Sample records for noted year low-temperature

  1. Research Initiative Will Demonstrate Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids Research Initiative Will Demonstrate Low Temperature...

  2. Optimizing Low Temperature Diesel Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Consortium 2008 DOE Merit Review - UW-ERC 1 Optimizing Low Temperature Diesel Combustion Profs. Rolf Reitz, P. Farrell, D. Foster, J. Ghandhi, C. Rutland, S. Sanders Engine...

  3. Low temperature irradiation tests on

    E-Print Network [OSTI]

    McDonald, Kirk

    Sample cool down by He gas loop 10K ­ 20K Fast neutron flux Measured by Ni activation in 2010 1.4xK #12;reactor Cryogenics #12;Al-Cu-Mg He gas temperature near sample 12K Resistance changesLow temperature irradiation tests on stabilizer materials using reactor neutrons at KUR Makoto

  4. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-05-26T23:59:59.000Z

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  5. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM)

    1985-01-01T23:59:59.000Z

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  6. Thermodynamic Advantages of Low Temperature Combustion Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts Thermodynamic Advantages of Low Temperature Combustion Engines Including the Use...

  7. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  8. Litchfield Correctional Center District Heating Low Temperature...

    Open Energy Info (EERE)

    Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature Geothermal...

  9. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Geothermal Food Processors Agricultural Drying Low Temperature Geothermal...

  10. Sequential high temperature reduction, low temperature hydrolysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high temperature reduction, low temperature hydrolysis for the regeneration of sulfated NOx trap catalysts. Sequential high temperature reduction, low temperature hydrolysis for...

  11. The effect of low temperature cryocoolers on the development of low temperature superconducting magnets

    SciTech Connect (OSTI)

    Green, Michael A.

    2000-08-05T23:59:59.000Z

    The commercial development of reliable 4 K cryocoolers improves the future prospects for magnets made from low temperature superconductors (LTS). The hope of the developers of high temperature superconductors (HTS) has been to replace liquid helium cooled LTS magnets with HTS magnets that operate at or near liquid nitrogen temperature. There has been limited success in this endeavor, but continued problems with HTS conductors have greatly slowed progress toward this goal. The development of cryocoolers that reliably operate below 4 K will allow magnets made from LTS conductor to remain very competitive for many years to come. A key enabling technology for the use of low temperature cryocoolers on LTS magnets has been the development of HTS leads. This report describes the characteristics of LTS magnets that can be successfully melded to low-temperature cryocoolers. This report will also show when it is not appropriate to consider the use of low-temperature cryocoolers to cool magnets made with LTS conductor. A couple of specific examples of LTS magnets where cryocoolers can be used are given.

  12. Low Temperature UHV STM/AFM | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UHV STMAFM Low Temperature UHV STMAFM EMSL's ultra-high vacuum, low-temperature scanning probe microscope instrument, or UHV LT SPM, is the preeminent system dedicated to surface...

  13. Integrated Ingredients Dehydrated Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Ingredients Dehydrated Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Integrated Ingredients Dehydrated Agricultural Drying Low...

  14. LOW TEMPERATURE PHYSICS RADIATION EFFECTS ON

    E-Print Network [OSTI]

    McDonald, Kirk

    LOW TEMPERATURE PHYSICS RADIATION EFFECTS ON FUSION MAGNET COMPONENTS Harald W. Weber Vienna Stabilizer Insulation Conclusions ESS, 4th High Power Targetry Workshop, Malmö 5 May 2011 #12;LOW TEMPERATURE PHYSICS Overview: ITER 300-500 s INTRODUCTION #12;LOW TEMPERATURE PHYSICS ITER Magnet System (5 K / 6.5 K

  15. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson

    2000-03-31T23:59:59.000Z

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates. However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

  16. Biodiesel's Enabling Characteristics in Attaining Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Discusses reasons and physical significance of cool-flame behavior of biodiesel on improving low temperature diesel combustion deer11jacobs.pdf More Documents &...

  17. Geothermal Energy Production from Low Temperature Resources,...

    Open Energy Info (EERE)

    Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded Projects for...

  18. Low Temperature/Coproduced/Geopressured Subprogram Overview ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010. overviewlowtemp.pdf More Documents & Publications AAPG Low-Temperature Webinar SMU Geothermal Conference 2011 - Geothermal Technologies Program Geothermal Technologies...

  19. Advanced Low Temperature Absorption Chiller Module Integrated...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Advanced Low...

  20. Multicylinder Diesel Engine for Low Temperature Combustion Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low temperature combustion...

  1. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2000-09-30T23:59:59.000Z

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Microstructural changes in unsupported nanocrystalline yttrium stabilized zirconia (ZrO{sub 2}:16%Y, or YSZ) thin films were examined as a function of temperature and annealing time in order to determine the grain growth exponent and the mechanisms of pinhole formation. Grain growth and pinhole formation were measured using high resolution transmission electron microscopy (HRTEM), normal imaging mode transmission electron microscopy (TEM), electron diffraction, and energy dispersive X-ray microanalysis (EDS). Grain growth was found to vary with a time exponent of about one half before pinhole formation and about one third after. Pinhole formation in 70 nm thick films occurred at temperatures near 600 C, corresponding to a grain size of about 15 nm, or a grain size to film thickness ration of approximately 0.25. The deposition of films on porous substrates is hampered by the penetration of the polymer precursor solution into the substrate whose pores as > 0.2 {micro}m, therefore much attention has to be paid to the development of porous colloidal oxide films onto surfaces. Thus during this line period we have been studying these films. Optical properties have proven to be an excellent way to study the quality of these nanoporous films. The influence of porosity and densification on optical properties of films on sapphire substrates that were prepared from water colloidal suspensions of small ({approx}5nm) particles of ceria was investigated. The colloidal ceria films have initially very porous structure (porosity about 50%) and densification starts at about 600 C accompanied by grain growth. The concurrence of these two processes makes it difficult to interpret the results of the optical spectrophotometry, but the combination of transmittance and reflectance measurements provides enough data to separate these two influences and to calculate the porosity, particle size and energy band gap separately. XRD, SEM, ellipsometry and mechanical profilometry were used to confirm the results obtained from the spectrophotometric measurements. All these methods gave results, which are in good agreement: the change in the porosity from 50% to 15% and the particle size increased from 5 to 65nm in the temperature region from 400 to 1000 C. An important result of the investigation is the fact that the main optical properties of the coating such as refractive index and band gap energy depend only on the porosity, but not on the grain size. The grain size influences the scattering properties of the coating, which allows the grain size to be estimated from optical measurements.

  2. Low-temperature thermodynamics with quantum coherence

    E-Print Network [OSTI]

    Varun Narasimhachar; Gilad Gour

    2014-10-02T23:59:59.000Z

    We find a new characterization of low-temperature processes, which we call "cooling processes", incorporating quantum coherence in the model of thermodynamics for the first time. We derive necessary and sufficient conditions for the feasibility of state transitions under cooling processes. We also rigorously confirm the intuitive robustness of coherence against low-temperature thermal noise. Additionally, we develop the low-temperature "Gibbs-preserving" model, and by comparing our results on the two models, we argue that the latter is a poor approximation to physical processes.

  3. Low Temperature Heat Recovery for Boiler Systems 

    E-Print Network [OSTI]

    Shook, J. R.; Luttenberger, D. B.

    1986-01-01T23:59:59.000Z

    Low temperature corrosion proof heat exchangers designed to reduce boiler flue gas temperatures to 150°F or lower are now being commercially operated on gas, oil and coal fired boilers. These heat exchangers, when applied to boiler flue gas...

  4. Low temperature embrittlement of RPV support structure steels

    SciTech Connect (OSTI)

    Boydon, F.M.D. [Health and Safety Executive, Bootle (United Kingdom). Nuclear Safety Div.; Elroy, R.J.; Gage, G.; Phythian, W.J. [AEA Technology, Didcot (United Kingdom). Harwell Lab.

    1996-12-31T23:59:59.000Z

    In recent years concerns have arisen regarding low temperature irradiation damage processes following the observation of an apparent tenfold increase in embrittlement in the HFIR reactor surveillance program at Oak Ridge compared with accelerated material irradiation`s in MTR`s. The possible importance of this phenomenon to the integrity of LWR Support Structures was recognized by USNRC and it was formally designated Generic Safety Issue 15. This topic has also become an important UK regulatory issue in the context of the Sizewell PWR. Here the concern was that the high copper material used in the RPV Supports, when taken in light of the HFIR results of that time, highlighted the possibility that irradiation induced copper precipitation could occur at the low temperatures (50--60 C) and peak end-of-life dose of 2mdpa, {approximately} 1 {times} 10{sup 18} n.cm{sup {minus}2} (E > 1 MeV), encountered in RPV Supports, which contain significant levels (> 0.20%) of copper. This paper describes the results of an experiment set up to establish whether copper precipitation could occur at low temperatures in the Sizewell B RPV Support Structure steel. Mechanical properties measured by conventional hardness and Charpy test were performed. The series of model steels previously studied after irradiation at 288 C in the IAEA CRP-3 showed no clear evidence of copper precipitation under the low temperature irradiation conditions employed. Post irradiation annealing studies demonstrated that the irradiation embrittlement in the A588 support structure steel at low temperatures is due to matrix damage. The copper content is believed to be unimportant. There is, therefore, no reason to believe that the relatively high copper specification of A588 support structure steel will be detrimental to the steels toughness after low temperature/high dose irradiation as expected in the Sizewell B support structure.

  5. Basics of Low-temperature Refrigeration

    E-Print Network [OSTI]

    Alekseev, A

    2014-01-01T23:59:59.000Z

    This chapter gives an overview of the principles of low temperature refrigeration and the thermodynamics behind it. Basic cryogenic processes - Joule-Thomoson process, Brayton process as well as Claude process - are described and compared. A typical helium laboratory refrigerator based on Claude process is used as a typical example of a low-temperature refrigeration system. A description of the hardware components for helium liquefaction is an important part of this paper, because the design of the main hardware components (compressors, turbines, heat exchangers, pumps, adsorbers, etc.) provides the input for cost calculation, as well as enables to estimate the reliability of the plant and the maintenance expenses. All these numbers are necessary to calculate the economics of a low temperature application.

  6. Low temperature monitoring system for subsurface barriers

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); McKinzie, II. Billy John (Houston, TX)

    2009-08-18T23:59:59.000Z

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  7. Adaptive Control to Improve Low Temperature Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control to Improve Low Temperature Diesel Engine Combustion Adaptive Control to Improve Low Temperature Diesel Engine Combustion Presentation given at DEER 2006, August 20-24,...

  8. Heavy-Duty Low Temperature Combustion Development Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Development Activities at Caterpillar Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar Presentation given at the 2007 Diesel...

  9. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Energy Savers [EERE]

    Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Presentation from the U.S....

  10. Enabling Low Temperature Combustion Through Thermo-Chemical Recuperati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Through Thermo-Chemical Recuperation Enabling Low Temperature Combustion Through Thermo-Chemical Recuperation Poster presentation from the 2007 Diesel...

  11. Low Temperature Combustion with Thermo-chemical Recuperation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion with Thermo-chemical Recuperation to Maximize In-use Engine Efficiency Low Temperature Combustion with Thermo-chemical Recuperation to Maximize In-use...

  12. A University Consortium on Low Temperature Combustion (LTC) for...

    Energy Savers [EERE]

    A University Consortium on Low Temperature Combustion (LTC) for High Efficiency, Ultra-Low Emission Engines A University Consortium on Low Temperature Combustion (LTC) for High...

  13. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Applied low temperature combustion to the Navistar...

  14. Low-Temperature Combustion Demonstrator for High-Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle...

  15. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion 2009 DOE Hydrogen Program...

  16. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility...

  17. New Mexico State University District Heating Low Temperature...

    Open Energy Info (EERE)

    New Mexico State University District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name New Mexico State University District Heating Low Temperature...

  18. Roadmap Finalized for Low-Temperature, Coproduced, and Geopressured...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Finalized for Low-Temperature, Coproduced, and Geopressured Technologies Roadmap Finalized for Low-Temperature, Coproduced, and Geopressured Technologies March 23, 2011 -...

  19. Detailed Assessment of Particulate Characteristics from Low-Temperatur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Particulate Characteristics from Low-Temperature Combustion Engines Detailed Assessment of Particulate Characteristics from Low-Temperature Combustion Engines 2012...

  20. Jackson National Fish Hatchery Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    National Fish Hatchery Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson National Fish Hatchery Aquaculture Low Temperature Geothermal...

  1. California Desert Fish Farm Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Desert Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name California Desert Fish Farm Aquaculture Low Temperature Geothermal Facility...

  2. Develop NREL Center for Low Temperature Research/Project Data...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Equipment for Low Temperature Geothermal Resources Analysis of Low-Temperature Utilization of Geothermal Resources City of Eagan Civic Ice Arena Renovation...

  3. Elko County School District District Heating Low Temperature...

    Open Energy Info (EERE)

    Elko County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature...

  4. Cedarville Elementary & High School Space Heating Low Temperature...

    Open Energy Info (EERE)

    Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low Temperature...

  5. GTP energy production from low-temperature resources, coproduced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GTP energy production from low-temperature resources, coproduced fluids, and geopressured resources. GTP energy production from low-temperature resources, coproduced fluids, and...

  6. Oregon Institute of Technology District Heating Low Temperature...

    Open Energy Info (EERE)

    District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology District Heating Low Temperature Geothermal Facility Facility...

  7. Walley's Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's...

  8. Steamboat Villa Hot Springs Spa Space Heating Low Temperature...

    Open Energy Info (EERE)

    Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal...

  9. Warner Springs Ranch Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Facility Warner...

  10. Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

    Open Energy Info (EERE)

    Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

  11. Klamath Apartment Buildings (13) Space Heating Low Temperature...

    Open Energy Info (EERE)

    Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Apartment Buildings (13) Space Heating Low Temperature...

  12. Agua Calientes Trailer Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Calientes Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Agua Calientes Trailer Park Space Heating Low Temperature Geothermal...

  13. Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Shoshone Motel & Trailer Park Space Heating Low Temperature...

  14. Warm Springs Water District District Heating Low Temperature...

    Open Energy Info (EERE)

    Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

  15. Hot Springs National Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    National Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility...

  16. Wiesbaden Motel & Health Resort Space Heating Low Temperature...

    Open Energy Info (EERE)

    Motel & Health Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal...

  17. Maywood Industries of Oregon Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Maywood Industries of Oregon Space Heating Low Temperature...

  18. Modesto Memorial Hospital Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Memorial Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modesto Memorial Hospital Space Heating Low Temperature Geothermal Facility...

  19. Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility...

  20. Senior Citizens' Center Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Senior Citizens' Center Space Heating Low Temperature Geothermal Facility...

  1. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  2. Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Ranch Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal Facility...

  3. Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility...

  4. Pagosa Springs Private Wells Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility...

  5. Fort Boise Veteran's Hospital District Heating Low Temperature...

    Open Energy Info (EERE)

    Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal...

  6. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  7. Merle West Medical Center Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Merle West Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Merle West Medical Center Space Heating Low Temperature Geothermal...

  8. Warm Springs State Hospital Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility...

  9. Osmotic Heat Engine for Energy Production from Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Osmotic Heat Engine for Energy Production from Low Temperature Geothemal Resources Osmotic Heat Engine for Energy Production from Low Temperature Geothemal Resources Osmotic Heat...

  10. Enabling High Efficiency Low Temperature Combustion by Adaptive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion by Adaptive In-Situ Jet Cooling Enabling High Efficiency Low Temperature Combustion by Adaptive In-Situ Jet Cooling A new approach, called...

  11. Low-Temperature and Coproduced | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About the Geothermal Technologies Office Low-Temperature and Coproduced Low-Temperature and Coproduced A new high efficiency expander design at the Beowawe Flash plant utilizes...

  12. High Resolution and Low-Temperature Photoelectron Spectroscopy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Resolution and Low-Temperature Photoelectron Spectroscopy of an Oxygen-Linked Fullerene Dimer Dianion: C120O2-. High Resolution and Low-Temperature Photoelectron Spectroscopy...

  13. Visualization of UHC Emissions for Low-Temperature Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UHC Emissions for Low-Temperature Diesel Engine Combustion Visualization of UHC Emissions for Low-Temperature Diesel Engine Combustion Presentation given at DEER 2006, August...

  14. Analysis of Low-Temperature Utilization of Geothermal Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Utilization of Geothermal Resources Analysis of Low-Temperature Utilization of Geothermal Resources Project objectives: Techno-economic analysis of the potential of...

  15. Full Reviews: Low-temperature and Exploration Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-temperature and Exploration Demonstration Projects Full Reviews: Low-temperature and Exploration Demonstration Projects Below are the project presentations and respective peer...

  16. Low temperature sintering of lanthanum strontium manganite-based...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low temperature sintering of lanthanum strontium manganite-based contact pastes for SOFCs. Low temperature sintering of lanthanum strontium manganite-based contact pastes for...

  17. Development of a Low-Temperature Photoelectron Spectroscopy Instrument...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Temperature Photoelectron Spectroscopy Instrument Using an Electrospray Ion Source and a Cryogenically Development of a Low-Temperature Photoelectron Spectroscopy Instrument...

  18. Low Temperature Heat Release Behavior of Conventional and Alternative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Heat Release Behavior of Conventional and Alternative Fuels in a Motored Engine Low Temperature Heat Release Behavior of Conventional and Alternative Fuels in a...

  19. Idling Emissions Reduction Technology with Low Temperature Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idling Emissions Reduction Technology with Low Temperature Combustion of DI Biodiesel and PFI n-Butanol Idling Emissions Reduction Technology with Low Temperature Combustion of DI...

  20. Syngas Enhanced High Efficiency Low Temperature Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant...

  1. Mayer and virial series at low temperature

    E-Print Network [OSTI]

    Sabine Jansen

    2012-05-18T23:59:59.000Z

    We analyze the Mayer pressure-activity and virial pressure-density series for a classical system of particles in continuous configuration space at low temperature. Particles interact via a finite range potential with an attractive tail. We propose physical interpretations of the Mayer and virial series' radius of convergence, valid independently of the question of phase transition: the Mayer radius corresponds to a fast increase from very small to finite density, and the virial radius corresponds to a cross-over from monatomic to polyatomic gas. Our results have consequences for the search of a low density, low temperature solid-gas phase transition, consistent with the Lee-Yang theorem for lattice gases and with the continuum Widom-Rowlinson model.

  2. Rotating sample holder at low temperature

    SciTech Connect (OSTI)

    Pasternak, Sebastien; Perrin, Florian; Ciatto, Gianluca; Palancher, Herve; Steinmann, Ricardo [European Synchrotron Radiation Facility, 38043 Grenoble (France)

    2007-07-15T23:59:59.000Z

    A low temperature rotary device (cryoturbine) for use in extended x-ray-absorption fine structure measurements in fluorescence mode has been designed and manufactured. The instrument works at a temperature close to liquid Nitrogen and can reach frequencies up to 100 Hz with good stability. The rotation speed is measured with a light-emitting diode driven in stroboscopic mode by a simple electronic circuit.

  3. 1992--1993 low-temperature geothermal assessment program, Colorada

    SciTech Connect (OSTI)

    Cappa, J.A.; Hemborg, H.T.

    1995-01-01T23:59:59.000Z

    Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late-1970s. The purpose of the 1992--1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the US Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases. For the purposes of this report a geothermal area is defined as a broad area, usually less than 3 sq mi in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

  4. Low Temperature Heat Recovery for Boiler Systems

    E-Print Network [OSTI]

    Shook, J. R.; Luttenberger, D. B.

    be economically heated to within 50 0 F of the entering flue gas temperature. Other less common, but practical, uses for energy include driving a low-temperature electric turbine cycle or an absorption chilling cycle. An improvement in boiler efficiency of 3...% to 8% can normally be realized by cooling boiler flue gasses down to llO o F_200 0 F. This recovers a large quantity of the available sensible heat in most boiler flue gas streams. Efficiency can be improv ed by up to 10% if flue gas is cooled down...

  5. Low temperature photoresponse of monolayer tungsten disulphide

    SciTech Connect (OSTI)

    Cao, Bingchen; Shen, Xiaonan; Shang, Jingzhi; Cong, Chunxiao; Yang, Weihuang; Eginligil, Mustafa, E-mail: yuting@ntu.edu.sg, E-mail: meginligil@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 (Singapore); Yu, Ting, E-mail: yuting@ntu.edu.sg, E-mail: meginligil@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 (Singapore); Department of Physics, Faculty of Science, National University of Singapore, Singapore, 117542 (Singapore); Graphene Research Centre, National University of Singapore, Singapore, 117546 (Singapore)

    2014-11-01T23:59:59.000Z

    High photoresponse can be achieved in monolayers of transition metal dichalcogenides. However, the response times are inconveniently limited by defects. Here, we report low temperature photoresponse of monolayer tungsten disulphide prepared by exfoliation and chemical vapour deposition (CVD) method. The exfoliated device exhibits n-type behaviour; while the CVD device exhibits intrinsic behaviour. In off state, the CVD device has four times larger ratio of photoresponse for laser on/off and photoresponse decay–rise times are 0.1 s (limited by our setup), while the exfoliated device has few seconds. These findings are discussed in terms of charge trapping and localization.

  6. Low temperature properties of holographic condensates

    E-Print Network [OSTI]

    Pallab Basu

    2011-06-16T23:59:59.000Z

    In the current work we study various models of holographic superconductors at low temperature. Generically the zero temperature limit of those models are solitonic solution with a zero sized horizon. Here we generalized simple version of those zero temperature solutions to small but non-zero temperature T. We confine ourselves to cases where near horizon geometry is AdS^4. At a non-zero temperature a small horizon would form deep inside this AdS^4 which does not disturb the UV physics. The resulting geometry may be matched with the zero temperature solution at an intermediate length scale. We understand this matching from separation of scales by setting up a perturbative expansion in gauge potential. We have a better analytic control in abelian case and quantities may be expressed in terms of hypergeometric function. From this we calculate low temperature behavior of various quatities like entropy, charge density and specific heat etc. We also calculate various energy gaps associated with p-wave holographic superconductor to understand the underlying pairing mechanism. The result deviates significantly from the corresponding weak coupling BCS counterpart.

  7. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. acep03rappe.pdf More Documents & Publications Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO...

  8. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (OFCVT). deer07rappe.pdf More Documents & Publications Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO...

  9. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Broader source: Energy.gov (indexed) [DOE]

    rappe.pdf More Documents & Publications Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO Oxidation Catalysis in...

  10. Low-Temperature and Coproduced Geothermal Projects Poster | Department...

    Office of Environmental Management (EM)

    Geothermal Projects Poster Low-Temperature and Coproduced Geothermal Projects Poster This map poster illustrates low-temperature and co-produced geothermal projects across the U.S....

  11. Diesel Particulate Filter Technology for Low-Temperature and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filter Technology for Low-Temperature and Low-NOxPM Applications Diesel Particulate Filter Technology for Low-Temperature and Low-NOxPM Applications 2004 DEER Conference...

  12. Single Interval Rényi Entropy At Low Temperature

    E-Print Network [OSTI]

    Bin Chen; Jie-qiang Wu

    2015-01-06T23:59:59.000Z

    In this paper, we calculate the R\\'enyi entropy of one single interval on a circle at finite temperature in 2D CFT. In the low temperature limit, we expand the thermal density matrix level by level in the vacuum Verma module, and calculate the first few leading terms in $e^{-\\pi/TL}$ explicitly. On the other hand, we compute the same R\\'enyi entropy holographically. After considering the dependence of the R\\'enyi entropy on the temperature, we manage to fix the interval-independent constant terms in the classical part of holographic R\\'enyi entropy. We furthermore extend the analysis in Xi Dong's paper to higher orders and find exact agreement between the results from field theory and bulk computations in the large central charge limit. Our work provides another piece of evidence to support holographic computation of R\\'enyi entropy in AdS$_3$/CFT$_2$ correspondence, even with thermal effect.

  13. Low temperature catalyst system for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.

    1984-04-20T23:59:59.000Z

    This patent discloses a catalyst and process useful at low temperatures (150/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen. The catalyst components are used in slurry form and comprise (1) a complex reducing agent derived from the component structure NaH-ROH-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms and (2) a metal carbonyl of a group VI (Mo, Cr, W) metal. For the first component, Nic is preferred (where M = Ni and R = tertiary amyl). For the second component, Mo(CO)/sub 6/ is preferred. The mixture is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  14. Low Temperature Waste Immobilization Testing Vol. I

    SciTech Connect (OSTI)

    Russell, Renee L.; Schweiger, Michael J.; Westsik, Joseph H.; Hrma, Pavel R.; Smith, D. E.; Gallegos, Autumn B.; Telander, Monty R.; Pitman, Stan G.

    2006-09-14T23:59:59.000Z

    The Pacific Northwest National Laboratory (PNNL) is evaluating low-temperature technologies to immobilize mixed radioactive and hazardous waste. Three waste forms—alkali-aluminosilicate hydroceramic cement, “Ceramicrete” phosphate-bonded ceramic, and “DuraLith” alkali-aluminosilicate geopolymer—were selected through a competitive solicitation for fabrication and characterization of waste-form properties. The three contractors prepared their respective waste forms using simulants of a Hanford secondary waste and Idaho sodium bearing waste provided by PNNL and characterized their waste forms with respect to the Toxicity Characteristic Leaching Procedure (TCLP) and compressive strength. The contractors sent specimens to PNNL, and PNNL then conducted durability (American National Standards Institute/American Nuclear Society [ANSI/ANS] 16.1 Leachability Index [LI] and modified Product Consistency Test [PCT]) and compressive strength testing (both irradiated and as-received samples). This report presents the results of these characterization tests.

  15. Properties of Quantum Graphity at Low Temperature

    E-Print Network [OSTI]

    Francesco Caravelli; Fotini Markopoulou

    2011-05-12T23:59:59.000Z

    We present a mapping of dynamical graphs and, in particular, the graphs used in the Quantum Graphity models for emergent geometry, into an Ising hamiltonian on the line graph of a complete graph with a fixed number of vertices. We use this method to study the properties of Quantum Graphity models at low temperature in the limit in which the valence coupling constant of the model is much greater than the coupling constants of the loop terms. Using mean field theory we find that an order parameter for the model is the average valence of the graph. We calculate the equilibrium distribution for the valence as an implicit function of the temperature. In the approximation in which the temperature is low, we find the first two Taylor coefficients of the valence in the temperature expansion. A discussion of the susceptibility function and a generalization of the model are given in the end.

  16. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-09-30T23:59:59.000Z

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1--6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  17. Cathode Connector For Aluminum Low Temperature Smelting Cell

    DOE Patents [OSTI]

    Brown, Craig W. (Seattle, WA); Beck, Theodore R. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA)

    2003-07-16T23:59:59.000Z

    Cathode connector means for low temperature aluminum smelting cell for connecting titanium diboride cathode or the like to bus bars.

  18. Low-Temperature, Coproduced, and Geopressured Geothermal Technologies...

    Office of Environmental Management (EM)

    Temperature, Coproduced, and Geopressured Geothermal Technologies Strategic Action Plan, September 2010 Low-Temperature, Coproduced, and Geopressured Geothermal Technologies...

  19. Metal-air low temperature ionic liquid cell

    DOE Patents [OSTI]

    Friesen, Cody A; Buttry, Daniel A

    2014-11-25T23:59:59.000Z

    The present application relates to an electrochemical metal-air cell in which a low temperature ionic liquid is used.

  20. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect (OSTI)

    Confer, Keith

    2014-09-30T23:59:59.000Z

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  1. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1985-03-12T23:59:59.000Z

    A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  2. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, Richard S. (1 Miller Ave., Shoreham, NY 11786); Slegeir, William A. (7 Florence Rd., Hampton Bays, NY 11946); O'Hare, Thomas E. (11 Geiger Pl., Huntington Station, NY 11746); Mahajan, Devinder (14 Locust Ct., Selden, NY 11784)

    1986-01-01T23:59:59.000Z

    A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  3. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-10-28T23:59:59.000Z

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is NiC (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  4. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of catalyst materials to facilitate the low-temperature oxidation of hydrocarbons and CO in homogeneous charge compression ignition (HCCI) emissions. deer08...

  5. Analysis of Low-Temperature Utilization of Geothermal Resources...

    Open Energy Info (EERE)

    researchers that will evaluate low-temperature geothermal utilization for three different case studies: - A hybrid biomass-geothermal cogeneration system at Cornell University, - A...

  6. Low-Temperature Diesel Combustion Cross-Cut Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Combustion Cross-Cut Research Low-Temperature Diesel Combustion Cross-Cut Research Lyle M. Pickett Combustion Research Facility Sandia National Laboratories Sponsor: DOEOVT...

  7. A University Consortium on Low Temperature Combustion (LTC) for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LTC University Consortium A University Consortium on Low Temperature Combustion (LTC) for High Efficiency, Ultra-Low Emission Engines Acknowledgements DOE LTC Consortium project...

  8. A Conceptual Model for Partially PremixedLow-Temperature Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Conceptual Model for Partially PremixedLow-Temperature Diesel Combustion Based onIn-Cylinder Laser Diagnostics and Chemical Kinetics Modeling A Conceptual Model for Partially...

  9. Low Temperature Combustion and Diesel Emission Reduction Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Diesel Emission Reduction Research Low Temperature Combustion and Diesel Emission Reduction Research Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan....

  10. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources City of Eagan Civic Ice Arena Renovation Hybrid and Advanced Air Cooling...

  11. Novel Energy Conversion Equipment for Low Temperatures Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Energy Conversion Equipment for Low Temperature Geothermal Resources City of Eagan Civic Ice Arena Renovation Canby Cascaded Geothermal Project Phase 1 Feasibility...

  12. Heavy-Duty Low Temperature Combustion Development Activities...

    Broader source: Energy.gov (indexed) [DOE]

    combustion Develop a fundamental understanding of low-temperature combustion process Collaborate with technology experts Optical Engine Testing with Sandia National...

  13. Electrical and thermal conductivity of low temperature CVD graphene...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and thermal conductivity of low temperature CVD graphene: the effect of disorder This article has been downloaded from IOPscience. Please scroll down to see the full text article....

  14. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

  15. Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Institute of Technology's Geo-Heat Center1 Fairmont Hot Springs Resort is a Space Heating low temperature direct use geothermal facility in Fairmont, Montana. This article is...

  16. Salida Hot Springs (Poncha Spring) Space Heating Low Temperature...

    Open Energy Info (EERE)

    Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low...

  17. City of Klamath Falls District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath Falls...

  18. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  19. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  20. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

  1. LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014...

    Broader source: Energy.gov (indexed) [DOE]

    mineral-webinar.pdf More Documents & Publications LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM Geothermal Play Fairway Analysis Geothermal Play Fairway Analysis...

  2. A University Consortium on Low Temperature Combustion (LTC) for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium on Efficient and Clean High-Pressure, Lean Burn (HPLB) Engines A University Consortium on Low Temperature Combustion (LTC) for High Efficiency, Ultra-Low Emission...

  3. Enhanced High and Low Temperature Performance of NOx Reduction...

    Energy Savers [EERE]

    High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  4. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Open Energy Info (EERE)

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  5. Low-Temperature, Coproduced, and Geopressured Geothermal Power...

    Broader source: Energy.gov (indexed) [DOE]

    The Geothermal Technology Program (GTP) low-temperature subprogram aims to provide the global geothermal community with the means to achieve development and widespread deployment...

