Powered by Deep Web Technologies
Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Northwest Geothermal Company | Open Energy Information  

Open Energy Info (EERE)

Northwest Geothermal Company Northwest Geothermal Company Jump to: navigation, search Name Northwest Geothermal Company Place Bend, Oregon Zip 97701 1942 Sector Geothermal energy Product Focused on geothermal power projects. Coordinates 44.05766°, -121.315549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.05766,"lon":-121.315549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Special Provisions Affecting Gas, Water, or Pipeline Companies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Savings Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina) Special Provisions Affecting Gas, Water, or Pipeline...

3

Statistics of interstate natural gas pipeline companies, 1990  

Science Conference Proceedings (OSTI)

This report presents financial and operating information of all major interstate natural gas pipeline companies that operated in the United States during 1990. (VC)

Not Available

1992-04-09T23:59:59.000Z

4

Gas supplies of interstate natural gas pipeline companies, 1986  

SciTech Connect

The publication provides information on the total reserves, production, and deliverability capabilities of the 90 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company-owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing State and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico. 7 figs., 18 tabs.

Not Available

1987-12-18T23:59:59.000Z

5

Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation confers the rights and privileges of telegraph and telephone companies (S.C. Code 58-9) on pipeline and water companies, and contains several additional provisions pertaining to...

6

A simulated investment analysis for a gas pipeline company  

Science Conference Proceedings (OSTI)

The supply and demand schedules for gas pipeline companies are probabilistic in form and dynamistic in nature. These factors, along with the other uncertainties associated with gas supply investment decisions, must be considered in order to properly ...

Hal Miller

1973-01-01T23:59:59.000Z

7

Recent market activities of major interstate pipeline companies  

Science Conference Proceedings (OSTI)

In addition to analyzing trends in wellhead purchases over the past year, this study also presents information and analysis of natural gas purchases from other pipeline companies, and sales to several types of customers. Activities of 20 major interstate pipeline companies were analysed in response to market developments over the past 4 years and over the past year in particular. This study includes an analysis of trends in natural gas sales and of the effects of increasing prices since 1979. It includes separate analyses of direct industrial sales, sales to major pipeline companies, and other sales for resale, as well as analyses of the volumes transported for sale to others. It also reports on purchase patterns in general since 1979 and on purchase projection patterns for particular types of gas since 1981. The differing behavior of pipeline companies in purchasing high-cost gas in the current market is also analyzed. (PSB)

Not Available

1984-01-01T23:59:59.000Z

8

Gas supplies of interstate natural gas pipeline companies 1985  

SciTech Connect

This publication provides information on the total reserves, production, and deliverability capabilities of the 91 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing state and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico and LNG from Algeria. 7 figs., 18 tabs.

Not Available

1986-11-14T23:59:59.000Z

9

Gas supplies of interstate natural gas pipeline companies, 1984  

SciTech Connect

This publication provides information on the total reserves, production, and deliverability capabilities of 89 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company-owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing state and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico and LNG from Algeria. 8 figs., 18 tabs.

Price, R.

1985-12-04T23:59:59.000Z

10

Comparison of Firm Commitments by Pipeline Company  

U.S. Energy Information Administration (EIA)

CNG Transmission Corp. 22 NE 3,736,840 4,750,112 Columbia Gas Transmission Corporation 21 NE 5,183,990 8,911,651 Columbia Gulf Transmission Company 70 NE 1,277,200 ...

11

Near-term local distribution companies problems and issues: A northwest perspective  

Science Conference Proceedings (OSTI)

The Oregon Public Utility Commission (OPUC), located in Salem, Oregon, regulates rates, terms, and conditions of service for the investor-owned natural gas and electric public utilities operating in the state. In addition to the sales and transportation services provided by the state`s local distribution companies (LDCs), the two major interstate pipelines serving Oregon deliver significant natural gas volumes directly to individual customers. Attachment A illustrates the sales and transportation volume pattern for an Oregon LDC over the recent industry restructuring period.

Smith, J.H.; Jasso, A.

1995-12-31T23:59:59.000Z

12

INVESTIGATION OF PIPELINES INTEGRITY ASSOCIATED WITH PUMP MODULES VIBRATION FOR PUMPING STATION 9 OF ALYESKA PIPELINE SERVICE COMPANY  

Science Conference Proceedings (OSTI)

Since the operation of PS09 SR module in 2007, it has been observed that there is vibration in various parts of the structures, on various segments of piping, and on appurtenance items. At DOT Pipeline and Hazardous Materials Safety Administration (PHMSA) request, ORNL Subject Matter Experts support PHMSA in its review and analysis of the observed vibration phenomenon. The review and analysis consider possible effects of pipeline design features, vibration characteristics, machinery configuration, and operating practices on the structural capacity and leak tight integrity of the pipeline. Emphasis is placed on protection of welded joints and machinery against failure from cyclic loading. A series of vibration measurements were carried out by the author during the site visit to PS09, the power of the operating pump during the data collection is at about 2970KW, which is less than that of APSC's vibration data collected at 3900KW. Thus, a first order proportional factor of 4900/2970 was used to project the measured velocity data to that of APSC's measurement of the velocity data. It is also noted here that the average or the peak-hold value of the measured velocity data was used in the author's reported data, and only the maximum peak-hold data was used in APSC's reported data. Therefore, in some cases APSC's data is higher than the author's projective estimates that using the average data. In general the projected velocity data are consistent with APSC's measurements; the examples of comparison at various locations are illustrated in the Table 1. This exercise validates and confirms the report vibration data stated in APSC's summary report. After the reinforcement project for PS09 Station, a significant reduction of vibration intensity was observed for the associated pipelines at the SR Modules. EDI Co. provided a detailed vibration intensity investigation for the newly reinforced Pump Module structures and the associated pipelines. A follow-up review of EDI's report was carried out by the author. The comments and questions regarding the EDI report are categorized into four subjects, namely (1) piping vibration severity, (2) pulsation and its impact on the PS09 structure and piping, (3) strain-gage stress history profiles, and (4) the cavitation potential investigation, where the questions are stated at the end of the comments for further follow-on investigations.

Wang, Jy-An John [ORNL

2009-09-01T23:59:59.000Z

13

What's your idea?: a case study of a grassroots innovation pipeline within a large software company  

Science Conference Proceedings (OSTI)

Establishing a grassroots innovation pipeline has come to the fore as strategy for nurturing innovation within large organizations. A key element of such pipelines is the use of an idea management system that enables and encourages community ideation ... Keywords: creativity, idea management, innovation, organizations

Brian P. Bailey; Eric Horvitz

2010-04-01T23:59:59.000Z

14

Natural gas pipeline technology overview.  

Science Conference Proceedings (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

15

National Account Energy Alliance Final Report for the Basin Electric Project at Northern Border Pipeline Company's Compressor Station #7, North Dakota  

Science Conference Proceedings (OSTI)

A field research test and verification project was conducted at the recovered energy generation plant at Northern Border Pipeline Company Compressor Station #7 (CS#7) near St. Anthony. Recovered energy generation plant equipment was supplied and installed by ORMAT Technologies, Inc. Basin Electric is purchasing the electricity under a purchase power agreement with an ORMAT subsidiary, which owns and operates the plant.

Sweetzer, Richard [Exergy Partners Corp.; Leslie, Neil [Gas Technology Institute

2008-02-01T23:59:59.000Z

16

Bridging Knowledge Gaps in Engineering Companies-The Case of Pipeline River Crossings in Greece  

Science Conference Proceedings (OSTI)

The introduction of Knowledge Management (KM) processes is suggested herein for bridging knowledge gaps observed during long-term and high complexity engineering projects, like the Natural Gas Project (NGP) of Greece, with a view to deploying a dedicated ... Keywords: Business Process Modeling, Engineering Company, Knowledge Gap, Natural Gas, Project Management, Technology Transfer

Fragiskos A. Batzias; Philip-Mark P. Spanidis

2008-06-01T23:59:59.000Z

17

EIA - Natural Gas Pipeline System - Midwest Region  

U.S. Energy Information Administration (EIA)

Natural Gas Pipelines in the Midwest Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links. Overview Twenty-six interstate and at ...

18

Pipeline and Gas Journal`s 1998 annual pipeline directory and equipment guide  

Science Conference Proceedings (OSTI)

The tables provide information on line pipe sizes, walls, grades, and manufacturing processes. Data are presented by manufacturer within each country. Also tabulated are engineering and construction service companies, crude oil pipeline companies, products pipeline companies, natural gas pipeline companies, gas distribution companies, and municipal gas systems in the US. There is also a Canadian and an international directory.

NONE

1998-09-01T23:59:59.000Z

19

Environmental Assessment for the Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 Environmental Assessment for the Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico July 24, 2002 Department of Energy National Nuclear Security Administration Office of Los Alamos Site Operations Proposed Pipeline Easement Environmental Assessment DOE OLASO July 24, 2002 iii CONTENTS ACRONYMS AND TERMS................................................................................................................vii EXECUTIVE SUMMARY...................................................................................................................ix 1.0 PURPOSE AND NEED................................................................................................................1

20

EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Segment Intrastate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Intrastate Natural Gas Pipeline Segment Overview Intrastate natural gas pipelines operate within State borders and link natural gas producers to local markets and to the interstate pipeline network. Approximately 29 percent of the total miles of natural gas pipeline in the U.S. are intrastate pipelines. Although an intrastate pipeline system is defined as one that operates totally within a State, an intrastate pipeline company may have operations in more than one State. As long as these operations are separate, that is, they do not physically interconnect, they are considered intrastate, and are not jurisdictional to the Federal Energy Regulatory Commission (FERC). More than 90 intrastate natural gas pipelines operate in the lower-48 States.

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

22

PACIFIC NORTHWEST CYBER SUMMIT  

SciTech Connect

On March 26, 2013, the Snohomish County Public Utility District (PUD) and the U.S. Department of Energys (DOEs) Pacific Northwest National Laboratory (PNNL) jointly hosted the Pacific Northwest Cyber Summit with the DOEs Office of Electricity Delivery and Energy Reliability, the White House, Washington State congressional delegation, Washington State National Guard, and regional energy companies.

Lesperance, Ann M.; Matlock, Gordon W.; Becker-Dippmann, Angela S.; Smith, Karen S.

2013-08-07T23:59:59.000Z

23

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

Gasoline and Diesel Fuel Update (EIA)

based on data through 20072008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the...

24

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

25

Natural Gas Pipeline and System Expansions, 1997-2000  

U.S. Energy Information Administration (EIA)

complement CNGs planned improvement to its system for Pipeline Companys Express 500 is one such proposal, with flowing gas between Leidy, Pennsylvania, ...

26

Pipeline Safety  

Science Conference Proceedings (OSTI)

Pipeline Safety. Summary: Our goal is to provide standard test methods and critical data to the pipeline industry to improve safety and reliability. ...

2012-11-13T23:59:59.000Z

27

Interstate Natural Gas Pipelines (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This statute confers upon the Utilities Board the authority to act as an agent of the federal government in determining pipeline company compliance with federal standards within the boundaries of...

28

GAS PIPELINE PIGABILITY  

Science Conference Proceedings (OSTI)

In-line inspection equipment is commonly used to examine a large portion of the long distance transmission pipeline system that transports natural gas from well gathering points to local distribution companies. A piece of equipment that is inserted into a pipeline and driven by product flow is called a ''pig''. Using this term as a base, a set of terms has evolved. Pigs that are equipped with sensors and data recording devices are called ''intelligent pigs''. Pipelines that cannot be inspected using intelligent pigs are deemed ''unpigable''. But many factors affect the passage of a pig through a pipeline, or the ''pigability''. The pigability pipeline extend well beyond the basic need for a long round hole with a means to enter and exit. An accurate assessment of pigability includes consideration of pipeline length, attributes, pressure, flow rate, deformation, cleanliness, and other factors as well as the availability of inspection technology. All factors must be considered when assessing the appropriateness of ILI to assess specific pipeline threats.

Ted Clark; Bruce Nestleroth

2004-04-01T23:59:59.000Z

29

Changes in the Pipeline Transportation Market  

Reports and Publications (EIA)

This analysis assesses the amount of capacity that may be turned back to pipeline companies, based on shippers' actions over the past several years and the profile of contracts in place as of July 1, 1998. It also examines changes in the characteristics of contracts between shippers and pipeline companies.

Information Center

1999-04-01T23:59:59.000Z

30

Workgroup #2 Emerging Solutions and Technologies How can we keep the pipeline full of  

E-Print Network (OSTI)

Workgroup #2 Emerging Solutions and Technologies ­ How can we keep the pipeline full of energy to keep the pipeline full of energy efficiency innovations for use in the Pacific Northwest." Our Phase 1

31

Pipeline Morphing and Virtual Pipelines  

E-Print Network (OSTI)

Pipeline morphing is a simple but effectivetechnique for reconfiguring pipelined FPGA designs at run time. By overlapping computation and reconfiguration, the latency associated with emptying and refilling a pipeline can be avoided. Weshowhow morphing can be applied to linear and mesh pipelines at both word-level and bit-level, and explain how this method can be implemented using Xilinx 6200 FPGAs. We also present an approach using morphing to map a large virtual pipeline onto a small physical pipeline, and the trade-offs involved are discussed.

W. Luk; N. Shirazi; S. R. Guo; P. Y. K. Cheung

1997-01-01T23:59:59.000Z

32

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Permeability and Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J.G. Blencoe*, S. Babu*, and P. S. Korinko** * Oak Ridge National Laboratory * Savannah River National Laboratory August 30, 2005 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Partners and Collaborators * Oak Ridge National Laboratory - Project lead * Savannah River National Laboratory - Low H 2 pressure permeation test * Edison Welding Institute - Pipeline materials * Lincoln Electric Company - Welding electrode and weld materials for pipelines * Trans Canada - Commercial welding of pipelines and industry expectations * DOE Pipeline Working Group and Tech Team activities - FRP Hydrogen Pipelines - Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use

33

Activity based scheduling simulator for product transport using pipeline networks  

Science Conference Proceedings (OSTI)

Oil companies often rely on scheduling algorithms to increase the throughput of oil derivatives and other products which are transported through pipeline networks. This work presents an architecture for a scheduling simulator for pipeline networks, and ...

Danilo Shibata; Daniel Alfenas; Ricardo Guiraldelli; Marcos R. Pereira-Barretto; Fernando Marcellino

2012-12-01T23:59:59.000Z

34

Deliverability on the Interstate Natural Gas Pipeline System  

U.S. Energy Information Administration (EIA)

pipeline companies are handling the secondary market for The overall scope and content of the report was ... Average Length of Long-Term Firm ...

35

EIA - Natural Gas Pipeline Network - Natural Gas Market Centers...  

Gasoline and Diesel Fuel Update (EIA)

Corridors, 2009 DCP DCP Midstream Partners LP; EPGT Enterprise Products Texas Pipeline Company. Note: The relative widths of the various transportation corridors are based...

36

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

37

Clean Development Mechanism Pipeline | Open Energy Information  

Open Energy Info (EERE)

Clean Development Mechanism Pipeline Clean Development Mechanism Pipeline Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Clean Development Mechanism Pipeline Agency/Company /Organization: UNEP-Risoe Centre, United Nations Environment Programme Sector: Energy, Land Topics: Finance, Implementation, Background analysis Resource Type: Dataset Website: www.cdmpipeline.org/overview.htm Clean Development Mechanism Pipeline Screenshot References: CDM Pipeline[1] Overview "The CDM/JI Pipeline Analysis and Database contains all CDM/JI projects that have been sent for validation/determination. It also contains the baseline & monitoring methodologies, a list of DOEs and several analyses. This monthly newsletter shows a sample of the analysis in the Pipeline. If you want more information, then look into the left column and click on the

38

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

E-Print Network (OSTI)

Hydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory, Columbus, Ohio (After-service pipeline materials) Ms. M. A. Quintana of Lincoln Electric Company, Cleveland

39

Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): Degradation Mechanisms of Urea Selective Catalytic Reduction Technology  

DOE Green Energy (OSTI)

Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications (2 total), reports (3 total including this Final Report), and presentations (5 total).

Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

2011-12-13T23:59:59.000Z

40

EIA - Natural Gas Pipeline System - Southwest Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southwest Region Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily exporters of the region's natural gas production to other parts of the country and Mexico, while an extensive Gulf of Mexico and intrastate natural gas pipeline network is the main conduit for deliveries within the region. More than 56,000 miles of natural gas pipeline on more than 66 intrastate natural gas pipeline systems (including offshore-to-onshore and offshore Gulf of Mexico pipelines) deliver natural gas to the region's local natural gas distribution companies and municipalities and to the many large industrial and electric power facilities located in the region.

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

EIA - Natural Gas Pipeline System - Southeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southeast Region Southeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southeast Region Overview | Transportation to Atlantic & Gulf States | Gulf of Mexico Transportation Corridor | Transportation to the Northern Tier | Regional Pipeline Companies & Links Overview Twenty-three interstate, and at least eight intrastate, natural gas pipeline companies operate within the Southeast Region (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee). Fifteen of the twenty-one interstate natural gas pipelines originate in the Southwest Region and receive most of their supplies from the Gulf of Mexico or from the States of Texas and/or Louisiana.

42

EIA - Natural Gas Pipeline System - Central Region  

U.S. Energy Information Administration (EIA) Indexed Site

Central Region Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve interstate natural gas pipeline systems enter the region from the south and east while four enter from the north carrying Canadian supplies. The average utilization rates on those shipping Canadian natural gas tend to be higher than those carrying domestic supplies.

43

Pipeline ADC Design Methodology  

E-Print Network (OSTI)

Scaling vs. R. Figure 4.8 Pipeline ADC Structures. Figure2.4 A Pipelined ADC. Figure 3.1 Pipeline ADC Transfer Curve.Modes (b) data latency in pipeline ADC Figure 3.3 Detailed

Zhao, Hui

2012-01-01T23:59:59.000Z

44

NIST MSQC Pipeline  

Science Conference Proceedings (OSTI)

NIST MSQC Pipeline. Software for Monitoring LC-MS Performance. ... Installation Instructions. 1. Download the latest NIST MSQC Pipeline release. ...

2013-07-17T23:59:59.000Z

45

Natural gas annual 1993 supplement: Company profiles  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

Not Available

1995-02-01T23:59:59.000Z

46

Can I obtain a list of companies involved in the natural gas ...  

U.S. Energy Information Administration (EIA)

Can I obtain a list of companies involved in the natural gas industry, such as utilities, pipeline companies, and storage operators? Yes. EIA collects and publishes a ...

47

Finding of No Significant Impact for the Proposed Issuance of an Easement to the Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline Within Los Alamos National Laboratory, Los Alamos, New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Nuclear Security Administration Finding of No Significant Impact for the Proposed Issuance of an Easement to the Public Service Company of New Mexico for the Construction and Operation of a 120inch Natural Gas Pipeline Within Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Office of Los Alamos Site Operations 528 35th Street Los Alamos, NM 87544 DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECUIRTY ADMINISTRATION FINDING OF NO SIGNIFICANT IMPACT Proposed Issuance of an Easement to the Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico FINAL ENVIRONMENTAL ASSESSMENT: The Environmental Assessment (EA) for the

48

Final Report of a CRADA Between Pacific Northwest National Laboratory and the Ford Motor Company (CRADA No. PNNL/265): Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials  

SciTech Connect

Reducing NOx emissions and particulate matter (PM) are primary concerns for diesel vehicles required to meet current LEV II and future LEV III emission standards which require 90+% NOx conversion. Currently, urea SCR as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) are being used for emission control system components by Ford Motor Company for 2010 and beyond diesel vehicles. Because the use of this technology for vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions. This is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations, and to develop a good understanding of deactivation mechanisms that can be used to develop improved catalyst materials. In addition to NOx and PM, the hydrocarbon (HC) emission standards are expected to become much more stringent during the next few years. Meanwhile, the engine-out HC emissions are expected to increase and/or be more difficult to remove. Since HC can be removed only when the catalyst becomes warm enough for its oxidation, three-way catalyst (TWC) and diesel oxidation catalyst (DOC) formulations often contain proprietary zeolite materials to hold the HC produced during the cold start period until the catalyst reaches its operating temperature (e.g., >200C). Unfortunately, much of trapped HC tends to be released before the catalyst reaches the operating temperature. Among materials effective for trapping HC during the catalyst warm-up period, siliceous zeolites are commonly used because of their high surface area and high stability under typical operating conditions. However, there has been little research on the physical properties of these materials related to the adsorption and release of various hydrocarbon species found in the engine exhaust. For these reasons, automakers and engine manufacturers have difficulty improving their catalytic converters for meeting the stringent HC emission standards. In this collaborative program, scientists and engineers in the Institute for Integrated Catalysis at Pacific Northwest National Laboratory and at Ford Motor Company have investigated laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We have also studied materials effective for the temporary storage of HC species during the cold-start period. In particular, we have examined the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measured the kinetic parameters to update Fords HC adsorption model. Since this CRADA has now been completed, in this final report we will provide brief summaries of most of the work carried out on this CRADA over the last several years.

Gao, Feng; Kwak, Ja Hun; Lee, Jong H.; Tran, Diana N.; Peden, Charles HF; Howden, Ken; Cheng, Yisun; Lupescu, Jason; Cavattaio, Giovanni; Lambert, Christine; McCabe, Robert W.

2013-02-14T23:59:59.000Z

49

New Northeast natural gas pipeline capacity comes on-line - Today ...  

U.S. Energy Information Administration (EIA)

Solar Energy in Brief ... Ohio to York County, Pennsylvania. 300 Line Expansion Project, operated by Tennessee Gas Pipeline Company, began service on Nov 1, 2011.

50

Pipeline Safety (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

51

Pipeline Operations Program (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Pipeline Operations Program regulates the construction, acquisition, abandonment and interconnection of natural gas pipelines, as well as, the transportation and use of natural gas supplies.

52

Hydrogen Pipeline Safety  

Science Conference Proceedings (OSTI)

... data, we can model the performance of pipeline materials and make predictions about the safe operating limits of pipelines carrying pressurized ...

2013-01-31T23:59:59.000Z

53

Gas Pipeline Safety (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

54

Pipeline Safety (South Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

55

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

U.S. Energy Information Administration (EIA) Indexed Site

Overview and Links Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the transportation of natural gas from one location to another within the United States has become a relatively seamless operation. While intrastate pipeline systems often transports natural gas from production areas directly to consumers in local markets, it is the interstate pipeline system's long-distance, high-capacity trunklines that supply most of the major natural gas markets in the United States. Of the six geographic regions defined in this analysis, the Southwest Region contains the largest number of individual natural gas pipeline systems (more than 90) and the highest level of pipeline mileage (over 106,000).

56

Natural gas pipeline capacity additions in 2011 - Today in ...  

U.S. Energy Information Administration (EIA)

The U.S. Energy Information Administration estimates that U.S. natural gas pipeline companies added about 2,400 miles of new pipe to the grid as part ...

57

Natural gas annual 1992: Supplement: Company profiles  

SciTech Connect

The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

Not Available

1994-01-01T23:59:59.000Z

58

Communication systems vital to Colombian pipeline  

Science Conference Proceedings (OSTI)

Construction of the Centro Oriente Gas Pipeline represents a major step in Colombia`s goal to strengthen the emerging natural gas business. With construction beginning in 1995, the Centro Oriente is scheduled to begin operation early this year transporting 150 MMcf/d. The 779-kilometer (484-mile) pipeline ranging in diameter from 22-inch to 12-inches, provides the central transportation link between major gas suppliers in both the northern and western regions of Colombia and new markets throughout their immediate regions as well as in the central and eastern regions. TransCanada, operating company for the Centro Oriente pipeline, will develop and manage the support organizations required to operate and maintain the system. The central control system for the CPC is the Gas SCADA system, ADACS, provided by Bristol Babcock Inc. (BBI). This control system provides the data acquisition and control capabilities necessary to operate the entire pipeline safely and efficiently from Burcaramanga.

Serrato, E. [Ecopetrol, Bogota (Colombia); Mailloux, R. [Bristol Babcock Inc., Watertown, CT (United States)

1997-02-01T23:59:59.000Z

59

Construction advances on gas pipeline in Germany  

Science Conference Proceedings (OSTI)

This paper reports that construction is well under way on a pipeline to transport gas form the North Sea and Russia into the heart of Germany. Mitte Deutchland Anbindungs Leitung (Midal) gas pipeline, under construction for Winershall AG and partner Gazprom, the Russian state gas company, will extend more than 640 km from the North Sea coast to Ludwigshafen in Southwest Germany. en route, the line will make more than 100 river crossings. Midal will connect with the joint ventures' Sachesen-Thurigen-Erdgas Leitung (Stegal) pipeline, which moves Russian gas into eastern Germany and Wintershall's gas storage site at Rehden. Wintershall Erdgas Handelshaus GmbH, set up to manage the joint venture project, divided the pipeline route into six parts, hiring different contractors to lay each section.

