Powered by Deep Web Technologies
Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geothermal systems of northern Nevada  

DOE Green Energy (OSTI)

Hot springs are numerous and nearly uniformly distributed in northern Nevada. Most occur on the flanks of basins, along Basin and Range (late Miocene to Holocene) faults, while some occur in the inner parts of the basins. Surface temperatures of the springs range from slightly above ambient to boiling; some springs are superheated. Maximum subsurface water temperatures calculated on the basis of quartz solubility range as high as 252/sup 0/C, although most are below 190/sup 0/C. Flows range from a trickle to several hundred liters per minute. The Nevada geothermal systems differ markedly from the power-producing system at The Geysers, Calif., and from those areas with a high potential for power production (e.g., Yellowstone Park, Wyo.; Jemez Mountains, N. Mex.). These other systems are associated with Quaternary felsic volcanic rocks and probably derive their heat from cooling magma rather high in the crust. In northern Nevada, however, felsic volcanic rocks are virtually all older than 10 million years, and analogous magmatic heat sources are, therefore, probably lacking. Nevada is part of an area of much higher average heat flow than the rest of the United States. In north-central Nevada, geothermal gradients are as great as 64/sup 0/C per kilometer in bedrock and even higher in basin fill. The high gradients probably result from a combination of thin crust and high temperature upper mantle. It is suggested that the geothermal systems of northern Nevada result from circulation of meteoric waters along Basin and Range faults and that their temperature chiefly depends upon (1) depth of circulation and (2) the geothermal gradient near the faults.

Hose, R.K.; Taylor, B.E.

1974-01-01T23:59:59.000Z

2

Environmental overview of geothermal development: northern Nevada  

DOE Green Energy (OSTI)

Regional environmental problems and issues associated with geothermal development in northern Nevada are studied to facilitate environmental assessment of potential geothermal resources. The various issues discussed are: environmental geology, seismicity of northern Nevada, hydrology and water quality, air quality, Nevada ecosystems, noise effects, socio-economic impacts, and cultural resources and archeological values. (MHR)

Slemmons, D.B.; Stroh, J.M.; Whitney, R.A. (eds.) [eds.

1980-08-01T23:59:59.000Z

3

Geothermal studies in northern Nevada  

DOE Green Energy (OSTI)

The Lawrence Berkeley Laboratory (LBL) and University of California (UCB), under the auspices of the U.S. Energy Research and Development Administration, are conducting field studies at potential geothermal resource areas in north-central Nevada. The goal of the LBL-UCB program is to develop and evaluate techniques for the assessment of the resource potential of liquid-dominated systems. Field studies presently being conducted in northern Nevada incorporate an integrated program of geologic, geophysical, and geochemical surveys leading to heat flow measurements, and eventually to deep (1.5 to 2 km) confirmatory drill holes. Techniques evaluated include geophysical methods to measure contrasts in electrical resistivity and seismic parameters. Geochemical studies have emphasized techniques to disclose the pathways of water from its meteoric origin into and through the hydrothermal systems. Geochemical and radiometric analyses also help to provide a baseline upon which the effects of future geothermal development may be superimposed.

Wollenberg, H.A.

1976-06-01T23:59:59.000Z

4

NORTHERN NEVADA GEOTHERMAL EXPLORATION STRATEGY ANALYSIS  

E-Print Network (OSTI)

School of Mines Nevada Geothermal Study: Report No. 4, Feb.J. , 1976, Assessing the geothermal resource base of the1977, Microseisms in geothermal Studies in Grass Valley,

Goldstein, N.E.

2011-01-01T23:59:59.000Z

5

Northern Nevada Geothermal Exploration Strategy Analysis | Open Energy  

Open Energy Info (EERE)

Nevada Geothermal Exploration Strategy Analysis Nevada Geothermal Exploration Strategy Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Northern Nevada Geothermal Exploration Strategy Analysis Details Activities (1) Areas (1) Regions (0) Abstract: The results of exploration techniques applied to geothermal resource investigations in northern Nevada were evaluated and rated by seven investigators involved in the work. A quantitative rating scheme was used to obtain estimates of technique effectiveness. From survey cost information we also obtained and compared cost-effectiveness estimates for the various techniques. Effectiveness estimates were used to develop an exploration strategy for the area. However, because no deep confirmatory drilling has been done yet, the technique evaluations and exploration

6

Draft Environmental Assessment Ormat Nevada Northern Nevada Geothermal Power Plant Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 FINAL ENVIRONMENTAL ASSESSMENT Ormat Nevada Northern Nevada Geothermal Power Plant Projects Department of Energy Loan Guarantee for ORMAT LLC's Tuscarora Geothermal Power Plant, Elko County, Nevada; Jersey Valley Geothermal Project, Pershing County, Nevada; and McGinness Hills Geothermal Project, Lander County, Nevada U.S. Department of Energy Loan Guarantee Program Office Washington, D.C. 20585 August 2011 NORTHERN NEVADA GEOTHERMAL POWER PLANT PROJECTS - ORMAT NEVADA AUGUST 2011 FINAL ENVIRONMENTAL ASSESSMENT i TABLE OF CONTENTS 1.0 INTRODUCTION.................................................................................................................1 1.1 SUMMARY AND LOCATION OF PROPOSED ACTION .....................................................1

7

Northern Nevada Joint Utility Geothermal Project  

SciTech Connect

After approximately eight months of formation discussion between a number of western utilities, a group of five companies defined a project scope, schedule and budget for assessing the prospects for electric power production using Nevada geothermal resources.

Richards, R.G.

1980-12-01T23:59:59.000Z

8

Geothermal reservoir assessment case study: Northern Dixie Valley, Nevada  

DOE Green Energy (OSTI)

Two 1500 foot temperature gradient holes and two deep exploratory wells were drilled and tested. Hydrologic-hydrochemical, shallow temperature survey, structural-tectonic, petrologic alteration, and solid-sample geochemistry studies were completed. Eighteen miles of high resolution reflection seismic data were gathered over the area. The study indicates that a geothermal regime with temperatures greater than 400/sup 0/F may exist at a depth of approximately 7500' to 10,000' over an area more than ten miles in length.

Denton, J.M.; Bell, E.J.; Jodry, R.L.

1980-11-01T23:59:59.000Z

9

Geothermal energy in Nevada  

SciTech Connect

The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

1980-01-01T23:59:59.000Z

10

BEOWAWE number1-A 10 MW geothermal unit in northern Nevada  

SciTech Connect

This paper describes a project to build and operate a nominal 10 mw electrical generating unit using the geothermal heat from the Beowawe, Nevada, geothermal reservoir to power an isobutane binary unit. This 10 mw unit would be fabricated on portable skids by equipment supplier for shipment to the site. The project will be owned and operated by the NORNEV Demonstration Geothermal Company which is made up of Pacific Power and Light, Eugene Water and Electric Board, Sierra Pacific Power Company, and Sacramento Municipal Utility District. The geothermal brine for powering the 10 mw binary WGU will be purchased from Chevron Resource Company. This first unit is a research and development unit and will, hopefully, lead to total development of the 300 mw plus Beowawe reservoir.

Keilman, L.

1982-10-01T23:59:59.000Z

11

Nevada Test And Training Range Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Nevada Test And Training Range Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Nevada Test And Training Range Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (5) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

12

Nevada/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nevada/Geothermal Nevada/Geothermal < Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nevada Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nevada Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alligator Geothermal Geothermal Project Oski Energy LLC Ely, Nevada 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase I - Resource Procurement and Identification Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Aurora Geothermal Project Gradient Resources Hawthorne, Nevada 190 MW190,000 kW

13

Nevada Test And Training Range Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Nevada Test And Training Range Geothermal Area Nevada Test And Training Range Geothermal Area (Redirected from Nevada Test And Training Range Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Nevada Test And Training Range Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (5) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

14

Geothermal reservoir assessment: Northern Basin and Range Province, Stillwater prospect, Churchill County, Nevada. Final report, April 1979-July 1981  

DOE Green Energy (OSTI)

Union Oil Company of California drilled two exploratory geothermal wells in the Stillwater geothermal prospect area in northwestern Nevada to obtain new subsurface data for inclusion in the geothermal reservoir assessment program. Existing data from prior investigations, which included the drilling of four earlier deep temperature gradient wells in the Stillwater area, was also provided. The two wells were drilled to total depths of 6946 ft and 10,014 ft with no significant drilling problems. A maximum reservoir temperature of 353 F was measured at 9950 ft. The most productive well flow tested at a rate of 152,000 lbs/hr with a wellhead temperature of 252 F and pressure of 20 psig. Based upon current economics, the Stillwater geothermal prospect is considered to be subcommercial for the generation of electrical power. This synopsis of the exploratory drilling activities and results contains summary drilling, geologic, and reservoir information from two exploratory geothermal wells.

Ash, D.L.; Dondanville, R.F.; Gulati, M.S.

1981-08-01T23:59:59.000Z

15

Geothermal energy in Nevada: development and utilization  

SciTech Connect

The nature of geothermal resources in Nevada and resource applications are discussed. The social and economic advantages of using geothermal energy are outlined. Federal and state programs established to foster the development of geothermal energy are discussed. (MHR)

1982-01-01T23:59:59.000Z

16

Geothermal Reservoir Assessment Case Study, Northern Basin and Range  

Open Energy Info (EERE)

Reservoir Assessment Case Study, Northern Basin and Range Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Abstract N/A Authors Elaine J. Bell, Lawrence T. Larson and Russell W. Juncal Published U.S. Department of Energy, 1980 Report Number GLO2386 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Citation Elaine J. Bell,Lawrence T. Larson,Russell W. Juncal. 1980. Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province,

17

Enhanced Geothermal in Nevada: Extracting Heat From the Earth...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable...

18

Geothermal heating for Caliente, Nevada  

DOE Green Energy (OSTI)

Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

Wallis, F.; Schaper, J.

1981-02-01T23:59:59.000Z

19

Baltazor KGRA and vicinity, Nevada: geothermal reservoir assessment case study, northern Basin and Range province. Final report, 1 October 1978-31 January 1983  

DOE Green Energy (OSTI)

The Baltazor KGRA and McGee/Painted Hills geothermal prospects are located in northern Humboldt County, Nevada along the northwestern margin of the Basin and Range province. Exploration work other than drilling has included groundwater sampling, a microearthquake study, a geologic literature search and photogeologic mapping, compilation of aeromagnetic and gravity mapping, soil mercury surveying, electrical resistivity and self-potential surveys and detailed hydrothermal alteration mapping. Exploration drilling included 27 shallow temperature gradient holes, four intermediate-depth gradient wells and one 3703-foot deep test, Baltazor 45-14. The deep test penetrated Miocene rhyolite, andesite, basalt and andesitic basalt flows before excessive hold deviation forced an end to drilling and completion as a deep temperature observation well. A temperature survey two weeks after completion obtained a 119.7/sup 0/C (247.4/sup 0/F) reading at survey total depth, 1110 m (3640 feet).

Wright, T.C.

1983-01-01T23:59:59.000Z

20

McCoy Area, Nevada geothermal reservoir assessment case history - Northern Basin and Range. Final report, 1 October 1978-30 September 1982  

DOE Green Energy (OSTI)

The McCoy geothermal prospect is located in north-central Nevada at the junction of the Augusta Mountains, Clan Alpine Mountains and the New Pass Range. Geothermal exploration on the prospect consisted of an integrated program of geologic, geochemical and geophysical studies. The geochemical studies included hydrogeochemistry, soil geochemistry, and drill cuttings geochemistry. Geophysical exploration included heatflow studies, aeromagnetic, self-potential, gravity, passive seismic, dipole-dipole resistivity, electromagnetic and magnetotelluric surveys. Exploration drilling includes fifty-two (52) shallow thermal gradient holes and five (5) intermediate depth temperature gradient wells. Shallow low-temperature geothermal reservoirs were encountered in two areas. In the McCoy Mine area the resource was found in the Permo-Pennsylvanian rocks. In the southern part of the prospect a resource with temperatures of 100/sup 0/C was encountered in the basal conglomeratic sandstone of the Triassic section.

Pilkington, H.D.

1982-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geothermal exploration and development in Nevada through 1973  

SciTech Connect

A brief description is given of Nevada's geothermal resources, and exploration activity for geothermal power through 1973. The use, geology, exploration, and regulation of the State's geothermal energy resources are discussed.

Garside, L.J.

1974-01-01T23:59:59.000Z

22

Geothermal development plan: northern Arizona  

DOE Green Energy (OSTI)

Much of the northern counties (Apache, Coconino, Gila, Mohave, Navajo and Yavapai) is located in the Colorado Plateau province, a region of low geothermal potential. Two areas that do show some potential are the Flagstaff - San Francisco Peaks area and the Springerville area. Flagstaff is rapidly becoming the manufacturing center of Arizona and will have many opportunities to use geothermal energy to satisfy part of its increasing need for energy. Using a computer simulation model, projections of geothermal energy on line as a function of time are made for both private and city-owned utility development of a resource.

White, D.H.; Goldstone, L.A.

1981-01-01T23:59:59.000Z

23

Enel Green Power- Innovative Geothermal Power for Nevada | Open Energy  

Open Energy Info (EERE)

Enel Green Power- Innovative Geothermal Power for Nevada Enel Green Power- Innovative Geothermal Power for Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Periodical: Enel Green Power- Innovative Geothermal Power for Nevada Abstract Two binary geothermal power plants inaugurated today with a total capacity of 65 MW: They will generate enough energy to meet the needs of some 40 thousand American households. Author Hank Sennott Published Press Release, 04/15/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Enel Green Power- Innovative Geothermal Power for Nevada Citation Hank Sennott. 04/15/2009. Enel Green Power- Innovative Geothermal Power for Nevada. Press Release. 1-2. Retrieved from "http://en.openei.org/w/index.php?title=Enel_Green_Power-_Innovative_Geothermal_Power_for_Nevada&oldid=680547"

24

Sierra Nevada Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sierra Nevada Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: {{{Name}}} California's Sierra Nevada is a west-tilting 350-mile (560-km)-long block of granite. Extending from 14,494 feet (Mt. Whitney, the highest peak in the lower 48 states) in the east to near sea level in the west, it contains the spectacular Yosemite and Sequoia National Parks (not indicated on the map). The massive granite intruded the crust in Mesozoic time and was uplifted and faulted in the Tertiary during formation of the basin and range to the east. USGS[1] References ↑ "USGS" Geothermal Region Data State(s) California Area 56,363 km²56,363,000,000 m² 21,756.118 mi² 606,685,695,700 ft²

25

Sierra Geothermal's Key Find in Southern Nevada | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sierra Geothermal's Key Find in Southern Nevada Sierra Geothermal's Key Find in Southern Nevada Sierra Geothermal's Key Find in Southern Nevada July 13, 2010 - 5:17pm Addthis Sierra Geothermal discovered temperatures hot enough for large-scale geothermal energy production at one of its wells near Silver Peak, Nev. | Photo courtesy of Sierra Geothermal Sierra Geothermal discovered temperatures hot enough for large-scale geothermal energy production at one of its wells near Silver Peak, Nev. | Photo courtesy of Sierra Geothermal Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy In May 2010, Sierra Geothermal determined temperature at the bottom of a well drilled at the company's Alum project near Silver Peak, Nev., was hot enough for commercial-sized geothermal energy production - measured as 147

26

Sierra Geothermal's Key Find in Southern Nevada | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sierra Geothermal's Key Find in Southern Nevada Sierra Geothermal's Key Find in Southern Nevada Sierra Geothermal's Key Find in Southern Nevada July 13, 2010 - 5:17pm Addthis Sierra Geothermal discovered temperatures hot enough for large-scale geothermal energy production at one of its wells near Silver Peak, Nev. | Photo courtesy of Sierra Geothermal Sierra Geothermal discovered temperatures hot enough for large-scale geothermal energy production at one of its wells near Silver Peak, Nev. | Photo courtesy of Sierra Geothermal Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy In May 2010, Sierra Geothermal determined temperature at the bottom of a well drilled at the company's Alum project near Silver Peak, Nev., was hot enough for commercial-sized geothermal energy production - measured as 147

27

Geothermal Reservoir Assessment Case Study: Northern Basin and Range Province, Leach Hot Springs Area, Pershing County, Nevada. Final report, April 1979-December 1981  

DOE Green Energy (OSTI)

A Geothermal Reservoir Assessment Case Study was conducted in the Leach Hot Springs Known Geothermal Resource Area of Pershing County, Nevada. The case study included the drilling of twenty-three temperature gradient wells, a magnetotelluric survey, seismic data acquisition and processing, and the drilling of one exploratory well. Existing data from prior investigations, which included water geochemistry, gravity, photogeologic reports and a hydrothermal alteration study, was also provided. The exploratory well was drilled to total depth of 8565' with no significant mud losses or other drilling problems. A maximum temperature of 260/sup 0/F was recorded at total depth. The relatively low temperature and the lack of permeability (as shown by absence of mud loss) indicated that a current, economic geothermal resource had not been located, and the well was subsequently plugged and abandoned. However, the type and extent of rock alteration found implied that an extensive hot water system had existed in this area at an earlier time. This report is a synopsis of the case study activities and the data obtained from these activities.

Beard, G.A.

1981-01-01T23:59:59.000Z

28

Surface Indicators of Geothermal Activity at Salt Wells, Nevada...  

Open Energy Info (EERE)

Surface Indicators of Geothermal Activity at Salt Wells, Nevada, USA, Including Warm Ground, Borate Deposits, and Siliceous Alteration Jump to: navigation, search OpenEI Reference...

29

Enhanced Geothermal in Nevada: Extracting Heat From the Earth...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Enhanced...

30

Regional hydrology of the Dixie Valley geothermal field, Nevada...  

Open Energy Info (EERE)

Counc, 1999 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Regional hydrology of the Dixie Valley geothermal field, Nevada- Preliminary...

31

An investigation of the Dixie Valley geothermal field, Nevada...  

Open Energy Info (EERE)

2007 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for An investigation of the Dixie Valley geothermal field, Nevada, using...

32

Central Nevada Seismic Zone Geothermal Region | Open Energy Informatio...  

Open Energy Info (EERE)

mW 0.385 GW 3.85e-4 TW Plants Included in Planned Estimate 4 Plants with Unknown Planned Capacity 9 Geothermal Areas within the Central Nevada Seismic Zone Geothermal Region...

33

Tuscarora area, Nevada: geothermal reservoir assessment case history, northern basin and range. Final report, 1 October 1978-9 September 1980  

DOE Green Energy (OSTI)

The Tuscarora prospect is located at the north end of Independence Valley approximately 90 km north-northwest of Elko, Nevada. Geothermal exploration on the prospect consisted of an integrated program of geologic, hydrogeochemical and soil geochemistry studies. Geophysical exploration included heatflow studies, aeromagnetic, self-potential, gravity, dipole-dipole resistivity and magnetotelluric surveys. Exploration drilling includes thirty-two shallow thermal gradient holes, six intermediate depth temperature gradient wells and one 5454 foot test for discovery well. Shallow low-temperature reservoirs were encountered in the Tertiary rocks and in the Paleozoic rocks immediately beneath the Tertiary. Drilling problems forced the deep well to be stopped before the high-temperature reservoir was reached.

Pilkington, H.D.