  6. Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on Alumina. Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium...

  7. Occurrence of Low-Temperature Geothermal Waters in the United...

    Open Energy Info (EERE)

    Occurrence of Low-Temperature Geothermal Waters in the United States, in Assessment of Geothermal Resources of the United States -- 1978 Jump to: navigation, search OpenEI...

  8. Systems for Electrical Power from Coproduced and Low Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation about Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources includes background, results and discussion, future plans and conclusion....

  9. Low-Temperature Combustion Demonstrator for High-Efficiency Clean...

    Broader source: Energy.gov (indexed) [DOE]

    power density - Improved vehicle cooling system (low temperature radiator) - Two stage turbo system - Increased cylinder pressure capability Transient response - Two stage turbo -...

  10. Use of Low Cetane Fuel to Enable Low Temperature Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Enable Low Temperature Combustion Stephen Ciatti, Swaminathan Subramanian Argonne National Laboratory May 10, 2011 Project ID ACE11 This presentation does not contain any...

  11. Sandia National Laboratories: low-temperature diesel combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low-temperature diesel combustion Sandia Maps Multiple Paths to Cleaner, Low-Temp Diesels On October 22, 2013, in CRF, Energy, Facilities, News, News & Events, Partnership, Sensors...

  12. Low temperature barrier wellbores formed using water flushing

    DOE Patents [OSTI]

    McKinzie, II; John, Billy [Houston, TX; Keltner, Thomas Joseph [Spring, TX

    2009-03-10T23:59:59.000Z

    A method of forming an opening for a low temperature well is described. The method includes drilling an opening in a formation. Water is introduced into the opening to displace drilling fluid or indigenous gas in the formation adjacent to a portion of the opening. Water is produced from the opening. A low temperature fluid is applied to the opening.

  13. Low Temperature Air Bake of Stainless Steel for Very Low

    E-Print Network [OSTI]

    that gives very hot water with detergent. #12;4. The method of using a relatively low temperature air bake of the requirements for high quality forged blanks for flanges. After machining using a water based lubricantLow Temperature Air Bake of Stainless Steel for Very Low Outgassing Rates Surface Conditioning

  14. A low temperature analysis of the boundary driven Kawasaki Process

    E-Print Network [OSTI]

    Maes, Christian

    A low temperature analysis of the boundary driven Kawasaki Process Christian Maes and Winny O'Kelly de Galway Instituut voor Theoretische Fysica, KU Leuven June 17, 2013 Abstract Low temperature configurations even though the particle current tends to zero as the temperature reaches zero. That is because

  15. The safe use of low temperature liquefied gases 1. Introduction

    E-Print Network [OSTI]

    Martin, Ralph R.

    dioxide TABLE 1 Property Oxygen (O2) Nitrogen (N2) Argon (Ar) Helium (He) Carbon dioxide (CO2) Molecular.1 Objective 1.2 Gases considered and typical uses 2. Properties of low temperature liquefied atmospheric gases of BOC low temperature liquefied gases information on their properties, the hazards associated

  16. Experimental investigations of the viscosity of nanofluids at low temperatures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Experimental investigations of the viscosity of nanofluids at low temperatures Bahadir Aladag a nanofluids at low concentration and low temperatures are experimentally investigated. The viscosity data were stress ramp. CNT and Al2O3 water based nanofluids exhibited hysteresis behaviour when the stress

  17. Role of Crystallographic Texture and Grain Size on Low Temperature Deformation and Formability of a Mg Alloy

    E-Print Network [OSTI]

    Dogan, Ebubekir

    2014-12-12T23:59:59.000Z

    Interest in Mg alloys has significantly increased in recent years for weight-critical applications. However, Mg alloys show low strength and poor low temperature formability, due to the limited available slip systems and the strong final texture...

  18. Low-temperature random matrix theory at the soft edge

    SciTech Connect (OSTI)

    Edelman, Alan [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Persson, Per-Olof [Department of Mathematics, University of California, Berkeley, California 94720 (United States); Sutton, Brian D. [Department of Mathematics, Randolph-Macon College, Ashland, Virginia 23005 (United States)

    2014-06-15T23:59:59.000Z

    Low temperature” random matrix theory is the study of random eigenvalues as energy is removed. In standard notation, ? is identified with inverse temperature, and low temperatures are achieved through the limit ? ? ?. In this paper, we derive statistics for low-temperature random matrices at the “soft edge,” which describes the extreme eigenvalues for many random matrix distributions. Specifically, new asymptotics are found for the expected value and standard deviation of the general-? Tracy-Widom distribution. The new techniques utilize beta ensembles, stochastic differential operators, and Riccati diffusions. The asymptotics fit known high-temperature statistics curiously well and contribute to the larger program of general-? random matrix theory.

  19. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion DE-FC26-05NT42413 William de Ojeda International Truck and Engine Company 26 Feb 2008 This...

  20. Predictive kinetic modeling of low-temperature hydrocarbon oxidation

    E-Print Network [OSTI]

    Jalan, Amrit

    2014-01-01T23:59:59.000Z

    Low temperature oxidation in the gas and condensed phases has been the subject of experimental investigations for many decades owing to applications in many areas of practical significance like thermal stability, combustion, ...

  1. Evaluation of the Fuel Economy Impacts of Low Temperature Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Economy Impacts of Low Temperature Combustion (LTC) using Engine-in-the-Loop 2013 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 15, 2013 Neeraj Shidore...

  2. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory U.S. Department of Energy Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Ken Rapp, Liyu Li, Jonathan Male, Dave King...

  3. Field Demonstration of High Efficiency Ultra-Low-Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    Ultra-low temperature laboratory freezers (ULTs) are some of the most energy-intensive pieces of equipment in a scientific research laboratory, yet there are several barriers to...

  4. Design and Construction of a Low Temperature Scanning Tunneling Microscope

    E-Print Network [OSTI]

    Chen, Chi

    2010-10-12T23:59:59.000Z

    A low temperature scanning tunneling microscope (LTSTM) was built that we could use in an ultra high vacuum (UHV) system. The scanning tunneling microscope (STM) was tested on an existing 3He cryostat and calibrated at room, liquid nitrogen...

  5. Geothermal: Sponsored by OSTI -- Low-Temperature Enhanced Geothermal...

    Office of Scientific and Technical Information (OSTI)

    Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic...

  6. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory Department of Energy Project ID ace37deojeda 2 Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion DE-FC26-05NT42413 Project Overview...

  7. An Advanced Ultra-Low Temperature Scanning Probe Microscope

    E-Print Network [OSTI]

    An Advanced Ultra-Low Temperature Scanning Probe Microscope P R O J E C T L E A D E R : Joseph); Steven Blankenship, Alan Band (NIST) G O A L To develop an ultra-high vacuum, ultra-low temperature, high of subpicometer stability and can operate in ultra-high vacuum at 10 mK, and in magnetic fields up to 15 T

  8. Low-Temperature and Coproduced Resources Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for|TitaniumDepartmentLow-Temperature

  9. Heat Transfer and Cooling Techniques at Low Temperature

    E-Print Network [OSTI]

    Baudouy, B

    2014-01-01T23:59:59.000Z

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  10. Single-well Low Temperature CO2- based Engineered Geothemal System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single-well Low Temperature CO2- based Engineered Geothemal System Single-well Low Temperature CO2- based Engineered Geothemal System Single-well Low Temperature CO2- based...

  11. Erroneous coal maturity assessment caused by low temperature oxidation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Erroneous coal maturity assessment caused by low temperature oxidation Y. Copard J. R. Disnar, J. F on different outcrop coals from the French Massif Central revealed abnormally high Tmax values, which initially observed for medium to low volatile bituminous coals (Rr1.5%), was accompanied by a very clear exponential

  12. Doctoral Defense "Low-Temperature Anaerobic Membrane Bioreactor for

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Doctoral Defense "Low-Temperature Anaerobic Membrane Bioreactor for Energy Recovery from Domestic such as anaerobic membrane bioreactors (AnMBRs) are emerging as one option to recover energy during domestic highlighting microbial community shifts in the bioreactor and biofilm during changes in membrane fouling

  13. Localized temperature stability of low temperature cofired ceramics

    DOE Patents [OSTI]

    Dai, Steven Xunhu

    2013-11-26T23:59:59.000Z

    The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.

  14. Study of the Low Temperature Oxidation of Propane Maximilien Cord

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Study of the Low Temperature Oxidation of Propane Maximilien Cord , Benoit Husson , Juan of China, Hefei, Anhui 230029, P. R. China Abstract The lowtemperature oxidation of propane oxidation of propane in the gas phase has been the subject of very few experimental studies, mainly

  15. LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion...

    Energy Savers [EERE]

    LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion Research LES Applied to Low-Temperature, Diesel and Hydrogen Engine Combustion Research Presentation from the...

  16. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty Low-Temperature and Diesel Combustion &...

  17. In-Cylinder Processes of EGR-Diluted Low-Load, Low-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model for Partially PremixedLow-Temperature Diesel Combustion Based onIn-Cylinder Laser Diagnostics and Chemical Kinetics Modeling Heavy-Duty Low-Temperature and Diesel...

  18. A novel low-temperature dendritic cyclotrimerization of 2,6-diacetyl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low-temperature dendritic cyclotrimerization of 2,6-diacetyl pyridine leading to mesoporous carbon containing pyridine A novel low-temperature dendritic cyclotrimerization of...

  19. Sources of UHC and CO in Low Temperature Automotive Diesel Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UHC and CO in Low Temperature Automotive Diesel Combustion Systems Sources of UHC and CO in Low Temperature Automotive Diesel Combustion Systems Presentation given at the 16th...

  20. Method and apparatus for low temperature destruction of halogenated hydrocarbons

    DOE Patents [OSTI]

    Reagen, William Kevin (Stillwater, MN); Janikowski, Stuart Kevin (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A method and apparatus for decomposing halogenated hydrocarbons are provided. The halogenated hydrocarbon is mixed with solvating agents and maintained in a predetermined atmosphere and at a predetermined temperature. The mixture is contacted with recyclable reactive material for chemically reacting with the recyclable material to create dehalogenated hydrocarbons and halogenated inorganic compounds. A feature of the invention is that the process enables low temperature destruction of halogenated hydrocarbons.

  1. Improving the Performance of Lithium Ion Batteries at Low Temperature

    SciTech Connect (OSTI)

    Trung H. Nguyen; Peter Marren; Kevin Gering

    2007-04-20T23:59:59.000Z

    The ability for Li-ion batteries to operate at low temperatures is extremely critical for the development of energy storage for electric and hybrid electric vehicle technologies. Currently, Li-ion cells have limited success in operating at temperature below –10 deg C. Electrolyte conductivity at low temperature is not the main cause of the poor performance of Li-ion cells. Rather the formation of a tight interfacial film between the electrolyte and the electrodes has often been an issue that resulted in a progressive capacity fading and limited discharge rate capability. The objective of our Phase I work is to develop novel electrolytes that can form low interfacial resistance solid electrolyte interface (SEI) films on carbon anodes and metal oxide cathodes. From the results of our Phase I work, we found that the interfacial impedance of Fluoro Ethylene Carbonate (FEC) electrolyte at the low temperature of –20degC is astonishingly low, compared to the baseline 1.2M LiPFEMC:EC:PC:DMC (10:20:10:60) electrolyte. We found that electrolyte formulations with fluorinated carbonate co-solvent have excellent film forming properties and better de-solvation characteristics to decrease the interfacial SEI film resistance and facilitate the Li-ion diffusion across the SEI film. The very overwhelming low interfacial impedance for FEC electrolytes will translate into Li-ion cells with much higher power for cold cranking and high Regen/charge at the low temperature. Further, since the SEI film resistance is low, Li interaction kinetics into the electrode will remain very fast and thus Li plating during Regen/charge period be will less likely to happen.

  2. Low-temperature spray ponds: performance evaluation and prediction

    E-Print Network [OSTI]

    Kerig, Philip Dwan

    1980-01-01T23:59:59.000Z

    pond. These figures were used along with the dry-bulb temperatures measured at the pond to estimate the wet-bulb temperature at the spray pond. A second problem encountered during very cold weather was that the manometer lines would often freeze...LOW-TEMPERATURE SPRAY PONDS: PERFORMANCE EVALUATION AND PREDICTION A Thesis by PHILIP DWAN KERIG Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May...

  3. LOW-TEMPERATURE CRYSTALLIZATION OF AMORPHOUS SILICATE IN ASTROPHYSICAL ENVIRONMENTS

    SciTech Connect (OSTI)

    Tanaka, Kyoko K.; Yamamoto, Tetsuo [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Kimura, Hiroshi [Center for Planetary Science, Kobe 657-8501 (Japan)

    2010-07-01T23:59:59.000Z

    We construct a theoretical model for low-temperature crystallization of amorphous silicate grains induced by exothermic chemical reactions. As a first step, the model is applied to the annealing experiments, in which the samples are (1) amorphous silicate grains and (2) amorphous silicate grains covered with an amorphous carbon layer. We derive the activation energies of crystallization for amorphous silicate and amorphous carbon from the analysis of the experiments. Furthermore, we apply the model to the experiment of low-temperature crystallization of an amorphous silicate core covered with an amorphous carbon layer containing reactive molecules. We clarify the conditions of low-temperature crystallization due to exothermic chemical reactions. Next, we formulate the crystallization conditions so as to be applicable to astrophysical environments. We show that the present crystallization mechanism is characterized by two quantities: the stored energy density Q in a grain and the duration of the chemical reactions {tau}. The crystallization conditions are given by Q>Q{sub min} and {tau} < {tau}{sub cool} regardless of details of the reactions and grain structure, where {tau}{sub cool} is the cooling timescale of the grains heated by exothermic reactions, and Q{sub min} is minimum stored energy density determined by the activation energy of crystallization. Our results suggest that silicate crystallization occurs in wider astrophysical conditions than hitherto considered.

  4. Auburn low-temperature geothermal well. Volume 6. Final report

    SciTech Connect (OSTI)

    Lynch, R.S.; Castor, T.P.

    1983-12-01T23:59:59.000Z

    The Auburn well was drilled to explore for low temperature geothermal resources in central New York State. The Auburn site was selected based on: its proximity to the Cayuga County anomaly (30/sup 0/C/km), its favorable local geological conditions and the potential to provide hot water and space heating to two educational facilities. The well was drilled to a total depth of 5250 feet and into the Pre-Cambrian Basement. The well was extensively logged, flow and stress tested, hydraulically stimulated, and pump (pressure transient analysis) tested. The low-temperature geothermal potential was assessed in terms of: geological environment; hydrological conditions; reservoir characteristics; and recoverable hydrothermal reserves. The average geothermal gradient was measured to be as high as 26.7/sup 0/C/km with a bottom-hole temperature of 126/sup 0/ +- 1/sup 0/F. The proved volumetric resources were estimated to be 3.0 x 10/sup 6/ stock tank barrels (STB) with a maximum initial deliverability of approx.11,600 STB/D and a continuous deliverability of approx.3400 STB/D. The proved hydrothermal reserves were estimated to be 21.58 x 10/sup 10/ Btu based on a volumetric component (4.13 x 10/sup 10/ Btu), and a reinjection component (17.45 x 10/sup 10/ Btu). The conclusion was made that the Auburn low-temperature reservoir could be utilized to provide hot water and space heating to the Auburn School District.

  5. Theoretical kinetic study of the low temperature oxidation of ethanol

    E-Print Network [OSTI]

    Fournet, René; Bounaceur, Roda; Molière, Michel

    2009-01-01T23:59:59.000Z

    In order to improve the understanding of the low temperature combustion of ethanol, high-level ab initio calculations were performed for elementary reactions involving hydroxyethylperoxy radicals. These radicals come from the addition of hydroxethyl radicals (?CH3CHOH and ?CH2CH2OH) on oxygen molecule. Unimolecular reactions involving hydroxyethylperoxy radicals and their radical products were studied at the CBS-QB3 level of theory. The results allowed to highlight the principal ways of decomposition of these radicals. Calculations of potential energy surfaces showed that the principal channels lead to the formation of HO2 radicals which can be considered, at low temperature, as slightly reactive. However, in the case of CH3CH(OOH)O? radicals, a route of decomposition yields H atom and formic peracid, which is a branching agent that can strongly enhance the reactivity of ethanol in low temperature oxidation. In addition to these analyses, high-pressure limit rate constants were derived in the temperature rang...

  6. Low temperature properties of some Er-rich intermetallic compounds

    SciTech Connect (OSTI)

    K.A. Gshneidner,jr; A.O. Pecharsky; L.Hale; V.K. Pecharsky

    2004-09-30T23:59:59.000Z

    The low temperature volumetric heat capacity ({approx}3.5 to 350 K) and magnetic susceptibility ({approx}4 to 320 K) of Er{sub 3}Rh, Er{sub 3}Ir, Er{sub 3}Pt, Er{sub 2}Al, and Er{sub 2}Sn have been measured. All of the compounds order antiferromagnetically (or ferrimagnetically), and most exhibit more than one magnetic ordering transition. The volumetric heat capacities in general are smaller than those of the prototype magnetic regenerator materials, except for Er{sub 3}Ir in the 12 to 14 K temperature range.

  7. Inert Anode Life in Low Temperature Reduction Process

    SciTech Connect (OSTI)

    Bradford, Donald R.

    2005-06-30T23:59:59.000Z

    The production of aluminum metal by low temperature electrolysis utilizing metal non-consumable anodes and ceramic cathodes was extensively investigated. Tests were performed with traditional sodium fluoride--aluminum fluoride composition electrolytes, potassium fluoride-- aluminum fluoride electrolytes, and potassium fluoride--sodium fluoride--aluminum fluoride electrolytes. All of the Essential First-Tier Requirements of the joint DOE-Aluminum Industry Inert Anode Road Map were achieved and those items yet to be resolved for commercialization of this technology were identified. Methods for the fabrication and welding of metal alloy anodes were developed and tested. The potential savings of energy and energy costs were determined and potential environmental benefits verified.

  8. Thermally Stable Ultra-Low Temperature Oxidation Catalysts

    SciTech Connect (OSTI)

    Szanyi, Janos; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.

    2014-12-09T23:59:59.000Z

    This annual reports describes recent results of a CRADA between General Motors Company (GM) and Battelle/Pacific Northwest National Laboratory (PNNL). In the CRADA, we are investigating a number of candidate low temperature oxidation catalysts as fresh materials, and after realistic laboratory- and engine-aging. These studies will lead to a better understanding of fundamental characteristics and various aging factors that impact the long-term performance of catalysts, while also providing an assessment of the appropriateness of the laboratory conditions in realistically reproducing the effects of actual engine aging conditions.

  9. Low-temperature magnetization of (Ga,Mn) As semiconductors

    E-Print Network [OSTI]

    Jungwirth, T.; Masek, J.; Wang, KY; Edmonds, KW; Sawicki, M.; Polini, M.; Sinova, Jairo; MacDonald, AH; Campion, RP; Zhao, LX; Farley, NRS; Johal, TK; van der Laan, G.; Foxon, CT; Gallagher, BL.

    2006-01-01T23:59:59.000Z

    temperature magnetometry and XMCD experiments. A series of #1;Ga,Mn#2;As films with Mn content varying between 1.7?6.7 % in the SQUID experiments and between 2.2 and 8.4 % in the XMCD experiments were grown by low-temperature molecular beam epitaxy #1;MBE.... Magnetometry The magnetic moment of the samples is measured in a SQUID magnetometer, at 5 K and under a 0.3 T external magnetic field. The external field is necessary to overcome in-plane anisotropy fields, so that the magnetization is aligned...

  10. Programming Enhancements for Low Temperature Thermal Decomposition Workstation

    SciTech Connect (OSTI)

    Igou, R.E.

    1998-10-01T23:59:59.000Z

    This report describes a new control-and-measurement system design for the Oak Ridge Y-12 Plant's Low Temperature Thermal Decomposition (LTTD) process. The new design addresses problems with system reliability stemming from equipment obsolescence and addresses specific functional improvements that plant production personnel have identified, as required. The new design will also support new measurement techniques, which the Y-12 Development Division has identified for future operations. The new techniques will function in concert with the original technique so that process data consistency is maintained.

  11. Low-Temperature Automotive Diesel Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment1 DOE Hydrogen andLow-Temperature

  12. Low-temperature Sodium-Beta Battery - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6, 2014 PNGC,Low-TemperatureBiomass

  13. Crystallization and doping of amorphous silicon on low temperature plastic

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Truher, J.B.; Weiner, K.H.; Sigmon, T.W.

    1994-09-13T23:59:59.000Z

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate is disclosed. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900 C), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180 C for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180 C) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide. 5 figs.

  14. Crystallization and doping of amorphous silicon on low temperature plastic

    DOE Patents [OSTI]

    Kaschmitter, James L. (Pleasanton, CA); Truher, Joel B. (Palo Alto, CA); Weiner, Kurt H. (Campbell, CA); Sigmon, Thomas W. (Beaverton, OR)

    1994-01-01T23:59:59.000Z

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900.degree. C.), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180.degree. C. for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180.degree. C.) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide.

  15. Sustained concrete attack by low-temperature, fragmented core debris

    SciTech Connect (OSTI)

    Tarbell, W.W.; Bradley, D.R.; Blose, R.E.; Ross, J.W.; Gilbert, D.W.

    1987-07-01T23:59:59.000Z

    Four experiments were performed to study the interactions between low-temperature core debris and concretes typical of reactor structures. The tests addressed accident situations where the core debris is at elevated temperature, but not molten. Concrete crucibles were formed in right-circular cylinders with 45 kg of steel spheres (approx.3-mm diameter) as the debris simulant. The debris was heated by an inductive power supply to nominal temperatures of 1473 K to 1673 K. Two tests were performed on each of two concrete types using either basalt or limestone aggregate. For each concrete, one test was performed with water atop the debris while the second had no water added. The results show that low-temperature core debris will erode either basalt or limestone-common sand concretes. Downward erosion rates of 3 to 4 cm/hr were recorded for both concrete types. The limestone concrete produced a crust layer within the debris bed that was effective in preventing the downward intrusion of water. The basalt concrete crust was formed above the debris and consisted of numerous, convoluted, thin layers. Carbon dioxide and water release from the decomposition of concrete were partially reduced by the metallic debris to yield carbon monoxide and hydrogen, respectively. The overlying water pool did not effect the reduction reactions.

  16. Material for electrodes of low temperature plasma generators

    DOE Patents [OSTI]

    Caplan, Malcolm (Fremont, CA); Vinogradov, Sergel Evge'evich (St. Peterburg, RU); Ribin, Valeri Vasil'evich (St. Peterburg, RU); Shekalov, Valentin Ivanovich (St. Peterburg, RU); Rutberg, Philip Grigor'evich (St. Peterburg, RU); Safronov, Alexi Anatol'evich (St. Peterburg, RU)

    2008-12-09T23:59:59.000Z

    Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron: 3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, and municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

  17. Low-Temperature Light Detectors with Neganov-Luke Amplification

    E-Print Network [OSTI]

    Isaila, C; Feilitzsch, F v; Gütlein, A; Kemmer, J; Lachenmaier, T; Lanfranchi, J -C; Pfister, S; Potzel, W; Roth, S; Sivers, M v; Strauss, R; Westphal, W; Wiest, F

    2011-01-01T23:59:59.000Z

    The simultaneous measurement of phonons and scintillation light induced by incident particles in a scintillating crystal such as CaWO4 is a powerful technique for the active rejection of background induced by gamma's and beta's as well as neutrons in direct Dark Matter searches. However, less than ~1% of the energy deposited in a CaWO4 crystal is detected as light. Thus, very sensitive light detectors are needed for an efficient event-by-event background discrimination. Due to the Neganov-Luke effect, the threshold of low-temperature light detectors based on semiconducting substrates can be improved significantly by drifting the photon-induced electron-hole pairs in an applied electric field. We present measurements with low-temperature light detectors based on this amplification mechanism. The Neganov-Luke effect makes it possible to improve the signal-to-noise ratio of our light detectors by a factor of ~9 corresponding to an energy threshold of ~21 eV. We also describe a method for an absolute energy calib...

  18. Warm inflation dynamics in the low temperature regime

    SciTech Connect (OSTI)

    Bastero-Gil, Mar [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Granada-18071 (Spain); Berera, Arjun [School of Physics, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom)

    2007-08-15T23:59:59.000Z

    Warm inflation scenarios are studied with the dissipative coefficient computed in the equilibrium approximation. Use is made of the analytical expressions available in the low temperature regime with focus on the possibility of achieving strong dissipation within this approximation. Two different types of models are examined: monomial or equivalently chaotic type potentials, and hybrid like models where the energy density during inflation is dominated by the false vacuum. In both cases dissipation is shown to typically increase during inflation and bring the system into the strong dissipative regime. Observational consequences are explored for the amplitude of the primordial spectrum and the spectral index, which translate into constraints on the number of fields mediating the dissipative mechanism, and the number of light degrees of freedom produced during inflation. This paper furthers the foundational development of warm inflation dynamics from first principles quantum field theory by calculating conservative lower bound estimates on dissipative effects during inflation using the well established thermal equilibrium approximation. This approximation does not completely represent the actual physical system and earlier work has shown relaxing both the equilibrium and low temperature constraints can substantially enlarge the warm inflation regime, but these improvements still need further theoretical development.

  19. Material for electrodes of low temperature plasma generators

    DOE Patents [OSTI]

    Caplan, Malcolm (Fremont, CA); Vinogradov, Sergel Evge'evich (St. Peterburg, RU); Ribin, Valeri Vasil'evich (St. Peterburg, RU); Shekalov, Valentin Ivanovich (St. Peterburg, RU); Rutberg, Philip Grigor'evich (St. Peterburg, RU); Safronov, Alexi Anatol'evich (St. Peterburg, RU); Shiryaev, Vasili Nikolaevich (St. Peterburg, RU)

    2010-03-02T23:59:59.000Z

    Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron:3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

  20. Investigating Low Temperature Properties of Rubber Seals - 13020

    SciTech Connect (OSTI)

    Jaunich, M.; Wolff, D.; Stark, W. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12203 Berlin (Germany)] [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12203 Berlin (Germany)

    2013-07-01T23:59:59.000Z

    To achieve the required tightness levels of containers for low and intermediate level radioactive wastes rubbers are widely applied as main sealing materials. The save encapsulation of the radioactive container contents has to be guaranteed according to legislation and appropriate guidelines for long storage periods as well as down to temperatures of -40 deg. C during transportation. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly influenced by temperature. At low temperatures this is caused by the rubber-glass transition (abbr. glass transition). During continuous cooling the material changes from rubber-like entropy-elastic to stiff energy-elastic behaviour, that allows nearly no strain or retraction. Therefore, rubbers are normally used above their glass transition but the minimum working temperature limit is not defined precisely, what can cause problems during application. The temperature range where full functionality is possible is strongly dependent on the application conditions and the material. For this investigation mainly ethylene propylene diene (EPDM) and fluorocarbon rubbers (FKM) were selected as they are often used for radioactive waste containers. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) are typically used for the determination of the temperature range of the glass transition process. The standardized compression set measurement according to ISO 815 is common for investigation of rubber sealing materials as the test simulates the seal behaviour after release. To reduce the test time of the standard tests a faster technique giving the same information was developed. Additionally, the breakdown temperature of the sealing function of complete O-ring seals is measured in a component test setup to compare it with the results of the other tests. The experimental setup is capable of measuring the leakage rate at low temperatures by the pressure rise method. A model was developed that allows calculating the minimum working temperature limit of a seal by combining the results of the applied methods. (authors)

  1. An In-Cylinder Imaging Survey of Low-Temperature, High-Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An In-Cylinder Imaging Survey of Low-Temperature, High-Efficiency Combustion Strategies An In-Cylinder Imaging Survey of Low-Temperature, High-Efficiency Combustion Strategies High...

  2. Sources of CO and UHC Emissions in Low-Temperature Diesel Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UHC Emissions in Low-Temperature Diesel Combustion Systems The sources of unburned hydrocarbons and CO emissions from a PCI-like, early-injection low-temperature combustion system...

  3. Heavy-Duty Low-Temperature and Diesel Combustion Research (8748...

    Energy Savers [EERE]

    Heavy-Duty Low-Temperature and Diesel Combustion Research (8748) and Heavy-Duty Combustion Modeling (12349) Heavy-Duty Low-Temperature and Diesel Combustion Research (8748) and...

  4. Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion in a Light-Duty Diesel Engine Fuel Effects on Low Temperature Combustion in a Light-Duty Diesel Engine Six different fuels were investigated to study the...

  5. Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission Engines Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission Engines Presentation given at DEER...

  6. Combining Low-Temperature Combustion with Lean-NOx Trap Yields...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Combining Low-Temperature Combustion with Lean-NOx Trap Yields...

  7. Analysis of a Dedicated Outdoor Air System and Low Temperature Supply Air Conditioning System

    E-Print Network [OSTI]

    Guang, L.; Li, R.

    2006-01-01T23:59:59.000Z

    This paper presents the principles and the characteristics of a dedicated outdoor air system (DOAS) and low temperature supply air system. DOAS is offered based on the demands of indoor air quality and the low temperature supply air system...

  8. Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel and EGR for Low-Temperature NOx and PM Reductions Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions Poster presentation at the 2007 Diesel...

  9. Development of a Durable Low-Temperature Urea-SCR Catalyst for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Durable Low-Temperature Urea-SCR Catalyst for CIDI Engines Development of a Durable Low-Temperature Urea-SCR Catalyst for CIDI Engines 2004 Diesel Engine Emissions Reduction (DEER)...

  10. The Ultra-High Vacuum, Low-Temperature Scanning Probe Microscope...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ultra-High Vacuum, Low-Temperature Scanning Probe Microscope in EMSL's Quiet Wing The Ultra-High Vacuum, Low-Temperature Scanning Probe Microscope in EMSL's Quiet Wing This is...

  11. Investigation of Bio-Diesel Fueled Engines under Low-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies ftp01lee.pdf More...

  12. Low temperature MFM imaging of Fe??xV??xAl intermetallics

    E-Print Network [OSTI]

    Nooner, Scott Lee

    1999-01-01T23:59:59.000Z

    A low temperature magnetic force microscope (MFM) system was set up by adapting a commercial atomic force microscope (AFM) from Park Scientific Instruments (PSI) for low temperature MFM use. Magnetic cantilevers were fabricated for the low...

  13. A Total Cost of Ownership Model for Low Temperature PEM Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications A Total Cost of Ownership Model for Low Temperature PEM...

  14. Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

  15. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ce001musculus2010o.pdf More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty Low-Temperature and Diesel...

  16. Single Interval R\\'enyi Entropy At Low Temperature

    E-Print Network [OSTI]

    Chen, Bin

    2015-01-01T23:59:59.000Z

    In this paper, we calculate the R\\'enyi entropy of one single interval on a circle at finite temperature in 2D CFT. In the low temperature limit, we expand the thermal density matrix level by level in the vacuum Verma module, and calculate the first few leading terms in $e^{-\\pi/TL}$ explicitly. On the other hand, we compute the same R\\'enyi entropy holographically. After considering the dependence of the R\\'enyi entropy on the temperature, we manage to fix the interval-independent constant terms in the classical part of holographic R\\'enyi entropy. We furthermore extend the analysis in Xi Dong's paper to higher orders and find exact agreement between the results from field theory and bulk computations in the large central charge limit. Our work provides another piece of evidence to support holographic computation of R\\'enyi entropy in AdS$_3$/CFT$_2$ correspondence, even with thermal effect.

