{sub 2}. Catalytic abatement measures that are effective for gasoline-fueled engines such as the precious metal containing three-way catalytic converter (TWC) cannot be used to treat O2-laden exhaust containing NO{sub x}. Two catalytic technologies that have emerged as effective for NO{sub x} abatement are NO{sub x} storage and reduction (NSR) and selective catalytic reduction (SCR). NSR is similar to TWC but requires much larger quantities of expensive precious metals and sophisticated periodic switching operation, while SCR requires an on-board source of ammonia which serves as the chemical reductant of the NO{sub x}. The fact that NSR produces ammonia as a byproduct while SCR requires ammonia to work has led to interest in combining the two together to avoid the need for the cumbersome ammonia generation system. In this project a comprehensive study was carried out of the fundamental aspects and application feasibility of combined NSR/SCR. The project team, which included university, industry, and national lab researchers, investigated the kinetics and mechanistic features of the underlying chemistry in the lean NOx trap (LNT) wherein NSR was carried out, with particular focus on identifying the operating conditions such as temperature and catalytic properties which lead to the production of ammonia in the LNT. The performance features of SCR on both model and commercial catalysts focused on the synergy between the LNT and SCR converters in terms of utilizing the upstream-generated ammonia and alternative reductants such as propylene, representing the hydrocarbon component of diesel exhaust. First-principle models of the LNT and SCR converters, which utilized the mechanistic-based kinetics and realistic treatments of the flow and transport processes, in combination with bench-scale reactor experiments helped to identify the best designs for combining the NSR and SCR catalysts over a range of operating conditions encountered in practice. This included catalysts having multiple zones and layers and additives with the focus on determining the minimal precious metal component needed to meet emission abatement targets over a wide range of operating conditions. The findings from this study provide diesel vehicle and catalyst companies valuable information to develop more cost effective diesel emissions catalysts which helps to expand the use of more fuel efficient diesel power. The fundamental modeling and experimental tools and findings from this project can be applied to catalyst technologies used in the energy and chemical industries. Finally, the project also led to training of several doctoral students who were placed in research jobs in industry and academia.

  5. Comparison of Methods for Estimating the NOx Emission Impacts of Energy Efficiency and Renewable Energy Projects: Shreveport, Louisiana Case Study (Revised)

    SciTech Connect (OSTI)

    Chambers, A.; Kline, D. M.; Vimmerstedt, L.; Diem, A.; Dismukes, D.; Mesyanzhinov, D.

    2005-07-01

    This is a case study comparing methods of estimating the NOx emission impacts of energy efficiency and renewable energy projects in Shreveport, Louisiana.

  6. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    SciTech Connect (OSTI)

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing dissolution equilibrium, and then decomposed to {le} 100 Parts per Million (ppm) oxalate. Since AOP technology largely originated on using ultraviolet (UV) light as a primary catalyst, decomposition of the spent oxalic acid, well exposed to a medium pressure mercury vapor light was considered the benchmark. However, with multi-valent metals already contained in the feed, and maintenance of the UV light a concern; testing was conducted to evaluate the impact from removing the UV light. Using current AOP terminology, the test without the UV light would likely be considered an ozone based, dark, ferrioxalate type, decomposition process. Specifically, as part of the testing, the impacts from the following were investigated: (1) Importance of the UV light on the decomposition rates when decomposing 1 wt% spent oxalic acid; (2) Impact of increasing the oxalic acid strength from 1 to 2.5 wt% on the decomposition rates; and (3) For F-area testing, the advantage of increasing the spent oxalic acid flowrate from 40 L/min (liters/minute) to 50 L/min during decomposition of the 2.5 wt% spent oxalic acid. The results showed that removal of the UV light (from 1 wt% testing) slowed the decomposition rates in both the F & H testing. Specifically, for F-Area Strike 1, the time increased from about 6 hours to 8 hours. In H-Area, the impact was not as significant, with the time required for Strike 1 to be decomposed to less than 100 ppm increasing slightly, from 5.4 to 6.4 hours. For the spent 2.5 wt% oxalic acid decomposition tests (all) without the UV light, the F-area decompositions required approx. 10 to 13 hours, while the corresponding required H-Area decompositions times ranged from 10 to 21 hours. For the 2.5 wt% F-Area sludge, the increased availability of iron likely caused the increased decomposition rates compared to the 1 wt% oxalic acid based tests. In addition, for the F-testing, increasing the recirculation flow rates from 40 liter/minute to 50 liter/minute resulted in an increased decomposition rate, suggesting a better use of ozone.

  7. Leveraging Seasonal Opportunities for Marketing Energy Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Seasonal Opportunities for Marketing Energy Efficiency Leveraging Seasonal Opportunities for Marketing Energy Efficiency Better Buildings Residential Network Peer Exchange Call Series: Leveraging Seasonal Opportunities for Marketing Energy Efficiency, call slides and discussion summary. PDF icon Call Slides and Discussion Summary More Documents & Publications Hit the Road: Applying Lessons from National Campaigns to a Local Context (201) Strengthening the Front

  8. Projections of Future Summertime Ozone over the U.S.

    SciTech Connect (OSTI)

    Pfister, G. G.; Walters, Stacy; Lamarque, J. F.; Fast, Jerome D.; Barth, Mary; Wong, John; Done, James; Holland, Greg; Bruyere, Cindy

    2014-05-05

    This study uses a regional fully coupled chemistry-transport model to assess changes in surface ozone over the summertime U.S. between present and a 2050 future time period at high spatial resolution (12 km grid spacing) under the SRES A2 climate and RCP8.5 anthropogenic pre-cursor emission scenario. The impact of predicted changes in climate and global background ozone is estimated to increase surface ozone over most of the U.S; the 5th - 95th percentile range for daily 8-hour maximum surface ozone increases from 31-79 ppbV to 30-87 ppbV between the present and future time periods. The analysis of a set of meteorological drivers suggests that these mostly will add to increasing ozone, but the set of simulations conducted does not allow to separate this effect from that through enhanced global background ozone. Statistically the most robust positive feedbacks are through increased temperature, biogenic emissions and solar radiation. Stringent emission controls can counteract these feedbacks and if considered, we estimate large reductions in surface ozone with the 5th-95th percentile reduced to 27-55 ppbV. A comparison of the high-resolution projections to global model projections shows that even though the global model is biased high in surface ozone compared to the regional model and compared to observations, both the global and the regional model predict similar changes in ozone between the present and future time periods. However, on smaller spatial scales, the regional predictions show more pronounced changes between urban and rural regimes that cannot be resolved at the coarse resolution of global model. In addition, the sign of the changes in overall ozone mixing ratios can be different between the global and the regional predictions in certain regions, such as the Western U.S. This study confirms the key role of emission control strategies in future air quality predictions and demonstrates the need for considering degradation of air quality with future climate change in emission policy making. It also illustrates the need for high resolution modeling when the objective is to address regional and local air quality or establish links to human health and society.

  9. High-Potential Electrocatalytic O2 Reduction with Nitroxyl / NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    SciTech Connect (OSTI)

    Gerken, James B.; Stahl, Shannon S.

    2015-07-15

    Efficient reduction of O2 to water is a central challenge in energy conversion and aerobic oxidation catalysis. In the present study, we investigate the electrochemical reduction of O2 with soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl), nor NOx species, such as sodium nitrite, are effective mediators of electrochemical O2 reduction. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction at electrochemical potentials of 0.19–0.33 V (vs. Fc/Fc+) in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The high potentials observed with this ORR system benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  10. Kinetic and Performance Studies of the Regeneration Phase of Model Pt/Ba/Rh NOx Traps for Design and Optimization

    SciTech Connect (OSTI)

    Michael Harold; Vemuri Balakotaiah

    2010-05-31

    In this project a combined experimental and theoretical approach was taken to advance our understanding of lean NOx trap (LNT) technology. Fundamental kinetics studies were carried out of model LNT catalysts containing variable loadings of precious metals (Pt, Rh), and storage components (BaO, CeO{sub 2}). The Temporal Analysis of Products (TAP) reactor provided transient data under well-characterized conditions for both powder and monolith catalysts, enabling the identification of key reaction pathways and estimation of the corresponding kinetic parameters. The performance of model NOx storage and reduction (NSR) monolith catalysts were evaluated in a bench scale NOx trap using synthetic exhaust, with attention placed on the effect of the pulse timing and composition on the instantaneous and cycle-averaged product distributions. From these experiments we formulated a global model that predicts the main spatio-temporal features of the LNT and a mechanistic-based microkinetic models that incorporates a detailed understanding of the chemistry and predicts more detailed selectivity features of the LNT. The NOx trap models were used to determine its ability to simulate bench-scale data and ultimately to evaluate alternative LNT designs and operating strategies. The four-year project led to the training of several doctoral students and the dissemination of the findings as 47 presentations in conferences, catalysis societies, and academic departments as well 23 manuscripts in peer-reviewed journals. A condensed review of NOx storage and reduction was published in an encyclopedia of technology.

  11. UTILIZING WATER EMULSIFICATION TO REDUCE NOX AND PARTICULATE EMISSIONS ASSOCIATED WITH BIODIESEL

    SciTech Connect (OSTI)

    Kass, Michael D; Lewis Sr, Samuel Arthur; Lee, Doh-Won; Huff, Shean P; Storey, John Morse; Swartz, Matthew M; Wagner, Robert M

    2009-01-01

    A key barrier limiting extended utilization of biodiesel is higher NOx emissions compared to petrodiesel fuels. The reason for this effect is unclear, but various researchers have attributed this phenomena to the higher liquid bulk modulus associated with biodiesel and the additional heat released during the breaking of C-C double bonds in the methyl ester groups. In this study water was incorporated into neat biodiesel (B100) as an emulsion in an attempt to lower NOx and particulate matter (PM) emissions. A biodiesel emulsion containing 10wt% water was formulated and evaluated against an ultra-low sulfur petroleum diesel (ULSD) and neat biodiesel (B100) in a light-duty diesel engine operated at 1500RPM and at loads of 68Nm (50ft-lbs) and 102Nm (75ft-lbs). The influence of exhaust gas recirculation (EGR) was also examined. The incorporation of water was found to significantly lower the NOx emissions of B100, while maintaining fuel efficiency when operating at 0 and 27% EGR. The soot fraction of the particulates (as determined using an opacity meter) was much lower for the B100 and B100-water emulsion compared ULSD. In contrast, total PM mass (for the three fuel types) was unchanged for the 0% EGR condition but was significantly lower for the B100 and B100-emulsion during the 27% EGR condition compared to the ULSD fuel. Analysis of the emissions and heat release data indicate that water enhances air-fuel premixing to maintain fuel economy and lower soot formation. The exhaust chemistry of the biodiesel base fuels (B100 and water-emulsified B100) was found to be unique in that they contained measurable levels of methyl alkenoates, which were not found for the ULSD. These compounds were formed by the partial cracking of the methyl ester groups during combustion.

  12. Microsoft Word - Heating Oil Season.docx

    Broader source: Energy.gov (indexed) [DOE]

    4-2015 Heating Oil Season Northeast Home Heating Oil Reserve Trigger Mechanism (Cents per Gallon, Except Where Noted) Week Residential Heating Oil Price Average Brent Spot Price...

  13. Leveraging Seasonal Opportunities for Marketing Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Residential Network Member) Anna Joyce Gayle, Project Manager of Zappling ... 15 Examples & Lessons Learned: Energy Vibe Anna Gayle Seasonal Campaign Examples: Energy ...

  14. ARM - Publications: Science Team Meeting Documents: Seasonal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the seasonal variation of land cover which is dominated by the agricultural land use, primarily winter wheat production. http:gi.ssec.wisc.eduairsknutesonindex.html...

  15. Morphological basis of tolerance to ozone

    SciTech Connect (OSTI)

    Evans, M.J.; Dekker, N.P.; Cabral-Anderson, L.J.; Shami, S.G.

    1985-06-01

    The purpose of this research was to study Type 1 epithelial cells in the ozone (O/sub 3/)-tolerant lung epithelium. Rats were made tolerant by exposure to 0.5 ppm O/sub 3/ for 2 days and allowed to recover in air. Reexposure to a lethal concentration of O/sub 3/ (6 ppm) at 3, 7, and 15 days of recovery revealed that tolerance was present at 3 days but almost absent at 7 and 15 days of recovery. Using Type 2 cell proliferation as a means of quantitating Type 1 cell injury, it was observed that when the preexposed rats were reexposed to 0.5 ppm at 3, 7, and 15 days, very little Type 1 cell injury occurred at 3 days. However, at 7 and 15 days the amount of Type 1 cell injury was the same as that associated with the original exposure. To determine whether there was any change in the alveolar epithelial cell populations between the periods of tolerance (3 days) and its decline (7 and 15 days), the percentage of tritiated thymidine (( /sup 3/H)TdR-labeled Type 1 and 2 cells at these times were determined. There was a significant decrease in (/sup 3/H)TdR-labeled Type 1 and 2 cells between the third and fifteenth days of recovery as excess cells were sloughed off and the tissue returned to normal. Using electron microscopic morphometry, Type 1 and 2 cells were then studied during the decline of tolerance. No change was found in the morphology of Type 2 cells; however, the morphology of Type 1 cells revealed a 58% decrease in surface area and a 25% increase in the arithmetic mean thickness when tolerance was present at 3 days. As tolerance declined (7 and 15 days), Type 1 cell morphology returned to normal. It was concluded that tolerance exists when the surface area of a cell exposed to a particular concentration of ozone is small enough so that the existing antioxidant mechanism contained within that cell volume can protect it from damage.

  16. Retrofit costs for SO sub 2 and NOx control options at 200 coal-fired plants

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This 5-volume report gives the results of site-specific cost estimations for retrofitting six control technologies to coal-fired power plants. The six technologies were: lime/limestone flue gas desulfurization, lime spray drying, coal switching and cleaning, furnace and duct sorbent injection, low NOx combustion or natural gas reburning, and selective catalytic reduction. Volume 1 gives the methodology. The other four volumes each cover 5-7 specific states east of the Mississippi River. Maine, Vermont, Rhode Island, and Connecticut are not included.

  17. SO{sub 2} and NOx trading markets: providing flexibility and results

    SciTech Connect (OSTI)

    Sam Napolitano; Melanie LaCount; Daniel Chartier

    2007-06-15

    Experience with the Acid Rain and NOx Budget Trading Programs demonstrates that cap-and-trade programs are an effective means of achieving broad improvements in air quality. Results demonstrate that the combination of mandatory emissions caps, a viable allowance trading market, rigorous emissions monitoring and reporting protocols, and automatic enforcement provide accountability and ensure results in a cost-effective manner. The market developments discussed in this article demonstrate a successful environmental partnership. With a government focused on results and a private sector motivated to innovate, cap-and trade systems deliver environmental results as efficiently and effectively as possible. 3 refs., 4 figs,

  18. Fuel NOx production during the combustion of low caloric value fuel

    SciTech Connect (OSTI)

    Colaluca, M.A.; Caraway, J.P.

    1997-07-01

    The objective of this investigation is to identify and qualify physical mechanisms and parameters that affect the combustion of low caloric value gases (LCVG) and the formation of NOx pollutants produced form fuel bound nitrogen. Average physical properties of a low caloric value gas were determined from the products of several industrial coal gasifiers. A computer model was developed, utilizing the PHOENICS computational fluid dynamics software to model the combustion of LCVG. The model incorporates a 3-dimensional physical design and is based on typical industrial combustors. Feed stock to the gasifier can be wood, feed stock manure, cotton gin trash, coal, lignite and numerous forms of organic industrial wastes.

  19. A Seasonal Perspective on Regional Air Quality in CentralCalifornia - Phase 1

    SciTech Connect (OSTI)

    Harley, Robert A.; Brown, Nancy J.; Tonse, Shaheen R.; Jin, Ling

    2006-12-01

    Central California spans a wide variety of urban, agricultural, and natural terrain, including the San Francisco Bay area, the Central Valley, and the Sierra Nevada Mountains. Population within this region is growing rapidly, and there are persistent, serious air pollution problems including fine particulate matter (PM{sub 2.5}) and ozone. Summertime photochemical air pollution is the focus of the present study, which represents a first phase in the development and application of a modeling capability to assess formation and transport of ozone and its precursors within Central California over an entire summer season. This contrasts with past studies that have examined pollutant dynamics for a few selected high-ozone episodes each lasting 3-5 days. The Community Multiscale Air Quality model (CMAQ) has been applied to predict air pollutant formation and transport in Central California for a 15-day period beginning on July 24, 2000. This period includes a 5-day intensive operating period (July 29 to August 2) from the Central California Ozone Study (CCOS). Day-specific meteorological conditions were modeled by research collaborators at NOAA using a mesoscale meteorological model (MM5). Pollutant emissions within the study domain were based on CARB emission inventory estimates, with additional efforts conducted as part of this research to capture relevant emissions variability including (1) temperature and sunlight-driven changes in biogenic VOC, (2) weekday/weekend and diurnal differences in light-duty (LD) and heavy-duty (HD) motor vehicle emissions, (3) effects of day-specific meteorological conditions on plume rise from point sources such as power plants. We also studied the effects of using cleaner pollutant inflow boundary conditions, lower than indicated during CCOS aircraft flights over the Pacific Ocean, but supported by other surface, ship-based, balloon and aircraft sampling studies along the west coast. Model predictions were compared with measured concentrations for O{sub 3}, NO{sub x}, NO{sub y}, and CO at about 100 ground observation stations within the CCOS domain. Comparisons were made both for time series and for statistically aggregated metrics, to assess model performance over the whole modeling domain and for the individual air basins within the domain. The model tends to over-predict ozone levels along the coast where observed levels are generally low. Inland performance in the San Joaquin Valley is generally better. Model-measurement agreement for night-time ozone is improved by evaluating the sum of predicted O{sub 3} + NO{sub 2} against observations; this removes from the comparison the effect of any ozone titration that may occur. A variety of diagnostic simulations were conducted to investigate the causes for differences between predictions and observations. These included (1) enhanced deposition of O{sub 3} to the ocean, (2) reduced vertical mixing over the ocean, (3) attenuation of sunlight by coastal stratus, (4) the influence of surface albedo on photochemistry, and (5) the effects of observation nudging on wind fields. Use of advanced model probing tools such as process analysis and sensitivity analysis is demonstrated by diagnosing model sensitivity to boundary conditions and to weekday-weekend emission changes.

  20. Application of hybrid coal reburning/SNCR processes for NOx reduction in a coal-fired boiler

    SciTech Connect (OSTI)

    Yang, W.J.; Zhou, Z.J.; Zhou, J.H.; Hongkun, L.V.; Liu, J.Z.; Cen, K.F.