1981-08-01T23:59:59.000Z

34

An investigation of the Dixie Valley geothermal field, Nevada, using  

Open Energy Info (EERE)

investigation of the Dixie Valley geothermal field, Nevada, using investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Author Marshall J. Reed Conference Proceedings, 32nd Workshop on Geothermal Reservoir Engineering; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Citation Marshall J. Reed. 2007. An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests. In:

35

Geothermal development plan: northern Arizona counties  

Science Conference Proceedings (OSTI)

The Northern Counties Area Development Plan evaluated the regional market potential for utilizing geothermal energy. This study identified five potential geothermal resource areas, four of which have low temperature (Arizona.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

36

Surface Indicators of Geothermal Activity at Salt Wells, Nevada, USA,  

Open Energy Info (EERE)

Surface Indicators of Geothermal Activity at Salt Wells, Nevada, USA, Surface Indicators of Geothermal Activity at Salt Wells, Nevada, USA, Including Warm Ground, Borate Deposits, and Siliceous Alteration Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Surface Indicators of Geothermal Activity at Salt Wells, Nevada, USA, Including Warm Ground, Borate Deposits, and Siliceous Alteration Abstract Surface indicators of geothermal activity are often present above blind or concealed geothermal systems in the Great Basin, but their expressions are sometimes subtle. When mapped in detail, these indicators yield valuable information on the location, structural controls, and potential subsurface reservoir temperatures of geothermal fluids. An example is provided by the Salt Wells geothermal system in Churchill County, Nevada, USA, where

37

Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada |  

Open Energy Info (EERE)

Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: A 3-D surface seismic reflection survey, covering an area of over 3 square miles, was conducted at the Rye Patch geothermal reservoir (Nevada) to explore the structural features that may control geothermal production in the area. In addition to the surface sources and receivers, a high-temperature three-component seismometer was deployed in a borehole at a depth of 3900 ft within the basement below the reservoir, which recorded the waves generated by all surface sources. A total of 1959 first-arrival travel times were determined out of 2134 possible traces. Two-dimensional

38

Nevada low-temperaure geothermal resource assessment: 1994. Final report  

DOE Green Energy (OSTI)

Data compilation for the low-temperature program is being done by State Teams in two western states. Final products of the study include: a geothermal database, in hardcopy and as digital data (diskette) listing information on all known low- and moderate- temperature springs and wells in Nevada; a 1:1,000,000-scale map displaying these geothermal localities, and a bibliography of references on Nevada geothermal resources.

Garside, L.J.

1994-12-31T23:59:59.000Z

39

Nevada geothermal power plant project approved  

Science Conference Proceedings (OSTI)

A proposal to construct and test a 12.5-megawatt geothermal power plant in the Steamboat Hot Springs KGRA in Washoe County, Nevada, has been approved by the Bureau of Land Management (BLM). The power plant could be completed by October 1987. Several stipulations are included in the BLM approval. The stipulations include a program to monitor ground water, surface water, and hydrothermal features to detect any impacts on the hydrology in the Steamboat Hot Springs area. When plant operations are tested, an emission test will be required to verify that noncondensible gas concentrations are within federal and state standards. No geothermal fluid will be discharged on the land's surface. Other stipulations include the special construction of electrical distribution lines to protect birds of prey; the fencing of hazardous areas; and a minimal disturbance of surface areas.

Not Available

1987-07-01T23:59:59.000Z

40

EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Kalina Geothermal Demonstration Project, Steamboat 16: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada SUMMARY This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Golden Field Office to partially fund assistance for the construction and operation of a privately owned 6-megawatt geothermal power plant which includes one geothermal production well, one injection well, and ancillary facilities such as on-site access road(s) and interconnected to electric transmission lines to existing geothermal power plants. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD February 22, 1999 EA-1116: Finding of No Significant Impact Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Regional hydrology of the Dixie Valley geothermal field, Nevada-  

Open Energy Info (EERE)

hydrology of the Dixie Valley geothermal field, Nevada- hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Regional hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Authors Gregory Nimz, Cathy Janik, Fraser Goff, Charles Dunlap, Mark Huebner, Dale Counce and Stuart D. Johnson Published Journal Trans Geotherm Resour Counc, 1999 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Regional hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Citation Gregory Nimz,Cathy Janik,Fraser Goff,Charles Dunlap,Mark Huebner,Dale

42

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir  

Open Energy Info (EERE)

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Abstract Temperature, pressure, and spinner (TPS) logs have been recorded in several wells from the Dixie Valley Geothermal Reservoir in west central Nevada. A variety of well-test analyses has been performed with these data to quantify the hydrologic properties of this fault-dominated geothermal resource. Four complementary analytical techniques were employed, their individual application depending upon availability and quality of data and validity of scientific assumptions. In some instances, redundancy in

43

Nevada Geothermal Operating Company LLC | Open Energy Information  

Open Energy Info (EERE)

Operating Company LLC Operating Company LLC Jump to: navigation, search Name Nevada Geothermal Operating Company LLC Place Blue Mountain, NV Sector Geothermal energy Website http://www.nevadageothermal.co References Alternative Earth Resources Inc Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Nevada Geothermal Operating Company LLC is a subsidiary of Alternative Earth Resources Inc based in Blue Mountain, NV. Alternative Earth Resources Inc. (formerly Nevada Geothermal Power) is an experienced renewable energy company, focused on developing and generating clean, sustainable electric power from geothermal resources. The Company has headquarters in Vancouver, BC and trades on the Toronto Venture Exchange under the symbol AER. Alternative Earth holds leasehold interests in four geothermal projects

44

Origin And Characterization Of Geothermal Waters At Desert Queen, Nevada |  

Open Energy Info (EERE)

Origin And Characterization Of Geothermal Waters At Desert Queen, Nevada Origin And Characterization Of Geothermal Waters At Desert Queen, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Origin And Characterization Of Geothermal Waters At Desert Queen, Nevada Details Activities (1) Areas (1) Regions (0) Abstract: The Desert Queen geothermal system, which is in close proximity to two locations where geothermal energy is currently being harnessed, may host an additional reservoir. A _18O vs _D plot indicates that Desert Queen waters likely originate from the Humboldt River, and reflects Humboldt River water that is clearly evaporated. Temperatures of the reservoir at depth are estimated to be between 92-141°C and were calculated using the _18O(SO4-H2O) geothermometer. It is unclear whether these temperatures

45

Evaluation Of Baltazor Known Geothermal Resources Area, Nevada | Open  

Open Energy Info (EERE)

Baltazor Known Geothermal Resources Area, Nevada Baltazor Known Geothermal Resources Area, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Evaluation Of Baltazor Known Geothermal Resources Area, Nevada Details Activities (3) Areas (1) Regions (0) Abstract: By virtue of the Geothermal Steam Act of 1970, the U.S. Geological Survey is required to appraise geothermal resources of the United States prior to competitive lease sales. This appraisal involves coordinated input from a variety of disciplines, starting with reconnaissance geology and geophysics. This paper describes how the results of several geophysical methods used in KGRA evaluation were interpreted by the authors, two geophysicists, involved with both the Evaluation Committee and the research program responsible for obtaining and interpreting the

46

Photogeologic Interpretation of the Baltazor-McGee Geothermal Prospects, Humboldt County, Nevada  

DOE Green Energy (OSTI)

GeothermEx, Inc. was asked by Earth Power Corporation in October 1977 to perform a photogeologic study of the Baltazor and McGee geothermal prospects, northern Humboldt County, Nevada and southern Harney County, Oregon (figure 1), as a means of evaluating the geothermal reservoir and heat source at these prospects. Work began in October and was completed in December 1977. It included a brief field reconnaissance, to clarify particular points. This report summarizes findings and offers interpretations of structural features, stratigraphy, recent tectonic events, and subsurface conditions.

Gardner, Murray C.; Koenig, James B.

1978-02-01T23:59:59.000Z

47

Northern Rockies Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Northern Rockies Geothermal Region Northern Rockies Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northern Rockies Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: {{{Name}}} Province is situated in northern Idaho and western Montana and includes folded mountains, fault-bounded uplifts, and volcanics formed during middle Cretaceous to late Eocene mountain period. The region is structtually cojmplex with faulting and folding asociated with eastward thrust faulting. Western Montana and northwestern Wyoming contain large areas of Tertiary volcanic rocks, including smaller localized Quaternary silicic volcanic rocks. Replace Citation[1] References ↑ "Replace Citation" Geothermal Region Data State(s) Idaho, Montana Area 97,538 km²97,538,000,000 m²

48

Railroad Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Power Plants (0) Projects (0) Activities (1) NEPA(0) Geothermal Area Profile Location Nevada Exploration Region Northern Basin and Range Geothermal Region GEA Development Phase...

49

Field Mapping At Northern Basin and Range Geothermal Region (1993) | Open  

Open Energy Info (EERE)

Geothermal Region (1993) Geothermal Region (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Northern Basin and Range Geothermal Region (1993) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Field Mapping Activity Date 1993 Usefulness not indicated DOE-funding Unknown Notes New apatite fission track cooling age and track length data, supplemented by other information, point to the Early to Middle Miocene as an additional time of very significant extension-induced uplift and range formation. Many ranges in a 700-km-long north-south corridor from the Utah-Nevada-Idaho border to southernmost Nevada experience extension and major exhumation in Early to Middle Miocene time. Reconnaissance apatite ages from the Toiyabe

50

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal...  

Open Energy Info (EERE)

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

51

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain  

Open Energy Info (EERE)

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library General: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Author BRIAN D. FAIRBANK Published Publisher Not Provided, 2012 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Citation BRIAN D. FAIRBANK. 2012. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility. N/Ap. Retrieved from "http://en.openei.org/w/index.php?title=STATEMENT_OF_BRIAN_D._FAIRBANK_Nevada_Geothermal_Power_Inc.%27s_Blue_Mountain_Geothermal_Power_Facility&oldid=682760

52

Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History  

Open Energy Info (EERE)

in Dixie Valley, Nevada- Case History in Dixie Valley, Nevada- Case History Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History Abstract After several years of reconnaissance geology in Nevada, an exploration program to evaluate the geothermal resource potential of Dixie Valley was begun in 1974. Between 1974 and 1978 Sunoco Energy Development Co. conducted two heat-flow drilling programs, a resistivity survey, a seismic emission study, a ground noise survey, two magnetotelluric surveys, a hydrology study, and a surface geology survey. The synthesis of the data resulting from these projects into the regional geologic framework led to the acquisition of geothermal resource leases from fee property owners,

53

Nevada: basic data for thermal springs and wells as recorded in GEOTHERM. Part A  

DOE Green Energy (OSTI)

All chemical data for geothermal fluids in Nevada available as of December 1981 are maintained on GEOTHERM, a computerized information system. This report presents summaries and sources of records for Nevada. 7 refs. (ACR)

Bliss, J.D.

1983-06-01T23:59:59.000Z

54

Nevada manufacturer installing geothermal power plant | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles $28.4 million in Recovery Act funding going toward geothermal plant Plant expected to produce 4 MW of electrical power, employ 25 full-time workers Chemetall produces lithium carbonate to customers in a wide range of industries, including for batteries used in electric vehicles, and now the

55

Our Evolving Knowledge Of Nevada'S Geothermal Resource Potential | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Our Evolving Knowledge Of Nevada'S Geothermal Resource Potential Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Our Evolving Knowledge Of Nevada'S Geothermal Resource Potential Details Activities (16) Areas (9) Regions (0) Abstract: The Great Basin Center for Geothermal Energy (GBCGE) is conducting site-specific and regional geothermal research both in direct collaboration with industry (typically site-specific) and independently (typically regional exploration), communicating findings with public and industrial partners. These studies are research-oriented and are developing

56

Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy  

Open Energy Info (EERE)

Drilling Success at Blue Mountain, Nevada Drilling Success at Blue Mountain, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Drilling Success at Blue Mountain, Nevada Abstract Exploration in a blind prospect has led to the confirmation of a geothermal resource at Blue Mt.Nevada. The latest results include drilling of three production wells into Piedmont faults. These wells produce from a 185 to 190°C dilute benign brine reservoir. Short flow tests have shown prolific flow rates and indications of reservoir continuity.Well entries have shown that system permeability is fault-dominated. This is confirmed by the results of seismic reflection imaging. Young faulting in the area includes intersecting range front faults that strike NW, NS, and NE. Exposure of

57

Our Evolving Knowledge Of Nevada's Geothermal Resource Potential | Open  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Our Evolving Knowledge Of Nevada's Geothermal Resource Potential Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Our Evolving Knowledge Of Nevada's Geothermal Resource Potential Abstract The Great Basin Center for Geothermal Energy (GBCGE) is conducting site-specific and regional geothermal research both in direct collaboration with industry (typically site-specific) and independently (typically regional exploration), communicating findings with public and industrial partners. These studies are research-oriented and are developing new tools

58

NV Energy (Northern Nevada) - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV Energy (Northern Nevada) - Residential Energy Efficiency Rebate NV Energy (Northern Nevada) - Residential Energy Efficiency Rebate Program NV Energy (Northern Nevada) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Maximum Rebate 30% of cost Program Info State Nevada Program Type Utility Rebate Program Rebate Amount Refrigerator/freezer Recycling: $50 Furnaces: $50-$125 Boilers: $75-$100 Provider Nevada Energy - Northern '''As of November 30, 2011, furnace and boiler rebates have been suspended until further notice. View the program web site for additional details and contact information.''' NV Energy offers rebates for the installation of high efficiency stand-alone gas furnaces and gas boilers for residential customers in

59

Geothermal development plan: northern Arizona counties  

DOE Green Energy (OSTI)

The Northern Counties Area Development Plan evaluated the regional market potential for utilizing geothermal energy. This study identified five potential geothermal resource areas, four of which have low temperature (<90{sup 0}C, 194{sup 0}F) potential and one possible igneous system. The average population growth rate in the Northern Counties is expected to be five percent per year over the next 40 years, with Mohave and Yavapai Counties growing the fastest. Rapid growth is anticipated in all major employment sectors, including trade, service, manufacturing, mining and utilities. A regional energy use analysis is included, containing information on current energy use patterns for all user classes. Water supplies are expected to be adequate for expected growth generally, though Yavapai and Gila Counties will experience water deficiencies. A preliminary district heating analysis is included for the towns of Alpine and Springerville. Both communities are believed located on geothermal resource sites. The study also contains a section identifying potential geothermal resource users in northern Arizona.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

60

Status of Nevada Geothermal Resource Development - Spring 2011 | Open  

Open Energy Info (EERE)

Resource Development - Spring 2011 Resource Development - Spring 2011 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Status of Nevada Geothermal Resource Development - Spring 2011 Abstract Recent increases in geothermal exploration and power plant construction in Nevada are the first significant activities since the Steamboat II/III and Brady plants came on line in 1992.Exploration activity on existing projects grew between 2005 and 2010, culminating in the construction of several new power plants. The BLM's 2007 lease auction (first since the 2005 Energy Policy Act revisions) opened the door to exploration on green field properties. The number of wells permitted and drilled remained low from 1994 through 2003, but rose sharply to peak in 2009.However, over 760,000

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NV Energy (Northern Nevada) - Solar Hot Water Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV Energy (Northern Nevada) - Solar Hot Water Incentive Program NV Energy (Northern Nevada) - Solar Hot Water Incentive Program NV Energy (Northern Nevada) - Solar Hot Water Incentive Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential electric customers: Lesser of 50% or $2,000 Residential gas customers: Lesser of 30% or $3,000 Small commercial gas customers: Lesser of 30% or $7,500 Nonprofits, schools and other public gas customers: Lesser of 50% or $30,000 Program Info Start Date 2/1/2011 State Nevada Program Type Utility Rebate Program Rebate Amount Residential electric customers: Lesser of 50% or $2,000 Residential gas customers: $14.50 per therm Small commercial gas customers: $14.50 per therm

62

Geothermal Reservoir Assessment Case Study, Northern Basin and...  

Open Energy Info (EERE)

GLO2386 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geothermal Reservoir Assessment Case Study, Northern Basin and Range...

63

NORTHERN NEVADA GEOTHERMAL EXPLORATION STRATEGY ANALYSIS  

E-Print Network (OSTI)

program of: Electrical resistivity e. f. Microearthquake,R x. F) Average Electrical Resistivity Microearthquake andreduce the amoun of electrical resistivity coverage because

Goldstein, N.E.

2011-01-01T23:59:59.000Z

64

Experience with the EM-60 electromagnetic system for geothermal exploration in Nevada  

DOE Green Energy (OSTI)

Lawrence Berkeley Laboratory (LBL) conducted controlled-source electromagnetic (EM) surveys at three geothermal prospects in northern Nevada. Over 40 soundings were made in Panther Canyon (Grass Valley), near Winnemucca; Soda Lakes, near Fallon; and McCoy, west of Austin, to test and demonstrate the applicability of LBL's EM-60 system to geothermal exploration. The EM-60 is a frequency-domain system using three-component magnetic detection. Typically, +-65 A is applied to an 100-m-diameter four-turn horizontal loop, generating a dipole moment >10/sup 6/ MKS over the frequency range 10/sup -3/ to 10/sup -3/ Hz. With such a source loop, soundings were made, at transmitter-receiver separations of up to 4 km, providing a maximum depth of penetration of 4 km.

Wilt, M.; Goldstein, N.E.; Stark, M.; Haught, J.R.; Morrison, H.F.

1981-09-01T23:59:59.000Z

65

Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana  

Open Energy Info (EERE)

Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana And Central Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana And Central Mississippi Details Activities (2) Areas (1) Regions (0) Abstract: Measurements of heat flow and near-surface (< 500 m) geothermal gradients in the Gulf Coastal Plain suggest a zone of low-grade geothermal resources extending from northern Louisiana across south-central Mississippi. Subsurface temperatures exceeding 50°C, suitable for space-heating use, seem probable at depths of 1 km. Thermal conditions within the zone are comparable to those known for areas having attractive thermal energy prospects on the Atlantic Coastal Plain.

66

Apacheta, A New Geothermal Prospect In Northern Chile | Open Energy  

Open Energy Info (EERE)

Apacheta, A New Geothermal Prospect In Northern Chile Apacheta, A New Geothermal Prospect In Northern Chile Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Apacheta, A New Geothermal Prospect In Northern Chile Details Activities (0) Areas (0) Regions (0) Abstract: The discovery of two high-temperature fumaroles, with gas geochemistry compatible with an economic geothermal system, established Apacheta as one of the most attractive geothermal exploration prospects in northern Chile. These remote fumaroles at 5,150 m elevation were first sampled in 1999 by ENAP and its partners, following up on the reports of a CODELCO water exploration well that flowed small amounts of dry steam at 4,540 m elevation in the valley 4.5 km east of the fumaroles. The prospect is associated with a Plio-Pleistocene volcanic complex located within a

67

Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power April 12, 2013 - 11:17am Addthis Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What does this project do? Desert Peak 2 is the nation's first commercial enhanced geothermal system to supply electricity to the grid. Based in Churchill County, Nevada, the project has increased power

68

Category:Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

Geothermalpower.jpg Geothermalpower.jpg Looking for the Geothermal Regions page? For detailed information on Geothermal Regions, click here. Category:Geothermal Regions Add.png Add a new Geothermal Region Pages in category "Geothermal Regions" The following 22 pages are in this category, out of 22 total. A Alaska Geothermal Region C Cascades Geothermal Region Central Nevada Seismic Zone Geothermal Region G Gulf of California Rift Zone Geothermal Region H Hawaii Geothermal Region Holocene Magmatic Geothermal Region I Idaho Batholith Geothermal Region N Northern Basin and Range Geothermal Region N cont. Northern Rockies Geothermal Region Northwest Basin and Range Geothermal Region O Outside a Geothermal Region R Rio Grande Rift Geothermal Region S San Andreas Geothermal Region San Andreas Split Geothermal Region

69

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...  

Open Energy Info (EERE)

2012 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain...