  17. Southern New Mexico low temperature geothermal resource economic analysis

    SciTech Connect (OSTI)

    Fischer, C.L.; Whittier, J.; Witcher, J.C.; Schoenmackers, R.

    1990-08-01T23:59:59.000Z

    This report presents an overview of geothermal resource development for three-low temperature (i.e, <200{degree}F) sites in southern New Mexico: the Lower Animas Valley, the Las Cruces East Mesa, and Truth or Consequences. This report is intended to provide potential geothermal developers with detailed information on each site for planning and decision making purposes. Included in the overview for each site is both a full site characterization and an economic analysis of development costs associated with the construction and operation of both geothermal and fresh water systems at each of the three locations. The economic analysis focuses on providing utility services to a commercial greenhouse because greenhouse operations are among the most likely candidates for use of the resource base. 9 tabs., 8 figs.

  18. PbO-free glasses for low temperature packaging

    SciTech Connect (OSTI)

    Brow, R.K.; Bencoe, D.N.; Tallant, D.R. [and others

    1997-10-01T23:59:59.000Z

    Zinc polyphosphate glasses were examined as potential candidates for low temperature sealing applications. Glass-formation and properties were determined for the ZnO-P{sub 2}O{sub 5}, ZnO-B{sub 2}O{sub 3}-P{sub 2}O{sub 5} and ZnO-SnO-P{sub 2}O{sub 5} systems, and information about the short-range structures of these glasses was obtained by Raman and solid state nuclear magnetic resonance spectroscopies. In general, the most durable polyphosphate glasses have structures based on relatively short pyrophosphate chain lengths (i.e., 2 P-tetrahedra). Modified phosphate compositions are given, including compositions used to seal float glass substrates at temperatures as low as 500{degrees}C.

  19. Method for low temperature preparation of a noble metal alloy

    DOE Patents [OSTI]

    Even, Jr., William R. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A method for producing fine, essentially contamination free, noble metal alloys is disclosed. The alloys comprise particles in a size range of 5 to 500 nm. The method comprises 1. A method for preparing a noble metal alloy at low temperature, the method comprising the steps of forming solution of organometallic compounds by dissolving the compounds into a quantity of a compatible solvent medium capable of solvating the organometallic, mixing a portion of each solution to provide a desired molarity ratio of ions in the mixed solution, adding a support material, rapidly quenching droplets of the mixed solution to initiate a solute-solvent phase separation as the solvent freezes, removing said liquid cryogen, collecting and freezing drying the frozen droplets to produce a dry powder, and finally reducing the powder to a metal by flowing dry hydrogen over the powder while warming the powder to a temperature of about 150.degree. C.

  20. California low-temperature geothermal resources update: 1993

    SciTech Connect (OSTI)

    Youngs, L.G.

    1994-12-31T23:59:59.000Z

    The US Department of Energy -- Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Geothermal Resources and Technology Transfer Program to bring the inventory of the nation`s low- and moderate-temperature geothermal resources up to date and to encourage development of the resources. The Oregon Institute of Technology, Geo-Heat Center (OIT/GHC) and the University of Utah Research Institute (UURI) established subcontracts and coordinated the project with the state resource teams from the western states that participated in the program. The California Department of Conservation, Division of Mines and Geology (DMG) entered into contract numbered 1092--023(R) with the OIT/GHC to provide the California data for the program. This report is submitted in fulfillment of that contract.

  1. Chiral dynamics in the low-temperature phase of QCD

    E-Print Network [OSTI]

    Bastian B. Brandt; Anthony Francis; Harvey B. Meyer; Daniel Robaina

    2014-10-22T23:59:59.000Z

    We investigate the low-temperature phase of QCD and the crossover region with two light flavors of quarks. The chiral expansion around the point $(T, m_q = 0)$ in the temperature vs. quark-mass plane indicates that a sharp real-time excitation exists with the quantum numbers of the pion. We determine its dispersion relation and test the applicability of the chiral expansion. The time-dependent correlators are also analyzed using the Maximum Entropy Method (MEM), yielding consistent results. Finally, we test the predictions of ordinary chiral perturbation theory around the point $(T = 0, m_q = 0)$ for the temperature dependence of static observables. Around the crossover temperature, we find that all quantities considered depend only mildly on the quark mass in the considered range 8MeV $\\leq \\bar{m}^{\\bar{\\text{MS}}} \\leq$ 15MeV.

  2. Chiral dynamics in the low-temperature phase of QCD

    E-Print Network [OSTI]

    Bastian B. Brandt; Anthony Francis; Harvey B. Meyer; Daniel Robaina

    2014-06-21T23:59:59.000Z

    We investigate the low-temperature phase of QCD and the crossover region with two light flavors of quarks. The chiral expansion around the point $(T,m=0)$ in the temperature vs. quark-mass plane indicates that a sharp real-time excitation exists with the quantum numbers of the pion. An exact sum rule is derived for the thermal modification of the spectral function associated with the axial charge density; the (dominant) pion pole contribution obeys the sum rule. We determine the two parameters of the pion dispersion relation using lattice QCD simulations and test the applicability of the chiral expansion. The time-dependent correlators are also analyzed using the Maximum Entropy Method, yielding consistent results. Finally, we test the predictions of the chiral expansion around the point $(T=0,m=0)$ for the temperature dependence of static observables.

  3. Low-temperature catalytic gasification of wet industrial wastes

    SciTech Connect (OSTI)

    Elliott, D C; Neuenschwander, G G; Baker, E G; Sealock, Jr, L J; Butner, R S

    1991-04-01T23:59:59.000Z

    Bench-scale reactor tests are in progress at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for treating a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. This report describes a test program which used a continuous-feed tubular reactor. This test program is an intermediate stage in the process development. The reactor is a laboratory-scale version of the commercial concept as currently envisioned by the process developers. An energy benefit and economic analysis was also completed on the process. Four conceptual commercial installations of the TEES process were evaluated for three food processing applications and one organic chemical manufacturing application. Net energy production (medium-Btu gas) was achieved in all four cases. The organic chemical application was found to be economically attractive in the present situation. Based on sensitivity studies included in the analysis, the three food processing cases will likely become attractive in the near future as waste disposal regulations tighten and disposal costs increase. 21 refs., 2 figs., 9 tabs.

  4. Optimized Designs for Very Low Temperature Massive Calorimeters

    E-Print Network [OSTI]

    Pyle, Matt; Sadoulet, Bernard

    2015-01-01T23:59:59.000Z

    The baseline energy-resolution performance for the current generation of large-mass, low-temperature calorimeters is $>2$ orders of magnitude worse than theoretical predictions. A detailed study of several calorimetric detectors suggests that a mismatch between the sensor and signal bandwidths is the primary reason for suppressed sensitivity. With this understanding, we propose a detector design in which a thin-film Au pad is directly deposited onto a massive absorber that is then thermally linked to a separately fabricated TES chip via an Au wirebond, providing large electron-phonon coupling (i.e. high signal bandwidth), ease of fabrication, and cosmogenic background suppression. Interestingly, this design strategy is fully compatible with the use of hygroscopic crystals (NaI) as absorbers. An 80-mm diameter Si light detector based upon these design principles, with potential use in both dark matter and neutrinoless double-beta decay, has an estimated baseline energy resolution of 0.35eV, 20x better than cur...

  5. Low-temperature resource assessment program. Final report

    SciTech Connect (OSTI)

    Lienau, P.J. [Oregon Inst. of Tech., Klamath Falls, OR (United States). Geo-Heat Center] [Oregon Inst. of Tech., Klamath Falls, OR (United States). Geo-Heat Center; Ross, H. [Utah Univ., Salt Lake City, UT (United States). Earth Sciences and Resources Inst.] [Utah Univ., Salt Lake City, UT (United States). Earth Sciences and Resources Inst.

    1996-02-01T23:59:59.000Z

    The US Department of Energy - Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Resource Assessment project to update the inventory of the nation`s low- and moderate-temperature geothermal resources and to encourage development of these resources. A database of 8,977 thermal wells and springs that are in the temperature range of 20{degrees}C to 150{degrees}C has been compiled for ten western states, an impressive increase of 82% compared to the previous assessments. The database includes location, descriptive data, physical parameters, water chemistry and references for sources of data. Computer-generated maps are also available for each state. State Teams have identified 48 high-priority areas for near-term comprehensive resource studies and development. Resources with temperatures greater than 50{degrees}C located within 8 km of a population center were identified for 271 collocated cities. Geothermal energy cost evaluation software has been developed to quickly identify the cost of geothermally supplied heat to these areas in a fashion similar to that used for conventionally fueled heat sources.

  6. Effective Holographic Theories for low-temperature condensed matter systems

    E-Print Network [OSTI]

    C. Charmousis; B. Goutéraux; B. S. Kim; E. Kiritsis; Rene Meyer

    2010-09-30T23:59:59.000Z

    The IR dynamics of effective holographic theories capturing the interplay between charge density and the leading relevant scalar operator at strong coupling are analyzed. Such theories are parameterized by two real exponents $(\\gamma,\\delta)$ that control the IR dynamics. By studying the thermodynamics, spectra and conductivities of several classes of charged dilatonic black hole solutions that include the charge density back reaction fully, the landscape of such theories in view of condensed matter applications is characterized. Several regions of the $(\\gamma,\\delta)$ plane can be excluded as the extremal solutions have unacceptable singularities. The classical solutions have generically zero entropy at zero temperature, except when $\\gamma=\\delta$ where the entropy at extremality is finite. The general scaling of DC resistivity with temperature at low temperature, and AC conductivity at low frequency and temperature across the whole $(\\gamma,\\delta)$ plane, is found. There is a codimension-one region where the DC resistivity is linear in the temperature. For massive carriers, it is shown that when the scalar operator is not the dilaton, the DC resistivity scales as the heat capacity (and entropy) for planar (3d) systems. Regions are identified where the theory at finite density is a Mott-like insulator at T=0. We also find that at low enough temperatures the entropy due to the charge carriers is generically larger than at zero charge density.

  7. High sensitivity imaging Thomson scattering for low temperature plasma

    SciTech Connect (OSTI)

    Meiden, H. J. van der; Al, R. S.; Barth, C. J.; Donne, A. J. H.; Goedheer, W. J.; Groot, B. de; Koppers, W. R.; Pol, M. J. van de; Prins, P. R.; Shumack, A. E.; Smeets, P. H. M.; Vijvers, W. A. J.; Westerhout, J.; Wright, G. M.; Rooij, G. J. van [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Engeln, R. [Eindhoven University of Technology, 5612AZ Eindhoven (Netherlands); Kleyn, A. W. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Leiden Institute of Chemistry, Leiden University, Leiden (Netherlands); Lopes Cardozo, N. J.; Schram, D. C. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, 5612AZ Eindhoven (Netherlands)

    2008-01-15T23:59:59.000Z

    A highly sensitive imaging Thomson scattering system was developed for low temperature (0.1-10 eV) plasma applications at the Pilot-PSI linear plasma generator. The essential parts of the diagnostic are a neodymium doped yttrium aluminum garnet laser operating at the second harmonic (532 nm), a laser beam line with a unique stray light suppression system and a detection branch consisting of a Littrow spectrometer equipped with an efficient detector based on a ''Generation III'' image intensifier combined with an intensified charged coupled device camera. The system is capable of measuring electron density and temperature profiles of a plasma column of 30 mm in diameter with a spatial resolution of 0.6 mm and an observational error of 3% in the electron density (n{sub e}) and 6% in the electron temperature (T{sub e}) at n{sub e}=4x10{sup 19} m{sup -3}. This is achievable at an accumulated laser input energy of 11 J (from 30 laser pulses at 10 Hz repetition frequency). The stray light contribution is below 9x10{sup 17} m{sup -3} in electron density equivalents by the application of a unique stray light suppression system. The amount of laser energy that is required for a n{sub e} and T{sub e} measurement is 7x10{sup 20}/n{sub e} J, which means that single shot measurements are possible for n{sub e}>2x10{sup 21} m{sup -3}.

  8. Novel Energy Conversion Equipment for Low Temperature Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletterEnergySeptember 16,Departmentthe|

  9. Osmotic Heat Engine for Energy Production from Low Temperature Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014FundsOpti-MNRESPONSE |About

  10. Low Temperature PEM Fuel Cell Manufacturing Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for| Department ofofLowEnergyPEM

  11. Low Temperature/Coproduced/Geopressured Subprogram Overview | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for| Department

  12. Low-Temperature Gasoline Combustion (LTGC) Engine Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for|TitaniumDepartment ofofNO

  13. Low-Temperature Geothermal Photo Library | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for|TitaniumDepartment

  14. Low-Temperature, Coproduced, and Geopressured Geothermal Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare

  15. Research Initiative Will Demonstrate Low Temperature Geothermal Electrical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuickEnergyfor aDepartment of

  16. Defect studies in low-temperature-grown GaAs

    SciTech Connect (OSTI)

    Bliss, D.E.

    1992-11-01T23:59:59.000Z

    High content of excess As is incorporated in GaAs grown by low-temperature molecular-beam-epitaxy (LTMBE). The excess As exists primarily as As antisite defects AsGa and a lesser extent of gallium vacancies V[sub Ga]. The neutral AsGa-related defects were measured by infrared absorption at 1[mu]m. Gallium vacancies, V[sub Ga], was investigated by slow positron annihilation. Dependence of defect contents on doping was studied by Si and Be dopants. No free carriers are generated by n-type or p-type doping up to 10[sup 19] cm[sup [minus]3] Si or Be. Raman data indicate Be occupies Ga substitutional sites but Si atom is not substitutional. Si induces more As[sub Ga] in the layer. As As[sub Ga] increases, photoquenchable As[sub Ga] decreases. Fraction of photoquenchable defects correlates to defects within 3 nearest neighbor separations disrupting the metastability. Annealing reduces neutral As[sub Ga] content around 500C, similar to irradiation damaged and plastically deformed Ga[sub As], as opposed to bulk grown GaAs in which As[sub Ga]-related defects are stable up to 1100C. The lower temperature defect removal is due to V[sub Ga] enhanced diffusion of As[sub Ga] to As precipitates. The supersaturated V[sub GA] and also decreases during annealing. Annealing kinetics for As[sub Ga]-related defects gives 2.0 [plus minus] 0.3 eV and 1.5 [plus minus] 0.3 eV migration enthalpies for the As[sub Ga] and V[sub Ga]. This represents the difference between Ga and As atoms hopping into the vacancy. The non-photoquenchable As[sub Ga]-related defects anneal with an activation energy of 1.1 [plus minus] 0.3eV. Be acceptors can be activated by 800C annealing. Temperature difference between defect annealing and Be activation formation of As[sub Ga]-Be[sub Ga] pairs. Si donors can only be partially activated.

  17. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    SciTech Connect (OSTI)

    Ojeda, William de

    2010-07-31T23:59:59.000Z

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally, the transient demonstration was performed in Phase IV. The project demonstrated the achievement of meeting US10 emissions without NOx aftertreatment. The successful execution of the project has served to highlight the effectiveness of closely matched combustion predictive tools to engine testing. It has further served to highlight the importance of key technologies and future areas of research and development. In this regard, recommendations are made towards further improvements in the areas of engine hardware, fuel injection systems, controls and fuels.

  18. Heavy-Duty Low-Temperature and Diesel Combustion Research (8748...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program Manager: Gurpreet Singh Heavy-Duty Low-Temperature and Diesel Combustion Research (8748) and Heavy-Duty Combustion Modeling (12349) FY 2008 DOE Vehicle...

  19. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review 2014:...

  20. Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Combustion Research Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

  1. THERMODYNAMICS OF LOW-TEMPERATURE (700-850oC) HOT CORROSION

    E-Print Network [OSTI]

    Misra, A.K.

    2013-01-01T23:59:59.000Z

    Ref. 2). J. Lumsden, Thermodynamics of molten salt mixtures,R. Defay, Chemical thermodynamics, Longmans Green and Co. ,Electrochemical Society THERMODYNAMICS OF LOW-TEMPERATURE {

  2. Sources and Mitigation of CO and UHC Emissions in Low-temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Mitigation of CO and UHC Emissions in Low-temperature Diesel Combustion Regimes: Insights Obtained via Homogeneous Reactor Modeling Sources and Mitigation of CO and UHC...

  3. advanced low-temperature heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only...

  4. A Total Cost of Ownership Model for Low Temperature PEM Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    applications in stationary fuel cell systems. The analysis considers low temperature proton exchange membrane systems for use in combined heat and power applications from 1 to...

  5. Sources of CO and UHC Emissions in Low-Temperature Diesel Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Premixed Late Injection HCLI, Homogeneous Charge Late Injection HPLI HCLI Injec ion Heat Release Heat Release Injection TDC Low-temperature combustion systems are attractive...

  6. anomalous low-temperature behavior: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Investigation on Reliability and Anomalous Degradation of Low Temperature Poly-Si Thin-Film Transistor. Open Access Theses and Dissertations Summary: ??In this thesis, we will...

  7. In-Cylinder Imaging of Conventional and Advanced, Low-Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    Cylinder Imaging of Conventional and Advanced, Low-Temperature Diesel Combustion Sponsor: USDOE Office of FreedomCAR and Vehicle Technologies Program Managers: Gurpreet Singh,...

  8. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    6 AEC001: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling This presentation does not contain any proprietary, confidential, or otherwise...

  9. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Broader source: Energy.gov (indexed) [DOE]

    2 AEC001: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling This presentation does not contain any proprietary, confidential, or otherwise...

  10. A note from Residential Life Students and their families tend to view the housing assignment as a significant part of the first-year

    E-Print Network [OSTI]

    Royer, Dana

    A note from Residential Life Students and their families tend to view the housing assignment as a significant part of the first-year experience. We have found that students' residential experiences depend residence hall. When parents help their sons and daughters begin their residential experience

  11. Colloquium: Physically based fluid modeling of collisionally dominated low-temperature plasmas

    SciTech Connect (OSTI)

    Robson, R.E.; White, R.D.; Petrovic, Z.Lj. [Research School of Physical Sciences and Engineering, Australian National University, Canberra 2600 (Australia); School of Mathematical and Physical Sciences, James Cook University, Townsville 4810 (Australia); Department of Experimental Physics, Institute of Physics, 11080 Zemun (Serbia and Montenegro)

    2005-10-15T23:59:59.000Z

    This colloquium examines the theoretical modeling of nonequilibrium low-temperature (tens of thousands of degrees) plasmas, which involves a juxtaposition of three distinct fields: atomic and molecular physics, for the input of scattering cross sections; statistical mechanics, for the kinetic modeling; and electromagnetic theory, for the simultaneous solution of Maxwell's equations. Cross sections come either from single-scattering beam experiments or, at very low energies (<0.5 eV), from multiple-scattering experiments on 'swarms' in gases--the free diffusion or large Debye length limit of a plasma, where they are embedded in transport coefficient data. The same Boltzmann kinetic theory that has been developed to a high level of sophistication over the past 50 years, specifically for the purpose of unfolding these transport data, can be employed for low-temperature plasmas with appropriate modification to allow for self-consistent rather than externally prescribed fields. A full kinetic treatment of low-temperature plasmas is, however, a daunting task and remains at the developmental level. Fortunately, since the accuracy requirements for modeling plasmas are generally much less stringent than for swarms, such a sophisticated phase-space treatment is not always necessary or desirable, and a computationally more efficient but correspondingly less accurate macroscopic theoretical model in configuration space at the fluid level is often considered sufficient. There has been a proliferation of such fluid modeling in recent times and this approach is now routinely used in the design and development of a large variety of plasma technologies, ranging from plasma display panels to plasma etching reactors for microelectronic device fabrication. However, many of these models have been developed empirically with specific applications in mind, and rigor and sophistication vary accordingly. In this colloquium, starting from the governing Boltzmann kinetic equation, a unified, general formulation of fluid equations is given for both ions and electrons in gaseous media with transparent and internally consistent approximations, all benchmarked against established results. Thereby a fluid model is obtained that is appropriate for practical application but at the same time is based on a firmer physical foundation.

  12. 7. Low temperature cracking in HMA Pavement Cracking Al-Qadi, Scarpas & Loizos (eds)

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    7. Low temperature cracking in HMA 367 #12;#12;Pavement Cracking ­ Al-Qadi, Scarpas & Loizos (eds, Storrs, Connecticut, USA ABSTRACT: Low temperature cracking remains one of the major pavement distresses in asphalt concrete pavements in cold regions. An integrated laboratory testing, field performance data

  13. 9 Ultra Low Temperature ADI 2 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    E-Print Network [OSTI]

    Cambridge, University of

    Contents 9 Ultra Low Temperature ADI 2 9.1 Introduction;Chapter 9 Ultra Low Temperature ADI 9.1 Introduction It has been indicated that a family of austempered]. These steels contain high carbon silicon and manganese, and they are isothermally heat treated at very low

  14. Heat capacity of adsorbed Helium-3 at ultra-low temperatures

    E-Print Network [OSTI]

    Boyer, Edmond

    Heat capacity of adsorbed Helium-3 at ultra-low temperatures J. Elbs, C. Winkelmann, Yu. M. Bunkov of monolayers of 3He adsorbed on the surface of a cell filled with superfluid 3He. We found that at ultra low in the limit of ultra low temperatures. 1. INTRODUCTION A closed cell with a small orifice, immersed

  15. A Single SQUID Multiplexer for Arrays of Low Temperature Sensors Jongsoo Yoona)

    E-Print Network [OSTI]

    Richards, Paul L.

    1 A Single SQUID Multiplexer for Arrays of Low Temperature Sensors Jongsoo Yoona) , John Clarkea and experimental evaluation of a superconducting quantum interference device (SQUID) mul- tiplexer for an array of low-temperature sensors. Each sensor is inductively coupled to a superconducting summing loop which

  16. Use of polypyrrole in catalysts for low temperature Xianxia Yuan,a

    E-Print Network [OSTI]

    . Broader context Low temperature fuel cells (LTFCs) are promising for future applications to transportation fuel cells, such as proton exchange membrane fuel cells (PEMFCs), direct methanol fuel cells (DMFCsUse of polypyrrole in catalysts for low temperature fuel cells Xianxia Yuan,a Xin-Long Ding,a Chao

  17. Low Temperature Transient Liquid Phase (LTTLP) Bonding for Au/Cu

    E-Print Network [OSTI]

    Eagar, Thomas W.

    of Technology, Cambridge, MA 02139 TheLow Temperature TransientLiquidPhase Diffusion Bonding (LTTLP) process has) ) M. M. Hou Low Temperature Transient Liquid Phase (LTTLP) Bonding for Au/Cu and Cu been bonded to copper heatsink.s at temperatures less than 160"C, using /n-Sn eutectic solders. After

  18. Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite

    E-Print Network [OSTI]

    Weiss, Benjamin P.

    Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite $ Benjamin P, Massachusetts Institute of Technology, Cambridge, MA 02139, USA c Jet Propulsion Laboratory, California two rock magnetic analyses--the low-temperature Moskowitz test and ferromagnetic resonance (FMR

  19. Enhanced High and Low Temperature Performance of NOx Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    - March 2009 * 3-Year Renewal Executed - March 2013 * Matched 5050 by Cummins as per CRADA agreement * DOE funding for FY12: 300K; Same expected for FY13 - 60K received...

  20. EVALUATION OF LOW TEMPERATURE ALUMINUM DISSOLUTION IN TANK 51

    SciTech Connect (OSTI)

    Pike, J

    2008-09-04T23:59:59.000Z

    Liquid Waste Organization (LWO) identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days, which became the baseline aluminum dissolution process. LWO initiated a project to modify a waste tank to meet these requirements. Subsequent to an alternative evaluation, LWO management identified an opportunity to perform aluminum dissolution on sludge destined for Sludge Batch 5, but within a limited window that would not allow time for any modifications for tank heating. A variation of the baseline process, dubbed Low Temperature Aluminum Dissolution (LTAD), was developed based on the constraint of available energy input in Tank 51 and the window of opportunity, but was not constrained to a minimum extent of dissolution, i.e. dissolve as much aluminum as possible within the time available. This process was intended to operate between 55 and 70 C, but for a significantly longer time than the baseline process. LTAD proceeded in parallel with the baseline project. The preliminary evaluation at the completion of LTAD focused on the material balance and extent of the aluminum dissolved. The range of values of extent of dissolution, 56% to 64%, resulted from the variation in liquid phase sample data available at the time. Additional solid phase data is available from a sample taken after LTAD to refine this range. This report provides additional detailed evaluation of the LTAD process based on analytical and field data and includes: a summary of the process chronology; a determination of an acceptable blending strategy for the aluminum-laden supernate stored in Tank 11; an update to the determination of aluminum dissolved using more complete sample results; a determination of the effect of LTAD on uranium, plutonium, and other metals; a determination of the rate of heat loss from a quiescent tank; and an evaluation of the aluminum dissolution rate model and actual dissolution rate. LTAD was successfully completed in Tank 51 with minimal waste tank changes. The following general conclusions may be drawn about the LTAD process: (1) Dissolution at about 60 C for 46 days dissolved 64% of the aluminum from the sludge slurry. (2) The aluminum-laden leach solution decanted to Tank 11 can be blended with a wide variety of supernates without risk of precipitating the dissolved aluminum based on thermodynamic chemical equilibrium models. (3) Uranium and plutonium leached into solution without corresponding leaching of iron or metal other than aluminum, but the total mass leached was a small fraction of the total uranium and plutonium in the sludge. (4) The concentration of uranium and plutonium in the leach solution was indistinguishable from other tank farm supernates, thus, the leach solutions can be managed relative to the risk of criticality like any other supernate. (5) A small amount of mercury leached into solution from the sludge causing the liquid phase concentration to increase 6 to 10 fold, which is consistent with the 4 to 14 fold increase observed during the 1982 aluminum dissolution demonstration. (6) Chromium did not dissolve during LTAD. (7) Chloride concentration increased in the liquid phase during LTAD due to chloride contamination in the 50% sodium hydroxide solution. (8) The rate of heat loss from Tank 51 at temperatures above 45 C appeared linear and predictable at 8E+7 cal/hr. (9) The rate of heat transfer from Tank 51 did not follow a simplified bulk heat transfer model. (10) Prediction of the aluminum dissolution rate was prone to error due to a lack of active specific surface area data of sludge particles. (11) The higher than expected dissolution rate during LTAD was likely due to smaller than expected particle sizes of most of the sludge particles. While evaluating the LTAD process, the dissolved salt solution from Tank 41 that was stored and sampled in Tank 49 was determined to be supersaturated relative to alu

  1. Low temperature S0 biomineralization at a supraglacial spring

    E-Print Network [OSTI]

    surface ice at Borup Fiord pass on Ellesmere Island, Canada, when high concentrations of aqueous H2S; Chela- Flores, 2006). H2S and elemental sulfur (S0 ) may have provided important energy sources the great oxidation event more than two billion years ago. H2S accumulation and persistence in euxinic deep

  2. Sediment chemistry profiles of capped dredged sediment deposits taken 3 to 11 years after capping. Technical note

    SciTech Connect (OSTI)

    Sumeri, A.; Fredette, T.J.; Kullberg, P.G.; Germano, J.D.; Carey, D.A.

    1994-05-01T23:59:59.000Z

    This technical note summarizes sediment chemistry profile results from coring studies of capped dredged sediment deposits. These studies document the long-term effectiveness of capping for isolating contaminated sediments from the aquatic environment and should serve to broaden the information base for making management decisions.

  3. Double shell slurry low-temperature corrosion tests

    SciTech Connect (OSTI)

    Divine, J.R.; Bowen, W.M.; McPartland, S.A.; Elmore, R.P.; Engel, D.W.

    1983-09-01T23:59:59.000Z

    A series of year-long tests have been completed on potential double shell slurry (DSS) compositions at temperatures up to 100/sup 0/C. These tests have sought data on uniform corrosion, pitting, and stress-corrosion cracking. No indication of the latter two types of corrosion were observed within the test matrix. Corrosion rates after four months were generally below the 1 mpy (25 ..mu..m/y) design limit. By the end of twelve months all results were below this limit and, except for very concentrated mixtures, all were below 0.5 mpy. Prediction equations were generated from a model fitted to the data. The equations provide a rapid means of estimating the corrosion rate for proposed DSS compositions.

  4. Full-circle Eulerian cradle for low temperature neutron investigations F. Elf, G. Will

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    are coated with low temperature resistant and flexible insulation. Special housings around the chi- and phi by two identical stepping motors. One motor step results in a rotation of 1.8°. Two worm gears provide

  5. Vehicle Technologies Office Merit Review 2015: Low-Temperature Gasoline Combustion (LTGC) Engine Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low-temperature...

  6. List of Participants 1. Igor ANDERS (Institute for Low Temperature Physics, Kharkov, UKRAINE),

    E-Print Network [OSTI]

    Popovych, Roman

    List of Participants 1. Igor ANDERS (Institute for Low Temperature Physics, Kharkov, UKRAINE), e Welding Institute of NAS of Ukraine, Kyiv, UKRAINE), e-mail: boris@consult.kiev.ua 24. Ivan FEDORCHUK

  7. Electrocatalytic activities of supported Pt nanoparticles for low-temperature fuel cell applications

    E-Print Network [OSTI]

    Sheng, Wenchao, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    Low-temperature fuel cells (FCs) are highly efficient and environmentally friendly energy conversion devices that have been in the spotlight of many energy research efforts in the past few decades. However, FC commercialization ...

  8. Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System 

    E-Print Network [OSTI]

    Wu, Z.; Li, D.

    2006-01-01T23:59:59.000Z

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more...

  9. Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System

    E-Print Network [OSTI]

    Wu, Z.; Li, D.

    2006-01-01T23:59:59.000Z

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more...

  10. THERMODYNAMICS OF LOW-TEMPERATURE (700-850oC) HOT CORROSION

    E-Print Network [OSTI]

    Misra, A.K.

    2013-01-01T23:59:59.000Z

    funded low power hot corrosion studies. NRL MemorandumLOW-TEMPERATURE {700-850°C) HOT CORROSION A.K. Misra, D.P.TEMPERATURE (700-850" C) HOT CORROSION A.K. Misra and D.P.

  11. Low Temperature Milling of the LiNH2 + LiH Hydrogen Storage System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hu, JH Kwak, and Z Yang.2009."Low Temperature Milling of the LiNH2 + LiH Hydrogen Storage System."International Journal of Hydrogen Energy 34(10):4331-4339. doi:10.1016...

  12. Instrumentation development for magneto-transport and neutron scattering measurements at high pressure and low temperature 

    E-Print Network [OSTI]

    Wang, Weiwei

    2013-07-01T23:59:59.000Z

    High pressure, high magnetic field and low temperature techniques are required to investigate magnetic transitions and quantum critical behaviour in different ferromagnetic materials to elucidate how novel forms of ...

  13. A Total Cost of Ownership Model for Low Temperature PEM Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LBNL-6772E A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications Max Wei, Timothy Lipman 1 , Ahmad Mayyas 1 ,...

  14. Low-Temperature Geothermal Water in Utah: A compilation of Data...

    Open Energy Info (EERE)

    Low-Temperature Geothermal Water in Utah: A compilation of Data for Thermal Wells and Springs Through 1993 Jump to: navigation, search OpenEI Reference LibraryAdd to library Web...