Not Available

1992-09-28T23:59:59.000Z

60

EIA - Natural Gas Pipeline Network - Regulatory Authorities  

U.S. Energy Information Administration (EIA) Indexed Site

Regulatory Authorities Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it, interstate natural gas pipeline companies were required to restructure their operations by November 1993 and split-off any non-regulated merchant (sales) functions from their regulated transportation functions. This new requirement meant that interstate natural gas pipeline companies were allowed to only transport natural gas for their customers. The restructuring process and subsequent operations have been supervised closely by FERC and have led to extensive changes throughout the interstate natural gas transportation segment which have impacted other segments of the industry as well.

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Petroleum Pipeline Eminent Domain Permit Procedures serve to protect Georgia's natural and environmental resources by requiring permits be issued by the Director of the Environmental Protection Division prior to any petroleum or petroleum product pipe company acquiring property or interests by eminent domain. Monitoring conditions will be issued with

62

Components in the Pipeline  

Science Conference Proceedings (OSTI)

Scientists commonly describe their data processing systems metaphorically as software pipelines. These pipelines input one or more data sources and apply a sequence of processing steps to transform the data and create useful results. While conceptually simple, pipelines often adopt complex topologies and must meet stringent quality of service requirements that place stress on the software infrastructure used to construct the pipeline. In this paper we describe the MeDICi Integration Framework, which is a component-based framework for constructing complex software pipelines. The framework supports composing pipelines from distributed heterogeneous software components and provides mechanisms for controlling qualities of service to meet demanding performance, reliability and communication requirements.

Gorton, Ian; Wynne, Adam S.; Liu, Yan (Jenny); Yin, Jian

2011-02-24T23:59:59.000Z

63

Coal slurry pipelines: a maze of rights  

SciTech Connect

A survey of coal slurry pipeline projects, discussed at the 4th Annual International Slurry Transportation Conference showed that Energy Transportation Systems Inc. has effectively solved the right-of-way problem for its 1400 mi line from Wyoming's Powder River Basin and expects to have an environmental impact statement completed within 30 mo and have the pipeline in operation by 1983. San Marco Pipeline Co., is developing a source of water from wells drilled near Alamosa, Colo., for use in a proposed line from Walsenburg, Colo., to Houston. The Alton pipeline from the Alton coal field in southern Utah to power stations in southern Nevada is delayed by right-of-way needs through federal land and by changing environmental requirements. Florida Gas Co., is working on alternative projects to bring coal to Florida by pipeline. Northwest Energy Co.'s proposed slurry line from Gillette, Wyo., to Boise, Idaho, and Boardman, Oreg., is in a holding position. Texas Eastern Transmission Co. hopes to have a 1300 mi 38 in. line in operation in 1985 from Wyoming's Powder River Basin to the Houston area.

1979-08-01T23:59:59.000Z

64

Gas Pipelines:- long, thin, bombs?  

Science Conference Proceedings (OSTI)

... Gas Pipelines:- long, thin, bombs? Gas pipelines attract substantial reseach to improve safety and cut costs. They operate ...

65

2 Breakthroughs | Pacific Northwest National Laboratory Published by: Pacific Northwest National  

E-Print Network (OSTI)

of FreedomCAR and Vehicle Technologies by performing materials research with auto and truck manufacturers for energy-efficient vehicles Notable achievements 5 PNNL welcomes four new Lab Fellows 5 PNNL wins four of Energy. Northwest utilities, appliance manufacturers and technology companies also are supporting

66

Pacific Northwest National Laboratory  

NLE Websites -- All DOE Office Websites

Pacific Northwest National Laboratory Skip to Main Content U.S. Department of Energy Search PNNL Search PNNL Home About Research Publications Jobs News Contacts Featured Research...

67

Keystone XL pipeline update  

Energy.gov (U.S. Department of Energy (DOE))

Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

68

Northwest Energy Angel Group | Open Energy Information  

Open Energy Info (EERE)

Northwest Energy Angel Group Northwest Energy Angel Group Place Seattle, Washington Zip 98195 Product Membership organisation of individual investors in the Pacific Northwest providing investment capital, strategic advice and mentoring to early-stage clean energy companies. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

Pipeline integrity programs help optimize resources  

SciTech Connect

Natural Gas Pipeline Co. of America has developed an integrity program. NGPL operates approximately 13,000 miles of large-diameter parallel gas pipelines, which extend from traditional supply areas to the Chicago area. Line Number 1, the 24-in. Amarillo-to-Chicago mainline, was built in 1931, and parts of it are still in operation today. More than 85% of the NGPL systems is more than 25 years old, and continues to provide very reliable service. The company operated for many years with specialized crews dedicated to pipeline systems, and a corrosion department. Under this organization, employees developed an intimate knowledge of the pipeline and related integrity issues. NGPL relied on this knowledge to develop its integrity program. The risk assessment program is a very valuable tool for identifying areas that may need remedial work. However, it is composed of many subjective evaluations and cannot predict failure nor ensure good performance. The program is an excellent data management tool that enables a pipeline operator to combine all available information needed to make integrity decisions. The integrity of a pipeline is continually changing, and any program should be updated on a regular basis.

Dusek, P.J. (Natural Gas Pipeline Co. of America, Lombard, IL (United States))

1994-03-01T23:59:59.000Z

70

Energy-efficient pipelines  

E-Print Network (OSTI)

We discuss the design of energy-efficient pipelines for asynchronous VLSI architectures. To maximize throughput in asynchronous pipelines it is often necessary to insert buffer stages, increasing the energy overhead. Instead of optimizing pipelines for minimum energy or maximum throughput, we consider a joint energy-time metric of the form ? ?,where?is the energy per operation and ? is the time per operation. We show that pipelines optimized for the ? ? energy-time metric may need fewer buffer stages and we give bounds when such stages can be removed. We present several common asynchronous pipeline structures and their energy-time optimized solutions. 1.

John Teifel; David Fang; David Biermann; Clint Kelly; Rajit Manohar

2002-01-01T23:59:59.000Z

71

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network (OSTI)

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

Alexander Bolonkin; Richard Cathcart

2007-01-05T23:59:59.000Z

72

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Mileage...  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Natural Gas > About U.S. Natural Gas Pipelines > Natural Gas Pipeline Mileage by State About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

73

EIA - Natural Gas Pipeline Network - Interstate Pipelines Segment  

Gasoline and Diesel Fuel Update (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > Interstate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through...

74

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

75

Renewable Energy Pipeline Development Terms of Reference | Open Energy  

Open Energy Info (EERE)

Renewable Energy Pipeline Development Terms of Reference Renewable Energy Pipeline Development Terms of Reference Jump to: navigation, search Tool Summary Name: Renewable Energy Pipeline Development Terms of Reference Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy, Biomass, Hydro, Solar, Wind Topics: Implementation Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: Renewable Energy Pipeline Development Terms of Reference[1] Resources Preparation of Mini-hydro Private Power Projects Off-Grid Village Hydro Subproject Preparation Off-Grid Subprojects Pipeline Development Development of Wind Farm Projects - Local Consultants Bagasse/Rice Husk Co-generation Project Preparation Biomass Cogeneration Projects Preparation Design of a PV Pilot Concession

76

The Noao Newfirm Pipeline  

E-Print Network (OSTI)

The NOAO NEWFIRM Pipeline produces instrumentally calibrated data products and data quality measurements from all exposures taken with the NOAO Extremely Wide-Field Infrared Imager (NEWFIRM) at the KPNO Mayall 4-meter telescope. We describe the distributed nature of the NEWFIRM Pipeline, the calibration data that are applied, the data quality metadata that are derived, and the data products that are delivered by the NEWFIRM Pipeline.

Swaters, R A; Dickinson, M E

2009-01-01T23:59:59.000Z

77

Product Pipeline Reports Tutorial  

Gasoline and Diesel Fuel Update (EIA)

Home > Petroleum > Petroleum Survey Forms> Petroleum Survey Forms Tutorial Product Pipeline Reports Tutorial Content on this page requires a newer version of Adobe Flash Player....

78

Pipeline Construction Guidelines (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This division of the Utility Regulatory Commission regulates the construction of any segment of an interstate pipeline on privately owned land in Indiana. The division has provisions for...

79

Liquefaction and Pipeline Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

factors add 20 percent to liquefaction plant total installed cost 6 Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for current urban and...

80

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...  

Gasoline and Diesel Fuel Update (EIA)

through 20072008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary...

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Pipeline under construction Sea Proposed/planned pipeline Possible ...  

U.S. Energy Information Administration (EIA)

Arab Gas Pipeline Maghreb-Europe GME Shah-Deniz Statfjord Ormen Lange TrollTTrollroll ... Greece-Italy Interconnector Turkey-Greece Interconnector South Caucasus Pipeline

82

Aspen Pipeline | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Aspen Pipeline Jump to: navigation, search Name Aspen Pipeline Place Houston, Texas Zip 77057...

83

Natural Gas Pipeline Safety (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This article states minimum safety standards for the transportation of natural gas by pipeline and reporting requirements for operators of pipelines.

84

Questions and Issues on Hydrogen Pipelines: Pipeline Transmission of Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Issues on Hydrogen Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736 km CO/Syngas 61 km TOTAL 8200 km Pipeline Inventory 2004 Asie Pacific America Europe Pipeline Transmission of Hydrogen --- 3 Copyright: Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special structures River Crossings (culvert): 6 (Rhein, Ruhr, Rhein-Herne-Kanal) River crossing (on bridge): 1 (Rhein-Herne-Kanal) Motorway Crossings: 26 Overground Pipelines: approx 21 km Pipeline Transmission of Hydrogen --- 5 Copyright: 5. Mining areas Pipeline Transmission of Hydrogen --- 6 Copyright: France & Netherlands

85

BP and Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

BP and Hydrogen Pipelines BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P. Yoho, P.E. i l i * Green corporate philosophy and senior management commitment * Reduced greenhouse gas emissions nine years ahead of target * Alternatives to oil are a big part of BP' including natural gas, LNG, solar and hydrogen * Hydrogen Bus Project won Australia' prestigious environmental award * UK partnership opened the first hydrogen demonstration refueling station * Two hydrogen pipelines in Houston area BP Env ronmenta Comm tment s portfolio, s most BP' * li l " li i i * i l pl i i * Li l li l * " i i l i 2 i i ll i i l pl ifi i * 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand new 12 ne s act ve Connect Houston area chem ca ant w th a ref nery nes come off a p

86

Public Service Companies, General Provisions (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Service Companies, General Provisions (Virginia) Service Companies, General Provisions (Virginia) Public Service Companies, General Provisions (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Safety and Operational Guidelines Siting and Permitting Provider Virginia State Corporation Commission Public Service Companies includes gas, pipeline, electric light, heat, power and water supply companies, sewer companies, telephone companies, and

87

UNEP-Risoe CDM/JI Pipeline Analysis and Database | Open Energy Information  

Open Energy Info (EERE)

UNEP-Risoe CDM/JI Pipeline Analysis and Database UNEP-Risoe CDM/JI Pipeline Analysis and Database (Redirected from UNEP Risoe CDM/JI Pipeline Analysis and Database) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNEP Risoe CDM/JI Pipeline Analysis and Database Agency/Company /Organization: UNEP-Risoe Centre Topics: Finance, Market analysis, Background analysis Website: cdmpipeline.org/ References: CDM/JI Pipeline Homepage [1] "The CDM/JI Pipeline Analysis and Database contains all CDM/JI projects that have been sent for validation/determination. It also contains the baseline & monitoring methodologies, a list of DOEs and several analyses." [1] References ↑ 1.0 1.1 [1] Retrieved from "http://en.openei.org/w/index.php?title=UNEP-Risoe_CDM/JI_Pipeline_Analysis_and_Database&oldid=383313"

88

Northwest Missouri Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Northwest Missouri Biofuels LLC Jump to: navigation, search Name Northwest Missouri Biofuels, LLC Place St Joseph, Missouri Sector Biofuels Product Northwest Missouri Biofuels...

89

A hybrid model for a multiproduct pipeline planning and scheduling problem  

Science Conference Proceedings (OSTI)

Brazilian petrobras is one of the world largest oil companies. Recurrently, it faces a very difficult planning and scheduling problem: how to operate a large pipeline network in order to adequately transport oil derivatives and biofuels from refineries ... Keywords: Constraints, Oil pipeline, Scheduling

Tony Minoru Lopes; Andre Augusto Cir; Cid Carvalho Souza; Arnaldo Vieira Moura

2010-04-01T23:59:59.000Z

90

Composites Technology for Hydrogen Pipelines  

E-Print Network (OSTI)

Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff Eberle Oak Ridge National Laboratory Pipeline Working Group MeetingPipeline Working Group Meeting Aiken;Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate

91

Code for Hydrogen Hydrogen Pipeline  

E-Print Network (OSTI)

#12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

92

NETL: News Release - DOE-Funded Pipeline Robot Revolutionizes Inspection  

NLE Websites -- All DOE Office Websites (Extended Search)

December 04, 2007 December 04, 2007 DOE-Funded Pipeline Robot Revolutionizes Inspection Process Explorer II Demonstrates Huge Potential for Hard-to-Reach Gas Line Inspections The Explorer II robot with remote field eddy current sensor deployed. The Explorer II robot with remote field eddy current sensor deployed. MORGANTOWN, W. Va. - Testing of a new, robotic pipeline inspection tool, developed with funding from the U.S. Department of Energy, has shown that it could revolutionize the pipeline inspection process. The wireless, self-propelled Explorer II proved its worth in September when it was put through its paces in a live 8-inch distribution main pressurized at 100 pound per square inch. The robot was launched and retrieved multiple times as it inspected-with cameras and sensors-a section of the Northwest

93

Pacific Northwest National Laboratory  

E-Print Network (OSTI)

Science. Technology. Innovation. PNNL-SA-34741 Pacific Northwest National Laboratory (PNNL) is addressing cognition and learning to the development of student- centered, scenario-based training. PNNL's Pachelbel (PNNL) has developed a cognitive-based, student-centered approach to training that is being applied

94

DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network (OSTI)

DOE Hydrogen Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia #12;Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects #12;ppt00 3 Hydrogen Pipeline and the customer. #12;ppt00 4 Pipeline Photos #12;ppt00 5 Pipeline Photos #12;ppt00 6 Pipeline Photos #12;ppt00 7

95

Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Pipeline Design and Risk Analysis  

SciTech Connect

Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE) - the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. Detailed Design was performed with due regard to actual topography and to avoid the possibility of the trenches freezing in winter, the implementation of specific drainage solutions and thermal protection measures.

Mattiozzi, Pierpaolo [Snamprogetti-Saipem, Via Toniolo, 1, 61032 Fano (Italy); Strom, Alexander [Institute of Geospheres Dynamics, Leninskiy Avenue, 38, Building 1, 119334, Moscow (Russian Federation)

2008-07-08T23:59:59.000Z

96

Hydrogen Pipeline Discussion  

NLE Websites -- All DOE Office Websites (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

97

Highly Pipelined Asynchronous FPGAs  

E-Print Network (OSTI)

We present the design of a high-performance, highly pipelined asynchronous FPGA. We describe a very ne-grain pipelined logic block and routing interconnect architecture, and show how asynchronous logic can eciently take advantage of this large amount of pipelining. Our FPGA, which does not use a clock to sequence computations, automatically \\selfpipelines " its logic without the designer needing to be explicitly aware of all pipelining details. This property makes our FPGA ideal for throughput-intensive applications and we require minimal place and route support to achieve good performance. Benchmark circuits taken from both the asynchronous and clocked design communities yield throughputs in the neighborhood of 300-400 MHz in a TSMC 0.25m process and 500-700 MHz in a TSMC 0.18m process.

John Teifel; Rajit Manohar

2004-01-01T23:59:59.000Z

98

Synchronous interlocked pipelines  

E-Print Network (OSTI)

In a circuit environment that is becoming increasingly sensitive to dynamic power dissipation and noise, and where cycle time available for control decisions continues to decrease, locality principles are becoming paramount in controlling advancement of data through pipelined systems. Achieving fine grained power down and progressive pipeline stalls at the local stage level is therefore becoming increasingly important to enable lower dynamic power consumption while keeping introduced switching noise under control as well as avoiding global distribution of timing critical stall signals. It has long been known that the interlocking properties of asynchronous pipelined systems have a potential to provide such benefits. However, it has not been understood how such interlocking can be achieved in synchronous pipelines. This paper

Hans M. Jacobson; Prabhakar N. Kudva; Pradip Bose; Peter W. Cook; Stanley E. Schuster

2002-01-01T23:59:59.000Z

99

Synchronous Interlocked Pipelines  

E-Print Network (OSTI)

In a circuit environment that is becoming increasingly sensitive to dynamic power dissipation and noise, and where cycle time available for control decisions continues to decrease, locality principles are becoming paramount in controlling advancement of data through pipelined systems. Achieving fine grained power down and progressive pipeline stalls at the local stage level is therefore becoming increasingly important to enable lower dynamic power consumption while keeping introduced switching noise under control as well as avoiding global distribution of timing critical stall signals.

Hans Jacobson Prabhakar; Hans M. Jacobson; Prabhakar N. Kudva; Pradip Bose; Peter W. Cook; Stanley E. Schuster; Eric G. Mercer; Chris J. Myers

2001-01-01T23:59:59.000Z

100

Capturing Latino Students in the Academic Pipeline  

E-Print Network (OSTI)

The Latino Educational Pipeline Why Latino Students are atSTUDENTS IN THE ACADEMIC PIPELINE CAPTURING LATINO STUDENTSIN THE ACADEMIC PIPELINE Patricia Gcindara, Editor Katherine

Gndara, Patricia; Larson, Katherine; Mehan, Hugh; Rumberger, Russell

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Pacific Northwest National Laboratory Technologies Available ...  

Pacific Northwest National Laboratory Technologies Available for Licensing Pacific Northwest National Laboratory has a long-standing reputation for ...

102

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

103

Deliverability on the interstate natural gas pipeline system  

SciTech Connect

Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

1998-05-01T23:59:59.000Z

104

Northwest National Labo-  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest National Labo- Northwest National Labo- ratory. Daniel Poneman, Deputy Secretary of Energy, dis- cussed the importance of having the Federal and contractor staffs working closely together and using peer reviews and the DOE core management princi- ples to provide excellence in project management. Mel Williams, Jr., Associate Deputy Secretary of En- ergy, discussed the leader- ship principles of align- ment, accountability and execution. A special thanks to all who made the workshop a suc- cess. These presenta- tions, and others provided at the event, are posted at the link below. By Steven H. Rossi, P.E., PMP, LEED AP, CCE OECM On March 15-16, the Office of Engineering and Con- struction Management (OECM) hosted the 2011 DOE Project Management Workshop at the Holiday

105

Northwest National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

method is right for your company? 12 PNNL is strong asset for Research District 12 IR&D spells success for PNNL scientists 13 Unique partnership brings new cancer treatment to...

106

Pipeline Setback Ordinance (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Savings Pipeline Setback Ordinance (Minnesota) Pipeline Setback Ordinance (Minnesota) Eligibility...

107

Dataplot Commands for Alaska Pipeline Case Study  

Science Conference Proceedings (OSTI)

Dataplot Commands for Alaska Pipeline Case Study. Set Software Options and Get Started, . . Starting Alaska Pipeline Calibration Case Study . . ...

2012-03-31T23:59:59.000Z

108

Collaborative Visualization and the Analysis Pipeline | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science & Engineering Applications Collaborative Visualization and the Analysis Pipeline Collaborative Visualization and the Analysis Pipeline Integration of Access Grid and...

109

Foreign Energy Company Competitiveness: Background information  

SciTech Connect

This report provides background information to the report Energy Company Competitiveness: Little to Do With Subsidies (DOE 1994). The main body of this publication consists of data uncovered during the course of research on this DOE report. This data pertains to major government energy policies in each country studied. This report also provides a summary of the DOE report. In October 1993, the Office of Energy Intelligence, US Department of Energy (formerly the Office of Foreign Intelligence), requested that Pacific Northwest Laboratory prepare a report addressing policies and actions used by foreign governments to enhance the competitiveness of their energy firms. Pacific Northwest Laboratory prepared the report Energy Company Competitiveness Little to Do With Subsidies (DOE 1994), which provided the analysis requested by DOE. An appendix was also prepared, which provided extensive background documentation to the analysis. Because of the length of the appendix, Pacific Northwest Laboratory decided to publish this information separately, as contained in this report.

Weimar, M.R.; Freund, K.A.; Roop, J.M.

1994-10-01T23:59:59.000Z

110

Operation chaining asynchronous pipelined circuits  

Science Conference Proceedings (OSTI)

We define operation chaining (op-chaining) as an optimization problem to determine the optimal pipeline depth for balancing performance against energy demands in pipelined asynchronous designs. Since there are no clock period requirements, asynchronous ...

Girish Venkataramani; Seth C. Goldstein

2007-11-01T23:59:59.000Z

111

Domestic Crude by Pipeline  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

112

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY, OH, VA, WV 1,849 9,350 10,365 Transcontinental Gas Pipeline Co. Northeast, Southeast Southwest AL, GA, LA, MD, MS, NC, NY, SC, TX, VA, GM 2,670 8,466 10,450 Northern Natural Gas Co. Central, Midwest Southwest IA, IL, KS, NE, NM, OK, SD, TX, WI, GM 1,055 7,442 15,874 Texas Eastern Transmission Corp.

113

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

cost dependent on pipeline length and diameter against thedescribe with only the pipeline length and diameter. Labordescribed by the pipeline diameter and length alone. In some

Parker, Nathan

2004-01-01T23:59:59.000Z

114

Causes of Pipeline Failures  

Science Conference Proceedings (OSTI)

Table 1   Types of defects that can cause pipeline failures...pipe body Mechanical damage Environmental causes Corrosion (external or internal) Hydrogen-stress cracking External stress corrosion cracking Internal sulfide-stress cracking Hydrogen blistering Fatigue Miscellaneous causes Secondary loads Weldments to pipe surface Wrinkle bends Internal combustion...

115

New Materials for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

OAK OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry Anovitz, James Blencoe and Tim Armstrong Oak Ridge National Laboratory Jimmy Mays University of Tennessee, Knoxville Hydrogen Pipeline Working Group Meeting August 30-31, 2005 Augusta, Georgia 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview Overview - - Barriers and Technical Targets Barriers and Technical Targets * Barriers to Hydrogen Delivery - Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H 2 distribution. - Current joining technology (welding) for steel pipelines is major cost factor and can exacerbate hydrogen embrittlement issues.

116

Mobile sensor network to monitor wastewater collection pipelines  

E-Print Network (OSTI)

Advanced pipeline monitoringDesign of mobile pipeline floating sensor SewerSnortIllustration of mobile pipeline floating sensor monitoring

Lim, Jungsoo

2012-01-01T23:59:59.000Z

117

The SINFONI pipeline  

E-Print Network (OSTI)

The SINFONI data reduction pipeline, as part of the ESO-VLT Data Flow System, provides recipes for Paranal Science Operations, and for Data Flow Operations at Garching headquarters. At Paranal, it is used for the quick-look data evaluation. For Data Flow Operations, it fulfills several functions: creating master calibrations; monitoring instrument health and data quality; and reducing science data for delivery to service mode users. The pipeline is available to the science community for reprocessing data with personalised reduction strategies and parameters. The pipeline recipes can be executed either with EsoRex at the command line level or through the Gasgano graphical user interface. The recipes are implemented with the ESO Common Pipeline Library (CPL). SINFONI is the Spectrograph for INtegral Field Observations in the Near Infrared (1.1-2.45 um) at the ESO-VLT. SINFONI was developed and build by ESO and MPE in collaboration with NOVA. It consists of the SPIFFI integral field spectrograph and an adaptive optics module which allows diffraction limited and seeing limited observations. The image slicer of SPIFFI chops the SINFONI field of view on the sky in 32 slices which are re-arranged to a pseudo slit. The latter is dispersed by one of the four possible gratings (J, H, K, H+K). The detector thus sees a spatial dimension (along the pseudo-slit) and a spectral dimension. We describe in this paper the main data reduction procedures of the SINFONI pipeline, which is based on SPRED - the SPIFFI data reduction software developed by MPE, and the most recent developments after more than a year of SINFONI operations.