70

Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System April 12, 2013 - 12:00pm Addthis WASHINGTON -- As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today recognized the nation's first commercial enhanced geothermal system (EGS) project to supply electricity to the grid. Based in Churchill County, Nevada, Ormat Technologies' Desert Peak 2 EGS project has increased power output of its nearby operating geothermal field by nearly 38 percent - providing an additional 1.7 megawatts of power to the grid and validating this emerging clean energy technology. "Developing America's vast renewable energy resources sustainably is an

71

Microseisms in geothermal exploration: studies in Grass Valley, Nevada  

DOE Green Energy (OSTI)

Frequency-wavenumber (f-k) spectra of seismic noise in the bands 1 less than or equal to f less than or equal to 10 Hz in frequency and parallel bar k parallel bar less than or equal to 35.7 cycles/km in wavenumber, measured at several places in Grass Valley, Nevada, exhibit numerous features which can be correlated with variations in surface geology and sources associated with hot spring activity. Exploration techniques for geothermal reservoirs, based upon the spatial distribution of the amplitude and frequency characteristics of short-period seismic noise, are applied and evaluated in a field program at a potential geothermal area in Grass Valley, Nevada. A detailed investigation of the spatial and temporal characteristics of the noise field was made to guide subsequent data acquisition and processing. Contour maps of normalized noise-level derived from carefully sampled data are dominated by the hot spring noise source and the generally high noise levels outlining the regions of thick alluvium. Major faults are evident when they produce a shallow lateral contrast in rock properties. Conventional seismic noise mapping techniques cannot differentiate noise anomalies due to buried seismic sources from those due to shallow geological effects. The noise radiating from a deep reservoir ought to be evident as body waves of high phase velocity with time-invariant source azimuth. A small two-dimensional array was placed at 16 locations in the region to map propagation parameters. The f-k spectra reveal local shallow sources, but no evidence for a significant body wave component in the noise field was found. With proper data sampling, array processing provides a powerful method for mapping the horizontal component of the vector phase velocity of the noise field. In Grass Valley, and probably in most areas, the 2 to 10 Hz microseismic field is predominantly fundamental mode Rayleigh waves controlled by the very shallow structure.

Liaw, A.L.C.

1977-11-01T23:59:59.000Z

72

Analysis Of Geothermal Resources In Northern Switzerland | Open Energy  

Open Energy Info (EERE)

In Northern Switzerland In Northern Switzerland Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Analysis Of Geothermal Resources In Northern Switzerland Details Activities (0) Areas (0) Regions (0) Abstract: In Europe, geothermal energy becomes an attractive alternative for many conventional fuel based energy scenarios. In a time when actual political discussion favors regenerative energies, geothermal energy is an essential option since it offers the advantage of providing band energy. Recent studies provide evidence for large economical competitiveness of low-enthalpy, direct-use systems for heating and high-enthalpy systems for cogeneration (combined heat and power, CHP) or pure power generation. The study presented herein develops a detailed subsurface model of possible

73

Nevada Bureau of Mines and Geology Open-File Report 12-3 Data Tables and Graphs of Geothermal Power Production in Nevada,  

E-Print Network (OSTI)

This report summarizes statistics on geothermal power production in Nevada from initial plant construction in 1985 through 2011. Data are compiled on nameplate capacity, gross production, and net production by producing geothermal area. Graphs illustrate trends for individual areas and for Nevada overall. The data and graphs are in an Excel spreadsheet, which is also available online with this document, at

Lisa Shevenell; Jonathan G. Price; Ronald H. Hess

2012-01-01T23:59:59.000Z

74

Regional Gravity Survey of the Northern Great Salt Lake Desert...  

Open Energy Info (EERE)

of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Regional Gravity...

75

Evaluation of possible source rocks in northern Nye County, Nevada: implications for hydrocarbon exploration.  

E-Print Network (OSTI)

??The presence of oil outside of Railroad Valley, northern Nye County has sparked the interest of exploration companies in Nevada. The geology in this region (more)

Yurchenko, Inessa

2012-01-01T23:59:59.000Z

76

Northern Basin and Range Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

and Range Geothermal Region and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northern Basin and Range Geothermal Region Details Areas (34) Power Plants (3) Projects (7) Techniques (33) Map: {{{Name}}} Examination of seismicity and late Quaternary faults in Montana and Idaho north of the Snake River Plain shows a geographic correspondence between high seismicity and 24 faults that have experienced surface rupture during the late Quaternary. The Lewis and Clark Zone delineates the northern boundary of this tectonically active extensional region. Earthquakes greater than magnitude 5.5 and all identified late Quaternary faults are confined to the Montana-Idaho portion of the Basin and Range Province south of the Lewis and Clark Zone. Furthermore, all 12 Holocene faults are

77

MICROSEISMS IN GEOTHERMAL EXPLORATION: STUDIES IN GRASS VALLEY, NEVADA  

E-Print Network (OSTI)

period seismic noise (T>30 sec) . . . 2.5 Geothermal ground226. Clacy, G.R.T. ? 1968, Geothermal ground noise amplitudestudies at the Cos0 geothermal area, China Lake, California:

Liaw, A.L.C.

2011-01-01T23:59:59.000Z

78

Environmental assessment for a geothermal direct utilization project in Reno, Nevada  

DOE Green Energy (OSTI)

The proposed action involves the development of geothermal wells to provide hot water and heat for five users in Reno, Nevada. Data from nearby wells indicate the sufficient hot water is available from the Moana Known Geothermal Resource Area for this action. Construction activities have been planned to minimize or eliminate problems with noise, runoff, and disturbance of biota as well as other potential environmental effects. Disposal of the geothermal fluids via surface water or injection will be determined based on water quality of the geothermal fluids and geologic effects of injection. The affected environment is described by this document and needed mitigation procedures discussed.

Perino, J.V.; McCloskey, M.H.; Wolterink, T.J.; Wallace, R.C.; Baker, D.W.; Harper, D.L.; Anderson, D.T.; Siteman, J.V.; Sherrill, K.T.

1980-08-20T23:59:59.000Z

79

NV Energy (Northern Nevada Gas) - SureBet Business Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV Energy (Northern Nevada Gas) - SureBet Business Energy NV Energy (Northern Nevada Gas) - SureBet Business Energy Efficiency Rebate Program (Nevada) NV Energy (Northern Nevada Gas) - SureBet Business Energy Efficiency Rebate Program (Nevada) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Installer/Contractor Institutional Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Home Weatherization Insulation Design & Remodeling Appliances & Electronics Water Heating Program Info State Nevada Program Type Utility Rebate Program Rebate Amount High Efficiency Boilers Input MBH $1.25 Boiler Reset Control Boiler $500 Boiler Tune-up Boiler $300 High Efficiency Furnaces Input MBH $1 Commercial Water Heaters Unit $150

80

Nevada: basic data for thermal springs and wells as recorded in geotherm. Part B  

DOE Green Energy (OSTI)

This GEOTHERM sample file contains 1367 records for Nevada. The records contain data on location, sample description, analysis type, collection condition, flow rates, and the chemical and physical properties of the fluid. Stable and radioactive isotope data are occassionally available. (ACR)

Bliss, J.D.

1983-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EA-1849: Department of Energy Loan Guarantee to Ormat Nevada, Inc. for a  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1849: Department of Energy Loan Guarantee to Ormat Nevada, Inc. EA-1849: Department of Energy Loan Guarantee to Ormat Nevada, Inc. for a Geothermal Power Facility in Nevada EA-1849: Department of Energy Loan Guarantee to Ormat Nevada, Inc. for a Geothermal Power Facility in Nevada Overview Ormat Nevada Inc. (ORMAT), through its subsidiaries, proposes to construct and operate three geothermal power production facilities and associated power transmission lines in northern Nevada. The power production facilities include the Tuscarora Geothermal Power Plant Facility (Tuscarora Facility) in Elko County, the Jersey Valley Geothermal Development Facility (Jersey Valley Facility) in Pershing County, and the McGinness Hills Geothermal Facility (McGinness Hills Facility) in Lander County (Figure 1). The Hot Sulphur Springs Transmission Line (Transmission Line) would connect

82

Geothermal regimes of the Clearlake region, northern California  

DOE Green Energy (OSTI)

The first commercial production of power from geothermal energy, at The Geysers steamfield in northern California in June 1960, was a triumph for the geothermal exploration industry. Before and since, there has been a search for further sources of commercial geothermal power in The Geysers--Clear Lake geothermal area surrounding The Geysers. As with all exploration programs, these were driven by models. The models in this case were of geothermal regimes, that is, the geometric distribution of temperature and permeability at depth, and estimates of the physical conditions in subsurface fluids. Studies in microseismicity and heat flow, did yield geophysical information relevant to active geothermal systems. Studies in stable-element geochemistry found hiatuses or divides at the Stoney Creek Fault and at the Collayomi Fault. In the region between the two faults, early speculation as to the presence of steamfields was disproved from the geochemical data, and the potential existence of hot-water systems was predicted. Studies in isotope geochemistry found the region was characterized by an isotope mixing trend. The combined geochemical data have negative implications for the existence of extensive hydrothermal systems and imply that fluids of deep origin are confined to small, localized systems adjacent to faults that act as conduits. There are also shallow hot-water aquifers. Outside fault-localized systems and hot-water aquifers, the area is an expanse of impermeable rock. The extraction of energy from the impermeable rock will require the development and application of new methods of reservoir creation and heat extraction such as hot dry rock technology.

Amador, M. [ed.; Burns, K.L.; Potter, R.M.

1998-06-01T23:59:59.000Z

83

Preliminary investigation of scale formation and fluid chemistry at the Dixie Valley Geothermal Field, Nevada  

DOE Green Energy (OSTI)

The chemistry of geothermal, production, and injection fluids at the Dixie Valley Geothermal Field, Nevada, was characterized to address an ongoing scaling problem and to evaluate the effects of reinjection into the reservoir. Fluids generally followed mixing-dilution trends. Recharge to the Dixie Valley system apparently originates from local sources. The low-pressure brine and injection waters were saturated with respect to amorphous silica, which correlated with the ongoing scaling problem. Local shallow ground water contains about 15% geothermal brine mixed with regional recharge. The elevated Ca, Mg, and HCO{sub 3} content of this water suggests that carbonate precipitation may occur if shallow groundwater is reinjected. Downhole reservoir fluids are close to equilibrium with the latest vein mineral assemblage of wairakite-epidote-quartz-calcite. Reinjection of spent geothermal brine is predicted to affect the region near the wellbore differently than it does the region farther away.

Bruton, C.J.; Counce, D.; Bergfeld, D.; Goff, F.; Johnson, S.D.; Moore, J.N.; Nimz, G.

1997-06-27T23:59:59.000Z

84

Apacheta, a new geothermal prospect in Northern Chile  

DOE Green Energy (OSTI)

The discovery of two high-temperature fumaroles, with gas geochemistry compatible with an economic geothermal system, established Apacheta as one of the most attractive geothermal exploration prospects in northern Chile. These remote fumaroles at 5,150 m elevation were first sampled in 1999 by ENAP and its partners, following up on the reports of a CODELCO water exploration well that flowed small amounts of dry steam at 4,540 m elevation in the valley 4.5 km east of the fumaroles. The prospect is associated with a Plio-Pleistocene volcanic complex located within a NW-trending graben along the axis of the high Andes. The regional water table is 4,200 masl. There are no hot springs, just the 88 degrees C steam well and the 109 degrees and 118 degrees C fumaroles with gas compositions that indicate reservoir temperatures of greater than or equal to 250 degrees C, using a variety of gas geothermometers. An MT-TDEM survey was completed in 2001-2002 by Geotermica del Norte (SDN), an ENAP-C ODELCO partnership, to explore the Apacheta geothermal concession. The survey results indicated that base of the low resistivity clay cap has a structural apex just west of the fumaroles, a pattern typically associated with shallow permeability within a high temperature geothermal resource. SGN plans to drill at least one exploration well in 2002-03 to characterize a possible economic resource at Apacheta.

Urzua, Luis; Powell, Tom; Cumming, William B.; Dobson, Patrick

2002-05-24T23:59:59.000Z

85

NV Energy (Northern Nevada) - SureBet Business Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northern Nevada) - SureBet Business Energy Efficiency Northern Nevada) - SureBet Business Energy Efficiency Rebate Program NV Energy (Northern Nevada) - SureBet Business Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Installer/Contractor Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heating Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Program Info State Nevada Program Type Utility Rebate Program Rebate Amount '''Existing Facilities''' T-8 Lamps: $2 - $7/lamp New T8/T5 Fixture: $0.30/watt reduced T-8/T-5 High Bay Replacement for HID: $0.30/watt reduced

86

Geothermal chemistry/exploration investigations at Dixie Valley, Nevada  

DOE Green Energy (OSTI)

Dixie Valley geothermal field has continuously produced electric power since 1988. At the request of Oxbow Geothermal Corp. and the US Department of Energy, the authors have organized an inter-agency team of investigators to examine several topics of concern regarding management and behavior of the resource. These topics include scaling of the injection system, recharge of the reservoir, geochemical monitoring of the reservoir, and development of increased fumarolic activity north of the power plant.

Goff, F.; Bergfeld, D.; Counce, D. [Los Alamos National Lab., NM (United States); Janik, C.J. [Geological Survey (United States); Bruton, C.J.; Nimz, G. [Lawrence Livermore National Lab., CA (United States)

1998-12-01T23:59:59.000Z

87

Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada  

DOE Green Energy (OSTI)

The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

1985-01-01T23:59:59.000Z

88

Direct use of geothermal energy, Elko, Nevada district heating. Final report  

DOE Green Energy (OSTI)

In early 1978 the US Department of Energy, under its Project Opportunity Notice program, granted financial assistance for a project to demonstrate the direct use application of geothermal energy in Elko, Nevada. The project is to provide geothermal energy to three different types of users: a commercial office building, a commercial laundry and a hotel/casino complex, all located in downtown Elko. The project included assessment of the geothermal resource potential, resource exploration drilling, production well drilling, installation of an energy distribution system, spent fluid disposal facility, and connection of the end users buildings. The project was completed in November 1982 and the three end users were brought online in December 1982. Elko Heat Company has been providing continuous service since this time.

Lattin, M.W.; Hoppe, R.D.

1983-06-01T23:59:59.000Z

89

Electromagnetic soundings for geothermal resources in Dixie Valley, Nevada  

DOE Green Energy (OSTI)

An electromagnetic (EM) sounding survey was performed over a region encompassing the Dixie Valley geothermal field to map the subsurface resistivity in the geothermal field and the surrounding area. The EM survey, consisting of 19 frequency-domain depth soundings made with the LBL EM-60 system, was undertaken to explore a narrow region adjacent to the Stillwater Range to a depth of 2 to 3 km. Lithologic and well log resistivity information from well 66-21 show that for EM interpretation the section can be reduced to a three-layer model consisting of moderately resistive alluvial sediments, low resistivity lacustrine sediments, and high resistivity Tertiary volcanics and older rocks. This three layer model was used as a starting point in interpreting EM sounding data. Variations in resistivity and thickness provided structural information and clues to the accumulation of geothermal fluids. The interpreted soundings reveal a 1 to 1.5-km-deep low-resistivity zone spatially associated with the geothermal field. The shallow depth suggests that the zone detected is either fluid leakage or hydrothermal alteration, rather than high-temperature reservoir fluids. The position of the low-resistivity zone also conforms to changes in depth to the high resistivity basal layer, suggesting that faulting is a control on the location of productive intervals. 10 refs., 7 figs.

Wilt, M.J.; Goldstein, N.E.

1985-03-01T23:59:59.000Z

90

Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada  

DOE Green Energy (OSTI)

Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

2003-08-14T23:59:59.000Z

91

The Moana geothermal system in Reno, Nevada: A hydrologic, geochemical, and thermal analysis  

DOE Green Energy (OSTI)

The Moana geothermal systems, located in Reno, Nevada, is a moderate-temperature geothermal resource used for space heating applications. Both historic and new hydrologic, thermal, and groundwater chemistry data were collected to evaluate the Moana system and to develop a calibrated numerical model of the geothermal aquifer for investigation of resource development scenarios. The new data collection consisted of static water level measurements and temperature with depth measurements for a 13-month period at 26 geothermal wells to investigate hydrologic and thermal changes with time. In addition, groundwater chemistry sampling at 10 wells was used to evaluate mixing of thermal and nonthermal waters. Collected information indicates that in the most heavily used portion of the geothermal aquifer, the hydraulic heads have declined. This decline may induce additional leakage of cooler water from the overlying unconfined aquifer and lead to decreased temperatures at well locations in the geothermal aquifer. The groundwater chemistry data show concentration changes with temperature for boron, chloride, fluoride, lithium, and bicarbonate that are a function of the degree of mixing of thermal and nonthermal waters. Temporal changes in these constituents may be used as an indication of relative temperature changes in the geothermal system caused by mixing at a given location. An attempt was made to use the hydraulic head and maximum temperature data to develop a calibrated numerical model for the Moana geothermal system. However, lack of information about the horizontal and vertical thermal and fluid fluxes made the development of a calibrated model not possible at this time. 25 refs., 54 figs., 6 tabs.

Jacobson, E.A.; Johnston, J.W.

1991-03-01T23:59:59.000Z

92

Exploration ofr geothermal resources in Dixie Valley, Nevada  

Science Conference Proceedings (OSTI)

A case history of SUNEDCO's exploratory efforts, which ultimately led to the drilling and discovery of the Dixie Valley goethermal field, is presented. The geochemistry from three active lot springs in the area: Dixie Hot Springs, South Hot Springs, and Hyder Hot Springs, was examined. Two heat flow drilling programs were conducted at Dixie Hot Springs consisting of 45 temperature gradient holes ranging in depth from 30 to 1500 ft. From this program a heat-flow anomaly was mapped extending along the Stillwater Range front in which temperature gradients are greater than 100/sup 0/c/Km. in 1978, the number 1 SW Lamb well was drilled on a 152 acre farmout from Chevron. The well was completed as a geothermal producer in a zone of fractured volcanic rocks. Since then, five additional geothermal producing wells were completed within the anomalous area. (MJF)

Parchman, W.L.; Knox, J.W.

1981-06-01T23:59:59.000Z

93

Electromagnetic soundings over a geothermal reservoir in Dixie Valley, Nevada  

DOE Green Energy (OSTI)

An electromagnetic (EM) sounding survey was performed over a region encompassing the Dixie Valley geothermal field with the purpose of mapping the subsurface resistivity in the geothermal field and its surroundings. The EM survey consisted of 19 frequency-domain depth soundings made with the EM-60 system using three separate horizontal-loop transmitters, and was designed to explore a narrow region adjacent to the Stillwater Range to a depth of 2 to 3 k. Most sounding curves could be fitted to three-layer resistivity models. The surface layer is moderately conductive (10 to 15 ohm-m), has a maximum thickness of 500 m, and consists mainly of alluvial fan and lake sediments. More conductive zones are associated with hydrothermally altered rocks; a resistivity high may be associated with siliceous hot spring deposits. The conductive second layer (2 to 5 ohm-m) varies in thickness from 400 to 800 m and thickens toward the center of the valley. This layer probably consists of lacustrine sediments saturated with saline waters. Local resistivity lows observed in the second layer may be related to elevated subsurface temperatures. This layer may act as a cap rock for the geothermal system. Resistivities of the third layer are high (50 to 100 ohm-m) except in a narrow 5-km band paralleling the range front. This low-resistivity zone, within volcanic rocks, correlates well in depth and location with reported zones of geothermal fluid production. It also seems to correlate with the western margin of a concealed graben structure previously inferred from other geophysical data.

Wilt, M.J.; Goldstein, N.E.

1983-04-01T23:59:59.000Z

94

Searching For An Electrical-Grade Geothermal Resource In Northern Arizona  

Open Energy Info (EERE)

Searching For An Electrical-Grade Geothermal Resource In Northern Arizona Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Details Activities (1) Areas (1) Regions (0) Abstract: The U.S Department of Energy's "Geopowering the West" initiative seeks to double the number of states (currently 4) that generate geothermal electric power over the next few years. Some states, like New Mexico and Oregon, have plentiful and conspicuous geothermal manifestations, and are thus likely to further DOE'S goal relatively easily. Other states, including Arizona, demonstrate less geothemal potential, but nevertheless

95

Use of slim holes for reservoir evaluation at the Steamboat Hills Geothermal Field, Nevada, USA  

SciTech Connect

Three slim holes were drilled at the Steamboat Hills Geothermal Field in northwestern Nevada about 15 km south of Reno. The slim holes were drilled to investigate the geologic conditions, thermal regime and productive characteristics of the geothermal system. They were completed through a geologic sequence consisting of alluvium cemented by geothermal fluids, volcaniclastic materials, and granodiorite. Numerous fractures, mostly sealed, were encountered throughout the drilled depth; however, several open fractures in the granodiorite, dipping between 65 and 90{degree}, had apertures up to 13 mm in width. The depths of the slim holes vary from 262 to 277 m with open-hole diameters of 76 mm. Pressure and temperature logs gave bottom-hole temperatures ranging from 163 to 166{degree} C. During injection testing, downhole pressures were measured using capillary tubing with a surface quartz transducer while temperatures were measured with a Kuster temperature tool located below the capillary tubing pressure chamber. No pressure increase was measured at reservoir depths in any of the three slim holes while injecting 11 kg/s of 29{degree}C water indicating a very high permeability in the geothermal reservoir. These injection test results suggested that productive geothermal fluids could be found at depths sufficient for well pumping equipment and at temperatures needed for electrical power production using binary-type conversion technology.