  15. Optical-Engine Study of a Low-Temperature Combustion Strategy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study of a Low-Temperature Combustion Strategy Employing a Dual-Row, Narrow-Included-Angle Nozzle and Early, Direct Injection of Diesel Fuel Optical-Engine Study of a...

  16. Low Temperature 65 Cu NMR Spectroscopy of the Cu+ Site in Azurin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature 65 Cu NMR Spectroscopy of the Cu+ Site in Azurin. Low Temperature 65 Cu NMR Spectroscopy of the Cu+ Site in Azurin. Abstract: Copper is a ubiquitous component of living...

  17. Low Temperature Oxidation of Fe2+ Surface Sites on the (2x1)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sites on the (2x1) Reconstructed Surface of ?-Fe2O3(01(1) over-bar2). Low Temperature Oxidation of Fe2+ Surface Sites on the (2x1) Reconstructed Surface of...

  18. Low Temperature Autoignition of C8H16O2 Ethyl and Methyl Esters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of fatty acid esters experience the typical paraffin-like low temperature oxidation sequence; the alkyl chain length of fatty acid esters has a crucial impact on the ignition...

  19. Low temperature processing of baroplastic core-shell nanoparticles and block copolymers

    E-Print Network [OSTI]

    González-León, Juan A. (Juan Antonio)

    2006-01-01T23:59:59.000Z

    Baroplastics are nanophase polymeric materials comprised of two components that can miscibilize under pressure thereby facilitating flow. The possibility of processing these materials at low temperatures was the main focus ...

  20. A Low Temperature Fully Lithographic Process For Metal–Oxide Field-Effect Transistors

    E-Print Network [OSTI]

    Sodini, Charles G.

    We report a low temperature ( ~ 100à °C) lithographic method for fabricating hybrid metal oxide/organic field-effect transistors (FETs) that combine a zinc-indium-oxide (ZIO) semiconductor channel and organic, parylene, ...

  1. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. ace01musculus.pdf More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review...

  2. Low temperature transport in p-doped InAs nanowires

    SciTech Connect (OSTI)

    Upadhyay, S.; Jespersen, T. S.; Madsen, M. H.; Krogstrup, P.; Nygård, J. [Center for Quantum Devices and Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark)] [Center for Quantum Devices and Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark)

    2013-10-14T23:59:59.000Z

    We present low temperature electrical measurements of p-type Indium Arsenide nanowires grown via molecular beam epitaxy using Beryllium as a dopant. Growth of p-type wires without stacking faults is demonstrated. Devices in field-effect geometries exhibit ambipolar behavior, and the temperature dependence of electron and hole field effect mobilities are extracted. At low temperatures, we observe reproducible conductance fluctuations as a result of quantum interference, and magnetoconductance data show weak antilocalization.

  3. An analysis of a reversed absorption heat pump for low temperature waste heat utilization

    E-Print Network [OSTI]

    Wade, Glenn William

    1979-01-01T23:59:59.000Z

    AN ANALYSIS OF A REVERSED ABSORPTION HEAT PUMP FOR LOW TEMPERATURE WASTE HEAT UTILIZATION A Thesis by GLENN WILLIAM WADE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE May 1979 Major Subject: Mechanical Engineering AN ANALYSIS OF A REVERSED ABSORPTION HEAT PUMP FOR LOW TEMPERATURE WASTE HEAT UTILIZATION A Thesis by GLENN WILLIAM WADE Approved as to style and content by: Chai n of Committee...

  4. Test plan for long-term, low-temperature oxidation of BWR spent fuel

    SciTech Connect (OSTI)

    Einziger, R.E.

    1988-12-01T23:59:59.000Z

    Preliminary studies indicated the need for more spent fuel oxidation data in order to determine the probable behavior of spent fuel in a tuff repository. Long-term, low-temperature testing was recommended in a comprehensive technical approach to (1) confirm the findings of the short-term thermogravimetric analysis tests; (2) evaluate the effects of variables such as burnup, atmospheric moisture,and fuel type on the oxidation rate; and (3) extend the oxidation data base to representative repository temperatures and better define the temperature dependence of the operative oxidation mechanisms. This document presents the test plan to study the effects of atmospheric moisture and temperature on oxidation rate and phase formation using a large number of boiling-water reactor fuel samples. Tests will run for up to two years, use characterized fragmented and pulverized fuel samples, cover a temperature range of 110{degree}C to 175{degree}C, and be conducted with an atmospheric moisture content ranging from <{minus}55{degree}C to {approximately}80{degree}C dew point. After testing, the samples will be examined and made available for leaching testing. 15 refs., 2 figs., 2 tabs.

  5. Immobilization of fission products in low-temperature ceramic waste forms

    SciTech Connect (OSTI)

    Singh, D.; Wagh, A.S.; Tlustochowicz, M.; Mandalika, V.

    1997-01-01T23:59:59.000Z

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically bonded phosphate ceramics (CBPCs) for use in solidifying and stabilizing low-level mixed wastes. The focus of this work is development of CBPCs for use with fission-product wastes generated from high-level waste (HLW) tank cleaning or other decontamination and decommissioning activities. The volatile fission products such as Tc, Cs, and Sr removed from HLW need to be disposed of in a low-temperature immobilization system. Specifically, this paper reports on the solidification and stabilization of separated {sup 99}Tc from Los Alamos National Laboratory`s complexation-elution process. Using rhenium as a surrogate form technetium, we fabricated CBPC waste forms by acid-base reactions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with 35 wt.% waste loading. Standard leaching tests such as ANS 16.1 and PCT were conducted on the final waste forms. In addition, stability of the waste forms in aqueous environments was evaluated by long-term water-immersion tests.

  6. Active and Passive Elec. Comp., September 2003, Vol. 26, pp. 151166 ULTRA-LOW TEMPERATURE COEFFICIENT OF

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    Active and Passive Elec. Comp., September 2003, Vol. 26, pp. 151­166 ULTRA-LOW TEMPERATURE that this material system possessed low dielectric constant and ultra-low temperature coefficient of capacitance (TCC

  7. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 27 Females 11 YEAR 2013 SES 1 EN 05 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 15 NU (TechAdmin Support) 2 YEAR 2013 American Indian Alaska Native Male...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2014 Males 48 Females 33 PAY PLAN YEAR 2014 SES 1 EJEK 8 EN 04 10 EN 03 1 NN (Engineering) 27 NQ (ProfTechAdmin) 29 NU (TechAdmin Support) 5 YEAR 2014 American Indian...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 10 PAY PLAN YEAR 2014 SES 1 EN 05 1 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 9 NU (TechAdmin Support) 1 YEAR 2014 American Indian Alaska...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 61 Females 24 PAY PLAN YEAR 2014 SES 1 EJEK 8 EN 04 22 NN (Engineering) 23 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 3 YEAR 2014 American Indian Alaska...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    0 YEAR 2013 Males 48 Females 32 YEAR 2013 SES 2 EJEK 7 EN 04 11 EN 03 1 NN (Engineering) 23 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2013 Males 20 Females 11 YEAR 2013 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2013 American Indian Alaska Native Male (AIAN,...

  14. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    SciTech Connect (OSTI)

    ?e?ovský, M., E-mail: scholtz@aldebaran.cz [Institute of Chemical Technology in Prague, Department of Food Preservation, Faculty of Food and Biochemical Technology (Czech Republic); Khun, J. [Institute of Chemical Technology in Prague, Department of Physics and Measurements, Faculty of Chemical Engineering (Czech Republic)] [Institute of Chemical Technology in Prague, Department of Physics and Measurements, Faculty of Chemical Engineering (Czech Republic); Rusová, K. [Institute of Chemical Technology in Prague, Department of Food Preservation, Faculty of Food and Biochemical Technology (Czech Republic)] [Institute of Chemical Technology in Prague, Department of Food Preservation, Faculty of Food and Biochemical Technology (Czech Republic); Scholtz, V. [Institute of Chemical Technology in Prague, Department of Physics and Measurements, Faculty of Chemical Engineering (Czech Republic)] [Institute of Chemical Technology in Prague, Department of Physics and Measurements, Faculty of Chemical Engineering (Czech Republic); Soušková, H. [Institute of Chemical Technology in Prague, Department of Computing and Control Engineering, Faculty of Chemical Engineering (Czech Republic)] [Institute of Chemical Technology in Prague, Department of Computing and Control Engineering, Faculty of Chemical Engineering (Czech Republic)

    2013-09-15T23:59:59.000Z

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperature plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.

  15. High-quality strain-relaxed SiGe films grown with low temperature Si buffer

    SciTech Connect (OSTI)

    Luo, Y. H.; Wan, J.; Forrest, R. L.; Liu, J. L.; Goorsky, M. S.; Wang, K. L.

    2001-06-15T23:59:59.000Z

    High-quality strain-relaxed SiGe templates with a low threading dislocation density and smooth surface are critical for device performance. In this work, SiGe films on low temperature Si buffer layers were grown by solid-source molecular beam epitaxy and characterized by atomic force microscope, double-axis x-ray diffraction, photoluminescence spectroscopy, and Raman spectroscopy. Effects of the growth temperature and the thickness of the low temperature Si buffer were studied. It was demonstrated that when using proper growth conditions for the low temperature Si buffer the Si buffer became tensily strained and gave rise to the compliant effect. The lattice mismatch between the SiGe and the Si buffer layer was reduced. A 500 nm Si{sub 0.7}Ge{sub 0.3} film with a low threading dislocation density as well as smooth surface was obtained by this method. {copyright} 2001 American Institute of Physics.

  16. The low temperature differential Stirling engine with working fluid operated on critical condition

    SciTech Connect (OSTI)

    Naso, V.; Dong, W.; Lucentini, M.; Capata, R.

    1998-07-01T23:59:59.000Z

    The research and development of low temperature differential Stirling engine has a great potential market since a lot of thermal energy at low temperature can supply it and the cost of this kind of engine is lower than general Stirling engine. The characteristics of low compression ratio and low differential temperature Stirling engine may be satisfied with working fluid compressed on critical conditions. By combining two phase heat transfer with forced convective flow in compression space and through the regenerator in the engine, a new heat transfer coefficient emerges capable of absorbing and releasing high heat fluxes without the corresponding low temperature increase. The current analysis focuses on the study of Stirling engines with working fluid compressed on critical conditions, thus at two-phase heat transfer in compression space and regenerator of the engine under forced convective flow conditions.

  17. Low-temperature catalytic gasification of wet industrial wastes. FY 1991--1992 interim report

    SciTech Connect (OSTI)

    Elliott, D.C.; Neuenschwander, G.G.; Hart, T.R.; Phelps, M.R.; Sealock, L.J. Jr.

    1993-07-01T23:59:59.000Z

    A catalytic gasification system operating in a pressurized water environment has been developed and refined at Pacific Northwest Laboratory (PNL) for over 12 years. Initial experiments were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. The combined use of alkali and metal catalysts was reported for gasification of biomass and its components at low temperatures (350{degrees}C to 450{degrees}C). From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous reactor system (CRS) testing were undertaken in the development of this system under sponsorship of the US Department of Energy. A wide range of biomass feedstocks were tested, and the importance of the nickel metal catalyst was identified. Specific use of this process for treating food processing wastes was also studied. The concept application was further expanded to encompass cleanup of hazardous wastewater streams, and results were reported for batch reactor tests and continuous reactor tests. Ongoing work at PNL focuses on refining the catalyst and scaling the system to long-term industrial needs. The process is licensed as the Thermochemical Environmental Energy System (TEES{reg_sign}) to Onsite*Ofsite, Inc., of Duarte, California. This report is a follow-on to the 1989--90 interim report [Elliott et al. 1991], which reviewed the results of the studies conducted with a fixed-bed, continuous-feed, tubular reactor. The discussion here provides an overview of experiments on the wide range of potential feedstock materials conducted in a batch reactor; development of new catalyst materials; and tests performed in continuous-flow reactors at three scales. The appendices contain the history and background of the process development, as well as more detailed descriptions and results of the recent studies.

  18. The nitrate to ammonia and ceramic (NAC) process -- a newly developed low-temperature technology

    SciTech Connect (OSTI)

    Mattus, A.J.; Lee, D.D.

    1993-06-01T23:59:59.000Z

    Bench-top feasibility studies with Hanford single-shell tank (SST) simulants, using a new low-temperature (50-60C) process for converting nitrate to ammonia and ceramic (NAC), showed that between 90 and 99% of the nitrate at Hanford can be readily converted to ammonia. Aluminum powders or shot can be used to convert alkaline, nitrate-based supernate to ammonia and an alumina-silica-based ceramic solid. The process may utilize already contaminated aluminum scrap metal from various DOE sites to effect the conversion. The final nitrate-free ceramic product can be calcined, pressed, and sintered like any other ceramic. Based on starting volumes of 6.2 and 3.1 M sodium nitrate solution (probable supernate concentrations resulting from salt-cake/sludge removal from Hanford SSTs), volume reductions as high as 70% are currently obtained, compared with an expected 40 to 50% volume increase if the Hanford supernate were grouted. Engineering data indicate that the process will be very economical. Data were used to cost a batch facility with a production rate of 1200 kilograms of nitrate per hour for processing all the Hanford SST waste over 20 years. Process cost analysis indicates that between $2.01 and 2.66 will be required to convert each kilogram of nitrate. These costs are one-third to one-half of the processing costs for electrolytic and thermal processes. The ceramic waste form offers other cost savings associated with a smaller volume of waste as well as eliminates other process steps such as grouting. Silica added to the reactor, based upon the total sodium in the waste, permits us to actually bind the sodium in a nepheline phase of the final ceramic structure as well as bind most metals and nonmetals in the ceramic.

  19. Temperature Correction to Casimir-Lifshitz Free Energy at Low Temperatures: Semiconductors

    E-Print Network [OSTI]

    Simen A. Ellingsen; Iver Brevik; Johan S. H\\oye; Kimball A. Milton

    2008-07-23T23:59:59.000Z

    The Casimir force and free energy at low temperatures has been the subject of focus for some time. We calculate the temperature correction to the Casimir-Lifshitz free energy between two parallel plates made of dielectric material possessing a constant conductivity at low temperatures, described through a Drude-type dielectric function. For the transverse magnetic (TM) mode such a calculation is new. A further calculation for the case of the TE mode is thereafter presented which extends and generalizes previous work for metals. A numerical study is undertaken to verify the correctness of the analytic results.

  20. Method for the rapid synthesis of large quantities of metal oxide nanowires at low temperatures

    DOE Patents [OSTI]

    Sunkara, Mahendra Kumar (Louisville, KY); Vaddiraju, Sreeram (Mountain View, CA); Mozetic, Miran (Ljubljan, SI); Cvelbar, Uros (Idrija, SI)

    2009-09-22T23:59:59.000Z

    A process for the rapid synthesis of metal oxide nanoparticles at low temperatures and methods which facilitate the fabrication of long metal oxide nanowires. The method is based on treatment of metals with oxygen plasma. Using oxygen plasma at low temperatures allows for rapid growth unlike other synthesis methods where nanomaterials take a long time to grow. Density of neutral oxygen atoms in plasma is a controlling factor for the yield of nanowires. The oxygen atom density window differs for different materials. By selecting the optimal oxygen atom density for various materials the yield can be maximized for nanowire synthesis of the metal.

  1. YEAR

    National Nuclear Security Administration (NNSA)

    2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL 1 EJEK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 44 NU (TechAdmin Support) 4 YEAR 2014 American Indian...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    25 Females 10 YEAR 2014 SES 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 13 NU (TechAdmin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2014 Males 59 Females 24 PAY PLAN YEAR 2014 SES 1 EJEK 4 EN 05 3 EN 04 22 EN 03 8 NN (Engineering) 15 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 3 YEAR 2014 American...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 62 Females 26 YEAR 2013 SES 1 EJEK 3 EN 05 1 EN 04 28 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 2 YEAR 2013 American Indian...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2013 Males 58 Females 27 YEAR 2013 SES 1 EJEK 4 EN 05 3 EN 04 21 EN 03 8 NN (Engineering) 16 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  6. Semi-insulating crystalline silicon formed by oxygen doping during low-temperature chemical vapor deposition

    E-Print Network [OSTI]

    Semi-insulating crystalline silicon formed by oxygen doping during low-temperature chemical vapor) In this letter we demonstrate the use of oxygen as a dopant in silicon to create semi-insulating, crystalline of the films exhibit classical characteristics of space-charge-limited current associated with insulators

  7. Membranes produced by PECVD technique for low temperature fuel cell applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Membranes produced by PECVD technique for low temperature fuel cell applications Aboubakr to manufacture by plasma processes all active layers of fuel cells cores to be integrated in original compact stability; Transport properties. 1. Introduction Micro fuel cells have received considerable attention over

  8. Acoustic propagation in an epoxy resin at very low temperatures P. Doussineau and W. Schn

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    thermal conductivity varies as T2. Their acoustic behaviour is also quite characteristic : the velocity to the presence of conduction elec- trons [2]. Most of the low temperatures properties of semiconducting glasses experiments in PMMA and polycarbonate (PQ have revealed a linear beha- viour of the attenuation of 18 GHz

  9. LOW TEMPERATURE PHYSICS The effect of neutron and gamma radiation on

    E-Print Network [OSTI]

    McDonald, Kirk

    PHYSICS Outlook · Radiation environment in a fission reactor ­ Neutron and - spectrum · Damage production, iterlaminar shear strength, fatigue behavior ­ Gas evolution · Conclusions #12;LOW TEMPERATURE PHYSICS Fission to displace one atom: (epithermal and fast neutrons) Bp EE > ~4 eV C-H ~few eV in metals ~5-40 eV in ionic

  10. Gate-modulated thermoelectric conversion in disordered nanowires: I. Low temperature coherent regime

    E-Print Network [OSTI]

    Recanati, Catherine

    Gate-modulated thermoelectric conversion in disordered nanowires: I. Low temperature coherent as promising thermoelectric devices1 . In comparison to their bulk counterparts, they provide opportunities of thermoelectric conversion at a given temperature T . Indeed, they allow to reduce the phonon contribution ph

  11. Enhanced High- and Low-Temperature Performance of NOx Reduction Catalyst Materials

    SciTech Connect (OSTI)

    Gao, Feng; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Luo, Jinyong; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai-Ying; Hess, Howard ..

    2014-12-09T23:59:59.000Z

    In this annual CRADA program report, we will briefly highlight results from our recent studies of the stability of candidate K-based high temperature NSR materials, and comparative studies of low temperature performance of SSZ-13 and SAPO-34 CHA catalysts; in particular, recent results comparing Fe- and Cu-based CHA materials.

  12. SmNd disequilibrium in high-pressure, low-temperature Himalayan and Alpine rocks

    E-Print Network [OSTI]

    Nicolas, Chamot-Rooke

    disequilibrium in high-pressure, low-temperature rocks, Sm­Nd isotopic analyses were carried out on minerals from contamination processes. In the case of a magmatic protolith, contamination can be achieved through crustal sedimentary protolith contains components from an old contaminant crust. In the Himalayan samples, the inverse

  13. Low-Temperature Phase Transformation from Graphite to sp3 Orthorhombic Carbon

    E-Print Network [OSTI]

    Wang, Wei Hua

    Low-Temperature Phase Transformation from Graphite to sp3 Orthorhombic Carbon Jian-Tao Wang,1, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2 Department of Physics and High February 2011) We identify by ab initio calculations an orthorhombic carbon polymorph in Pnma symmetry

  14. THE DEVELOPMENT OF LOW TEMPERATURE TECHNOLOGY AT STANFORD AND ITS RELEVANCE TO HIGH ENERGY PHYSICS"

    E-Print Network [OSTI]

    Ohta, Shigemi

    % and to indicate their relevance to several applications in high energy physics. 11. TECHNOLOGICAL INNOVATIONS 1I I I I I - . THE DEVELOPMENT OF LOW TEMPERATURE TECHNOLOGY AT STANFORD AND ITS RELEVANCE TO HIGH ENERGY PHYSICS" H. Alan Schwettmant Stanford University Stanford, California Department of Physics

  15. Geosynthetics International, 2004, 11, No. 6 Low-temperature air channel testing of thermally

    E-Print Network [OSTI]

    assurance, Quality control, Thermal welding, Peel strength, Burst pressure, Low temperature REFERENCE: Stark that fully automated thermal welding systems can weld PVC geomembranes as thin as 0.5 mm at temperatures temperature. Depending upon the manufacturer of the welder, PVC welding temperatures vary from 315 to 4808C

  16. Low temperature chemical vapor deposition of Co thin films from Co2(CO)8

    E-Print Network [OSTI]

    Wang, Gwo-Ching

    Low temperature chemical vapor deposition of Co thin films from Co2(CO)8 D.-X. Yea,*, S. Pimanpanga chemical vapor deposition with a metallorganic Co2(CO)8 precursor. After Ar sputtering of the surface, Co2(CO)8, has been extensively used in cobalt CVD and is attractive, since Co is in its elemental

  17. Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation

    E-Print Network [OSTI]

    Sanders, Seth

    Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB - Electrical Engineering and Computer Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA

  18. Controlled Low-Temperature Molecular Manipulation of Sexiphenyl Molecules on Ag(111) Using Scanning Tunneling Microscopy

    E-Print Network [OSTI]

    Hla, Saw-Wai

    Controlled Low-Temperature Molecular Manipulation of Sexiphenyl Molecules on Ag(111) Using Scanning; published 11 November 2004) A novel scanning tunneling microscope manipulation scheme for a controlled displaced during imag- ing and often dragged with the STM tip [17]. Atomically controlled manipulation

  19. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    SciTech Connect (OSTI)

    Hays, Lance G

    2014-07-07T23:59:59.000Z

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  20. Independent Activation of Cold Acclimation by Low Temperature and Short Photoperiod in Hybrid Aspen1

    E-Print Network [OSTI]

    Palva, Tapio

    Independent Activation of Cold Acclimation by Low Temperature and Short Photoperiod in Hybrid Aspen hybrid aspen (Populus tremula Populus tremuloides Michx.) line 22 overexpressing the oat (Avena sativaA in daylength sensing of woody plants. Overexpression of oat (Avena sativa) phyA gene (PHYA) in hybrid aspen

  1. High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields

    E-Print Network [OSTI]

    Weiss, Benjamin P.

    -temperature superconducting niobium wire coupled to the input circuit of a superconducting quantum interference device SQUID-stated advantages of high-temperature superconductivity HTS over the more advanced low- temperature superconductivity LTS is that the higher oper- ating temperature, typically around 77 K, allows HTS SQUIDs

  2. Simulation of low temperature anaerobic digestion of dairy and swine manure q

    E-Print Network [OSTI]

    the primary biogas component at approximately 10°C. Thus, digestion Bioresource Technology 78 (2001) 127±131 qSimulation of low temperature anaerobic digestion of dairy and swine manure q D.T. Hill *, S performance data from digesters using animal waste in this temperature range have been lacking, thus allowing

  3. Mechanical Study of Copper Bonded at Low Temperature using Spark Plasma Sintering Process

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    is approximatively 6.47 MPa [7]. J. W. Elmer & al [8] have presented a diffusion bonding of high purity copper using a conventional furnace. A series of diffusion bonds was done to determine the relationship between bond strengthMechanical Study of Copper Bonded at Low Temperature using Spark Plasma Sintering Process Bassem

  4. High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model

    E-Print Network [OSTI]

    Adler, Joan

    High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model Zaher Abstract We have analysed low and high temperature series expansions for the three­dimensional Ising model on the simple cubic lattice. Our analysis of Butera and Comi's new 32 term high temperature series yields K c

  5. High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model

    E-Print Network [OSTI]

    Adler, Joan

    High and Low Temperature Series Estimates for the Critical Temperature Abstract We have analysed low and high temperature series expansions for the three high temperature series yields Kc = 0.221659 +0.000002-0.000005and from the 32 term low

  6. Magnetic field profiling for low temperature H~ confinement J. B. Robert and L. Wiesenfeld (*)

    E-Print Network [OSTI]

    Boyer, Edmond

    281 Magnetic field profiling for low temperature H~ confinement J. B. Robert and L. Wiesenfeld to perform a magnetic compression of polarized hydrogen are presented. This system would allow to approach on spin- polarized hydrogen (HJJ at Grenoble, which would make use of larger refrigeration capacities

  7. Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer-Tropsch Synthesis

    E-Print Network [OSTI]

    Li, Weixue

    Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer-Tropsch Synthesis, United States *S Supporting Information ABSTRACT: Fischer-Tropsch synthesis (FTS) is an important Fischer-Tropsch synthesis (FTS), which converts fossil fuel- based syngas to liquid fuel products over Ru

  8. Seebeck Enhancement Through Miniband Conduction in IIIV Semiconductor Superlattices at Low Temperatures

    E-Print Network [OSTI]

    increase the asymmetry between hot and cold electron transport, in favor of hot electrons, increasing­V semiconductor superlattices can be significantly enhanced through miniband transport at low temperatures. Boltzmann transport in the relaxa- tion-time approximation is used to calculate the thermoelectric transport

  9. Low temperature oxidation of benzene and toluene in mixture with ndecane

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Low temperature oxidation of benzene and toluene in mixture with ndecane Olivier Herbinet Abstract The oxidation of two blends, benzene/ndecane and toluene/ndecane, was studied in a jetstirred of benzene, only phenol could be quantified. In the case of toluene, significant amounts

  10. Progress in Understanding Low-Temperature Organic Compound Oxidation Using a Jet-Stirred Reactor

    E-Print Network [OSTI]

    1 Progress in Understanding Low-Temperature Organic Compound Oxidation Using a Jet-Stirred Reactor Lorraine, CNRS, ENSIC, BP 20451, 1 rue Grandville, 54000 Nancy, France Abstract The jet-stirred reactor compounds: rapid compression machines, shock tubes, and heated continuous flow reactors, such as flow tubes

  11. New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries

    SciTech Connect (OSTI)

    Yang, Xiao-Qing

    2008-08-31T23:59:59.000Z

    In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40°C to -40°C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 °C. Also, there was no lithium plating when the lithium­-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

  12. YEAR

    National Nuclear Security Administration (NNSA)

    8 Females 25 PAY PLAN YEAR 2014 SES 1 EJEK 3 EN 05 1 EN 04 25 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 25 NU (TechAdmin Support) 2 YEAR 2014 American Indian Alaska Native...

  13. Wetting of Sodium on ??-Al2O3/YSZ Composites for Low Temperature Planar Sodium-Metal Halide Batteries

    SciTech Connect (OSTI)

    Reed, David M.; Coffey, Greg W.; Mast, Eric S.; Canfield, Nathan L.; Mansurov, Jirgal; Lu, Xiaochuan; Sprenkle, Vincent L.

    2013-04-01T23:59:59.000Z

    Wetting of Na on B”-Al2O3/YSZ composites was investigated using the sessile drop technique. The effects of moisture and surface preparation were studied at low temperatures. Electrical conductivity of Na/B”-Al2O3-YSZ/Na cells was also investigated at low temperatures and correlated to the wetting behavior. The use of planar B”-Al2O3 substrates at low temperature with low cost polymeric seals is realized due to improved wetting at low temperature and conductivity values consistent with the literature.

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR4 YEAR

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR4 YEAR7

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR43 YEAR

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 20144 YEAR

  18. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR 2013

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR 20138

  20. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR 201387

  1. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR

  2. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR558

  3. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR558563

  4. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR85573380 YEAR

  5. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

  6. The yield of Amorphous Solids Under Stress Control at Low Temperatures

    E-Print Network [OSTI]

    Valery Ilyin; Itamar Procaccia; Carmel Shor; Murari Singh

    2015-04-21T23:59:59.000Z

    The yield of amorphous solids like metallic glasses under external stress was discussed asserting that it is related to the glass transition by increasing temperature, or that it can be understood using statistical theories of various sorts. Here we study the approach to stress-controlled yield and argue that neither assertions can be supported, at least at low temperatures. The yield of amorphous solids at low temperatures is a highly structured phenomenon, characterized by a specific series of mechanical instabilities, and having no similarity at all to fluidization by increased temperature, real or fictive. The series of instabilities followed by stress controlled yield at low but finite temperature protocols can be predicted by analyzing athermal quasi-static strain controlled protocols, making the latter highly relevant for the deep understanding of the mechanical properties of amorphous solids.

  7. Direct and sequential radiative three-body reaction rates at low temperatures

    E-Print Network [OSTI]

    E. Garrido; R. de Diego; D. V. Fedorov; A. S. Jensen

    2011-08-24T23:59:59.000Z

    We investigate the low-temperature reaction rates for radiative capture processes of three particles. We compare direct and sequential capture mechanisms and rates using realistic phenomenological parametrizations of the corresponding photodissociation cross sections.Energy conservation prohibits sequential capture for energies smaller than that of the intermediate two-body structure. A finite width or a finite temperature allows this capture mechanism. We study generic effects of positions and widths of two- and three-body resonances for very low temperatures. We focus on nuclear reactions relevant for astrophysics, and we illustrate with realistic estimates for the $\\alpha$-$\\alpha$-$\\alpha$ and $\\alpha$-$\\alpha$-$n$ radiative capture processes. The direct capture mechanism leads to reaction rates which for temperatures smaller than 0.1 GK can be several orders of magnitude larger than those of the NACRE compilation.

  8. Computer simulations of the restricted primitive model at very low temperature and density

    E-Print Network [OSTI]

    Chantal Valeriani; Philip J. Camp; Jos W. Zwanikken; René van Roij; Marjolein Dijkstra

    2010-01-13T23:59:59.000Z

    The problem of successfully simulating ionic fluids at low temperature and low density states is well known in the simulation literature: using conventional methods, the system is not able to equilibrate rapidly due to the presence of strongly associated cation-anion pairs. In this manuscript we present a numerical method for speeding up computer simulations of the restricted primitive model (RPM) at low temperatures (around the critical temperature) and at very low densities (down to $10^{-10}\\sigma^{-3}$, where $\\sigma$ is the ion diameter). Experimentally, this regime corresponds to typical concentrations of electrolytes in nonaqueous solvents. As far as we are aware, this is the first time that the RPM has been equilibrated at such extremely low concentrations. More generally, this method could be used to equilibrate other systems that form aggregates at low concentrations.

  9. Anomalous Fiber Optic Gyroscope Signals Observed above Spinning Rings at Low Temperature

    E-Print Network [OSTI]

    M. Tajmar; F. Plesescu; B. Seifert

    2008-06-25T23:59:59.000Z

    Precision fiber optic gyroscopes were mounted mechanically de-coupled above spinning rings inside a cryostat. Below a critical temperature (typically <30 K), the gyroscopes measure a significant deviation from their usual offset due to Earth's rotation. This deviation is proportional to the applied angular ring velocity with maximum signals towards lower temperatures. The anomalous gyroscope signal is about 8 orders of magnitude smaller then the applied angular ring velocity, compensating about one third of the Earth rotation offset at an angular top speed of 420 rad/s. Moreover, our data shows a parity violation as the effect appears to be dominant for rotation against the Earth's spin. No systematic effect was found to explain this effect including the magnetic environment, vibration and helium gas friction suggesting that our observation is a new low temperature phenomenon. Tests in various configurations suggest that the rotating low temperature helium may be the source of our anomalous signals.