Andrea Modigliani; Wolfgang Hummel; Roberto Abuter; Paola Amico; Pascal Ballester; Richard Davies; Christophe Dumas; Mattew Horrobin; Mark Neeser; Markus Kissler-Patig; Michele Peron; Juha Rehunanen; Juergen Schreiber; Thomas Szeifert

2007-01-10T23:59:59.000Z

118

Enhancing protection for unusually sensitive ecological areas from pipeline releases  

E-Print Network (OSTI)

ECOLOGICAL AREAS FROM PIPELINE RELEASES Christina Sames;Administration, Office of Pipeline Safety, DPS-10/ 400 7thof a hazardous liquid pipeline accident. Pipeline operators

Sames, Christina; Fink, Dennis

2001-01-01T23:59:59.000Z

119

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Code for Hydrogen Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August 31, 2005 Louis Hayden, PE Chair ASME B31.12 3 Presentation Outline * Approval for new code development * Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development * B31.12 Status & Structure * Hydrogen Pipeline issues * Research Needs * Where Do We Go From Here? 4 Code for Hydrogen Piping and Pipelines * B31 Hydrogen Section Committee to develop a new code for H 2 piping and pipelines - Include requirements specific to H 2 service for power, process, transportation, distribution, commercial, and residential applications - Balance reference and incorporation of applicable sections of B31.1, B31.3 and B31.8 - Have separate parts for industrial, commercial/residential

120

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

permeability and Integrity permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z. Feng, M. L. Santella and S. A. David (Oak Ridge National Laboratory, M&C Division - Steels, Welding & Computational Mechanics) J. G. Blencoe and Larry. M. Anovitz (Oak Ridge National Laboratory, Chemical Sciences Division - High Pressure Permeation Testing) P. S. Korinko (Savannah River National Laboratory - Low Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory, Oak Ridge, TN 37831-6096 January 2005 Acknowledgements Bill Bruce of Edison Welding Institute, Columbus, Ohio (After-service pipeline materials) Ms. M. A. Quintana of Lincoln Electric Company, Cleveland, Ohio (Fe-C-Al-Mn steel welds) David Hursley

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Natural Gas Transmission Pipeline Intrastate Regulatory Act (Florida) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Pipeline Intrastate Regulatory Act Transmission Pipeline Intrastate Regulatory Act (Florida) Natural Gas Transmission Pipeline Intrastate Regulatory Act (Florida) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Program Info State Florida Program Type Safety and Operational Guidelines Provider Florida Public Service Commission The regulation of natural gas intrastate transportation and sale is deemed to be an exercise of the police power of the state for the protection of the public welfare. The Public Service Commission is empowered to fix and regulate rates and services of natural gas transmission companies, including, without limitation, rules and regulations for determining the

122

Instrumented Pipeline Initiative  

Science Conference Proceedings (OSTI)

This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

Thomas Piro; Michael Ream

2010-07-31T23:59:59.000Z

123

Pipeline corridors through wetlands  

SciTech Connect

This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

Zimmerman, R.E.; Wilkey, P.L. [Argonne National Lab., IL (United States); Isaacson, H.R. [Gas Research Institute (United States)

1992-12-01T23:59:59.000Z

124

Pipeline corridors through wetlands  

Science Conference Proceedings (OSTI)

This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

Zimmerman, R.E.; Wilkey, P.L. (Argonne National Lab., IL (United States)); Isaacson, H.R. (Gas Research Institute (United States))

1992-01-01T23:59:59.000Z

125

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelinesk > Development & Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years from the time it is first announced until the new pipe is placed in service. The project can take longer if it encounters major environmental obstacles or public opposition. A pipeline development or expansion project involves several steps: Determining demand/market interest

126

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline ...  

U.S. Energy Information Administration (EIA)

Home > Natural Gas > About U.S. Natural Gas Pipelines > U.S ... The EIA has determined that the informational map displays here do not raise security ...

127

Global warming: A Northwest perspective  

SciTech Connect

The Northwest Power Planning Council convened a symposium in Olympia, Washington, on the subject of global climate change ( the greenhouse effect'') and its potential for affecting the Pacific Northwest. The symposium was organized in response to a need by the Power Council to understand global climate change and its potential impacts on resource planning and fish and wildlife planning for the region, as well as a need to understand national policy developing toward climate change and the Pacific Northwest's role in it. 40 figs., 15 tabs.

Scott, M.J.; Counts, C.A. (eds.)

1990-02-01T23:59:59.000Z

128

Pipelines (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipelines (Minnesota) Pipelines (Minnesota) Pipelines (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section regulates pipelines that are used to carry natural or synthetic gas at a pressure of more than 90 pounds per square inch, along with pipelines used to carry petroleum products and coal. Special rules apply to pipelines used to carry natural gas at a pressure of more than 125

129

Natural Gas Pipeline & Distribution Use  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Data Series: Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential...

130

ORNL Genome Analysis Pipeline - Eukaryotic  

NLE Websites -- All DOE Office Websites (Extended Search)

Grail (Microbial Gene Prediction System Internet Link) GrailEXP Genome Analysis Pipeline DomainParser PROSPECT (PROtein Structure Prediction and Evaluation Computer...

131

BENCHMARKING EMERGING PIPELINE INSPECTION TECHNOLOGIES  

NLE Websites -- All DOE Office Websites (Extended Search)

FINAL REPORT Benchmarking Emerging Pipeline Inspection Technologies To Department of Energy National Energy Technology Laboratory (NETL) DE-AP26-04NT40361 and Department of...

132

Energy Northwest | Open Energy Information  

Open Energy Info (EERE)

Northwest Northwest Jump to: navigation, search Name Energy Northwest Place Washington Utility Id 20160 Utility Location Yes Ownership S NERC Location WECC NERC WECC Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Energy_Northwest&oldid=410657" Categories:

133

Leaking Pipelines: Doctoral Student Family Formation  

E-Print Network (OSTI)

Sari M. Why the Academic Pipeline Leaks: Fewer Men thanone reason the academic pipeline leaks. 31 Blair-Loy, Mary.to leak out of the academic pipeline. The term academic

Serrano, Christyna M.

2008-01-01T23:59:59.000Z

134

The challenge of new pipeline systems in Russia and the republics  

Science Conference Proceedings (OSTI)

This paper reports that there will be considerable development of the oil and gas industry in the former USSR in the near future. Concurrent with this development will be the need to repair, upgrade and extend existing pipeline systems to carry more products from an increasingly wider production base. Considerable activity in pipeline construction is envisaged in the near future in Russia and its neighboring states. Western participation will continue to grow and the CIS will become a key market for pipeline service companies and construction contractors in the closing years of the 20th century.

Davies, P. (JP Kenny Group of Companies, London (GB)); Chernyaev, V.D. (Transneft, Moscow (SU))

1992-03-01T23:59:59.000Z

135

HYDROGEN PIPELINE COMPONENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

power generation, about one-half for agriculture, and the remainder for domestic use (McKinsey & Company 2009). (For comparison, total water withdrawals in the United States in...

136

INTERNAL REPAIR OF PIPELINES  

Science Conference Proceedings (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. In lieu of a field installation on an abandoned pipeline, a preliminary nondestructive testing protocol is being developed to determine the success or failure of the fiber-reinforced liner pipeline repairs. Optimization and validation activities for carbon-fiber repair methods are ongoing.

Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

2005-07-20T23:59:59.000Z

137

Pacific Northwest Area | Open Energy Information  

Open Energy Info (EERE)

Pacific Northwest Area Pacific Northwest Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Pacific Northwest Area 1.1 Products and Services in the Pacific Northwest Area 1.2 Research and Development Institutions in the Pacific Northwest Area 1.3 Networking Organizations in the Pacific Northwest Area 1.4 Investors and Financial Organizations in the Pacific Northwest Area 1.5 Policy Organizations in the Pacific Northwest Area Clean Energy Clusters in the Pacific Northwest Area Products and Services in the Pacific Northwest Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

138

Three dimensional scour along offshore pipelines.  

E-Print Network (OSTI)

??Three-dimensional scour propagation along offshore pipelines is a major reason to pipeline failures in an offshore environment. Although the research on scour in both numerical (more)

Yeow, Kervin

2007-01-01T23:59:59.000Z

139

Gas Pipeline Securities (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipeline Securities (Indiana) Gas Pipeline Securities (Indiana) Eligibility Utility Investor-Owned Utility Industrial MunicipalPublic Utility Rural Electric Cooperative Fuel...

140

Natural Gas Pipeline Projects Completed in 2003  

U.S. Energy Information Administration (EIA)

Table 2. Natural Gas Pipeline Projects Completed in 2003; Ending Region & State: Begins in State - Region: Pipeline/Project Name: FERC Docket ...

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Gas Pipelines (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipelines (Texas) Gas Pipelines (Texas) Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction MunicipalPublic Utility Local Government...

142

Pipeline Safety Rule (Tennessee) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Savings Pipeline Safety Rule (Tennessee) Pipeline Safety Rule (Tennessee) Eligibility Commercial...

143

NIST Building Facility for Hydrogen Pipeline Testing  

Science Conference Proceedings (OSTI)

... long-term exposure to hydrogen can embrittle existing pipelines, increasing the ... term service tests and apply them to study pipeline materials and ...

2012-10-02T23:59:59.000Z

144

Machinist Pipeline/Apprentice Program Program Description  

NLE Websites -- All DOE Office Websites (Extended Search)

Machinist PipelineApprentice Program Program Description The Machinist Pipeline Program was created by the Prototype Fabrication Division to fill a critical need for skilled...

145

Time-Constrained Loop Pipelining  

Science Conference Proceedings (OSTI)

This paper addresses the problem of Time-Constrained Loop Pipelining, i.e. given a fixed throughput, finding a schedule of a loop which minimizes resource requirements. This paper proposes a methodology, called TCLP, based on dividing the problem into ... Keywords: loop pipelining, scheduling, timing and resource contraints, register optimization

Fermin Sanchez

1995-12-01T23:59:59.000Z

146

Valuing Mutual Fund Companies  

E-Print Network (OSTI)

Valuing Mutual Fund Companies 1 Jacob Boudoukh a , Matthew1a Valuing Mutual Fund Companies ABSTRACT Combining insightsdata from the Investment Company Institute. Given the size

Boudoukh, Jacob; Richardson, Matthew; Stanton, Richard; Whitelaw, Robert F.

2004-01-01T23:59:59.000Z

147

Composites Technology for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Composites Technology Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff Eberle Oak Ridge National Laboratory Pipeline Working Group Meeting Pipeline Working Group Meeting Aiken, South Carolina Aiken, South Carolina September 25-26, 2007 September 25-26, 2007 Managed by UT-Battelle for the Department of Energy 2 Managed by UT Battelle for the Department of Energy Presentation name - _ Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate application of has excellent burst and collapse composite, fiber-reinforced polymer pipeline pressure ratings, large tensile technology for hydrogen transmission and and compression strengths, and distribution. superior chemical and corrosion resistance. Long lengths can be

148

Natural Innovative Renewable Energy formerly Northwest Iowa Renewable  

Open Energy Info (EERE)

Innovative Renewable Energy formerly Northwest Iowa Renewable Innovative Renewable Energy formerly Northwest Iowa Renewable Energy Jump to: navigation, search Name Natural Innovative Renewable Energy (formerly Northwest Iowa Renewable Energy) Place Akron, Iowa Zip 51001 Sector Renewable Energy Product Natural Innovative Renewable Energy, formerly Northwest Iowa Renewable Energy, is a development stage limited liability company that plans to construct a 60m gallon (227m litre) per year beef tallow biodiesel plant in South Sioux City, Nebraska. Coordinates 40.15731°, -76.204844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15731,"lon":-76.204844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

Pipeline Safety Program he Oak Ridge National  

E-Print Network (OSTI)

miles of natural gas and hazardous liquid pipelines. To assist PHMSA accomplish this mission, ORNL Analysis Transportation Decision Support Systems Transportation Network Routing Models Natural gas pipeline operators in accordance with the following Federal pipeline safety regulations 49 CFR 192 - Gas Pipelines

150

Pacific Northwest National Laboratory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Northwest National Laboratory Pacific Northwest National Laboratory Pacific Northwest National Laboratory Pacific Northwest National Laboratory | June 2010 Aerial View Pacific Northwest National Laboratory | June 2010 Aerial View Pacific Northwest National Laboratory (PNNL) conducts research for national security missions, nuclear materials stewardship, non-proliferation missions, the nuclear fuel life cycle, energy production. PNNL is engaged in expanding the beneficial use of nuclear materials such as nuclear process engineering, radiomaterials characterization, separation and processing. PNNL also supports the Hanford Site cleanup and river corridor protection missions. Enforcement January 8, 2008 Preliminary Notice of Violation,Battelle Memorial Institute - EA-2007-07 Preliminary Notice of Violation issued to Battelle Memorial Institute

151

INTERNAL REPAIR OF PIPELINES  

Science Conference Proceedings (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-08-17T23:59:59.000Z

152

INTERNAL REPAIR OF PIPELINES  

Science Conference Proceedings (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. The first round of optimization and validation activities for carbon-fiber repairs are complete. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-12-31T23:59:59.000Z

153

2013 Annual Planning Summary for the Pacific Northwest Site Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Northwest Site Office 2013 Annual Planning Summary for the Pacific Northwest Site Office 2013 Annual Planning Summary for the Pacific Northwest Site Office The ongoing and...

154

DOE Hydrogen Pipeline Working Group Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Pipeline Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects ppt00 3 Hydrogen Pipeline - Scope of Presentation Only those systems that are regulated by DOT in the US, DOT delegated state agency, or other federal regulatory authority. Cross property of third party and/or public properties for delivery to customers. Does not include in-plant or in-house hydrogen piping. Does not include piping (aboveground or underground) that delivers to a customer if all property is owned and controlled by Air Products and the customer. ppt00 4 Pipeline Photos ppt00 5 Pipeline Photos ppt00 6 Pipeline Photos ppt00 7 Pipeline Photos ppt00 8 Pipeline Photos ppt00 9 Overview of North American

155

About U.S. Natural Gas Pipelines  

Reports and Publications (EIA)

This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

Information Center

2007-06-01T23:59:59.000Z

156

Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.20 0.20 1970's 0.21 0.22 0.23 0.27 0.29 0.54 0.58 0.83 0.98 1.11 1980's 1.78 2.12 2.56 3.07 2.88 2.97 2.73 2.68 2.53 2.17 1990's 2.06 2.29 2.44 1.97 1.88 1.66 2.63 2.68 2.27 2.48 2000's 3.12 3.94 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use

157

VNG's Hampton Roads Pipeline Crossing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VNG's Hampton Roads Pipeline Crossing VNG's Hampton Roads Pipeline Crossing FUPWG Conference Fall 2008 Williamsburg, Virginia Connection to DTI at Quantico Columbia Limitations South Hampton Roads served by a single pipeline Southside dependent on back up systems LNG Propane/air Two supply sources to VNG What if we connected pipelines? It would take Two Water Crossings Two Compressor Stations Construction in densely populated cities It could Deliver over 200,000 Dth of incremental supply Serve VNG, Columbia and Dominion customers ...we would get... Hampton Roads Crossing - HRX Hampton / Newport News Craney Island Norfolk 21 miles of 24" pipe 7 miles in Hampton/Newport News 4 miles in Norfolk 10 miles of water and island crossing 4 mile harbor crossing 4.5 miles on Craney

158

Magnetic Resonance Connectome Automated Pipeline  

E-Print Network (OSTI)

This manuscript presents a novel, tightly integrated pipeline for estimating a connectome, which is a comprehensive description of the neural circuits in the brain. The pipeline utilizes magnetic resonance imaging (MRI) data to produce a high-level estimate of the structural connectivity in the human brain. The Magnetic Resonance Connectome Automated Pipeline (MRCAP) is efficient and its modular construction allows researchers to modify algorithms to meet their specific requirements. The pipeline has been validated and over 200 connectomes have been processed and analyzed to date. This tool enables the prediction and assessment of various cognitive covariates, and this research is applicable to a variety of domains and applications. MRCAP will enable MR connectomes to be rapidly generated to ultimately help spur discoveries about the structure and function of the human brain.

Gray, William R; Vogelstein, Joshua T; Landman, Bennett A; Prince, Jerry L; Vogelstein, R Jacob

2011-01-01T23:59:59.000Z

159

Gas Utility Pipeline Tax (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

160

Common Pipeline Carriers (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

Any entity that owns, operates, or manages a pipeline for the purpose of transporting crude petroleum, gas, coal, or carbon dioxide within or through the state of North Dakota, or is engaged in the...

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

New Materials for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Barbara Frame, Mike Simonson, Cliff Eberle, Jim Blencoe, and Tim Armstrong Hydrogen Pipeline R&D Project Review Meeting January 5-6, 2005 Oak Ridge National Laboratory 2 OAK...

162

PIPELINES AS COMMUNICATION NETWORK LINKS  

SciTech Connect

This report presents the results of an investigation into two methods of using the natural gas pipeline as a communication medium. The work addressed the need to develop secure system monitoring and control techniques between the field and control centers and to robotic devices in the pipeline. In the first method, the pipeline was treated as a microwave waveguide. In the second method, the pipe was treated as a leaky feeder or a multi-ground neutral and the signal was directly injected onto the metal pipe. These methods were tested on existing pipeline loops at UMR and Batelle. The results reported in this report indicate the feasibility of both methods. In addition, a few suitable communication link protocols for this network were analyzed.

Kelvin T. Erickson; Ann Miller; E. Keith Stanek; C.H. Wu; Shari Dunn-Norman

2005-03-14T23:59:59.000Z

163

Pipeline Processing of VLBI Data  

E-Print Network (OSTI)

As part of an on-going effort to simplify the data analysis path for VLBI experiments, a pipeline procedure has been developed at JIVE to carry out much of the data reduction required for EVN experiments in an automated fashion. This pipeline procedure runs entirely within AIPS, the standard data reduction package used in astronomical VLBI, and is used to provide preliminary calibration of EVN experiments correlated at the EVN MkIV data processor. As well as simplifying the analysis for EVN users, the pipeline reduces the delay in providing information on the data quality to participating telescopes, hence improving the overall performance of the array. A description of this pipeline is presented here.

C. Reynolds; Z. Paragi; M. Garrett

2002-05-08T23:59:59.000Z

164

Decoupled Sampling for Graphics Pipelines  

E-Print Network (OSTI)

We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call decoupled sampling. Decoupled sampling enables stochastic supersampling of motion and defocus blur at ...

Ragan-Kelley, Jonathan Millar

165

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

Warren R. U.S. interstate pipelines begin 1993 on upbeat. 66. ? True, Warren R. Current pipeline costs. Oil & GasWarren R. U.S. interstate pipelines ran more efficiently in

Parker, Nathan

2004-01-01T23:59:59.000Z

166

Interannual Variability of Northwest Australian Tropical Cyclones  

Science Conference Proceedings (OSTI)

Tropical cyclone (TC) activity over the southeast Indian Ocean has been studied far less than other TC basins, such as the North Atlantic and northwest Pacific. The authors examine the interannual TC variability of the northwest Australian (NWAUS)...

Kevin H. Goebbert; Lance M. Leslie

2010-09-01T23:59:59.000Z

167

Northwest Energy Efficiency Taskforce Executive Committee  

E-Print Network (OSTI)

#12;Northwest Energy Efficiency Taskforce Executive Committee Chairs Tom Karier, Washington Member, Northwest Energy Efficiency Alliance Bill Gaines, Director/Chief Executive Officer, Tacoma Public Utilities, Cowlitz County Public Utility District Cal Shirley, Vice President for Energy Efficiency Service, Puget

168

The pipeline and future of drug development in schizophrenia  

E-Print Network (OSTI)

The Pipeline and Future of Drug Development in SchizophreniaThe Drug Discovery Pipeline in Schizophrenia Keywords:discuss the current pipeline of drugs for schizophrenia,

Gray, J A; Roth, B L

2007-01-01T23:59:59.000Z

169

Cognitive Informatics, Pacific Northwest National Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cognitive Informatics, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

170

Northwest Energy Education Institute Lane Community College  

E-Print Network (OSTI)

Northwest Energy Education Institute at Lane Community College Roger Ebbage, Director Northwest Energy Education Institute at Lane Community College Eugene, Oregon ebbager@lanecc.edu #12;Northwest Energy Education Institute at Lane Community College Mission Statement: "To be the Preferred Source

171

Natural Gas Pipe Line Companies (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipe Line Companies (Connecticut) Pipe Line Companies (Connecticut) Natural Gas Pipe Line Companies (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Public Utilities Regulatory Authority These regulations list standards and considerations for the design, construction, compression, metering, operation, and maintenance of natural gas pipelines, along with procedures for records, complaints, and service

172

Pipeline Safety (Pennsylvania) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipeline Safety (Pennsylvania) Pipeline Safety (Pennsylvania) Pipeline Safety (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility Industrial Municipal/Public Utility Rural Electric Cooperative Program Info State Pennsylvania Program Type Safety and Operational Guidelines Provider Pennsylvania Public Utilities Commission The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities engaged in the transportation of natural gas and other gas by pipeline. The Commission is authorized to enforce federal safety standards as an agent for the U.S. Department of Transportation's Office of Pipeline Safety. The safety standards apply to the design, installation, operation,

173

Enforcement Documents - Pacific Northwest National Laboratory | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Northwest National Laboratory Pacific Northwest National Laboratory Enforcement Documents - Pacific Northwest National Laboratory January 8, 2008 Preliminary Notice of Violation,Battelle Memorial Institute - EA-2007-07 Preliminary Notice of Violation issued to Battelle Memorial Institute related to Radiological Events and the Independent Assessment Program at the Pacific Northwest National Laboratory May 5, 2004 Enforcement Letter, Battelle Memorial Institute - May 5, 2004 Enforcement Letter issued to Battelle Memorial Institute related to Radiological Work Practices at the Pacific Northwest National Laboratory April 3, 1996 Preliminary Notice of Violation, Pacific Northwest National Laboratory - EA-96-01 Preliminary Notice of Violation issued to Battelle related to the Delayed Response to a Criticality Safety Alarm at the Pacific Northwest National

174

TASSEL: MLM/GLM Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu), Zhiwu Zhang, Peter Bradbury, and Edward  

E-Print Network (OSTI)

1 TASSEL: MLM/GLM Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell..............................................................................................................................................................2 Appendix A: MLM Pipeline Diagrams..........................................................................................................3 Appendix B: GLM Pipeline Diagrams

Buckler, Edward S.

175

Regional companies eye growth  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional companies eye growth Regional companies eye growth Adaptive Radio Technologies, Los Alamos Visualization Associates, Mesa Tech International Inc., and ThermaSun Inc. were...

176

Application Filing Requirements for Natural Gas Pipeline Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin) Application Filing Requirements for Natural Gas Pipeline Construction Projects...

177

Co-scheduling hardware and software pipelines  

E-Print Network (OSTI)

In this paper we propose CO-Scheduling, a framework for simultaneous design of hardware pipelines struc-tures and software-pipelined schedules. Two important components of the Co-Scheduling framework are: (1) An extension to the analysis of hardware pipeline design that meets the needs of periodic (or software pipelined) schedules. Reservation tables, forbidden la-tencies, collision vectors, and state diagrams from classical pipeline theory are revisited and extended to solve the new problems. (2) An efficient method, based on the above extension of pipeline analysis, to perform (a) software pipeline scheduling and (b) hardware pipeline reconfiguration which are mutually compatible . The proposed method has been implemented and pre-liminary experimental results for 1008 kernel loops are reported. Co-scheduling successfully obtains a sched-ule for 95 % of these loops. The median time to obtain these schedules is 0.25 seconds on a Sparc-20. Keywords:

R. Govindarajan; Erik R. Altman; Guang R. Gao

1996-01-01T23:59:59.000Z

178

Maurer computers for pipelined instruction processing  

Science Conference Proceedings (OSTI)

We model micro-architectures with non-pipelined instruction processing and pipelined instruction processing using Maurer machines, basic thread algebra and program algebra. We show that stored programs are executed as intended with these micro-architectures. ...

J. a. Bergstra; C. a. Middelburg

2008-04-01T23:59:59.000Z

179

Method and system for pipeline communication  

DOE Patents (OSTI)

A pipeline communication system and method includes a pipeline having a surface extending along at least a portion of the length of the pipeline. A conductive bus is formed to and extends along a portion of the surface of the pipeline. The conductive bus includes a first conductive trace and a second conductive trace with the first and second conductive traces being adapted to conformally couple with a pipeline at the surface extending along at least a portion of the length of the pipeline. A transmitter for sending information along the conductive bus on the pipeline is coupled thereto and a receiver for receiving the information from the conductive bus on the pipeline is also couple to the conductive bus.

Richardson; John G. (Idaho Falls, ID)

2008-01-29T23:59:59.000Z

180

California Interstate Natural Gas Pipeline Capacity Levels ...  

U.S. Energy Information Administration (EIA)

PG&E Gas Transmission - NW Tuscarora Pipeline (Malin OR) 110 Mmcf/d 2,080 Mmcf/d Total Interstate Pipeline Capacity into California 7,435 Mmcf/d Net Natural Gas ...