    2009-07-01

    Boilers in Beijing Thermal Power Plant of Zhongdian Guohua Co. in China are coal-fired with natural circulation and tangential fired method, and the economical continuous rate is 410 ton per hour of steam. Hybrid coal reburning/SNCR technology was applied and it successfully reduced NOx to about 170 mg/Nm{sup 3} from about 540 mg/Nm{sup 3}, meanwhile ammonia slip was lower than 10 ppm at 450-210 t/h load and the total reduction efficiency was about 70%. Normal fineness pulverized coal from the bin was chosen as the reburning fuel and the nozzles of the upper primary air were retrofitted to be used as the reburning fuel nozzles. The reducing agent of SNCR was an urea solution, and it was injected by the four layer injectors after online dilution. At 410 t/h load, NOx emission was about 300 mg/Nm{sup 3} when the ratio of reburning fuel to the total fuel was 25.9%-33.4%. Controlling the oxygen content of the gas in the reversal chamber to less than 3.4% resulted in not only low NOx emission but also high combustion efficiency. Ammonia slip distribution in the down gas pass was uneven and ammonia slip was higher in the front of the down gas pass than in the rear of the down gas pass. NSR and NOx reduction were proportional to each other and usually resulted in more ammonia slip with reduction in NOx. About 100 mg/Nm{sup 3} NOx emission could be achieved with about 40 ppm NH{sub 3} slip at 300-450 t/h, and ammonia slip from the SNCR reactions could be used as reducing agent of SCR, which was favorable for the future SCR retrofit.

  1. Real-World Studies of Ambient Ozone Formation as a Function of...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. DOE's Studies of WeekdayWeekend Ozone Pollution in Southern California ...

  2. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    SciTech Connect (OSTI)

    Boyd, Rodney

    2007-08-08

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  3. Method for control of NOx emission from combustors using fuel dilution

    DOE Patents [OSTI]

    Schefer, Robert W.; Keller, Jay O

    2007-01-16

    A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.

  4. APBF-DEC NOx Adsorber/DPF Project: Light-Duty Passenger Car Platform

    SciTech Connect (OSTI)

    Tomazic, D; Tatur, M; Thornton, M

    2003-08-24

    A 1.9L turbo direct injection (TDI) diesel engine was modified to achieve the upcoming Tier 2 Bin 5 emission standard in combination with a NOx adsorber catalyst (NAC) and a diesel particulate filter (DPF). The primary objective for developing this test bed is to investigating the effects of different fuel sulfur contents on the performance of an advanced emission control system (ECS) in a light-duty application. During the development process, the engine-out emissions were minimized by applying a state-of-the-art combustion system in combination with cooled exhaust gas recirculation (EGR). The subsequent calibration effort resulted in emission levels requiring 80-90 percent nitrogen-oxide (NOx) and particulate matter (PM) conversion rates by the corresponding ECS. The strategy development included ean/rich modulation for NAC regeneration, as well as, the desulfurization of the NAC and the regeneration of the DPF. Two slightly different ECS were investigated and calibrated. The initial vehicle results in an Audi A4 station wagon over the federal test procedure (FTP), US 06, and the highway fuel economy test (HFET) cycle indicate the potential of these configuration to meet the future Tier 2 emission standard.

  5. Co-firing coal-water slurry in low-NOx burners: Experience at Penelec`s

    Office of Scientific and Technical Information (OSTI)

    Seward Station (Conference) | SciTech Connect Conference: Co-firing coal-water slurry in low-NOx burners: Experience at Penelec`s Seward Station Citation Details In-Document Search Title: Co-firing coal-water slurry in low-NOx burners: Experience at Penelec`s Seward Station The electric utility industry is facing significant challenges for meeting environmental regulations for its coal fired generation units, and at the same time must stay cost competitive in an industry that is being

  6. Co-firing coal-water slurry in low-NOx burners: Experience at Penelec`s

    Office of Scientific and Technical Information (OSTI)

    Seward Station (Technical Report) | SciTech Connect Technical Report: Co-firing coal-water slurry in low-NOx burners: Experience at Penelec`s Seward Station Citation Details In-Document Search Title: Co-firing coal-water slurry in low-NOx burners: Experience at Penelec`s Seward Station The electric utility industry is facing significant challenges for meeting environmental regulations for its coal fired generation units, and at the same time must stay cost competitive in an industry that is

  7. Effect of ozonation on the composition of crude coal-tar benzene

    SciTech Connect (OSTI)

    Semenova, S.A.; Patrakov, Y.F.

    2007-05-15

    The effect of ozonation on the composition of crude benzene produced by the coal-tar chemical industry was studied.

  8. Development of METHANE de-NOX Reburn Process for Wood Waste and Biomass Fired Stoker Boilers - Final Report - METHANE de-NOX Reburn Technology Manual

    SciTech Connect (OSTI)

    J. Rabovitser; B. Bryan; S. Wohadlo; S. Nester; J. Vaught; M. Tartan L. Szymanski; R. Glickert

    2007-12-31

    The overall objective of this project was to demonstrate the effectiveness of the METHANE de-NOX® (MdN) Reburn process in the Forest Products Industry (FPI) to provide more efficient use of wood and sludge waste (biosolids) combustion for both energy generation and emissions reduction (specifically from nitrogen oxides (NOx)) and to promote the transfer of the technology to the wide range of wood waste-fired stoker boilers populating the FPI. This document, MdN Reburn Commercial Technology Manual, was prepared to be a resource to promote technology transfer and commercialization activities of MdN in the industry and to assist potential users understand its application and installation requirements. The Manual includes a compilation of MdN commercial design data from four different stoker boiler designs that were baseline tested as part of the development effort. Design information in the Manual include boiler CFD model studies, process design protocols, engineering data sheets and commercial installation drawings. Each design package is unique and implemented in a manner to meet specific mill requirements.

  9. Impact of heterogeneous chemistry on model predictions of ozone changes

    SciTech Connect (OSTI)

    Granier, C.; Brasseur, G. )

    1992-11-20

    A two-dimensional chemical/transport model of the middle atmosphere is used to assess the importance of chemical heterogeneous processes in the polar regions (on polar stratospheric clouds (PSCs)) and at other latitudes (on sulfate aerosols). When conversion on type I and type II PSCs of N[sub 2]O[sub 5] into HNO[sub 3] and of CIONO[sub 2] into reactive forms of chlorine is taken into account, enhanced CIO concentrations lead to the formation of a springtime ozone hole over the Antarctic continent; no such major reduction in the ozone column is found in the Arctic region. When conversion of nitrogen and chlorine compounds is assumed to occur on sulfate particles in the lower stratosphere, significant perturbations in the chemistry are also found. For background aerosol conditions, the concentration of nitric acid is enhanced and agrees with observed values, while that of nitrogen oxides is reduced and agrees less than if heterogeneous processes are ignored in the calculations. The concentration of the OH radical is significantly increased. Ozone number density appears to become larger between 16 and 30 km but smaller below 16 km, especially at high latitudes. The ozone column is only slightly modified, except at high latitudes where it is substantially reduced if the CIONO[sub 2] conversion into reactive chlorine is considered. After a large volcanic eruption these changes are further exacerbated. The ozone budget in the lower stratrosphere becomes less affected by nitrogen oxides but is largely controlled by the CIO[sub x] and HO[sub x] chemistries. A substantial decrease in the ozone column is predicted as a result of the Pinatubo volcanic eruption, mostly in winter at middle and high latitudes. 62 refs., 18 figs., 3 tabs.

  10. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    SciTech Connect (OSTI)

    Bass, V.; Gordon, C.J.; Jarema, K.A.; MacPhail, R.C.; Cascio, W.E.; Phillips, P.M.; Ledbetter, A.D.; Schladweiler, M.C.; Andrews, D.; Miller, D.; Doerfler, D.L.; Kodavanti, U.P.

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased ?{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: Air pollutants have been associated with increased diabetes in humans. Acute ozone exposure produces profound metabolic alterations in rats. Age influences metabolic risk factors in aging BN rats. Acute metabolic effects are reversible and repeated exposure reduces these effects. Ozone metabolic effects are only slightly exacerbated in geriatric rats.

  11. Coordinated NO{sub x} control strategies: Phase II Title IV, ozone transport region and ozone transport assessment group

    SciTech Connect (OSTI)

    Frazier, W.F.; Dunn, R.M.; Baublis, D.C.

    1998-12-31

    Many electric utilities are faced with future nitrogen oxides (NO{sub x}) reduction requirements. In some instances, these utilities will be affected by multiple regulatory programs. For example, numerous fossil fired plants must comply with Phase II of Title IV of the Clean Air Act Amendments of 1990 (CAAA), state NO{sub x} rules as a result of the recommendations of the Ozone Transport Commission (OTC) and future requirements of the Proposed Rule for Reducing Regional Transport of Ground-Level Ozone (Ozone Transport SIP Rulemaking). This paper provides an overview of NO{sub x} regulatory programs, NO{sub x} compliance planning concepts, and NO{sub x} control technology options that could be components of an optimized compliance strategy.

  12. Analysis of Strategies for Multiple Emissions from Electric Power SO2, NOX, CO2, Mercury and RPS

    Reports and Publications (EIA)

    2001-01-01

    At the request of the Subcommittee, the Energy Information Administration prepared an initial report that focused on the impacts of reducing power sector NOx, SO2, and CO2 emissions. The current report extends the earlier analysis to add the impacts of reducing power sector mercury emissions and introducing renewable portfolio standard (RPS) requirements.

  13. Method for reducing NOx during combustion of coal in a burner

    DOE Patents [OSTI]

    Zhou, Bing; Parasher, Sukesh; Hare, Jeffrey J.; Harding, N. Stanley; Black, Stephanie E.; Johnson, Kenneth R.

    2008-04-15

    An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

  14. Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C.; Edmonds, Ryan G.; Williams, Joseph T.; Baldwin, Stephen P.

    2009-10-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  15. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  16. ARM - Lesson Plans: Reason for the Seasons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    three observations explain why we experience night and day; why the relative lengths of day and night vary from place to place and from time to time; and why we have seasons on...

  17. The selective catalytic reduction of NOx over Ag/Al2O3 with isobutanol as the reductant

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brookshear, Daniel William; Pihl, Josh A.; Toops, Todd J.; West, Brian H.; Prikhodko, Vitaly Y.

    2016-02-13

    Here, this study investigates the potential of isobutanol (iBuOH) as a reductant for the selective catalytic reduction (SCR) of NOx over 2 wt% Ag/Al2O3 between 150 and 550 °C and gas hourly space velocities (GHSV) between 10,000 and 35,000 h-1. The feed gas consists of 500 ppm NO, 5% H2O, 10% O2, and 375-1500 ppm iBuOH (C1:N ratios of 3-12); additionally, blends of 24 and 48% iBuOH in gasoline are evaluated. Over 90% NOx conversion is achieved between 300 and 400 C using pure iBuOH, including a 40% peak selectivity towards NH3 that could be utilized in a dual HC/NH3more » SCR configuration. The iBuOH/gasoline blends are only able to achieve greater than 90% NOx conversion when operated at a GHSV of 10,000 h-1 and employing a C1:N ratio of 12. Iso-butyraldehyde and NO2 appear to function as intermediates in the iBuOH-SCR mechanism, which mirrors the mechanism observed for EtOH-SCR. In general, the performance of iBuOH in the SCR of NOx over a Ag/Al2O3 catalyst is comparable with that of EtOH, although EtOH/gasoline blends display higher NOx reduction than iBuOH/gasoline blends. The key parameter in employing alcohols in SCR appears to be the C-OH:N ratio rather than the C1:N ratio.« less

  18. Formation of NOx precursors during Chinese pulverized coal pyrolysis in an arc plasma jet

    SciTech Connect (OSTI)

    Wei-ren Bao; Jin-cao Zhang; Fan Li; Li-ping Chang

    2007-08-15

    The formation of NOx precursors (HCN and NH{sub 3}) from the pyrolysis of several Chinese pulverized coals in an arc plasma jet was investigated through both thermodynamic analysis of the C-H-O-N system and experiments. Results of thermodynamic analysis show that the dominant N-containing gaseous species is HCN together with a small amount of ammonia above the temperature of 2000 K. The increase of H content advances the formation of HCN and NH{sub 3}, but the yields of HCN and NH{sub 3} are decreased with a high concentration of O in the system. These results are accordant with the experimental data. The increasing of input power promotes the formation of HCN and NH{sub 3} from coal pyrolysis in an arc plasma jet. Tar-N is not formed during the process. The yield of HCN changes insignificantly with the changing of the residence time of coal particles in the reactor, but that of NH{sub 3} decreases as residence times increase because of the relative instability at high temperature. Adsorption and gasification of CO{sub 2} on the coal surface also can restrain the formation of HCN and NH{sub 3} compare to the results in an Ar plasma jet. Yields of HCN and NH{sub 3} are sensitive to the coal feeding rate, indicating that NOx precursors could interact with the nascent char to form other N-containing species. The formation of HCN and NH{sub 3} during coal pyrolysis in a H{sub 2}/Ar plasma jet are not dependent on coal rank. The N-containing gaseous species is released faster than others in the volatiles during coal pyrolysis in an arc plasma jet, and the final nitrogen content in the char is lower than that in the parent coal, which it is independent of coal type. 16 refs., 9 figs., 1 tab.

  19. The seasonal cycle of satellite chlorophyll fluorescence observations...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: The seasonal cycle of satellite ... Citation Details In-Document Search Title: The seasonal cycle of satellite chlorophyll ...

  20. Influence of drought on growing season carbon and water cycling...

    Office of Scientific and Technical Information (OSTI)

    Influence of drought on growing season carbon and water cycling with changing land cover ... Title: Influence of drought on growing season carbon and water cycling with changing land ...

  1. Beijing Four Seasons Solar Power Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Beijing Four Seasons Solar Power Technology Co Ltd Jump to: navigation, search Name: Beijing Four Seasons Solar Power Technology Co Ltd Place: Beijing, Beijing Municipality, China...

  2. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    SciTech Connect (OSTI)

    Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

    2012-10-01

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

  3. NOVA Making Stuff Season 2

    SciTech Connect (OSTI)

    Leombruni, Lisa; Paulsen, Christine Andrews

    2014-12-12

    Over the course of four weeks in fall 2013, 11.7 million Americans tuned in to PBS to follow host David Pogue as he led them in search of engineering and scientific breakthroughs poised to change our world. Levitating trains, quantum computers, robotic bees, and bomb-detecting plantsthese were just a few of the cutting-edge innovations brought into the living rooms of families across the country in NOVAs four-part series, Making Stuff: Faster, Wilder, Colder, and Safer. Each of the four one-hour programs gave viewers a behind-the-scenes look at novel technologies poised to change our worldshowing them how basic research and scientific discovery can hold the keys to transforming how we live. Making Stuff Season 2 (MS2) combined true entertainment with educational value, creating a popular and engaging series that brought accessible science into the homes of millions. NOVAs goal to engage the public with such technological innovation and basic research extended beyond the broadcast series, including a variety of online, educational, and promotional activities: original online science reporting, web-only short-form videos, a new online quiz-game, social media engagement and promotion, an educational outreach toolkit for science educators to create their own makerspaces, an online community of practice, a series of nationwide Innovation Cafs, educator professional development, a suite of teacher resources, an Idealab, participation in national conferences, and specialized station relation and marketing. A summative evaluation of the MS2 project indicates that overall, these activities helped make a significant impact on the viewers, users, and participants that NOVA reached. The final evaluation conducted by Concord Evaluation Group (CEG) confidently concluded that the broadcast, website, and outreach activities were successful at achieving the projects intended impacts. CEG reported that the MS2 series and website content were successful in raising awareness and sparking interest in innovation, and increased public awareness that basic research leads to technological innovation; this interest was also sustained over a six month period. Efforts to create an online community of practice were also successful: the quality of collaboration increased, and community members felt supported while using Maker pedagogy. These findings provide clear evidence that large-scale science media projects like MS2 are an effective means of moving the needle on attitudes about and excitement for science. NOVAs broadcast audience and ratings have always indicated that a large portion of the population is interested in and engages with educational science media on a weekly basis. Yet these evaluation results provide the empirical evidence that beyond being capable of attracting, maintaining, and growing a dedicated group of citizens interested in science, these showswith their diverse content provided on a variety of media channelsare capable of sparking new interest in science, raising public awareness of the importance of science, and maintaining and growing that interest over time. In a country where approximately a quarter of the population doesnt know the earth rotates around the sun,1 roughly half still dont accept evolution,2 and about 20% dont think climate change is happening,3 the importance of these findings cannot be overstated. The success of MS2 suggests that large-scale media projects dedicated to and linked by coverage of scientific big ideas are an effective means of shifting public opinion onand improving understanding ofscience. REFERENCES 1, 2 National Science Foundation, Science and Engineering Indicators (2014). Chapter 7: Science and Technology: Public Attitudes and Understanding. 3 Leiserowitz, A., Maibach, E., Roser-Renouf, C., Feinberg, G., & Rosenthal, S. (2014) Climate change in the American mind: April, 2014. Yale University and George Mason University. New Haven, CT: Yale Project on Climate Change Communication.

  4. Clean Air Interstate Rule (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Clean Air Interstate Rule (CAIR) is a cap-and-trade program promulgated by the Environmental Protection Agency in 2005, covering 28 eastern U.S. states and the District of Columbia. It was designed to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions in order to help states meet their National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter (PM2.5) and to further emissions reductions already achieved through the Acid Rain Program and the NOx State Implementation Plan call program. The rule was set to commence in 2009 for seasonal and annual NOx emissions and in 2010 for SO2 emissions.

  5. An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel

    Broader source: Energy.gov [DOE]

    Optical engine experiments suggest that near stoichiometric charge-gas mixtures in the standing premixed autoignition zone near flame lift-off length explains biodiesel NOx increase under all conditions

  6. APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform

    SciTech Connect (OSTI)

    Webb, C; Weber, P; Thornton,M

    2003-08-24

    The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT) or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002 MY Federal heavy-duty and 2002 MY California medium-duty emission standards. The stock vehicle included cooled air charge (CAC), turbocharger (TC), direct fuel injection (DFI), oxidation catalyst (OC), and exhaust gas recirculation (EGR)

  7. Energy Risk Predictions for the 2015 Hurricane Season (June 2015) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Risk Predictions for the 2015 Hurricane Season (June 2015) Energy Risk Predictions for the 2015 Hurricane Season (June 2015) This presentation is from a DOE-NASEO webinar held June 23, 2015, on forecasting energy infrastructure risk for the 2015 hurricane season. A variety of sources predict a below-normal season, with hurricane intensity lower than the 1981-2010 averages. The presentation includes an overview of hurricane season classification, historic impacts, and

  8. C L E A N C I T I E S Low-NOx Gas Turbine Injectors Utilizing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels ADVANCED MANUFACTURING OFFICE Increasing the Fuel Flexibility of Industrial Gas Turbine Combustion Systems This project modifed a gas turbine combustion system to operate on hydrogen-rich opportunity fuels. Increasing the usability of opportunity fuels will avoid greenhouse gas emissions from the combustion of natural gas and increase the diversity of fuel sources for U.S. industry. Introduction Gas turbines are commonly

  9. Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2011-07-12

    A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

  10. Scale-Up and Demonstration of Fly Ash Ozonation Technology

    SciTech Connect (OSTI)

    Rui Afonso; R. Hurt; I. Kulaots

    2006-03-01

    The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

  11. Low Temperature Combustion using nitrogen enrichment to mitigate nox from large bore natural gas-filled engines.

    SciTech Connect (OSTI)

    Biruduganti, M. S.; Gupta, S. B.; Sekar, R. R.