Combs, Jim; Goranson, Colin

1994-01-20T23:59:59.000Z

96

Geochemistry of the Colado geothermal area, Pershing County, Nevada  

DOE Green Energy (OSTI)

Multielement geochemical analysis of drill cuttings from 18 shallow and 2 intermediate-depth temperature gradient holes outlines an area of anomalous geochemistry related to the fluid flow and temperature distribution within the Colado geothermal area. The concentrations of Hg, As, Li, and Be belong to more than one statistical population and provide the clearest expression of hydrothermal processes. Enrichments of these four elements define anomalous zones which are spatially coincident with a measured temperature anomaly. The spatial distribution suggests that thermal fluid rises into alluvium in the vicinity of a major Basin and Range fault to depths of 200 to 400 feet (60 to 120 m), then flows laterally within shallow alluvial aquifers down the local hydrologic gradient. As the fluid cools, Li, Be, As, and Hg are deposited in response to changing physical and chemical conditions. As and Be appear to be deposited early in higher temperature zones; Li begins to deposit early but forms a rather dispersed geochemical anomaly; Hg is anomalous throughout the entire geothermal area but is concentrated in a shallow halo above the As and Be anomalies. The distributions suggest that the entry of thermal fluids from depth into the alluvium is spatially restricted to a small area and that the larger area of the observed thermal anomaly is due to the flow of warm fluid within shallow aquifers.

Christensen, O.D.

1980-07-01T23:59:59.000Z

97

Hypothesis testing for resource evaluation: an application to geothermal potential estimation in Nevada  

DOE Green Energy (OSTI)

A hypothesis testing methodology for the statistical integration of diverse data types has been further investigated. In an earlier study the technique was developed and applied, with limited data, to evaluation of the geothermal potential of Nevada. That effort has been extended in this report to include the implementation of data on major lineaments and surface lithology. Information from the new data bases is integrated with that from the seismicity and small scale linear data previously studied. The new data added in this study has improved the results considerably. A number of new areas appropriate for further, more detailed geophysical investigation are indicated by high likelihood ratios.

Parr, J.T.

1978-10-01T23:59:59.000Z

98

Geology and thermal regime, geothermal test USA No. 11-36, Grass Valley, Nevada  

DOE Green Energy (OSTI)

This report summarizes the results of drilling of an 8,565 foot geothermal test near Leach Hot Springs, Pershing County, Nevada, by Sunoco Energy Development Company. USA No.11-36 is located 500 feet south and 500 feet east of the northwest corner of Section 36, T. 32 N., R. 38 E (Mount Diablo Meridian), elevation 4,573 feet. It was drilled between May 15 and July 2, 1980. USA No.11-36 was deemed unsuccessful, having encountered no temperature higher than 270 F and no significant permeability, and was plugged and abandoned without testing prior to releasing the rig.

Wilde, Walter R.; Koenig, James B.

1980-08-01T23:59:59.000Z

99

Hydrogeologic and hydrogeochemical assessment of geothermal fluids in the Pyramid Lake area, Washoe country, Nevada  

DOE Green Energy (OSTI)

This paper evaluates the hydrogeological and hydrogeochemical characteristics of the geothermal fluids in the Pyramid Lake area using data from existing published and unpublished reports on springs, challow and deep wells in the area. Four geochemical provinces, namely, chloride, bicarbonate, suphate and nixed chloride-bicarbonate have been identified. Chloride waters are found in known geothermal areas. Two subsurface water recharge zones which reed the shallow and deep geothermal systems are proposed. These are the Virginia Mountains and their Northern extension and the Fox and Lake Ranges. Tertiary and Quaternary faulting systems in these mountains and Ranges act as heat conduits for geothermal fluids. The Needle Rocks geothermal system is postulated to be deeper than the San Emidio system. A connection between the Needle Rocks system and the Pyramid and Anaho islands warm springs is not clear from this study because of lack of chemical data from these islands. More systematic measurements of static water levels, temperatures, well lithology, water chemistry and isotopes data are recommended to enable better understanding of the geothermal systems in the area.

Ojiambo, S. Bwire

1992-01-01T23:59:59.000Z

100

Hydrologic properties of the Dixie Valley, Nevada, geothermal reservoir from well-test analyses  

DOE Green Energy (OSTI)

Temperature, pressure, and spinner (TPS) logs have been recorded in several wells from the Dixie Valley Geothermal Reservoir in west central Nevada. A variety of well-test analyses has been performed with these data to quantify the hydrologic properties of this fault-dominated geothermal resource. Four complementary analytical techniques were employed, their individual application depending upon availability and quality of data and validity of scientific assumptions. In some instances, redundancy in methodologies was used to decouple interrelated terms. The methods were (1) step-drawdown, variable-discharge test; (2) recovery analysis; (3) damped-oscillation response; and (4) injection test. To date, TPS logs from five wells have been examined and results fall into two distinct categories. Productive, economically viable wells have permeability-thickness values on the order of 10{sup 5} millidarcy-meter (mD-m) and storativities of about 10{sup {minus}3}. Low-productivity wells, sometimes located only a few kilometers from their permeable counterparts, are artesian and display a sharp reduction in permeability-thickness to about 10 mD-m with storativities on the order of 10{sup {minus}4}. These results demonstrate that the hydrologic characteristics of this liquid-dominated geothermal system exhibit a significant spatial variability along the range-bounding normal fault that forms the predominant aquifer. A large-scale, coherent model of the Dixie Valley Geothermal Reservoir will require an understanding of the nature of this heterogeneity and the parameters that control it.

Morin, R.H. [Geological Survey, Denver, CO (United States); Hickman, S.H. [Geological Survey, Menlo Park, CA (United States); Barton, C.A. [Stanford Univ., CA (United States). Dept. of Geophysics; Shapiro, A.M. [Geological Survey, Reston, VA (United States); Benoit, W.R. [Oxbow Geothermal Corp., Reno, NV (United States); Sass, J.H. [Geological Survey, Flagstaff, AZ (United States)

1998-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

GIS model for geothermal resource exploration in Akita and Iwate prefectures, northern Japan  

Science Conference Proceedings (OSTI)

In this study, a Geographic Information System (GIS) is used as a decision-making tool to target potential regional-scale geothermal resources in the Akita and Iwate prefectures of northern Japan. The aims of the study are to determine the relationships ... Keywords: GIS, Geochemistry, Geoprocessing, Geothermal, Heat flow, Temperature gradient

Younes Noorollahi; Ryuichi Itoi; Hikari Fujii; Toshiaki Tanaka

2007-08-01T23:59:59.000Z

102

Nevada Southwest Regional Geothermal Development Operations Research Project. Appendix 8 of regional operations research program for development of geothermal energy in the Southwest United States. Final technical report, June 1977--August 1978  

DOE Green Energy (OSTI)

By the end of the first year of the Southwest Regional Geothermal Project, the Nevada State Team has defined over 300 geothermal sites. Because of the multitude of sites and data, scenarios for this first project-year have been completed for the twenty-six Nevada Geothermal Areas, which include all the specific sites. It is not improbable that fully one-third of the sites will eventually prove to be of high to intermediate temperature (i.e. > 150 C and 90-150 C) resources. Low temperature sites are also prominent, not only in number, but also in their distribution--each of Nevada's 17 counties has several such sites.

Clark, Noel A.; Booth, G. Martin, III; Weber, Dorismae; Helseth, Barbara K.

1979-01-01T23:59:59.000Z

103

Geothermal enhancement of mineral processing in Nevada: Final report, April 25, 1985-June 30, 1986  

SciTech Connect

This report reviews mineral recovery techniques practiced at active mines throughout Nevada and determines those that may be enhanced by the application of geothermal heat energy from a nearby resource. Of the thirty-two active precious metal mines identified, ten have hot water on or near the property and could potentially benefit. A second purpose was to collect ore samples and geothermal fluids, determine if they are compatible in the hydrometallurgical process, and carry out laboratory tests to determine the effects of heating on recovery rates. In addition, interfering or counterproductive factors were also identified. The laboratory work consisted of measuring the effects of thermally enhancing two hydrometallurgical processes; cyanide heap-leaching of gold and silver ores and bacterial leaching of sulfide rich gold ores. Thermally enhanced cyanide heap-leaching of gold and silver ores produced increases in extraction ranging from 8 to 20% for gold and 17 to 40% for silver. The temperature required for these increases is 35/sup 0/C to 40/sup 0/C, well within the range of available geothermal resources.

Flynn, T.; Trexler, D.T.; Hendrix, J.L.

1986-11-01T23:59:59.000Z

104

Electromagnetic (EM-69) survey of the McCoy geothermal prospect, Nevada  

DOE Green Energy (OSTI)

A frequency-domain electromagnetic survey was conducted at 19 stations over a 200 km/sup 2/ area encompassing the McCoy geothermal prospect, Churchill County, central Nevada. The McCoy area is characterized by high heat flow, mercury mineralization, and recent volcanics. Three horizontal-loop transmitters were used with receivers from 0.5 to more than 4.0 km from the loops. Receiver stations were arranged along a pair of crossing north-south and east-west lines. Data were interpreted first with a simple apparent resistivity formula and then with a least-squares lumped-model inversion program. The rough terrain and complex geology introduce an element of uncertainty to the interpretations.

Wilt, M.; Haught, R.; Goldstein, N.E.

1980-12-01T23:59:59.000Z

105

Reservoir-scale fracture permeability in the Dixie Valley, Nevada, geothermal field  

Science Conference Proceedings (OSTI)

Wellbore image data recorded in six wells penetrating a geothermal reservoir associated with an active normal fault at Dixie Valley, Nevada, were used in conjunction with hydrologic tests and in situ stress measurements to investigate the relationship between reservoir productivity and the contemporary in situ stress field. The analysis of data from wells drilled into productive and non-productive segments of the Stillwater fault zone indicates that fractures must be both optimally oriented and critically stressed to have high measured permeabilities. Fracture permeability in all wells is dominated by a relatively small number of fractures oriented parallel to the local trend of the Stillwater Fault. Fracture geometry may also play a significant role in reservoir productivity. The well-developed populations of low angle fractures present in wells drilled into the producing segment of the fault are not present in the zone where production is not commercially viable.

Barton, C.A.; Zoback, M.D. [Stanford Univ., CA (United States). Dept. of Geophysics; Hickman, S. [Geological Survey, Menlo Park, CA (United States); Morin, R. [Geological Survey, Denver, CO (United States); Benoit, D. [Oxbow Geothermal Corp., Reno, NV (United States)

1998-08-01T23:59:59.000Z

106

Evaluation of lineament analysis as an exploration technique for geothermal energy, western and central Nevada. Final report, June 1976--October 1978  

DOE Green Energy (OSTI)

Lineament analysis as an exploration technique for geothermal energy using multi-scale, multi-format imagery and geophysical data is investigated and evaluated. Two areas in Nevada, each having distinct differences in structural style were studied. One area, which encompasses a portion of the Battle Mountain Heat Flow High, was studied to determine the relationship between regional and local structural controls and geothermal activity. Four geothermal sites within this area (Winnemucca AMS) were selected and studied in detail. These sites include: 1) Leach Hot Springs, 2) Kyle Hot Springs, 3) Beowawe geothermal area and Buffalo Valley Hot Springs. A second area encompassed by the Reno AMS Sheet was selected for further study in a region dominated by three diverse tectonic styles; these are: 1) the Sierra Nevada Front, 2) the Walker Lane, and 3) basin-and-range structures. Geothermal sites analyzed at site specific scales within the Reno AMS Sheet included Steamboat Hot Springs in the Sierra Nevada Front subprovince, Dixie Valley Hot Springs located in typical basin-and-range terrain and the Brady's-Desert Peak area which is marginal to the Walker Lane. Data products employed included LANDSAT imagery, SKYLAB photography, gravity, and aeromagnetic maps. Results of this investigation indicate that in north-central Nevada the major sites of geothermal activity are associated with northeast trending structures related to the Midas Trench lineament and that the most viable geothermal area (Beowawe is located at the intersection of the northeast trend of the Oregon-Nevada Lineament.

Trexler, D.T.; Bell, E.J.; Roquemore, G.R.

1978-10-01T23:59:59.000Z

107

Dixie Valley, Nevada: A promising geothermal area under development by industry  

Science Conference Proceedings (OSTI)

Selected subsurface reservoirs located in the Western United States may contain significant geothermal energy, and if development continues, this energy source may provide substantial electrical power or related energy by the year 2,000. Utility management must be convinced of the reliability and cost attractiveness of this energy source. A number of exploration programs are in progress to evaluate the potential of geothermal energy in the United States. For example, numerous exploration methods have been employed in Dixie Valley, Nevada, since 1967 with mixed results. However, with DOE support, additional data have recently become available. The authors have revised earlier structural models of the basin and have made recommendations for additional investigations that should assist in clarifying the geologic relationships within the reservoir. The principal geologic characteristics of the reservoir that may place limits on project economics appear to be the depth and trend area of producing zones, fluid quality and the amenability of the upper zones to accept large volumes of spent fluids. However, reservoir temperature, flow rates, recharge characteristics, and other factors appear to be acceptable either for electrical power production of more than 1,000 MWe, or for direct applications such as on-site agricultural processing.

Campbell, M.D.

1983-08-01T23:59:59.000Z

108

Potential of low-temperature geothermal resources in northern California. Report No. TR13  

DOE Green Energy (OSTI)

Economically feasible uses for geothermal heat at temperatures too low for conventional electrical power generation at present are delineated. Several geothermal resource areas in northern California that have development potential are described, and applications of the heat found in each area are suggested. Plates are included of the following field study areas: the east side of the Sierra-Cascade Range north of Bishop, and the northern Coast Range from San Francisco Bay to Clear Lake. The counties included in the study area are Mo doc, Lassen, Sierra, Plumas, Placer, Alpine, Mono, Mendocino, Lake, and Sonoma. (LBS)

Hannah, J.L.

1975-01-01T23:59:59.000Z

109

Principal facts for a gravity survey of the Double Hot Springs Known Geothermal Resource Area, Humboldt County, Nevada  

DOE Green Energy (OSTI)

During July 1977, forty-nine gravity stations were obtained in the Double Hot Springs Known Geothermal Resource Area and vicinity, northwestern Nevada. The gravity observations were made with a Worden gravimeter having a scale factor of about 0.5 milligal per division. No terrain corrections have been applied to these data. The earth tide correction was not used in drift reduction. The Geodetic Reference System 1967 formula (International Association of Geodesy, 1967) was used to compute theoretical gravity.

Peterson, D.L.; Kaufmann, H.E.

1978-01-01T23:59:59.000Z

110

Geothermal Literature Review (Goldstein, 1977) | Open Energy Information  

Open Energy Info (EERE)

Goldstein, 1977) Goldstein, 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review (Goldstein, 1977) Exploration Activity Details Location Unspecified Exploration Technique Geothermal Literature Review Activity Date Usefulness useful DOE-funding Unknown Notes Review of effectiveness of several geothermal exploration tools. References N. E. Goldstein (1977) Northern Nevada Geothermal Exploration Strategy Analysis Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_(Goldstein,_1977)&oldid=510791" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

111

Geologic and hydrologic research on the Moana geothermal system, Washoe County, Nevada. Final report October 1, 1982-December 31, 1983  

DOE Green Energy (OSTI)

Combined geologic, geophysical, geochemical, and drilling exploration surveys were used to assess the Moana geothermal resource in Washoe County, Nevada, and to determine its relationship with nearby Steamboat Hot Springs. Moana is the largest single moderate-temperature resource in Nevada that supports geothermal space heating applications. Results show that the general geology and structure for the two systems is similar, but important differences exist with respect to reservoir rocks. Gravity data delineated the contact between important volcanic and sedimentary rocks in Moana, but contour trends did not correlate well with mapped faults. Fluid geochemistry data show major differences in bulk chemical composition, stable-light isotope ratios, and radiocarbon ages for Moana and Steamboat geothermal waters. Water level measurements in observation wells in Moana show simultaneous increasing and decreasing values in different sections of the geothermal area. Temperature-depth profiles changed little during the six-month monitoring period. Direct use of the resource is increasing and longer-lasting, more efficient down-hole heat exchangers are replacing previous equipment that was prone to scaling and corrosion. A computer program that calculates heat output for state-of-the-art heat exchangers is described. Recommendations for continued monitoring, heat exchanger design, and fluid reinjection studies are included. Data are available to government agencies responsible for regulation as well as local residents and potential developers to ensure prudent resource utilization.

Flynn, T.; Ghusn, G. Jr.

1984-01-01T23:59:59.000Z

112

Geothermal Resources Council's ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications...

113

Geothermal News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

114

Structural geology and tectonic implications of a part of the northern Stillwater Range, Nevada  

Science Conference Proceedings (OSTI)

The east flank of the Stillwater Range adjacent to the Dixie Valley geothermal area near Fallon, Nevada, hosts one of the best exposures of Mesozoic thrust faults in the Basin and Range province. The rangefront comprises four imbricate lithologic packages. The Triassic Star Peak Group sits structurally lowest beneath Triassic phyllite of the Fencemaker-B allochthon. Bedded quartz arenite of the Jurassic Boyer Ranch Formation lies above the phyllite along the Boyer thrust. Rocks of the Humboldt Igneous Complex sit structurally highest in brittle fault contact with both the arenite and phyllite. The Fenoemaker thrust is a major Jurassic structure in west-central Nevada which places Triassic basinal strata northeastward over shelf carbonates of the Star Peak Group, which depositionally overlie the Golconda allochthon. Locally, the Fencemaker thrust lies within a high strain zone characterized by mylonitic marble, phlogopite-bearing calcareous argillite schist, boudinaged siliciclastics, and phyllonite. Consistently southeast-dipping penetrative foliations and down-dip stretching lineations in these Triassic metasedimentary rocks are, however, inconsistent with northeast directed thrusting. This suggests that northwest vergent thrusting also occurred here, possibly along the Willow Creek thrust. In contrast to the Fencemaker thrust, the Boyer thrust is characterized by close folds in the hanging wall, a narrow zone of fault gouge, and crenulation of footwall foliations, indicating a less ductile regime. East dipping Tertiary extensional faults expose these thrusts along the Stillwater rangefront and displace the thrust sheets downdip beneath Dixie Valley. The geometry of these thrust sheets in the subsurface is critical to the production of geothermal wells in the area.

Plank, G.L. [Univ. of Nevada, Reno, NV (United States)

1996-06-01T23:59:59.000Z

115

Controlled-source electromagnetic survey at Soda Lakes geothermal area, Nevada  

DOE Green Energy (OSTI)

The EM-60 system, a large-moment frequency-domain electromagnetic loop prospecting system, was operated in the Soda Lakes geothermal area, Nevada. Thirteen stations were occupied at distances ranging from 0.5-3.0 km from two transmitter sites. These yielded four sounding curves--the normalized amplitudes and phases of the vertical and radial magnetic fields as a function of frequency--at each station. In addition, two polarization ellipse parameters, ellipticity and tilt angle, were calculated at each frequency. The data were interpreted by means of a least-squares inversion procedure which fits a layered resistivity model to the data. A three-layer structure is indicated, with a near-surface 20 ohm-m layer of 100-400 m thickness, a middle 2 ohm-m layer of approximately 1 km thickness, and a basement of greater than 10 ohm-m. The models indicate a northwesterly structural strike; the top and middle layers seem to thicken from northeast to southwest. The results agree quite well with previous results of dipole-dipole and magnetotelluric (MT) surveys. The EM-60 survey provided greater depth penetration (1 to 1.5 km) than dipole-dipole, but MT far surpassed both in its depth of exploration. One advantage of EM in this area is its ease and speed of operation. Another advantage, its relative insensitivity to lateral inhomogeneities, is not as pronounced here as it would be in areas of more complex geology.