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Productivity and Efficiency of US Gas Transmission Companies: A European Regulatory Perspective  

E-Print Network (OSTI)

interconnection points. As to the last observation one should note, however, that Europe does not fare worse on the relation of interconnection points to total length of pipelines. Table 1: US-Europe Comparison of Industry Structure US Europe (EU-25) 85 inter... -state Number of companies (Energy Information Agency, 2002) (our sample contains 39) 40 national, 38 regional (European Commission, 2005) Length of pipeline (miles) 212.000 Mean: 2494 St. Dev.: 3775 (Energy Information Agency, 2002) 18...

Jamasb, Tooraj; Pollitt, Michael G.; Triebs, T

182

Pipeline Rupture: Review of Common Metallurgical Failure ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Failure Analysis and Prevention. Presentation Title, Pipeline Rupture: Review...

183

EIA - Natural Gas Pipeline Network - Depleted Reservoir ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

184

Department of Transportation Pipeline and Hazardous Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation...

185

Computer Science and Information Technology Student Pipeline  

NLE Websites -- All DOE Office Websites (Extended Search)

Student Pipeline Program Description Los Alamos National Laboratory's High Performance Computing and Information Technology Divisions recruit and hire promising...

186

Regional Profiles: Pipeline Capacity and Service  

U.S. Energy Information Administration (EIA)

Regional Profiles: Pipeline Capacity ... large petrochemical and electric utility industries drawn there ... accounts for large electricity load ...

187

PIPENETa wireless sensor network for pipeline monitoring  

Science Conference Proceedings (OSTI)

US water utilities are faced with mounting operational and maintenance costs as a result of aging pipeline infrastructures. Leaks and ruptures in water supply pipelines and blockages and overflow events in sewer collectors cost millions of dollars a ... Keywords: Intel mote platforms, pipeline monitoring, water supply systems, wireless sensor networks

Ivan Stoianov; Lama Nachman; Sam Madden; Timur Tokmouline

2007-04-01T23:59:59.000Z

188

Liquefaction and Pipeline Costs Bruce Kelly  

E-Print Network (OSTI)

1 Liquefaction and Pipeline Costs Bruce Kelly Nexant, Inc. Hydrogen Delivery Analysis Meeting May 8 total installed cost #12;6 Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for current urban and downtown data Verified that historical natural gas pipeline cost data

189

Pipeline Safety Program Oak Ridge National Laboratory  

E-Print Network (OSTI)

Pipeline Safety Program Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U support to the U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration (PHMSA). As a federal regulatory authority with jurisdiction over pipeline safety, PHMSA is responsible

190

Tassel Pipeline Tutorial (Command Line Interface)  

E-Print Network (OSTI)

Tassel Pipeline Tutorial (Command Line Interface) Terry Casstevens Institute for Genomic Diversity, Cornell University May 11, 2011 #12;Tassel Pipeline Basics... · Consists of Modules (i.e. Plugins) · Output from one Module can be Input to another Module. Determined by order specified. run_pipeline

Buckler, Edward S.

191

Energy Reduction in California Pipeline Operations  

E-Print Network (OSTI)

Energy Reduction in California Pipeline Operations Industrial/Agriculture/Water End-Use PIER The Issue Fluid pipelines operating in California transport gasoline, fuel oil, jet fuel, crude, other hydrocarbons, and water, all vital to the wellbeing of Californias economy. These pipelines are also

192

California Energy Commission Pipeline Integrity Technology  

E-Print Network (OSTI)

California Energy Commission Pipeline Integrity Technology Demonstration Grant California Energy Solicitation Scope · The purpose of this solicitation is to demonstrate natural gas pipeline inspection using low cost/low power sensors ­ Improvement of existing pipeline inspection technology to identify

193

The Pricing of Electricity to Aluminum Smelters in the Northwest  

E-Print Network (OSTI)

The Bonneville Power Administration is a federal agency marketing electric power in the Pacific Northwest. Bonneville sells power from federal hydroelectric projects and two nuclear projects to public and private utilities and directly to several major industrial firms, primarily aluminum companies operating aluminum smelters in the region. These direct service industries (DSIs) have a contractual right to purchase up to 3.500 average megawatts annually from Bonneville. Because the aluminum smelters in the Northwest are generally older and less efficient than plants in other parts of the world and because aluminum companies are facing lower electricity prices in other parts of the world, the Northwest plants have become "swing" plants. That is when the world price of aluminum is high, these plants will run at capacity but they are the first plants to shut down when the world price of aluminum is low. Because of these factors, DSIs have been purchasing only about 2.700 megawatts annually, and annual purchases have been as low as 1.670 megawatts. Sales to the DSIs represent about 45 percent of all industrial uses of electricity or about 18 percent of total electricity loads in the four-state region and about 23 percent of all Bonneville sales. The dramatic fluctuations in Bonnevilles revenue brought on by operating the aluminum plants in the region as swing plants have prompted Bonneville to search for innovative pricing schemes designed to maintain its revenue base. Bonneville's proposed strategy includes tying the price of electricity it sells to the aluminum smelters to the world price of aluminum. This paper will examine Bonneville's proposed pricing strategy; it will also examine other strategies to reduce uncertainty in the region's future electric load.

Foley, T. J.

1986-06-01T23:59:59.000Z

194

Pricing and the incentive to invest in pipelines after Great Lakes  

Science Conference Proceedings (OSTI)

Natural gas pipeline companies invest heavily in expansion of the United States pipeline system. System expansion projects totaled $5.7 billion in 1992. In 1993-94 there was more than $3.8 billion of construction projects completed or under construction, and an additional $5.2 billion proposed and pending, totaling over $9 billion. Over 8,000 miles of new pipelines were installed or under construction in 1993. Much of the new investment involves expanding capacity of existing pipelines by constructing parallel pipes that use existing compressors and follow the same right-of-way, a process also known as {open_quotes}looping.{close_quotes} Under traditional regulation by the Federal Energy Regulatory Commission (Commission or FERC), the pipelines have been able to average or {open_quotes}roll in{close_quotes} the costs of expansion, generally raising costs to existing customers. The Great Lakes Gas Transmission Ltd. Partnership (Great Lakes) decision reversed this long-standing policy by requiring new customers to bear the costs of expansion. This article will demonstrate that these alternative regulatory policies have significant consequences for pricing and the incentives to invest in new pipeline construction, and argues that the Great Lakes decision, which is currently under review, should be upheld and extended.

Spulber, D.F.

1994-12-31T23:59:59.000Z

195

Digital production pipelines: examining structures and methods in the computer effects industry  

E-Print Network (OSTI)

Computer animated films require collaboration: blending artistic concept with technical skill, meeting budget constraints and adhering to deadlines. The path which production follows from initial idea to finished product is known as the pipeline. The purpose of this thesis is to collect, study and share information regarding production pipeline practices and to derive a conceptual definition. Research focused on selected companies in the United States which have produced at least one feature-length computer generated film and continue to produce them. The key finding of this thesis is a conceptual definition of digital production pipelines: A digital production pipeline must, by definition, utilize digital computing hardware and software to facilitate human work and collaboration for the overarching purpose of producing content for film. The digital production pipeline is not a structure, but rather a malleable set of components which can be arranged, configured, and adapted into new structures as needed. These malleable components are human groups with assigned task domains, and digital hardware and software systems. The human groups are normally referred to as departments or teams. The digital hardware and software systems are operating systems, software tools and applications, networks, processors, and storage. The digital production pipeline is the synergy of these two types of components into adaptable systems and structures.

Bettis, Dane Edward

2005-05-01T23:59:59.000Z

196

Detection of Unauthorized Construction Equipment in Pipeline Right-of-Ways  

Science Conference Proceedings (OSTI)

The leading cause of incidents on transmission pipelines is damage by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline is hit. Currently there is no method for continuously monitoring a pipeline right-of-way. Instead, companies periodically walk or fly over the pipeline to find unauthorized construction activities. Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber buried above the pipeline as a distributed sensor. A custom optical time domain reflectometer (OTDR) is used to interrogate the fiber. Key issues in the development of this technology are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. Advantages of the reflectometry technique are the ability to accurately pinpoint the location of the construction activity and the ability to separately monitor simultaneously occurring events. The basic concept of using OTDR with an optical fiber buried above the pipeline to detect encroachment of construction equipment into the right of way works. Sufficiently rapid time response is possible; permitting discrimination between encroachment types. Additional work is required to improve the system into a practical device.

Maurice Givens; James E. Huebler

2004-09-30T23:59:59.000Z

197

Independent Oversight Review, Pacific Northwest National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Northwest National Laboratory Pacific Northwest National Laboratory - October 2012 Independent Oversight Review, Pacific Northwest National Laboratory - October 2012 October 2012 Review of the Department of Energy Office of Science Assessment of the Pacific Northwest National Laboratory Radiochemical Processing Laboratory Criticality Alarm System The Office of Enforcement and Oversight (Independent Oversight), within the U.S. Department of Energy (DOE) Office of Health, Safety and Security (HSS), conducted a shadow assessment of the Office of Science (SC) review of the Pacific Northwest National Laboratory (PNNL) Radiochemical Processing Laboratory (RPL) Criticality Alarm System (CAS). SC's Pacific Northwest Site Office (PNSO) coordinated the SC review. The SC assessment focused on the operability of the CAS at the PNNL RPL

198

Categorical Exclusion Determinations: Pacific Northwest Site Office |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Northwest Site Office Pacific Northwest Site Office Categorical Exclusion Determinations: Pacific Northwest Site Office Categorical Exclusion Determinations issued by Pacific Northwest Site Office. DOCUMENTS AVAILABLE FOR DOWNLOAD July 16, 2012 CX-009099: Categorical Exclusion Determination Routine Maintenance CX(s) Applied: B1.3, B1.4, B1.8, B1.16, B1.17 Date: 07/16/2012 Location(s): Washington Offices(s): Pacific Northwest Site Office June 28, 2012 CX-009097: Categorical Exclusion Determination U.S. Customs and Border Protection High-Energy Radiography Test Capability CX(s) Applied: B3.10, B3.11 Date: 06/28/2012 Location(s): Washington Offices(s): Pacific Northwest Site Office May 18, 2012 CX-009096: Categorical Exclusion Determination U.S. Customs and Border Protection Non-Intrusive Inspection Tests

199

Independent Activity Report, Pacific Northwest National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Northwest National Laboratory Pacific Northwest National Laboratory - January 2012 Independent Activity Report, Pacific Northwest National Laboratory - January 2012 January 2012 Pacific Northwest National Laboratory Orientation Visit [HIAR-PNNL-2012-01-11] The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit for the HSS site lead at the Pacific Northwest National Laboratory (PNNL) and the Pacific Northwest Site Office (PNSO), Richland, WA, on January 11, 2012. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the Lab's activities at the Radiochemical Processing Laboratory (RPL), and identify specific activities

200

Intrastate Pipeline Safety (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intrastate Pipeline Safety (Minnesota) Intrastate Pipeline Safety (Minnesota) Intrastate Pipeline Safety (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the commissioner of public safety the

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Northwest Open Automated Demand Response Technology Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one...

202

Pacific Northwest National Laboratory Technology Marketing ...  

Here youll find marketing summaries for technologies available for licensing from the Pacific Northwest National Laboratory (PNNL) ... Energy Analysi ...

203

Geothermal: Sponsored by OSTI -- Pacific Northwest Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Pacific Northwest Laboratory Annual Report for 1979 to the DOE Assistant Secretary for Environment Part 4 Physical...

204

Pacific Northwest National Laboratory Grounds Maintenance  

NLE Websites -- All DOE Office Websites (Extended Search)

Pacific Northwest National Laboratory (PNNL) operates an award-winning grounds maintenance program that comprises a comprehensive landscape and irrigation management program. The...

205

Pacific Northwest Natioinal Laboratory Orientation Visit, January...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNNL-2012-01-11 Site: Pacific Northwest National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for...

206

Independent Oversight Review, Pacific Northwest National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Laboratory - October 2012 October 2012 Review of the Department of Energy Office of Science Assessment of the Pacific Northwest National Laboratory Radiochemical...

207

Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.27 0.27 0.27 1970's 0.27 0.28 0.29 0.35 0.46 0.56 0.71 0.98 1.67 1.60 1980's 2.98 3.73 3.63 3.86 3.95 3.54 2.95 2.64 2.39 2.03 1990's 1.86 0.50 0.57 0.26 0.20 0.54 1.04 0.95 0.69 0.78 2000's 1.32 1.76 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Michigan Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

208

Oregon Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.32 0.28 0.35 0.47 0.61 0.82 1.77 1.98 2.53 1980's 4.41 4.75 4.90 4.19 3.90 3.13 2.35 2.00 1.90 2.09 1990's 2.16 2.32 2.16 1.71 1.86 1.77 1.77 1.80 1.84 1.98 2000's 2.74 2.91 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Oregon Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

209

Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.21 0.23 0.25 0.26 0.29 0.39 0.48 0.80 0.87 1.20 1980's 1.71 2.12 2.81 3.04 2.92 2.86 2.61 2.41 2.78 1.94 1990's 1.77 2.05 2.31 2.01 0.91 1.19 2.34 2.43 2.02 2.14 2000's 2.48 4.86 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Missouri Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

210

Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.16 0.16 1970's 0.17 0.17 0.18 0.24 0.24 0.51 0.65 0.69 1.36 1.59 1980's 2.05 2.51 2.91 3.05 2.99 2.76 2.56 2.36 2.06 1.88 1990's 1.95 1.85 2.48 1.92 1.52 1.31 1.54 1.84 1.86 1.87 2000's 3.21 3.04 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Wyoming Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

211

Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0.26 0.27 0.28 0.28 0.30 0.35 0.57 0.58 0.50 0.14 1980's 0.73 1.13 0.60 0.86 0.61 0.63 0.61 0.65 1.01 1.13 1990's 1.08 1.32 1.12 1.11 1.11 1.24 1.17 1.34 1.23 0.82 2000's 1.34 1.84 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Alaska Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

212

Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.20 0.22 0.23 0.25 0.28 0.32 0.36 0.67 0.90 1.35 1980's 2.10 2.78 3.11 3.22 3.26 3.23 3.32 2.50 2.41 2.69 1990's 2.19 2.08 2.08 2.24 2.14 1.93 2.62 3.09 2.48 2.18 2000's 3.30 4.57 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Georgia Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

213

Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.17 0.17 1970's 0.18 0.19 0.21 0.22 0.27 0.49 0.72 1.00 1.31 1.53 1980's 2.17 2.58 2.78 2.78 2.81 2.62 2.71 2.57 2.24 1.75 1990's 1.75 1.79 1.89 1.86 1.78 1.45 1.97 2.44 1.98 1.66 2000's 3.89 3.86 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Colorado Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

214

Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.33 0.27 0.23 1970's 0.20 0.22 0.24 0.25 0.29 0.37 0.48 0.60 0.57 1.26 1980's 1.67 2.18 2.85 3.05 2.93 2.89 2.44 1.97 1.77 2.00 1990's 2.12 2.35 2.51 2.67 1.95 1.83 2.63 2.51 2.45 2.11 2000's 3.27 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Kentucky Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

215

Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.05 1970's 0.20 0.21 0.23 0.24 0.28 0.39 0.50 0.81 0.96 1.30 1980's 1.81 2.36 2.91 3.13 3.00 2.90 2.48 1.97 1.96 2.07 1990's 1.98 2.25 2.25 2.40 1.44 1.61 2.58 2.59 2.22 1.98 2000's 3.10 3.76 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Louisiana Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

216

Montana Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.12 0.11 0.11 1970's 0.11 0.12 0.17 0.21 0.23 0.42 0.46 0.73 0.83 1.16 1980's 1.29 1.90 2.87 3.00 3.04 2.51 2.28 1.86 1.65 1.57 1990's 1.75 1.76 1.63 2.15 1.53 1.16 1.44 1.77 1.72 2.12 2000's 2.96 2.48 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Montana Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

217

Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.17 0.17 0.19 0.22 0.28 0.36 0.44 0.64 0.75 1.29 1980's 1.62 2.22 2.86 3.16 2.83 2.79 2.22 1.49 1.79 1.50 1990's 1.65 1.26 1.25 1.68 1.28 1.19 1.80 2.20 1.90 2.08 2000's 3.61 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Arizona Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

218

Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.18 0.18 0.18 1970's 0.19 0.22 0.24 0.26 0.30 0.43 0.52 0.71 0.86 1.12 1980's 1.78 2.12 2.63 2.94 2.97 2.78 2.46 2.64 2.07 2.30 1990's 2.17 2.06 1.78 1.64 1.61 1.45 2.41 2.42 1.58 1.38 2000's 2.41 4.09 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Arkansas Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

219

Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.19 0.19 1970's 0.19 0.22 0.24 0.25 0.27 0.38 0.50 0.69 0.84 1.25 1980's 2.41 2.74 3.08 3.28 3.29 3.17 3.19 2.37 2.27 2.72 1990's 2.15 1.94 1.94 2.08 2.01 1.81 2.48 2.98 2.41 2.30 2000's 3.30 4.75 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Maryland Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

220

Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.15 0.15 1970's 0.16 0.16 0.18 0.19 0.24 0.32 0.42 0.57 0.73 1.10 1980's 1.36 1.81 2.35 2.56 2.55 2.51 2.40 2.20 1.77 1.86 1990's 1.70 1.43 1.54 1.79 1.34 1.33 2.10 2.54 2.01 1.96 2000's 2.81 3.56 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Nebraska Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.27 0.28 0.31 0.38 0.53 0.81 1.49 1.40 1980's 2.09 2.81 3.33 3.59 3.49 3.35 3.37 2.68 2.59 2.63 1990's 2.05 1.86 1.93 2.27 2.14 1.83 2.60 3.22 2.59 2.20 2000's 2.66 5.05 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Virginia Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

222

Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.21 0.21 1970's 0.21 0.23 0.25 0.27 0.28 0.38 0.45 0.81 0.86 1.21 1980's 1.73 2.18 2.91 3.21 3.02 3.11 2.78 2.52 2.69 2.17 1990's 2.17 2.46 2.51 1.38 1.03 1.05 2.47 2.58 2.27 2.16 2000's 3.69 4.18 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Indiana Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

223

Oversight Reports - Pacific Northwest National Laboratory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Reports - Pacific Northwest National Laboratory Oversight Reports - Pacific Northwest National Laboratory Oversight Reports - Pacific Northwest National Laboratory September 9, 2013 Independent Oversight Review, Pacific Northwest National Laboratory - September 2013 Review of the Fire Protection Program at Pacific Northwest National Laboratory and the Fire Suppression System at the Radiochemical Processing Laboratory October 31, 2012 Independent Oversight Review, Pacific Northwest National Laboratory - October 2012 Review of the Department of Energy Office of Science Assessment of the Pacific Northwest National Laboratory Radiochemical Processing Laboratory Criticality Alarm System January 30, 2012 Independent Activity Report, Pacific Northwest National Laboratory - January 2012 Pacific Northwest National Laboratory Orientation Visit

224

EIA - Natural Gas Pipeline System - Links to U.S. Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Links Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Links to U.S. Natural Gas Pipeline Information - The links below will either direct the user to a narrative describing the system, a pipeline system map, a FERC prescribed "Informational Postings" page, or a FERC Tariff Sheet. Pipeline Name Type of System Regions of Operations Acadian Gas Pipeline System Intrastate Southwest Algonquin Gas Transmission Co Interstate Northeast Alliance Pipeline Co Interstate Central, Midwest Anaconda Pipeline System Gathering Gulf of Mexico ANR Pipeline Co Interstate Midwest ANR Storage Co Interstate Midwest Arkansas Oklahoma Gas Co Intrastate Southwest Arkansas Western Pipeline Co Intrastate

225

Brad Thompson Company | Open Energy Information  

Open Energy Info (EERE)

Logo: Brad Thompson Company Name Brad Thompson Company Address 12517 131st Ct NE Place Kirkland, Washington Zip 98034 Region Pacific Northwest Area Number of employees 1-10 Year founded 1978 Phone number 4258255800 Website http://www.bradtco.com Notes Energy developer Coordinates 47.7126882°, -122.1662162° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.7126882,"lon":-122.1662162,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

West Coast (PADD 5) Pipeline  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

227

Pacific Northwest National Laboratory Sustainable PNNL  

E-Print Network (OSTI)

Pacific Northwest National Laboratory Sustainable PNNL Sustainability at Pacific Northwest National the ability of the future generations to meet their needs. At PNNL, we are committed to improving the quality for the organization and our key stakeholders, including our customers, staff, and community. PNNL's commitment

228

Northwest National Marine Renewable Energy Center (NNMREC)  

E-Print Network (OSTI)

Northwest National Marine Renewable Energy Center (NNMREC) Overview: ·OSU and UW are partners on the Northwest National Marine Renewable Energy Center (NNMREC). ·NNMREC's mission is to lead research in wave in Natural Energy (FINE) National Renewable Energy Laboratory (NREL) FUNDING PROVIDED BY: US Department

Tullos, Desiree

229

Independent Oversight Review, Pacific Northwest National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Northwest National Laboratory Pacific Northwest National Laboratory - September 2013 Independent Oversight Review, Pacific Northwest National Laboratory - September 2013 September 2013 Review of the Fire Protection Program at Pacific Northwest National Laboratory and the Fire Suppression System at the Radiochemical Processing Laboratory. This report documents the results of an independent oversight review of the fire protection program at the Pacific Northwest National Laboratory (PNNL) and the fire suppression system at the Radiochemical Processing Laboratory. The review was performed March 18-29, 2013, by the U.S. Department of Energy's (DOE) Office of Safety and Emergency Management Evaluations, which is within the DOE Office of Health, Safety and Security. The review was performed as one part of an ongoing targeted

230

Independent Oversight Inspection, Pacific Northwest National Laboratory -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Inspection, Pacific Northwest National Independent Oversight Inspection, Pacific Northwest National Laboratory - December 2003 Independent Oversight Inspection, Pacific Northwest National Laboratory - December 2003 December 2003 Inspection of Environment, Safety, and Health Management at the Pacific Northwest National Laboratory The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) at the U.S. Department of Energy (DOE) Pacific Northwest National Laboratory (PNNL) during November and December 2003. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. Overall, implementation of ISM at PNNL has improved noticeably since the 1998 DOE Headquarters independent oversight evaluation. This improvement is

231

Northwest SEED | Open Energy Information  

Open Energy Info (EERE)

SEED SEED Jump to: navigation, search Name Northwest Sustainable Energy for Economic Development (SEED) Address 1402 3rd Ave. Suite 901 Place Seattle, WA Zip 98101 Phone number 1.866.759.SEED Website http://www.nwseed.org Coordinates 47.609093°, -122.336787° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.609093,"lon":-122.336787,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Company Level Imports Archives  

U.S. Energy Information Administration (EIA) Indexed Site

Company Level Imports Company Level Imports Archives 2013 Imports by Month January XLS February XLS March XLS April XLS May XLS June XLS July XLS August XLS September XLS...

233

DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS  

Science Conference Proceedings (OSTI)

Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with an custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the third quarter of the project (2nd quarter of 2002) includes design of the diode laser driver and high-speed detector electronics and programming of the custom optical time domain reflectometer.