    2008-01-01

    Low Temperature Combustion (LTC) is identified as one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. This phenomenon can be realized by utilizing various advanced combustion control strategies. The present work discusses nitrogen enrichment using an Air Separation Membrane (ASM) as a better alternative to the mature Exhaust Gas Re-circulation (EGR) technique currently in use. A 70% NOx reduction was realized with a moderate 2% nitrogen enrichment while maintaining power density and simultaneously improving Fuel Conversion Efficiency (FCE). The maximum acceptable Nitrogen Enriched Air (NEA) in a single cylinder spark ignited natural gas engine was investigated in this paper. Any enrichment beyond this level degraded engine performance both in terms of power density and FCE, and unburned hydrocarbon (UHC) emissions. The effect of ignition timing was also studied with and without N2 enrichment. Finally, lean burn versus stoichiometric operation utilizing NEA was compared. Analysis showed that lean burn operation along with NEA is one of the effective pathways for realizing better FCE and lower NOx emissions.

  12. Meeting the New Ozone Standard: Challenges and Opportunities

    Broader source: Energy.gov [DOE]

    This presentation by Anna Garcia, executive director of the Ozone Transport Commission, was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  13. Economics of pollution trading for SO{sub 2} and NOx

    SciTech Connect (OSTI)

    Dallas Burtraw; David A. Evans; Alan Krupnick; Karen Palmer; Russell Toth

    2005-03-15

    For years economists have urged policymakers to use market-based approaches such as cap-and-trade programs or emission taxes to control pollution. The sulphur dioxide (SO{sub 2}) allowance market created by Title IV of the 1990 US Clean Air Act Amendments represents the first real test of the wisdom of economists' advice. Subsequent urban and regional applications of NOx emission allowance trading took shape in the 1990s in the United States, culminating in a second large experiment in emission trading in the eastern United States that began in 2003. This paper provides an overview of the economic rationale for emission trading and a description of the major US programs for SO{sub 2} and nitrogen oxides. These programs are evaluated along measures of performance including cost savings, environmental integrity, and incentives for technological innovation. The authors offer lessons for the design of future programs including, most importantly, those reducing carbon dioxide. 128 refs., 1 fig., 1 tab.

  14. Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission

    DOE Patents [OSTI]

    Kostiuk, Larry W.; Cheng, Robert K.

    1996-01-01

    An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.

  15. Nebraska Preparing for the Upcoming Heating Season

    U.S. Energy Information Administration (EIA) Indexed Site

    N E B R A S K A Nebraska "Preparing for the Upcoming Heating Season" E N E R G Y O F F I C ... and local levels N E B R A S K A E N E R G Y O F F I C E Agency - http:...

  16. Age-dependent inhibition of pentobarbital sleeping time by ozone in mice and rats

    SciTech Connect (OSTI)

    Canada, A.T.; Calabrese, E.J.; Leonard, D.

    1986-09-01

    The effect of age on the metabolism of pentobarbital in mice and rats was investigated following exposure to 0.3 ppm of ozone for 3.75 hr. Young animals were 2.5 months of age and the mature were 18 months. The pentobarbital sleeping time was significantly prolonged following the ozone exposure in both the mice and rats when compared with an air control. No ozone effect on sleeping time was found in the young animals. The results indicate that there may be an age-related sensitivity to the occurrence of ozone-related inhibition of pentobarbital metabolism.

  17. Controlling superconductivity in La2-xSrxCuO4+δ by ozone and...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Controlling superconductivity in La2-xSrxCuO4+ by ozone and vacuum annealing Citation Details In-Document Search Title: Controlling superconductivity in ...

  18. Advantages of MgAlOx over gamma-Al2O3 as a support material for potassium-based high temperature lean NOx traps

    SciTech Connect (OSTI)

    Luo, Jinyong; Gao, Feng; Karim, Ayman M.; Xu, Pinghong; Browning, Nigel D.; Peden, Charles HF

    2015-08-07

    MgAlOx mixed oxides were employed as supports for potassium-based lean NOx traps (LNTs) targeted for high temperature applications. Effects of support compositions, K/Pt loadings, thermal aging and catalyst regeneration on NOx storage capacity were systematically investigated. The catalysts were characterized by XRD, NOx-TPD, TEM, STEM-HAADF and in-situ XAFS. The results indicate that MgAlOx mixed oxides have significant advantages over conventional gamma-Al2O3-supports for LNT catalysts, in terms of high temperature NOx trapping capacity and thermal stability. First, as a basic support, MgAlOx stabilizes stored nitrates (in the form of KNO3) to much higher temperatures than mildly acidic gamma-Al2O3. Second, MgAlOx minimizes Pt sintering during thermal aging, which is not possible for gamma-Al2O3 supports. Notably, combined XRD, in-situ XAFS and STEM-HAADF results indicate that Pt species in the thermally aged Pt/MgAlOx samples are finely dispersed in the oxide matrix as isolated atoms. This strong metal-support interaction stabilizes Pt and minimizes the extent of sintering. However, such strong interactions result in Pt oxidation via coordination with the support so that NO oxidation activity can be adversely affected after aging which, in turn, decreases NOx trapping ability for these catalysts. Interestingly, a high-temperature reduction treatment regenerates essentially full NOx trapping performance. In fact, regenerated Pt/K/MgAlOx catalyst exhibits much better NOx trapping performance than fresh Pt/K/Al2O3 LNTs over the entire temperature range investigated here. In addition to thermal aging, Pt/K loading effects were systemically studied over the fresh samples. The results indicate that NOx trapping is kinetically limited at low temperatures, while thermodynamically limited at high temperatures. A simple conceptual model was developed to explain the Pt and K loading effects on NOx storage. An optimized K loading, which allows balancing between the stability of nitrates and exposed Pt surface, gives the best NOx trapping capability.

  19. EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas

    Broader source: Energy.gov [DOE]

    The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower’s Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NOx control technologies.

  20. Smart Grid Week: Hurricane Season and the Department's Efforts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Week: Hurricane Season and the Department's Efforts to Make the Grid More Resilient to Power Outages Smart Grid Week: Hurricane Season and the Department's Efforts to Make the Grid ...

  1. Reduce Waste and Save Energy this Holiday Season

    Broader source: Energy.gov [DOE]

    Reduce waste and save energy this holiday season whether you're shopping, eating, partying, decorating, or wrapping.

  2. Reconstruction and Prediction of Variations of Total Ozone and Associated Variations of UV-B Solar Radiation for Subarctic Regions Based of Dendrochronologic Data

    SciTech Connect (OSTI)

    Zuev, V.V.; Bondarenko, S.L.

    2005-03-18

    Variations of dendrochronologic parameters, especially annual ring density, significantly reflect the physiological tree response to systematic variations of solar UV-B radiation, taking place on monthly and longer timescales during growing season. Such variations of UV-B radiation are totally governed by variations of total ozone (TO). Thus, in any dendrochronologic signal, especially for coniferous trees, there is also a recorded response to TO variations, characterizing variations of UV-B radiation. Because a monitoring of global TO distribution is regularly performed since 1979 using TOMS satellite instrumentation, there appears a possibility to reconstruct TO behavior in the past practically at any point of dendrochronologic monitoring network. The reconstruction is performed by the method of linear regression, based on significant correlation of annual ring density of coniferous trees and TO for coordinates of denrochronologic signal. The present report considers the Subarctic latitudes, which are characterized by considerable TO variations in the second half of twentieth century.

  3. Experimental study on NOx emission and unburnt carbon of a radial biased swirl burner for coal combustion

    SciTech Connect (OSTI)

    Shan Xue; Shi'en Hui; Qulan Zhou; Tongmo Xu

    2009-07-15

    Pilot tests were carried out on a 1 MW thermal pulverized coal fired testing furnace. Symmetrical combustion was implemented by use of two whirl burners with dual air adjustment. The burnout air device was installed in various places at the top of the main burner, which consists of a primary air pipe with a varying cross-section and an impact ring. In the primary air pipe, the air pulverized coal (PC) stream was separated into a whirling stream that was thick inside and thin outside, thus realizing the thin-thick distribution at the burner nozzle in the radial direction. From the comparative combustion tests of three coals with relatively great characteristic differences, Shaanbei Shenhua high rank bituminous coal (SH coal), Shanxi Hejin low rank bituminous coal (HJ coal), and Shanxi Changzhi meager coal (CZ coal), were obtained such test results as the primary air ratio, inner secondary air ratio, outer secondary air ratio, impact of the change of outer secondary air, change of the relative position for the layout of burnout air, change of the swirling intensity of the primary air and secondary air, etc., on the NOx emission, and unburnt carbon content in fly ash (CFA). At the same time, the relationship between the NOx emission and burnout ratio and affecting factors of the corresponding test items on the combustion stability and economic results were also acquired. The results may provide a vital guiding significance to engineering designs and practical applications. According to the experimental results, the influence of each individual parameter on NOx formation and unburned carbon in fly ash agrees well with the existing literature. In this study, the influences of various combinations of these parameters are also examined, thus providing some reference for the design of the radial biased swirl burner, the configuration of the furnace, and the distribution of the air. 23 refs., 14 figs., 2 tabs.

  4. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    SciTech Connect (OSTI)

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

  5. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress

    SciTech Connect (OSTI)

    Sunil, Vasanthi R.; Patel-Vayas, Kinal; Shen, Jianliang; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-09-01

    Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2?-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h and 4872 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NF?B. This correlated with expression of monocyte chemotactic protein?1, inducible nitric oxide synthase and cyclooxygenase?2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ? Lung macrophages are highly sensitive to ozone induced oxidative stress. ? Ozone induces autophagy and apoptosis in lung macrophages. ? Proinflammatory and wound repair macrophages are activated early after ozone. ? Oxidative stress may contribute to regulating macrophage phenotype and function.

  6. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

  7. Ozone-depleting-substance control and phase-out plan

    SciTech Connect (OSTI)

    Nickels, J.M.; Brown, M.J.

    1994-07-01

    Title VI of the Federal Clean Air Act Amendments of 1990 requires regulation of the use and disposal of ozone-depleting substances (ODSs) (e.g., Halon, Freon). Several important federal regulations have been promulgated that affect the use of such substances at the Hanford Site. On April 23, 1993, Executive Order (EO) 12843, Procurement Requirements and Policies for Federal Agencies for Ozone-Depleting Substances (EPA 1993) was issued for Federal facilities to conform to the new US Environmental Protection Agency (EPA) regulations implementing the Clean Air Act of 1963 (CAA), Section 613, as amended. To implement the requirements of Title VI the US Department of Energy, Richland Operations Office (RL), issued a directive to the Hanford Site contractors on May 25, 1994 (Wisness 1994). The directive assigns Westinghouse Hanford Company (WHC) the lead in coordinating the development of a sitewide comprehensive implementation plan to be drafted by July 29, 1994 and completed by September 30, 1994. The implementation plan will address several areas where immediate compliance action is required. It will identify all current uses of ODSs and inventories, document the remaining useful life of equipment that contains ODS chemicals, provide a phase-out schedule, and provide a strategy that will be implemented consistently by all the Hanford Site contractors. This plan also addresses the critical and required elements of Federal regulations, the EO, and US Department of Energy (DOE) guidance. This plan is intended to establish a sitewide management system to address the clean air requirements.

  8. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)

    SciTech Connect (OSTI)

    Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliqueivis, T.; Kuwata, Mikinori; Karl, Thomas G.; Guenther, Alex B.; Allan, James D.; Coe, H.; Andreae, M. O.; Poeschl, U.; Jiminez, J. L.; Artaxo, Paulo; Martin, Scot T.

    2015-01-01

    Real-time mass spectra of non-refractory component of submicron aerosol particles were recorded in a tropical rainforest in the central Amazon basin during the wet season of 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic components accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. Ammonium was present in sufficient quantities to halfway neutralize sulfate. In this acidic, isoprene-dominated, low-NOx environment the high-resolution mass spectra as well as mass closures with ion chromatography measurements did not provide evidence for significant contributions of organosulfate species, at least at concentrations above uncertainty levels. Positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the variance of the signal intensities of the organic constituents: a factor HOA having a hydrocarbon-like signature and identified as regional emissions of primary organic material, a factor OOA-1 associated with fresh production of secondary organic material by a mechanism of BVOC oxidation followed by gas-to-particle conversion, a factor OOA-2 consistent with reactive uptake of isoprene oxidation products, especially epoxydiols by acidic particles, and a factor OOA-3 associated with long range transport and atmospheric aging. The OOA-1, -2, and -3 factors had progressively more oxidized signatures. Diameter-resolved mass spectral markers also suggested enhanced reactive uptake of isoprene oxidation products to the accumulation mode for the OOA-2 factor, and such size partitioning can be indicative of in-cloud process. The campaign-average factor loadings were in a ratio of 1.1:1.0 for the OOA-1 compared to the OOA-2 pathway, suggesting the comparable importance of gas-phase compared to particle-phase (including cloud waters) production pathways of secondary organic material during the study period.

  9. Sensitivity analysis of ozone formation and transport for a Central California air pollution episode

    SciTech Connect (OSTI)

    Jin, Ling; Tonse, Shaheen; Cohan, Daniel S.; Mao, Xiaoling; Harley, Robert A.; Brown, Nancy J.

    2009-05-15

    CMAQ-HDDM is used to determine spatial and temporal variations in ozone limiting reagents and local vs upwind source contributions for an air pollution episode in Central California. We developed a first- and second- order sensitivity analysis approach with the Decoupled Direct Method to examine spatial and temporal variations of ozone-limiting reagents and the importance of local vs upwind emission sources in the San Joaquin Valley of central California for a five-day ozone episode (29th July-3rd Aug, 2000). Despite considerable spatial variations, nitrogen oxides (NO{sub x}) emission reductions are overall more effective than volatile organic compound (VOC) control for attaining the 8-hr ozone standard in this region for this episode, in contrast to the VOC control that works better for attaining the prior 1-hr ozone standard. Inter-basin source contributions of NO{sub x} emissions are limited to the northern part of the SJV, while anthropogenic VOC (AVOC) emissions, especially those emitted at night, influence ozone formation in the SJV further downwind. Among model input parameters studied here, uncertainties in emissions of NO{sub x} and AVOC, and the rate coefficient of the OH + NO{sub 2} termination reaction, have the greatest effect on first-order ozone responses to changes in NO{sub x} emissions. Uncertainties in biogenic VOC emissions only have a modest effect because they are generally not collocated with anthropogenic sources in this region.

  10. THE IMPACT OF OZONE ON THE LOWER FLAMMABLE LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    SciTech Connect (OSTI)

    Sherburne, Carol; Osterberg, Paul; Johnson, Tom; Frawely, Thomas

    2013-01-23

    The Savannah River Site, in conjunction with AREVA Federal services, has designed a process to treat dissolved radioactive waste solids with ozone. It is known that in this radioactive waste process, radionuclides radiolytically break down water into gaseous hydrogen and oxygen, which presents a well defined flammability hazard. Flammability limits have been established for both ozone and hydrogen separately; however, there is little information on mixtures of hydrogen and ozone. Therefore, testing was designed to provide critical flammability information necessary to support safety related considerations for the development of ozone treatment and potential scale-up to the commercial level. Since information was lacking on flammability issues at low levels of hydrogen and ozone, a testing program was developed to focus on filling this portion of the information gap. A 2-L vessel was used to conduct flammability tests at atmospheric pressure and temperature using a fuse wire ignition source at 1 percent ozone intervals spanning from no ozone to the Lower Flammable Limit (LFL) of ozone in the vessel, determined as 8.4%(v/v) ozone. An ozone generator and ozone detector were used to generate and measure the ozone concentration within the vessel in situ, since ozone decomposes rapidly on standing. The lower flammability limit of hydrogen in an ozone-oxygen mixture was found to decrease from the LFL of hydrogen in air, determined as 4.2 % (v/v) in this vessel. From the results of this testing, Savannah River was able to develop safety procedures and operating parameters to effectively minimize the formation of a flammable atmosphere.

  11. The role of developing countries in protecting the ozone layer: An ethical analysis

    SciTech Connect (OSTI)

    Zatz, M.N.

    1994-12-31

    In an effort to reduce the depletion of the stratospheric ozone layer, the nations of the world joined together in a landmark effort to address this most important problem. Unlike many environmental issues which are localized, ozone depletion is an environmental problem which must be addressed on a global scale. In order to successfully halt the depletion of the ozone layer, it is imperative that all countries amend their current practices and reduce their consumption of ozone-depleting substances. This necessity presents an ethical dilemma when assigning responsibility for ozone layer protection among nations. This paper will address the difficulties in dealing with ozone depletion on a global scale and will discuss the ethically correct role which should be assumed by developing countries. After presenting a brief history of the problem of ozone depletion and the measures which have been taken to halt it, this paper will describe an ethical framework in which ozone layer protection policies in developing countries should be evaluated. This framework is based on the concept of balancing morally-correct policies with economically-sound policies. It illustrates, in detail, how the environmental impacts of policies must be considered in conjunction with the impacts of such policies on the lives and well-being of the country`s citizens. The paper presents an ethical analysis of three primary policy options. These options address the phaseout of ozone-depleting substances (such as CFCs) and include: the no-phaseout option, the developed country accelerated phaseout schedule, and the delayed phaseout schedule. Each option is examined within the ethical framework presented earlier in the paper. Finally, the paper concludes by addressing the ethical responsibilities of developed countries. It discusses the various ways in which developed countries should provide aid.

  12. Ozone in sea water. Part 1: Chemistry; Part 2: Corrosion of metals

    SciTech Connect (OSTI)

    Wyllie, W.E. II; Brown, B.E.; Duquette, D.J.