Stark, M.; Wilt, M.; Haught, J.R.; Goldstein, N.

1980-07-01T23:59:59.000Z

116

Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems  

E-Print Network (OSTI)

dioxide flux at the Dixie Valley geothermal field, Nevada;volcanic system, USA Dixie Valley Geothermal Field, USAProvince system like the Dixie Valley (Nevada) geothermal

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2005-01-01T23:59:59.000Z

117

Structural interpretation of the Coso geothermal field. Summary report,  

Open Energy Info (EERE)

the Coso geothermal field. Summary report, the Coso geothermal field. Summary report, October 1986-August 1987 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Structural interpretation of the Coso geothermal field. Summary report, October 1986-August 1987 Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Geothermal Field, located east of the Sierra Nevada at the northern edge of the high Mojave Desert in Southern California, is an excellent example of a structurally controlled geothermal resource. Author(s): Austin, C.F.; Moore, J.L. Published: Publisher Unknown, 9/1/1987 Document Number: Unavailable DOI: Unavailable Source: View Original Report Geothermal Literature Review At Coso Geothermal Area (1987) Coso Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Structural_interpretation_of_the_Coso_geothermal_field._Summary_report,_October_1986-August_1987&oldid=473519"

118

Principal facts for a gravity survey of the Gerlach Extension Known Geothermal Resource Area, Pershing County, Nevada  

DOE Green Energy (OSTI)

During July 1977, fifty-one gravity stations were obtained in the Gerlach Extension Known Geothermal Resource Area and vicinity, northwestern Nevada. The gravity observations were made with a Worden gravimeter having a scale factor of about 0.5 milligal per division. No terrain corrections have been applied to these data. The earth tide correction was not used in drift reduction. The Geodetic Reference System 1967 formula (International Association of Geodesy, 1967) was used to compute theoretical gravity. Observed gravity is referenced to a base station in Gerlach, Nevada, having a value based on the Potsdam System of 1930. A density of 2.67 g per cm/sup 3/ was used in computing the Bouguer anomaly.

Peterson, D.L.; Kaufmann, H.E.

1978-01-01T23:59:59.000Z

119

Principal facts for a gravity survey of the Fly Ranch Extension Known Geothermal Resource Area, Pershing County, Nevada  

DOE Green Energy (OSTI)

During July 1977, forty-four gravity stations were obtained in the Fly Ranch Extension Known Geothermal Resource Area and vicinity, northwestern Nevada. The gravity observations were made with a Worden gravimeter having a scale factor of about 0.5 milligal per division. No terrain corrections have been applied to these data. The earth tide correction was not used in drift reduction. The Geodetic Reference System 1967 formula (International Association of Geodesy, 1967) was used to compute theoretical gravity. Observed gravity is referenced to a base station in Gerlach, Nevada, having a value based on the Potsdam System of 1930 (fig. 1). A density of 2.67 g per cm/sup 3/ was used in computing the Bouguer anomaly.

Peterson, D.L.; Kaufmann, H.E.

1978-01-01T23:59:59.000Z

120

Low- to moderate-temperature geothermal resource assessment for Nevada: area specific studies, Pumpernickel Valley, Carlin and Moana. Final report June 1, 1981-July 31, 1982  

DOE Green Energy (OSTI)

Geological, geophysical and geochemical surveys were used in conjunction with temperature gradient hole drilling to assess the geothermal resources in Pumpernickel Valley and Carlin, Nevada. This program is based on a statewide assessment of geothermal resources that was completed in 1979. The exploration techniques are based on previous federally-funded assessment programs that were completed in six other areas in Nevada and include: literature search and compilation of existing data, geologic reconnaissance, chemical sampling of thermal and non-thermal fluids, interpretation of satellite imagery, interpretation of low-sun angle aerial photographs, two-meter depth temperature probe survey, gravity survey, seismic survey, soil-mercury survey, and temperature gradient drilling.

Trexler, D.T.; Flynn, T.; Koenig, B.A.; Bell, E.J.; Ghusn, G. Jr.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Tectonic controls on fracture permeability in a geothermal reservoir at Dixie Valley, Nevada  

DOE Green Energy (OSTI)

To help determine the nature and origins of permeability variations within a fault-hosted geothermal reservoir at Dixie Valley, Nevada, the authors conducted borehole televiewer logging and hydraulic fracturing stress measurements in six wells drilled into the Stillwater fault zone at depths of 2--3 km. Televiewer logs from wells penetrating the highly permeable portion of the fault zone revealed extensive drilling-induced tensile fractures. As the Stillwater fault at this location dips S45{degree}E at {approximately} 53{degree} it is nearly at the optimal orientation for normal faulting in the current stress field. Hydraulic fracturing tests from these permeable wells show that the magnitude of S{sub hmin} is very low relative to the vertical stress S{sub v}. Similar measurements conducted in two wells penetrating a relatively impermeable segment of the Stillwater fault zone 8 and 20 km southwest of the producing geothermal reservoir indicate that the orientation of S{sub hmin} is S20{degree}E and S41{degree}E, respectively, with S{sub hmin}/S{sub v} ranging from 0.55--0.64 at depths of 1.9--2.2 km. This stress orientation is near optimal for normal faulting on the Stillwater fault in the northernmost non-producing well, but {approximately} 40{degree} rotated from the optimal orientation for normal faulting in the southernmost well. The observation that borehole breakouts were present in these nonproducing wells, but absent in wells drilled into the permeable main reservoir, indicates a significant increase in the magnitude of maximum horizontal principal stress, S{sub Hmax}, in going from the producing to non-producing segments of the fault. The increase in S{sub Hmaz}, coupled with elevated S{sub hmin}/S{sub v} values and a misorientation of the Stillwater fault zone with respect to the principal stress directions, leads to a decrease in the proximity of the fault zone to Coulomb failure. This suggests that a necessary condition for high reservoir permeability is that the Stillwater fault zone be critically stressed for frictional failure in the current stress field.

Hickman, S. [Geological Survey, Menlo Park, CA (United States); Zoback, M. [Stanford Univ., CA (United States). Dept. of Geophysics

1998-08-01T23:59:59.000Z

122

Northern California Power Association--Shell Oil Company Geothermal Project No. 2: energy and materials resources  

DOE Green Energy (OSTI)

The potential environmental impact of the energy and material resources expended in site preparation, construction, operation, maintenance, and abandonment of all phases of the Northern California Power Association--Shell Geothermal Project in The Geysers--Calistoga Known Geothermal Resource Area is described. The impact of well field development, operation, and abandonment is insignificant, with the possible exception of geothermal resource depletion due to steam withdrawal from supply wells during operation. The amount of resource renewal that may be possible through reinjection is unknown because of uncertainties in the exact amount of heat available in the steam supply field. Material resources to be used in construction, operation, and abandonment of the power plant and transmission lines are described. Proposed measures to mitigate the environmental impacts from the use of these resources are included. Electric power supply and demand forecasts to the year 2005 are described for the area served by the NCPA.

Hall, C.H.; Ricker, Y.E.

1979-01-01T23:59:59.000Z

123

Stragegies to Detect Hidden Geothermal Systems Based on Monitoring and Analysis of CO2 in the Near-Surface Environment  

E-Print Network (OSTI)

dioxide flux at the Dixie Valley geothermal field, Nevada;volcanic system, USA Dixie Valley Geothermal Field, USAProvince system like the Dixie Valley (Nevada) geothermal

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2008-01-01T23:59:59.000Z

124

Exploration Of The Upper Hot Creek Ranch Geothermal Resource...  

Open Energy Info (EERE)

Nye County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada...

125

McGuiness Hills Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

McGuiness Hills Geothermal Area McGuiness Hills Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: McGuiness Hills Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: McGuiness Hills Geothermal Area McGuiness Hills Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

126

Principal facts for gravity stations in the Elko Hot Springs Known Geothermal Resource Area (KGRA), Nevada  

DOE Green Energy (OSTI)

The latitude, longitude, elevation, observed gravity, and Bouguer anomaly are tabulated for 58 stations in the Elko Hot Springs KGRA, Nevada. (WHK)

Peterson, D.L.; Dansereau, D.A.

1976-01-01T23:59:59.000Z

127

Downward continuation of temperature gradients at MacFarlane's Hot Spring, Northern Nevada  

SciTech Connect

MacFarlane's Hot Spring is located on the eastern margin of the Black Rock Desert of northwest Nevada. Detailed temperature logs from thirty-eight shallow boreholes (500 feet) and six intermediate depth boreholes (1500-2000 feet) have been used to construct a temperature gradient contour map covering approximately 144 square miles, both within and adjacent to the geothermal area. These temperature gradients were then continued downward through a detailed conductivity model to complete the threedimensional thermal picture. The principal results are as follows: The maximum measured temperature is 178/sup 0/F at 2,000 feet, and the maximum projected temperatures at greater depths are not likely to exceed the 250-350/sup 0/F range. The area of hydrothermal activity is confined to the western front of a structural platform bounded by two roughly parallel normal faults. The anomaly is best explained in terms of a simple groundwater flow model. The groundwater flows west through the structural platform and ascends when it intersects the conduit provided by the fault. The faults on the eastern side of the platform permit recharge to the system.

Swanberg, C.A.; Bowers, R.L.

1982-10-01T23:59:59.000Z

128

Geothermal assessment of the MX deployment area in Nevada. Final report, April 1, 1981-April 30, 1982  

DOE Green Energy (OSTI)

A preliminary geothermal resource assessment of the MX deployment area in Nevada focused on Coyote Spring Valley in southeastern Nevada. Initially, an extensive literature search was conducted and a bibliography consisting of 750 entries was compiled covering all aspects of geology pertaining to the study area. A structural study indicates that Coyote Spring Valley lies in a tectonically active area which is favorable for the discovery of geothermal resources. Hot water may be funneled to the near-surface along an extensive fracture and fault system which appears to underlie the valley, according to information gathered during the literature search and aerial photo survey. A total of 101 shallow temperature probes were emplanted in Coyote Spring Valley. Three anomalous temperature points all lying within the same vicinity were identified in the north-central portion of the valley near a fault. A soil-mercury study also identified one zone of anomalous mercury concentrations around the north end of the Arrow Canyon Range. A literature search covering regional fluid geochemistry indicated that the three fluid samples taken from Coyote Spring Valley have a higher concentration of Na + K. During field work, seven fluid samples were collected in Coyote Spring Valley which also appear to be derived from volcanic units due to the presence of Ca-Mg or Na-K carbonate-bicarbonate. A temperature gradient study of six test water wells indicates that only one geothermal well with a temperature of 35.5/sup 0/C (96/sup 0/F) exists in the central portion of the valley at the north end of Arrow Canyon Range near the zone of anomalous soil-mercury points. A cultural assessment of Coyote Spring Valley was performed prior to field work.

Trexler, D.T.; Bruce, J.L.; Cates, D.; Dolan, H.H.; Covington, C.H.

1982-06-01T23:59:59.000Z

129

Heat flow and hot dry rock geothermal resources of the Clearlake Region, northern California  

DOE Green Energy (OSTI)

The Geysers-Clear Lake geothermal anomaly is an area of high heat flow in northern California. The anomaly is caused by abnormally high heat flows generated by asthenospheric uplift and basaltic magmatic underplating at a slabless window created by passage of the Mendocino Triple Junction. The Clear Lake volcanic field is underlain by magmatic igneous bodies in the form of a stack of sill-form intrusions with silicic bodies generally at the top and basic magmas at the bottom. The tabular shape and wide areal extent of the heat sources results in linear temperature gradients and near-horizontal isotherms in a broad region at the center of the geothermal anomaly. The Hot Dry Rock (HDR) portion of The Geysers-Clear Lake geothermal field is that part of the geothermal anomaly that is external to the steamfield, bounded by geothermal gradients of 167 mW/m2 (4 heat flow units-hfu) and 335 mW/m2 (8 hfu). The HDR resources, to a depth of 5 km, were estimated by piece-wise linear summation based on a sketch map of the heat flow. Approximately, the geothermal {open_quotes}accessible resource base{close_quotes} (Qa) is 1.68E+21 J; the {open_quotes}HDR resource base{close_quotes} (Qha) is 1.39E+21 J; and the {open_quotes}HDR power production resource{close_quotes} (Qhp) is 1.01E+21 J. The HDR power production resource (Qhp) is equivalent to 2.78E+ 11 Mwht (megawatt hours thermal), or 1.72E+11 bbls of oil.

Burns, K.L.

1996-08-01T23:59:59.000Z

130

Characterization of injection wells in a fractured reservoir using PTS logs, Steamboat Hills Geothermal Field, Nevada, USA  

DOE Green Energy (OSTI)

The Steamboat Hills Geothermal Field in northwestern Nevada, about 15 km south of Reno, is a shallow (150m to 825m) moderate temperature (155 C to 168 C) liquid-dominated geothermal reservoir situated in highly-fractured granodiorite. Three injection wells were drilled and completed in granodiorite to dispose of spent geothermal fluids from the Steamboat II and III power plants (a 30 MW air-cooled binary-type facility). Injection wells were targeted to depths below 300m to inject spent fluids below producing fractures. First, quasi-static downhole pressure-temperature-spinner (PTS) logs were obtained. Then, the three wells were injection-tested using fluids between 80 C and 106 C at rates from 70 kg/s to 200 kg/s. PTS logs were run both up and down the wells during these injection tests. These PTS surveys have delineated the subsurface fracture zones which will accept fluid. The relative injectivity of the wells was also established. Shut-in interzonal flow within the wells was identified and characterized.

Goranson, Colin; Combs, Jim

1995-01-26T23:59:59.000Z

131

Geothermal resources of the western arm of the Black Rock Desert, northwestern Nevada. Part I. Geology and geophysics  

DOE Green Energy (OSTI)

Studies of the geothermal potential of the western arm of the Black Rock Desert in northwestern Nevada included a compilation of existing geologic data on a detailed map, a temperature survey at 1-meter depth, a thermal-scanner survey, and gravity and seismic surveys to determine basin geometry. The temperature survey showed the effects of heating at shallow depths due to rising geothermal fluids near the known hot spring areas. Lower temperatures were noted in areas of probable near-surface ground-water movement. The thermal-scanner survey verified the known geothermal areas and showed relatively high-temperature areas of standing water and ground-water discharge. The upland areas of the desert were found to be distinctly warmer than the playa area, probably due to the low thermal diffusivity of upland areas caused by low moisture content. Surface geophysical surveys indicated that the maximum thickness of valley-fill deposits in the desert is about 3200 meters. Gravity data further showed that changes in the trend of the desert axis occurred near thermal areas. 53 refs., 8 figs., 3 tabs.

Schaefer, D.H.; Welch, A.H.; Maurer, D.K.

1983-01-01T23:59:59.000Z

132

Geothermal reservoir assessment case study, Northern Basin and Range Province. Final Report, 1 October 1978-30 September 1979  

DOE Green Energy (OSTI)

Campbell E No. 2 well in the Humboldt House geothermal field in central Pershing County, Nevada was drilled to a depth of 8061 ft in order to confirm the existence of a commercial reservoir. This well offsets the field discovery well which was drilled in 1977 and completed to a depth of only 1835 ft. Desert Peak B-23-1 well was likewise drilled in order to help evaluate a previously discovered geothermal field located in northwestern Churchill County, Nevada. The Desert Peak B-23-1 well was drilled to a depth of 9641 ft as compared to the deepest of three earlier wells drilled to 7662 ft. The drilling and completion of both these wells are described, including the daily drilling reports, drill bit records, descriptions of the casing and cementing programs, drilling fluid descriptions including methods of combating lost circulation, wellhead equipment descriptions, and logging programs.

Not Available

1979-10-01T23:59:59.000Z

133

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Upper Hot Creek Ranch Geothermal Area Upper Hot Creek Ranch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Upper Hot Creek Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

134

Geophysical Setting of the Blue Mountain Geothermal Area, North-Central  

Open Energy Info (EERE)

Setting of the Blue Mountain Geothermal Area, North-Central Setting of the Blue Mountain Geothermal Area, North-Central Nevada and Its Relationship to a Crustal-Scale Fracture Associated with the Inception of the Yellowstone Hotspot Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geophysical Setting of the Blue Mountain Geothermal Area, North-Central Nevada and Its Relationship to a Crustal-Scale Fracture Associated with the Inception of the Yellowstone Hotspot Abstract The Blue Mountain geothermal field, located about 35 km northwest of Winnemucca, Nevada, is situated along a prominent crustal-scale fracture interpreted from total intensity aeromagnetic and gravity data. Aeromagnetic data indicate that this feature is related to the intrusion of mafic dikes, similar to the Northern Nevada Rift (Zoback et al.,1994), and

135

Principal facts for gravity stations in the Darrough Known Geothermal Resource Area (KGRA), Nevada  

DOE Green Energy (OSTI)

The latitude, longitude, elevation, observed gravity, theoretical gravity, terrain correction, free-air correction, Bougner correction, and Bougner anomaly are tabulated for 71 gravity stations in the Darrough KGRA, Nevada area. (WHK)

Peterson, D.L.; Dansereau, D.A.

1976-01-01T23:59:59.000Z

136

Principal facts for a gravity survey of Baltazor Known Geothermal Resource Area, Nevada  

DOE Green Energy (OSTI)

The data presented are referenced to a gravity base station in Denio, Nevada at the Post Office, 50 meters south of the Oregon-Nevada State line, 1.6 meters south of the door in the southeast corner of the concrete porch, near the mailbox. Site is monumented with a ''USAF Gravity Station'' disc (A.C.I.C. reference number 2352-1). Base value is 979945.94.

Peterson, D.L.; Hoover, D.B.

1977-01-01T23:59:59.000Z

137

Geothermal direct heat use: market potential/penetration analysis for Federal Region IX (Arizona, California, Hawaii, Nevada)  

DOE Green Energy (OSTI)

A preliminary study was made of the potential for geothermal direct heat use in Arizona, California, Hawaii, and Nevada (Federal Region IX). The analysis for each state was performed by a different team, located in that state. For each state, the study team was asked to: (1) define the resource, based on the latest available data; (2) assess the potential market growth for geothermal energy; and (3) estimate the market penetration, projected to 2020. Each of the four states of interest in this study is unique in its own way. Rather than impose the same assumptions as to growth rates, capture rates, etc. on all of the study teams, each team was asked to use the most appropriate set of assumptions for its state. The results, therefore, should reflect the currently accepted views within each state. The four state reports comprise the main portion of this document. A brief regional overview section was prepared by the Jet Propulsion Laboratory, following completion of the state reports.

Powell, W.; Tang, K. (eds.) [eds.