  10. Near-field resonance shifts of ferroelectric barium titanate domains upon low-temperature phase transition

    SciTech Connect (OSTI)

    Döring, Jonathan; Ribbeck, Hans-Georg von; Kehr, Susanne C.; Eng, Lukas M. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, D-01069 Dresden (Germany); Fehrenbacher, Markus [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden (Germany)

    2014-08-04T23:59:59.000Z

    Scattering scanning near-field optical microscopy (s-SNOM) has been established as an excellent tool to probe domains in ferroelectric crystals at room temperature. Here, we apply the s-SNOM possibilities to quantify low-temperature phase transitions in barium titanate single crystals by both temperature-dependent resonance spectroscopy and domain distribution imaging. The orthorhombic-to-tetragonal structural phase transition at 263?K manifests in a change of the spatial arrangement of ferroelectric domains as probed with a tunable free-electron laser. More intriguingly, the domain distribution unravels non-favored domain configurations upon sample recovery to room temperature as explainable by increased sample disorder. Ferroelectric domains and topographic influences are clearly deconvolved even at low temperatures, since complementing our s-SNOM nano-spectroscopy with piezoresponse force microscopy and topographic imaging using one and the same atomic force microscope and tip.

  11. Theoretical study of reactions of HO{sub 2} in low-temperature oxidation of benzene

    SciTech Connect (OSTI)

    Altarawneh, Mohammednoor [Chemical Engineering Department, Al-Hussein Bin Talal University, Ma'an (Jordan); Dlugogorski, Bogdan Z.; Kennedy, Eric M.; Mackie, John C. [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2010-07-15T23:59:59.000Z

    We have generated a set of thermodynamic and kinetic parameters for the reactions involving HO{sub 2} in the very early stages of benzene oxidation at low temperatures using density functional theory (DFT). In particular, we report the rate constants for the reactions of HO{sub 2} with benzene and phenyl. The calculated reaction rate constant for the abstraction of H-C{sub 6}H{sub 5} by HO{sub 2} is found to be in good agreement with the limited experimental values. HO{sub 2} addition to benzene is found to be more important than direct abstraction. We show that the reactions of HO{sub 2} with the phenyl radical generate the propagating radical OH in a highly exoergic reaction. The results presented herein should be useful in modeling the oxidation of aromatic compounds at low temperatures. (author)

  12. Selective low-temperature mass transport in InGaAsP/InP lasers

    SciTech Connect (OSTI)

    Hasson, A.; Chiu, L.C.; Chen, T.R.; Koren, U.; Rav-Noy, Z.; Yu, K.L.; Margalit, S.; Yariv, A.

    1983-09-01T23:59:59.000Z

    A low-temperature mass transport process in InP was investigated. Mass transport of InP was achieved at 570--600 /sup 0/C in a closed ampoule using iodine or InI as a catalytic transporting agent. Accomplishing the mass transport process at lower temperature has eliminated the problem of thermal etching and resulted in lasers with higher T/sub 0/.

  13. A Detailed Chemical Kinetic Analysis of Low Temperature Non-Sooting Diesel Combustion

    SciTech Connect (OSTI)

    Aceves, S M; Flowers, D L

    2004-10-01T23:59:59.000Z

    We have developed a model of the diesel fuel injection process for application to analysis of low temperature non-sooting combustion. The model uses a simplified mixing correlation and detailed chemical kinetics, and analyzes a parcel of fuel as it moves along the fuel jet, from injection into evaporation and ignition. The model predicts chemical composition and soot precursors, and is applied at conditions that result in low temperature non-sooting combustion. Production of soot precursors is the first step toward production of soot, and modeling precursor production is expected to give insight into the overall evolution of soot inside the engine. The results of the analysis show that the model has been successful in describing many of the observed characteristics of low temperature combustion. The model predicts results that are qualitatively similar to those obtained for soot formation experiments at conditions in which the EGR rate is increased from zero to very high values as the fueling rate is kept constant. The model also describes the two paths to achieve non-sooting combustion. The first is smokeless rich combustion and the second is modulated kinetics (MK). The importance of the temperature after ignition and the equivalence ratio at the time of ignition is demonstrated, as these parameters can be used to collapse onto a single line all the results for soot precursors for multiple fueling rates. A parametric analysis indicates that precursor formation increases considerably as the gas temperature in the combustion chamber and the characteristic mixing time are increased. The model provides a chemical kinetic description of low temperature diesel combustion that improves the understanding of this clean and efficient regime of operation.

  14. The Organic Rankine Cycle System, Its Application to Extract Energy From Low Temperature Waste Heat

    E-Print Network [OSTI]

    Sawyer, R. H.; Ichikawa, S.

    1980-01-01T23:59:59.000Z

    in a Rankine Cycle to extract The theoretical Rankine Cycle efficiency (~R) is energy from low temperature waste heat. By 1968, a defined as: 3.8 megawatt unit using R-11 refrigerant was placed in commercial operation in Japan (2) and currently ?ZR.... Figure 2 compares the theo The basic Organic Rankine Cycle may be described retical Rankine efficiency for several hydrocarbons, using the Pressure-Enthalpy Diagram of a typical fluorocarbons and water within the evaporating working fluid (R-11). (See...

  15. A chemical approach toward low temperature alloying of immiscible iron and molybdenum metals

    SciTech Connect (OSTI)

    Nazir, Rabia [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Applied Chemistry Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore 54600 (Pakistan); Ahmed, Sohail [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mazhar, Muhammad, E-mail: mazhar42pk@yahoo.com [Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Akhtar, Muhammad Javed; Siddique, Muhammad [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Khan, Nawazish Ali [Material Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Shah, Muhammad Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Nadeem, Muhammad [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2013-11-15T23:59:59.000Z

    Graphical abstract: - Highlights: • Low temperature pyrolysis of [Fe(bipy){sub 3}]Cl{sub 2} and [Mo(bipy)Cl{sub 4}] homogeneous powder. • Easy low temperature alloying of immiscible metals like Fe and Mo. • Uniform sized Fe–Mo nanoalloy with particle size of 48–68 nm. • Characterization by EDXRF, AFM, XRPD, magnetometery, {sup 57}Fe Mössbauer and impedance. • Alloy behaves as almost superparamagnetic obeying simple –R(CPE)– circuit. - Abstract: The present research is based on a low temperature operated feasible method for the synthesis of immiscible iron and molybdenum metals’ nanoalloy for technological applications. The nanoalloy has been synthesized by pyrolysis of homogeneous powder precipitated, from a common solvent, of the two complexes, trisbipyridineiron(II)chloride, [Fe(bipy){sub 3}]Cl{sub 2}, and bipyridinemolybedenum(IV) chloride, [Mo(bipy)Cl{sub 4}], followed by heating at 500 °C in an inert atmosphere of flowing argon gas. The resulting nanoalloy has been characterized by using EDXRF, AFM, XRD, magnetometery, {sup 57}Fe Mössbauer and impedance spectroscopies. These results showed that under provided experimental conditions iron and molybdenum metals, with known miscibility barrier, alloy together to give (1:1) single phase material having particle size in the range of 48–66 nm. The magnetism of iron is considerably reduced after alloy formation and shows its trend toward superparamagnetism. The designed chemical synthetic procedure is equally feasible for the fabrication of other immiscible metals.

  16. Geothermal low-temperature reservoir assessment in Dona Ana County, New Mexico. Final report

    SciTech Connect (OSTI)

    Icerman, L.; Lohse, R.L.

    1983-04-01T23:59:59.000Z

    Sixty-four shallow temperature gradient holes were drilled on the Mesilla Valley East Mesa (east of Interstate Highways 10 and 25), stretching from US Highway 70 north of Las Cruces to NM Highway 404 adjacent to Anthony, New Mexico. Using these data as part of the site selection process, Chaffee Geothermal, Ltd. of Denver, Colorado, drilled two low-temperature geothermal production wells to the immediate north and south of Tortugas Mountain and encountered a significant low-temperature reservoir, with a temperature of about 150{sup 0}F and flow rates of 750 to 1500 gallons per minute at depths from 650 to 1250 feet. These joint exploration activities resulted in the discovery and confirmation of a 30-square-mile low-temperature geothermal anomaly just a few miles to the east of Las Cruces that has been newly named as the Las Cruces east Mesa Geothermal Field. Elevated temperature and heat flow data suggest that the thermal anomaly is fault controlled and extends southward to the Texas border covering a 100-square-mile area. With the exception of some localized perturbations, the anomaly appears to decrease in temperature from the north to the south. Deeper drilling is required in the southern part of the anomaly to confirm the existence of commercially-exploitable geothermal waters.

  17. Chemical reactions studied at ultra-low temperature in liquid helium clusters

    SciTech Connect (OSTI)

    Huisken, Friedrich; Krasnokutski, Serge A. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the University of Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany)

    2012-11-27T23:59:59.000Z

    Low-temperature reaction rates are important ingredients for astrophysical reaction networks modeling the formation of interstellar matter in molecular clouds. Unfortunately, such data is difficult to obtain by experimental means. In an attempt to study low-temperature reactions of astrophysical interest, we have investigated relevant reactions at ultralow temperature in liquid helium droplets. Being prepared by supersonic expansion of helium gas at high pressure through a nozzle into a vacuum, large helium clusters in the form of liquid droplets constitute nano-sized reaction vessels for the study of chemical reactions at ultra-low temperature. If the normal isotope {sup 4}He is used, the helium droplets are superfluid and characterized by a constant temperature of 0.37 K. Here we present results obtained for Mg, Al, and Si reacting with O{sub 2}. Mass spectrometry was employed to characterize the reaction products. As it may be difficult to distinguish between reactions occurring in the helium droplets before they are ionized and ion-molecule reactions taking place after the ionization, additional techniques were applied to ensure that the reactions actually occurred in the helium droplets. This information was provided by measuring the chemiluminescence light emitted by the products, the evaporation of helium atoms by the release of the reaction heat, or by laser-spectroscopic identification of the reactants and products.

  18. Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Temperature Radiant Heating Systems Milorad Boji1*, Dragan Cvetkovi1 , Jasmina Skerli1 , Danijela Nikoli1., University of Réunion Island, France * Corresponding email: bojic@kg.ac.rs Keywords: Low temperature heating, wall heating, floor heating, ceiling heating, EnergyPlus SUMMARY Low temperature heating panel systems

  19. On the detection of higher order carbon sulfides (CSx; x = 46) in low temperature carbon disulfide ices

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    been exploited to trap and to produce carbon sulfur clusters. Pyro- lysis and ultra violet (UVOn the detection of higher order carbon sulfides (CSx; x = 4­6) in low temperature carbon disulfide (CS6, C2) ­ were detected for the first time via infrared spectroscopy in low temperature car- bon

  20. Low-Temperature Biodiesel Research Reveals Potential Key to Successful Blend Performance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being widely adopted. Some biodiesel blends have exhibited unexplained low-temperature performance problems even at blend levels as low as 2% by volume. The most common low-temperature performance issue is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. Research at the National Renewable Energy Laboratory (NREL) reveals the properties responsible for these problems, clearing a path for the development of solutions and expanded use of energy-conserving and low-emissions alternative fuel. NREL researchers set out to study the unpredictable nature of biodiesel crystallization, the condition that impedes the flow of fuel in cold weather. Their research revealed for the first time that saturated monoglyceride impurities common to the biodiesel manufacturing process create crystals that can cause fuel filter clogging and other problems when cooling at slow rates. Biodiesel low-temperature operational problems are commonly referred to as 'precipitates above the cloud point (CP).' NREL's Advanced Biofuels team spiked distilled soy and animal fat-derived B100, as well as B20, B10, and B5 biodiesel blends with three saturated monoglycerides (SMGs) at concentration levels comparable to those of real-world fuels. Above a threshold or eutectic concentration, the SMGs (monomyristin, monopalmitin, and monostearin) were shown to significantly raise the biodiesel CP, and had an even greater impact on the final melting temperature. Researchers discovered that upon cooling, monoglyceride initially precipitates as a metastable crystal, but it transforms over time or upon slight heating into a more stable crystal with a much lower solubility and higher melting temperature - and with increased potential to cause vehicle performance issues. This explains why fuel-filter clogging typically occurs over the course of long, repeated diurnal cooling cycles. The elevated final melting points mean that restarting vehicles with clogged filters can be difficult even after ambient temperatures have warmed to well above CP. By examining how biodiesel impurities affect filtration and crystallization during warming and cooling cycles, NREL researchers uncovered an explanation for poor biodiesel performance at low temperatures. The observation of a eutectic point, or a concentration below which SMGs have no effect, indicates that SMGs do not have to be completely removed from biodiesel to solve low-temperature performance problems.

  1. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A794826 YEAR

  2. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR 2014

  3. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR 201434

  4. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR

  5. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR4

  6. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR43

  7. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR434

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR43417

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR434170

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR 2012

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR

  12. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR42

  13. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR424

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR4247

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR42478

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861 YEAR

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861 YEAR40

  18. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861 YEAR4096

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486111 YEAR

  20. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486111 YEAR17

  1. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008748611196 YEAR

  2. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 2014 Males

  3. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 2014 Males16

  4. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 2014

  5. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 20144

  6. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 20144707

  7. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 201447072540

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 563

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 56378

  12. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 5637831

  13. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 56378318

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 28

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 280

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 2801

  18. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 280192

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733

  20. Year

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor444 U.S.Working and.

  1. Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs

    SciTech Connect (OSTI)

    Globisch, B., E-mail: Bjoern.Globisch@hhi.fraunhofer.de; Dietz, R. J. B.; Stanze, D.; Göbel, T.; Schell, M. [Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, Einsteinufer 37, 10587 Berlin (Germany)

    2014-04-28T23:59:59.000Z

    The electron and hole dynamics in low-temperature-grown InGaAs/InAlAs multiple quantum well structures are studied by optical pump-probe transmission measurements for Beryllium (Be) doping levels between 3?×?10{sup 17}?cm{sup ?3} and 4?×?10{sup 18}?cm{sup ?3}. We investigate electron dynamics in the limit cases of unsaturated and completely saturated electron trapping. By expanding a rate equation model in these limits, the details of carrier dynamics are revealed. Electrons are trapped by ionized arsenic antisites, whereas recombination occurs between trapped electrons and holes trapped by negatively charged Be dopants.

  2. An examination of the feasibility of a very low temperature nuclear reactor

    E-Print Network [OSTI]

    Dupree, Stephen Allen

    1965-01-01T23:59:59.000Z

    Texas A8cM University 42 46 57 59 6l LIST OF TABLES Number Title Page Three-group Constants for the Proposed Low Temperature Reactor 21 Comparison of Temperature Variation of Factors in the Critical Equation at T = 10 K, Nu = 10 T, eT = 10...~ and the cr1tical radius and mass were found. The temperature coefficient of reactivity was then approx- imated from the critical equation. Three-group time independent diffusion theory is a modified Pl approximation to the Boitzmann transport equation. (8...

  3. Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor

    DOE Patents [OSTI]

    Mahajan, Devinder

    2005-07-26T23:59:59.000Z

    The invention provides a homogenous catalyst for the production of methanol from purified synthesis gas at low temperature and low pressure which includes a transition metal capable of forming transition metal complexes with coordinating ligands and an alkoxide, the catalyst dissolved in a methanol solvent system, provided the transition metal complex is not transition metal carbonyl. The coordinating ligands can be selected from the group consisting of N-donor ligands, P-donor ligands, O-donor ligands, C-donor ligands, halogens and mixtures thereof.

  4. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ciovati, Gianluigi; Baldwin, Charles; Cheng, Guangfeng; Flood, Roger; Jordan, Kevin; Kneisel, Peter; Morrone, Michael; Nemes, George; Turlington, Larry; Wang, Haipeng; Wilson, Katherine

    2012-03-16T23:59:59.000Z

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

  5. Vacancy formation and strain in low-temperature Cu/Cu(100) growth

    SciTech Connect (OSTI)

    Voter, Arthur F [Los Alamos National Laboratory; Uberuaga, Blas P [Los Alamos National Laboratory; Shim, Yunsic [UNIV. OF TOLEDO; Borovikov, Valery [UNIV. OF TOLEDO

    2008-01-01T23:59:59.000Z

    The development of compressive strain in metal thin films grown at low temperature has recently been revealed via X-ray diffraction and explained by the assumption that a large number of vacancies were incorporated into the growing films. The results of the molecular dynamics and parallel temperature-accelerated dynamics simulations suggest that the key factor responsible for the experimentally observed strain is an increased nanoscale surface roughness due to the suppression of thermally activated events combined with the effects of shadowing due to off-normal deposition conditions.

  6. Pulsed plasma treatment of polluted gas using wet-/low-temperature corona reactors

    SciTech Connect (OSTI)

    Shimizu, Kazuo; Kinoshita, Katsuhiro; Yanagihara, Kenya; Rajanikanth, B.S.; Katsura, Shinji; Mizuno, Akira [Toyohashi Univ. of Technology, Aichi (Japan). Dept. of Ecological Engineering] [Toyohashi Univ. of Technology, Aichi (Japan). Dept. of Ecological Engineering

    1997-09-01T23:59:59.000Z

    Application of pulsed plasma for gas cleaning is gaining prominence in recent years, mainly from the energy consideration point of view. Normally, the gas treatment is carried out at or above room temperature by the conventional dry-type corona reactor. However, this treatment is still inadequate for the removal of certain stable gases present in the exhaust/flue gas mixture. The authors report here some interesting results of treatment of such stable gases like N{sub 2}O with pulsed plasma at subambient temperature. Also reported in this paper are improvements in DeNO/DeNO{sub x} efficiency using unconventional wet-type reactors, designed and fabricated by us, and operating at different subambient temperatures. DeNO/DeNO{sub x} by the pulsed-plasma process is mainly due to oxidation, but reduction takes place at the same time. When the wet-type reactor was used, the NO{sub 2} product was absorbed by water film and higher DeNO{sub x} efficiency could be achieved. Apart from laboratory tests on simulated gas mixtures, field tests were also carried out on the exhaust gas of an 8-kW diesel engine. A comparative analysis of the various tests are presented, together with a note on the energy consideration.

  7. Low-temperature magnetic characterization of optimum and etch-damaged in-plane magnetic tunnel junctions

    SciTech Connect (OSTI)

    Kan, Jimmy J.; Gottwald, Matthias; Fullerton, Eric E. [Center for Magnetic Recording Research, University of California, San Diego, La Jolla, California 92093 (United States)] [Center for Magnetic Recording Research, University of California, San Diego, La Jolla, California 92093 (United States); Lee, Kangho; Kang, Seung H. [Advanced Technology, Qualcomm, Inc., San Diego, California 92121 (United States)] [Advanced Technology, Qualcomm, Inc., San Diego, California 92121 (United States)

    2013-09-21T23:59:59.000Z

    We describe low-temperature characterization of magnetic tunnel junctions (MTJs) patterned by reactive ion etching for spin-transfer-torque magnetic random access memory. Magnetotransport measurements of typical MTJs show increasing tunneling magnetoresistance (TMR) and larger coercive fields as temperature is decreased down to 10 K. However, MTJs selected from the high-resistance population of an MTJ array exhibit stable intermediate magnetic states when measured at low temperature and show TMR roll-off below 100 K. These non-ideal low-temperature behaviors arise from edge damage during the etch process and can have negative impacts on thermal stability of the MTJs.

  8. Investigating the low-temperature impedance increase of lithium-ion cells.

    SciTech Connect (OSTI)

    Abraham, D. P.; Heaton, J. R.; Kang, S.-H.; Dees, D. W.; Jansen, A. N.; Chemical Engineering

    2008-01-01T23:59:59.000Z

    Low-temperature performance loss is a significant barrier to commercialization of lithium-ion cells in hybrid electric vehicles. Increased impedance, especially at temperatures below 0 C, reduces the cell pulse power performance required for cold engine starts, quick acceleration, or regenerative braking. Here we detail electrochemical impedance spectroscopy data on binder- and carbon-free layered-oxide and spinel-oxide electrodes, obtained over the +30 to ?30 C temperature range, in coin cells containing a lithium-preloaded Li{sub 4/3}Ti{sub 5/3}O{sub 4} composite (LTOc) counter electrode and a LiPF{sub 6}-bearing ethylene carbonate/ethyl methyl carbonate electrolyte. For all electrodes studied, the impedance increased with decreasing cell temperature; the increases observed in the midfrequency arc dwarfed the increases in ohmic resistance and diffusional impedance. Our data suggest that the movement of lithium ions across the electrochemical interface on the active material may have been increasingly hindered at lower temperatures, especially below 0 C. Low-temperature performance may be improved by modifying the electrolyte-active material interface (for example, through electrolyte composition changes). Increasing surface area of active particles (for example, through nanoparticle use) can lower the initial electrode impedance and lead to lower cell impedances at -30 C.

  9. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    SciTech Connect (OSTI)

    Dennis N. Assanis; Arvind Atreya; Jyh-Yuan Chen; Wai K. Cheng; Robert W. Dibble; Chris Edwards; Zoran S. Filipi; Christian Gerdes; Hong Im; George A. Lavoie; Margaret S. Wooldridge

    2009-12-31T23:59:59.000Z

    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were: ? Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines. ? Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions. ? Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  10. Casimir-Foucault interaction: Free energy and entropy at low temperature

    SciTech Connect (OSTI)

    Intravaia, Francesco; Ellingsen, Simen A.; Henkel, Carsten [Theoretical Division, MS B213, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam (Germany)

    2010-09-15T23:59:59.000Z

    It was recently found that thermodynamic anomalies which arise in the Casimir effect between metals described by the Drude model can be attributed to the interaction of fluctuating Foucault (or eddy) currents [F. Intravaia and C. Henkel, Phys. Rev. Lett. 103, 130405 (2009).] We focus on the transverse electric (TE) polarization, where the anomalies occur, and show explicitly that the two leading terms of the low-temperature correction to the Casimir free energy of interaction between two plates are identical to those pertaining to the Foucault current interaction alone, up to a correction which is very small for good metals. Moreover, a mode density along real frequencies is introduced, showing that the TE contribution to the Casimir free energy, as given by the Lifshitz theory, separates in a natural manner into contributions from eddy currents and propagating cavity modes, respectively. The latter have long been known to be of little importance to the low-temperature Casimir anomalies. This convincingly demonstrates that eddy current modes are responsible for the large temperature correction to the Casimir effect between Drude metals, predicted by the Lifshitz theory, but not observed in experiments.

  11. Apparatus and method for maintaining low temperatures about an object at a remote location

    DOE Patents [OSTI]

    Steyert, Jr., William A. (Los Alamos, NM); Overton, Jr., William C. (Los Alamos, NM)

    1982-01-01T23:59:59.000Z

    The disclosure is directed to an apparatus and method for maintaining a body at cryogenic temperatures at a remote location such as down a borehole for an extended period of time. A housing contains a body comprising a material having a high specific heat at cryogenic temperatures such as between about 2 and 15 K. The body contains an orifice for containing an instrument or instruments operable at superconducting temperatures. The apparatus is precooled at the surface and lowered into a borehole to a desired depth, such as 2 to 3 miles. The instruments are operated, and the apparatus withdrawn, the material of the body maintaining the very low temperatures at which the instrument(s) operate for a sufficient period of time at the remote or downhole location. The material may comprise a rare earth compound, such as Gd.sub.2 O.sub.3, Gd.sub.2 Se.sub.3, Gd.sub.2 O.sub.2 S or GdAlO.sub.3. Monoclinic and C-phase gadolinium oxides work well. A low temperature is maintainable at a remote location for several hours.

  12. Apparatus and method for maintaining low temperatures about an object at a remote location. [Patent application

    DOE Patents [OSTI]

    Steyert, W.A. Jr.; Overton, W.C. Jr.

    1980-10-29T23:59:59.000Z

    The disclosure is directed to an apparatus and method for maintaining a body at cryogenic temperatures at a remote location such as down a borehole for an extended period of time. A housing contains a body comprising a material having a high specific heat at cryogenic temperatures such as between about 2 and 15 K. The body contains an orifice for containing an instrument or instruments operable at superconducting temperatures. The apparatus is precooled at the surface and lowered into a borehole to a desired depth, such as 2 to 3 miles. The instruments are operated, and the apparatus withdrawn, the material of the body maintaining the very low temperatures at which the instrument(s) operate for a sufficient period of time at the remote or downhole location. The material may comprise a rare earth compound, such as Gd/sub 2/O/sub 3/, Gd/sub 2/Se/sub 3/, Gd/sub 2/O/sub 2/S or GdAlO/sub 3/. Monoclinic and C-phase gadolinium oxides work well. A low temperature is maintainable at a remote location for several hours.

  13. Low temperature charge transport and microwave absorption of carbon coated iron nanoparticles–polymer composite films

    SciTech Connect (OSTI)

    Prasad, V., E-mail: vishnu@physics.iisc.ernet.in [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India)

    2012-06-15T23:59:59.000Z

    Highlights: ? Carbon coated Fe nanoparticle–PVC composite films were prepared by solution casting method. ? A low electrical percolation threshold of 2.2 was achieved. ? The low temperature electrical conductivity follows variable range hopping type conduction. ? An EMI shielding of 18 dB was achieved in 200 micron thick film. -- Abstract: In this paper, the low temperature electrical conductivity and microwave absorption properties of carbon coated iron nanoparticles–polyvinyl chloride composite films are investigated for different filler fractions. The filler particles are prepared by the pyrolysis of ferrocene at 980 °C and embedded in polyvinyl chloride matrix. The high resolution transmission electron micrographs of the filler material have shown a 5 nm thin layer graphitic carbon covering over iron particles. The room temperature electrical conductivity of the composite film changes by 10 orders of magnitude with the increase of filler concentration. A percolation threshold of 2.2 and an electromagnetic interference shielding efficiency (EMI SE) of ?18.6 dB in 26.5–40 GHz range are observed for 50 wt% loading. The charge transport follows three dimensional variable range hopping conduction.

  14. Low temperature formation of electrode having electrically conductive metal oxide surface

    DOE Patents [OSTI]

    Anders, Simone (Albany, CA); Anders, Andre (Albany, CA); Brown, Ian G. (Berkeley, CA); McLarnon, Frank R. (Orinda, CA); Kong, Fanping (Berkeley, CA)

    1998-01-01T23:59:59.000Z

    A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.

  15. Low-Temperature Light Detectors: Neganov-Luke Amplification and Calibration

    E-Print Network [OSTI]

    C. Isaila; C. Ciemniak; F. v. Feilitzsch; A. Gütlein; J. Kemmer; T. Lachenmaier; J. -C. Lanfranchi; S. Pfister; W. Potzel; S. Roth; M. v. Sivers; R. Strauss; W. Westphal; F. Wiest

    2012-09-17T23:59:59.000Z

    The simultaneous measurement of phonons and scintillation light induced by incident particles in a scintillating crystal such as CaWO4 is a powerful technique for the active rejection of background induced by gamma's and beta's and even neutrons in direct Dark Matter searches. However, less than ~1% of the energy deposited in a CaWO4 crystal is detected as light. Thus, very sensitive light detectors are needed for an efficient event-by-event background discrimination. Due to the Neganov-Luke effect, the threshold of low-temperature light detectors based on semiconducting substrates can be improved significantly by drifting the photon-induced electron-hole pairs in an applied electric field. We present measurements with low-temperature light detectors based on this amplification mechanism. The Neganov-Luke effect makes it possible to improve the signal-to-noise ratio of our light detectors by a factor of ~9 corresponding to an energy threshold of ~21 eV. We also describe a method for an absolute energy calibration using a light-emitting diode.

  16. Surface Damage and Treatment by Impact of a Low Temperature Nitrogen Jet

    SciTech Connect (OSTI)

    Laribou, Hicham; Fressengeas, Claude; Entemeyer, Denis; Jeanclaude, Veronique [LPMM - Laboratoire de Physique et Mecanique des Materiaux, Universite Paul Verlaine-Metz / CNRS, Ile du Saulcy, Metz, 57045 (France); Tazibt, Abdel [CRITT TJF and U, Laboratoire Jet Fluide Tres Hautes Pressions, Bar-le-Duc, 55000 (France)

    2011-01-17T23:59:59.000Z

    Nitrogen jets under high pressure and low temperature have been introduced recently. The process consists in projecting onto a surface a low temperature jet obtained from releasing the liquid nitrogen stored in a high pressure tank (e.g. 3000 bars) through a nozzle. It can be used in a range of industrial applications, including surface treatment or material removal through cutting, drilling, striping and cleaning. The process does not generate waste other than the removed matter, and it only releases neutral gas into the atmosphere. This work is aimed at understanding the mechanisms of the interaction between the jet and the material surface. Depending on the impacted material, the thermo-mechanical shock and blast effect induced by the jet can activate a wide range of damage mechanisms, including cleavage, crack nucleation and spalling, as well as void expansion and localized ductile failure. The test parameters (standoff distance, dwell time, operating pressure) play a role in selecting the dominant damage mechanism, but combinations of these various modes are usually present. Surface treatment through phase transformation or grain fragmentation in a layer below the surface can also be obtained by adequate tuning of the process parameters. In the current study, work is undertaken to map the damage mechanisms in metallic materials as well as the influence of the test parameters on damage, along with measurements of the thermo-mechanical conditions (impact force, temperature) in the impacted area.

  17. Vehicle Technologies Office Merit Review 2014: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low temperature...

  18. LCD, low-temperature soldering and compound semiconductor : the sources, market, applications and future prospects of indium in Malaysia

    E-Print Network [OSTI]

    Yong, Foo Nun

    2006-01-01T23:59:59.000Z

    Indium is a minor but very valuable metal. Decreasing supplies of indium from refining and increasing demands from LCD, low-temperature soldering and compound semiconductors have stimulated the indium price increase ...

  19. Vehicle Technologies Office Merit Review 2015: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low temperature...

  20. Low-temperature germanium ultra-high vacuum chemical vapor deposition for back-end photonic integration

    E-Print Network [OSTI]

    Kimerling, Lionel C.

    Polycrystalline germanium (poly-Ge) grown on amorphous Si (a-Si) by ultra-high vacuum chemical vapor deposition (UHVCVD) over oxide barriers at low temperatures (Tles450degC) exhibits a larger grain size and lower defect ...

  1. Low-Temperature Synthesis of Anatase TiO[subscript 2] Nanoparticles with Tunable Surface Charges for Enhancing Photocatalytic Activity

    E-Print Network [OSTI]

    Li, Ye

    In this work, the positively or negatively charged anatase TiO[subscript 2] nanoparticles were synthesized via a low temperature precipitation-peptization process (LTPPP) in the presence of poly(ethyleneimine) (PEI) and ...

  2. The influence of hydrogen gas exposure and low temperature on the tribological characteristics of ti-6al-4v

    E-Print Network [OSTI]

    Gola, Ryan Travis

    2009-05-15T23:59:59.000Z

    and Group 4 was exposed and tested at low temperature. Average friction coefficients and the specific wear rate were calculated from the test data. Also high-resolution digital microscope imaging was used to observe and characterize the wear mechanisms...

  3. The influence of hydrogen gas exposure and low temperature on the tribological characteristics of ti-6al-4v 

    E-Print Network [OSTI]

    Gola, Ryan Travis

    2009-05-15T23:59:59.000Z

    and Group 4 was exposed and tested at low temperature. Average friction coefficients and the specific wear rate were calculated from the test data. Also high-resolution digital microscope imaging was used to observe and characterize the wear mechanisms...