    1995-12-01

    Ozonation of sea water for biofouling control is being utilized in desalination processes, heat exchange systems, as well as in salt water aquariums. The chemistry of ozone in sea water is much more complex than in fresh water due to the high concentration of easily oxidizable, ozone-demanding species and the formation of secondary oxidants. The major secondary oxidant is bromine in the form of hypobromite and hypobromous acid (BrO{sup {minus}}/HOBr) which are formed by oxidation of the bromide ion (Br{sup {minus}}), naturally found in sea water in concentrations of 65 mg/L. HOBr can react again with ozone to return Br{sup {minus}}, resulting in accelerated decomposition of ozone, or to form bromate (BrO{sub 3}{sup {minus}}) The BrO ion is known to interfere with the measurement of residual ozone in sea water, so it is important that the feed gas conditions, solution pH, and the hypobromous and bromate concentrations be reported to quantify the amount of ozone introduced into a system. In 0.5 N NaCl and sea water solutions, ozone appears to stabilize the passivity of passivating metals, but susceptibility to crevice corrosion appears to increase in the same environments. The effect of BrO{sup {minus}}/HOBr on the corrosion of metals in sea water is believed to be similar to chlorine and ozone, in that it acts as a strong oxidizer. However, it is not certain whether BrO{sup {minus}}/HOBr and BrO{sub 3}{sup {minus}} have any damaging effects on protective metal films.

  13. Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition

    SciTech Connect (OSTI)

    Lushington, Andrew; Liu, Jian; Tang, Yongji; Li, Ruying; Sun, Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2014-01-15

    The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10?wt. % ozone at temperatures of 150, 250, and 300?C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.

  14. Controlling superconductivity in La2-xSrxCuO4+δ by ozone and vacuum

    Office of Scientific and Technical Information (OSTI)

    annealing (Journal Article) | SciTech Connect Controlling superconductivity in La2-xSrxCuO4+δ by ozone and vacuum annealing Citation Details In-Document Search Title: Controlling superconductivity in La2-xSrxCuO4+δ by ozone and vacuum annealing In this study we performed a series of ozone and vacuum annealing experiments on epitaxial La2-xSrxCuO4+δ thin films. The transition temperature after each annealing step has been measured by the mutual inductance technique. The relationship

  15. JV Task 117 - Impact of Lignite Properties on Powerspan's NOx Oxidation System

    SciTech Connect (OSTI)

    Scott Tolbert; Steven Benson

    2008-02-29

    Powerspan's multipollutant control process called electrocatalytic oxidation (ECO) technology is designed to simultaneously remove SO{sub 2}, NO{sub x}, PM{sub 2.5}, acid gases (such as hydrogen fluoride [HF], hydrochloric acid [HCl], and sulfur trioxide [SO{sub 3}]), Hg, and other metals from the flue gas of coal-fired power plants. The core of this technology is a dielectric barrier discharge reactor composed of cylindrical quartz electrodes residing in metal tubes. Electrical discharge through the flue gas, passing between the electrode and the tube, produces reactive O and OH radicals. The O and OH radicals react with flue gas components to oxidize NO to NO{sub 2} and HNO{sub 3} and a small portion of the SO{sub 2} to SO{sub 3} and H{sub 2}SO{sub 4}. The oxidized compounds are subsequently removed in a downstream scrubber and wet electrostatic precipitator. A challenging characteristic of selected North Dakota lignites is their high sodium content. During high-sodium lignite combustion and gas cooling, the sodium vaporizes and condenses to produce sodium- and sulfur-rich aerosols. Based on past work, it was hypothesized that the sodium aerosols would deposit on and react with the silica electrodes and react with the silica electrodes, resulting in the formation of sodium silicate. The deposit and reacted surface layer would then electrically alter the electrode, thus impacting its dielectric properties and NO{sub x} conversion capability. The purpose of this project was to determine the impact of lignite-derived flue gas containing sodium aerosols on Powerspan's dielectric barrier discharge (DBD) reactor with specific focus on the interaction with the quartz electrodes. Partners in the project were Minnkota Power Cooperative; Basin Electric Power Cooperative; Montana Dakota Utilities Co.; Minnesota Power; the North Dakota Industrial Commission, the Lignite Energy Council, and the Lignite Research Council; the Energy & Environmental Research Center (EERC); and the U.S. Department of Energy. An electrocatalytic oxidation (ECO) reactor slipstream system was designed by Powerspan and the EERC. The slipstream system was installed by the EERC at Minnkota Power Cooperative's Milton R. Young Station Unit 1 downstream of the electrostatic precipitator where the flue gas temperature ranged from 300 to 350 F. The system was commissioned on July 3, 2007, operated for 107 days, and then winterized upon completion of the testing campaign. Operational performance of the system was monitored, and data were archived for postprocessing. A pair of electrodes were extracted and replaced on a biweekly basis. Each pair of electrodes was shipped to Powerspan to determine NO conversion efficiency in Powerspan's laboratory reactor. Tested electrodes were then shipped to the EERC for scanning electron microscopy (SEM) and x-ray microanalysis. Measurement of NO{sub x} conversion online in operating the slipstream system was not possible because the nitric and sulfuric acid production by the DBD reactor results in conditioning corrosion challenges in the sample extraction system and NO measurement technologies. The operational observations, performance results, and lab testing showed that the system was adversely affected by accumulation of the aerosol materials on the electrode. NO{sub x} conversion by ash-covered electrodes was significantly reduced; however, with electrodes that were rinsed with water, the NOx conversion efficiency recovered to nearly that of a new electrode. In addition, the visual appearance of the electrode after washing did not show evidence of a cloudy reacted surface but appeared similar to an unexposed electrode. Examination of the electrodes using SEM x-ray microanalysis showed significant elemental sodium, sulfur, calcium, potassium, and silica in the ash coating the electrodes. There was no evidence of the reaction of the sodium with the silica electrodes to produce sodium silicate layers. All SEM images showed a clearly marked boundary between the ash and the silica. Sodium and sulfur are the main culprits in the

  16. Influence of ozone on pentobarbital pharmacokinetics in mice

    SciTech Connect (OSTI)

    Graham, J.A.; Menzel, D.B.; Mole, M.L.; Miller, F.J.; Gardner, D.E.

    1985-01-01

    It had been shown that 3- to 5-hr exposures to ambient concentrations of ozone (O/sub 3/) increase pentobarbital-induced sleeping time in female mice, hamsters, and rats without decreasing heptatic cytochrome P-450 levels or selected mixed function oxidases. To elucidate potential mechanisms involved, clearance of pentobarbital from the blood of O/sub 3/-exposed mice was examined. Pentobarbital clearance followed first-order kinetics with a one-compartment model. Mice exposed to 1960 micrograms per cu. m. (1ppm) for 5 hr had a 71% increase in the plasma half-life of pentobarbital. It therefore appears possible that pentobarbital-induced sleeping time is increased due to a decrease in hepatic metabolism of pentobarbital.

  17. Seasonality in the Natural Gas Balancing Item: Historical Trends and

    U.S. Energy Information Administration (EIA) Indexed Site

    Corrective Measures Analysis > Seasonality in the Natural Gas Balancing Item: Historical Trends and Corrective Measures Seasonality in the Natural Gas Balancing Item: Historical Trends and Corrective Measures Released: June 4, 2010 Download Full Report (PDF) This special report examines an underlying cause of the seasonal pattern in the balancing item published in the Natural Gas Monthly. Research finds that a significant portion of data collected on EIA’s primary monthly natural gas

  18. Environmental Externalities in Electric Power Markets: Acid Rain, Urban Ozone, and Climate Change

    Reports and Publications (EIA)

    1995-01-01

    This article discusses the emissions resulting from the generation of electricity by utilities and their role in contributing to the environmental problems of acid rain, urban ozone, and climate change.

  19. Improved Potential Energy Surface of Ozone Constructed Using the Fitting by Permutationally Invariant Polynomial Function

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ayouz, Mehdi; Babikov, Dmitri

    2012-01-01

    New global potential energy surface for the ground electronic state of ozone is constructed at the complete basis set level of the multireference configuration interaction theory. A method of fitting the data points by analytical permutationally invariant polynomial function is adopted. A small set of 500 points is preoptimized using the old surface of ozone. In this procedure the positions of points in the configuration space are chosen such that the RMS deviation of the fit is minimized. New ab initio calculations are carried out at these points and are used to build new surface. Additional points are addedmore » to the vicinity of the minimum energy path in order to improve accuracy of the fit, particularly in the region where the surface of ozone exhibits a shallow van der Waals well. New surface can be used to study formation of ozone at thermal energies and its spectroscopy near the dissociation threshold.« less

  20. BPA revises policy for managing seasonal power oversupply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    policy-for-managing-seasonal-power-oversupply Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects...

  1. Strategies for Aligning Program Demand with Contractor's Seasonal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations Better Buildings Neighborhood Program Workforce Peer Exchange Call: Strategies for Aligning Program ...

  2. Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Workforce Peer Exchange Call: Strategies for Aligning Program Demand with Contractor’s Seasonal Fluctuations, Call Slides and Discussion Summary, June 7, 2012.

  3. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    SciTech Connect (OSTI)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  4. AISI/DOE Technology Roadmap Program: Development of an O2-Enriched Furnace System for Reduced CO2 and NOx Emissions For the Steel Industry

    SciTech Connect (OSTI)

    Edward W. Grandmaison; David J. Poirier; Eric Boyd

    2003-01-20

    An oxygen-enriched furnace system for reduced CO2 and NOx emission has been developed. The furnace geometry, with a sidewall-mounted burner, was similar to configurations commonly encountered in a steel reheat furnace. The effect of stack oxygen concentration, oxygen enrichment level and air infiltration on fuel savings/CO2 reduction, NOx emissions and scale formation were investigated. The firing rate required to maintain the furnace temperature at 1100 C decreased linearly with increasing oxygen enrichment. At full oxygen enrichment a reduction of 40-45% in the firing rate was required to maintain furnace temperature. NOx emissions were relatively constant at oxygen enrichment levels below 60% and decreased concentration at all oxygen enrichment levels. Air infiltration also had an effect on NOx levels leading to emissions similar to those observed with no air infiltration but with similar stack oxygen concentrations. At high oxygen enrichment levels, there was a larger variation in the refractory surface-temperature on the roof and blind sidewall of the furnace. Scale habit, intactness, adhesion and oxidation rates were examined for five grades of steel over a range of stack oxygen concentrations and oxygen enrichment levels at 1100 degree C. The steel grade had the largest effect on scaling properties examined in this work. The stack oxygen concentration and the oxygen enrichment level had much smaller effects on the scaling properties.

  5. Influence of Long-Period Variations of Total Ozone Content on Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change in Twentieth Century Influence of Long-Period Variations of Total Ozone Content on Climate Change in Twentieth Century Zuev, V Institute of Atmospheric Optics Zueva, N. Institute of Atmospheric Optics Bondarenko, S Institute of Atmospheric Optics Category: Atmospheric State and Surface It is shown that during long-term total ozone decrease everywhere at middle and high latitudes there takes place the destruction of balance in global carbon cycle first of all due to reduction of

  6. Spatially Resolved Estimation of Ozone-related Mortality in the United

    Office of Scientific and Technical Information (OSTI)

    States under Two Representative Concentration Pathways (RCPs) and their Uncertainty (Journal Article) | SciTech Connect Spatially Resolved Estimation of Ozone-related Mortality in the United States under Two Representative Concentration Pathways (RCPs) and their Uncertainty Citation Details In-Document Search Title: Spatially Resolved Estimation of Ozone-related Mortality in the United States under Two Representative Concentration Pathways (RCPs) and their Uncertainty BACKGROUND: The spatial

  7. Ozone-Based Atomic Layer Deposition of Crystalline V2O5Films for High

    Office of Scientific and Technical Information (OSTI)

    Performance Electrochemical Energy Storage (Journal Article) | SciTech Connect Ozone-Based Atomic Layer Deposition of Crystalline V2O5Films for High Performance Electrochemical Energy Storage Citation Details In-Document Search Title: Ozone-Based Atomic Layer Deposition of Crystalline V2O5Films for High Performance Electrochemical Energy Storage Authors: Chen, Xinyi ; Pomerantseva, Ekaterina ; Banerjee, P ; Gregorczyk, Keith ; Ghodssi, Reza ; Rubloff, Gary W Publication Date: 2012-04-10 OSTI

  8. A global analysis of the ozone deficit in the upper stratosphere and lower mesosphere

    SciTech Connect (OSTI)

    Eluszkiewicz, J.; Allen, M. )

    1993-01-20

    The global measurements of temperature, ozone, water vapor, and nitrogen dioxide acquired by the Limb Infrared Monitor of the Stratosphere (LIMS), supplemented by a precomputed distribution of chlorine monoxide, are used to test the balance between odd oxygen production and loss in the upper stratosphere and lower mesosphere. An efficient photochemical equilibrium model, validated by comparison with the results from a fully time-dependent one-dimensional model at selected latitudes, is used in the calculations. The computed ozone abundances are systematically lower than observations for May 1-7, 1979, which suggests, contrary to the conclusions of other recent studies, a problem in model simulations of stratospheric ozone. The ozone deficit' at 30[degrees]N is smaller than previous analyses of LIMS data have indicated. In the stratosphere, this reduction in the deficit is due to the fact that CIO abundances for the 1979 period utilized in this study are much lower than in earlier work, mainly as a result of lower Cl[sub y] concentrations. In the mesosphere, a correlation of the ozone deficit with the distribution of water vapor is indicated. The ozone deficit in the stratosphere can be eliminated by modifying only one model reaction rate: either by decreasing the rate of odd oxygen loss or by increasing the rate of odd oxygen production Cl[sub y] increasing the photodissociation rate of molecular oxygen primarily in the Herzberg continuum and/or invoking photolysis of vibrationally excited molecular oxygen. With the ozone abundances thus increased, a small residual deficit in the lower mesophere can be eliminated by reducing, within the recommended kinetic uncertainties, the efficiency of odd hydrogen-catalyzed odd oxygen loss. With the adjusted model, the calculated ozone abundances for the week of January 1-7. 1979, outside of winter latitudes, also agree with the LIMS observations to within 10%. 49 refs., 15 figs., 1 tab.

  9. Passive SCR for lean gasoline NOX control: Engine-based strategies to minimize fuel penalty associated with catalytic NH3 generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.; Toops, Todd J.

    2016-02-18

    Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NOX) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH3 is then used to reduce NOX emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratio and spark timing, onmore » NH3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NOX reduction, NH3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH3 production; however, the rich operation necessary for NH3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NOX emissions and, thereby, NH3 levels. Additionally, higher engine out NOX during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.« less

  10. Paso del Norte ozone study VOC measurements, 1996

    SciTech Connect (OSTI)

    Seila, R.L.; Main, H.; Arriaga, J.L.; Martinez, G.V.; Ramadan, A.B.

    1999-11-01

    The results of VOC determinations of ambient air samples collected at surface air quality monitoring sites and near sources of interest on the US and Mexican side of the border during six weeks of the 1996 Paso del Norte Ozone Study are reported. Carbonyl samples were collected on DNPH impregnated cartridges at three surface sites and analyzed by HPLC to quantify 13, C-1 to C-8 species. Whole air samples were collected in electro-polished stainless steel canisters which were returned to laboratory for determination of C-2 to C-10+ hydrocarbons by cryogenic preconcentration capillary gas chromatography with flame ionization detection (gc-fid). Several sources were sampled: rush hour traffic, propane-powered bus exhaust, automobile paint shop emissions, propane fuel, petroleum refinery, and industrial manufacturing site. Spatial and temporal characteristics of VOC species concentrations and compositions are presented. Overall surface TNMOC values ranged from 0.1 to 3.4 ppmC with the highest concentrations recorded in the morning at three vehicle-dominated sites, two in Cuidad Juarez and one in downtown El Paso. Toluene in El Paso samples and propane, which is used as a cooking and transportation fuel in Cuidad Juarez, were the most abundant hydrocarbons.

  11. Paso del Norte ozone study VOC measurements, 1996

    SciTech Connect (OSTI)

    Seila, R.L.; Main, H.; Arriaga, J.L.; Martinez, G.V.; Ramadan, A.B.

    1999-01-01

    The results of VOC determinations of ambient air samples collected at surface air quality monitoring sites and near sources of interest on the US and Mexican side of the border during six weeks of the 1996 Paso del Norte Ozone Study are reported. Carbonyl samples were collected on DNPH impregnated cartridges at three surface sites and analyzed by HPLC to quantify 13, C-1 to C-8 species. Whole air samples were collected in electro-polished stainless steel canisters which were returned to laboratory for determination of C-2 to C-10+ hydrocarbons by cryogenic preconcentration capillary gas chromatography with flame ionization detection (gc-fid). Several sources were sampled: rush hour traffic, propane-powered bus exhaust, automobile paint shop emissions, propane fuel, petroleum refinery, and industrial manufacturing site. Spatial and temporal characteristics of VOC species concentrations and compositions are presented. Overall surface TNMOC values ranged from 0.1 to 3.4 ppmC with the highest concentrations recorded in the morning at three vehicle-dominated sites, two in Cuidad Juarez and one in downtown El Paso. Toluene in El Paso samples and propane, which is used as a cooking and transportation fuel in Cuidad Juarez, were the most abundant hydrocarbons.

  12. Overview of ozone human exposure and health risk analyses used in the U.S. EPA's review of the ozone air quality standard.

    SciTech Connect (OSTI)

    Whitfield, R. G.

    1999-03-04

    This paper presents an overview of the ozone human exposure and health risk analyses developed under sponsorship of the U.S. Environmental Protection Agency (EPA). These analyses are being used in the current review of the national ambient air quality standards (NAAQS) for ozone. The analyses consist of three principal steps: (1) estimating short-term ozone exposure for particular populations (exposure model); (2) estimating population response to exposures or concentrations (exposure-response or concentration-response models); and (3) integrating concentrations or exposure with concentration-response or exposure-response models to produce overall risk estimates (risk model). The exposure model, called the probabilistic NAAQS exposure model for ozone (pNEM/03), incorporates the following factors: hourly ambient ozone concentrations; spatial distribution of concentrations; ventilation state of individuals at time of exposure; and movement of people through various microenvironments (e.g., outdoors, indoors, inside a vehicle) of varying air quality. Exposure estimates are represented by probability distributions. Exposure-response relationships have been developed for several respiratory symptom and lung function health effects, based on the results of controlled human exposure studies. These relationships also are probabilistic and reflect uncertainties associated with sample size and variability of response among subjects. The analyses also provide estimates of excess hospital admissions in the New York City area based on results from an epidemiology study. Overall risk results for selected health endpoints and recently analyzed air quality scenarios associated with alternative 8-hour NAAQS and the current 1-hour standard for outdoor children are used to illustrate application of the methodology.