1980-05-01T23:59:59.000Z

138

Property:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

Property Name GeothermalRegion Property Name GeothermalRegion Property Type Page Pages using the property "GeothermalRegion" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + Northern Basin and Range Geothermal Region + Adak Geothermal Area + Alaska Geothermal Region + Aidlin Geothermal Facility + Holocene Magmatic Geothermal Region + Akun Strait Geothermal Area + Alaska Geothermal Region + Akutan Fumaroles Geothermal Area + Alaska Geothermal Region + Akutan Geothermal Project + Alaska Geothermal Region + Alum Geothermal Area + Walker-Lane Transition Zone Geothermal Region + Alum Geothermal Project + Walker-Lane Transition Zone Geothermal Region + Alvord Hot Springs Geothermal Area + Northwest Basin and Range Geothermal Region +

139

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

E-Print Network (OSTI)

Conceptual models of the Dixie Valley, Nevada Geothermaldioxide flux at the Dixie Valley geothermal field, Nevada;by faulting. At the Dixie Valley Geothermal Field, USA, CO 2

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-01-01T23:59:59.000Z

140

List of Geothermal Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search Facility Location Owner Aidlin Geothermal Facility Geysers Geothermal Area Calpine Amedee Geothermal Facility Honey Lake, California Amedee Geothermal Venture BLM Geothermal Facility Coso Junction, California, Coso Operating Co. Bear Canyon Geothermal Facility Clear Lake, California, Calpine Beowawe Geothermal Facility Beowawe, Nevada Beowawe Power LLC Big Geysers Geothermal Facility Clear Lake, California Calpine Blundell 1 Geothermal Facility Milford, Utah PacificCorp Energy Blundell 2 Geothermal Facility Milford, Utah PacificCorp Brady Hot Springs I Geothermal Facility Churchill, Nevada Ormat Technologies Inc CE Turbo Geothermal Facility Calipatria, California CalEnergy Generation Calistoga Geothermal Facility The Geysers, California Calpine

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Structural interpretation of Coso Geothermal field, Inyo County, California  

Open Energy Info (EERE)

Coso Geothermal field, Inyo County, California Coso Geothermal field, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structural interpretation of Coso Geothermal field, Inyo County, California Details Activities (2) Areas (1) Regions (0) Abstract: The Coso Geothermal field, located east of the Sierra Nevada at the northern edge of the high Mojave Desert in southern California, is an excellent example of a structurally controlled geothermal resource. The geothermal system appears to be associated with at least one dominant north-south-trending feature which extends several miles through the east-central portion of the Coso volcanic field. Wells drilled along this feature have encountered production from distinct fractures in crystalline basement rocks. The identified producing fractures occur in zones which

142

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Upper Hot Creek Ranch Geothermal Area Upper Hot Creek Ranch Geothermal Area (Redirected from Upper Hot Creek Ranch Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Upper Hot Creek Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

143

Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah  

DOE Green Energy (OSTI)

The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

Klauk, R.H.; Budding, K.E.

1984-07-01T23:59:59.000Z

144

Holocene surface faulting along the west flank of the Santa Rosa Range (Nevada-Oregon) and the possible northern extension of the Central Nevada Seismic Belt  

Science Conference Proceedings (OSTI)

The 130 km long Santa Rose Range fault system extends northward from a point about 70 km north of the 1915 Pleasant Valley earthquake fault ruptures to Blue Mountain Pass, Oregon. The authors have examined 1:12,000 low-sun-angle aerial photographs and conducted surveys of scarp morphology to investigate the neotectonic evolution and paleoseismicity of this possible northern extension of the Central Nevada Seismic Belt. Two adjoining segments of the fault zone are separated by a right step in the range-front and apparent absence of Holocene scarps. Each segment records evidence of a Holocene faulting event. The southern 31 km segment between Frey Ranch and the Willow Creek fan shows both small scarps (Valley and larger scarps which oversteepen the base of the adjacent range-front to slopes of 20[degree] to 24[degree]. The northern 42 km segment between Flat Creek and Oregon Canyon Creek shows a recent offset which rejuvenates older (pre-Lahontan) fault scarps and also cuts Holocene terraces along the base of the piedmont pediment. Based on preliminary morphometric data, the maximum vertical displacement (3--4 m) and age of the faulting (early Holocene) are similar in both segments but it is not known whether both segments ruptured contemporaneously. Except for the lack of large historical surface faulting the main neotectonic and geomorphic features of the Santa Rose Range fault zone are similar to that of the Dixie Valley and Pleasant Valley regions of the Central Nevada Seismic Belt. Hence, the occurrence of a large earthquake rupture along this range-front in the near future should not be viewed as a surprise.

Michetti, A.M. (CNR/GNDT, Rome (Italy) Univ. of Nevada, Reno, NV (United States). Center for Neotectonic Studies); Wesnousky, S.G. (Univ. of Nevada, Reno, NV (United States). Center for Neotectonic Studies)

1993-04-01T23:59:59.000Z

145

File:INL-geothermal-nv.pdf | Open Energy Information  

Open Energy Info (EERE)

nv.pdf nv.pdf Jump to: navigation, search File File history File usage Nevada Geothermal Resources Size of this preview: 432 × 600 pixels. Full resolution ‎(2,877 × 3,995 pixels, file size: 847 KB, MIME type: application/pdf) Description Nevada Geothermal Resources Sources Idaho National Laboratory Authors Patrick Laney; Julie Brizzee Related Technologies Geothermal Creation Date 2003-11-01 Extent State Countries United States UN Region Northern America States Nevada File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:42, 16 December 2010 Thumbnail for version as of 12:42, 16 December 2010 2,877 × 3,995 (847 KB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

146

EA-1849: Department of Energy Loan Guarantee to Ormat Nevada...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home EA-1849: Department of Energy Loan Guarantee to Ormat Nevada, Inc. for a Geothermal Power Facility in Nevada EA-1849: Department of Energy Loan Guarantee to Ormat...

147

Aerial Photography At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Nevada Test And...

148

Geothermometry At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nevada Test And...

149

Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data  

Science Conference Proceedings (OSTI)

Chemical and isotopic analyses of Dixie Valley regional waters indicate several distinct groups ranging in recharge age from Pleistocene (1000a). Geothermal field fluids ({approximately}12-14 ka) appear derived from water similar in composition to non-thermal groundwater observed today in valley artesian wells (also -14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the ranges, more extensive interaction with deep-seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

Counce, D; Dunlap, C; Goff, F; Huebner, M; Janik, C; Johnson, S; Nimz, G

1999-08-16T23:59:59.000Z

150

Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data  

SciTech Connect

Chemical and isotopic analyses of Dixie Valley regional waters indicate several distinct groups ranging in recharge age from Pleistocene (<20 ka) to recent (<50a). Valley groundwater is older than water from perennial springs and artesian wells in adjacent ranges, with Clan Alpine range (east) much younger (most <50a) than Stillwater range (west; most >1000a). Geothermal field fluids ({approximately}12-14 ka) appear derived from water similar in composition to non-thermal groundwater observed today in valley artesian wells (also -14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the ranges, more extensive interaction with deep-seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

Counce, D; Dunlap, C; Goff, F; Huebner, M; Janik, C; Johnson, S; Nimz, G

1999-08-16T23:59:59.000Z

151

Nevada - State Energy Profile Analysis - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Hydroelectric and geothermal power plants supply most of the remainder and Nevada is one of the few States that generate electricity from geothermal resources.

152

Geothermal Literature Review At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Geothermal Literature Review At Walker-Lane Geothermal Literature Review At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Assembling Crustal Geophysical Data for Geothermal Exploration in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two new crustal refraction profiles across western Nevada and the northern and central Sierra. These sections had not been well characterized previously.

153

CO{sub 2} flux measurements across portions of the Dixie Valley geothermal system, Nevada  

DOE Green Energy (OSTI)

A map of the CO{sub 2} flux across a newly formed area of plant kill in the NW part of the Dixie Valley geothermal system was constructed to monitor potential growth of a fumarole field. Flux measurements were recorded using a LI-COR infrared analyzer. Sample locations were restricted to areas within and near the dead zone. The data delineate two areas of high CO{sub 2} flux in different topographic settings. Older fumaroles along the Stillwater range front produce large volumes of CO{sub 2} at high temperatures. High CO{sub 2} flux values were also recorded at sites along a series of recently formed ground fractures at the base of the dead zone. The two areas are connected by a zone of partial plant kill and moderate flux on an alluvial fan. Results from this study indicate a close association between the range front fumaroles and the dead zone fractures. The goals of this study are to characterize recharge to the geothermal system, provide geochemical monitoring of reservoir fluids and to examine the temporal and spatial distribution of the CO{sub 2} flux in the dead zone. This paper reports the results of the initial CO{sub 2} flux measurements taken in October, 1997.

Bergfeld, D.; Goff, F. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.; Janik, C.J. [Geological Survey, Menlo Park, CA (United States); Johnson, S.D. [Oxbow Power Services, Reno, NV (United States)

1998-12-31T23:59:59.000Z

154

Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems  

E-Print Network (OSTI)

flux at the Dixie Valley geothermal field, Nevada; relationssurface phenomena and the geothermal reservoir, Chemicalapplication to volcanic- geothermal areas and landfills,

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2005-01-01T23:59:59.000Z

155

Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada  

DOE Green Energy (OSTI)

The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500 deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400 encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105 but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

Dick Benoit; David Blackwell

2005-10-31T23:59:59.000Z

156

Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada  

DOE Green Energy (OSTI)

The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500 deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400 encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105 but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

Dick Benoit; David Blackwell

2006-01-01T23:59:59.000Z

157

Environmental Assessment and Finding of No Significant Impact: Kalina Geothermal Demonstration Project Steamboat Springs, Nevada  

DOE Green Energy (OSTI)

The Department of Energy (DOE) has prepared an Environmental Assessment (EA) to provide the DOE and other public agency decision makers with the environmental documentation required to take informed discretionary action on the proposed Kalina Geothermal Demonstration project. The EA assesses the potential environmental impacts and cumulative impacts, possible ways to minimize effects associated with partial funding of the proposed project, and discusses alternatives to DOE actions. The DOE will use this EA as a basis for their decision to provide financial assistance to Exergy, Inc. (Exergy), the project applicant. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human or physical environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

N /A

1999-02-22T23:59:59.000Z

158

Geothermal Energy Resource Assessment  

DOE Green Energy (OSTI)

This report covers the objectives and the status of a long-range program to develop techniques for assessing the resource potential of liquid-dominated geothermal systems. Field studies underway in northern Nevada comprise a systematic integrated program of geologic, geophysical, and geochemical measurements, necessary to specify a drilling program encompassing heat flow holes, deep calibration holes, and ultimately, deep test wells. The status of Nevada field activities is described. The areas under study are in a region characterized by high heat flow where temperatures at depth in some geothermal systems exceed 180 C. Areas presently being examined include Beowawe Hot Springs in Whirlwind Valley. Buffalo Valley Hot Springs, Leach Hot Springs in Grass Valley, and Kyle Hot Springs in Buena Vista Valley. Geologic studies encompass detailed examinations of structure and lithology to establish the geologic framework of the areas. The geothermal occurrences are characterized by zones of intense fault intersection, which furnish permeable channelways for the introduction of meteoric water into regions of high temperature at depth.

Wollenberg, H.A.; Asaro, F.; Bowman, H.; McEvilly, T.; Morrison, F.; Witherspoon, P.

1975-07-01T23:59:59.000Z

159

Modeling-Computer Simulations At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration...

160

Geothermal Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Blog Geothermal Blog RSS October 23, 2013 This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. April 12, 2013 Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Innovative clean energy project is up and running in Nevada.

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Black Warrior, Nevada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Warrior, Nevada: Energy Resources Jump to: navigation, search Name Black Warrior, Nevada References Nevada Geothermal Power1 This article is a stub. You can help OpenEI by...

162

Nevada | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 5, 2010 CX-002125: Categorical Exclusion Determination Recovery Act: Geothermal Technologies Program CX(s) Applied: B3.1, A9 Date: 05052010 Location(s): Nevada Office(s):...

163

A Systematic Regional Trend in Helium Isotopes Across the Northern Basin and Range Province, Western North America  

E-Print Network (OSTI)

Temperatures in the Dixie Valley, Nevada, geothermal system.and rocks from the Dixie Valley region, Nevada (1996-1999),isotope perspective on the Dixie Valley, Nevada hydrothermal

Kennedy, B. Mack; van Soest, Matthijs C.

2005-01-01T23:59:59.000Z

164

A systematic regional trend in helium isotopes across the northern basin and range province, Western North America  

E-Print Network (OSTI)

Temperatures in the Dixie Valley, Nevada, geothermal system.and rocks from the Dixie Valley region, Nevada (1996-1999),isotope perspective on the Dixie Valley, Nevada hydrothermal

Kennedy, B. Mack; van Soest, Matthijs C.

2006-01-01T23:59:59.000Z

165

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

166

Walker-Lane Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Walker-Lane Transition Zone Geothermal Region Walker-Lane Transition Zone Geothermal Region (Redirected from Walker-Lane Transition Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Walker-Lane Transition Zone Geothermal Region Details Areas (37) Power Plants (15) Projects (10) Techniques (30) Map: {{{Name}}} The northern Walker Lane (NWL) is a structurally complex zone of transition between the Sierra Nevada/Great Valley microplate and the Basin and Range Province. It is a major right-lateral shear zone which has been defined on both physiographic and geologic grounds Evidence from seismic and geologic studies together indicate that this 100 km wide zone is actively deforming and accommodates 20% of the relative motion between the Pacific and North American plates. Block modeling of crustal deformation of the northern

167

Walker-Lane Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Transition Zone Geothermal Region Transition Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Walker-Lane Transition Zone Geothermal Region Details Areas (37) Power Plants (15) Projects (10) Techniques (30) Map: {{{Name}}} The northern Walker Lane (NWL) is a structurally complex zone of transition between the Sierra Nevada/Great Valley microplate and the Basin and Range Province. It is a major right-lateral shear zone which has been defined on both physiographic and geologic grounds Evidence from seismic and geologic studies together indicate that this 100 km wide zone is actively deforming and accommodates 20% of the relative motion between the Pacific and North American plates. Block modeling of crustal deformation of the northern Walker Lane and Basin and Range from GPS velocities[1]

168

Fracture Permeability and in Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir  

DOE Green Energy (OSTI)

We have collected and analyzed fracture and fluid flow data from wells both within and outside the producing geothermal reservoir at Dixie Valley. Data from wellbore imaging and flow tests in wells outside the producing field that are not sufficiently hydraulically connected to the reservoir to be of commercial value provide both the necessary control group of fracture populations and an opportunity to test the concepts proposed in this study on a regional, whole-reservoir scale. Results of our analysis indicate that fracture zones with high measured permeabilities within the producing segment of the fault are parallel to the local trend of the Stillwater fault and are optimally oriented and critically stressed for frictional failure in the overall east-southeast extensional stress regime measured at the site. In contrast, in the non-producing (i.e., relatively impermeable:) well 66-21 the higher ratio of S{sub hmin} to S{sub v} acts to decrease the shear stress available to drive fault slip. Thus, although many of the fractures at this site (like the Stillwater fault itself) are optimally oriented for normal faulting they are not critically stressed for frictional failure. Although some of the fractures observed in the non-producing well 45-14 are critically stressed for frictional failure, the Stillwater fault zone itself is frictionally stable. Thus, the high horizontal differential stress (i.e., S{sub Hmax}-S{sub hmin}) together with the severe misorientation of the Stillwater fault zone for normal faulting at this location appear to dominate the overall potential for fluid flow.

M. D. Zoback

1999-03-08T23:59:59.000Z

169

Energy Department Finalizes Loan Guarantee for Ormat Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Energy Department Finalizes Loan Guarantee for Ormat Geothermal Project in Nevada Energy Department Finalizes Loan Guarantee for Ormat Geothermal...

170

Modeling-Computer Simulations At Northern Basin & Range Region (Blackwell,  

Open Energy Info (EERE)

Northern Basin & Northern Basin & Range Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Northern_Basin_%26_Range_Region_(Blackwell,_Et_Al.,_2003)&oldid=401422

171

Field Mapping At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

Exploration Activity: Field Mapping At Raft River Geothermal Area (1993) Exploration Activity: Field Mapping At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1993 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine the importance of Early to Middle Miocene period in the northern Basin and Range region. Notes New apatite fission track cooling age and track length data, supplemented by other information, point to the Early to Middle Miocene as an additional time of very significant extension-induced uplift and range formation. Many ranges in a 700-km-long north-south corridor from the Utah-Nevada-Idaho border to southernmost Nevada experience extension and major exhumation in Early to Middle Miocene time. Reconnaissance apatite ages from the Toiyabe

172

Geology of Nevada: The  

E-Print Network (OSTI)

Geology plays a central role in Nevadas human history, economy, and future. Cordilleran tectonics have created the Basin and Range landscape and interior drainage of the Great Basin, provided a rain shadow to make Nevada the nations driest state, and generated frequent earthquakes along normal and strike-slip faults. Geology is key to reducing risks from Nevadas natural and anthropogenic hazards (earthquakes, flash floods, drought, land subsidence, erosion after wildland fires, landslides, swelling and collapsing soils, radon, arsenic, and others). Nevadas geologic fortunes make it the leading state in the production of gold, silver, barite, lithium, and mercury and a major producer of geothermal power and gypsum. The metals are primarily related to igneous activity, with major pulses of magma during the Jurassic, Cretaceous, and Tertiary. Barite is mined from Paleozoic

Jonathan G. Price

2002-01-01T23:59:59.000Z

173

Geothermal Literature Review At Nw Basin & Range Region (Laney, 2005) |  

Open Energy Info (EERE)

Geothermal Literature Review At Nw Basin & Range Geothermal Literature Review At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Assembling Crustal Geophysical Data for Geothermal Exploration in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two new crustal refraction profiles across western Nevada and the northern and central Sierra. These sections had not been well characterized previously.

174

The Humboldt House-Rye Patch Geothermal District: An Interim View | Open  

Open Energy Info (EERE)

The Humboldt House-Rye Patch Geothermal District: An Interim View The Humboldt House-Rye Patch Geothermal District: An Interim View Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: The Humboldt House-Rye Patch Geothermal District: An Interim View Abstract The Humboldt House - Rye Patch Geothermal District extends about 6 miles along the northwestern flank of the Humboldt Range in Pershing County, Nevada and is composed of a number of geothermal cells. The northern Humboldt House portion of the district hosts hot wells and silicic sinter deposits extending from within the Humboldt Range, westward for at least four miles, out into the Humboldt River Valley. The southern Rye Patch portion of the District has scant surface geothermal features, and is identified from well data. Exploration in the District in the mid to late

175

Assessment of the geothermal resources of Carson-Eagle valleys and Big Smoky Valley, Nevada. First annual report, May 1, 1979-May 30, 1980  

DOE Green Energy (OSTI)

Two geothermal investigations were completed in three Nevada locations. The regions studied were selected from areas outlined as having direct utilization potential (Trexler and others, 1979) and included the Carson-Eagle Valley, Bis Smoky Valley and Caliente. Studies were organized around the completion of a group of tasks in each area. These tasks included: geologic reconnaissance, gravity surveys, aerial photography, fluid sampling and analysis, shallow depth temperature probe surveys, soil mercury surveys, shallow electrical resistivity measurements, and temperature gradient hole drilling. Goals of the project were to provide regional information about the nature and extent of the resources and to offer a critical evaluation of the techniques employed. Results from the work in the Carson-Eagle Valley and Big Smoky Valley are presented. (MHR)

Trexler, D.T.; Koenig, B.A.; Flynn, T.; Bruce, J.L.

1980-01-01T23:59:59.000Z

176

EERE News: Nevada Deploys First U.S. Commercial, Grid-Connected...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Subscribe RSS Feeds Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System April 12, 2013 Photo of pipelines connected to a geothermal heating plant....