  4. Investigation of the Difference in Cool Flame Characteristics between Petroleum Diesel and Soybean Biodiesel Operating in Low Temperature Combustion Mode

    E-Print Network [OSTI]

    Muthu Narayanan, Aditya

    2014-01-16T23:59:59.000Z

    . The focus of this study is to investigate the difference in the cool flame combustion characteristics between petroleum diesel and soybean biodiesel, when operating in low temperature combustion mode. Previous studies have attributed the absence of the cool...

  5. Low-Temperature, Vacuum-Aided Thermal Desorption Studies on a Simulated Organic Sludge Waste

    SciTech Connect (OSTI)

    R. K. Farnsworth; D. R. Peterman; Gary L. Anderson; T. G. Garn

    2002-12-01T23:59:59.000Z

    This report describes an initial set of small scale lab tests conducted on surrogate waste materials to investigate mass release behavior of volatile organics (VOC’s) from a solidified liquid organic sludge matrix under vacuumaided, low-temperature thermal desorption conditions. Low temperature thermal desorption is being considered as a potential processing technology alternative to incineration, to remove gas generation limitations affecting the transportation of transuranic (TRU) contaminated organic sludge wastes to a designated off-site repository (i.e., the Waste Isolation Pilot Plant). The lab-scale tests provide initial exploratory level information on temperature profiles and rates of volatile organic desorption for a range of initial VOC/oil liquid mixture concentrations in a calcium silicate matrix, under low temperature heating and vacuum boundary conditions that are representative of potentially desirable “in-drum desorption” conditions. The results of these tests indicate that reduced operating pressures have a potential for significantly enhancing the rate of thermal desorption experienced from a liquid organic/oil solidified “sludge” waste. Furthermore, the results indicate that in-drum thermal desorption can be performed on organic sludge wastes, at reduced pressures, while maintaining an operating temperature sufficiently low to prevent destruction of the waste drum packaging materials (confinement) surrounding the waste. The results also indicate that VOC release behavior/rates in the vacuum thermal desorption process cannot be represented by a simple liquid-liquid mass-diffusion model, since overall mass release rates observed are generally two orders of magnitude greater than predicted by simple liquid-liquid mass diffusion. This is partially attributed to the effects of the transient temperature profiles within the sludge during heat up; however, the primary cause is thought to be micro boiling of the volatile organics within the simulated sludge. Micro boiling of VOC’s would be expected to occur in localized volumes within the organic sludge where temperatures exceed the volatile organic saturation temperature sufficiently to form vapor bubbles. Further model based evaluations reflecting the transient temperatures, local boiling, and subsequent vapor in liquid/sludge transport conditions are needed, with supporting controlled testing of the vacuum-aided thermal desorption process at small and full-scale conditions in order to fully develop this process.

  6. SCALE RESISTANT HEAT EXCHANGER FOR LOW TEMPERATURE GEOTHERMAL BINARY CYCLE POWER PLANT

    SciTech Connect (OSTI)

    HAYS, LANCE G

    2014-11-18T23:59:59.000Z

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required process conditions for the TGH demonstration. Operation of the TGH with and without the ABS system will demonstrate an increase in geothermal resource productivity for the VPC from 1 MW/(million lb) of brine to 1.75 MW/(million lb) of brine, a 75% increase.

  7. Investigating Methods of Heat Recovery from Low-Temperature PEM Fuel Cells in CHP Applications

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2004-01-01T23:59:59.000Z

    Heat recovery from low-temperature proton exchange membrane (PEM) fuel cells poses a number of challenges. In response to these challenges, thermodynamic assessments of proposed heat recovery methods are studied in the context of combined heat and power (CHP) for building applications. Preheating combustion air in conjunction with desiccant dehumidification and absorption cooling technologies is one of the two strategies examined in this study. The other approach integrates the PEM fuel cell with a water-loop heat pump (WLHP) for direct heat recovery. As the primary objective, energy-saving potentials of the adopted heat recovery strategies are estimated with respect to various benchmarks. The quantified energy-saving potentials are translated into effective CHP performance indices and compared with those typically specified by the manufacturers for service hot water applications. The need for developing CHP performance protocols is also discussed in light of the proposed energy recovery techniques - thereby, accomplishing the secondary objective.

  8. Low-temperature conversion of high-moisture biomass: Topical report, January 1984--January 1988

    SciTech Connect (OSTI)

    Sealock, L.J. Jr.; Elliott, D.C.; Butner, R.S.; Neuenschwander, G.G.

    1988-10-01T23:59:59.000Z

    Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process that converts high-moisture biomass feedstocks and other wet organic substances to useful gaseous and liquid fuels. The advantage of this process is that it works without the need for drying or dewatering the feedstock. Conventional thermal gasification processes, which require temperatures above 750/degree/C and air or oxygen for combustion to supply reaction heat, generally cannot utilize feedstocks with moisture contents above 50 wt %, as the conversion efficiency is greatly reduced as a result of the drying step. For this reason, anaerobic digestion or other bioconversion processes traditionally have been used for gasification of high-moisture feedstocks. However, these processes suffer from slow reaction rates and incomplete carbon conversion. 50 refs., 21 figs., 22 tabs.

  9. Low-temperature Bessel beam trap for single submicrometer aerosol particle studies

    SciTech Connect (OSTI)

    Lu, Jessica W.; Chasovskikh, Egor; Stapfer, David [Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich (Switzerland); Isenor, Merrill; Signorell, Ruth [Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich (Switzerland); Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1 (Canada)

    2014-09-01T23:59:59.000Z

    We report on a new instrument for single aerosol particle studies at low temperatures that combines an optical trap consisting of two counter-propagating Bessel beams (CPBBs) and temperature control down to 223 K (?50?°C). The apparatus is capable of capturing and stably trapping individual submicrometer- to micrometer-sized aerosol particles for up to several hours. First results from studies of hexadecane, dodecane, and water aerosols reveal that we can trap and freeze supercooled droplets ranging in size from ?450 nm to 5500 nm (radius). We have conducted homogeneous and heterogeneous freezing experiments, freezing-melting cycles, and evaporation studies. To our knowledge, this is the first reported observation of the freezing process for levitated single submicrometer-sized droplets in air using optical trapping techniques. These results show that a temperature-controlled CPBB trap is an attractive new method for studying phase transitions of individual submicrometer aerosol particles.

  10. Single Molecule Switches and Molecular Self-Assembly: Low Temperature STM Investigations and Manipulations

    SciTech Connect (OSTI)

    Iancu, Violeta

    2006-08-01T23:59:59.000Z

    This dissertation is devoted to single molecule investigations and manipulations of two porphyrin-based molecules, chlorophyll-a and Co-popphyrin. The molecules are absorbed on metallic substrates and studied at low temperatures using a scanning tunneling microscope. The electronic, structural and mechanical properties of the molecules are investigated in detail with atomic level precision. Chlorophyll-a is the key ingredient in photosynthesis processes while Co-porphyrin is a magnetic molecule that represents the recent emerging field of molecular spintronics. Using the scanning tunneling microscope tip and the substrate as electrodes, and the molecules as active ingredients, single molecule switches made of these two molecules are demonstrated. The first switch, a multiple and reversible mechanical switch, is realized by using chlorophyll-a where the energy transfer of a single tunneling electron is used to rotate a C-C bond of the molecule's tail on a Au(111) surface. Here, the det

  11. Hydrogenation at low temperatures does not always lead to saturation: the case of HNCO

    E-Print Network [OSTI]

    Noble, J A; Congiu, E; Dulieu, F; Bonnin, M; Bassas, A; Duvernay, F; Danger, G; Chiavassa, T

    2015-01-01T23:59:59.000Z

    Context. It is generally agreed that hydrogenation reactions dominate chemistry on grain surfaces in cold, dense molecular cores, saturating the molecules present in ice mantles. Aims. We present a study of the low temperature reactivity of solid phase isocyanic acid (HNCO) with hydrogen atoms, with the aim of elucidating its reaction network. Methods. Fourier transform infrared spectroscopy and mass spectrometry were employed to follow the evolution of pure HNCO ice during bombardment with H atoms. Both multilayer and monolayer regimes were investigated. Results. The hydrogenation of HNCO does not produce detectable amounts of formamide (NH2CHO) as the major product. Experiments using deuterium reveal that deuteration of solid HNCO occurs rapidly, probably via cyclic reaction paths regenerating HNCO. Chemical desorption during these reaction cycles leads to loss of HNCO from the surface. Conclusions. It is unlikely that significant quantities of NH2CHO form from HNCO. In dense regions, however, deuteration o...

  12. Low-temperature plasma-deposited silicon epitaxial films: Growth and properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Demaurex, Bénédicte; Bartlome, Richard; Seif, Johannes P.; Geissbühler, Jonas; Alexander, Duncan T.; Jeangros, Quentin; Ballif, Christophe; De Wolf, Stefaan

    2014-08-07T23:59:59.000Z

    Low-temperature (?200?°C) epitaxial growth yields precise thickness, doping, and thermal-budget control, which enables advanced-design semiconductor devices. In this paper, we use plasma-enhanced chemical vapor deposition to grow homo-epitaxial layers and study the different growth modes on crystalline silicon substrates. In particular, we determine the conditions leading to epitaxial growth in light of a model that depends only on the silane concentration in the plasma and the mean free path length of surface adatoms. For such growth, we show that the presence of a persistent defective interface layer between the crystalline silicon substrate and the epitaxial layer stems not only frommore »the growth conditions but also from unintentional contamination of the reactor. Based on our findings, we determine the plasma conditions to grow high-quality bulk epitaxial films and propose a two-step growth process to obtain device-grade material.« less

  13. Low temperature magnetic phase transition and interlayer coupling in double-wall carbon nanotubes

    SciTech Connect (OSTI)

    Diamantopoulou, A.; Glenis, S.; Likodimos, V.; Guskos, N. [Department of Solid State Physics, Faculty of Physics, University of Athens, Panepistimioupolis, GR-157 84 Athens (Greece)

    2014-08-28T23:59:59.000Z

    The magnetic properties of double wall carbon nanotubes (DWCNTs) were investigated using electron spin resonance (ESR) spectroscopy. An asymmetric resonance line of low intensity was identified and analyzed by the superimposition of a narrow and a broad metallic lineshape, attributed to the distinct contributions of defect spins located on the inner and outer DWCNTs shells. The spin susceptibilities of both ESR components revealed a ferromagnetic phase transition at low temperatures (T?

  14. Rheological properties vs Local Dynamics in model disordered materials at Low Temperature

    E-Print Network [OSTI]

    C. Fusco; T. Albaret; A. Tanguy

    2014-03-31T23:59:59.000Z

    We study the rheological response at low temperature of a sheared model disordered material as a function of the bond rigidity. We find that the flow curves follow a Herschel-Bulkley law, whatever is the bond rigidity, with an exponent close to 0.5. Interestingly, the apparent viscosity can be related to a single relevant time scale $t_{rel}$, suggesting a strong connection between the local dynamics and the global mechanical behaviour. We propose a model based on the competition between the nucleation and the avalanche-like propagation of spatial strain heterogeneities. This model can explain the Herschel-Bulkley exponent on the basis of the size dependence of the heterogeneities on the shear rate.

  15. Low Temperature Age Hardening in U-13 at.% Nb: An Atom Probe Tomography Study

    SciTech Connect (OSTI)

    Clarke, A. J. [Los Alamos National Laboratory (LANL); Field, R. D. [Los Alamos National Laboratory (LANL); Hackenberg, R. E, [Los Alamos National Laboratory (LANL); Thoma, D. J. [Los Alamos National Laboratory (LANL); Brown, D. W. [Los Alamos National Laboratory (LANL); Teter, D. F. [Los Alamos National Laboratory (LANL); Miller, Michael K [ORNL; Russell, Kaye F [ORNL; Edmonds, D. V. [University of Leeds, UK; Beverini, G. [University of Leeds, UK

    2009-01-01T23:59:59.000Z

    Low temperature aging (<350 C) of U-13 at.% Nb martensite results in increased strength levels accompanied by significant ductility loss. To determine the decomposition mechanism(s) responsible for these mechanical property changes, atom probe tomography was used to examine the niobium and impurity distributions after aging at 200 or 300 C for times ranging from 2 h to 70 days. No patterns of niobium or impurity atoms were observed that would indicate segregation to the martensitic twin interfaces, making this hardening mechanism unlikely. Phase separation into roughly equiaxed regions of high and low niobium concentration was clearly observed after aging at 300 C for 70 days. However, only subtle niobium concentration changes were observed after aging at 200 C relative to the as-quenched condition, indicating that conventional phase separation is an unlikely explanation for the dramatic mechanical property changes at 200 C. Therefore, consideration of aging mechanisms other than segregation and phase separation may be warranted.

  16. Low energy conversion electron detection in superfluid He3 at ultra-low temperature

    E-Print Network [OSTI]

    E. Moulin; C. Winkelmann; J. F. Macias-Perez; Yu. M. Bunkov; H. Godfrin; D. Santos

    2005-04-12T23:59:59.000Z

    We report on the first results of the MACHe3 (MAtrix of Cells of Helium 3) prototype experiment concerning the measurement of low energy conversion electrons at ultra-low temperature. For the first time, the feasibility of the detection of low energy electrons is demonstrated in superfluid He3-B cooled down to 100 microK. Low energy electrons at 7.3 keV coming from the K shell conversion of the 14.4 keV nuclear transition of a low activity Co57 source are detected, opening the possibility to use a He3-based detector for the detection of Weakly Interacting Massive Particles (WIMPs) which are expected to release an amount of energy higher-bounded by 5.6 keV.

  17. Characterization of neutron transmutation doped (NTD) Ge for low temperature sensor development

    E-Print Network [OSTI]

    S. Mathimalar; V. Singh; N. Dokania; V. Nanal; R. G. Pillay; S. Pal; S. Ramakrishnan; A. Shrivastava; Priya Maheshwari; P. K. Pujari; S. Ojha; D. Kanjilal; K. C. Jagadeesan; S. V. Thakare

    2014-12-05T23:59:59.000Z

    Development of NTD Ge sensors has been initiated for low temperature (mK) thermometry in The India-based Tin detector (TIN.TIN). NTD Ge sensors are prepared by thermal neutron irradiation of device grade Ge samples at Dhruva reactor, BARC, Mumbai. Detailed measurements have been carried out in irradiated samples for estimating the carrier concentration and fast neutron induced defects. The Positron Annihilation Lifetime Spectroscopy (PALS) measurements indicated monovacancy type defects for all irradiated samples, while Channeling studies employing RBS with 2 MeV alpha particles, revealed no significant defects in the samples exposed to fast neutron fluence of $\\sim 4\\times10^{16}/cm^2$. Both PALS and Channeling studies have shown that vacuum annealing at 600 $^\\circ$C for $\\sim2$ hours is sufficient to recover the damage in the irradiated samples, thereby making them suitable for the sensor development.

  18. Low-temperature plasma-deposited silicon epitaxial films: Growth and properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Demaurex, Bénédicte; Bartlome, Richard; Seif, Johannes P.; Geissbühler, Jonas; Alexander, Duncan T.; Jeangros, Quentin; Ballif, Christophe; De Wolf, Stefaan

    2014-08-07T23:59:59.000Z

    Low-temperature (?200?°C) epitaxial growth yields precise thickness, doping, and thermal-budget control, which enables advanced-design semiconductor devices. In this paper, we use plasma-enhanced chemical vapor deposition to grow homo-epitaxial layers and study the different growth modes on crystalline silicon substrates. In particular, we determine the conditions leading to epitaxial growth in light of a model that depends only on the silane concentration in the plasma and the mean free path length of surface adatoms. For such growth, we show that the presence of a persistent defective interface layer between the crystalline silicon substrate and the epitaxial layer stems not only from the growth conditions but also from unintentional contamination of the reactor. Based on our findings, we determine the plasma conditions to grow high-quality bulk epitaxial films and propose a two-step growth process to obtain device-grade material.

  19. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

    SciTech Connect (OSTI)

    Mamone, Salvatore, E-mail: s.mamone@soton.ac.uk; Concistrè, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Denning, Mark; Carravetta, Marina; Whitby, Richard J.; Levitt, Malcolm H., E-mail: mhl@soton.ac.uk [School of Chemistry, University of Southampton, Southampton SO17 1BJ (United Kingdom); Lei, Xuegong; Li, Yongjun [Department of Chemistry, Columbia University, New York, New York 10027 (United States)] [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Goh, Kelvin; Horsewill, Anthony J. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)] [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2014-05-21T23:59:59.000Z

    The water-endofullerene H{sub 2}O@C{sub 60} provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H{sub 2}O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H{sub 2}O molecules is catalysed by {sup 13}C nuclei present in the cages.

  20. Collision dynamics of polyatomic molecules containing carbon rings at low temperatures

    SciTech Connect (OSTI)

    Li, Zhiying; Heller, Eric J. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Krems, Roman V. [Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada)

    2014-09-14T23:59:59.000Z

    We explore the collision dynamics of complex hydrocarbon molecules (benzene, coronene, adamantane, and anthracene) containing carbon rings in a cold buffer gas of {sup 3}He. For benzene, we present a comparative analysis of the fully classical and fully quantum calculations of elastic and inelastic scattering cross sections at collision energies between 1 and 10 cm{sup ?1}. The quantum calculations are performed using the time-independent coupled channel approach and the coupled-states approximation. We show that the coupled-states approximation is accurate at collision energies between 1 and 20 cm{sup ?1}. For the classical dynamics calculations, we develop an approach exploiting the rigidity of the carbon rings and including low-energy vibrational modes without holonomic constraints. Our results illustrate the effect of the molecular shape and the vibrational degrees of freedom on the formation of long-lived resonance states that lead to low-temperature clustering.

  1. Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer Tropsch Synthesis

    SciTech Connect (OSTI)

    Wang, Hang [Peking University; Zhou, Wu [ORNL; Liu, JinXun [Dalian Institute of Chemical Physics; Si, Rui [Brookhaven National Laboratory (BNL); Sun, Geng [Peking University; Zhong, Mengqi [Peking University; Su, Haiyan [Peking University; Zhao, Huabo [Peking University; Rodrigues, Jose [Brookhaven National Laboratory (BNL); Pennycook, Stephen J [ORNL; Idrobo Tapia, Juan C [ORNL; Li, Weixue [Dalian Institute of Chemical Physics; Kou, Yuan [Peking University; Ma, Ding [Peking University

    2013-01-01T23:59:59.000Z

    Fischer Tropsch synthesis (FTS) is an important catalytic process for liquid fuel generation, which converts coal/shale gas/biomass-derived syngas (a mixture of CO and H2) to oil. While FTS is thermodynamically favored at low temperature, it is desirable to develop a new catalytic system that could allow working at a relatively low reaction temperature. In this article, we present a one-step hydrogenation reduction route for the synthesis of Pt Co nanoparticles (NPs) which were found to be excellent catalysts for aqueous-phase FTS at 433 K. Coupling with atomic-resolution scanning transmission electron microscopy (STEM) and theoretical calculations, the outstanding activity is rationalized by the formation of Co overlayer structures on Pt NPs or Pt Co alloy NPs. The improved energetics and kinetics from the change of the transition states imposed by the lattice mismatch between the two metals are concluded to be the key factors responsible for the dramatically improved FTS performance.

  2. Kinetics of Methane Hydrate Decomposition Studied via in Situ Low Temperature X-ray Powder Diffraction

    SciTech Connect (OSTI)

    Everett, Susan M [ORNL; Rawn, Claudia J [ORNL; Keffer, David J. [University of Tennessee, Knoxville (UTK); Mull, Derek L [ORNL; Payzant, E Andrew [ORNL; Phelps, Tommy Joe [ORNL

    2013-01-01T23:59:59.000Z

    Gas hydrates are known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice termed self-preservation or anomalous preservation. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Two regions of slowed decomposition for methane hydrate, 180 200 K and 230 260 K, were observed, and the kinetics were studied by in situ low temperature x-ray powder diffraction. The kinetic constants for ice formation from methane hydrate were determined by the Avrami model within each region and activation energies, Ea, were determined by the Arrhenius plot. Ea determined from the data for 180 200 K was 42 kJ/mol and for 230 260 K was 22 kJ/mol. The higher Ea in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions.

  3. Modeling of scalar dissipation rates in flamelet models for low temperature combustion engine simulations

    E-Print Network [OSTI]

    Gupta, Saurabh; Pal, Pinaki; Im, Hong G

    2014-01-01T23:59:59.000Z

    The flamelet approach offers a viable framework for combustion modeling of homogeneous charge compression ignition (HCCI) engines under stratified mixture conditions. Scalar dissipation rate acts as a key parameter in flamelet-based combustion models which connects the physical mixing space to the reactive space. The aim of this paper is to gain fundamental insights into turbulent mixing in low temperature combustion (LTC) engines and investigate the modeling of scalar dissipation rate. Three direct numerical simulation (DNS) test cases of two-dimensional turbulent auto-ignition of a hydrogen-air mixture with different correlations of temperature and mixture fraction are considered, which are representative of different ignition regimes. The existing models of mean and conditional scalar dissipation rates, and probability density functions (PDFs) of mixture fraction and total enthalpy are a priori validated against the DNS data.

  4. Oxygen diffusion and reactivity at low temperature on bare amorphous olivine-type silicate

    SciTech Connect (OSTI)

    Minissale, M., E-mail: marco.minissale@obspm.fr; Congiu, E.; Dulieu, F. [LERMA-LAMAp, Université de Cergy-Pontoise, Observatoire de Paris, ENS, UPMC, UMR 8112 du CNRS, 5 Mail Gay Lussac, 95000 Cergy Pontoise Cedex (France)] [LERMA-LAMAp, Université de Cergy-Pontoise, Observatoire de Paris, ENS, UPMC, UMR 8112 du CNRS, 5 Mail Gay Lussac, 95000 Cergy Pontoise Cedex (France)

    2014-02-21T23:59:59.000Z

    The mobility of O atoms at very low temperatures is not generally taken into account, despite O diffusion would add to a series of processes leading to the observed rich molecular diversity in space. We present a study of the mobility and reactivity of O atoms on an amorphous silicate surface. Our results are in the form of reflection absorption infrared spectroscopy and temperature-programmed desorption spectra of O{sub 2} and O{sub 3} produced via two pathways: O + O and O{sub 2} + O, investigated in a submonolayer regime and in the range of temperature between 6.5 and 30 K. All the experiments show that ozone is formed efficiently on silicate at any surface temperature between 6.5 and 30 K. The derived upper limit for the activation barriers of O + O and O{sub 2} + O reactions is ?150 K/k{sub b}. Ozone formation at low temperatures indicates that fast diffusion of O atoms is at play even at 6.5 K. Through a series of rate equations included in our model, we also address the reaction mechanisms and show that neither the Eley–Rideal nor the hot atom mechanisms alone can explain the experimental values. The rate of diffusion of O atoms, based on modeling results, is much higher than the one generally expected, and the diffusive process proceeds via the Langmuir-Hinshelwood mechanism enhanced by tunnelling. In fact, quantum effects turn out to be a key factor that cannot be neglected in our simulations. Astrophysically, efficient O{sub 3} formation on interstellar dust grains would imply the presence of huge reservoirs of oxygen atoms. Since O{sub 3} is a reservoir of elementary oxygen, and also of OH via its hydrogenation, it could explain the observed concomitance of CO{sub 2} and H{sub 2}O in the ices.

  5. Full Scale Field Trial of the Low Temperature Mercury Capture Process

    SciTech Connect (OSTI)

    James Locke; Richard Winschel

    2011-09-30T23:59:59.000Z

    CONSOL Energy Inc., with partial funding from the Department of Energy (DOE) National Energy Technology Laboratory, designed a full-scale installation for a field trial of the Low-Temperature Mercury Control (LTMC) process, which has the ability to reduce mercury emissions from coal-fired power plants by over 90 percent, by cooling flue gas temperatures to approximately 230 °F and absorbing the mercury on the native carbon in the fly ash, as was recently demonstrated by CONSOL R&D on a slip-stream pilot plant at the Allegheny Energy Mitchell Station with partial support by DOE. LTMC has the potential to remove over 90 percent of the flue gas mercury at a cost at least an order of magnitude lower (on a $/lb mercury removed basis) than activated carbon injection. The technology is suitable for retrofitting to existing and new plants, and, although it is best suited to bituminous coal-fired plants, it may have some applicability to the full range of coal types. Installation plans were altered and moved from the original project host site, PPL Martins Creek plant, to a second host site at Allegheny Energyâ??s R. Paul Smith plant, before installation actually occurred at the Jamestown (New York) Board of Public Utilities (BPU) Samuel A. Carlson (Carlson) Municipal Generating Station Unit 12, where the LTMC system was operated on a limited basis. At Carlson, over 60% mercury removal was demonstrated by cooling the flue gas to 220-230 °F at the ESP inlet via humidification. The host unit ESP operation was unaffected by the humidification and performed satisfactorily at low temperature conditions.

  6. STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Eric D. Wachsman; Keith L. Duncan

    2002-03-31T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible hydrocarbons, CO, or NO{sub x} and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at low to intermediate temperatures tremendous benefits may be accrued. At low temperatures, in particular, it becomes feasible to use ferritic steel for interconnects instead of expensive and brittle ceramic materials such as those based on LaCrO{sub 3}. In addition, sealing the fuel cell becomes easier and more reliable; rapid startup is facilitated; thermal stresses (e.g., those caused by thermal expansion mismatches) are reduced; radiative losses ({approx}T{sup 4}) become minimal; electrode sintering becomes negligible and (due to a smaller thermodynamic penalty) the SOFC operating cycle (heating from ambient) would be more efficient. Combined, all these improvements further result in reduced initial and operating costs. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (> 0.05 S cm{sup -1} at {le} 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of a layer of erbia-stabilized bismuth oxide (ESB) on the oxidizing side and a layer of SDC or GDC on the reducing side, see Fig. 1. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal. In this arrangement, the ceria layer protects the bismuth oxide layer from decomposing by shielding it from very low P{sub O{sub 2}}'s and the ESB layer serves to block electronic flux through the electrolyte. This arrangement has two significant advantages over the YSZ/SDC bilayers investigated by others [1, 2]. The first advantage is that SDC is conductive enough to serve as an intermediate temperature SOFC electrolyte. Moreover, ESB is conductive enough to serve as a low temperature electrolyte. Consequently, at worst an SDC/ESB bilayered SOFC should have the conductivity of SDC but with improved efficiency due to the electronic flux barrier provided by ESB. The second advantage is that small (dopant) concentrations of SDC in ESB or ESB in SDC, have been found to have conductivities comparable to the host lattice [3, 4]. Therefore, if solid solutioning occurs at the SDC-ESB interface, it should not be detrimental to the performance of the bilayer. In contrast, solid solutions of SDC and YSZ have been found to be significantly less conductive than SDC or YSZ. Thus, it bears emphasizing that, at this time, only SDC/ESB electrolytes have potential in low temperature SOFC applications.

  7. Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency

    SciTech Connect (OSTI)

    Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

    2009-03-30T23:59:59.000Z

    The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and experimental results suggest that the LTC-TCR combination may offer a high efficiency solution to engine operation. A single zone model using a detailed chemical kinetic mechanism was implemented in CHEMKIN and to study the effects of base fuel and steam-fuel reforming products on the ignition timing and heat release characteristics. The study was performed considering the reformed fuel species composition for total n-heptane conversion (ideal case) and also at the composition corresponding to a specific set of operational reforming temperatures (real case). The computational model confirmed that the reformed products have a strong influence on the low temperature heat release (LTHR) region, affecting the onset of the high temperature heat release (HTHR). The ignition timing was proportionally delayed with respect to the baseline fuel case when higher concentrations of reformed gas were used. For stoichiometric concentration of RG, it was found that by increasing the proportion of reformed fuel to total fuel (RG), from 0% to 30%, the amount of energy released during the LTHR regime, or HR{sub L}, was reduced by 48% and the ignition timing was delayed 10.4 CA degrees with respect to the baseline fuel case. For RG composition corresponding to certain operational reforming temperatures, it was found that the most significant effects on the HCCI combustion, regarding HR{sub L} reduction and CA50 delay, was obtained by RG produced at a reforming temperature range of 675 K-725 K.

  8. Investigation of Low-Temperature Geothermal Resources in the Sonoma Valley Area, California

    SciTech Connect (OSTI)

    Youngs, Leslie G.; Chapman, Rodger H.; Chase, Gordon W.; Bezore, Stephen P.; Majmundar, Hasu H.

    1983-01-01T23:59:59.000Z

    The Sonoma Valley area contains low-temperature geothermal resources (20 C {le} T {le} 90 C) having the potential for useful development. Sonoma Valley residents, local governments and institutions, private developers, and manufacturers may be able to utilize the geothermal resources as an alternate energy source. Historically, there have been at least six geothermal spring areas developed in the Sonoma Valley. Four of these (Boyes Hot Springs, Fetter's Hot Springs, Agua Caliente Springs, and the Sonoma State Hospital warm spring) lie on a linear trend extending northwestward from the City of Sonoma. Detailed geophysical surveys delineated a major fault trace along the east side of the Sonoma Valley in association with the historic geothermal areas. Other fault traces were also delineated revealing a general northwest-trending structural faulting fabric underlying the valley. Water wells located near the ''east side'' fault have relatively high boron concentrations. Geochemical evidence may suggest the ''east side'' fault presents a barrier to lateral fluid migration but is a conduit for ascending fluids. Fifteen of the twenty-nine geothermal wells or springs located from literature research or field surveys are located along or east of this major fault in a 10 km (6.2 miles) long, narrow zone. The highest recorded water temperature in the valley appears to be 62.7 C (145 F) at 137.2 meters (450 feet) in a well at Boyes Hot Springs. This is consistent with the geothermal reservoir temperature range of 52-77 C (126-171 F) indicated by geothermometry calculations performed on data from wells in the area. Interpretation of data indicates a low-temperature geothermal fluid upwelling or ''plume'', along the ''east side'' fault with subsequent migration into permeable aquifers predominantly within volcanic strata. It is quite likely other geothermal fluid ''plumes'' in association with faulting are present within the Sonoma Valley area. A 5.8 km{sup 2} geothermal zone, that parallels the fault trace, is delineated and is perhaps the most favorable area for further investigation and possible geothermal production.

  9. Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications

    SciTech Connect (OSTI)

    Nicholas, Jason.D.

    2007-06-30T23:59:59.000Z

    Cerium gadolinium oxide (CGO) has been identified as an acceptable solid oxide fuel cell (SOFC) electrolyte at temperatures (500-700 C) where cheap, rigid, stainless steel interconnect substrates can be used. Unfortunately, both the high sintering temperature of pure CGO, >1200 C, and the fact that constraint during sintering often results in cracked, low density ceramic films, have complicated development of metal supported CGO SOFCs. The aim of this work was to find new sintering aids for Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95}, and to evaluate whether they could be used to produce dense, constrained Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} films at temperatures below 1000 C. To find the optimal sintering aid, Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} was doped with a variety of elements, of which lithium was found to be the most effective. Dilatometric studies indicated that by doping CGO with 3mol% lithium nitrate, it was possible to sinter pellets to a relative density of 98.5% at 800 C--a full one hundred degrees below the previous low temperature sintering record for CGO. Further, it was also found that a sintering aid's effectiveness could be explained in terms of its size, charge and high temperature mobility. A closer examination of lithium doped Ce0.9Gd0.1O1.95 indicated that lithium affects sintering by producing a Li{sub 2}O-Gd{sub 2}O{sub 3}-CeO{sub 2} liquid at the CGO grain boundaries. Due to this liquid phase sintering, it was possible to produce dense, crack-free constrained films of CGO at the record low temperature of 950 C using cheap, colloidal spray deposition processes. This is the first time dense constrained CGO films have been produced below 1000 C and could help commercialize metal supported ceria based solid oxide fuel cells.