  13. Fall: Energy Saving Changes with the Season | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fall: Energy Saving Changes with the Season Fall: Energy Saving Changes with the Season October 18, 2011 - 6:42am Addthis Andrea Spikes Former Communicator at DOE's National Renewable Energy Laboratory I'm sure you've noticed the change in seasons by now. Fall brings cooler weather, and with it my thoughts turn to warm things like putting blankets on the couch, enjoying my fireplace, and adjusting my thermostat (as little as possible, of course). One thing we did over the weekend is we insulated

  14. Department of Energy Prepares for Hurricane Season | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prepares for Hurricane Season Department of Energy Prepares for Hurricane Season May 30, 2006 - 10:50am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) Director of the Office of Electricity Delivery and Energy Reliability (OE) Kevin Kolevar today outlined a number of steps that the department is taking to prepare for hurricane season in the United States. Last year, Hurricanes Katrina and Rita knocked out electricity to a large portion of the Gulf Coast and damaged a number of oil

  15. Post-treatment of fly ash by ozone in a fixed bed reactor

    SciTech Connect (OSTI)

    Kim Hougaard Pedersen; Merc Casanovas Meli; Anker Degn Jensen; Kim Dam-Johansen

    2009-01-15

    The residual carbon in fly ash produced from pulverized coal combustion can adsorb the air-entraining admixtures (AEAs) added to enhance air entrainment in concrete. This behavior of the ash can be suppressed by exposing the fly ash to oxidizing species, which oxidizes the carbon surface and thus prevents the AEA to be adsorbed. In the present work, two fly ashes have been ozonated in a fixed bed reactor and the results showed that ozonation is a potential post-treatment method that can lower the AEA requirements of a fly ash up to 6 times. The kinetics of the carbon oxidation by ozone was found to be fast. A kinetic model has been formulated, describing the passivation of carbon, and it includes the stoichiometry of the ozone consumption (0.8 mol of O{sub 3}/kg of C) and an ineffective ozone loss caused by catalytic decomposition. The simulated results correlated well with the experimental data. 28 refs., 7 figs., 3 tabs.

  16. Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\\FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines, Self-Diagnosing SmartCatalyst Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about NOx control ...

  17. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    SciTech Connect (OSTI)

    Monica Zanfir; Rahul Solunke; Minish Shah

    2012-06-01

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon’s catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.

  18. ARM - Field Campaign - Warm-Season Data Assimilation and ISS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    below or call us at 1-888-ARM-DATA. Send Campaign : Warm-Season Data Assimilation and ISS Test 1993.06.01 - 1993.06.30 Lead Scientist : Dave Parsons Data Availability Complete...

  19. Simultaneous SO{sub 2}, SO{sub 3} and NOx removal with ammonia and electron beam irradiation by the EBA process

    SciTech Connect (OSTI)

    Hirano, S.; Aoki, S.; Izutsu, M.; Yuki, Y.

    1999-07-01

    Details are presented of design, performance, operational experience and cost-effectiveness of an ammonium sulfate/nitrate yielding, 90 MWe-capacity, Electron Beam system retrofit, an initial commercial installation of the EBA Process in high-sulfur bituminous coal service at the Chengdu Power Station of Sichuan Electric Power Administration in China. 1997/1998 system startup and commissioning activities leading to successful acceptance tests in 1998 are reviewed to indicate the scope of problems addressed and overcome, and the resulting broad applicability for low-grade fuel service, e.g. in Asia and North America, is illustrated. A retrofit installation of 220 MWe capacity at a powerplant of Chubu Electric Power Company, Inc., in Japan, 92+% SO{sub 2} and SO{sub 3} removal w/60+% NOx removal, that will start up in late 1999 is reviewed. Process economics, i.e. cost/ton SO{sub 2} removal are presented for: The Chengdu Station installation, 80+% SO{sub 2} and SO{sub 3} removal w/20% NOx removal; and a commonly referenced, hypothetical application on a new unit in the U.S. of 300 MWe capacity with 2.6% sulfur bituminous coal fueling designed for performance of 90% SO{sub 2} and SO{sub 3} removal w/65% NOx removal.

  20. Combustion characteristics and NOx emissions of two kinds of swirl burners in a 300-MWe wall-fired pulverized-coal utility boiler

    SciTech Connect (OSTI)

    Li, Z.Q.; Jing, J.P.; Chen, Z.C.; Ren, F.; Xu, B.; Wei, H.D.; Ge, Z.H.

    2008-07-01

    Measurements were performed in a 300-MWe wall-fired pulverized-coal utility boiler. Enhanced ignition-dual register (EI-DR) burners and centrally fuel rich (CFR) swirl coal combustion burners were installed in the bottom row of the furnace during experiments. Local mean concentrations of O{sub 2}, CO, CO{sub 2} and NOx gas species, gas temperatures, and char burnout were determined in the region of the two types of burners. For centrally fuel rich swirl coal combustion burners, local mean CO concentrations, gas temperatures and the temperature gradient are higher and mean concentrations of O{sub 2} and NOx along the jet flow direction in the burner region are lower than for the enhanced ignition-dual register burners. Moreover, the mean O{sub 2} concentration is higher and the gas temperature and mean CO concentration are lower in the side wall region. For centrally fuel rich swirl coal combustion burners in the bottom row, the combustion efficiency of the boiler increases from 96.73% to 97.09%, and NOx emission decreases from 411.5 to 355 ppm at 6% O{sub 2} compared to enhanced ignition-dual register burners and the boiler operates stably at 110 MWe without auxiliary fuel oil.

  1. Observation of stratospheric trace gases related to ozone depletion in the Antarctic spring

    SciTech Connect (OSTI)

    De Zafra, R.L.; Parrish, A.; Solomon, P.; Barrett, J.W.; Connor, B.; Jaramillo, M. )

    1987-01-01

    During the first National Ozone Expedition (NOZE I), which ran from 21 August to early November 1986 at McMurdo Station, the authors made frequent measurements of chlorine monoxide (CIO), ozone (O{sub 3}), nitrous oxide (N{sub 2}O), and occasional measurements of hydrogen cyanide. Observations were made with a ground-based millimeters wave spectrometer capable of detecting and measuring the pressure broadened rotational emission lines of these molecules in the 260-280 gigahertz frequency range. The spectral bandpass and resolution of the instrument is sufficient to recover altitude distributions over a range of approximately 20-55 kilometers and to detect emission from as low as approximately 13-15 kilometers. Results are given and discussed on the levels of chlorine monoxide, nitrous oxide, and ozone found.

  2. Forest phenology and a warmer climate - Growing season extension in

    Office of Scientific and Technical Information (OSTI)

    relation to climatic provenance (Journal Article) | SciTech Connect Journal Article: Forest phenology and a warmer climate - Growing season extension in relation to climatic provenance Citation Details In-Document Search Title: Forest phenology and a warmer climate - Growing season extension in relation to climatic provenance Predicting forest responses to warming climates relies on assumptions about niche and temperature sensitivity that remain largely untested. Observational studies have

  3. Natural Aerosols Explain Seasonal and Spatial Patterns of Southern Ocean

    Office of Scientific and Technical Information (OSTI)

    Cloud Albedo (Journal Article) | SciTech Connect Natural Aerosols Explain Seasonal and Spatial Patterns of Southern Ocean Cloud Albedo Citation Details In-Document Search Title: Natural Aerosols Explain Seasonal and Spatial Patterns of Southern Ocean Cloud Albedo Small particles called aerosols act as nucleation sites for cloud drop formation, affecting clouds and cloud properties - ultimately influencing the cloud dynamics, lifetime, water path and areal extent that determine the

  4. The seasonal cycle of satellite chlorophyll fluorescence observations and

    Office of Scientific and Technical Information (OSTI)

    its relationship to vegetation phenology and ecosystem-atmosphere carbon exchange (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem-atmosphere carbon exchange Citation Details In-Document Search Title: The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and

  5. DOE Prepares for the 2007 Hurricane Season | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prepares for the 2007 Hurricane Season DOE Prepares for the 2007 Hurricane Season May 30, 2007 - 1:25pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today outlined a number of steps that the Department is taking to strengthen its hurricane response system in the United States. Since Hurricanes Katrina and Rita in 2005, DOE has made operational and administrative improvements, including coordination between federal, state and local leaders, deployment of trained staff, and

  6. Energy Resources for Hurricane Season | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hurricane Season Energy Resources for Hurricane Season This aerial photo of New Orleans from August 29, 2005, shows a flooded neighborhood with a roadway going down into flood waters. Photo courtesy of FEMA/Jocelyn Augustino This aerial photo of New Orleans from August 29, 2005, shows a flooded neighborhood with a roadway going down into flood waters. Photo courtesy of FEMA/Jocelyn Augustino Find helpful resources for incorporating energy into disaster planning, response, and rebuilding.

  7. Energy Resources for Tornado Season | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tornado Season Energy Resources for Tornado Season The aftermath of a tornado in Greensburg, Kansas. | Photo courtesy of Federal Emergency Mgmt. Agency, NREL 16290 The aftermath of a tornado in Greensburg, Kansas. | Photo courtesy of Federal Emergency Mgmt. Agency, NREL 16290 Find helpful resources for incorporating energy into disaster planning, response, and rebuilding. Sustainable Transportation Alternative Fueling Station Locator U.S. Department of Energy Find alternative fueling stations

  8. Cloud and Precipitation Fields Around Darwin in the Transition Season

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Precipitation Fields Around Darwin in the Transition Season P. T. May Bureau of Meteorology Research Centre Melbourne, 3001, Victoria, Australia Introduction An interesting, and very relevant question, for the Atmospheric Radiation Measurement (ARM) Program is how cloud characteristics and their seasonal and diurnal variation changes across the tropics. In particular, how does he cloud field around the new SRCS site compare with nearby regions. Thus, the aim of this study is to look at the

  9. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    SciTech Connect (OSTI)

    Domagal-Goldman, Shawn D.; Segura, Antgona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S.

    2014-09-10

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric contextparticularly redox state and O atom inventoryof the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  10. Columbia River Basin Seasonal Volumes and Statistics, 1928-1989. 1990 Level Modified Streamflows Computed Seasonal Volumes 61-Year Statistics.

    SciTech Connect (OSTI)

    A.G. Crook Company

    1993-04-01

    This report was prepared by the A.G. Crook Company, under contract to Bonneville Power Administration, and provides statistics of seasonal volumes and streamflow for 28 selected sites in the Columbia River Basin.

  11. Secondary Pollutants from Ozone Reaction with Ventilation Filters and Degradation of Filter Media Additives

    SciTech Connect (OSTI)

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, Jrmie; Brunner, Gregory; Zhang, Jianshun; Fisk, William J.

    2011-05-01

    Prior research suggests that chemical processes taking place on the surface of particle filters employed in buildings may lead to the formation of harmful secondary byproducts. We investigated ozone reactions with fiberglass, polyester, cotton/polyester and polyolefin filter media, as well as hydrolysis of filter media additives. Studies were carried out on unused media, and on filters that were installed for 3 months in buildings at two different locations in the San Francisco Bay Area. Specimens from each filter media were exposed to {approx}150 ppbv ozone in a flow tube under a constant flow of dry or humidified air (50percent RH). Ozone breakthrough was recorded for each sample over periods of {approx}1000 min; the ozone uptake rate was calculated for an initial transient period and for steady-state conditions. While ozone uptake was observed in all cases, we did not observe significant differences in the uptake rate and capacity for the various types of filter media tested. Most experiments were performed at an airflow rate of 1.3 L/min (face velocity = 0.013 m/s), and a few tests were also run at higher rates (8 to 10 L/min). Formaldehyde and acetaldehyde, two oxidation byproducts, were quantified downstream of each sample. Those aldehydes (m/z 31 and 45) and other volatile byproducts (m/z 57, 59, 61 and 101) were also detected in real-time using Proton-Transfer Reaction - Mass Spectrometry (PTR-MS). Low-ppbv byproduct emissions were consistently higher under humidified air than under dry conditions, and were higher when the filters were loaded with particles, as compared with unused filters. No significant differences were observed when ozone reacted over various types of filter media. Fiberglass filters heavily coated with impaction oil (tackifier) showed higher formaldehyde emissions than other samples. Those emissions were particularly high in the case of used filters, and were observed even in the absence of ozone, suggesting that hydrolysis of additives, rather than ozonolysis, is the main formaldehyde source in those filters. Emission rates of formaldehyde and acetaldehyde were not found to be large enough to substantially increase indoor concentrations in typical building scenarios. Nevertheless, ozone reactions on HVAC filters cannot be ignored as a source of low levels of indoor irritants.

  12. Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts

    SciTech Connect (OSTI)

    Gao, Feng; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF

    2013-11-03

    Selective catalytic reduction (SCR) of NOx with ammonia using metal-exchanged molecular sieves with a chabazite (CHA) structure has recently been commercialized on diesel vehicles. One of the commercialized catalysts, i.e., Cu-SSZ-13, has received much attention for both practical and fundamental studies. For the latter, the particularly well-defined structure of this zeolite is allowing long-standing issues of the catalytically active site for SCR in metal-exchanged zeolites to be addressed. In this review, recent progress is summarized with a focus on two areas. First, the technical significance of Cu-SSZ-13 as compared to other Cu-ion exchanged zeolites (e.g., Cu-ZSM-5 and Cu-beta) is highlighted. Specifically, the much enhanced hydrothermal stability for Cu-SSZ-13 compared to other zeolite catalysts is addressed via performance measurements and catalyst characterization using several techniques. The enhanced stability of Cu-SSZ-13 is rationalized in terms of the unique small pore structure of this zeolite catalyst. Second, the fundamentals of the catalytically active center; i.e., the chemical nature and locations within the SSZ-13 framework are presented with an emphasis on understanding structure-function relationships. For the SCR reaction, traditional kinetic studies are complicated by intra-particle diffusion limitations. However, a major side reaction, nonselective ammonia oxidation by oxygen, does not suffer from mass-transfer limitations at relatively low temperatures due to significantly lower reaction rates. This allows structure-function relationships that are rather well understood in terms of Cu ion locations and redox properties. Finally, some aspects of the SCR reaction mechanism are addressed on the basis of in-situ spectroscopic studies.

  13. Study of air pollution: Effects of ozone on neuropeptide-mediated responses in human subjects. Final report

    SciTech Connect (OSTI)

    Boushey, H.A.

    1991-11-01

    The study examined the hypothesis that ozone inactivates the enzyme, neutral endopeptidase, responsible for limiting the effects of neuropeptides released from afferent nerve endings. Cough response of capsaicin solution delivered from a nebulizer at 2 min. intervals until two or more coughs were produced. Other endpoints measured included irritative symptoms as rated by the subjects on a nonparametric scale, spirometry, of each concentration of ozone were compared to those of filtered air in a single-blind randomized sequence. The results indicate that a 2 h. exposure to 0.4 ppm of ozone with intermittent light exercise alters the sensitivity of airway nerves that mediate the cough response to inhaled materials. This dose of ozone also caused a change in FEV1. A lower level of ozone, 0.02 ppm, caused a change in neither cough threshold nor FEV1, even when the duration of exposure was extended to three hours. The findings are consistent with the author's hypothesis that ozone may sensitize nerve endings in the airways by inactivating neutral endopeptidase, an enzyme that regulates their activity, but they do not demonstrate that directly examining an effect directly mediated by airway nerves allows detection of effects of ozone at doses below those causing effects detected by standard tests of pulmonary function.

  14. Valuing the ozone-related health benefits of methane emission controls

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sarofim, Marcus C.; Waldhoff, Stephanie T.; Anenberg, Susan C.

    2015-06-29

    Methane is a greenhouse gas that oxidizes to form ground-level ozone, itself a greenhouse gas and a health-harmful air pollutant. Reducing methane emissions will both slow anthropogenic climate change and reduce ozone-related mortality. We estimate the benefits of reducing methane emissions anywhere in the world for ozone-related premature mortality globally and for eight geographic regions. Our methods are consistent with those used by the US Government to estimate the social cost of carbon (SCC). We find that the global short- and long-term premature mortality benefits due to reduced ozone production from methane mitigation are (2011) $790 and $1775 per tonnemore » methane, respectively. These correspond to approximately 70 and 150 % of the valuation of methane’s global climate impacts using the SCC after extrapolating from carbon dioxide to methane using global warming potential estimates. Results for monetized benefits are sensitive to a number of factors, particularly the choice of elasticity to income growth used when calculating the value of a statistical life. The benefits increase for emission years further in the future. Regionally, most of the global mortality benefits accrue in Asia, but 10 % accrue in the United States. As a result, this methodology can be used to assess the benefits of methane emission reductions anywhere in the world, including those achieved by national and multinational policies.« less

  15. Narrowband filter radiometer for ground-based measurements of global ultraviolet solar irradiance and total ozone

    SciTech Connect (OSTI)

    Petkov, Boyan; Vitale, Vito; Tomasi, Claudio; Bonafe, Ubaldo; Scaglione, Salvatore; Flori, Daniele; Santaguida, Riccardo; Gausa, Michael; Hansen, Georg; Colombo, Tiziano

    2006-06-20

    The ultraviolet narrowband filter radiometer (UV-RAD) designed by the authors to take ground-based measurements of UV solar irradiance, total ozone, and biological dose rate is described, together with the main characteristics of the seven blocked filters mounted on it, all of which have full widths at half maxima that range 0.67 to 0.98 nm. We have analyzed the causes of cosine response and calibration errors carefully to define the corresponding correction terms, paying particular attention to those that are due to the spectral displacements of the filter transmittance peaks from the integer wavelength values. The influence of the ozone profile on the retrieved ozone at large solar zenith angles has also been examined by means of field measurements. The opportunity of carrying out nearly monochromatic irradiance measurements offered by the UV-RAD allowed us to improve the procedure usually followed to reconstruct the solar spectrum at the surface by fitting the computed results, using radiative transfer models with field measurements of irradiance. Two long-term comparison campaigns took place, showing that a mean discrepancy of+0.3% exists between the UV-RAD total ozone values and those given by the Brewer no. 63 spectroradiometer and that mean differences of+0.3% and-0.9% exist between the erythemal dose rates determined with the UV-RAD and those obtained with the Brewer no. 63 and the Brewer no. 104 spectroradiometers, respectively.

  16. Development of pollution reduction strategies for Mexico City: Estimating cost and ozone reduction effectiveness

    SciTech Connect (OSTI)

    Thayer, G.R.; Hardie, R.W.; Barrera-Roldan, A.

    1993-12-31

    This reports on the collection and preparation of data (costs and air quality improvement) for the strategic evaluation portion of the Mexico City Air Quality Research Initiative (MARI). Reports written for the Mexico City government by various international organizations were used to identify proposed options along with estimates of cost and emission reductions. Information from appropriate options identified by SCAQMD for Southem California were also used in the analysis. A linear optimization method was used to select a group of options or a strategy to be evaluated by decision analysis. However, the reduction of ozone levels is not a linear function of the reduction of hydrocarbon and NO{sub x} emissions. Therefore, a more detailed analysis was required for ozone. An equation for a plane on an isopleth calculated with a trajectory model was obtained using two endpoints that bracket the expected total ozone precursor reductions plus the starting concentrations for hydrocarbons and NO{sub x}. The relationship between ozone levels and the hydrocarbon and NO{sub x} concentrations was assumed to lie on this plane. This relationship was used in the linear optimization program to select the options comprising a strategy.