James E. Huebler

2002-07-19T23:59:59.000Z

234

Capsule injection system for a hydraulic capsule pipelining system  

DOE Patents (OSTI)

An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

Liu, Henry (Columbia, MO)

1982-01-01T23:59:59.000Z

235

Workforce Pipeline | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Diversity Diversity Message from the Lab Director Diversity & Inclusion Advisory Council Workforce Pipeline Mentoring Leadership Development Policies & Practices Business Diversity Outreach & Education In the News High school workshop invites girls to explore STEM possibilities Daily Herald EcoCAR 2 competition drives auto engineers to excel Yuma (Ariz.) Sun Mississippi universities collaborate with national labs Mississippi Public Radio Workforce Pipeline Argonne seeks to attract, hire and retain a diverse set of talent in order to meet the laboratory's mission of excellence in science, engineering and technology. In order for Argonne to continue to carry out world-class science, the lab needs to seek out the best talent. Today, that talent is increasingly diverse. Argonne fosters an environment that welcomes and values a diverse

236

BENCHMARKING EMERGING PIPELINE INSPECTION TECHNOLOGIES  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Emerging Pipeline Inspection Technologies To Department of Energy National Energy Technology Laboratory (NETL) DE-AP26-04NT40361 and Department of Transportation Research and Special Programs Administration (RSPA) DTRS56-02-T-0002 (Milestone 7) September 2004 Final Report on Benchmarking Emerging Pipeline Inspection Technologies Cofunded by Department of Energy National Energy Technology Laboratory (NETL) DE-AP26-04NT40361 and Department of Transportation Research and Special Programs Administration (RSPA) DTRS56-02-T-0002 (Milestone 7) by Stephanie A. Flamberg and Robert C. Gertler September 2004 BATTELLE 505 King Avenue Columbus, Ohio 43201-2693 Neither Battelle, nor any person acting on their behalf: (1) Makes any warranty or representation, expressed or implied, with respect to the

237

Analytic prognostic for petrochemical pipelines  

E-Print Network (OSTI)

Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

Abdo Abou Jaoude; Seifedine Kadry; Khaled El-Tawil; Hassan Noura; Mustapha Ouladsine

2012-12-25T23:59:59.000Z

238

Analytic prognostic for petrochemical pipelines  

E-Print Network (OSTI)

Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

Jaoude, Abdo Abou; El-Tawil, Khaled; Noura, Hassan; Ouladsine, Mustapha

2012-01-01T23:59:59.000Z

239

Time-Constrained Loop Pipelining  

E-Print Network (OSTI)

This paper addresses the problem of Time-Constrained Loop Pipelining, i.e. given a fixed throughput, finding a schedule of a loop which minimizes resource requirements. We propose a methodology, called TCLP, based on dividing the problem into two simpler and independent tasks: retiming and scheduling. TCLP explores different sets of resources, searchingfor a maximum resource utilization. This reduces area requirements. After a minimum set of resourceshas been found, the execution throughput is increased and the number of registers required by the loop schedule is reduced. TCLP attempts to generate a schedule which minimizes cost in time and area (resources and registers). The results show that TCLP obtains optimal schedules in most cases. 1 Introduction This paper presents TCLP, a methodology to solve TimeConstrained Loop Pipelining. TCLP is NP-complete [3]. Two types of timing constraints (TCs) have been considered in the literature: local TCs to specify minimum and/or maximum TCs ...

Fermn Sanchez; Jordi Cortadella

1995-01-01T23:59:59.000Z

240

Pipeline-Centric Provenance Model  

E-Print Network (OSTI)

In this paper we propose a new provenance model which is tailored to a class of workflow-based applications. We motivate the approach with use cases from the astronomy community. We generalize the class of applications the approach is relevant to and propose a pipeline-centric provenance model. Finally, we evaluate the benefits in terms of storage needed by the approach when applied to an astronomy application.

Groth, Paul; Juve, Gideon; Mehta, Gaurang; Berriman, Bruce

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

An Oil Pipeline Design Problem  

Science Conference Proceedings (OSTI)

We consider a given set of offshore platforms and onshore wells producing known (or estimated) amounts of oil to be connected to a port. Connections may take place directly between platforms, well sites, and the port, or may go through connection points ... Keywords: Algorithms: interactive branch-and-bound with valid inequalities. industries, Applications: design problem-formulation and analysis. programming, Integer, Networks/graphs, Petroleum/natural gas: oil pipeline network design

Jack Brimberg; Pierre Hansen; Keh-Wei Lin; Nenad Mladenovic; Michle Breton

2003-03-01T23:59:59.000Z

242

Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen  

E-Print Network (OSTI)

Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Pipeline Inventory Breakdown by gases 0 500 1000 1500 2000 2500 3000 3500 KM N2 2956 km O2 3447 km H2 1736

243

Independent Oversight Inspection, Office of Science Pacific Northwest Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Science Pacific Office of Science Pacific Northwest Site Office and Pacific Northwest National Laboratory - November 2006 Independent Oversight Inspection, Office of Science Pacific Northwest Site Office and Pacific Northwest National Laboratory - November 2006 November 2006 Inspection of Classification and Information Control Programs at the Office of Science Pacific Northwest Site Office and Pacific Northwest National Laboratory This report presents the results of inspection activities by the Office of Independent Oversight's Office of Security Evaluations in the area of classification and information control (CIC) at the Office of Science (SC) Pacific Northwest Site Office (PNSO) and the Pacific Northwest National Laboratory (PNNL). The Office of Security Evaluations conducted this

244

Northwest Interstate Compact on Low-Level Radioactive Waste Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States)...

245

Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986...  

Open Energy Info (EERE)

Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Water Sampling Activity Date...

246

Kinder Morgan Central Florida Pipeline Ethanol Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

KINDER MORGAN CENTRAL FLORIDA PIPELINE ETHANOL PROJECT  In December 2008, Kinder Morgan began transporting commercial batches of denatured ethanol along with gasoline shipments in its 16-inch Central Florida Pipeline (CFPL) from Tampa to Orlando, making CFPL the first transmarket gasoline pipeline in the United States to do so. The 16-inch pipeline previously only transported regular and premium gasoline.  Kinder Morgan invested approximately $10 million to modify the line for ethanol shipments which involved chemically cleaning the pipeline, replacing pipeline equipment that was incompatible with ethanol and expanding storage capacity at its Orlando terminal to handle ethanol shipments.  Kinder Morgan is responding to customer interest in ethanol blending. Our Florida

247

Ultrasonic Computerized Tomography of Pipelines for Continuous ...  

Science Conference Proceedings (OSTI)

Commercial handheld thickness gauging devices require direct access to pipelines and find limited applications due to the presence of physical obstacles or the...

248

Measuring wall forces in a slurry pipeline.  

E-Print Network (OSTI)

??Slurry transport is a key material handling technology in a number of industries. In oilsands ore transport, slurry pipelining also promotes conditioning to release and (more)

El-Sayed, Suheil

2010-01-01T23:59:59.000Z

249

Pipeline constraints in wholesale natural gas markets.  

E-Print Network (OSTI)

??Natural gas markets in the United States depend on an extensive network of pipelines to transport gas from production fields to end users. While these (more)

Avalos, Roger George.

2012-01-01T23:59:59.000Z

250

EIA-802 WEEKLY PRODUCT PIPELINE REPORT INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

EIA-802, Weekly Product Pipeline Report Page 3 PART 4. DIESEL FUEL DOWNGRADED ULSD-- EIA Product Code 465, distillate fuel oil 15 ppm sulfur

251

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

252

Detection and Location of Damage on Pipelines  

SciTech Connect

The INEEL has developed and successfully tested a real-time pipeline damage detection and location system. This system uses porous metal resistive traces applied to the pipe to detect and locate damage. The porous metal resistive traces are sprayed along the length of a pipeline. The unique nature and arrangement of the traces allows locating the damage in real time along miles of pipe. This system allows pipeline operators to detect damage when and where it is occurring, and the decision to shut down a transmission pipeline can be made with actual real-time data, instead of conservative estimates from visual inspection above the area.

Karen A. Moore; Robert Carrington; John Richardson

2003-11-01T23:59:59.000Z

253

GLAST (FERMI) Data-Processing Pipeline  

Science Conference Proceedings (OSTI)

The Data Processing Pipeline ('Pipeline') has been developed for the Gamma-Ray Large Area Space Telescope (GLAST) which launched June 11, 2008. It generically processes graphs of dependent tasks, maintaining a full record of its state, history and data products. The Pipeline is used to automatically process the data down-linked from the satellite and to deliver science products to the GLAST collaboration and the Science Support Center and has been in continuous use since launch with great success. The pipeline handles up to 2000 concurrent jobs and in reconstructing science data produces approximately 750GB of data products using 1/2 CPU-year of processing time per day.

Flath, Daniel L.; Johnson, Tony S.; Turri, Massimiliano; Heidenreich, Karen A.; /SLAC

2011-08-12T23:59:59.000Z

254

Natural Gas Pipeline and System Expansions  

U.S. Energy Information Administration (EIA)

Energy Information Administration / Natural Gas Monthly April 1997 vii This special report examines recent expansions to the North American natural gas pipeline network

255

ORNL Genome Analysis Pipeline - Yeast (Saccharomyces cerevisiae...  

NLE Websites -- All DOE Office Websites (Extended Search)

Grail (Microbial Gene Prediction System Internet Link) GrailEXP Genome Analysis Pipeline DomainParser PROSPECT (PROtein Structure Prediction and Evaluation Computer Toolkit)...

256

Why improve the pipeline for comparative transcriptomics?  

NLE Websites -- All DOE Office Websites (Extended Search)

Plans Educational Resources MyJGI: Information for Collaborators Why improve the pipeline for comparative transcriptomics? The genomes of several brown rot and white rot fungi...

257

Acoustic system for communication in pipelines  

DOE Patents (OSTI)

A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

Martin, II, Louis Peter (San Ramon, CA); Cooper, John F. (Oakland, CA)

2008-09-09T23:59:59.000Z

258

4.6.2. Alaska Pipeline  

Science Conference Proceedings (OSTI)

4. Process Modeling 4.6. Case Studies in Process Modeling 4.6.2. Alaska Pipeline. Non-Homogeneous Variances, This ...

2012-03-31T23:59:59.000Z

259

Materials Solutions for Hydrogen Delivery in Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

welding filler wires and processes that would be suitable for construction of new pipeline infrastructure - To develop barrier coatings for minimizing hydrogen permeation in...

260

Exploring Pipeline Dynamics to Connect New Markets  

U.S. Energy Information Administration (EIA)

Gas Shales in the United States. 8. Cumulative Unconventional Production, 2007-2030 (trillion cubic feet) 9. Rockies Express Pipeline (REX) 10.

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

1993 Pacific Northwest Loads and Resources Study.  

SciTech Connect

The Loads and Resources Study is presented in three documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; (2) a technical appendix detailing forecasted Pacific Northwest economic trends and loads, and (3) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The forecasted future electricity demands -- firm loads -- are subtracted from the projected capability of existing and {open_quotes}contracted for{close_quotes} resources to determine whether Bonneville Power Administration (BPA) and the region will be surplus or deficit. If resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA can sell to increase revenues. Conversely, if firm loads exceed available resources, there is a deficit of energy and/or capacity, and additional conservation, contract purchases, or generating resources will be needed to meet load growth. The Pacific Northwest Loads and Resources Study analyzes the Pacific Northwest`s projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system, which includes loads and resource in addition to the Federal system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. This study presents the Federal system and regional analyses for five load forecasts: high, medium-high, medium, medium-low, and low. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 1994--95 through 2003--04.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

262

Surface mine blasting near pressurized transmission pipelines. Report of investigations/1994  

SciTech Connect

The mining industry and regulatory agencies have requested guidance on blasting near buried transmission pipelines and safe vibration levels. The U.S. Bureau of Mines and the State of Indiana cooperated with AMAX Coal Company and its consultants to determine the effects of coal mine overburden blasting on nearby pipelines. Five pressurized 76-m pipeline sections were installed on the Minnehaha Mine highwall near Sullivan, IN for testing to failure. Four 17- to 51-cm diameter welded steel pipes and one 20-cm PVC water pipe were monitored for vibration, strain, and pressure for a period of 6 months while production blasting advanced up to the pipeline field. In contrast to previous studies of small-scale close-in blasting for construction, these tests involved overburden blasts of up to 950 kg per delay in 31-cm blast-holes. Analyses found low responses, strains, and calculated stresses from even large blasts. Ground vibrations of 120-250 mm/s produced worst case strains of about 25 pct of those resulting from pipeline operations and calculated stresses of only about 10-18 pct of the ultimate tensile strength.

Siskind, D.E.; Stagg, M.S.; Wiegand, J.E.; Schulz, D.L.

1994-12-31T23:59:59.000Z

263

DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS  

Science Conference Proceedings (OSTI)

Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the 1st quarter of 2003 included fine-tuning and debugging of the custom Optical Time Domain Reflectometer being constructed for data collection and analysis. The detector was redesigned reducing the noise floor by over a factor of ten. While GTI's OTDR was being improved, a new, commercial OTDR was used to verify that the technique is capable of measuring one pound continuous force applied to the Hergalite. Optical fibers were installed at the ANR Pipeline test site along an operating pipeline.

James E. Huebler

2003-04-17T23:59:59.000Z

264

Crossing Active Faults on the Sakhalin II Onshore Pipeline Route: Analysis Methodology and Basic Design  

Science Conference Proceedings (OSTI)

Twin oil (20 and 24 inch) and gas (20 and 48 inch) pipeline systems stretching 800 km are being constructed to connect offshore hydrocarbon deposits from the Sakhalin II concession in the North to an LNG plant and oil export terminal in the South of Sakhalin island. The onshore pipeline route follows a regional fault zone and crosses individual active faults at 19 locations. Sakhalin Energy, Design and Construction companies took significant care to ensure the integrity of the pipelines, should large seismic induced ground movements occur during the Operational life of the facilities. Complex investigations including the identification of the active faults, their precise location, their particular displacement values and assessment of the fault kinematics were carried out to provide input data for unique design solutions. Lateral and reverse offset displacements of 5.5 and 4.5 m respectively were determined as the single-event values for the design level earthquake (DLE)--the 1000-year return period event. Within the constraints of a pipeline route largely fixed, the underground pipeline fault crossing design was developed to define the optimum routing which would minimize stresses and strain using linepipe materials which had been ordered prior to the completion of detailed design, and to specify requirements for pipe trenching shape, materials, drainage system, etc. This Paper describes the steps followed to formulate the concept of the special trenches and the analytical characteristics of the Model.

Vitali, Luigino [Snamprogetti-Saipem, Via Toniolo, 1, 61032 Fano, Luigino (Italy); Mattiozzi, Pierpaolo [Snamprogetti-Saipem, Via Toniolo, 1, 61032 Fano (Italy)

2008-07-08T23:59:59.000Z

265

Optimization of energy and throughput for pipelined VLSI interconnect  

E-Print Network (OSTI)

given a wire length, optimized pipeline energy decreases asFigure 7 shows pipeline energy per bit versus wire length asOptimal pipeline depth is proportional to wire length, and

Hamilton, Kevin Clark

2010-01-01T23:59:59.000Z

266

Structural Genomics of Minimal Organisms: Pipeline and Results  

E-Print Network (OSTI)

of Minimal Organisms: Pipeline and Results Sung-Hou Kim*,~500 genes, respectively). Pipeline: To achieve our mission,determination. Over all pipeline schemes for the single-path

Kim, Sung-Hou

2008-01-01T23:59:59.000Z

267

Natural Gas Pipeline Research: Best Practices in Monitoring Technology  

E-Print Network (OSTI)

Natural Gas Pipeline Research: Best Practices in Monitoring Technology Energy Systems Research pipelines from outofstate supply basins located in the southwestern United States, the Rocky Mountains, and Canada. These pipelines run throughout the state, including underneath high population areas

268

Trenches Under The Pipeline: The Educational Trajectories of Chicano Male Continuation High School Students  

E-Print Network (OSTI)

Trenches Under The Pipeline: The Educational Trajectories ofnavigate the educational pipeline, continuation high school

Malagon, Maria

2010-01-01T23:59:59.000Z

269

Pacific Northwest National Laboratory Operated  

Office of Legacy Management (LM)

Pacific Pacific Northwest National Laboratory Operated by Battelle for the U .S. D ep artm ent of Energy PNWD-3914 Monticello Mill Tailings Site Macroinvertebrate Sampling for 2007 A.L. Bunn R.P. Mueller J.M. Brandenberger D .M. Wellman February 2008 Prepared for the U.S. Department of Energy under Contract DE-AC13-02GJ79491 DISCLAIMER This repon was prepared as an accoun t of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereo f, no r Battelle Memorial Institute, no r any of their employees, makes an y warranty, express or implie d, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, ap paratus, produ ct, or p roce ss di sclos ed, or represen ts that its use would not in frin ge privat ely owned rights . Reference herein to any specific comm ercial product, process,

270

Pacific Northwest Generating Coop | Open Energy Information  

Open Energy Info (EERE)

Northwest Generating Coop Northwest Generating Coop Jump to: navigation, search Name Pacific Northwest Generating Coop Place Portland, Oregon Utility Id 14323 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Pacific Northwest Generating Cooperative Smart Grid Project was awarded $19,576,743 Recovery Act Funding with a total project value of $39,172,987. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References

271

Analysis Activities at Pacific Northwest National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Pacific Northwest National Laboratory Pacific Northwest National Laboratory Pacific Northwest National Laboratory's Hydrogen Analysis Capabilities Marylynn Placet Manager, Energy Policy and Planning Group m.placet@pnl.gov (202) 646-5249 DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. U.S. Department of Energy Pacific Northwest National Laboratory 2 Charter PNNL Energy Science and Technology Directorate's Energy Mission: Secure, clean, and affordable energy systems in a carbon constrained world. PNNL Analysis Objectives/Principles: * Development of state-of-the-art analysis tools for critical policy issues (e.g., climate change, electricity grid issues) * Use of tools appropriate to the need * Objectivity; analysis based on best available,

272

Northwest Biodiesel Network | Open Energy Information  

Open Energy Info (EERE)

Northwest Biodiesel Network Northwest Biodiesel Network Name Northwest Biodiesel Network Address 6532 Phinney Ave N Place Seattle, Washington Zip 98103 Region Pacific Northwest Area Website http://www.nwbiodiesel.org/ Notes To promote the use and benefits of biodiesel through awareness campaigns, educational programs, and specific initiatives Coordinates 47.677247°, -122.35398° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.677247,"lon":-122.35398,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Cognitive Informatics, Pacific Northwest National Laboratory | National  

National Nuclear Security Administration (NNSA)

Cognitive Informatics, Pacific Northwest National Laboratory | National Cognitive Informatics, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Frank Greitzer Cognitive Informatics, Pacific Northwest National Laboratory Frank Greitzer Frank Greitzer Role: Cognitive Informatics, Pacific Northwest National Laboratory

274

Indian Tribes of the Northwest Territory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tribes of the Northwest Territory Tribes of the Northwest Territory Nature Bulletin No. 388-A September 26, 1970 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation INDIAN TRIBES OF THE NORTHWEST TERRITORY The white men found many tribes inhabiting what became the Northwest Territory in 1787, and all but one belonged to the largest and most important Indian family, the Algonquians. The powerful Shawnee occupied most of the Ohio valley and its tributaries extending south into Kentucky, West Virginia and Tennessee. Tecumseh and his brother, "The Prophet", were Shawnee. The Iliniwek, called 'Illinois" by the French, was an Algonquian confederacy which had, for a long time, occupied most of this state except the northwestern part and the Wabash valley. In addition to several small bands it included the Kaskaskia, Peoria, Cahokia, Moingewena, and the Michigamea. The latter, whom Father Marquette found living in Missouri and Arkansas, were finally forced to move back into southern Illinois.

275

Regional Drainage Flows in the Pacific Northwest  

Science Conference Proceedings (OSTI)

An analysis of regional drainage flows in the Pacific Northwest is presented using results from a network of surface observations and a series of simulations carried out with a nested mesoscale model. The flows, which occur regularly in ...

J. C. Doran; S. Zhong

1994-06-01T23:59:59.000Z

276

Independent Activity Report, Pacific Northwest National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2012 January 2012 Pacific Northwest National Laboratory Orientation Visit HIAR-PNNL-2012-01-11 The U.S. Department of Energy (DOE) Office of Enforcement and Oversight,...

277

Regional Environmental Prediction Over the Pacific Northwest  

Science Conference Proceedings (OSTI)

This paper examines the potential of regional environmental prediction by focusing on the local forecasting effort in the Pacific Northwest. A consortium of federal, state, and local agencies have funded the development and operation of a ...

Clifford F. Mass; Mark Albright; David Ovens; Richard Steed; Mark MacIver; Eric Grimit; Tony Eckel; Brian Lamb; Joseph Vaughan; Kenneth Westrick; Pascal Storck; Brad Colman; Chris Hill; Naydene Maykut; Mike Gilroy; Sue A. Ferguson; Joseph Yetter; John M. Sierchio; Clint Bowman; Richard Stender; Robert Wilson; William Brown

2003-10-01T23:59:59.000Z

278

1994 Pacific Northwest Loads and Resources Study.  

Science Conference Proceedings (OSTI)

The 1994 Pacific Northwest Loads and Resources Study presented herein establishes a picture of how the agency is positioned today in its loads and resources balance. It is a snapshot of expected resource operation, contractual obligations, and rights. This study does not attempt to present or analyze future conservation or generation resource scenarios. What it does provide are base case assumptions from which scenarios encompassing a wide range of uncertainties about BPA`s future may be evaluated. The Loads and Resources Study is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources and (2) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates the 1993 Pacific Northwest Loads and Resources Study, published in December 1993. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The Federal system and regional analyses for medium load forecast are presented.

United States. Bonneville Power Administration.

1994-12-01T23:59:59.000Z

279

Northwest Power Pool Area | OpenEI  

Open Energy Info (EERE)

Northwest Power Pool Area Northwest Power Pool Area Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 93, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power Northwest Power Pool Area projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Western Electricity Coordinating Council / Northwest Power Pool Area (xls, 259.1 KiB)

280

Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 Hydrogen Pipeline 2005 Hydrogen Pipeline Working Group Workshop to someone by E-mail Share Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Facebook Tweet about Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Twitter Bookmark Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Google Bookmark Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Delicious Rank Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on Digg Find More places to share Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working Group Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 Hydrogen Pipeline 2007 Hydrogen Pipeline Working Group Workshop to someone by E-mail Share Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Facebook Tweet about Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Twitter Bookmark Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Google Bookmark Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Delicious Rank Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on Digg Find More places to share Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations

282

Upheaval Buckling of Offshore Pipelines in Homogeneous and Layered Soils.  

E-Print Network (OSTI)

??Offshore oil and gas pipelines are commonly buried below the seabed to provide environmental stability and protection. Many of these pipelines are prone to upheaval (more)

Deljoui, Porang

2012-01-01T23:59:59.000Z

283

Sequencing Technologies and Computational pipelines at the JGI  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequencing Technologies and Computational pipelines at the JGI Sequencing Technologies and Computational pipelines at the JGI September 17, 2013 JGI logo 2 James Han, JGI...

284

BLOCKAGE DETECTION IN NATURAL GAS PIPELINES BY TRANSIENT ANALYSIS.  

E-Print Network (OSTI)

??Pipelines are the most reliable means for the transportation of natural gas. A major problem of flow assurance in natural gas pipelines is solid deposition (more)

ADELEKE, NAJEEM

2010-01-01T23:59:59.000Z

285

Modeling fatique behavior of dents in petroleum pipelines.  

E-Print Network (OSTI)

??Dents in pipelines can seriously reduce the design life of a pipeline. Dents cause stress concentrations to develop which make dents susceptible to fatigue failures. (more)

Hoffmann, Roger Lynn

2012-01-01T23:59:59.000Z

286

Mobile sensor network to monitor wastewater collection pipelines  

E-Print Network (OSTI)

we divide the pipeline in equal length segment(i.e. 10we divide the pipeline into segments with equal length (i.e.

Lim, Jungsoo

2012-01-01T23:59:59.000Z

287

Penitas, TX Natural Gas Pipeline Imports From Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico...

288

Efficient Compression of CO2 and Pipeline Transport ...  

Science Conference Proceedings (OSTI)

... Final pressure around 1,500 to 2,200 psia for pipeline transport or re-injection. ... Perform optimization of pipeline booster stations ...

2012-10-22T23:59:59.000Z

289

Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Imports From Mexico...

290

Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Alamo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Alamo, TX Natural Gas Pipeline Exports to Mexico...

291

St. Clair, MI Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) St. Clair, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet) St. Clair, MI Natural Gas Pipeline Exports to...

292

Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Ogilby, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Ogilby, CA Natural Gas Pipeline Exports to Mexico...

293

Nevada Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Nevada Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Nevada Natural Gas Pipeline and Distribution...

294

Idaho Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Idaho Natural Gas Pipeline and Distribution Use (Million Cubic...

295

Delaware Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Pipeline and...

296

Kansas Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Kansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Pipeline and Distribution...

297

California Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) California Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) California Natural Gas Pipeline and...

298

California Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) California Natural Gas Pipeline and Distribution Use (Million Cubic Feet) California Natural Gas Pipeline and Distribution Use...

299

Nevada Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Nevada Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Nevada Natural Gas Pipeline and Distribution Use (Million Cubic...

300

Delaware Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use (Million...

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Exports...

302

Alaska Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic...

303

Minnesota Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Minnesota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use (Million...

304

Oregon Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Oregon Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use (Million Cubic...

305

Alabama Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Pipeline and...

306

Roma, Texas Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Roma, Texas Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Roma, Texas Natural Gas Pipeline Exports to Mexico...

307

Kansas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Kansas Natural Gas Pipeline and Distribution Use (Million Cubic...

308

Calexico, CA Natural Gas Pipeline Exports to Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Calexico, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Calexico, CA Natural Gas Pipeline Exports to Mexico...

309

Utah Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Utah Natural Gas Pipeline and Distribution Use (Million Cubic...

310

Washington Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Washington Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Washington Natural Gas Pipeline and Distribution Use...

311

Alabama Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million...

312

Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Penitas, TX Natural Gas Pipeline Exports to Mexico...

313

Massachusetts Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Massachusetts Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Massachusetts Natural Gas Pipeline and Distribution Use...