  10. Sperry Low Temperature Geothermal Conversion System, Phase 1 and Phase II. Final report. Volume III. Systems description

    SciTech Connect (OSTI)

    Matthews, H.B.

    1984-01-01T23:59:59.000Z

    The major fraction of hydrothermal resources that have the prospect of being economically useful for the generation of electricity are in the 300/sup 0/F to 425/sup 0/F temperature range. Cost-effective conversion of the geothermal energy to electricity requires the conception and reduction to practice of new ideas to improve conversion efficiency, enhance brine flow, reduce plant costs, increase plant availability, and shorten the time between investment and return. The problems addressed during past activities are those inherent in the geothermal environment, in the binary fluid cycle, in the difficulty of efficiently converting the energy of a low-temperature resource, and in geothermal economics. Explained in detail in this document, some of these problems are: the energy expended by the down-hole pump; the difficulty in designing reliable down-hole equipment; fouling of heat-exchanger surfaces by geothermal fluids; the unavailability of condenser cooling water at most geothermal sites; the large portion of the available energy used by the feed pump in a binary system; the pinch effect - a loss in available energy in transferring heat from water to an organic fluid; flow losses in fluids that carry only a small amount of useful energy to begin with; high heat-exchanger costs - the lower the temperature interval of the cycle, the higher the heat exchanger costs in $/kW (actually, more than inversely proportional); the complexity and cost of the many auxiliary elements of proposed geothermal plants; and the unfortunate cash flow vs. investment curve caused by the many years of investment required to bring a field into production before any income is realized.

  11. Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars

    SciTech Connect (OSTI)

    Norwood, Matt J.; Louchouarn, Patrick; Kuo, Li-Jung; Harvey, Omar

    2013-03-16T23:59:59.000Z

    This study demonstrates that wildfires/biomass combustion may be an important source of labile pyrogenic water-soluble organic matter (Py-WSOM) to aquatic systems. Spectroscopic analysis (of the solid char and Py-WSOM) with Fourier transform infrared spectroscopy (FTIR) indicated that the Py-WSOM extracted from two low temperature chars (one wood, one grass) was dominated by polar moieties (-OH and C-O) derived from depolymerization and fragmentation of lignocellulose. Incubation experiments under aerobic conditions with unsterilized river water suggested that Py-WSOM and associated biomarkers may have turnover rates on the order of weeks to months, consistent with mixing and transport conditions of riverine systems. For example, pyrogenic dissolved organic carbon (Py-DOC) had a half-life of 30-40 days. Turnover rate for the combustion biomarkers was shorter, with levoglucosan and free lignin phenols having a half-life around 3-4 days and polymeric lignin components 13-14 days. The latter observations contradict earlier studies on the biodegradation of dissolved lignin and point to the need for re-assessment of lignin degradation kinetics in well-mixed riverine systems, particularly when such lignin components are derived from thermally altered plant material that may exist in a form more labile than that in highly processed riverine DOM.

  12. Low-temperature waste-heat recovery in the food and paper industries

    SciTech Connect (OSTI)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01T23:59:59.000Z

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  13. Lithium implantation at low temperature in silicon for sharp buried amorphous layer formation and defect engineering

    SciTech Connect (OSTI)

    Oliviero, E. [CSNSM, CNRS-IN2P3-Universite Paris-Sud, Batiment 108, 91405 Orsay (France); David, M. L.; Beaufort, M. F.; Barbot, J. F. [Institut Pprime, CNRS-Universite de Poitiers-ENSMA, SP2MI, Bd Marie et Pierre Curie, BP30179, 86962 Futuroscope-Chasseneuil Cedex (France); Fichtner, P. F. P. [Departamento de Metalurgia, Universidade Federal do Rio Grande do Sul, Av Bento Goncalves 9500, Caixa Postal 15051, 90035-190 Porto Alegre, RS (Brazil)

    2013-02-28T23:59:59.000Z

    The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes place and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.

  14. Picosecond spin relaxation in low-temperature-grown GaAs

    SciTech Connect (OSTI)

    Uemura, M.; Honda, K.; Yasue, Y.; Tackeuchi, A., E-mail: atacke@waseda.jp [Department of Applied Physics, Waseda University, Tokyo 169-8555 (Japan); Lu, S. L.; Dai, P. [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou (China)

    2014-03-24T23:59:59.000Z

    The spin relaxation process of low-temperature-grown GaAs is investigated by spin-dependent pump and probe reflectance measurements with a sub-picosecond time resolution. Two very short carrier lifetimes of 2.0 ps and 28 ps, which can be attributed to nonradiative recombinations related to defects, are observed at 10?K. The observed spin polarization shows double exponential decay with spin relaxation times of 46.2 ps (8.0 ps) and 509 ps (60 ps) at 10?K (200?K). The observed picosecond spin relaxation, which is considerably shorter than that of conventional GaAs, indicates the strong relevance of the Elliott-Yafet process as the spin relaxation mechanism. For the first (second) spin relaxation component, the temperature and carrier density dependences of the spin relaxation time indicate that the Bir-Aronov-Pikus process is also effective at temperatures between 10?K and 77?K, and that the D'yakonov-Perel’ process is effective between 125?K (77?K) and 200?K.

  15. Isotope Effects on Delayed Annihilation Time Spectra of Antiprotonic Helium Atoms in Low-Temperature Gas

    E-Print Network [OSTI]

    Ketzer, B; Daniel, H; Von Egidy, T; Niestroj, A; Schmid, S; Schmid, W; Yamazaki, T; Sugai, I; Nakayoshi, K; Hayano, R S; Maas, F E; Torii, H A; Ishikawa, T; Tamura, H; Morita, N; Horváth, D; Eades, John; Widmann, E

    1996-01-01T23:59:59.000Z

    The delayed annihilation time spectra (DATS) of antiprotonic helium atoms have been studied in isotopically pure low temperature ^3He and ^4He gas at various densities. The DATS taken at 5.8~K and 400~mbar are very similar in shape except for i) a small difference in the time scale and ii) the presence of a distinct fast decay component in the case of ^3He. The ratio of overall trapping times (mean lifetimes against annihilation), R = T_{\\mathrm{trap}}(\\mbox{^{4}He})/T_{\\mathrm{trap}}(\\mbox{^{3}He}), has been determined to be 1.144 \\pm 0.009, which is in good agreement with a theoretical estimate yielding R = [(M^*(\\mbox{\\overline{\\mathrm{p}}}\\mbox{^{4}He})/ M^*(\\mbox{\\overline{ \\mathrm{p}}}\\mbox{^{3}He})]^2=1.14, where M^* denotes the reduced mass of the \\mbox{\\overline{\\mathrm{p}}}\\mbox{He^{++}}\\ system. The presence of a short-lived component with a lifetime of (0.154\\pm 0.007)\\ \\mbox{\\mus} in the case of \\mbox{^{3}He}\\ suggests that the \\mbox{\\overline{\\mathrm{p}}}\\mbox{^{3}He^{+}}\\ atom has a state of in...

  16. The low-temperature energy calibration system for the CUORE bolometer array

    E-Print Network [OSTI]

    S. Sangiorgio; L. M. Ejzak; K. M. Heeger; R. H. Maruyama; A. Nucciotti; M. Olcese; T. S. Wise; A. L. Woodcraft

    2009-08-03T23:59:59.000Z

    The CUORE experiment will search for neutrinoless double beta decay (0nDBD) of 130Te using an array of 988 TeO_2 bolometers operated at 10 mK in the Laboratori Nazionali del Gran Sasso (Italy). The detector is housed in a large cryogen-free cryostat cooled by pulse tubes and a high-power dilution refrigerator. The TeO_2 bolometers measure the event energies, and a precise and reliable energy calibration is critical for the successful identification of candidate 0nDBD and background events. The detector calibration system under development is based on the insertion of 12 gamma-sources that are able to move under their own weight through a set of guide tubes that route them from deployment boxes on the 300K flange down into position in the detector region inside the cryostat. The CUORE experiment poses stringent requirements on the maximum heat load on the cryostat, material radiopurity, contamination risk and the ability to fully retract the sources during normal data taking. Together with the integration into a unique cryostat, this requires careful design and unconventional solutions. We present the design, challenges, and expected performance of this low-temperature energy calibration system.

  17. Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures

    DOE Patents [OSTI]

    Penetrante, Bernardino M.; Brusasco, Raymond M.; Merritt, Bernard T.; Vogtlin, George E.

    2004-02-03T23:59:59.000Z

    A high-surface-area (greater than 600 m2/g), large-pore (pore size diameter greater than 6.5 angstroms), basic zeolite having a structure such as an alkali metal cation-exchanged Y-zeolite is employed to convert NO.sub.x contained in an oxygen-rich engine exhaust to N.sub.2 and O.sub.2. Preferably, the invention relates to a two-stage method and apparatus for NO.sub.x reduction in an oxygen-rich engine exhaust such as diesel engine exhaust that includes a plasma oxidative stage and a selective reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and added hydrocarbons. The second stage employs a lean-NO.sub.x catalyst including the basic zeolite at relatively low temperatures to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O.

  18. A low temperature nonlinear optical rotational anisotropy spectrometer for the determination of crystallographic and electronic symmetries

    SciTech Connect (OSTI)

    Torchinsky, Darius H.; Hsieh, David [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125 (United States); Department of Physics, California Institute of Technology, Pasadena, California 91125 (United States); Chu, Hao [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125 (United States); Department of Applied Physics, California Institute of Technology, Pasadena, California 91125 (United States); Qi, Tongfei; Cao, Gang [Center for Advanced Materials, Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2014-08-15T23:59:59.000Z

    Nonlinear optical generation from a crystalline material can reveal the symmetries of both its lattice structure and underlying ordered electronic phases and can therefore be exploited as a complementary technique to diffraction based scattering probes. Although this technique has been successfully used to study the lattice and magnetic structures of systems such as semiconductor surfaces, multiferroic crystals, magnetic thin films, and multilayers, challenging technical requirements have prevented its application to the plethora of complex electronic phases found in strongly correlated electron systems. These requirements include an ability to probe small bulk single crystals at the ?m length scale, a need for sensitivity to the entire nonlinear optical susceptibility tensor, oblique light incidence reflection geometry, and incident light frequency tunability among others. These measurements are further complicated by the need for extreme sample environments such as ultra low temperatures, high magnetic fields, or high pressures. In this review we present a novel experimental construction using a rotating light scattering plane that meets all the aforementioned requirements. We demonstrate the efficacy of our scheme by making symmetry measurements on a ?m scale facet of a small bulk single crystal of Sr{sub 2}IrO{sub 4} using optical second and third harmonic generation.

  19. Development of Ultra Low-Temperature Electronics for the AEgIS Experiment

    E-Print Network [OSTI]

    Kaltenbacher, Thomas; Kellerbauer, Alban; Doser, Michael; Caspers, Friedhelm

    This thesis presents the development of electronics for operation at cryogenic temperatures, with particular emphasis on the cryogenic electronics required for the Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEgIS) experiment at the European Organisation for Nuclear Research (CERN). The research is focused on a highly sensitive charged particle detection system for a Penning trap, on cryogenic low-pass filters and on a low-loss DC-contact RF switch. The detection system consists of a high quality factor tuned circuit including a superconducting coil, and a low-noise amplifier. Since the experimental setup of the AEgIS experiment requires it, the developed electronics must reliably operate at 4.2 K (~269C) and in high constant magnetic field of more than 1 Tesla. Therefore, the performance of the cryogenic electronic designs were carefully evaluated at low-temperature/high magnetic field, the result of which have important implications for the AEgIS experiment. Moreover, a new possibility of ...

  20. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    SciTech Connect (OSTI)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Szczurek, M. [Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)] [Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)

    2013-11-15T23:59:59.000Z

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUV radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.

  1. Magnon energy renormalization and low-temperature thermodynamics of O(3) Heisenberg ferromagnets

    SciTech Connect (OSTI)

    Radoševi?, Slobodan M., E-mail: slobodan@df.uns.ac.rs; Panti?, Milan R.; Pavkov-Hrvojevi?, Milica V.; Kapor, Darko V.

    2013-12-15T23:59:59.000Z

    We present the perturbation theory for lattice magnon fields of the D-dimensional O(3) Heisenberg ferromagnet. The effective Hamiltonian for the lattice magnon fields is obtained starting from the effective Lagrangian, with two dominant contributions that describe magnon–magnon interactions identified as a usual gradient term for the unit vector field and a part originating in the Wess–Zumino–Witten term of the effective Lagrangian. Feynman diagrams for lattice scalar fields with derivative couplings are introduced, on the basis of which we investigate the influence of magnon–magnon interactions on magnon self-energy and ferromagnet free energy. We also comment appearance of spurious terms in low-temperature series for the free energy by examining magnon–magnon interactions and internal symmetry of the effective Hamiltonian (Lagrangian). -- Highlights: •Lattice magnon Hamiltonian constructed from the effective Lagrangian. •New Feynman diagrams with colored propagators and vertices for lattice scalar fields. •Influence of magnon–magnon interactions from the WZW term on magnon energies and free energy of O(3) HFM.

  2. Low-temperature pyrolysis of coal to produce diesel-fuel blends

    SciTech Connect (OSTI)

    Shafer, T.B.; Jett, O.J.; Wu, J.S.

    1982-10-01T23:59:59.000Z

    Low-temperature (623 to 773/sup 0/K) coal pyrolysis was investigated in a bench-scale retort. Factorially designed experiments were conducted to determine the effects of temperature, coal-particle size, and nitrogen flow rate on the yield of liquid products. Yield of condensable organic products relative to the proximate coal volatile matter increased by 3.1 and 6.4 wt % after increasing nitrogen purge flow rate from 0.465 to 1.68 L/min and retort temperature from 623 to 723/sup 0/K, respectively. The liquid product may be suitable for blending with diesel fuel. The viscosity and density of coal liquids produced at 723/sup 0/K were compared with those of diesel fuel. The coal liquids had a higher carbon-to-hydrogen ratio and a lower aliphatic-to-aromatic ratio than premium quality No. 2 diesel fuel. It was recommended that liquids from coal pyrolysis be blended with diesel fuel to determine stability of the mixture and performance of the blend in internal combustion engines.

  3. Qualification of large diameter duplex stainless steel girth welds intended for low temperature service

    SciTech Connect (OSTI)

    Prosser, K.; Robinson, A.G.; Rogers, P.F.

    1996-12-31T23:59:59.000Z

    British Gas recently had a requirement to fabricate some UNS31803 duplex stainless steel pipework for an offshore topsides process plant. The pipework had a maximum diameter of 600mm, with a corresponding wall thickness of 18mm, and it was designed to operate at a minimum temperature of {minus}40 C. There is a lack of published toughness data for girth welds in duplex stainless steel at this thickness and minimum design temperature. Additionally, toughness requirements for girth welds in current pipework and pressure vessel codes are based on experience with carbon steels. As a result, a program of work has been carried out to study the Charpy, CTOD and wide plate toughness of girth welds in 22%Cr duplex stainless steel pipework. The welds were produced using a typical gas tungsten arc/gas metal arc pipework fabrication procedure. In addition, non-destructive evaluation trials have been carried out on a deliberately defective weld using radiography and ultrasonics. It was demonstrated that double wall single image {gamma}-radiography, single wall single image and panoramic X-radiography, and conventional shear wave ultrasonics were all able to detect planar root defects varying from 3 to 7mm in depth. There was good agreement between the sizes recorded by ultrasonics and those measured from macrosections. Small scale mechanical tests demonstrated that welds with overmatching tensile properties, and low temperature toughness properties which were acceptable to specification, could be produced. Wide plate tests demonstrated that defect size calculations from BS PD7493 were conservative.

  4. Inorganic origin of carbon dioxide during low temperature thermal recovery of bitumen: Chemical and isotopic evidence

    SciTech Connect (OSTI)

    Hutcheon, I.; Abercrombia, H.J.; Krouse, H.R. (Univ. of Calgary, Alberta (Canada))

    1990-01-01T23:59:59.000Z

    Carbon dioxide, produced at low temperatures, is the dominant gaseous species evolved during steam-assisted thermal recovery of bitumen at the Tucker Lake pilot, Cold Lake, Alberta. Two possible sources for the produced CO{sub 2} are considered: pyrolysis of bitumen and dissolution of carbonate minerals. Data from natural systems and experiments by other authors suggest that clay-carbonate reactions are the dominant source of CO{sub 2}. Bitumen pyrolysis may contribute small amounts of CO{sub 2}, probably by decarboxylation, early in the production cycle but cannot contribute significant volumes. The recognition of production of CO{sub 2} by reactive calcite destruction at temperatures between 70 and 220{degree}C suggests that this process may be responsible for the production of large quantities of CO{sub 2} in natural systems, particularly in lithofeldspathic sands and shales with high carbonate content and abundant clays. Organic acids have been suggested to be the source of CO{sub 2} in diagenetic fluids, but the results presented here suggest that this hypothesis requires more complete investigation.

  5. Low Temperature Oxidation Embrittlement of CAS/Nicalon Ceramic Matrix Composites

    SciTech Connect (OSTI)

    Plucknett, Kevin P [Dalhousie University, Halifax, Nova Scotia, CANADA; Lin, Hua-Tay [ORNL

    2007-01-01T23:59:59.000Z

    The influence of extended duration (up to 1,000 h), low temperature oxidation heat-treatments (375-600 C) has been assessed using a model ceramic matrix composite system with a graphitic fiber/matrix interphase. For this study a Nicalon fiber reinforced CaO-Al2O3-SiO2 matrix composite was selected (CAS/Nicalon), which possesses a thin (~20-40 nm) carbon-based interphase. Oxidation exposure has been conducted under both unloaded and static fatigue loaded conditions. For unstressed oxidation exposure, degradation of the carbon-based interphase is apparent at temperatures as low as 375 C, after 1,000 h exposure, resulting in a transition to a nominally brittle failure mode (i.e. negligible fiber pull-out). The degree of mechanical property degradation increases with increasing temperatures, such that strength degradation, and a transition to nominally brittle failure, is apparent after just 10 h at 600 C. Static fatigue loading between 450 and 600C demonstrated generally similar trends, with reduced lifetimes being observed with increasing temperature. Based upon the unloaded oxidation experiments, combined with previously obtained intermediate and high temperature oxidation stability studies, a simple environmental embrittlement failure mechanism map is presented for CAS/Nicalon. The implications of this study for advanced composite designs with multiple thin carbon-based interphase layers are also discussed.

  6. Molecular Hydrogen Formation on Low Temperature Surfaces in Temperature Programmed Desorption Experiments

    E-Print Network [OSTI]

    G. Vidali; V. Pirronello; L. Li; J. Roser; G. Manico; R. Mehl; A. Lederhendler; H. B. Perets; J. R. Brucato; O. Biham

    2008-11-21T23:59:59.000Z

    The study of the formation of molecular hydrogen on low temperature surfaces is of interest both because it allows to explore elementary steps in the heterogeneous catalysis of a simple molecule and because of the applications in astrochemistry. Here we report results of experiments of molecular hydrogen formation on amorphous silicate surfaces using temperature-programmed desorption (TPD). In these experiments beams of H and D atoms are irradiated on the surface of an amorphous silicate sample. The desorption rate of HD molecules is monitored using a mass spectrometer during a subsequent TPD run. The results are analyzed using rate equations and the activation energies of the processes leading to molecular hydrogen formation are obtained from the TPD data. We show that a model based on a single isotope provides the correct results for the activation energies for diffusion and desorption of H atoms. These results can thus be used to evaluate the formation rate of H_2 on dust grains under the actual conditions present in interstellar clouds.

  7. Formation of microchannels from low-temperature plasma-deposited silicon oxynitride

    DOE Patents [OSTI]

    Matzke, Carolyn M. (Los Lunas, NM); Ashby, Carol I. H. (Edgewood, NM); Bridges, Monica M. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    A process for forming one or more fluid microchannels on a substrate is disclosed that is compatible with the formation of integrated circuitry on the substrate. The microchannels can be formed below an upper surface of the substrate, above the upper surface, or both. The microchannels are formed by depositing a covering layer of silicon oxynitride over a mold formed of a sacrificial material such as photoresist which can later be removed. The silicon oxynitride is deposited at a low temperature (.ltoreq.100.degree. C.) and preferably near room temperature using a high-density plasma (e.g. an electron-cyclotron resonance plasma or an inductively-coupled plasma). In some embodiments of the present invention, the microchannels can be completely lined with silicon oxynitride to present a uniform material composition to a fluid therein. The present invention has applications for forming microchannels for use in chromatography and electrophoresis. Additionally, the microchannels can be used for electrokinetic pumping, or for localized or global substrate cooling.

  8. Fully Integrated Applications of Thin Films on Low Temperature Cofired Ceramic (LTCC)

    SciTech Connect (OSTI)

    Ambrose Wolf; Ken Peterson; Matt O'Keefe; Wayne Huebner; Bill Kuhn

    2012-04-19T23:59:59.000Z

    Thin film multilayers have previously been introduced on multilayer low temperature cofired ceramic (LTCC), as well as initial thin film capacitors on LTCC. The ruggedness of a multipurpose Ti-Cu-Pt-Au stack for connectivity and RF conductivity has continued to benefit fabrication and reliability in state of-the-art modules, while the capacitors have followed the traditional Metal-Insulator-Metal (MIM) style. The full integration of thin film passives with thin film connectivity traces is presented. Certain passives, such as capacitors, require specifically tailored and separately patterned thin film (multi-)layers, including a dielectric. Different capacitance values are achieved by variation of both the insulator layer thickness and the active area of the capacitor. Other passives, such as filters, require only the conductor - a single thin film multilayer. This can be patterned from the same connectivity thin film material (Ti-Cu-Pt-Au), or a specially tailored thin film material (e.g. Ti-Cu-Au) can be deposited. Both versions are described, including process and integration details. Examples are discussed, ranging from patterning for maximum tolerances, to space and performance-optimized designs. Cross-sectional issues associated with integration are also highlighted in the discussion.

  9. Experimental studies in solid state and low temperature physics. Final report for 1966-1980

    SciTech Connect (OSTI)

    Goldman, A.M.; Weyhmann, W.V.; Zimmermann, W. Jr.

    1980-06-01T23:59:59.000Z

    Experimental and theoretical investigations have been carried out in a broad area of low temperature and solid state physics which includes superconductivity, theory of quantum crystals (through 1973), magnetism in metals, and liquid helium. The work in superconductivity has involved investigations of the Josephson effect, studies of the pair-field susceptibility of superconductors and investigations of the thermodynamics of the superconducting phase transition. The competition between the metal-nonmetal transition and superconductivity has also been studied in random metal-rare gas systems. In the area of magnetism, magnetically ordered materials and dilute magnetic alloys have been investigated. Enhanced hyperfine nuclear magnetic ordering was discovered in PrCu/sub 6/ at about 2.5 mK. The research on liquid /sup 4/He and /sup 3/He//sup 4/He mixtures has been directed at the quantum aspects of superfluid flow and rotation, the critical behavior near the lambda transition and the properties of the tricritical point. The theoretical program (through 1973) encompassed a broad spectrum of research on the properties of quantum liquids and solids with particular emphasis on crystalline /sup 3/He.

  10. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect (OSTI)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30T23:59:59.000Z

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  11. Low-Temperature, Solution-Processed Molybdenum Oxide Hole-Collection Layer for Organic Photovoltaics

    SciTech Connect (OSTI)

    Hammond, S. R.; Meyer, J.; Widjonarko, N. E.; Ndione, P. F.; Sigdel, A. K.; Garcia, A.; Miedaner, A.; Lloyd, M. T.; Kahn, A.; Ginley, D. S.; Berry, J. J.; Olson, D. C.

    2012-02-21T23:59:59.000Z

    We have utilized a commercially available metal-organic precursor to develop a new, low-temperature, solution-processed molybdenum oxide (MoO{sub x}) hole-collection layer (HCL) for organic photovoltaic (OPV) devices that is compatible with high-throughput roll-to-roll manufacturing. Thermogravimetric analysis indicates complete decomposition of the metal-organic precursor by 115 C in air. Acetonitrile solutions spin-cast in a N{sub 2} atmosphere and annealed in air yield continuous thin films of MoO{sub x}. Ultraviolet, inverse, and X-ray photoemission spectroscopies confirm the formation of MoO{sub x} and, along with Kelvin probe measurements, provide detailed information about the energetics of the MoO{sub x} thin films. Incorporation of these films into conventional architecture bulk heterojunction OPV devices with poly(3-hexylthiophene) and [6,6]-phenyl-C{sub 61} butyric acid methyl ester afford comparable power conversion efficiencies to those obtained with the industry-standard material for hole injection and collection: poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The MoO{sub x} HCL devices exhibit slightly reduced open circuit voltages and short circuit current densities with respect to the PEDOT:PSS HCL devices, likely due in part to charge recombination at Mo{sup 5+} gap states in the MoO{sub x} HCL, and demonstrate enhanced fill factors due to reduced series resistance in the MoO{sub x} HCL.

  12. Low temperature electron-spin relaxation in the crystalline and glassy states of solid ethanol

    E-Print Network [OSTI]

    Marina Kveder; Dalibor Merunka; Milan Joki?; Boris Rakvin

    2010-08-24T23:59:59.000Z

    X-band electron paramagnetic resonance (EPR) spectroscopy was used to study the spectral properties of a nitroxide spin probe in ethanol glass and crystalline ethanol, at 5 - 11.5 K. The different anisotropy of molecular packing in the two host matrices was evidenced by different rigid limit values for maximal hyperfine splitting in the signal of the spin probe. The significantly shorter phase memory time, , for the spin probe dissolved in crystalline ethanol, as compared to ethanol glass, was discussed in terms of contribution from spectral diffusion. The effect of low-frequency dynamics was manifested in the temperature dependence of and in the difference between the data measured at different spectral positions. This phenomenon was addressed within the framework of the slow-motional isotropic diffusion model [S. Lee, and S. Z. Tang, Phys. Rev. B 31, 1308 (1985)] predicting the spin probe dynamics within the millisecond range, at very low temperatures. The shorter spin-lattice relaxation time of the spin probe in ethanol glass was interpreted in terms of enhanced energy exchange between the spin system and the lattice in the glass matrix due to boson peak excitations.

  13. Low temperature combustion using nitrogen enrichment to mitigate NOx from large bore natural gas fueled engines.

    SciTech Connect (OSTI)

    Biruduganti, M.; Gupta, S.; Sekar, R.; Energy Systems

    2010-01-01T23:59:59.000Z

    Low temperature combustion is identified as one of the pathways to meet the mandatory ultra low NO{sub x} emissions levels set by the regulatory agencies. Exhaust gas recirculation (EGR) is a well known technique to realize low NO{sub x} emissions. However, EGR has many built-in adverse ramifications that negate its advantages in the long term. This paper discusses nitrogen enrichment of intake air using air separation membranes as a better alternative to the mature EGR technique. This investigation was undertaken to determine the maximum acceptable level of nitrogen enrichment of air for a single-cylinder spark-ignited natural gas engine. NO{sub x} reduction as high as 70% was realized with a modest 2% nitrogen enrichment while maintaining power density and simultaneously improving fuel conversion efficiency (FCE). Any enrichment beyond this level degraded engine performance in terms of power density, FCE, and unburned hydrocarbon emissions. The effect of ignition timing was also studied with and without N{sub 2} enrichment. Finally, lean burn versus stoichiometric operation utilizing nitrogen enrichment was compared. Analysis showed that lean burn operation along with nitrogen enrichment is one of the effective pathways for realizing better FCE and lower NO{sub x} emissions.

  14. Novel Electrode Materials for Low-Temperature Solid-Oxide Fuel Cells

    SciTech Connect (OSTI)

    Shaowu Zha; Meilin Liu

    2005-03-23T23:59:59.000Z

    Composites electrodes consisting of silver and bismuth vanadates exhibit remarkable catalytic activity for oxygen reduction at 500-550 C and greatly reduce the cathode-electrolyte (doped ceria) resistances of low temperature SOFCs, down to about 0.53 {omega}cm{sup 2} at 500 C and 0.21 {omega}cm{sup 2} at 550 C. The observed power densities of 231, 332, and 443 mWcm-2 at 500, 525 and 550 C, respectively, make it possible to operate SOFCs at temperatures about 500 C. Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. Anode-supported SOFCs with an electrolyte of 20 {micro}m-thick Gd-doped ceria (GDC) were fabricated by co-pressing. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C. The ability of producing vastly different microstructures and morphologies of the very same material is critical to the fabrication of functionally graded electrodes for solid-state electrochemical devices such as SOFCs and lithium batteries. By carefully adjusting deposition parameters, we have successfully produced oxide nano-powders with the size of 30 {approx} 200 nm. Porous films with various microstructures and morphologies are also deposited on several substrates by systematic adjustment of the deposition parameters. Highly porous, excellently bonded and nano-structured electrodes fabricated by combustion CVD exhibit extremely high surface area and remarkable catalytic activities. Using in situ potential dependent FTIR emission spectroscopy, we have found evidence for two, possibly three distinct di-oxygen species present on the electrode surface. We have successfully identified which surface oxygen species is present under a particular electrical or chemical condition and have been able to deduce the reaction mechanisms. This technique will be used to probe the gas-solid interactions at or near the TPB and on the surfaces of mixed-conducting electrodes in an effort to understand the molecular processes relevant to the intrinsic catalytic activity. Broad spectral features are assigned to the electrochemical-polarization-induced changes in the optical properties of the electrode surface layer.

  15. NOVEL ELECTRODE MATERIALS FOR LOW-TEMPERATURE SOLID-OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    X. Lu; C. Xia; Y. Liu; W. Rauch; M. Liu

    2002-12-01T23:59:59.000Z

    Composite electrodes consisting of silver and bismuth vanadates exhibit remarkable catalytic activity for oxygen reduction at 500-550 C and greatly reduce the cathode-electrolyte (doped ceria) resistances of low temperature SOFCs, down to about 0.53 {Omega}cm{sup 2} at 500 C and 0.21 {Omega}cm{sup 2} at 550 C. The observed power densities of 231, 332, and 443 mWcm{sup -2} at 500, 525 and 550 C, respectively, make it possible to operate SOFCs at temperatures about 500 C. Using in situ potential dependent FTIR emission spectroscopy, we have found evidence for two, possibly three distinct di-oxygen species present on the electrode surface. We have successfully identified which surface oxygen species is present under a particular electrical or chemical condition and have been able to deduce the reaction mechanisms. This technique will be used to probe the gas-solid interactions at or near the TPB and on the surfaces of mixed-conducting electrodes in an effort to understand the molecular processes relevant to the intrinsic catalytic activity. Broad spectral features are assigned to the polarization-induced changes in the optical properties of the electrode surface layer. The ability of producing vastly different microstructures and morphologies of the very same material is critical to the fabrication of functionally graded electrodes for solid-state electrochemical devices, such as SOFCs and lithium batteries. By carefully adjusting deposition parameters of combustion CVD, we have successfully produced oxide nano-powders with the size of 30 {approx} 200 nm. Porous films with various microstructures and morphologies are also deposited on several substrates by systematic adjustment of deposition parameters. Symmetrical cells were fabricated by depositing cathode materials on both sides of GDC electrolytes.