  17. The Impact of Emission and Climate Change on Ozone in the United States under Representative Concentration Pathways (RCPs)

    SciTech Connect (OSTI)

    Gao, Yang; Fu, Joshua S.; Drake, John B.; Lamarque, J.-F.; Liu, Yang

    2013-09-27

    Dynamical downscaling was applied in this study to link the global climate-chemistry model Community Atmosphere Model (CAM-Chem) with the regional models: Weather Research and Forecasting (WRF) Model and Community Multi-scale Air Quality (CMAQ). Two Representative Concentration Pathway (RCP) scenarios (RCP 4.5 and RCP 8.5) were used to evaluate the climate impact on ozone concentrations in 2050s. Ozone concentrations in the lower-mid troposphere (surface to ~300 hPa), from mid- to high latitudes in the Northern Hemisphere (NH), show decreasing trends in RCP 4.5 between 2000s and 2050s, with the largest decrease of 4-10 ppbv occurring in the summer and the fall; and increasing trends (2-12 ppbv) in RCP 8.5 resulting from the increased methane emissions. In RCP 8.5, methane emissions increase by ~60% by the end of 2050s, accounting for more than 90% of ozone increases in summer and fall, and 60-80% in spring and winter. Under the RCP 4.5 scenario, in the summer when photochemical reactions are the most active, the large ozone precursor emissions reduction leads to the greatest decrease of downscaled surface ozone concentrations, ranging from 6 to 10 ppbv. However, a few major cities show ozone increases of 3 to 7 ppbv due to weakened NO titration. Under the RCP 8.5 scenario, in winter, downscaled ozone concentrations increase across nearly the entire continental US in winter, ranging from 3 to 10 ppbv due to increased methane emissions and enhanced stratosphere-troposphere exchange (STE). More intense heat waves are projected to occur by the end of 2050s in RCP 8.5, leading to more than 8 ppbv of the maximum daily 8-hour daily average (MDA8) ozone during the heat wave days than other days; this indicates the dramatic impact heat waves exert on high frequency ozone events.

  18. Cruising to Energy Savings This Summer Driving Season | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Cruising to Energy Savings This Summer Driving Season Cruising to Energy Savings This Summer Driving Season May 11, 2010 - 7:30am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy My dad is obsessed with fuel efficiency. I joked with him on a recent road trip that when he retires, he'll have more time to pursue his dream career as a fuel-economy promoter. Well guess what, I just found the treasure trove of information on

  19. Forecasting the 2013–2014 influenza season using Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.; Salathé, Marcel

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are appliedmore » to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.« less

  20. Forecasting the 2013–2014 influenza season using Wikipedia

    SciTech Connect (OSTI)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.; Salathé, Marcel

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are applied to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.

  1. Wastewater treatment: Ozonation processes and equipment. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning the use of ozone for wastewater disinfection. The citations cover system descriptions and evaluations, comparisons with the chlorination disinfection process, reaction kinetics, and the combination of ozonation with other wastewater treatment methods. The treatment of organic and inorganic compounds in wastewater and municipal water supplies is also discussed. (Contains 250 citations and includes a subject term index and title list.)

  2. Wastewater treatment: Ozonation processes and equipment. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    The bibliography contains citations concerning the use of ozone for wastewater disinfection. The citations cover system descriptions and evaluations, comparisons with the chlorination disinfection process, reaction kinetics, and the combination of ozonation with other wastewater treatment methods. The treatment of organic and inorganic compounds in wastewater and municipal water supplies is also discussed. (Contains 250 citations and includes a subject term index and title list.)

  3. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare -- Ozone Based Laundry Systems

    SciTech Connect (OSTI)

    Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Sutherland, T. A.; Foley, K. J.

    2014-08-14

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of ozone laundry system installations at the Charleston Place Hotel in Charleston, South Carolina, and the Rogerson House assisted living facility in Boston, Massachusetts.

  4. Compact Potentiometric NOx Sensor

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  5. NOx Sensor Development

    SciTech Connect (OSTI)

    Woo, L Y; Glass, R S

    2010-11-01

    NO{sub x} compounds, specifically NO and NO{sub 2}, are pollutants and potent greenhouse gases. Compact and inexpensive NO{sub x} sensors are necessary in the next generation of diesel (CIDI) automobiles to meet government emission requirements and enable the more rapid introduction of more efficient, higher fuel economy CIDI vehicles. Because the need for a NO{sub x} sensor is recent and the performance requirements are extremely challenging, most are still in the development phase. Currently, there is only one type of NO{sub x} sensor that is sold commercially, and it seems unlikely to meet more stringent future emission requirements. Automotive exhaust sensor development has focused on solid-state electrochemical technology, which has proven to be robust for in-situ operation in harsh, high-temperature environments (e.g., the oxygen stoichiometric sensor). Solid-state sensors typically rely on yttria-stabilized zirconia (YSZ) as the oxygen-ion conducting electrolyte and then target different types of metal or metal-oxide electrodes to optimize the response. Electrochemical sensors can be operated in different modes, including amperometric (a current is measured) and potentiometric (a voltage is measured), both of which employ direct current (dc) measurements. Amperometric operation is costly due to the electronics necessary to measure the small sensor signal (nanoampere current at ppm NO{sub x} levels), and cannot be easily improved to meet the future technical performance requirements. Potentiometric operation has not demonstrated enough promise in meeting long-term stability requirements, where the voltage signal drift is thought to be due to aging effects associated with electrically driven changes, both morphological and compositional, in the sensor. Our approach involves impedancemetric operation, which uses alternating current (ac) measurements at a specified frequency. The approach is described in detail in previous reports and several publications. Briefly, impedancemetric operation has shown the potential to overcome the drawbacks of other approaches, including higher sensitivity towards NO{sub x}, better long-term stability, potential for subtracting out background interferences, total NO{sub x} measurement, and lower cost materials and operation. Past LLNL research and development efforts have focused on characterizing different sensor materials and understanding complex sensing mechanisms. Continued effort has led to improved prototypes with better performance, including increased sensitivity (to less than 5 ppm) and long-term stability, with more appropriate designs for mass fabrication, including incorporation of an alumina substrate with an imbedded heater. Efforts in the last year to further improve sensor robustness have led to successful engine dynamometer testing with prototypes mounted directly in the engine manifold. Previous attempts had required exhaust gases to be routed into a separate furnace for testing due to mechanical failure of the sensor from engine vibrations. A more extensive cross-sensitivity study was also undertaken this last year to examine major noise factors including fluctuations in water, oxygen, and temperature. The quantitative data were then used to develop a strategy using numerical algorithms to improve sensor accuracy. The ultimate goal is the transfer of this technology to a supplier for commercialization. Due to the recent economic downturn, suppliers are demanding more comprehensive data and increased performance analysis before committing their resources to take the technology to market. Therefore, our NO{sub x} sensor work requires a level of technology development more thorough and extensive than ever before. The objectives are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) exhaust gas monitoring; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements and designs and manufacturing metho

  6. Water vapor and ozone profiles with a CO{sub 2} DIAL system in south Italy

    SciTech Connect (OSTI)

    Bellecci, C.; Caputi, G.; De Donato, F.; Gaudio, P.; Valentini, M.

    1996-12-31

    In this paper the authors present the work carried out at the University of Calabria regarding a prototype of a DIAL system. This has been realized for remote pollution monitoring. Most of the efforts have been done to perform several measurements on an horizontal path in order to scan the wide surrounding area. The concentrations of ozone and water vapor have been carried out using two different methods both related with the DIAL technique. With the integrated technique, average concentrations have been evaluated up to 5 km using topographical targets. In the range resolution technique, profiles of ozone and water vapor have been performed up to 700 m with a spatial resolution of about 30 m. Although the system needs a revision in several subsystems of its set-up, the experimentation has pointed out the performance available and the necessary improvements.

  7. Total Ozone Mapping Spectrometer (TOMS) Derived Data, Global Earth Coverage (GEC) from NASA's Earth Probe Satellite

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This is data from an external datastream processed through the ARM External Data Center (XDC) at Brookhaven National Laboratory. The XDC identifies sources and acquires data, called "external data", to augment the data being generated within the ARM program. The external data acquired are usually converted from native format to either netCDF or HDF formats. The GEC collection contains global data derived from the Total Ozone Mapping Spectrometer (TOMS) instrument on the Earth Probe satellite, consisting of daily values of aerosol index, ozone and reflectivity remapped into a regular 1x1.25 deg grid. Data are available from July 25, 1996 - December 31, 2005, but have been updated or replaced as of September 2007. See the explanation on the ARM web site at http://www.arm.gov/xds/static/toms.stm and the information at the NASA/TOMS web site: http://toms.gsfc.nasa.gov/ (Registration required)

  8. An assessment of alternatives and technologies for replacing ozone- depleting substances at DOE facilities

    SciTech Connect (OSTI)

    Purcell, C.W.; Miller, K.B.; Friedman, J.R.; Rapoport, R.D.; Conover, D.R.; Hendrickson, P.L.; Koss, T.C.

    1992-10-01

    Title VI of the Clean Air Act, as amended, mandates a production phase-out for ozone-depleting substances (ODSs). These requirements will have a significant impact on US Department of Energy (DOE) facilities. Currently, DOE uses ODSs in three major activities: fire suppression (halon), refrigeration and cooling (chlorofluorocarbons [CFCs]), and cleaning that requires solvents (CFCs, methyl chloroform, and carbon tetrachloride). This report provides basic information on methods and strategies to phase out use of ODSs at DOE facilities.

  9. Tropospheric and Lower Stratospheric Ozone Profiles From AERI-X Emission Spectra

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropospheric and Lower Stratospheric Ozone Profiles From AERI-X Emission Spectra P. F. Fogal and F. J. Murcray Department of Physics and Astronomy University of Denver Denver, Colorado Introduction The University of Denver Atmospheric Emission Radiometric Interferometer-Extended (AERI-X) has been in regular operation at the Southern Great Plains (SGP) Atmospheric Radiation Measurements (ARM) Program site, conditions permitting, since the mid-1990s. We present here the analysis of several spectra

  10. A new feature in the internal heavy isotope distribution in ozone

    SciTech Connect (OSTI)

    Bhattacharya, S. K. Liang, Mao-Chang; Savarino, Joel; Michalski, G.

    2014-10-07

    Ozone produced by discharge or photolysis of oxygen has unusually heavy isotopic composition ({sup 18}O/{sup 16}O and {sup 17}O/{sup 16}O ratio) which does not follow normal mass fractionation rule: δ{sup 17}O ∼ 0.52{sup *}δ{sup 18}O, expressed as an anomaly Δ{sup 17}O = δ{sup 17}O − 0.52{sup *}δ{sup 18}O. Ozone molecule being an open isosceles triangle can have the heavy isotope located either in its apex or symmetric (s) position or the base or asymmetric (as) position. Correspondingly, one can define positional isotopic enrichment, written as δ{sup 18}O (s) or δ{sup 18}O (as) (and similarly for δ{sup 17}O) as well as position dependent isotope anomaly Δ{sup 17}O (s) and Δ{sup 17}O (as). Marcus and co-workers have proposed a semi-empirical model based in principle on the RRKM model of uni-molecular dissociation but with slight modification (departure from statistical randomness assumption for symmetrical molecules) which explains many features of ozone isotopic enrichment. This model predicts that the bulk isotope anomaly is contained wholly in the asymmetric position and the Δ{sup 17}O (s) is zero. Consequently, Δ{sup 17}O (as) = 1.5 {sup *} Δ{sup 17}O (bulk) (named here simply as the “1.5 rule”) which has been experimentally confirmed over a range of isotopic enrichment. We now show that a critical re-analysis of the earlier experimental data demonstrates a small but significant departure from this 1.5 rule at the highest and lowest levels of enrichments. This departure provides the first experimental proof that the dynamics of ozone formation differs from a statistical model constrained only by restriction of symmetry. We speculate over some possible causes for the departure.

  11. Reducing emissions from the electricity sector: the costs and benefits nationwide and for the Empire State

    SciTech Connect (OSTI)

    Karen Palmer; Dallas Butraw; Jhih-Shyang Shih

    2005-06-15

    Using four models, this study looks at EPA's Clean Air Interstate Rule (CAIR) as originally proposed, which differs in only small ways from the final rule issued in March 2005, coupled with several approaches to reducing emissions of mercury including one that differs in only small ways from the final rule also issued in March 2005. This study analyzes what costs and benefits each would incur to New York State and to the nation at large. Benefits to the nation and to New York State significantly outweigh the costs associated with reductions in SO{sub 2}, NOx and mercury, and all policies show dramatic net benefits. The manner in which mercury emissions are regulated will have important implications for the cost of the regulation and for emission levels for SO{sub 2} and NOx and where those emissions are located. Contrary to EPA's findings, CAIR as originally proposed by itself would not keep summer emissions of NOx from electricity generators in the SIP region below the current SIP seasonal NOx cap. In the final CAIR, EPA added a seasonal NOx cap to address seasonal ozone problems. The CAIR with the seasonal NOx cap produces higher net benefits. The effect of the different policies on the mix of fuels used to supply electricity is fairly modest under scenarios similar to the EPA's final rules. A maximum achievable control technology (MACT) approach, compared to a trading approach as the way to achieve tighter mercury targets (beyond EPA's proposal), would preserve the role of coal in electricity generation. The evaluation of scenarios with tighter mercury emission controls shows that the net benefits of a maximum achievable control technology (MACT) approach exceed the net benefits of a cap and trade approach. 39 refs., 10 figs., 30 figs., 5 apps.

  12. Effects of ozone on the respiratory health, allergic sensitization, and cellular immune system in children

    SciTech Connect (OSTI)

    Zwick, H.; Popp, W.; Wagner, C.; Reiser, K.; Schmoeger, J.B.; Boeck, A.H.; Herkner, K.; Radunsky, K. )

    1991-11-01

    To investigate the lasting effects of high ozone concentrations under environmental conditions, we examined the respiratory health, pulmonary function, bronchial hyperresponsiveness to methacholine, allergic sensitization, and lymphocyte subpopulations of 10- to 14-yr-old children. A total of 218 children recruited from an area with high ozone concentrations (Group A) were tested against 281 children coming from an area with low ozone concentrations (Group B). As to subjective complaints, categorized as 'usually cough with or without phlegm,' 'breathlessness,' and 'susceptibility to chest colds,' there was no difference between the two groups. The lung function parameters were similar, but in Group A subjects' bronchial hyperresponsiveness occurred more frequently and was found to be more severe than in Group B (29.4 versus 19.9%, p less than 0.02; PD20 2,100 {plus minus} 87 versus 2,350 {plus minus} 58 micrograms, p less than 0.05). In both groups the number of children who had been suffering from allergic diseases and sensitization to aeroallergens, found by means of the skin test, was the same. Comparison of the total IgE levels showed no difference at all between the two groups. As far as the white blood cells are concerned, the total and differential cell count was the same, whereas lymphocyte subpopulations showed readily recognizable changes.

  13. New season of colloquia begins at Princeton Plasma Physics Laboratory |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab New season of colloquia begins at Princeton Plasma Physics Laboratory By Raphael Rosen September 15, 2015 Tweet Widget Google Plus One Share on Facebook The new colloquium committee. From left to right: Mike Mardenfeld, David Mikkelsen, Committee Administrator Carol Ann Austin, Brent Stratton (Photo by Elle Starkman) The new colloquium committee. From left to right: Mike Mardenfeld, David Mikkelsen, Committee Administrator Carol Ann Austin, Brent Stratton Just as

  14. Impact of the 2008 Hurricane Season on the Natural Gas Industry

    Reports and Publications (EIA)

    2009-01-01

    This report provides an overview of the 2008 Atlantic hurricane season and its impacts on the natural gas industry

  15. Stratospheric ozone protection: The Montreal Protocol and Title VI of the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Babst, C.R. III

    1993-08-01

    The stratospheric ozone layer protects the surface of the Earth from harmful ultraviolet (UV-B) radiation, which has been causally linked to skin cancer and cataracts, suppression of the human immune system, damage to crops and aquatic organisms, the formation of ground-level zone and the rapid weathering of outdoor plastics. In recent years, scientists have observed a significant deterioration of the ozone layer, particularly over the poles, but increasingly over populated regions as well. This deterioration has been attributed to the atmospheric release of certain man-made halocarbons, including chlorofluorocarbons (CFCs), halons, methyl chloroform and carbon tetrachloride. Once used extensively as propellants for aerosol sprays (but generally banned for such purposes since 1978), CFCs are widely used today as refrigerants, foams and solvents. All of these chlorinated (CFC, methyl chloroform and carbon tetrachloride) and brominated (halon) compounds are classified for regulatory purposes as Class I substances because of their significant ozone-depleting potential. Hydrochlorofluorocarbons (HCFCs), developed as alternatives to CFCs and halons for many different applications, have been classified for regulatory purposes as Class II substances because of their relatively less destructive impact on stratospheric ozone. This paper describes the following regulations to reduce destruction of the ozone layer: the Montreal Protocol; Title VI of the Clean air Act Amendments of 1990; Accelerated Phase-out schedules developed by the countries which signed the Montreal Protocol; Use restrictions; Recycling and Emission reduction requirements; Servicing of motor vehicle air conditions; ban on nonessential products; labeling requirements; safe alternatives. 6 refs.

  16. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    SciTech Connect (OSTI)

    Yehia, Ashraf; Mizuno, Akira

    2013-05-14

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  17. Development and Demonstration of a High Efficiency, Rapid Heating, Low NOx Alternative to Conventional Heating of Round Steel Shapes, Steel Substrate (Strip) and Coil Box Transfer Bars

    SciTech Connect (OSTI)

    Kurek, Harry; Wagner, John

    2010-01-25

    Direct Flame Impingement involves the use of an array of very high-velocity flame jets impinging on a work piece to rapidly heat the work piece. The predominant mode of heat transfer is convection. Because of the locally high rate of heat transfer at the surface of the work piece, the refractory walls and exhaust gases of a DFI furnace are significantly cooler than in conventional radiant heating furnaces, resulting in high thermal efficiency and low NOx emissions. A DFI furnace is composed of a successive arrangement of heating modules through or by which the work piece is conveyed, and can be configured for square, round, flat, and curved metal shapes (e.g., billets, tubes, flat bars, and coiled bars) in single- or multi-stranded applications.

  18. Fe-Al Weld Overlay and High Velocity Oxy-Fuel Thermal Spray Coatings for Corrosion Protection of Waterwalls in Fossil Fired Plants with Low NOx Burners

    SciTech Connect (OSTI)

    Regina, J.R.