314

Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use (Million...

315

Florida Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Florida Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Pipeline and...

316

Indiana Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Indiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use (Million...

317

Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Clint, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Clint, TX Natural Gas Pipeline Exports to Mexico...

318

Virginia Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use (Million...

319

Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Hidalgo, TX Natural Gas Pipeline Exports to Mexico...

320

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

1 January 2005 HYDROGEN EMBRITTLEMENT OF PIPELINE STEELS: CAUSES AND REMEDIATION P. Sofronis, I. Robertson, D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline...

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Million...

322

Ohio Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Ohio Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Ohio Natural Gas Pipeline and Distribution Use (Million Cubic...

323

Texas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Texas Natural Gas Pipeline and Distribution Use (Million Cubic...

324

Louisiana Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use (Million...

325

Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic...

326

Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Hidalgo, TX Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Hidalgo, TX Natural Gas Pipeline Exports...

327

Georgia Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use (Million...

328

Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Pipeline and...

329

Florida Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Florida Natural Gas Pipeline and Distribution Use (Million...

330

Vermont Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use (Million...

331

Massachusetts Natural Gas Pipeline and Distribution Use Price...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Massachusetts Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Pipeline...

332

Arizona Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use (Million...

333

Montana Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Montana Natural Gas Pipeline and Distribution Use (Million...

334

Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Wisconsin Natural Gas Pipeline and...

335

Wisconsin Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Wisconsin Natural Gas Pipeline and Distribution Use (Million...

336

Vermont Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Vermont Natural Gas Pipeline and...

337

Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use (Million...

338

EIA - Natural Gas Pipeline Network - Generalized Natural Gas...  

Annual Energy Outlook 2012 (EIA)

Gas based on data through 20072008 with selected updates Generalized Natural Gas Pipeline Capacity Design Schematic Generalized Natural Gas Pipeline Capcity Design Schematic...

339

Fuel Cell Technologies Office: Hydrogen Pipeline Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

- Energy Efficiency and Renewable Energy Fuel Cell Technologies Office Hydrogen Pipeline Working Group The Hydrogen Pipeline Working Group of research and industry experts...

340

Fuel Cell Technologies Office: 2005 Hydrogen Pipeline Working...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Energy Efficiency and Renewable Energy Fuel Cell Technologies Office 2005 Hydrogen Pipeline Working Group Workshop DOE held a Hydrogen Pipeline Working Group Workshop August...

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use (Million...

342

Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use (Million...

343

Pennsylvania Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Pennsylvania Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use...

344

Niagara Falls, NY Natural Gas Pipeline Exports to Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Niagara Falls, NY Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Niagara Falls, NY Natural Gas Pipeline Exports...

345

Tennessee Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Tennessee Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use (Million...

346

Maine Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Maine Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Maine Natural Gas Pipeline and Distribution...

347

Douglas, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Douglas, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Douglas, AZ Natural Gas Pipeline Exports to Mexico...

348

Mississippi Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use...

349

Otay Mesa, CA Natural Gas Pipeline Exports to Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Otay Mesa, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Otay Mesa, CA Natural Gas Pipeline Exports to Mexico...

350

Connecticut Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use...

351

Maine Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Maine Natural Gas Pipeline and Distribution Use (Million Cubic...

352

Rules for Pipeline Public Utilities, Rules for Gas Service and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Savings Rules for Pipeline Public Utilities, Rules for Gas Service and Safety (New Hampshire) Rules for Pipeline...

353

Maryland Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Maryland Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use (Million...

354

Michigan Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use (Million...

355

NIST/CSM Sensor Could Help Avert Pipeline Failures  

Science Conference Proceedings (OSTI)

... in conventional pipelines by slowly diffusing into the metal. The NIST/CSM sensor, described today at the 7th International Pipeline Conference ...

2012-10-02T23:59:59.000Z

356

Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use (Million...

357

Ogilby, CA Natural Gas Pipeline Exports to Mexico (Dollars per...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Ogilby, CA Natural Gas Pipeline Exports to Mexico (Dollars per Thousand Cubic Feet) Ogilby, CA Natural Gas Pipeline Exports...

358

Colorado Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use (Million...

359

In Natural Gas Pipelines, NIST Goes with the Flow  

Science Conference Proceedings (OSTI)

... flows from producers to consumers through a complex pipeline network totaling ... pressures an order of magnitude smaller than pipelines used in ...

2013-05-01T23:59:59.000Z

360

Niagara Falls, NY Natural Gas Pipeline Imports From Canada (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Niagara Falls, NY Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Niagara Falls, NY Natural Gas Pipeline...

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Rio Bravo, Texas Natural Gas Pipeline Exports to Mexico (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Rio Bravo, Texas Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Rio Bravo, Texas Natural Gas Pipeline Exports to...

362

Romas, Texas Natural Gas Pipeline Exports (Price) Mexico (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Romas, Texas Natural Gas Pipeline Exports (Price) Mexico (Dollars per Thousand Cubic Feet) Romas, Texas Natural Gas Pipeline...

363

High-Speed Biomass Recalcitrance Pipeline Speeds Up Bio ...  

High-Speed Biomass Recalcitrance Pipeline Speeds Up Bio-Mass Analysis Robotic pipeline allows for rapid analysis of optimal substrate/enzyme ...

364

December 4, 2007: NETL's Robotic Pipeline Inspection Tool  

Energy.gov (U.S. Department of Energy (DOE))

December 4, 2007The Department's National Energy Technology Laboratory announces the development of a new robotic pipeline inspection tool that could revolutionize the pipeline inspection process....

365

EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG...  

NLE Websites -- All DOE Office Websites (Extended Search)

88: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, LA EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project,...

366

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

367

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

368

Ruby natural gas pipeline begins service today (July 28, 2011 ...  

U.S. Energy Information Administration (EIA)

El Paso Corporation's Ruby Pipeline (Ruby), the largest natural gas pipeline project dedicated to serving the Western United States since the ...

369

Network Connectivity and Price Convergency: Gas Pipeline Deregulation  

E-Print Network (OSTI)

pipeline tariffs and gas prices were regulated (Mulherin,failed, in equMizing gas prices across the geographicallyNetwork Connectivity and Price Convergence: Gas Pipeline

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

370

South Dakota Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) South Dakota Natural Gas Pipeline and Distribution Use...

371

Massena, NY Natural Gas Pipeline Exports to Canada (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Massena, NY Natural Gas Pipeline Exports to Canada (Million Cubic Feet) Massena, NY Natural Gas Pipeline Exports to Canada...

372

Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Nogales, AZ Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Nogales, AZ Natural Gas Pipeline Exports to Mexico...

373

Pipeline, rail backers lock horns on coal transport. [Coal pipeline act, H. R. 4370  

SciTech Connect

The backers of railroad and pipeline transport for coal clashed at hearings on the proposed Coal Pipeline Act. Slurry-pipeline advocates, claiming that high rail rates discourage industry and are counter to national energy goals, are seeking the eminent domain they need to secure rights-of-way for pipeline construction. Railroad lobbyists have successfully fought the idea so far and will continue to oppose a competing transport system. Proponents of several pipeline routes see them as a way to lower transport prices, while handling only about five percent of the nation's coal. The economics of pipelines appear to be a factor of distance and volume, with no hard evidence available. Arguments of both sides of the controversy are cited. Water rights are a major problem in transporting Western coal by pipeline and, in some states, are a larger issue than eminent domain. (DCK)

Murnane, T.

1980-03-24T23:59:59.000Z

374

Exploring Pipeline Dynamics to Connect New Markets  

Reports and Publications (EIA)

This presentation provides analytical results of ongoing research at the Natural Gas Division, Office of Oil and Gas, on the role of natural gas pipelines in the marketplace. The presentation also includes the latest market developments for pipeline expansion and new construction.

Information Center

2009-03-06T23:59:59.000Z

375

Natural Gas Pipeline and System Expansions  

Reports and Publications (EIA)

This special report examines recent expansions tothe North American natural gas pipeline networkand the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It includes those projects in Canada and Mexico that tie in with U.S. markets or projects.

Information Center

1997-04-01T23:59:59.000Z

376

Algeria LPG pipeline is build by Bechtel  

SciTech Connect

The construction of the 313 mile long, 24 in. LPG pipeline from Hassi R'Mel to Arzew, Algeria is described. The pipeline was designed to deliver 6 million tons of LPG annually using one pumping station. Eventually an additional pumping station will be added to raise the system capacity to 9 million tons annually.

Horner, C.

1984-08-01T23:59:59.000Z

377

Performance Metrics for Embedded Parallel Pipelines  

Science Conference Proceedings (OSTI)

AbstractA statistical approach to performance prediction is applied to a system development methodology for pipelines comprised of independent parallel stages. The methodology is aimed at distributed memory machines employing medium-grained parallelization. ... Keywords: Performance prediction, parallel pipelines, real-time systems, order statistics.

Martin Fleury; Andrew C. Downton; Adrian F. Clark

2000-11-01T23:59:59.000Z

378

Integrity assurance of natural gas transmission pipelines  

Science Conference Proceedings (OSTI)

Natural gas transmission pipelines have proven to be a safe and efficient means for transporting the trillions of cubic feet of natural gas used annually in the United States. Since the peak of construction of these pipelines occurred between 1950 and the mid-1960s, their average age is now over thirty years. However, replacement of these pipelines because of age would be prohibitively expensive and unnecessary. Preventive maintenance and rehabilitation programs put into practice by the pipeline industry provides the key to ensuring the continued integrity of the transmission pipeline system. This article reviews the preventive maintenance practices commonly used by the gas industry. These practices include right-of-way patrols, corrosion control procedures, in-line inspection with intelligent or smart pigs that inspect the pipe while traveling through the inside of the pipe, direct access inspection of the pipe from bellhole excavations, and hydrostatic retesting of pipelines. When pipelines are properly maintained, these practices can ensure the integrity and long-term serviceability of transmission pipelines well into the 21st Century. 11 refs., 5 figs., 1 tab.

Posakony, G.J. (J-TECH Consulting, Richland, WA (United States))

1993-05-01T23:59:59.000Z

379

Rio Grande pipeline introduces LPG to Mexico  

SciTech Connect

Rio Grande Pipeline, a joint venture between Mid-America Pipeline Co., Amoco Pipeline Co. and Navajo Pipeline Co., has broken new ground in the energy industry as the first LPG pipeline to cross the US-Mexico border. Plans for the project were announced in November 1995 and first deliveries started three months ago on March 21, 1997. The 8-inch, 265-mile pipeline originates near Odessa, TX, where it receives an 85-15 propane-butane mix via a connection to Mid-America Pipeline. From Odessa, product moves west through the Texas desert and crosses the Rio Grande River about 15 miles south of El Paso near Clint, TX and extends 20 miles into Mexico. Capacity of the line is 24,000 bpd and it has been averaging about 22,000 bpd since line-fill. All in all, it sounded like a reasonably feasible, routine project. But perceptions can be deceiving, or at least misleading. In other words, the project can be summarized as follows: one river, two cultures and a world of difference. The official border crossing for pipeline construction took place on Dec. 2, 1996, with a directional drill under the Rio Grande River, but in actuality, the joint venture partners were continually bridging differences in language, laws, customs and norms with Pemex and contracted workers from Mexico.

NONE

1997-06-01T23:59:59.000Z

380

COMPANY PROPRIETARY INFORMATION  

Due Dates: August 31 Period ending June 30 February 28 Period ending December 31 COMPANY PROPRIETARY INFORMATION ROYALTY REPORT AFTER FIRST SALE ...

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Status Company Terminal Term  

NLE Websites -- All DOE Office Websites (Extended Search)

Status of Short-Term Applications to Export Previously Imported LNG (as of March 5, 2013) Status Company Terminal Term (Years) Authorized Volume (Equivalent Bcf in natural gas)...

382

Holocene paleoenviroments of northwest Iowa  

SciTech Connect

This paper presents the biotic, sedimentary, geomorphic, and climatic history of the upper part of the Roberts Creek Basin, northeastern Iowa for the late-glacial and Holocene, and compares these records with a C-O isotopic sequence from Coldwater Cave, 60 km northwest of Roberts Creek. the biotic record (pollen, vascular plant and bryophyte macrofossils, and insects) is preserved in floodplain alluvium that underlies three constructional surfaces separated by low scarps. Each surface is underlain by a lithologically and temporally distinct alluvial fill. The highest surface is underlain by the Gunder Member of the Deforest Formation, dating from 11,000 to 4000 yr BP; beneath the intermediate level is the Roberts Creek Member, dating from 4000 to 400 yr BP; and the lowest level is underlain by the Camp Creek Member, deposited during the last 380 yr. Pollen and plant macrofossils in the alluvial fill show that a typical late-glacial spruce forest was replaced by Quercus and Ulmus in the early Holocene. This early-to-middle Holocene forest became dominated by medic elements such as Acer saccharum, Tila americana, Ostyra virginiana, and Carpinus caroliniana as late as 5500 yr BP; in contrast, the closest sites to the west and north were at their warmest and driest were covered by prairie vegetation between 6500 and 5500 yr BP. After 5500 yr BP, the forest in the roberts Creek area was replaced by prairie, as indicated by a rich assemblage of plant macrofossils, although only Ambrosia and Poaceae became abundant in the pollen record. The return of Quercus {approx} 3000 BP (while nonarboreal pollen percentages remained relatively high) indicates the oak savanna prevailed with little change until settlement time. 83 refs., 17 figs., 5 tabs.

Baker, R.G. [Univ. of Iowa, Iowa City, IA (United States); Bettis, E.A. III [Iowa Department of Natural Resources, Iowa City, IA (United States); Schwert, D.P. [North Dakota State Univ., Fargo, ND (United States)] [and others

1996-05-01T23:59:59.000Z

383

Corrosion cracking of gas-carrying pipelines  

Science Conference Proceedings (OSTI)

Samples of soil and other materials adhering to the outer and inner surfaces of pipeline coatings, and pieces of rupture pipe were studied to investigate causes of gas-carrying pipeline failures in Pakistan. Chemical analysis of the ruptured pipe shows the pipeline steel had no material flaw. X-ray diffraction studies of the soil reveal that it contains clay and nonclay minerals normally found. The material adhering to the coating facing the pipeline surface contains carbonates and bicarbonates of sodium, namely, nahcolite and trona. This study shows that nahcolite and trona, as products of cathodic protection that were then synthesized in the vicinity of the pipeline surface, could have attacked the pipe surface over the years and caused corrosion.

Hussain, K.; Shaukat, A.; Hassan, F.

1989-02-01T23:59:59.000Z

384

OPUS-97: A Generalized Operational Pipeline System  

E-Print Network (OSTI)

. OPUS is the platform on which the telemetry pipeline at the Hubble Space Telescope Science Institute is running currently. OPUS was developed both to repair the mistakes of the past, and to build a system which could meet the challenges of the future. The production pipeline inherited at the Space Telescope Science Institute was designed a decade earlier, and made assumptions about the environment which were unsustainable. While OPUS was developed in an environment that required a great deal of attention to throughput, speed, e#ciency, flexibility, robustness and extensibility, it is not just a "big science" machine. The OPUS platform, our baseline product, is a small compact system designed to solve a specific problem in a robust way. The OPUS platform handles communication with the OPUS blackboard; individual processes within this pipeline need have no knowledge of OPUS, of the blackboard, or of the pipeline itself. The OPUS API is an intermediate pipeline product. In addition to t...

J. Rose

1998-01-01T23:59:59.000Z

385

Key decisions near for Chad pipeline proposal  

Science Conference Proceedings (OSTI)

The World Bank is expected to play a key role in a proposed $3 billion development of oil fields in Chad and an export pipeline through Cameroon to the Atlantic Ocean. The project, which has been at least 4 years in the making, could see a breakthrough later this year. Esso Exploration and production Chad Inc. is operator for the consortium proposing the project. It holds a 40% interest, Ste. Shell Tchadienne de Recherches et d`Exploitation has 40%, and Elf Hydrocarbures Tchad has a 20% share it purchased from Chevron Corp. in 1993 (OGJ, February 1, 1993, p 25). The governments of Chad and Cameroon, which had approved a framework agreement for the pipeline in 1995, now are studying an assessment of the pipeline`s environmental impact. If they approve the plans, they are expected to apply to the World Bank for financing. The paper describes the Chad fields, the export pipeline, background information, and the Banks role.

Crow, P.

1997-05-12T23:59:59.000Z

386

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

Seattle Washington Biofuels Designing enzymes for new sources of biofuels http www ba lab com Pacific Northwest Area Bio Oils Energy Bio Oils Energy Madrid Spain Biofuels...

387

Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.19 1970's 0.20 0.21 0.23 0.24 0.28 0.36 0.46 0.73 0.88 1.28 1980's 1.75 2.34 2.91 3.06 2.94 2.92 2.44 1.99 1.87 2.09 1990's 2.11 2.33 2.34 2.37 1.98 1.82 2.63 2.62 2.33 2.19 2000's 3.37 4.28 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Mississippi Natural Gas Prices

388

Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.22 0.22 1970's 0.25 0.25 0.26 0.28 0.33 0.55 0.60 1.24 1.28 2.20 1980's 1.26 4.27 4.43 4.14 3.99 3.45 2.68 2.19 1.81 1.77 1990's 1.89 0.56 0.61 0.47 0.47 0.37 0.68 0.63 0.54 0.82 2000's 1.50 1.40 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Minnesota Natural Gas Prices

389

Washington Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Washington Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.24 0.28 0.33 0.44 0.65 0.78 1.67 1.92 2.38 1980's 3.92 4.34 4.72 3.98 3.72 3.12 2.52 2.11 1.99 2.06 1990's 2.04 1.98 1.89 1.37 1.84 1.78 1.77 1.89 1.76 2.03 2000's 3.07 2.82 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Washington Natural Gas Prices

390

Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.35 0.68 0.30 1970's 0.32 0.32 0.35 0.40 0.50 0.58 0.59 1.50 2.60 2.53 1980's 2.76 2.94 3.53 3.30 3.18 3.71 2.53 2.52 2.13 2.97 1990's 3.68 3.08 2.95 3.53 2.62 2.20 3.50 1.54 3.00 0.59 2000's 4.82 4.93 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Connecticut Natural Gas Prices

391

Pennsylvania Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.24 0.24 1970's 0.25 0.29 0.31 0.32 0.40 0.54 0.60 0.92 0.94 1.42 1980's 1.89 2.34 3.02 3.20 3.09 3.06 2.63 2.38 2.36 2.35 1990's 2.57 2.41 2.41 2.83 2.47 2.00 2.71 2.72 2.08 1.97 2000's 3.59 4.76 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Pennsylvania Natural Gas Prices

392

Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.23 0.24 0.28 0.36 0.49 0.73 0.89 1.26 1980's 1.73 2.25 2.96 3.19 2.94 3.01 2.29 1.85 1.78 1.97 1990's 1.94 2.61 2.44 2.23 1.88 1.59 2.57 2.52 2.17 2.04 2000's 3.44 4.13 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Tennessee Natural Gas Prices

393

The LOFAR Known Pulsar Data Pipeline  

E-Print Network (OSTI)

Transient radio phenomena and pulsars are one of six LOFAR Key Science Projects (KSPs). As part of the Transients KSP, the Pulsar Working Group (PWG) has been developing the LOFAR Pulsar Data Pipelines to both study known pulsars as well as search for new ones. The pipelines are being developed for the Blue Gene/P (BG/P) supercomputer and a large Linux cluster in order to utilize enormous amounts of computational capabilities (50Tflops) to process data streams of up to 23TB/hour. The LOFAR pipeline output will be using the Hierarchical Data Format 5 (HDF5) to efficiently store large amounts of numerical data, and to manage complex data encompassing a variety of data types, across distributed storage and processing architectures. We present the LOFAR Known Pulsar Data Pipeline overview, the pulsar beam-formed data format, the status of the pipeline processing as well as our future plans for developing the LOFAR Pulsar Search Pipeline. These LOFAR pipelines and software tools are being developed as the next gen...

Alexov, A; Mol, J D; Stappers, B; van Leeuwen, J

2010-01-01T23:59:59.000Z

394

Transportation and Handling of Medium Btu Gas in Pipelines  

Science Conference Proceedings (OSTI)

Coal-derived medium btu gas can be safely transported by pipeline over moderate distances, according to this survey of current industrial pipeline practices. Although pipeline design criteria will be more stringent than for natural gas pipelines, the necessary technology is readily available.

1984-03-01T23:59:59.000Z

395

Pipelining with common operands for power-efficient linear systems  

Science Conference Proceedings (OSTI)

We propose a systematic pipelining method for a linear system to minimize power and maximize throughput, given a constraint on the number of pipeline stages and a set of resource constraints. Unlike most existing pipelining approaches, our method takes ... Keywords: common operand, linear system, operand sharing, pipelining, power

Daehong Kim; Dongwan Shin; Kiyoung Choi

2005-09-01T23:59:59.000Z

396

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE  

E-Print Network (OSTI)

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT Contract Number: #500 GAS PIPELINE ASSESSMENT #50010050 Legal Notice This information was prepared by Gas Technology;CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT #50010050 Task 3Summary Report AssessmentofCurrentlyAvailablePipeline

397

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-Print Network (OSTI)

Evaluation of Natural Gas Pipeline Materials and Infrastructure for Hydrogen/Mixed Gas Service Retrofitting Existing NG Pipelines fro Hydrogen/Hythane Service New Pipeline Installation and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group

398

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE  

E-Print Network (OSTI)

GTI PROJECT NUMBER 21222 CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT Contract Number: #500 GAS PIPELINE ASSESSMENT #500-10-050 Legal Notice This information was prepared by Gas Technology;CALIFORNIA NATURAL GAS PIPELINE ASSESSMENT #500-10-050 Baseline Technology Assessment for Pipeline Integrity

399

Renewable Northwest Project | Open Energy Information  

Open Energy Info (EERE)

Northwest Project Northwest Project Jump to: navigation, search Logo: Renewable Northwest Project Name Renewable Northwest Project Address 917 SW Oak St, Ste 303 Place Portland, Oregon Zip 97205 Region Pacific Northwest Area Number of employees 1-10 Year founded 1994 Phone number 503-223-4544 Notes Nonprofit Advocacy Organization Website http://www.RNP.org Coordinates 45.5226356°, -122.6805008° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5226356,"lon":-122.6805008,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Pipeline response to nearby detonations  

SciTech Connect

Texas Gas Transmission Corp. has supplemented the findings of Southwest Research Institute's study of detonation-induced stresses on pipelines by applying SwRI's equations to actual field problems. Texas Gas used the blasting-stress equations to fix the minimum allowable stand-off distance and maximum particle velocities for strip-mining operations planned along a transmission line right-of-way. The ultimate goal was to ensure that the combined stresses of blasting and operating pressures would not exceed 72% of the pipe's specified minimum yield strength. These stress calculations enabled Texas Gas to maintain normal operating conditions throughout the time that overburden blasting was taking place 100-500 ft from the line.

Bart, G.J.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Pipeline Carriers (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carriers (Montana) Carriers (Montana) Pipeline Carriers (Montana) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Rural Electric Cooperative Retail Supplier Institutional Systems Integrator Fuel Distributor Program Info State Montana Program Type Siting and Permitting Provider State of Montana Public Service Commission Pipeline carriers transporting crude petroleum, coal, the products of crude petroleum or coal, or carbon dioxide produced in the combustion or gasification of fossil fuels are required to abide by these regulations. The regulations address construction permits and the use of eminent domain by pipeline carriers, records and reporting, connection and interchange facilities, and the prohibition of discrimination in rates and service

402

Reflex: Scientific Workflows for the ESO Pipelines  

E-Print Network (OSTI)

The recently released Reflex scientific workflow environment supports the interactive execution of ESO VLT data reduction pipelines. Reflex is based upon the Kepler workflow engine, and provides components for organising the data, executing pipeline recipes based on the ESO Common Pipeline Library, invoking Python scripts, and constructing interaction loops. Reflex will greatly enhance the quick validation and reduction of the scientific data. In this paper we summarize the main features of Reflex, and demonstrate as an example its application to the reduction of echelle UVES data.

Ballester, Pascal; Forchi, Vincenzo; Freudling, Wolfram; Garcia-Dabo, Cesar Enrique; Gebbinck, Maurice klein; Modigliani, Andrea; Romaniello, Martino

2011-01-01T23:59:59.000Z

403

Policies of System Level Pipeline Modeling  

E-Print Network (OSTI)

Pipelining is a well understood and often used implementation technique for increasing the performance of a hardware system. We develop several SystemC/C++ modeling techniques that allow us to quickly model, simulate, and evaluate pipelines. We employ a small domain specific language (DSL) based on resource usage patterns that automates the drudgery of boilerplate code needed to configure connectivity in simulation models. The DSL is embedded directly in the host modeling language SystemC/C++. Additionally we develop several techniques for parameterizing a pipeline's behavior based on policies of function, communication, and timing (performance modeling).