  16. PRELIMINARY ASSESSMENT OF THE LOW-TEMPERATURE WASTE FORM TECHNOLOGY COUPLED WITH TECHNETIUM REMOVAL

    SciTech Connect (OSTI)

    Fox, K.

    2014-05-13T23:59:59.000Z

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) have been chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated with the Cast Stone waste immobilization projects at Hanford. Science and technology needs were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separations of technetium from waste processing streams. Technical approaches to address the science and technology needs were identified and an initial sequencing priority was suggested. The following table summarizes the most significant science and technology needs and associated approaches to address those needs. These approaches and priorities will be further refined and developed as strong integrated teams of researchers from national laboratories, contractors, industry, and academia are brought together to provide the best science and technology solutions. Implementation of a science and technology program that addresses these needs by pursuing the identified approaches will have immediate benefits to DOE in reducing risks and uncertainties associated with near-term decisions regarding supplemental immobilization at Hanford. Longer term, the work has the potential for cost savings and for providing a strong technical foundation for future performance assessments at Hanford and across the DOE complex.

  17. Improving low temperature properties of synthetic diesel fuels derived from oil shale. Alternative fuels utilization program

    SciTech Connect (OSTI)

    Frankenfeld, J.W.; Taylor, W.F.

    1980-11-01T23:59:59.000Z

    The ability of additives to improve the cold flow properties of shale oil derived fuels boiling in the diesel fuel range was evaluated. Because a commercial shale oil industry did not exist to provide actual samples of finished fuels, a representative range of hydroprocessed shale oil fractions was prepared for use in the additive testing work. Crude oil shale from Occidental Shale Company was fractionated to give three liquids in the diesel fuel boiling range. The initial boiling point in each case was 325/sup 0/F (163/sup 0/C). The final boiling points were 640/sup 0/F (338/sup 0/C), 670/sup 0/F (354/sup 0/C) and 700/sup 0/F (371/sup 0/F). Each fraction was hydrotreated to three different severities (800, 1200 and 1500 psi total pressure) over a Shell 324 nickel molybdate on alumina catalyst at 710 to 750/sup 0/F to afford 9 different model fuels. A variety of commercial and experimental additives were evaluated as cold flow improvers in the model fuels at treat levels of 0.04 to 0.4 wt %. Both the standard pour point test (ASTM D97) and a more severe low temperature flow test (LTFT) were employed. Reductions in pour points of up to 70/sup 0/F and improvements in LTFT temperatures up to 16/sup 0/F were achieved. It is concluded that flow improver additives can play an important role in improving the cold flow properties of future synthetic fuels of the diesel type derived from oil shale.

  18. Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on Alumina

    SciTech Connect (OSTI)

    Peterson, Eric; DelaRiva, Andrew; Lin, Sen; Johnson, Ryan S.; Guo, Hua; Miller, Jeff; Kwak, Ja Hun; Peden, Charles HF; Kiefer, Boris; Allard, Lawrence F.; Ribeiro, Fabio; Datye, Abhaya K.

    2014-09-15T23:59:59.000Z

    Catalysis by single isolated atoms of precious metals has attracted much recent interest since it promises the ultimate economy in atom efficiency. Previous reports have been confined to reducible oxide supports such as FeOx, TiO2 or CeO2. Here we show that isolated Pd atoms can be stabilized on industrially relevant gamma-alumina supports. At low Pd loadings (?0.5 wt%) these catalysts contain exclusively atomically dispersed Pd species. The addition of lanthanum-oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated Pd atoms. Aberration-corrected scanning transmission electron microscopy (AC-STEM) confirms the presence of intermingled Pd and La on the gamma-alumina surface. Operando X-ray absorption spectroscopy, performed on Pd/La-alumina and Pd/gamma-alumina (0.5 wt% Pd) demonstrates the presence of catalytically active atomically dispersed ionic Pd in the Pd/La-doped gamma-alumina system. CO oxidation reactivity measurements show onset of catalytic activity at 40 ?C, indicating that the ionic Pd species are not poisoned by CO. The reaction order in CO and O2 is positive, suggesting a reaction mechanism that is different from that on metallic Pd. The catalyst activity is lost if the Pd species are reduced to their metallic form, but the activity can be regenerated by oxidation at 700 ?C in air. The high-temperature stability of these ionic Pd species on commercial alumina supports makes this catalyst system of potential interest for low-temperature exhaust treatment catalysts.

  19. Dose dependence of mechanical properties in tantalum and tantalum alloys after low temperature irradiation

    SciTech Connect (OSTI)

    Byun, Thak Sang [ORNL

    2008-01-01T23:59:59.000Z

    The dose dependence of mechanical properties was investigated for tantalum and tantalum alloys after low temperature irradiation. Miniature tensile specimens of three pure tantalum metals, ISIS Ta, Aesar Ta1, Aesar Ta2, and one tantalum alloy, Ta-1W, were irradiated by neutrons in the High Flux Isotope Reactor (HFIR) at ORNL to doses ranging from 0.00004 to 0.14 displacements per atom (dpa) in the temperature range 60 C 100 oC. Also, two tantalum-tungsten alloys, Ta-1W and Ta-10W, were irradiated by protons and spallation neutrons in the LANSCE facility at LANL to doses ranging from 0.7 to 7.5 dpa and from 0.7 to 25.2 dpa, respectively, in the temperature range 50 C 160 oC. Tensile tests were performed at room temperature and at 250oC at nominal strain rates of about 10-3 s-1. All neutron-irradiated materials underwent progressive irradiation hardening and loss of ductility with increasing dose. The ISIS Ta experienced embrittlement at 0.14 dpa, while the other metals retained significant necking ductility. Such a premature embrittlement in ISIS Ta is believed to be because of high initial oxygen concentrations picked up during a pre-irradiation anneal. The Ta-1W and Ta-10W specimens irradiated in spallation condition experienced prompt necking at yield since irradiation doses for those specimens were high ( 0.7 dpa). At the highest dose, 25.2 dpa, the Ta-10W alloy specimen broke with little necking strain. Among the test materials, the Ta-1W alloy displayed the best combination of strength and ductility. The plastic instability stress and true fracture stress were nearly independent of dose. Increasing test temperature decreased strength and delayed the onset of necking at yield.

  20. Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts

    SciTech Connect (OSTI)

    Xiong, Haifeng; DelaRiva, Andrew; Wang, Yong; Dayte, Abhaya

    2015-01-01T23:59:59.000Z

    Bimetallic PdZn catalysts supported on carbon black (CB) and carbon nanotubes (CNTs) were found to be selective for CO-free H-2 production from ethanol at low temperature (250 degrees C). On Pd, the H-2 yield was low (similar to 0.3 mol H-2/mol ethanol reacted) and the CH4/CO2 ratio was high (similar to 1.7). Addition of Zn to Pd formed the intermetallic PdZn beta phase (atomic ratio of Zn to Pd is 1) with increased H-2 yield (similar to 1.9 mol H-2/mol ethanol reacted) and CH4/CO2 ratio of <1. The higher H-2 yield and low CH4 formation was related to the improved dehydrogenation activity of the L1(0) PdZn beta phase. The TOF increased with particle size and the CNTs provided the most active and selective catalysts, which may be ascribed to pore-confinement effects. Furthermore, no significant changes in either the supports or the PdZn beta particles was found after aqueous-phase reforming (APR) indicating that the metal nanoparticles and the carbon support are hydrothermally stable in the aqueous phase at elevated temperatures and pressures (>200 degrees C, 65 bar). No CO was detected for all the catalysts performed in aqueous-phase reaction, indicating that both monometallic Pd and bimetallic PdZn catalysts have high water-gas shift activity during APR. However, the yield of H-2 is considerably lower than the theoretical value of 6 H-2 per mole ethanol which is due to the presence of oxygenated products and methane on the PdZn catalysts.

  1. Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics

    SciTech Connect (OSTI)

    Trevitt, Adam J.; Goulay, Fabien; Taatjes, Craig A.; Osborn, David L.; Leone, Stephen R.

    2009-12-23T23:59:59.000Z

    Low temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165 and 295 K is found to be relatively constant over this temperature range, 3.9 - 4.9 x 10-10 cm3 molecule-1 s-1. These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a slower rate coefficient of 1.3 x 10-10 cm3 molecule-1 s-1 at 105 K. At room temperature, non-exponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C6H5CN) is the only product recorded with no detectable evidence for a C6H5 + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC6H4CH3) constitutes the only detected product. It is not possible to differentiate among the ortho, meta and para isomers of cyanotoluene because of their similar ionization energies and the ~;; 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C6H5CH2) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn?s moon Titan (~;;100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).

  2. High- and low-temperature-stable thermite composition for producing high-pressure, high-velocity gases

    DOE Patents [OSTI]

    Halcomb, Danny L. (Camden, OH); Mohler, Jonathan H. (Spring Valley, OH)

    1990-10-16T23:59:59.000Z

    A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.

  3. NEUTRON LIFETIME EXPERIMENT BASED ON AN `ACCORDION-LIKE' UCN STORAGE VOLUME COATED WITH `LOW TEMPERATURE FOMBLIN'

    E-Print Network [OSTI]

    Steyerl, Albert

    , Cambridge, MA, USA; 2 University of Rhode Island, Kingston, RI, USA; 3 Joint Institute for Nuclear Research-fluorinated polymer, `Low Temperature Fomblin', has been tested as a wall coating in an ultracold neutron (UCN of an accordion-like storage vessel. In this system, the surface area and its distribution over height remain

  4. Controlling fuel and diluent gas flow for a diesel engine operating in the fuel rich low-temperature-combustion mode

    E-Print Network [OSTI]

    Lopez, David M

    2007-01-01T23:59:59.000Z

    The flow of a diluent gas supplied to a motoring engine was controlled at a diluent to air mass flow ratios of 10%, 30%, 50%, and 70%. This arrangement was a significant set up for running the engine in the Low-Temperature ...

  5. Coordinate Bethe ansatz computation for low temperature behavior of a triangular lattice of a spin-1 Heisenberg antiferromagnet

    SciTech Connect (OSTI)

    Shuaibu, A. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia and Physics Department, Faculty of Science, Nigerian Defence Academy, P.M.B 2109, Kaduna (Nigeria); Rahman, M. M. [Physics Department, Faculty of Science, Nigerian Defence Academy, P.M.B 2109, Kaduna (Nigeria)

    2014-03-05T23:59:59.000Z

    We study the low temperature behavior of a triangular lattice quantum spin-1 Heisenberg antiferromagnet with single-site anisotropy by using coordinate Bethe ansatz method. We compute the standard two-particle Hermitian Hamiltonian, and obtain the eigenfunctions and eigenvalue of the system. The obtained results show a number of advantages in comparison with many results.

  6. Ultrafast (370 GHz bandwidth) p-i-n traveling wave photodetector using low-temperature-grown GaAs

    E-Print Network [OSTI]

    Bowers, John

    measured with a thermocouple temperature sensor and then in situ annealed at 590 °C for 10 min. We found photodetectors utilizing low-temperature-grown GaAs as the absorption layer. The electro-optically measured-efficiency product. By dis- tributing the RC elements and impedance matching to exter- nal circuits, both p

  7. The effect of un-saturates on low-temperature oxidation of crude oil Sidqi A. Abu-Khamsin

    E-Print Network [OSTI]

    Abu-Khamsin, Sidqi

    The effect of un-saturates on low-temperature oxidation of crude oil Sidqi A. Abu-temperature oxidation (LTO) of four Arabian crudes as well as blends of naphtha with a super-light crude-saturates increased. The lightest crude with 51.1 ºAPI gravity and un-saturates fraction of 0.2 showed the least LTO

  8. A Phase Diagram of Low Temperature Epitaxial Silicon Grown by Hot-wire Chemical Vapor Deposition for Photovoltaic Devices

    E-Print Network [OSTI]

    Atwater, Harry

    for Photovoltaic Devices Christine Esber Richardson, Brendan M. Kayes, Matthew J. Dicken, and Harry A. Atwater-grained templates is one strategy for the fast, low- temperature growth of large-grained films with hydrogen). Figure 1: Schematic of proposed photovoltaic device incorporating epitaxial Si growth on a large

  9. Low-Temperature Desorption of N2O from NO on Rutile TiO2(110...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Desorption of N2O from NO on Rutile TiO2(110)-1x1. Low-Temperature Desorption of N2O from NO on Rutile TiO2(110)-1x1. Abstract: We find that NO dosed on rutile TiO2(110)-1×1...

  10. /II sifu reflection electron energy loss spectroscopy measurements of low temperature surface cleaning for Si molecular beam epitaxy

    E-Print Network [OSTI]

    Atwater, Harry

    /II sifu reflection electron energy loss spectroscopy measurements of low temperature surface cleaning for Si molecular beam epitaxy Shouleh Nikzad, Selmer S. Wong, Channing C. Ahn, Aimee L. Smith molecular beam epitaxy system, using reflection electron energy loss spectroscopy, in conjunction

  11. A low-temperature source for the generation of uranium Henry U. Lee and Richard N. Zare

    E-Print Network [OSTI]

    Zare, Richard N.

    Department of Chemistry, Columbia University, New York, New York 10027 (Received 8 September 1975) UraniumA low-temperature source for the generation of uranium vapor Henry U. Lee and Richard N. Zare At these elevated temperatures, the corrosiveness of uranium poses severe materials problems in its gasifi- cation

  12. Ultrathin Strained Si-on-Insulator and SiGe-on-Insulator Created using Low Temperature Wafer Bonding

    E-Print Network [OSTI]

    Ultrathin Strained Si-on-Insulator and SiGe-on-Insulator Created using Low Temperature Wafer, uniform thickness, low defect density, monocrystalline SiGe alloys and strained Si on any desired substrate was developed, allowing for the creation of SiGe-on-insulator and strained Si-on-insulator. After

  13. Comparison of the thermal performances of two nanofluids at low temperature in a plate heat Thierry Mar *a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Comparison of the thermal performances of two nanofluids at low temperature in a plate heat water based nanofluid. The Pôle Cristal of Dinan that has contributed to this study is also gratefully of this study is to compare experimentally the thermal performances of two types of commercial nanofluids

  14. Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation

    E-Print Network [OSTI]

    Sanders, Seth

    Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design for experimentation. Stirling engines can have broad significance and technological advantages for distributed

  15. Blue Note

    ScienceCinema (OSTI)

    Murray Gibson

    2010-01-08T23:59:59.000Z

    Argonne's Murray Gibson is a physicist whose life's work includes finding patterns among atoms. The love of distinguishing patterns also drives Gibson as a musician and Blues enthusiast."Blue" notes are very harmonic notes that are missing from the equal temperament scale.The techniques of piano blues and jazz represent the melding of African and Western music into something totally new and exciting.

  16. Blue Note

    SciTech Connect (OSTI)

    Murray Gibson

    2007-04-27T23:59:59.000Z

    Argonne's Murray Gibson is a physicist whose life's work includes finding patterns among atoms. The love of distinguishing patterns also drives Gibson as a musician and Blues enthusiast."Blue" notes are very harmonic notes that are missing from the equal temperament scale.The techniques of piano blues and jazz represent the melding of African and Western music into something totally new and exciting.

  17. Computer Engineering Curriculum Notes

    E-Print Network [OSTI]

    Mather, Patrick T.

    1 Computer Engineering Curriculum Notes 2013-2014 Technical Electives Students fulfill 15 credits be assigned to either group A or group B as determined by Computer Engineering program committee. Every year the computer engineering program committee will review the list and may make change(s). Group A (at least 6

  18. LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » MethaneJohnsonKristina PflanzLM News ArchiveLNGof

  19. Low Temperature Deep Direct Use Program Draft White Paper | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for| Department ofofLowEnergy Low

  20. Low Temperature Fuel Cell and Electrolyzer Balance-of-Plant Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for| Department ofofLowEnergy

  1. Low-Temperature, Coproduced, and Geopressured Geothermal Technologies Strategic Action Plan, September 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare For more information, contact: EERE

  2. Develop NREL Center for Low Temperature Research/Project Data Collection |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| DepartmentStatementDepartment ofVisitsDeterminations and

  3. NOVEL ELECTRODE MATERIALS FOR LOW-TEMPERATURE SOLID-OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Shaowu Zha; Luis Aguilar; Meilin Liu

    2003-12-01T23:59:59.000Z

    Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {Omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {Omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. The critical issues facing the development of economically competitive SOFC systems include lowering the operation temperature and creating novel anode materials and microstructures capable of efficiently utilizing hydrocarbon fuels. Anode-supported SOFCs with an electrolyte of 20 {micro}m- thick Gd-doped ceria (GDC) were fabricated by co-pressing, and both Ni- and Cu-based anodes were prepared by a solution impregnation process. At 600 C, SOFCs fueled with humidified H{sub 2}, methane, and propane, reached peak power densities of 602, 519, and 433 mW/cm{sup 2}, respectively. Both microstructure and composition of the anodes, as fabricated using a solution impregnation technique, greatly influence fuel cell performance. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C.

  4. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum

    SciTech Connect (OSTI)

    Schaefer-Nolte, E.; Wrachtrup, J. [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany) [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany); 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart (Germany); Reinhard, F. [3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart (Germany)] [3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart (Germany); Ternes, M., E-mail: m.ternes@fkf.mpg.de [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Kern, K. [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany) [Max-Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Institut de Physique de la Matière Condenseé, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)

    2014-01-15T23:59:59.000Z

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines a tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.

  5. High intensity low temperature (HILT) performance of space concentrator GaInP/GaInAs/Ge MJ SCs

    SciTech Connect (OSTI)

    Shvarts, Maxim Z., E-mail: shvarts@scell.ioffe.ru; Kalyuzhnyy, Nikolay A.; Mintairov, Sergey A.; Soluyanov, Andrei A.; Timoshina, Nailya Kh. [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya str., St.-Petersburg, 194021 (Russian Federation); Gudovskikh, Alexander S. [Saint-Petersburg Academic University - Nanotechnology Research and Education Centre RAS, St. Petersburg, 194021 (Russian Federation); Luque, Antonio [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya str., St.-Petersburg, 194021, Russia and Instituto de Energia Solar, Universidad Politecnica de Madrid, Madrid (Spain)

    2014-09-26T23:59:59.000Z

    In the work, the results of an investigation of GaInP/GaInAs/Ge MJ SCs intended for converting concentrated solar radiation, when operating at low temperatures (down to ?190 °C) are presented. A kink of the cell I-V characteristic has been observed in the region close to V{sub oc} starting from ?20°C at operation under concentrated sunlight. The causes for its occurrence have been analyzed and the reasons for formation of a built-in potential barrier for majority charge carriers at the n-GaInP/n-Ge isotype hetero-interface are discussed. The effect of charge carrier transport in n-GaInP/n-pGe heterostructures on MJ SC output characteristics at low temperatures has been studied including EL technique.

  6. Effect of silicon on ultra-low temperature toughness of Nb–Ti microalloyed cryogenic pressure vessel steels

    SciTech Connect (OSTI)

    Qiu, J.A. [Hubei Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Wu, K.M., E-mail: wukaiming2000@yahoo.com [Hubei Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Li, J.H. [Hubei Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Research and Development Center of WISCO, Wuhan 430080 (China); Hodgson, P.D. [Hubei Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220 (Australia); Hou, T.P. [Hubei Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Ding, Q.F. [Research and Development Center of WISCO, Wuhan 430080 (China)

    2013-09-15T23:59:59.000Z

    The effect of Si on the ultra-low temperature toughness of Nb–Ti microalloyed cryogenic pressure vessel steels was investigated by electron back-scattered diffraction and transmission electron microscope with energy dispersive spectroscopy. Equiaxed ferrite and bainite were obtained in the tempered steels with small Si additions. Nanosized Nb–Ti carbides (< 10 nm) were formed in the steel containing 0.05% Si, whereas much coarser carbides (> 30 nm) were found in the steel containing 0.47% Si. The ultra-low temperature toughness of the Nb–Ti microalloyed cryogenic pressure vessel steel was remarkably enhanced by the reduction in the Si content, which was attributed to the pre-existing iron carbide formation before the precipitation of nanosized Nb–Ti carbides during tempering. - Highlights: • Nanosized Nb-Ti carbides formed in the tempered steel with smaller Si addition. • Coarser Nb-Ti carbides formed in the tempered steel with more Si addition. • Pre-existing cememtites provide nucleation sites for Nb-Ti carbide precipitation. • Ultra-low temperature toughness was remarkably enhanced by Si content reduction.

  7. Low-Temperature Ozone Exposure Technique to Modulate the Stoichiometry of WO(x) Nanorods and Optimize the Electrochromic Performance

    SciTech Connect (OSTI)

    Lin, F.; Li, C. P.; Chen, G.; Tenent, R. C.; Wolden, C. A.; Gillaspie, D. T.; Dillon, A. C.; Richards, R. M.; Engtrakul, C.

    2012-06-29T23:59:59.000Z

    A low-temperature ozone exposure technique was employed for the post-treatment of WO{sub x} nanorod thin films fabricated from hot-wire chemical vapor deposition (HWCVD) and ultrasonic spray deposition (USD) techniques. The resulting films were characterized with x-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, UV-vis-NIR spectroscopy and x-ray photoelectron spectroscopy (XPS). The stoichiometry and surface crystallinity of the WO{sub x} thin films were subsequently modulated upon ozone exposure and thermal annealing without particle growth. The electrochromic performance was studied in a LiClO{sub 4}-propylene carbonate electrolyte, and the results suggest that the low-temperature ozone exposure technique is superior to the traditional high-temperature thermal annealing (employed to more fully oxidize the WO{sub x}). The optical modulation at 670 nm was improved from 35% for the as-deposited film to 57% for the film after ozone exposure at 150 C. The coloration efficiency was improved and the switching speed to the darkened state was significantly accelerated from 18.0 s for the as-deposited film to 11.8 s for the film after the ozone exposure. The process opens an avenue for low-temperature and cost-effective manufacturing of electrochromic films, especially on flexible polymer substrates.

  8. Low Temperature Facility Annual Technical Report (April 1, 2008 -March 31, 2009)

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    generator and from May, 2008 the helium gas is liquefied in the new helium liquefier L280. Besides nitrogen and about 23 liquid helium dewars), high pressure helium gas cylinders (about 1060 cylinders in the year 1970's and also to avoid the pressure buildup in the recovery network, a new 3" GI helium gas

  9. REVIEW OF SCIENTIFIC INSTRUMENTS 83, 034704 (2012) Low temperature laser scanning microscopy of a superconducting

    E-Print Network [OSTI]

    Anlage, Steven

    2012-01-01T23:59:59.000Z

    Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA of achievable accelerating gradients, has been continuously improving over the years. Niobium, either as a thin in high-temperature superconductors (HTS).6 The origins of the technique go back to electron-beam heating7

  10. Determination of iodine in organic compounds using low-temperature ammoniacal plasma of high-frequency discharge

    SciTech Connect (OSTI)

    Volodina, M.A.; Kutseva, N.K.

    1986-09-01T23:59:59.000Z

    This paper presents a method for the determination of iodine in organic compounds, based on the use of a low-temperature ammonial plasma of an electrodeless high frequency discharge. The method was tested on a large number of compounds, and is distinguished by simplicity of operation, rapidity, accuracy and applicability for simultaneous determination of iodine and palladium. The results of the simultaneous determination of iodine and palladium in organic compounds are shown. The relative standard deviation does not exceed 0.011. The duration of each determination is 15-20 min.

  11. Low-temperature study of array of dopant atoms on transport behaviors in silicon junctionless nanowire transistor

    SciTech Connect (OSTI)

    Wang, Hao; Han, Weihua, E-mail: weihua@semi.ac.cn; Li, Xiaoming; Zhang, Yanbo; Yang, Fuhua [Engineering Research Center for Semiconductor Integration Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2014-09-28T23:59:59.000Z

    We demonstrate temperature-dependent quantum transport characteristics in silicon junctionless nanowire transistor fabricated on Silicon-on-Insulator substrate by the femtosecond laser lithography. Clear drain-current oscillations originated from dopant-induced quantum dots are observed in the initial stage of the conduction for the silicon nanowire channel at low temperatures. Arrhenius plot of the conductance indicates the transition temperature of 30?K from variable-range hopping to nearest-neighbor hopping, which can be well explained under Mott formalism. The transition of electron hopping behavior is the interplay result between the thermal activation and the Coulomb interaction.

  12. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    SciTech Connect (OSTI)

    Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.; Meyer, Gerhard [IBM Research-Zurich, 8803 Rüschlikon (Switzerland)] [IBM Research-Zurich, 8803 Rüschlikon (Switzerland)

    2014-02-15T23:59:59.000Z

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  13. Low-temperature processable amorphous In-W-O thin-film transistors with high mobility and stability

    SciTech Connect (OSTI)

    Kizu, Takio; Aikawa, Shinya; Mitoma, Nobuhiko; Shimizu, Maki; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-04-14T23:59:59.000Z

    Thin-film transistors (TFTs) with a high stability and a high field-effect mobility have been achieved using W-doped indium oxide semiconductors in a low-temperature process (?150?°C). By incorporating WO{sub 3} into indium oxide, TFTs that were highly stable under a negative bias stress were reproducibly achieved without high-temperature annealing, and the degradation of the field-effect mobility was not pronounced. This may be due to the efficient suppression of the excess oxygen vacancies in the film by the high dissociation energy of the bond between oxygen and W atoms and to the different charge states of W ions.

  14. Charge-free low-temperature method of forming thin film-based nanoscale materials and structures on a substrate

    DOE Patents [OSTI]

    Hoffbauer, Mark (Los Alamos, NM); Mueller, Alex (Santa Fe, NM)

    2008-07-01T23:59:59.000Z

    A method of forming a nanostructure at low temperatures. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of at least one of nitrogen and oxygen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the plasma have an average kinetic energy in a range from about 1 eV to about 5 eV.

  15. Selected data for low-temperature (less than 90{sup 0}C) geothermal systems in the United States: reference data for US Geological Survey Circular 892

    SciTech Connect (OSTI)

    Reed, M.J.; Mariner, R.H.; Brook, C.A.; Sorey, M.L.

    1983-12-15T23:59:59.000Z

    Supporting data are presented for the 1982 low-temperature geothermal resource assessment of the United States. Data are presented for 2072 geothermal sites which are representative of 1168 low-temperature geothermal systems identified in 26 States. The low-temperature geothermal systems consist of 978 isolated hydrothermal-convection systems, 148 delineated-area hydrothermal-convection systems, and 42 delineated-area conduction-dominated systems. The basic data and estimates of reservoir conditions are presented for each geothermal system, and energy estimates are given for the accessible resource base, resource, and beneficial heat for each isolated system.

  16. OTS NOTE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN .METALS~ c3 Alexander941 OTS NOTE

  17. Characterization of Low Temperature Ferrite/Austenite Transformations in the Heat Affected Zone of 2205 Duplex Stainless Steel Arc Welds

    SciTech Connect (OSTI)

    Palmer, T A; Elmer, J W; Babu, S S; Vitek, J M

    2003-08-20T23:59:59.000Z

    Spatially Resolved X-Ray Diffraction (SRXRD) has been used to identify a previously unobserved low temperature ferrite ({delta})/austenite({gamma}) phase transformation in the heat affected zone (HAZ) of 2205 Duplex Stainless Steel (DSS) welds. In this ''ferrite dip'' transformation, the ferrite transforms to austenite during heating to peak temperatures on the order of 750 C, and re-transforms to ferrite during cooling, resulting in a ferrite volume fraction equivalent to that in the base metal. Time Resolved X-Ray Diffraction (TRXRD) and laser dilatometry measurements during Gleeble{reg_sign} thermal simulations are performed in order to verify the existence of this low temperature phase transformation. Thermodynamic and kinetic models for phase transformations, including both local-equilibrium and para-equilibrium diffusion controlled growth, show that diffusion of substitutional alloying elements does not provide a reasonable explanation for the experimental observations. On the other hand, the diffusion of interstitial alloying elements may be rapid enough to explain this behavior. Based on both the experimental and modeling results, two mechanisms for the ''ferrite dip'' transformation, including the formation and decomposition of secondary austenite and an athermal martensitic-type transformation of ferrite to austenite, are considered.

  18. General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation

    SciTech Connect (OSTI)

    Van Gorder, Robert A., E-mail: rav@knights.ucf.edu [Department of Mathematics, University of Central Florida, Orlando, Florida 32816-1364 (United States)

    2014-06-15T23:59:59.000Z

    In his study of superfluid turbulence in the low-temperature limit, Svistunov [“Superfluid turbulence in the low-temperature limit,” Phys. Rev. B 52, 3647 (1995)] derived a Hamiltonian equation for the self-induced motion of a vortex filament. Under the local induction approximation (LIA), the Svistunov formulation is equivalent to a nonlinear dispersive partial differential equation. In this paper, we consider a family of rotating vortex filament solutions for the LIA reduction of the Svistunov formulation, which we refer to as the 2D LIA (since it permits a potential formulation in terms of two of the three Cartesian coordinates). This class of solutions holds the well-known Hasimoto-type planar vortex filament [H. Hasimoto, “Motion of a vortex filament and its relation to elastica,” J. Phys. Soc. Jpn. 31, 293 (1971)] as one reduction and helical solutions as another. More generally, we obtain solutions which are periodic in the space variable. A systematic analytical study of the behavior of such solutions is carried out. In the case where vortex filaments have small deviations from the axis of rotation, closed analytical forms of the filament solutions are given. A variety of numerical simulations are provided to demonstrate the wide range of rotating filament behaviors possible. Doing so, we are able to determine a number of vortex filament structures not previously studied. We find that the solution structure progresses from planar to helical, and then to more intricate and complex filament structures, possibly indicating the onset of superfluid turbulence.

  19. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction

    SciTech Connect (OSTI)

    Chou, M.I.M.

    1991-01-01T23:59:59.000Z

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. The organic sulfur removal has been achieved only with highly oxidized Illinois coals containing high sulfatic sulfur. A logical explanation for this observation is vital to successful process optimization for the use of Illinois coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal pre-oxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The goals of this research are: (1) to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC, (2) to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation, and (3) to determine the suitability of Illinois coals for use in the PCE desulfurization process. This project involves the Illinois State Geological Survey (ISGS), Eastern Illinois University (EIU), the University of Illinois-Urbana/Champaign (UI-UC), and the University of Kentucky, Lexington (UK). This is the first year of a two-year project.

  20. Nanoparticles as Reactive Precursors: Synthesis of Alloys, Intermetallic Compounds, and Multi-Metal Oxides Through Low-Temperature Annealing and Conversion Chemistry

    E-Print Network [OSTI]

    Bauer, John C.

    2010-07-14T23:59:59.000Z

    of metal salts in an aqueous solution and stabilized by PVP (polyvinylpyrrolidone), were mixed into nanoparticle composites in stoichometric proportions. The composite mixtures were then annealed at relatively low temperatures to form alloy...