    2002-02-08

    Iron-aluminum-chromium coatings were investigated to determine the best candidates for coatings of boiler tubes in Low NOx fossil fueled power plants. Ten iron-aluminum-chromium weld claddings with aluminum concentrations up to 10wt% were tested in a variety of environments to evaluate their high temperature corrosion resistance. The weld overlay claddings also contained titanium additions to investigate any beneficial effects from these ternary and quaternary alloying additions. Several High-Velocity Oxy-Fuel (HVOF) thermal spray coatings with higher aluminum concentrations were investigated as well. Gaseous corrosion testing revealed that at least 10wt%Al is required for protection in the range of environments examined. Chromium additions were beneficial in all of the environments, but additions of titanium were beneficial only in sulfur rich atmospheres. Similar results were observed when weld claddings were in contact with corrosive slag while simultaneously, exposed to the corrosive environments. An aluminum concentration of 10wt% was required to prevent large amounts of corrosion to take place. Again chromium additions were beneficial with the greatest corrosion protection occurring for welds containing both 10wt%Al and 5wt%Cr. The exposed thermal spray coatings showed either significant cracking within the coating, considerable thickness loss, or corrosion products at the coating substrate interface. Therefore, the thermal spray coatings provided the substrate very little protection. Overall, it was concluded that of the coatings studied weld overlay coatings provide superior protection in these Low NOx environments; specifically, the ternary weld composition of 10wt%Al and 5wt%Cr provided the best corrosion protection in all of the environments tested.

  19. A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dempsey, Adam B.; Curran, Scott J.; Wagner, Robert M.

    2016-01-14

    Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasolinemore » has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities and challenges associated with the various fuel stratification levels.« less

  20. Bibliography of the seasonal thermal energy storage library

    SciTech Connect (OSTI)

    Prater, L.S.; Casper, G.; Kawin, R.A.

    1981-08-01

    The Main Listing is arranged alphabetically by the last name of the first author. Each citation includes the author's name, title, publisher, publication date, and where applicable, the National Technical Information Service (NTIS) number or other document number. The number preceding each citation is the identification number for that document in the Seasonal Thermal Energy Storage (STES) Library. Occasionally, one or two alphabetic characters are added to the identification number. These alphabetic characters indicate that the document is contained in a collection of papers, such as the proceedings of a conference. An Author Index and an Identification Number Index are included. (WHK)

  1. Detection of ocean glint and ozone absorption using LCROSS Earth observations

    SciTech Connect (OSTI)

    Robinson, Tyler D.; Ennico, Kimberly; Meadows, Victoria S.; Sparks, William; Schwieterman, Edward W.; Bussey, D. Ben J.; Breiner, Jonathan

    2014-06-01

    The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ∼ 500) and 1.17-2.48 μm (λ/Δλ ∼ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ∼10% data calibration uncertainty. Data-model comparisons reveal a strong ocean glint signature in the crescent phase data set, which is well matched by our model predictions throughout the observed wavelength range. This provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths, where the glint signal is strongest. We examine the detection of the ozone 255 nm Hartley and 400-700 nm Chappuis bands. While the Hartley band is the strongest ozone feature in Earth's spectrum, false positives for its detection could exist. Finally, we discuss the implications of these findings for future exoplanet characterization missions.

  2. Effects of ambient ozone on respiratory function and symptoms in Mexico City schoolchildren

    SciTech Connect (OSTI)

    Castillejos, M.; Gold, D.R.; Dockery, D.; Tosteson, T.; Baum, T.; Speizer, F.E. )

    1992-02-01

    The effects of ambient ozone (O3) on respiratory function and acute respiratory symptoms were evaluated in 143 7- to 9-yr-old schoolchildren followed longitudinally at 1- to 2-wk intervals over a period of 6 months at three schools in Pedregal, Mexico City. The maximum O3 level exceeded the World Health Organization guideline of 80 ppb and the U.S. standard of 120 ppb in every week. For an increase from lowest to highest in the mean O3 level during the 48 hr before spirometry (53 ppb), logistic regression estimated relative odds of 1.7 for a child reporting cough/phlegm on the day of spirometry. For the full population, the mean O3 level during the hour before spirometry, not adjusted for temperature and humidity, predicted a significant decrement in FVC but not in FEV1 or FEF25-75. In contrast, the mean O3 level during the previous 24-, 48-, and 168-h periods predicted significant decrements in FEV1 and FEF25-75 but not in FVC. Ozone was consistently associated with a greater decrement in lung function for the 15 children with chronic phlegm as compared with the children without chronic cough, chronic phlegm, or wheeze. Ozone in the previous 24-, 48-, and 168-h periods predicted decrements in FEV1 for children of mothers who were current or former smokers, but not for children of mothers who were never smokers. Many of these effects were reduced in multiple regression analyses including temperature and humidity, as temperature and O3 were highly correlated.

  3. Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment

    SciTech Connect (OSTI)

    Li, Wei [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Hacker, Christina A.; Cheng, Guangjun; Hight Walker, A. R.; Richter, Curt A.; Gundlach, David J., E-mail: david.gundlach@nist.gov, E-mail: liangxl@pku.edu.cn [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Liang, Yiran; Tian, Boyuan; Liang, Xuelei, E-mail: david.gundlach@nist.gov, E-mail: liangxl@pku.edu.cn; Peng, Lianmao [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China)

    2014-03-21

    Resist residue from the device fabrication process is a significant source of contamination at the metal/graphene contact interface. Ultraviolet Ozone (UVO) treatment is proven here, by X-ray photoelectron spectroscopy and Raman measurement, to be an effective way of cleaning the metal/graphene interface. Electrical measurements of devices that were fabricated by using UVO treatment of the metal/graphene contact region show that stable and reproducible low resistance metal/graphene contacts are obtained and the electrical properties of the graphene channel remain unaffected.

  4. Systemic responses to inhaled ozone in mice: cachexia and down-regulation of liver xenobiotic metabolizing genes

    SciTech Connect (OSTI)

    Last, Jerold A. . E-mail: jalast@ucdavis.edu; Gohil, Kishorchandra; Mathrani, Vivek C.; Kenyon, Nicholas J.

    2005-10-15

    Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkers of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-{kappa}B in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone.

  5. Predicting tropospheric ozone and hydroxyl radical in a global, three-dimensional, chemistry, transport, and deposition model

    SciTech Connect (OSTI)

    Atherton, C.S.

    1995-01-05

    Two of the most important chemically reactive tropospheric gases are ozone (O{sub 3}) and the hydroxyl radical (OH). Although ozone in the stratosphere is a necessary protector against the sun`s radiation, tropospheric ozone is actually a pollutant which damages materials and vegetation, acts as a respiratory irritant, and is a greenhouse gas. One of the two main sources of ozone in the troposphere is photochemical production. The photochemistry is initiated when hydrocarbons and carbon monoxide (CO) react with nitrogen oxides (NO{sub x} = NO + NO{sub 2}) in the presence of sunlight. Reaction with the hydroxyl radical, OH, is the main sink for many tropospheric gases. The hydroxyl radical is highly reactive and has a lifetime on the order of seconds. Its formation is initiated by the photolysis of tropospheric ozone. Tropospheric chemistry involves a complex, non-linear set of chemical reactions between atmospheric species that vary substantially in time and space. To model these and other species on a global scale requires the use of a global, three-dimensional chemistry, transport, and deposition (CTD) model. In this work, I developed two such three dimensional CTD models. The first model incorporated the chemistry necessary to model tropospheric ozone production from the reactions of nitrogen oxides with carbon monoxide (CO) and methane (CH{sub 4}). The second also included longer-lived alkane species and the biogenic hydrocarbon isoprene, which is emitted by growing plants and trees. The models` ability to predict a number of key variables (including the concentration of O{sub 3}, OH, and other species) were evaluated. Then, several scenarios were simulated to understand the change in the chemistry of the troposphere since preindustrial times and the role of anthropogenic NO{sub x} on present day conditions.

  6. Electricity and the Environment - Energy Explained, Your Guide...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... SO2 also exacerbates respiratory illnesses and heart diseases, particularly in children and the elderly. NOx contribute to ground level ozone, which irritates and damages the lungs...

  7. ARM - Field Campaign - 1996 NARSTO Northeast Field Study (NARSTO...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of characterizing the ozone formation process and its dependence on ambient levels of NOx and volatile organic compounds (VOCs). Other Contacts Co-Investigators Linda Bowerman...

  8. Eastern Band of Cherokee Indians - Facility Retrofit Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fluorescent lighting *Insulate hot water heater pipes 5 Reductions *Savings of at ... nitrous oxides (NOx-precursor to ozone pollution) *1,707,000 lbs reduction in carbon ...

  9. Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases. Final report

    SciTech Connect (OSTI)

    Prather, Michael J.; Hsu, Juno; Nicolau, Alex; Veidenbaum, Alex; Smith, Philip Cameron; Bergmann, Dan

    2014-11-07

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  10. Volatile organic compound emissions from usaf wastewater treatment plants in ozone nonattainment areas. Master's thesis

    SciTech Connect (OSTI)

    Ouellette, B.A.

    1994-09-01

    In accordance with the 1990 Clean Air Act Amendments (CAAA), this research conducts an evaluation of the potential emission of volatile organic compounds (VOCs) from selected Air Force wastewater treatment plants. Using a conservative mass balance analysis and process specific simulation models, volatile organic emission estimates are calculated for four individual facilities--Edwards AFB, Luke AFB, McGuire AFB, and McClellan AFB--which represent a cross section of the current inventory of USAF wastewater plants in ozone nonattainment areas. From these calculations, maximum facility emissions are determined which represent the upper limit for the potential VOC emissions from these wastewater plants. Based on the calculated emission estimates, each selected wastewater facility is evaluated as a potential major stationary source of volatile organic emissions under both Title I of the 1990 CAAA and the plant's governing Clean Air Act state implementation plan. Next, the potential impact of the specific volatile organics being emitted is discussed in terms of their relative reactivity and individual contribution to tropospheric ozone formation. Finally, a relative comparison is made between the estimated VOC emissions for the selected wastewater facilities and the total VOC emissions for their respective host installations.

  11. Ozone-forming potential of a series of oxygenated organic compounds

    SciTech Connect (OSTI)

    Japar, S.M.; Wallington, T.J.; Rudy, S.J.; Chang, Tai Y. )

    1991-03-01

    An incremental reactivity approach has been used to assess the relative ozone-forming potentials of various important oxygenated fuels/fuel additives, i.e., tert-butyl alcohol (TBA), dimethyl ether (DME), diethyl ether (DEE), methyl tert-butyl ether (MTBE), and ethyl tert-butyl ether (ETBE), in a variety of environments. Calculations were performed using a single-cell trajectory model, combined with the Lurmann-Carter-Coyner chemical mechanism, with (NMOC)/(NO{sub x}) ratios ranging from 4 to 20. This work provides the first quantitative assessment of the air quality impact of release of these important oxygenated compounds. ETBE and DEE are the two most reactive compounds on a per carbon equivalent basis, while TBA is the least reactive species. At a (NMOC)/(NO{sub x}) ratio of 8, which is generally typical of polluted urban areas in the United States, TBA, DME, MTBE, and ETBE all have incremental reactivities less than or equal to that of the urban NMHC mix. Thus, use of these additives in fuels may have a beneficial impact on urban ozone levels.

  12. Seasonal cycle dependence of temperature fluctuations in the atmosphere. Master's thesis

    SciTech Connect (OSTI)

    Tobin, B.F.

    1994-08-01

    The correlation statistics of meteorological fields have been of interest in weather forecasting for many years and are also of interest in climate studies. A better understanding of the seasonal variation of correlation statistics can be used to determine how the seasonal cycle of temperature fluctuations should be simulated in noise-forced energy balance models. It is shown that the length scale does have a seasonal dependence and will have to be handled through the seasonal modulation of other coefficients in noise-forced energy balance models. The temperature field variance and spatial correlation fluctuations exhibit seasonality with fluctuation amplitudes larger in the winter hemisphere and over land masses. Another factor contributing to seasonal differences is the larger solar heating gradient in the winter.

  13. Controlling superconductivity in La2-xSrxCuO4+δ by ozone and vacuum annealing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leng, Xiang; Bozovic, Ivan

    2014-11-21

    In this study we performed a series of ozone and vacuum annealing experiments on epitaxial La2-xSrxCuO4+δ thin films. The transition temperature after each annealing step has been measured by the mutual inductance technique. The relationship between the effective doping and the vacuum annealing time has been studied. Short-time ozone annealing at 470 °C oxidizes an underdoped film all the way to the overdoped regime. The subsequent vacuum annealing at 350 °C to 380 °C slowly brings the sample across the optimal doping point back to the undoped, non-superconducting state. Several ozone and vacuum annealing cycles have been done on themore » same sample and the effects were found to be repeatable and reversible Vacuum annealing of ozone-loaded LSCO films is a very controllable process, allowing one to tune the doping level of LSCO in small steps across the superconducting dome, which can be used for fundamental physics studies.« less

  14. Controlling superconductivity in La2-xSrxCuO4+δ by ozone and vacuum annealing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leng, Xiang; Bozovic, Ivan

    2014-11-21

    In this study we performed a series of ozone and vacuum annealing experiments on epitaxial La2-xSrxCuO4+δ thin films. The transition temperature after each annealing step has been measured by the mutual inductance technique. The relationship between the effective doping and the vacuum annealing time has been studied. Short-time ozone annealing at 470 °C oxidizes an underdoped film all the way to the overdoped regime. The subsequent vacuum annealing at 350 °C to 380 °C slowly brings the sample across the optimal doping point back to the undoped, non-superconducting state. Several ozone and vacuum annealing cycles have been done on themore »same sample and the effects were found to be repeatable and reversible Vacuum annealing of ozone-loaded LSCO films is a very controllable process, allowing one to tune the doping level of LSCO in small steps across the superconducting dome, which can be used for fundamental physics studies.« less

  15. State of Maine residential heating oil survey 2001-02 season summary [SHOPP

    SciTech Connect (OSTI)

    Elder, Betsy

    2002-05-22

    This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

  16. Seasonality in the Natural Gas Balancing Item: Historical Trends and Corrective Measures

    Reports and Publications (EIA)

    2010-01-01

    This special report examines an underlying cause of the seasonal pattern in the balancing item published in the Natural Gas Monthly.

  17. Assessment of the Potential to Reduce Emissions from Road Transportation, Notably NOx, Through the Use of Alternative Vehicles and Fuels in the Great Smoky Mountains Region

    SciTech Connect (OSTI)

    Sheffield, J.

    2001-08-30

    Air pollution is a serious problem in the region of the Great Smoky Mountains. The U.S. Environmental Protection Agency (EPA) may designate non-attainment areas by 2003 for ozone. Pollutants include nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), carbon monoxide (CO), volatile organic compounds (VOCs), lead, and particulate matter (PM), which are health hazards, damage the environment, and limit visibility. The main contributors to this pollution are industry, transportation, and utilities. Reductions from all contributors are needed to correct this problem. While improvements are projected in each sector over the next decades, the May 2000 Interim Report issued by the Southern Appalachian Mountains Initiative (SAMI) suggests that the percentage of NO{sub x} emissions from transportation may increase.

  18. ARM - Ozone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  19. Verification of simplified procedures for site-specific SO sub 2 and NOx control cost estimates. Final report, March 1988-May 1989

    SciTech Connect (OSTI)

    Emmel, T.E.; Maibodi, M.

    1990-02-01

    The report documents results of an evaluation to verify the accuracy of simplified procedures for estimating sulfur dioxide (SO2) and nitrogen oxides (NOx) retrofit control costs and performance for 200 SO2-emitting coal-fired power plants in the 31-state eastern region. Initially, detailed retrofit studies were conducted for 12 coal-fired plants in Ohio, Kentucky, and the Tennessee Valley Authority system. Because detailed studies are expensive and time-consuming, results from the 12-plant study were used to develop simplified procedures which require less time, data, and preparation effort. The evaluation compared the costs for a number of plants estimated using the simplified procedures to costs estimated using detailed procedures, actual retrofit costs, and more detailed cost estimates provided by utility companies. Based on the evaluation, recommendations for changes to the simplified procedures were developed. Control technologies addressed in the report are conventional lime/limestone flue gas desulfurization, lime spray drying, furnace sorbent injection, duct spray drying, coal switching, physical coal cleaning, and selective catalytic reduction. In general, it was found that the simplified procedures can be used to generate improved cost performance estimates based on generally available information.

  20. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Wagner, Robert M; Edwards, Kevin Dean; Smith, David E

    2013-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

  1. Ge Interface Engineering with Ozone-oxidation for Low Interface State Density

    SciTech Connect (OSTI)

    Kuzum, Duygu; Krishnamohan, T.; Pethe, Abhijit J.; Okyay, Ali, K.; Oshima, Yasuhiro; Sun, Yun; McVittie, Jim P.; Pianetta, Piero A.; McIntyre, Paul C.; Saraswat, Krishna C.; /Stanford U., CIS

    2008-06-02

    Passivation of Ge has been a critical issue for Ge MOS applications in future technology nodes. In this letter, we introduce ozone-oxidation to engineer Ge/insulator interface. Interface states (D{sub it}) values across the bandgap and close to conduction bandedge were extracted using conductance technique at low temperatures. D{sub it} dependency on growth conditions was studied. Minimum D{sub it} of 3 x 10{sup 11} cm{sup -2} V{sup -1} was demonstrated. Physical quality of the interface was investigated through Ge 3d spectra measurements. We found that the interface and D{sub it} is strongly affected by the distribution of oxidation states and quality of the suboxide.

  2. VALIDATION AND RESULTS OF A PSEUDO-MULTI-ZONE COMBUSTION TRAJECTORY PREDICTION MODEL FOR CAPTURING SOOT AND NOX FORMATION ON A MEDIUM DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Bittle, Joshua A.; Gao, Zhiming; Jacobs, Timothy J.

    2013-01-01

    A pseudo-multi-zone phenomenological model has been created with the ultimate goal of supporting efforts to enable broader commercialization of low temperature combustion modes in diesel engines. The benefits of low temperature combustion are the simultaneous reduction in soot and nitric oxide emissions and increased engine efficiency if combustion is properly controlled. Determining what qualifies as low temperature combustion for any given engine can be difficult without expensive emissions analysis equipment. This determination can be made off-line using computer models or through factory calibration procedures. This process could potentially be simplified if a real-time prediction model could be implemented to run for any engine platform this is the motivation for this study. The major benefit of this model is the ability for it to predict the combustion trajectory, i.e. local temperature and equivalence ratio in the burning zones. The model successfully captures all the expected trends based on the experimental data and even highlights an opportunity for simply using the average reaction temperature and equivalence ratio as an indicator of emissions levels alone - without solving formation sub-models. This general type of modeling effort is not new, but a major effort was made to minimize the calculation duration to enable implementation as an input to real-time next-cycle engine controller Instead of simply using the predicted engine out soot and NOx levels, control decisions could be made based on the trajectory. This has the potential to save large amounts of calibration time because with minor tuning (the model has only one automatically determined constant) it is hoped that the control algorithm would be generally applicable.