177

Regional Gravity Survey of the Northern Great Salt Lake Desert and Adjacent  

Open Energy Info (EERE)

Gravity Survey of the Northern Great Salt Lake Desert and Adjacent Gravity Survey of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Regional Gravity Survey of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Details Activities (1) Areas (1) Regions (0) Abstract: From 1957 to 1961 a regional gravity survey was made over the northern part of the Great Salt Lake Desert and adjacent areas in Utah, eastern Nevada, and southeastern Idaho. A total of 1040 stations were taken over an area of about 7000 square miles. The results were compiled as a Bouguer gravity anomaly map with a contour interval of 2 mgal. The Bouguer values ranged from a high of about -120 mgal over the outcrop areas to a

178

Oregon/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Oregon/Geothermal Oregon/Geothermal < Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oregon Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oregon Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Crump Geyser Geothermal Project Nevada Geo Power, Ormat Utah 80 MW80,000 kW 80,000,000 W 80,000,000,000 mW 0.08 GW 8.0e-5 TW Phase II - Resource Exploration and Confirmation Crump's Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Neal Hot Springs Geothermal Project U.S. Geothermal Vale, Oregon Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I - Resource Procurement and Identification Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region

179

Data Acquisition-Manipulation At Northern Basin & Range Region (Blackwell,  

Open Energy Info (EERE)

Data Acquisition-Manipulation At Northern Basin & Data Acquisition-Manipulation At Northern Basin & Range Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Determining heat loss is one more tool to use in geothermal exploration. It is relatively easy to calculate if the thermal aureole has been mapped with thermal gradient well measurements. With the heat loss information, predicted production capacity can be used to help review the system being explored. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada

180

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Mean br Capacity Mean br Reservoir br Temp Amedee Geothermal Area Amedee Geothermal Area Walker Lane Transition Zone Geothermal Region Extensional Tectonics Mesozoic granite granodiorite MW K Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Central Nevada Seismic Zone Geothermal Region Extensional Tectonics MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics triassic metasedimentary MW K Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics MW Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal...

182

Field Mapping At Northern Basin & Range Region (Shevenell, Et Al., 2008) |  

Open Energy Info (EERE)

Northern Basin & Range Region (Shevenell, Et Al., 2008) Northern Basin & Range Region (Shevenell, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Northern Basin & Range Region (Shevenell, Et Al., 2008) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Field Mapping Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes On a more local scale, Faulds et al. (2003, 2005a, 2005b, 2006) have conducted structural analysis and detailed geologic mapping at a number of sites throughout Nevada and have found that productive geothermal systems typically occur in one of several structural settings, including step-overs in normal fault zones, near the ends of major normal faults where the

183

Preliminary report on the Northern California Power Agency's Notice of Intention to seek certification for NCPA Geothermal Project No. 2  

DOE Green Energy (OSTI)

This preliminary report on the Northern California Power Agency (NCPA) geothermal power plant proposal has been prepared pursuant to California Public Resources Code Sections 25510, 25512, and 25540. It presents the preliminary Findings of fact and Conclusions adopted by the Commission Committee assigned to conduct proceedings on the Notice. In addition, the report contains a description of the proposed project, a summary of the proceedings to date, and local, state, and Federal government agency comments on the proposal. Finally, the report presents the Committee's view of those issues that require further consideration in future proceedings on the Notice. Pursuant to Public Resources Code Sections 25512 and 25540, the report presents preliminary Findings and Conclusions on: (1) conformity to the forecast of statewide and service area electric power demands; (2) the degree to which the proposed site and facility conform with applicable local, regional, state and Federal standards, ordinances, and laws; and (3) the safety and reliability of the facility.

Not Available

1978-01-01T23:59:59.000Z

184

Microsoft Word - BlueMountainGeotherm_FONSI_FinalDrft v3 Clean...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT DEPARTMENT OF ENERGY LOAN GUARANTEE FOR NEVADA GEOTHERMAL POWER'S BLUE MOUNTAIN GEOTHERMAL DEVELOPMENT PROJECT IN HUMBOLDT AND PERSHING...

185

Ground Gravity Survey At Raft River Geothermal Area (1957-1961) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1957 - 1961 Usefulness not indicated DOE-funding Unknown Notes From 1957 to 1961 a regional gravity survey was made over the northern part of the Great Salt Lake Desert and adjacent areas in Utah, eastern Nevada, and southeastern Idaho. A total of 1040 stations were taken over an area of about 7000 square miles. The results were compiled as a Bouguer gravity anomaly map with a contour interval of 2 mgal. The Bouguer values ranged

186

Development of Exploration Methods for Engineered Geothermal...  

Open Energy Info (EERE)

for Engineered Geothermal Systems (EGS). Awardees (Company Institution) AltaRock Energy, Inc. Awardee Website http:www.altarockenergy.com Partner 1 University of Nevada at...

187

Detachment Faulting and Geothermal Resources - An Innovative...  

Open Energy Info (EERE)

Geological and Geophysical Investigation in Fish Lake Valley, Nevada Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Detachment...

188

Dixie Valley Geothermal Field | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Dixie Valley Geothermal Field Citation Online Nevada Encyclopedia. Dixie...

189

Geothermal wells: a forecast of drilling activity  

DOE Green Energy (OSTI)

Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

Brown, G.L.; Mansure, A.J.; Miewald, J.N.

1981-07-01T23:59:59.000Z

190

Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field  

E-Print Network (OSTI)

of a tracer test at Dixie Valley, Nevada, Proc. 22 ndand footwall faulting at Dixie Valley, Nevada, Geothermalthe shallow thermal regime at Dixie Valley geothermal field,

Foxall, B.; Vasco, D.W.

2008-01-01T23:59:59.000Z

191

ORNI 9, LLC, AND ORMAT NEVADA INC. APPLICATIONS FOR PERMIT TO...  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNI 9, LLC, AND ORMAT NEVADA INC. APPLICATIONS FOR PERMIT TO DRILL GEOTHERMAL OBSERVATION WELLS 82-14 AND 55-14 AND GEOTHERMAL PRODUCTION WELL 15-12 AND POSSIBLE FUTURE GEOTHERMAL...

192

The Northern Fish Lake Valley Pull-Apart Basin: Geothermal Prospecting with Hyperspectral Imaging  

SciTech Connect

High fidelity continuous surface mineralogy maps are combined with local and regional structural models in order to define/refine exploration targets in Fish Lake Valley, NV. Surface mineralogy is derived from a 400 km{sup 2} airborne hyperspectral survey collected in July 2003. Smart and efficient first-tier algorithms consisting primarily of band indices were developed to process and 'spectrally strain' the large dataset for zones of prospective mineral assemblages. The reduced mineral targets then endured re-processing with more sophisticated spectral identification and mapping algorithms. A site at the intersection of the east-trending Coaldale Fault and north-northeast-trending Emigrant Peak Fault Zone was delineated and re-processed for further spectral identification. Populations of montmorillonite, kaolinite, jarosite, alunite and pyrophyllite in this region indicate anomalous geothermal gradients now or in the past and sustained hydrothermal discharge along faults, fractures and contacts in far northeastern Fish Lake Valley. Increased permeability and higher geothermal inputs at this locale are likely due to the transtensional deformation that focuses in this portion of the major right-stepover of the central Walker Lane deformation belt.

Martini, B; Hausknecht, P; Pickles, W

2004-04-26T23:59:59.000Z

193

Utility of drill-stem tests in determination of the geothermal regime of Railroad Valley, Nye County, Nevada  

Science Conference Proceedings (OSTI)

Accurate representation of geothermal conditions is necessary to determine generation potential of source rocks buried in Railroad Valley. Boreholes, provide the best source of geothermal information, but formation temperature data must be screened for variations caused by drilling. Bottomhole temperatures from wireline logs are affected by initial formation conditions, drilling fluid that moves into the formation while drilling, and lag time between cessation of drilling fluid circulation and acquisition of logs. More accurate indicators of formation conditions are temperatures recorded during drill-stem tests, especially for tests that recovered large amounts of fluid. Over 130 drill-stem tests were examined to establish the viability of this source of data and to determine the geothermal conditions of the Railroad Valley basin. Results indicate that 500 feet or more of fluid recovery on a test is necessary to get a temperature recorded that is not influenced by drilling perturbations. The formation temperature data collected for Railroad Valley indicate the possibility of 2 thermal regimes. A low-temperature gradient regime is probably influenced by meteoric water. The high-temperature gradient regime probably reflects the regional heat flow associated with the thin crust of the Great Basin.

French, D.E. [Independent Geologist, Billings, MT (United States)

1995-06-01T23:59:59.000Z

194

Geophysical investigations of the Baltazor Hot Springs known geothermal resource area and the Painted Hills thermal area, Humboldt County, Nevada  

DOE Green Energy (OSTI)

Geophysical investigations of the Baltazor Hot Springs KGRA and the Painted Hills thermal area, Humboldt Co., Nevada are described. The study includes a gravity survey of 284 stations covering 750 sq km, numerical modeling and interpretation of five detailed gravity profiles, numerical modeling and inerpretation of 21.8 line-km of dipole-dipole electrical resistivity data along four profiles, and a qualitative inerpretation of 38 line-km of self-potential data along eight profiles. The primary purpose of the investigation is to try to determine the nature of the geologic controls of the thermal anomalies at the two areas.

Edquist, R.K.

1981-02-01T23:59:59.000Z

195

Montana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Montana/Geothermal Montana/Geothermal < Montana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Montana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Montana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Montana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Montana Mean Capacity (MW) Number of Plants Owners Geothermal Region Boulder Hot Springs Geothermal Area 5.21 MW5,210.319 kW 5,210,318.609 W 5,210,318,609 mW 0.00521 GW 5.210319e-6 TW Northern Basin and Range Geothermal Region Broadwater Hot Spring Geothermal Area 5.256 MW5,255.823 kW 5,255,823.43 W 5,255,823,430 mW 0.00526 GW 5.255823e-6 TW Northern Basin and Range Geothermal Region

196

Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

197

Thermal Waters of Nevada | Open Energy Information  

Open Energy Info (EERE)

Thermal Waters of Nevada Thermal Waters of Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Thermal Waters of Nevada Abstract Abstract unavailable. Authors Larry J. Garside and John H. Schilling Organization Nevada Bureau of Mines and Geology Published Nevada Bureau of Mines and Geology, 1979 Report Number Bulletin 91 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Thermal Waters of Nevada Citation Larry J. Garside,John H. Schilling (Nevada Bureau of Mines and Geology). 1979. Thermal Waters of Nevada. Reno, NV: Nevada Bureau of Mines and Geology. Report No.: Bulletin 91. Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Waters_of_Nevada&oldid=690515" Categories: References Geothermal References

198

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2009)&oldid=425640"

199

Development Wells At Salt Wells Area (Nevada Bureau of Mines...  

Open Energy Info (EERE)

Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells...

200

Modeling-Computer Simulations At Nevada Test And Training Range...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL...

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Department Offers Conditional Commitment to Support Nevada...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are here Home Energy Department Offers Conditional Commitment to Support Nevada Geothermal Development with Recovery Act Funds Energy Department Offers Conditional Commitment...

202

Geothermometry At Central Nevada Seismic Zone Region (Shevenell...  

Open Energy Info (EERE)

DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power...

203

Thermal Gradient Holes At Central Nevada Seismic Zone Region...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration...

204

Geographic Information System At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

205

Geographic Information System At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Blewitt, Et Al., 2003) Exploration...

206

Geographic Information System At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2)...

207

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

208

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope...

209

Modeling-Computer Simulations At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration...

210

Modeling-Computer Simulations At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

211

Geographic Information System At Nevada Test And Training Range...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Geographic Information System At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL...

212

Geodetic Survey At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Geodetic Survey At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL...

213

San Emido Geothermal Energy North Project | Open Energy Information  

Open Energy Info (EERE)

San Emido Geothermal Energy North Project San Emido Geothermal Energy North Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: San Emido Geothermal Energy North Project EA at San Emidio Desert Geothermal Area for Geothermal/Power Plant, Geothermal/Well Field, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant USG Nevada LLC Geothermal Area San Emidio Desert Geothermal Area Project Location Nevada Project Phase Geothermal/Power Plant, Geothermal/Well Field Techniques Production Wells Comments USG Nevada submitted Utilization POU on 7/25/2013 Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office BLM Black Rock

214

Geothermal evaluation and analysis of the Yucca Mountain Repository, Nevada; Final report, July 1, 1989--December 31, 1989  

DOE Green Energy (OSTI)

This is the final report on the geothermal analysis and evaluation for the proposed nuclear waste repository at Yucca Mountain, for the period of July 1, 1989 to December 31, 1989. Heat flow values were derived by measuring the thermal conductivities of samples taken from selected exploratory wells. Temperature gradients are recorded from the same wells. By using computer generated contour maps of the area, another interpretation of the heat-flow can be derived. Results of the mapping do not coincide with the past observations of the data. Another method used to evaluate the heat-flow of Yucca Mountain was to compare the temperature-depth relationship of the area. (MB)

NONE

1989-06-17T23:59:59.000Z

215

Geothermal Power Generation as Related to Resource Requirements  

E-Print Network (OSTI)

For the past several years geothermal exploratory work has been conducted in northern Nevada. In conjunction with that effort a proposed 55-MW steam geothermal power plant was considered for initial installation in one of the fields being developed. The characteristics of the geothermal fields under consideration were not firm, with data indicating widely varying downhole temperatures. Thus, neither the resource nor the plant operating conditions could be set. To assist both the ultimate user of the resource, the utility, and the developer of the geothermal field, a series of parametric sensitivity studies were conducted for the initial evaluation of a field vis-a-vis the power plant. Using downhole temperature as the variable, the amount of brine, brine requirements/kWh, and pounds brine/pound of steam to the turbine were ascertained. This was done over a range of downhole temperatures of from 350F to 475F. The studies illustrate the total interdependence of the geothermal resource and its associated power plant. The selection of geothermal steam power plant design conditions must be related to the field in which the plant is located. The results of the work have proven to be valuable in two major respects: (1) to determine the production required of a particular geothermal field to meet electrical generation output and (2) as field characteristics become firm, operating conditions can be defined for the associated power plant.

Falcon, J. A.; Richards, R. G.; Keilman, L. R.

1982-01-01T23:59:59.000Z

216

Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site,  

Open Energy Info (EERE)

Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Author Gabriel L. Plank Published Journal Geothermal Resources Council Transactions, 1995 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Citation Gabriel L. Plank. 1995. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada. Geothermal Resources Council Transactions. 19: (!) . Retrieved from "http://en.openei.org/w/index.php?title=Structure,_Stratigraphy,_and_Tectonics_of_the_Dixie_Valley_Geothermal_Site,_Dixie_Valley,_Nevada&oldid=682622"

217

File:INL-geothermal-west-usa.pdf | Open Energy Information  

Open Energy Info (EERE)

west-usa.pdf west-usa.pdf Jump to: navigation, search File File history File usage Western United States Geothermal Resources Size of this preview: 653 × 599 pixels. Other resolution: 654 × 600 pixels. Full resolution ‎(4,639 × 4,256 pixels, file size: 1.29 MB, MIME type: application/pdf) Description Western United States Geothermal Resources Sources Idaho National Laboratory Authors Patrick Laney; Julie Brizzee Related Technologies Geothermal Creation Date 2003-11-01 Extent Regional Countries United States UN Region Northern America States Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

218

Idaho/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Idaho/Geothermal Idaho/Geothermal < Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Idaho Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Idaho Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Raft River II Geothermal Project U.S. Geothermal Raft River, AK 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase III - Permitting and Initial Development Raft River Geothermal Area Northern Basin and Range Geothermal Region Raft River III Geothermal Project U.S. Geothermal Raft River, ID 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase I - Resource Procurement and Identification Raft River Geothermal Area Northern Basin and Range Geothermal Region

219

Numerical Simulation of Inter-basin Groundwater Flow into Northern Yucca Flat, Nevada National Security Site, Using the Death Valley Regional Flow System Model  

SciTech Connect

Models of groundwater flow for the Yucca Flat area of the Nevada National Security Site (NNSS) are under development by the U.S. Department of Energy (DOE) for corrective action investigations of the Yucca Flat-Climax Mine Corrective Action Unit (CAU). One important aspect of these models is the quantity of inter-basin groundwater flow from regional systems to the north. This component of flow, together with its uncertainty, must be properly accounted for in the CAU flow models to provide a defensible regional framework for calculations of radionuclide transport that will support determinations of the Yucca Flat-Climax Mine contaminant boundary. Because characterizing flow boundary conditions in northern Yucca Flat requires evaluation to a higher level of detail than the scale of the Yucca Flat-Climax Mine CAU model can efficiently provide, a study more focused on this aspect of the model was required.

Pohlmann Karl,Ye Ming

2012-03-01T23:59:59.000Z

220

Economic Valuation of a Geothermal Production Tax Credit  

Science Conference Proceedings (OSTI)

The United States (U.S.) geothermal industry has a 45-year history. Early developments were centered on a geothermal resource in northern California known as The Geysers. Today, most of the geothermal power currently produced in the U.S. is generated in California and Nevada. The majority of geothermal capacity came on line during the 1980s when stable market conditions created by the Public Utility Regulatory Policies Act (PURPA) in 1978 and tax incentives worked together to create a wave of geothermal development that lasted until the early 1990s. However, by the mid-1990s, the market for new geothermal power plants began to disappear because the high power prices paid under many PURPA contracts switched to a lower price based on an avoided cost calculation that reflected the low fossil fuel-prices of the early 1990s. Today, market and non-market forces appear to be aligning once again to create an environment in which geothermal energy has the potential to play an important role in meeting the nation's energy needs. One potentially attractive incentive for the geothermal industry is the Production Tax Credit (PTC). The current PTC, which was enacted as part of the Energy Policy Act of 1992 (EPAct) (P.L. 102-486), provides an inflation-adjusted 1.5 cent per kilowatt-hour (kWh) federal tax credit for electricity produced from wind and closed-loop biomass resources. Proposed expansions would make the credit available to geothermal and solar energy projects. This report focuses on the project-level financial impacts of the proposed PTC expansion to geothermal power plants.

Owens, B.

2002-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geothermometry At Northern Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Northern Basin & Range Region (Laney, 2005) Geothermometry At Northern Basin & Range Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of

222

Geothermal/Leasing | Open Energy Information  

Open Energy Info (EERE)

Leasing Leasing < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Geothermal Leasing General List of Geothermal Leases Regulatory Roadmap NEPA (1) The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and FS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska. Geothermal Leasing ... Geothermal Leasing NEPA Documents Fluid Mineral Leasing within Six Areas on the Carson City District (January 2009) Geothermal Resources Leasing in Churchill, Mineral, & Nye Counties, Nevada (May 2008)

223

Application of heat-flow techniques to geothermal energy exploration, Leach Hot Springs area, Grass Valley, Nevada  

DOE Green Energy (OSTI)

A total of 82 holes ranging in depth from 18 to 400 meters were drilled for thermal and hydrologic studies in a 200 km/sup 2/ area of Grass Valley, Nevada, near Leach Hot Springs. Outside the immediate area of Leach Hot Springs, heat flow ranges from 1 to 6.5 hfu with a mean of 2.4 hfu (1 hfu = 10/sup -6/ cal cm/sup 2/ s/sup -1/ = 41.8 mWm/sup -2/). Within 2 km of the springs, conductive heat flow ranges between 1.6 and more than 70 hfu averaging 13.6 hfu. Besides the conspicuous thermal anomaly associated with the hot springs, two additional anomalies were identified. One is associated with faults bounding the western margin of the Tobin Range near Panther Canyon, and the other is near the middle of Grass Valley about 5 km SSW of Leach Hot Springs. The mid-valley anomaly appears to be caused by hydrothermal circulation in a bedrock horst beneath about 375 meters of impermeable valley sediments. If the convective and conductive heat discharge within 2 km of the Leach Hot Springs is averaged over the entire hydrologic system (including areas of recharge), the combined heat flux from this part of Grass Valley is about 3 hfu, consistent with the average regional conductive heat flow in the Battle Mountain High. The hydrothermal system can be interpreted as being in a stationary stable phase sustained by high regional heat flow, and no localized crustal heat sources (other than hydrothermal convection to depths of a few kilometers) need be invoked to explain the existence of Leach Hot Springs.

Sass, J.H.; Ziagos, J.P.; Wollenberg, H.A.; Munroe, R.J.; di Somma, D.E.; Lachenbruch, A.H.

1977-01-01T23:59:59.000Z

224

Geothermal Site Assessment Using the National Geothermal Data System  

Open Energy Info (EERE)

Geothermal Site Assessment Using the National Geothermal Data System Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Jump to: navigation, search Tool Summary Name: Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Agency/Company /Organization: University of Nevada-Reno Sector: Energy Focus Area: Renewable Energy, Geothermal Topics: Resource assessment Resource Type: Case studies/examples, Publications Website: www.unr.edu/geothermal/pdffiles/PenfieldGRC2010_GeothermalSiteAssessme Cost: Free Language: English References: Paper[1] "This paper examines the features and functionality of the existing database, its integration into the 50-state NGDS, and its usage in

225

Identification of a New Blind Geothermal System with Hyperspectral...  