Harcourt, Ed

2008-01-01T23:59:59.000Z

404

MFL tool hardware for pipeline inspection  

SciTech Connect

The intelligent pig based on the magnetic flux leakage (MFL) is frequently used for inline inspection of gas and liquid transportation pipelines. The tool is capable of reliably detecting and characterizing several commonly occurring pipeline defects including metal loss due to corrosion and gouges, dents, and buckles, which tend to threaten the structural integrity of the pipeline. The defect detection and characterization capabilities of the tool are directly dependent upon the type of critical hardware components and systems selected for the tool assembly. This article discusses the key components of an advanced or high resolution MFL tool.

Tandon, K.K. [Engineers India Ltd., Haryana (India). Research and Development Complex

1997-02-01T23:59:59.000Z

405

Offshore pipeline design utilizing a PLEM  

SciTech Connect

A unique pipeline end module (PLEM) functioning as an intermediate underwater tie-in point is planned for use in the Gulf of Thailand to permit new connections without disruption of flow. In March 1983, the Petroleum Authority of Thailand (PTT) contracted with PLT Engineering Inc. to do the preliminary design for a 43-km, 24-in. gas pipeline from Union Oil's newly developed Platong field in the Gulf of Thailand. The assigned task was to tie the new pipeline into an existing 34-in. trunkline that carries gas from Erawan field to shore at Sattahip, Thailand.

Karpathy, S.A.

1984-04-01T23:59:59.000Z

406

Inland Power and Light Company - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inland Power and Light Company - Residential Energy Efficiency Inland Power and Light Company - Residential Energy Efficiency Rebate Programs Inland Power and Light Company - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heat Pumps Water Heating Windows, Doors, & Skylights Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Refrigerators/Freezers Recycling: $30 Electric Water Heaters: $25 Refrigerators/Freezers: $25 Clothes Washers: $20 - $50 Energy Star Site Built Home: $1,000 Northwest Energy Efficient Manufactured Home: $1,000 Air-source Heat Pumps (Installed in an All-Electric Home): $1,000

407

Company Name Company Name Address Place Zip Product Website Region  

Open Energy Info (EERE)

Washington Second Washington Second Avenue Seattle Washington Venture capital firm investing in alternative energy production http www archventure com Pacific Northwest Area Cascadia Capital Cascadia Capital Fifth Avenue Seattle Washington Investment bank focusing on cleantech deals http www cascadiacapital com Pacific Northwest Area Eugene Water and Electric Board Eugene Water and Electric Board East th Avenue Eugene Oregon Electricity and Water http www eweb org Pacific Northwest Area McAdams Wright Ragen McAdams Wright Ragen th Ave Suite Seattle Washington Financial Services http www mwrinc com Pacific Northwest Area OVP Venture Partners OVP Venture Partners SW Macadam Ave Portland Oregon Cleantech venture fund http www ovp com Pacific Northwest Area OVP Venture Partners Washington OVP Venture Partners Washington Market

408

EIA - Natural Gas Pipeline Network - U.S. Natural Gas Pipeline ...  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Pipeline Network, 2009 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of ...

409

Ford Motor Company  

E-Print Network (OSTI)

All statements, findings, and conclusions in this report are those of the authors and do not necessarily reflect those of the Global Interdependence Center, Ford Motor Company, or the Center for Automotive Research. TABLE OF CONTENTS Acknowledgements......................................................................................................................... iv

Ellen Hughes-cromwick; Joshua Cregger

2013-01-01T23:59:59.000Z

410

Sound Oil Company  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sound Oil Company Sound Oil Company file:///C|/Documents%20and%20Settings/blackard/Desktop/EIA/LEE0152.HTM[11/29/2012 2:30:44 PM] DECISION AND ORDER OF THE DEPARTMENT OF ENERGY Application for Exception Name of Petitioner: Sound Oil Company Date of Filing: August 16, 1994 Case Number: LEE-0152 On August 16, 1994, Sound Oil Company (Sound) of Seattle Washington, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Sound requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied.

411

DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS  

SciTech Connect

Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the third quarter of the project (2nd quarter of 2002) includes design and construction of the diode laser driver and high-speed detector electronics. Fine-tuning of the electronics is proceeding. A new test site along an operating pipeline has been obtained.

James E. Huebler

2002-10-30T23:59:59.000Z

412

DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS  

Science Conference Proceedings (OSTI)

Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work performed in the 4th quarter of 2002 included fine-tuning and debugging of the custom Optical Time Domain Reflectometer being constructed for data collection and analysis. It also included installation of optical fibers at the test site along an operating pipeline.

James E. Huebler

2003-01-29T23:59:59.000Z

413

U.S. Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) U.S. Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.21 1970's 0.21 0.22 0.23 0.25 0.30 0.40 0.51 0.77 0.90 1.32 1980's 1.85 2.39 2.97 3.15 3.04 2.92 2.52 2.17 2.10 2.01 1990's 1.95 1.87 2.07 1.97 1.70 1.49 2.27 2.29 2.01 1.88 2000's 2.97 3.55 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use U.S. Natural Gas Prices

414

Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.16 0.17 1970's 0.17 0.19 0.20 0.22 0.26 0.34 0.52 0.73 0.99 1.17 1980's 1.55 1.89 2.50 2.73 2.71 2.83 2.57 2.75 2.01 2.02 1990's 1.52 1.54 1.71 1.25 1.39 1.40 2.37 2.46 2.06 2.16 2000's 3.17 3.60 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Iowa Natural Gas Prices

415

Caspian Region Oil Pipelines (U) KIEV RUSSIA  

U.S. Energy Information Administration (EIA)

Kashagan Tengiz Azeri Chirag Guneshli Deep Neka-Tehran 50,000 b/d (first stage) Atyrau-Samara 300,000 b/d Karachaganak-Atyrau (planned) 180,000 b/d Caspian Pipeline

416

Overview of interstate hydrogen pipeline systems.  

DOE Green Energy (OSTI)

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

417

Weld Simulation in X100 Pipeline Steel  

Science Conference Proceedings (OSTI)

Abstract Scope, The effect of gas metal arc weld (GMAW) parameters on the coarse-grain heat-affect zone (CGHAZ) of X100 pipeline steel has been studied by...

418

Gaseous Hydrogen Embrittlement of Pipeline Steels  

Science Conference Proceedings (OSTI)

Abstract Scope, The tensile properties of x52, x65, x80 and x100 pipeline steels have been measured in a high pressure (13.6 MPa), high purity, hydrogen gas...

419

Pipeline gas trade between Asian Russia, Northeast Asia gets fresh look  

Science Conference Proceedings (OSTI)

Pipeline trade in natural gas between Asian Russia and Northeast Asia is receiving serious attention from the governments and companies central to the projects that might evolve. Such trade has become possible during the past 5 years because of improvements in relations between China and Russia. Prospects for a long-distance pipeline are enhanced by the possibility of extending deliveries of Russian gas to Korea and Japan to supplement imports by those countries of liquefied natural gas. Korea and Japan have expressed interest in participating in a Russia-China pipeline. But their approaches differ greatly and would require careful coordination. Furthermore, participation by western companies would be essential. A 2 year study by the Royal Institute of International Affairs examined Japanese and Korean views about energy needs and possible sources of supply. The study included a survey of 32 energy organizations in those countries. This article reviews the gas potential of Asian Russia, describes events that have brought attention to those resources as a possible source of supply to Northeast Asia, and summarizes findings of the survey.

Paik, K.W. [Royal Inst. of International Affairs, London (United Kingdom); Choi, J.Y. [University College, London (United Kingdom)

1997-08-18T23:59:59.000Z

420

Overview of the design, construction, and operation of interstate liquid petroleum pipelines.  

Science Conference Proceedings (OSTI)

The U.S. liquid petroleum pipeline industry is large, diverse, and vital to the nation's economy. Comprised of approximately 200,000 miles of pipe in all fifty states, liquid petroleum pipelines carried more than 40 million barrels per day, or 4 trillion barrel-miles, of crude oil and refined products during 2001. That represents about 17% of all freight transported in the United States, yet the cost of doing so amounted to only 2% of the nation's freight bill. Approximately 66% of domestic petroleum transport (by ton-mile) occurs by pipeline, with marine movements accounting for 28% and rail and truck transport making up the balance. In 2004, the movement of crude petroleum by domestic federally regulated pipelines amounted to 599.6 billion tonmiles, while that of petroleum products amounted to 315.9 billion ton-miles (AOPL 2006). As an illustration of the low cost of pipeline transportation, the cost to move a barrel of gasoline from Houston, Texas, to New York Harbor is only 3 cents per gallon, which is a small fraction of the cost of gasoline to consumers. Pipelines may be small or large, up to 48 inches in diameter. Nearly all of the mainline pipe is buried, but other pipeline components such as pump stations are above ground. Some lines are as short as a mile, while others may extend 1,000 miles or more. Some are very simple, connecting a single source to a single destination, while others are very complex, having many sources, destinations, and interconnections. Many pipelines cross one or more state boundaries (interstate), while some are located within a single state (intrastate), and still others operate on the Outer Continental Shelf and may or may not extend into one or more states. U.S. pipelines are located in coastal plains, deserts, Arctic tundra, mountains, and more than a mile beneath the water's surface of the Gulf of Mexico (Rabinow 2004; AOPL 2006). The network of crude oil pipelines in the United States is extensive. There are approximately 55,000 miles of crude oil trunk lines (usually 8 to 24 inches in diameter) in the United States that connect regional markets. The United States also has an estimated 30,000 to 40,000 miles of small gathering lines (usually 2 to 6 inches in diameter) located primarily in Texas, Oklahoma, Louisiana, and Wyoming, with small systems in a number of other oil producing states. These small lines gather the oil from many wells, both onshore and offshore, and connect to larger trunk lines measuring 8 to 24 inches in diameter. There are approximately 95,000 miles of refined products pipelines nationwide. Refined products pipelines are found in almost every state in the United States, with the exception of some New England states. These refined product pipelines vary in size from relatively small, 8- to 12-inch-diameter lines, to up to 42 inches in diameter. The overview of pipeline design, installation, and operation provided in the following sections is only a cursory treatment. Readers interested in more detailed discussions are invited to consult the myriad engineering publications available that provide such details. The two primary publications on which the following discussions are based are: Oil and Gas Pipeline Fundamentals (Kennedy 1993) and the Pipeline Rules of Thumb Handbook (McAllister 2002). Both are recommended references for additional reading for those requiring additional details. Websites maintained by various pipeline operators also can provide much useful information, as well as links to other sources of information. In particular, the website maintained by the U.S. Department of Energy's Energy Information Administration (EIA) (http://www.eia.doe.gov) is recommended. An excellent bibliography on pipeline standards and practices, including special considerations for pipelines in Arctic climates, has been published jointly by librarians for the Alyeska Pipeline Service Company (operators of the Trans-Alaska Pipeline System [TAPS]) and the Geophysical Institute/International Arctic Research Center, both located in Fairbanks (Barboza and Trebelhorn 2001)

Pharris, T. C.; Kolpa, R. L.

2008-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Computer Systems to Oil Pipeline Transporting  

E-Print Network (OSTI)

Computer systems in the pipeline oil transporting that the greatest amount of data can be gathered, analyzed and acted upon in the shortest amount of time. Most operators now have some form of computer based monitoring system employing either commercially available or custom developed software to run the system. This paper presented the SCADA systems to oil pipeline in concordance to the Romanian environmental reglementations.

Chis, Timur

2009-01-01T23:59:59.000Z

422

Riser, pipelines installed in Griffin field  

Science Conference Proceedings (OSTI)

A mooring riser and flow lines along with a 67-km, 8-in., gas-export pipelines have been installed offshore Australia for BHP Petroleum's Griffin field development. The 66-km gas line will carry Griffin field gas to an onshore gas-processing plant. Completing the projects ahead of schedule was Clough Stena Joint Venture (Asia), Perth. BHP awarded the contracts in early 1993; the project was completed in January this year. The paper describes the contractor, pipeline installation, and handling equipment.

Not Available

1994-05-23T23:59:59.000Z

423

Web-Based and Geospatially Enabled Tool for Water and Wastewater Pipeline Infrastructure Risk Management.  

E-Print Network (OSTI)

??Advanced pipeline risk management is contingent on accurately locating the buried pipelines, the milieu, and also the physical condition of the pipelines. The web-based and (more)

Sekar, Varun Raj

2011-01-01T23:59:59.000Z

424

Applications of the Pipeline Environment for Visual Informatics and Genomics Computations  

E-Print Network (OSTI)

et al. : Applications of the pipeline environment for visualusing the LONI pipeline. Frontiers in Neuroinformatics 2010,Access Applications of the pipeline environment for visual

2011-01-01T23:59:59.000Z

425

GenePRIMP: A GENE PRediction IMprovement Pipeline for Prokaryotic genomes  

E-Print Network (OSTI)

PRediction IMprovement Pipeline for Amrita Pati 1 , NataliaGene Prediction IMprovement Pipeline, http://geneprimp.jgi-based post-processing pipeline that identifies erroneously

Pati, Amrita

2012-01-01T23:59:59.000Z

426

Pipelines, Pathways, and Payoffs: Economic Challenges and Returns to Changing Demographics in California  

E-Print Network (OSTI)

on Multiple Pathways Pipelines, Pathways, and Payoffs:Jon Stiles & Henry Brady Pipelines, Pathways, and Payoffs:of the educational pipeline to describe how students

Stiles, Jon; Brady, Henry

2007-01-01T23:59:59.000Z

427

Stuck in the Pipeline: A Critical Review of STEM Workforce Literature  

E-Print Network (OSTI)

and science careers: Leaky pipeline or gender filter? GenderL. (2006). Expanding the pipeline: Transforming the cultureThe incredible shrinking pipeline. Inroads: SIGCE Bulletin,

Metcalf, Heather

2010-01-01T23:59:59.000Z

428

BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data  

E-Print Network (OSTI)

RL: MethylCoder: software pipeline for bisulfite-treateda versatile aligning pipeline for bisulfite sequencing dataof BS Seeker, as a full pipeline for mapping bisulfite

2013-01-01T23:59:59.000Z

429

Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads  

E-Print Network (OSTI)

transcriptome assembly pipeline from stranded RNA-Seq readsRnnotator assembly pipeline. Figure 2. Read dereplicationan automated software pipeline that generates transcript

Martin, Jeffrey

2011-01-01T23:59:59.000Z

430

Pipeline Access and Market Integration in the Natural Gas Industry: Evidence from Cointegration Tests  

E-Print Network (OSTI)

System for Natural Gas Pipelines." Study prepared underin the Natural Gas Pipeline Industry. Ph.D. dissertation,the remaining barfers to pipeline integration. REFERENCES

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

431

TCRD Boundary 1) Pacific Northwest National Laboratory  

E-Print Network (OSTI)

TCRD Boundary 1) Pacific Northwest National Laboratory 2) Fluor Hanford 3) Thompson Mechanical-Tech, Inc. 28) YAHSGS 29) Washington Closure Hanford 30) KinderCare 31) A.M. Express 32) Energy Solutions 33 (Cougar Café) 74) Corporate Wellness Center 75) University Park Condominiums 76) CH2M Hill Hanford Group

432

2013Science Pacific Northwest National Laboratory (PNNL),  

E-Print Network (OSTI)

2013Science Frontiers #12;Pacific Northwest National Laboratory (PNNL), a U.S. Department of Energy to the nation's security, health and prosperity. PNNL's science and technology base ranges from basic research examples of PNNL's research at the frontiers of science and technology--research that is pushing

433

Pacific Northwest NATIONAL L A BORATORY  

E-Print Network (OSTI)

Excellence Culture Evaluation March 2013 an, P Steering Committee ning Unit Co-Chair PNNL VPP Evaluation Team Wilcox- Business Systems #12;iii Summary Pacific Northwest National Laboratory's (PNNL's; Laboratory management, and staff engagement. At PNNL, "operational excellence" means harnessing the energy and passion

434

Pacific Northwest Regional Assessment of the Potential  

E-Print Network (OSTI)

, demand response and energy efficiency demand-side reductions. The fact that natural gas is the regionPacific Northwest Regional Assessment of the Potential Benefits of the Direct Use of Natural Gas) .........................42 Figure 1 Service Area Map of PNW Participating Natural Gas Utilities

435

Northwest Rural Pub Pwr Dist | Open Energy Information  

Open Energy Info (EERE)

Northwest Rural Pub Pwr Dist Jump to: navigation, search Name Northwest Rural Pub Pwr Dist Place Nebraska Utility Id 13805 Utility Location Yes Ownership P NERC Location WECC NERC...

436

Sixth Northwest Conservation and Electric Power Plan Chapter 7: Transmission  

E-Print Network (OSTI)

Sixth Northwest Conservation and Electric Power Plan Chapter 7: Transmission Summary of Key..................................................................................................................................... 1 Northwest Transmission Planning), there was concern that there had been little progress on addressing the developing transmission issues in the region

437

Northwest Energy Efficiency Alliance Request for Proposals to Evaluate  

E-Print Network (OSTI)

Northwest Energy Efficiency Alliance Request for Proposals to Evaluate Existing Consumer Behavioral research, evaluations and behavior change initiatives. The Northwest Energy Efficiency Alliance (NEEA interest groups and energy efficiency industry representatives that operate in the states of Idaho, Montana

438

Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Northwest Region Workshop Materials to someone by E-mail Northwest Region Workshop Materials to someone by E-mail Share Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Facebook Tweet about Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Twitter Bookmark Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Google Bookmark Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Delicious Rank Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on Digg Find More places to share Solid-State Lighting: 2011 Municipal Consortium Northwest Region Workshop Materials on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network

439

Expansion of the U.S. Natural Gas Pipeline Network:  

Gasoline and Diesel Fuel Update (EIA)

Expansion of the U.S. Natural Gas Pipeline Network: Expansion of the U.S. Natural Gas Pipeline Network: Additions in 2008 and Projects through 2011 This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives. Questions or comments on this article should be directed to Damien Gaul at damien.gaul@eia.doe.gov or (202) 586-2073. Robust construction of natural gas infrastructure in 2008 resulted in the completion of 84 pipeline projects in the lower 48 States, adding close to 4,000 miles of natural gas pipeline. These completions of new natural gas pipelines and expansions of existing pipelines in the United States

440

High temperature gas reactor and energy pipeline system  

SciTech Connect

Under contract to the General Electric Co. as a part of a DOE-sponsored program, the Energy Systems Analysis Group at the Institute of Gas Technology examined the following aspects of the high temperature gas reactor closed loop chemical energy pipeline concept: (1) pipeline transmission and storage system design; (2) pipeline and storage system cost; (3) methane reformer interface; and (4) system safety and environmental aspects. This work focuses on the pipeline and storage system concepts, pipeline size, compressor power, and storage facility requirements were developed for 4 different types of pipeline systems to obtain system cost estimates. Each pipeline system includes a synthesis-gas pipeline from the reformer to the methanator, a methane-rich gas pipeline from the methanator to the reformer, a water return line from the methanator to the reformer, and storage for the synthesis gas, methane-rich gas and water.

Daniels, E.; Blazek, C.; Pflasterer, G.R.; Allen, D.C.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

High temperature gas reactor and energy pipeline system  

DOE Green Energy (OSTI)

A study was made of the following aspects of the High Temperature Gas Reactor (HTGR) Closed Loop Chemical Energy Pipeline (CEP) concept: pipeline transmission and storage system design, pipeline and storage system cost, methane reformer interface, and system safety and environmental aspects. This paper focuses on the pipeline and storage system concepts. Pipeline size, compressor power, and storage facility requirements were developed for four different types of pipeline systems to obtain system cost estimates. Each pipeline system includes a synthesis-gas pipeline from the reformer to the methanator, a methane-rich gas pipeline from the methanator to the reformer, a water return line from the methanator to the reformer, and storage for the synthesis gas, methane-rich gas and water.

Daniels, E.; Blazek, C.; Allen, D.C.; Pflasterer, G.R.

1980-12-19T23:59:59.000Z

442

Runtime Assignment of Reconfigurable Hardware Components for Image Processing Pipelines  

E-Print Network (OSTI)

The combination of hardware acceleration and flexibility make FPGAs important to image processing applications. There is also a need for efficient, flexible hardware/software codesign environments that can balance the benefits and costs of using FPGAs. Image processing applications often consist of a pipeline of components where each component applies a different processing algorithm. Components can be implemented for FPGAs or software. Such systems enable an image analyst to work with either FPGA or software implementations of image processing algorithms for a given problem. The pipeline assignment problem chooses from alternative implementations of pipeline components to yield the fastest pipeline. Our codesign system solves the pipeline assignment problem to provide the most effective implementation automatically, so the image analyst can focus solely on choosing components which make up the pipeline. However, the pipeline assignment problem is NP complete. An efficient, dynamic solution to the pipeline assignment problem is a desirable enabler of codesign systems which use both FPGA and software implementations. This paper is concerned with solving pipeline assignment in this context. Consequently, we focus on optimal and heuristic methods for fast (fixed time limit) runtime pipeline assignment. Exhaustive search, integer linear programming and local search methods for pipeline assignment are investigated. We present experimental findings for pipelines of 20 or fewer components which show that in our environment, optimal runtime solutions are possible for smaller pipelines and nearly optimal heuristic solutions are possible for larger pipelines.

Heather Quinn; L. A. Smith King; Miriam Leeser; W. Meleis; Waleed Meleis

2003-01-01T23:59:59.000Z

443

1991 Pacific Northwest Loads and Resources Study.  

SciTech Connect

This study establishes the Bonneville Power Administration's (BPA) planning basis for supplying electricity to BPA customers. The Loads and Resources Study is presented in three documents: (1) this summary of federal system and Pacific Northwest region loads and resources; (2) a technical appendix detailing forecasted Pacific Northwest economic trends and loads, and (3) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates our 1990 study. BPS's long-range planning incorporates resource availability with a range of forecasted electrical consumption. The forecasted future electrical demands-firm loads--are subtracted from the projected capability of existing resources to determine whether BPA and the region will be surplus or deficit. If resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA can sell to increase revenues. Conversely, if firm loads exceed available resources, there is a deficit of energy and/or capacity, then additional conservation, contract purchases, or generating resources will be needed to meet load growth. This study analyzes the Pacific Northwest's projected loads and available generating resources in two parts: (1) the loads and resources of the federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional profile, which includes loads and resources in addition to the federal system. This study presents the federal system and regional analyses for five load forecasts: high, medium-high, medium, medium-low, and low. This analysis projects the yearly average energy consumption and resource availability for 1992- 2012.

United States. Bonneville Power Administration.

1991-12-01T23:59:59.000Z

444

Method and apparatus for the laying of a submerged pipeline such as a submarine pipeline. [Patents  

SciTech Connect

A method and apparatus are disclosed for laying a submerged pipeline, such as a submarine pipeline, on the bed of a body of water along a path which crosses a ditch in the bed in which there is a current transverse to the pipeline, the depth of the body of water being at a maximum in the ditch and the pipeline being drawn along the bed from a shore towards open water, wherein at least one ballast tube is integrally associated with the pipeline so that a portion of the pipeline with the associated ballast tube takes up a position within the ditch in substantially U-form, the ballast tube being filled partly with air and partly with water which collects in the portion of the ballast tube of substantially U-form whereby the apparent weight of the pipeline is increased solely with respect to the portion thereof located in the ditch, the water remaining in position in the portion of the ballast tube temporarily located within the ditch as the pipeline and the associated ballast tube move forward during the laying operation. An air circulation pipe may be associated with the ballast tube, being preferably located inside the ballast tube, the pipe placing the part of the space within the ballast tube near the front end thereof into communication with a source of air located on land.

Lamy, J.E.

1977-12-13T23:59:59.000Z

445

Sep 12-13, 2007 1Northwest Conservation  

E-Print Network (OSTI)

Sep 12-13, 2007 1Northwest Power and Conservation Council Science-Policy Exchange Policy Implications from the Northwest Power and Conservation Council's Science-Policy Exchange October 17, 2007 and Species At-Risk University of Idaho #12;Sep 12-13, 2007 2Northwest Power and Conservation Council · Inform

446

EIA - Natural Gas Pipeline Network - Natural Gas Imports/Exports Pipelines  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelines Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Import/Export Pipelines As of the close of 2008 the United States has 58 locations where natural gas can be exported or imported. 24 locations are for imports only 18 locations are for exports only 13 locations are for both imports and exports 8 locations are liquefied natural gas (LNG) import facilities Imported natural gas in 2007 represented almost 16 percent of the gas consumed in the United States annually, compared with 11 percent just 12 years ago. Forty-eight natural gas pipelines, representing approximately 28 billion cubic feet (Bcf) per day of capacity, import and export natural gas between the United States and Canada or Mexico.