  3. Removal of pollutant compounds from water supplies using ozone, ultraviolet light, and a counter, current packed column. Master's thesis

    SciTech Connect (OSTI)

    Kelly, E.L.

    1991-01-01

    Many water pollutants are determined to be carcinogenic and often appear in very low concentrations and still pose a health risk. Conventional water treatment processes cannot remove these contaminants and there is a great demand for the development of alternative removal technologies. The use of ozone and ultraviolet light in a counter current packed column could prove to be an effective treatment process to remove these contaminants.

  4. Active hurricane season expected to shut-in higher amount of oil and natural gas production

    U.S. Energy Information Administration (EIA) Indexed Site

    Active hurricane season expected to shut-in higher amount of oil and natural gas production An above-normal 2013 hurricane season is expected to cause a median production loss of about 19 million barrels of U.S. crude oil and 46 billion cubic feet of natural gas production in the Gulf of Mexico, according to the new forecast from the U.S. Energy Information Administration. That's about one-third more than the amount of oil and gas production knocked offline during last year's hurricane season.

  5. Hardening and Resiliency: U.S. Energy Industry Response to Recent Hurricane Seasons- August 2010

    Broader source: Energy.gov [DOE]

    In an effort to better understand what actions the energy industry has taken in response to the 2005 and 2008 hurricane seasons, the U.S. Department of Energy, Office of Electricity Delivery and...

  6. Seasonal and inter-annual variability in 13C composition of ecosystem...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Seasonal and inter-annual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains Citation Details In-Document Search Title: ...

  7. Program listing for heat-pump seasonal-performance model (SPM). [CNHSPM

    SciTech Connect (OSTI)

    Not Available

    1982-06-30

    The computer program CNHSPM is listed which predicts heat pump seasonal energy consumption (including defrost, cyclic degradation, and supplementary heat) using steady state rating point performance and binned weather data. (LEW)

  8. Agricultural green revolution as a driver of increasing atmospheric CO2 seasonal amplitude

    SciTech Connect (OSTI)

    Zeng, Ning; Zhao, Fang; Collatz, George; Kalnay, Eugenia; Salawitch, Ross J.; West, Tristram O.; Guanter, Luis

    2014-11-20

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 256N and 606N and the high-latitude natural vegetation between 506N and 706 N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 percent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001–2010 than in 1961–1970, suggesting that human land use and management contribute to seasonal changes in the CO2 exchange between the biosphere and the atmosphere.

  9. Comparison of the responses of children and adults to acute ozone exposure

    SciTech Connect (OSTI)

    McDonnell, W.F.; Chapman, R.S.; Horstman, D.H.; Leigh, M.W.; Salaam, S.A.

    1986-07-01

    The purpose of the paper is to compare the results of two studies in which the respiratory responses of children and adults to acute ozone (O/sub 3/) exposure were measured. Forty-two 18-30 year old males were exposed for 2.5 hours in a controlled environmental chamber to either 0.0 or 0.12 ppm O3 while performing intermittent heavy exercise. Twenty-two 8-11 year old males were exposed in a similar manner to both air and 0.12 ppm O3. Measures of respiratory symptoms and function were made before and after exposure. Adults experienced an increase in the symptom cough and decrements in forced vital capacity and some measures of forced expiratory flow. Children experienced similar decrements in pulmonary function, but had no increase in symptoms. The authors concluded that as measured by pulmonary function children appear to be no more responsive to O3 exposure than are adults and may experience fewer symptoms.

  10. Respiratory responses of vigorously exercising children to 0. 12 ppm ozone exposure

    SciTech Connect (OSTI)

    McDonnell, W.F. 3d.; Chapman, R.S.; Leigh, M.W.; Strope, G.L.; Collier, A.M.

    1985-10-01

    Changes in respiratory function have been suggested for children exposed to less than 0.12 ppm ozone (O3) while engaged in normal activities. Because the results of these studies have been confounded by other variables, such as temperature or the presence of other pollutants or have been questioned as to the adequacy of exposure measurements, the authors determined the acute response of children exposed to 0.12 ppm O3 in a controlled chamber environment. Twenty-three white males 8 to 11 yr of age were exposed once to clean air and once to 0.12 ppm O3 in random order. Exposures were for 2.5 h and included 2 h of intermittent heavy exercise. Measures of forced expiratory volume in one second (FEV1) and the symptom cough were determined prior to and after each exposure. A significant decline in FEV1 was found after the O3 exposure compared to the air exposure, and it appeared to persist for 16 to 20 h. No significant increase in cough was found due to O3 exposure. Forced vital capacity, specific airways resistance, respiratory frequency, tidal volume, and other symptoms were measured in a secondary exploratory analysis of this study.

  11. OZONE PRODUCTION IN THE PHILADELPHIA URBAN AREA DURING NE-OPS 99.

    SciTech Connect (OSTI)

    KLEINMAN,L.I.; DAUM,P.H.; BRECHTEL,F.; LEE,Y.N.; NUNNERMACKER,L.J.; SPRINGSTON,S.R.; WEINSTEIN-LLOYD,J.

    2001-10-01

    As part of the 1999 NARSTO Northeast Oxidant and Particulate Study (NE-OPS) field campaign, the DOE G-1 aircraft sampled trace gases and aerosols in and around the Philadelphia metropolitan area. Twenty research flights were conducted between July 25 and August 11. The overall goals of these flights were to obtain a mechanistic understanding of O{sub 3} production; to characterize the spatial and temporal behavior of photo-oxidants and aerosols; and to study the evolution of aerosol size distributions, including the process of new particle formation. Within the NE-OPS program, other groups provided additional trace gas, aerosol, and meteorological observations using aircraft, balloon, remote sensing, and surface based instruments (Phillbrick et al., 2000). In this article we provide an overview of the G-1 observations related to O{sub 3} production, focusing on the vertical distribution of pollutants. Ozone production rates are calculated using a box model that is constrained by observed trace gas concentrations. Highest O{sub 3} concentrations were observed on July 31, which we present as a case study. On that day, O{sub 3} concentrations above the 1-hour 120 ppb standard were observed downwind of Philadelphia and also in the plume of a single industrial facility located on the Delaware River south of the city.

  12. Season and diurnal variations of peroxyacetyl nitrate (PAN) in a suburban area of central Italy and their relation with the meteorological conditions and the concentration of other photochemical oxidants and their precursors

    SciTech Connect (OSTI)

    Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Brachetti, A. )

    1988-09-01

    Peroxyacetyl nitrate (PAN), is a photochemical oxidant formed in the atmosphere when large amounts of hydrocarbons (HC) and NO{sub x} are emitted in air and exposed to the UV radiation coming from the sun. Its formation proceeds through the conversion of HC, mainly olefins, into aldehydes that, after oxidation into peroxyradicals, react with NO{sub 2} to give this gaseous pollutant. Although the amount of PAN in air represents a suitable index for measuring photochemical smog and photochemical episodes can easily be observed in many Italian cities, almost no data have been collected in their country. In this paper the authors present the results obtained during a two years monitoring campaign carried in a suburban area of Central Italy placed downwind to Rome. Seasonal and daily trends of PAN will be reported together with the meteorological parameters and the change in concentration of other photochemical oxidants (ozone), its precursors (HC and aldehydes) and some acidic species. The results indicate that PAN, formed within the city, is transported into site together with other oxidants.

  13. Generic NOx Control Intelligent System

    Energy Science and Technology Software Center (OSTI)

    1997-03-24

    GNOCIS is a system of programs designed to perform on-line closed-loop optimization of utility boilers. The major components of the system include: GNREAD A program which resides on the host digital control system (DCS) that retrieves data from the DCS and then transmits the collected data to the GNOCIS host system. GNWRITE A program which resides on the host DCS that receives data from the GNOCIS host platform and then sends this information to themore » DCS. GNARCH A program which resides on the GNOCIS host platform that receives data from GNREAD or GNCTL and then archives this data on a periodic basis. GNCTL A program which resides on the GNOCIS host platform that receives data from GNREAD and then executes the optimizer/combustion model. GNDCS Configuration changes to the DCS which allows automatic implementation of the GNOCIS recommendations and closed-loop operation. Substantial safeguards and constraints are imbedded in this component to prevent adverse impact on unit operation.« less

  14. NOx reduction methods and apparatuses

    DOE Patents [OSTI]

    Tonkyn, Russell G.; Barlow, Stephan E.; Balmer, M. Lou; Maupin, Gary D.

    2004-10-26

    A NO.sub.x reduction method includes treating a first gas containing NO.sub.x, producing a second gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the second gas to N.sub.2, and producing a third gas containing less NO.sub.x than the first gas, substantially all of the third gas NO.sub.x being NO. The method also includes treating the third gas, producing a fourth gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the fourth gas to N.sub.2, and producing a fifth gas containing less NO.sub.x than the third gas, substantially all of the fifth gas NO.sub.x being NO. Treating the first and/or third gas can include treatment with a plasma. Reducing a portion of the NO.sub.2 in the second and/or fourth gas can include reducing with a catalyst. The method can further include controlling energy consumption of the plasmas independent of each other.

  15. Modeling regional/urban ozone and particulate matter in Beijing, China.

    SciTech Connect (OSTI)

    Fu, J.S.; Streets, D.G.; Jang, C.J.; Hao, J.; He, K.; Wang, L.; Zhang, Q.

    2009-01-15

    This paper examines Beijing air quality in the winter and summer of 2001 using an integrated air quality modeling system (Fifth Generation Mesoscale Meteorological Model (MM5)/Community Multiscale Air Quality (CMAQ)) in nested mode. The National Aeronautics and Space Administration (NASA) Transport and Chemical Evolution over the Pacific (TRACE-P) emission inventory is used in the 36- (East Asia), 12- (East China), and 4-km (greater Beijing area) domains. Furthermore, we develop a local Beijing emission inventory that is used in the 4-km domain. We also construct a corroborated mapping of chemical species between the TRACE-P inventory and the Carbon Bond IV (CB-IV) chemical mechanism before the integrated modeling system is applied to study ozone (O{sub 3}) and particulate matter (PM) in Beijing. Meteorological data for the integrated modeling runs are extracted from MM5. Model results show O{sub 3} hourly concentrations in the range of 80-159 parts per billion (ppb) during summer in the urban areas and up to 189 ppb downwind of the city. High fine PM (PM2.5) concentrations (monthly average of 75 {mu}g.m{sup -3} in summer and 150 {mu}g.m{sup -3} in winter) are simulated over the metropolitan and down-wind areas with significant secondary constituents. Major sources of particulates were biomass burning, coal combustion and industry. A comparison against available O{sub 3} and PM measurement data in Beijing is described. We recommend refinements to the developed local Beijing emission inventory to improve the simulation of Beijing's air quality. The 4-km modeling configuration is also recommended for the development of air pollution control strategies. 31 refs., 5 figs., 3 tabs.

  16. The combined effects of elevated carbon dioxide and ozone on crop systems

    SciTech Connect (OSTI)

    Miller, J.E.; Heagle, A.S.; Shafer, S.R.; Heck, W.W.

    1994-12-31

    Concentrations of carbon dioxide (CO{sub 2}) and ozone (O{sub 3}) in the troposphere have risen in the last century due to industrialization. Current levels of tropospheric O{sub 3} suppress growth of crops and other plants, and O{sub 3} concentrations may continue to rise with changes in global climate. On the other hand, projected increases in atmospheric concentrations of CO{sub 2} in the next 50 to 100 years are expected to cause significant increases in growth of most species. Since elevated concentrations of these gases will co-occur, it is important to understand their joint action. Until recently, however, the combined effects of O{sub 3} and CO{sub 2} have received little attention. Most publications on combined CO{sub 2} and O{sub 3} effects have described experiments conducted in greenhouse or controlled-environment facilities. To date, data on responses of agricultural species to the combined gases have come from experiments with radish, tomato, white clover, tobacco, or wheat. In most cases, CO{sub 2} stimulated and O{sub 3} suppressed growth of the plant tissues studied, and CO{sub 2} usually attenuated development of O{sub 3}-induced visible injury. Some data have indicated a tendency for CO{sub 2}, in concentrations up to double the current ambient level, to attenuate effects of O{sub 3} on growth, but statistical analyses of such data often have not supported such a conclusion. In this paper, the results of a recent field experiment with soybean are reported, and the results are compared to other similar research with elevated atmospheric concentrations of both O{sub 3} and CO{sub 2}.

  17. The pulmonary response of white and black adults to six concentrations of ozone

    SciTech Connect (OSTI)

    Seal, E. Jr.; McDonnell, W.F.; House, D.E.; Salaam, S.A.; Dewitt, P.J.; Butler, S.O.; Green, J.; Raggio, L. )

    1993-04-01

    Many early studies of respiratory responsiveness to ozone (O3) were done on healthy, young, white males. The purpose of this study was to determine whether gender or race differences in O3 response exist among white and black, males and females, and to develop concentration-response curves for each of the gender-race groups. Three hundred seventy-two subjects (n > 90 in each gender-race group), ages 18 to 35 yr, were exposed once for 2.33 h to 0.0 (purified air), 0.12, 0.18, 0.24, 0.30, or 0.40 ppm O3. Each exposure was preceded by baseline pulmonary function tests and a symptom questionnaire. The first 2 h of exposure included alternating 15-min periods of rest and exercise on a motorized treadmill producing a minute ventilation (VE) of 25 L/min/m2 body surface area (BSA). After exposure, subjects completed a set of pulmonary function tests and a symptom questionnaire. Lung function and symptom responses were expressed as percent change from baseline and analyzed using a nonparametric two factor analysis of variance. Three primary variables were analyzed: FEV1, specific airway resistance (SRaw), and cough. Statistical analysis demonstrated no significant differences in response to O3 among the individual gender-race groups. For the group as a whole, changes in the variables FEV1, SRaw, and cough were first noted at 0.12, 0.18, and 0.18 ppm O3, respectively. Adjusted for exercise difference, concentration-response curves for FEV1 and cough among white males were consistent with previous reports (1).

  18. Air pollution and childhood respiratory health: Exposure to sulfate and ozone in 10 Canadian Rural Communities

    SciTech Connect (OSTI)

    Stern, B.R.; Raizenne, M.E.; Burnett, R.T.; Jones, L.; Kearney, J.; Franklin, C.A. )

    1994-08-01

    This study was designed to examine differences in the respiratory health status of preadolescent school children, aged 7-11 years, who resided in 10 rural Canadian communities in areas of moderate and low exposure to regional sulfate and ozone pollution. Five of the communities were located in central Saskatchewan, a low-exposure region, and five were located in southwestern Ontario, an area with moderately elevated exposures resulting from long-range atmospheric transport of polluted air masses. In this cross-sectional study, the child's respiratory symptoms and illness history were evaluated using a parent-completed questionnaire, administered in September 1985. Respiratory function was assessed once for each child in the schools between October 1985 and March 1986, by the measurement of pulmonary function for forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV[sub 1.0]), peak expiratory flow rate (PEFR), mean forced expiratory flow rate during the middle half of the FVC curve (FEF[sub 25-75]), and maximal expiratory flow at 50% of the expired vital capacity (V[sub 50]max). After controlling for the effects of age, sex, parental smoking, parental education and gas cooking, no significant regional differences were observed in rates of chronic cough or phlegm, persistent wheeze, current asthma, bronchitis in the past year, or any chest illness that kept the child at home for 3 or more consecutive days during the previous year. Children living in southwestern Ontario had statistically significant (P < 0.01) mean decrements of 1.7% in FVC and 1.3% in FEV[sub 1.0] compared with Saskatchewan children, after adjusting for age, sex, weight, standing height, parental smoking, and gas cooking. There were no statistically significant regional differences in the pulmonary flow parameters (P > 0.05). 54 refs., 1 fig., 7 tabs.

  19. Air-Quality Data from NARSTO (North American Research Strategy for Tropospheric Ozone)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NARSTO is a public/private partnership dedicated to improving management of air quality in North America. It was established on February 13, 1995 when representatives of Canada, the United States, and Mexico signed the NARSTO Charter in a ceremony at the White House. The Department of Energy is one of the charter members providing funding. The central programmatic goal of NARSTO is to provide data and information for use in the determination of workable, efficient, and effective strategies for local and regional ozone and fine particle management. Since its founding, NARSTO has completed three major scientific Assessments of critical air quality management issues. NARSTO maintains the Quality Systems Science Center and the NARSTO Data Archive for storing data from NARSTO Affiliated Research Activities and making these data available to the scientific community. NARSTO also facilitates activities, such as the Reactivity Research Working Group, which provide critical reviews of the state of the science in areas of interest to air quality policy makers. In January 1997, the U.S. Department of Energy's Environmental Sciences Division announced their sponsorship of the NARSTO Quality Systems Science Center (QSSC). The QSSC is located at the Oak Ridge National Laboratory within the Carbon Dioxide Information Analysis Center (CDIAC). Quality Assurance and Data Management assistance and guidelines are provided by the QSCC, along with access to data files. The permanent data archive is maintained by the NASA EOSDIS Distributed Active Archive Center at the Langley Research Center. The archived data can be reached by a link from the QSSC.(Specialized Interface) See also the NARSTO web site at http://www.narsto.org/

  20. Iron(II) catalysis in oxidation of hydrocarbons with ozone in acetonitrile

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja

    2015-02-11

    Oxidation of alcohols, ethers, and sulfoxides by ozone in acetonitrile is catalyzed by submillimolar concentrations of Fe(CH3CN)62+. The catalyst provides both rate acceleration and greater selectivity toward the less oxidized products. For example, Fe(CH3CN)62+-catalyzed oxidation of benzyl alcohol yields benzaldehyde almost exclusively (>95%), whereas the uncatalyzed reaction generates a 1:1 mixture of benzaldehyde and benzoic acid. Similarly, aliphatic alcohols are oxidized to aldehydes/ketones, cyclobutanol to cyclobutanone, and diethyl ether to a 1:1 mixture of ethanol and acetaldehyde. The kinetics of oxidation of alcohols and diethyl ether are first-order in [Fe(CH3CN)62+] and [O3] and independent of [substrate] at concentrations greater thanmore » ~5 mM. In this regime, the rate constant for all of the alcohols is approximately the same, kcat = (8 ± 1) × 104 M–1 s–1, and that for (C2H5)2O is (5 ± 0.5) × 104 M–1 s–1. In the absence of substrate, Fe(CH3CN)62+ reacts with O3 with kFe = (9.3 ± 0.3) × 104 M–1 s–1. The similarity between the rate constants kFe and kcat strongly argues for Fe(CH3CN)62+/O3 reaction as rate-determining in catalytic oxidation. The active oxidant produced in Fe(CH3CN)62+/O3 reaction is suggested to be an Fe(IV) species in analogy with a related intermediate in aqueous solutions. As a result, this assignment is supported by the similarity in kinetic isotope effects and relative reactivities of the two species toward substrates.« less