447

The pipeline OQ Rule: Perspectives, options, and implementation  

Science Conference Proceedings (OSTI)

The US Department of Transportation (DOT) Pipeline Safety: Qualification of Pipeline Personnel Rule, commonly termed the Operator Qualification (OQ) Rule, became law on October 26, 1999. The rule requires operators to develop a qualification program for pipeline personnel. Personnel must demonstrate proficiency and be able to react to abnormal operating conditions. the intent is to reduce pipeline incidents caused by human error by ensuring that pipeline personnel are qualified. This paper describes different perspectives on the need for the rule, constraints to its implementation, and options and resources available to pipeline operators.

Lewis, B.

2000-04-01T23:59:59.000Z

448

Assessment of Geothermal Resources for Electric Generation in the Pacific Northwest, Draft Issue Paper for the Northwest Power Planning Council  

SciTech Connect

This document reviews the geothermal history, technology, costs, and Pacific Northwest potentials. The report discusses geothermal generation, geothermal resources in the Pacific Northwest, cost and operating characteristics of geothermal power plants, environmental effects of geothermal generation, and prospects for development in the Pacific Northwest. This report was prepared expressly for use by the Northwest Power Planning Council. The report contains numerous references at the end of the document. [DJE-2005

Geyer, John D.; Kellerman, L.M.; Bloomquist, R.G.

1989-09-26T23:59:59.000Z

449

Pipeline Access and Market Integration in the Natural Gas Industry: Evidence from Cointegration Tests  

E-Print Network (OSTI)

NattmdGas Pipeline of America(NGPL) Northern Natural GasNatural Gas Pipeline of America (NGPL) Teanease~Gas PipelineGas Pipeline of America(NGPL) Northern Natural Gas (NORH-I)

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

450

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

enzymes for new sources of biofuels http www ba lab com Pacific Northwest Area BioGas Energy Inc BioGas Energy Inc Interlake Ave N Seattle Washington Biomass Makes...

451

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

TIER TIER Sixth Avenue Seattle Washington Services Assessment and forecasting TIER TIER Sixth Avenue Seattle Washington Services Assessment and forecasting products for wind solar and hydro http www tier com Pacific Northwest Area AltaRock Energy Inc AltaRock Energy Inc E Green Lake Drive N Seattle Washington Geothermal energy Creates geothermal energy reservoirs develops geothermal facilities http www altarockenergy com Pacific Northwest Area American Clean Coal Fuels American Clean Coal Fuels NW th ave Portland Oregon Biofuels Uses gasification to turn carbon based feedstocks into syngas for biofuels http www cleancoalfuels com Pacific Northwest Area Arzeda Corporation Arzeda Corporation th Ave NE Suite Seattle Washington Biofuels Makes enzymes for cellulosic biofuels http www arzeda com Pacific Northwest Area Bio Algene Bio Algene NE Northlake Way Seattle Washington Biofuels

452

A Cheap Levitating Gas/Load Pipeline  

E-Print Network (OSTI)

Design of new cheap aerial pipelines, a large flexible tube deployed at high altitude, for delivery of natural (fuel) gas, water and other payload over a long distance is delineated. The main component of the natural gas is methane which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg (1 pound). The lightweight film flexible pipeline can be located in air at high altitude and, as such, does not damage the environment. Using the lift force of this pipeline and wing devices payloads of oil, water, or other fluids, or even solids such as coal, cargo, passengers can be delivered cheaply at long distance. This aerial pipeline dramatically decreases the cost and the time of construction relative to conventional pipelines of steel which saves energy and greatly lowers the capital cost of construction. The article contains a computed project for delivery 24 billion cubic meters of gas and tens of million tons of oil, water or other payload per year.

Alexander Bolonkin

2008-12-02T23:59:59.000Z

453

A Cheap Levitating Gas/Load Pipeline  

E-Print Network (OSTI)

Design of new cheap aerial pipelines, a large flexible tube deployed at high altitude, for delivery of natural (fuel) gas, water and other payload over a long distance is delineated. The main component of the natural gas is methane which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg (1 pound). The lightweight film flexible pipeline can be located in air at high altitude and, as such, does not damage the environment. Using the lift force of this pipeline and wing devices payloads of oil, water, or other fluids, or even solids such as coal, cargo, passengers can be delivered cheaply at long distance. This aerial pipeline dramatically decreases the cost and the time of construction relative to conventional pipelines of steel which saves energy and greatly lowers the capital cost of construction. The article contains a computed project for delivery 24 billion cubic meters of gas and tens of million tons of oil, water or other payload per year.

Bolonkin, Alexander

2008-01-01T23:59:59.000Z

454

Tucson Electric Power Company Sahuarita-Nogales Transmission Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix A Appendix A Consultation Letters Appendix A- Consultation Letters A-1 APPENDIX A CONTENTS A-2 Letter from the State Historic Preservation Office regarding Certificate of Environmental Compatibility Case No. 111: The Proposed Tucson Electric Power Company (TEP) South Substation to Nogales Transmission Line, Pima and Santa Cruz Counties, Arizona A-6 Letter from Tetra Tech, Inc. to El Paso Natural Gas, regarding the Proposed Tucson Electric Power Transmission Line Adjacent to an El Paso Natural Gas Company Pipeline A-8 Letter from Tetra Tech, Inc. to the Drug Enforcement Administration, regarding the Proposed Tucson Electric Power Transmission Line near Nogales, Arizona A-10 Letter from Tetra Tech, Inc. to the U.S. Immigration and Naturalization Service, regarding the

455

Intrastate Natural Gas Companies  

E-Print Network (OSTI)

SUMMARY: In this Final Rule, the Commission eliminates the semi-annual storage reporting requirements for Interstate and Intrastate Natural Gas Companies. The Commission finds that these particular reporting requirements are largely duplicative with other reporting requirements. EFFECTIVE DATE: This rule will become effective [insert date 60 days from publication in Federal Register].

unknown authors

2012-01-01T23:59:59.000Z

456

Northwest Wind Developers | Open Energy Information  

Open Energy Info (EERE)

Name Northwest Wind Developers Name Northwest Wind Developers Place Jefferson, North Carolina Zip 38640 Sector Wind energy Product A family held wind developer in North Carolina Coordinates 43.004875°, -88.807279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.004875,"lon":-88.807279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Network Connectivity and Price Convergency: Gas Pipeline Deregulation  

E-Print Network (OSTI)

1 and length 2 between the vertices of the pipeline networkor.i length twopaths. By 1988, most of the pipelines werepipelines, the number of vertices connected by at l~ast one path of length

De Vany, Arthur; Walls, W. David

1993-01-01T23:59:59.000Z

458

Software Pipelining in Nested Loops with Prolog-Epilog Merging  

Science Conference Proceedings (OSTI)

Software pipelining (or modulo scheduling) is a powerful back-end optimization to exploit instruction and vector parallelism. Software pipelining is particularly popular for embedded devices as it improves the computation throughput without increasing ...

Mohammed Fellahi; Albert Cohen

2008-12-01T23:59:59.000Z

459

Pipeline and Distribution Use of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports...

460

U.S. Natural Gas Pipeline Exports (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) U.S. Natural Gas Pipeline Exports (Million Cubic Feet) U.S. Natural Gas Pipeline Exports (Million Cubic Feet) Decade Year-0...

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

U.S. Natural Gas Pipeline Exports (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) U.S. Natural Gas Pipeline Exports (Million Cubic Feet) U.S. Natural Gas Pipeline Exports (Million Cubic Feet) Year Jan Feb...

462

U.S. Natural Gas Pipeline Imports (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) U.S. Natural Gas Pipeline Imports (Million Cubic Feet) U.S. Natural Gas Pipeline Imports (Million Cubic Feet) Decade Year-0...

463

U.S. Natural Gas Pipeline Imports (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) U.S. Natural Gas Pipeline Imports (Million Cubic Feet) U.S. Natural Gas Pipeline Imports (Million Cubic Feet) Year Jan Feb...

464

Suggested integrated optical implementation of pipelined polynomial processors  

SciTech Connect

Optical systolic pipeline processors for polynomial evaluation can be built using horner's rule. With integrated optics techniques, it will be possible to fabricate large order pipelines operating at very high speeds. 10 references.

Verber, C.M.; Kenan, R.P.; Caulfield, H.J.; Ludman, J.E.; Stilwell, P.D., Jr.

1983-01-01T23:59:59.000Z

465

NewPipeline-Robot-Power-Source.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Sources for Power Sources for Inspection Robots in Natural Gas Transmission Pipelines By Shreekant B. Malvadkar and Edward L. Parsons Office of Systems & Policy Support INTRODUCTION Strategic Center of Natural gas's (SCNG) Natural Gas Infrastructure Reliability Product Team has undertaken the development of a prototype robot that would inspect and possibly repair transmission pipelines. NETL has granted a contract for this purpose to New York Gas Group (NYGAS) and Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC). The purpose of this study is to analyze various onboard power supply options for such a commercially viable robot that can operate in a transmission pipeline for extended period. The primary power sources considered are wind turbines, rechargeable batteries,

466

Method of pipeline transportation of natural gas  

SciTech Connect

A USSR-developed method for transporting natural gas in the form of hydrates increases pipeline transmission capacity by at least 3-4 times as compared to a conventional pipeline and reduces the specific capital investment since thin-walled carbon-steel pipes can be used instead of cryogenic-resistant ones. In the approach, natural gas in hydrate form is loaded into wheeled containers or capsules which are then propelled through a pipeline by compressed and cooled natural gas. The physical state of the gas hydrates is preserved during their transport by keeping the pressure between 715 and 285 psi (50 and 20 kg/sq cm) and the temperature between -40/sup 0/ and +14/sup 0/F (-40/sup 0/ and -10/sup 0/C).

Chersky, N.V.; Klimenko, A.P.; Bokserman, J.I.; Kalina, A.I.; Karimov, F.A.

1975-06-10T23:59:59.000Z

467

EIA - Natural Gas Pipeline Network - Regional/State ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

468

EIA - Natural Gas Pipeline Network - Salt Cavern Storage ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

469

EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

470

NIST Pipeline-Scale Flow Measurement Standards for Natural ...  

Science Conference Proceedings (OSTI)

Pipeline-Scale Flow Measurement Standards for Natural Gas. Summary: NIST natural gas flow calibrations are performed ...

2013-01-28T23:59:59.000Z

471

Markets indicate possible natural gas pipeline constraints in the ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... This difference reflects expectations about the likelihood of capacity constraints associated with moving natural gas on pipelines ...

472

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins ...  

U.S. Energy Information Administration (EIA)

About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates

473

Multi-criteria scheduling of pipeline workflows  

E-Print Network (OSTI)

Mapping workflow applications onto parallel platforms is a challenging problem, even for simple application patterns such as pipeline graphs. Several antagonist criteria should be optimized, such as throughput and latency (or a combination). In this paper, we study the complexity of the bi-criteria mapping problem for pipeline graphs on communication homogeneous platforms. In particular, we assess the complexity of the well-known chains-to-chains problem for different-speed processors, which turns out to be NP-hard. We provide several efficient polynomial bi-criteria heuristics, and their relative performance is evaluated through extensive simulations.

Benoit, Anne; Robert, Yves

2007-01-01T23:59:59.000Z

474

Software design for panoramic astronomical pipeline processing  

E-Print Network (OSTI)

We describe the software requirement and design specifications for all-sky panoramic astronomical pipelines. The described software aims to meet the specific needs of super-wide angle optics, and includes cosmic-ray hit rejection, image compression, star recognition, sky opacity analysis, transient detection and a web server allowing access to real-time and archived data. The presented software is being regularly used for the pipeline processing of 11 all-sky cameras located in some of the world's premier observatories. We encourage all-sky camera operators to use our software and/or our hosting services and become part of the global Night Sky Live network.

Lior Shamir; Robert J. Nemiroff; David O. Torrey; Wellesley E. Pereira

2005-11-23T23:59:59.000Z

475

Hydrogen degradation of pipeline steels: Final report  

DOE Green Energy (OSTI)

Purpose of investigations conducted by Battelle Columbus Laboratories was to develop a research data base applicable to the problem of hydrogen degradation in pipeline steels. The findings would provide pipeline designers and operators with insight for developing specifications and procedures in the event available natural gas transmission/distribution systems are used for hydrogen transport. Fundamental investigations and data derived from sophisticated analytical and test procedures have been equated to practical field conditions and experiences as may be encountered should the hydrogen energy storage/transport option become an economic reality.

Holbrook, J.H.; Collings, E.W.; Cialone, H.J.; Drauglis, E.J.

1986-03-01T23:59:59.000Z

476

Design of a model pipeline for testing of piezoelectric micro power generator for the Trans-Alaska Pipeline System  

E-Print Network (OSTI)

In order to provide a reliable corrosion detection system for the Trans-Alaska Pipeline System (TAPS), a distributed wireless self-powered sensor array is needed to monitor the entire length of the pipeline at all times. ...

Lah, Mike M. (Mike Myoung)

2007-01-01T23:59:59.000Z

477

Asynchronous ARM processor employing an adaptive pipeline architecture  

Science Conference Proceedings (OSTI)

This paper presented an asynchronous ARM processor employing adaptive pipeline and enhanced control schemes. This adaptive pipeline employed stage-skipping and stage-combining. The stage-skipping removed the redundant stage operations, bubbles. The stage-combining ... Keywords: adaptive pipeline, asynchronous design, processor

Je-Hoon Lee; Seung-Sook Lee; Kyoung-Rok Cho

2007-03-01T23:59:59.000Z

478

Optimal operation of pipeline systems using genetic algorithm  

Science Conference Proceedings (OSTI)

A Genetic Algorithm (GA) is used in this paper for the optimal operation, result in better solution than the existing one, of the pipeline systems under transient conditions caused by valve closure. Simulation of pipeline system is carried out here by ... Keywords: genetic algorithm, implicit method of characteristic, pipeline system, transient flow, water hammer

M. H. Afshar; M. Rohani

2009-05-01T23:59:59.000Z

479

Expansion of the U.S. Natural Gas Pipeline Network  

Reports and Publications (EIA)

Additions in 2008 and Projects through 2011 - This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives.

Information Center

2009-09-30T23:59:59.000Z

480

Sensor and transmitter system for communication in pipelines  

DOE Patents (OSTI)

A system for sensing and communicating in a pipeline that contains a fluid. An acoustic signal containing information about a property of the fluid is produced in the pipeline. The signal is transmitted through the pipeline. The signal is received with the information and used by a control.

Cooper, John F.; Burnham, Alan K.

2013-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "northwest pipeline company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Power-optimal pipelining in deep submicron technology  

Science Conference Proceedings (OSTI)

This paper explores the effectiveness of pipelining as a power saving tool, where the reduction in logic depth per stage is used to reduce supply voltage at a fixed clock frequency. We examine power-optimal pipelining in deep submicron technology, both ... Keywords: pipelining, power scaling, supply voltage reduction

Seongmoo Heo; Krste AsanoviC

2004-08-01T23:59:59.000Z

482

Automation Schemes for FPGA Implementation of Wave-Pipelined Circuits  

Science Conference Proceedings (OSTI)

Operating frequencies of combinational logic circuits can be increased using Wave-Pipelining (WP), by adjusting the clock periods and clock skews. In this article, Built-In Self-Test (BIST) and System-on-Chip (SOC) approaches are proposed for automating ... Keywords: CORDIC, DAA, FPGA, SOC, pipelining, wave-pipelining

G. Seetharaman; B. Venkataramani

2009-06-01T23:59:59.000Z

483

PSPP: A Protein Structure Prediction Pipeline for Computing Clusters  

E-Print Network (OSTI)

PSPP: A Protein Structure Prediction Pipeline for Computing Clusters Michael S. Lee1,2,3 , Rajkumar. Methodology/Principal Findings: The pipeline consists of a Perl core that integrates more than 20 individual-delimited, and hypertext markup language (HTML) formats. So far, the pipeline has been used to study viral and bacterial

484

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

E-Print Network (OSTI)

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group Workshop% · Contractor share: 25% · Barriers ­ Hydrogen embrittlement of pipelines and remediation (mixing with water

485

Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen  

E-Print Network (OSTI)

Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation Standards Relevant Design and Operating Standards ANSI/ASME B31.8 49 CFR 192 CGA H2 Pipeline Standard (in

486

TASSEL 3.0 / 4.0 Pipeline Command Line Interface: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu)  

E-Print Network (OSTI)

1 TASSEL 3.0 / 4.0 Pipeline Command Line Interface: Guide to using Tassel Pipeline Terry Casstevens....................................................................................................................................................................... 3 Pipeline Controls.0_standalone or tassel4.0_standalone. Execute On Windows, use run_pipeline.bat to execute the pipeline. In UNIX

Buckler, Edward S.

487

RESEARCH AND ENGINEERING COMPANY  

Office of Legacy Management (LM)

?' $ 5 . . 7 pi -ON RESEARCH AND ENGINEERING COMPANY CLINTON TOWNSHIP, ROUTE 22 EAST, ANNANDALE, NEW iERSEY 08801 July 18, 1988 Mr. Ken Wills Weston/OTS 20030 Century Blvd Suite 301 Germantown, MD 20874 Dear Ken, Per our conversation on July 11, 1988, enclosed is a current plot plan of the Linden Technology Center (old Standard Oil Development Company site). I hope this satisfies your in- formation needs regarding the study you are doing concerning AEC contractor sites. We believe we have provided Mr. Charles young with all the information he required. If you have further questions, please call me at (2011 730-3053. Very truly yours, I Paul C. Bucknam PCB:bam Enclosure 07188Ol.pcb LINDEN TECHNOLOGY CENTER. LINDEN, N.J. VISITORS PARKING PLAN YOU ARE HERE WE HOPE YOUR VISIT WILL BE PRODUCTIVE AND SAFE

488

Ventyx, an ABB Company  

Gasoline and Diesel Fuel Update (EIA)

Ventyx, an ABB Company Ventyx, an ABB Company 1495 Canyon Blvd Suite 100 Boulder, CO 80302 (t) 720.240.5500 www.ventyx.com April 30, 2013 Ms. Rebecca Peterson U.S Department of Energy, U.S. Energy Information Administration, Mail Stop EI-23, Forrestal Building, 1000 Independence Avenue SW., Washington, DC 20585 Re: Proposed changes to Energy Information Administration Forms EIA-63B, EIA-411, EIA-826, EIA-860, EIA-860M, EIA-861, EIA-861S, and EIA-923. Federal Register Vol. 78 No. 44, Wednesday March 6, 2013. Dear Ms. Peterson: We appreciate the time and effort the Energy Information Administration spends collecting, maintaining and distributing industry wide data. The data found in EIA forms 923, 860, 860M, 861 and 826 is the industry standard and used by market analysts and

489

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

the construction costs of natural gas, oil, and petroleumR. Current pipeline costs. Oil & Gas Journal; Nov 21,cost projections for over 20,000 miles of natural gas, oil, and

Parker, Nathan

2004-01-01T23:59:59.000Z

490

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

Adjustments in 1991. Oil & Gas Journal; Nov 23, 1992; 90,begin 1993 on upbeat. Oil & Gas Journal; Nov 22, 1993; 91,Current pipeline costs. Oil & Gas Journal; Nov 21, 1994;

Parker, Nathan

2004-01-01T23:59:59.000Z

491

Surface mine blasting near pressurized transmission pipelines  

Science Conference Proceedings (OSTI)

The US Bureau of Mines and the State of Indiana cooperated with AMAX Coal Co. and its consultants to determine the effects of coal mine overburden blasting on nearby pipelines. Five pressurized 76-m pipeline sections were installed on the Minnehaha Mine highwall near Sullivan, IN, for testing to failure. Four 17- to 51-cm-diameter welded steel pipes and one 22-cm PVC pipe were monitored for vibration, strain, and pressure for a period of 6 months while production blasting advanced up to the test pipeline field. In contrast to previous studies of small-scale, close-in blasting for construction, these tests involved overburden blasts of up to 950 kg per delay in 31-cm blastholes. Analyses found low pipe responses, strains, and calculated stresses from even large blasts. Ground vibrations of 120 to 250 mm/s produced worst case strains that were about 25 pcts of the strains resulting from normal pipeline operations and calculated stresses of only about 10 to 18 pct of the ultimate tensile strength. No pressurization failures or permanent strains occurred even at vibration amplitudes of 600 mm/s.

Siskind, D.E.; Stagg, M.S.; Wiegand, J.E.; Schultz, D.L.

1994-12-31T23:59:59.000Z

492

Modeling and synthesis of asynchronous pipelines  

Science Conference Proceedings (OSTI)

We propose a set of modeling rules and a synthesis method for the design of asynchronous pipelines. To keep the circuit area and power dissipation of the asynchronous control network small, the proposed approach avoids the conventional syntaxdirected ... Keywords: asynchronous, low power

Chong-Fatt Law; Bah-Hwee Gwee; Joseph S. Chang

2011-04-01T23:59:59.000Z

493

Natural Gas Pipeline Utilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Public Utilities Commission These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the Public Utilities Commission with

494

Natural Gas Transmission Pipeline Siting Act (Florida) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) Natural Gas Transmission Pipeline Siting Act (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection This Act establishes a centralized and coordinated permitting process for the location of natural gas transmission pipeline corridors and the construction and maintenance of natural gas transmission pipelines. The Act intends to achieve a reasonable balance between the need for the natural

495

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

Science Conference Proceedings (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle has completed the second year of work on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this fourth reporting period, the rotating system inspection was further developed. A multichannel real-time data recorder system was implemented and fundamental experiments were conducted to provide data to aid in the design of the rotating magnetizer system. An unexpected but beneficial result was achieved when examining the separation between the rotating magnet and the pipe wall; separations of over an inch could be tolerated. Essentially no change in signal from corrosion anomalies could be detected for separations up to 1.35 inches. The results presented in this report will be used to achieve the next deliverable, designs of components of the rotating inspection system that will function with inspection crawlers in a pipeline environment.

J. Bruce Nestleroth

2005-11-30T23:59:59.000Z

496

Texas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.16 0.17 0.17 1970's 0.17 0.18 0.19 0.20 0.28 0.37 0.51 0.68 0.73 1.19 1980's 1.56 2.24 3.09 3.11 2.98 2.80 2.18 2.01 1.98 1.81 1990's 1.74 1.62 1.66 1.82 1.64 1.64 2.40 2.36 2.02 1.99 2000's 2.99 3.13 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Texas Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

497

New York Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.23 0.25 1970's 0.23 0.25 0.26 0.27 0.31 0.39 0.54 0.85 1.07 1.44 1980's 1.95 2.41 3.15 3.44 3.23 3.15 2.53 2.47 2.33 2.64 1990's 2.59 2.71 2.86 3.15 2.21 1.52 2.23 1.89 1.38 1.31 2000's 2.25 2.94 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use New York Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

498

DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS  

SciTech Connect

Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work continues on improving the signal-to-noise ratio of the technique. We are now able to detect weights sitting on the Hergalite fiber of as low as 0.2 pound. Detection of load fluctuations with frequencies greater than 1 Hertz is also possible. We have also purchased a brighter diode laser for use with the multimode fibers that should improve our sensitivity by a factor of ten.

James E. Huebler

2004-04-12T23:59:59.000Z

499

DETECTION OF UNAUTHORIZED CONSTRUCTION EQUIPMENT IN PIPELINE RIGHT-OF-WAYS  

SciTech Connect

Natural gas transmission companies mark the right-of-way areas where pipelines are buried with warning signs to prevent accidental third-party damage. Nevertheless, pipelines are sometimes damaged by third-party construction equipment. A single incident can be devastating, causing death and millions of dollars of property loss. This damage would be prevented if potentially hazardous construction equipment could be detected, identified, and an alert given before the pipeline was damaged. The Gas Technology Institute (GTI) is developing a system to solve this problem by using an optical fiber as a distributed sensor and interrogating the fiber with a custom optical time domain reflectometer. Key issues are the ability to detect encroachment and the ability to discriminate among potentially hazardous and benign encroachments. The work continues on improving the signal-to-noise ratio of the custom OTDR. An avalanche photo-detector, was purchased. It was able to detect weights on the Hergalite fiber as low as one pound. We are also investigating a brighter laser for use with the multimode fibers.

James E. Huebler

2003-07-17T23:59:59.000Z

500

Ohio Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Ohio Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.23 0.23 1970's 0.23 0.27 0.28 0.30 0.32 0.43 0.53 0.87 1.01 1.37 1980's 1.92 2.33 3.04 3.42 3.28 3.28 2.79 2.64 2.43 2.54 1990's 2.61 2.66 2.83 2.53 2.50 2.03 2.88 2.80 3.20 2.63 2000's 3.41 5.18 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Ohio Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use