Open Energy Info (EERE)

a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Jump to: navigation, search...

226

Ground Gravity Survey At Dixie Valley Geothermal Field Area ...  

Open Energy Info (EERE)

In Dixie Valley, Nevada Retrieved from "http:en.openei.orgwindex.php?titleGroundGravitySurveyAtDixieValleyGeothermalFieldArea(Blackwell,EtAl.,2009)&oldid38834...

227

Cryptic Faulting and Multi-Scale Geothermal Fluid Connections...  

Open Energy Info (EERE)

Cryptic Faulting and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Jump to: navigation,...

228

Seismic Reflection Data and Conceptual Models for Geothermal...  

Open Energy Info (EERE)

Reflection Data and Conceptual Models for Geothermal Development in Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Seismic Reflection...

229

Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De  

Open Energy Info (EERE)

Region (Shevenell & De Region (Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De Rocher, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Central_Nevada_Seismic_Zone_Region_(Shevenell_%26_De_Rocher,_2005)&oldid=401374" Category: Exploration Activities What links here

230

Compound and Elemental Analysis At Northern Basin & Range Region (Laney,  

Open Energy Info (EERE)

Laney, Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

231

Energy Department Offers Conditional Commitment to Support Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Offers Conditional Commitment to Support Nevada Department Offers Conditional Commitment to Support Nevada Geothermal Development with Recovery Act Funds Energy Department Offers Conditional Commitment to Support Nevada Geothermal Development with Recovery Act Funds June 15, 2010 - 12:00am Addthis Washington D.C. --- Energy Secretary Steven Chu today announced a conditional commitment to provide a partial guarantee for a $98.5 million loan by John Hancock Financial Services to the Nevada Geothermal Power Company (NGP) for a 49.5 megawatt geothermal project in Humboldt County in northwestern Nevada. The NGP Blue Mountain ("Blue Mountain") project consists of a geothermal well field, fluid collection and injection systems that enable energy to be extracted from rock and fluid below the Earth's surface, and a power plant

232

Geothermal investigations at selected thermal systems of the northern Wasatch Front Weber and Box Elder Counties, Utah. Report of investigation No. 141  

DOE Green Energy (OSTI)

Numerous thermal springs are present along the Wasatch Front from Utah valley on the south to the state line on the north. These systems are just west of the Wasatch Mountains at the eastern edge of the Basin and Range physiographic province and within the active seismic zone referred to as the Intermountain Seismic Belt. This Report of Investigation is a summary of UGMS investigations at four northern Wasatch Front geothermal systems: Utah, Crystal (Madsen), and Udy hot springs; and the Little Mountain - south system. All of these resources are deep circulation systems and the water is heated by the normal heat flow of the Basin and Range Province. Heat from volcanic sources is not believed to contribute to the warming of any northern Wasatch Front springs. Data collected under the DOE/DGE state coupled program are presented for use by individuals interested in these systems.

Murphy, P.; Gwynn, J.W.

1979-11-01T23:59:59.000Z

233

Strategies for steam handling and H/sub 2/S abatement at geothermal power plants in The Geysers area of northern California  

DOE Green Energy (OSTI)

Strict limitations on the emission of H/sub 2/S from new geothermal power plants in The Geysers area of northern California have been imposed by Lake and Northern Sonoma County Air Pollution Control Districts. Lake County, under new source review rules, has stipulated that specific technologies shall be utilized to limit H/sub 2/S emissions to 5 lb/h as a condition for determination of compliance. The status of these technologies as well as other ongoing technology development efforts to conserve steam and abate H/sub 2/S are evaluated. Although projections indicate that it may be possible to meet the 5 lb/h limit, there is no firm assurance of achievement at this time because of the unproven, full-scale performance status of some key technologies specified by the air pollution control districts.

Morris, W.F.; Stephens, F.B.

1981-08-05T23:59:59.000Z

234

Geothermal Resources Council's 36  

Office of Scientific and Technical Information (OSTI)

Geothermal Resources Council's 36 Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi, Norman Turnquist, Farshad Ghasripoor GE Global Research, 1 Research Circle, Niskayuna, NY, 12309 Tel: 518-387-4748, Email: qixuele@ge.com Abstract Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300°C geothermal water at 80kg/s flow rate in a maximum 10-5/8" diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis

235

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area (Redirected from Teels Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

236

Direct use geothermal energy utilization for ethanol production and commercial mushroom growing at Brady's Hot Springs, Nevada. Volume 1. Technical feasibility  

DOE Green Energy (OSTI)

The report is concerned with the technical and economic viability of constructing and operating two geothermally cascaded facilities, a bio-mass fuel ethanol production facility and a mushroom growing facility, where Geothermal Food Processors presently operates the world's largest direct-use geothermal vegetable dehydration facility. A review and analysis of the data generated from the various project tasks indicates that existing, state-of-the-art, ethanol production and mushroom growing technologies can be successfully adapted to include the use of geothermal energy. Additionally, a carefully performed assessment of the geothermal reservoir indicates that this resource is capable of supporting the yearly production of 10 million gallons of fuel ethanol and 1.5 million pounds of mushrooms, in addition to the demands of the dehydration plant. Further, data indicates that the two facilities can be logistically supported from existing agricultural and commerce sources located within economical distances from the geothermal source.

Not Available

1981-09-01T23:59:59.000Z

237

Water Sampling At Northern Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Northern Basin & Range Region Water Sampling At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

238

Isotopic Analysis At Northern Basin & Range Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Northern Basin & Range Isotopic Analysis- Fluid At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

239

Nevada Meeting #2 - Regulatory Issues | OpenEI Community  

Open Energy Info (EERE)

Nevada Meeting #2 - Regulatory Issues Nevada Meeting #2 - Regulatory Issues Home > Groups > Geothermal Regulatory Roadmap Kyoung's picture Submitted by Kyoung(155) Contributor 2 August, 2012 - 18:43 water + monitoring + Nevada + permitting The second Nevada permitting meeting was held Tuesday, July 24th in Reno, and was attended by approximately 15 people from industry and agencies. Participants reviewed the Nevada Geothermal Regulatory roadmaps that had been reviewed and revised in the first Nevada meeting. During this meeting, identified potential issues they've encountered in permitting in Nevada. One example of issue that was raised is that water monitoring programs are sometimes required at the federal, state and county levels - all with different requirements. Additionally, different Nevada BLM field offices

240

OpenEI Community - water + monitoring + Nevada + permitting  

Open Energy Info (EERE)

Meeting #2 - Meeting #2 - Regulatory Issues http://en.openei.org/community/blog/nevada-meeting-2-regulatory-issues The second Nevada permitting meeting was held Tuesday, July 24th in Reno, and was attended by approximately 15 people from industry and agencies.  Participants reviewed the Nevada Geothermal Regulatory roadmaps that had been reviewed and revised in the first Nevada meeting.  During this meeting, identified potential issues they've encountered in permitting in Nevadanevada-meeting-2-regulatory-issues" target="_blank">read more http://en.openei.org/community/blog/nevada-meeting-2-regulatory-issues#comments water + monitoring + Nevada + permitting Geothermal Regulatory Roadmap Fri,

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nevada Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Recovery Act State Memo Nevada Recovery Act State Memo Nevada Recovery Act State Memo Nevada has substantial natural resources, including geothermal, solar, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Nevada are supporting a broad range of clean energy projects from energy efficiency and the smart grid to geothermal, advanced battery manufacturing, and environmental cleanup. Through these investments, Nevada's businesses, non-profits, and local governments are creating quality jobs today and positioning Nevada to play an important role in the new energy economy of the future. Nevada Recovery Act State Memo More Documents & Publications

242

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal power) Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

243

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal) Geothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

244

Geothermal Exploration Using Aviris Remote Sensing Data Over Fish Lake  

Open Energy Info (EERE)

Using Aviris Remote Sensing Data Over Fish Lake Using Aviris Remote Sensing Data Over Fish Lake Valley, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Exploration Using Aviris Remote Sensing Data Over Fish Lake Valley, Nv Details Activities (1) Areas (1) Regions (0) Abstract: Fish Lake Valley, in Esmeralda County, Nevada, sits at the southern end of the Mina Deflection where the very active Death Valley-Furnace Creek-Fish Lake Valley fault system makes a right step to transfer slip northward into the Walker Lane. Northern Fish Lake Valley has been pulling part since ca. 6 Ma, primarily along the Emigrant Peak normal fault zone (Stockli et al., 2003). Elevated tectonic activity in Fish Lake Valley suggests there may be increased fracture permeability to facilitate

245

Geothermal Technologies Office Annual Report 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho State Wins National Student Competition Students at Idaho State University display their poster at the annual meeting of the Geothermal Resources Council in Reno, Nevada this year, as one of 3 top finalists in the National Geothermal Student Competition hosted by the Energy Department's Geothermal Technologies Office. The group won the competition with their study on Development of an Integrated, Testable Conceptual Model of Blind Geothermal Resources in the Eastern

246

Geographic Information System At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_Central_Nevada_Seismic_Zone_Region_(Coolbaugh,_Et_Al.,_2005_-_2)&oldid=401371

247

Data Acquisition-Manipulation At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Central_Nevada_Seismic_Zone_Region_(Coolbaugh,_Et_Al.,_2005_-_2)&oldid=401360"

248

Geothermal News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Us » News & Blog » Geothermal News and Blog About Us » News & Blog » Geothermal News and Blog Geothermal News and Blog Blog This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward October 23, 2013 1:31 PM This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. Read The Full Story Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate

249

Geochemistry, age and strontium isotope composition of late tertiary and quaternary basalts and andesites in western Nevada and their relation to geothermal potential. Final report, October 1, 1982-December 31, 1983  

DOE Green Energy (OSTI)

This research was undertaken to characterize the late Cenozoic volcanic rocks associated with active geothermal systems in west-central Nevada. Petrographic and microprobe, geochemical and isotopic analysis and age dating techniques were used to characterize these young volcanic rocks. These data were combined with the limited data previously reported in the literature on these same volcanic areas to interpret their petrogenesis. The overall characterization resulted from integrating the petrogenesis with a structural-tectonic model of the region. Potassium-argon isotopic ages ranging up to 14 million years were determined for eight localities within the Reno 1 x 2/sup 0/ study region. These ages are consistent with the morphology of the volcanic landforms, the active geothermal systems associated with them, and with other isotopic ages reported in the literature for these and similar rocks within the study region. Petrographic analysis of hand specimens and thin-sections indicated mineralogic assemblages of the respective rock types and specific mineral textures and phenocryst compositions and characteristics. These identifications were further substantiated by microprobe analysis of selected phenocrysts and groundmass phases. Classification of the respective rock types was also based on chemical composition and normative calculations using the program PETCAL. Basaltic andesites are identified and described for Steamboat Hills, Table Mountain, Silver Springs, Churchill Butte, Cleaver Peak, Desert Peak and Carson City sites.

Fultz, L.A.; Bell, E.J.; Trexler, D.T.

1984-01-01T23:59:59.000Z

250

Conceptual design study of geothermal district heating of a thirty-house subdivision in Elko, Nevada, using existing water-distribution systems, Phase III. Final technical report, October 1, 1979-September 30, 1980  

DOE Green Energy (OSTI)

A conceptual design study for district heating of a 30-home subdivision located near the southeast extremity of the city of Elko, Nevada is presented. While a specific residential community was used in the study, the overall approach and methodologies are believed to be generally applicable for a large number of communities where low temperature geothermal fluid is available. The proposed district heating system utilizes moderate temperature, clean domestic water and existing community culinary water supply lines. The culinary water supply is heated by a moderate temperature geothermal source using a single heat exchanger at entry to the subdivision. The heated culinary water is then pumped to the houses in the community where energy is extracted by means of a water supplied heat pump. The use of heat pumps at the individual houses allows economic heating to result from supply of relatively cool water to the community, and this precludes the necessity of supplying objectionably hot water for normal household consumption use. Each heat pump unit is isolated from the consumptive water flow such that contamination of the water supply is avoided. The community water delivery system is modified to allow recirculation within the community, and very little rework of existing water lines is required. The entire system coefficient of performance (COP) for a typical year of heating is 3.36, exclusive of well pumping energy.

Pitts, D.R.

1980-09-30T23:59:59.000Z

251

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Biasi, Et Al., 2008) Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Ileana Tibuleac, Leiph Preston (2008) Regional Resource Area Mapping In Nevada Using The Usarray Seismic Network Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2008)&oldid=425638" Category: Exploration Activities What links here

252

EA for Well Field Development at Patua Geothermal Area -  

Open Energy Info (EERE)

for Well Field Development at Patua Geothermal Area - for Well Field Development at Patua Geothermal Area - DOI-BLM-NV-C010-2011-00016-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: EA for Well Field Development at Patua Geothermal Area - DOI-BLM-NV-C010-2011-00016-EA EA at Patua Geothermal Area for Geothermal/Exploration, Geothermal/Well Field, Patua Geothermal Project Phase II General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Gradient Resources Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Exploration, Geothermal/Well Field Techniques Drilling Techniques, Thermal Gradient Holes Time Frame (days) NEPA Process Time 327 Participating Agencies Lead Agency BLM Funding Agency none provided

253

Energy Department Finalizes Loan Guarantee for Ormat Geothermal Project in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ormat Geothermal Ormat Geothermal Project in Nevada Energy Department Finalizes Loan Guarantee for Ormat Geothermal Project in Nevada September 23, 2011 - 3:37pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the Department finalized a partial guarantee for up to a $350 million loan to support a geothermal power generation project. The project, sponsored by Ormat Nevada, Inc., is expected to produce up to 113 megawatts (MW) of clean, baseload power from three geothermal power facilities and will increase geothermal power production in Nevada by nearly 25 percent. The facilities are Jersey Valley in Pershing County, McGinness Hills in Lander County and Tuscarora in Elko County. The company estimates the project will fund 332 jobs during construction and 64 during operations.

254

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

255

A New Gold Pan For The West- Discovering Blind Geothermal Systems...  

Open Energy Info (EERE)

blind geothermal systems in Nevada, USA and has helped to define the spatial extent of thermal anomalies at two other locations. At Teels Marsh, two shallow temperature anomalies...

256

Application of (U-Th)/He Thermochronometry as a Geothermal Exploration...  

Open Energy Info (EERE)

Application of (U-Th)He Thermochronometry as a Geothermal Exploration Tool in Extensional Tectonic Settings: The Wassuk Range, Hawthorne, Nevada Jump to: navigation, search OpenEI...

257

Solid-sample geochemistry study of western Dixie Valley, Churchill County, Nevada. Part I. Petrochemistry  

Science Conference Proceedings (OSTI)

Numerous thermal springs present in northern Dixie Valley, Nevada, are the surface expression of a deep-seated geothermal system. The structural setting, a complex asymmetric graben possibly bifurcating to the north, controls the location of surface springs and migration of thermal fluids to the surface. A large-scale surface soil geochemical survey for mercury and arsenic and petrochemical analysis for selected trace elements in subsurface samples from two deep exploratory wells allowed for identification of steam and hot water entries and delineation of associated geochemical zonations. Data thus far indicate the Dixie Valley geothermal system is dynamic, with temperatures greater than 200/sup 0/C at depths of 2500 m to 3000 m and access to thermal fluids controlled by structural and temporal parameters.

Bell, E.J. (Mackay School of Mines, Reno, NV); Juncal, R.W.

1981-10-01T23:59:59.000Z

258

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

259

Whiskey Flats Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Whiskey Flats Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

260

Northern California Power Agency's Notice of Intention to seek certification for Geothermal Project No. 1 (79-NOI-1). Final report  

DOE Green Energy (OSTI)

The Findings of Fact and Conclusions of Law are presented on issues considered and adopted by the Committee assigned to conduct proceedings on the Notice of Intention. The proposed geothermal project is described and the hearing record is summarized. Findings on the following are included: air quality, hydrology and water resources, water quality, waste disposal, geology and seismicity, soils, biological resources, noise, cultural resources, need for the project, socio-economic factors, financial and economic impacts, public health, safety and reliability, transmission lines, and civil and structural engineering. (MHR)

Not Available

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geothermal Food Processors Agricultural Drying Low Temperature Geothermal  

Open Energy Info (EERE)

Food Processors Agricultural Drying Low Temperature Geothermal Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Geothermal Food Processors Agricultural Drying Low Temperature Geothermal Facility Facility Geothermal Food Processors Sector Geothermal energy Type Agricultural Drying Location Fernley, Nevada Coordinates 39.6079683°, -119.2518349° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

262

Geographic Information System At Central Nevada Seismic Zone Region (Laney,  

Open Energy Info (EERE)

Geographic Information System At Central Nevada Seismic Zone Region (Laney, Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital

263

Modeling-Computer Simulations At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of

264

Geothermal News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

News News Geothermal News RSS April 12, 2013 Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department recognized the nation's first commercial enhanced geothermal system (EGS) project to supply electricity to the grid. September 8, 2011 Department of Energy Awards up to $38 Million to Advance Technology and Reduce Cost of Geothermal Energy Washington, D.C. - U.S. Energy Secretary Steven Chu today announced $38 million over three years for projects to accelerate the development of promising geothermal energy technologies and help diversify America's sources of clean, renewable energy. Thirty-two innovative projects in 14 states will develop and test new ways to locate geothermal resources and

265

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and steam located several miles deep into the Earth.[2][3]

266

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

267

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

268

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area (Redirected from Dixie Meadows Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

269

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area (Redirected from Under Steamboat Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

270

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

Geographic Information System At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique...

271

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Blewitt, Et Al., 2003) Exploration...

272

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Nash & Johnson, 2003) Exploration Activity...

273

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area (Redirected from Blackfoot Reservoir Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

274

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Well Field < Geothermal(Redirected from Well Field) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (45) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques

275

Feasibility study for a 10 MM GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume II. Geothermal resource, agricultural feedstock, markets and economic viability  

DOE Green Energy (OSTI)

The issues of the geothermal resource at Brady's Hot Springs are dealt with: the prospective supply of feedstocks to the ethanol plant, the markets for the spent grain by-products of the plant, the storage, handling and transshipment requirements for the feedstocks and by-products from a rail siding facility at Fernley, the probable market for fuel ethanol in the region, and an assessment of the economic viability of the entire undertaking.

Not Available

1980-09-01T23:59:59.000Z

276

Property:Geothermal/AboutArea | Open Energy Information  

Open Energy Info (EERE)

AboutArea AboutArea Jump to: navigation, search Property Name Geothermal/AboutArea Property Type Text Description About the Area Pages using the property "Geothermal/AboutArea" Showing 18 pages using this property. A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Churchill County, NV Alum Innovative Exploration Project Geothermal Project + Alum geothermal project is located in Nevada ~150 miles SE of Reno. It consists of federal geothermal leases that are 100% owned by SGP. Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + Humboldt House-Rye Patch (HH-RP) geothermal resource area

277

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

278

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Rhodes Marsh Geothermal Area Rhodes Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

279

Desert Queen Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Desert Queen Geothermal Area Desert Queen Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Desert Queen Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

280

List of Geothermal ARRA Projects | Open Energy Information  

Open Energy Info (EERE)

ARRA Projects ARRA Projects Jump to: navigation, search List of Geothermal ARRA Funded Projects CSV State Project Type Topic 2 Awardees Funding Location of Project A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project Nevada Validation of Innovative Exploration Technologies Magma Energy 5,000,000 Soda Lake, Nevada A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project Montana Topic Area 1: Technology Demonstration Projects Montana Tech of The University of Montana 1,072,744 Butte, Montana A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project New Mexico Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources New Mexico Institute of Mining and Technology 1,999,990 Socorro, New Mexico

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

282

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area (Redirected from Beowawe Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

283

Geothermal Resource Analysis and Structure of Basin and Range Systems,  

Open Energy Info (EERE)

Analysis and Structure of Basin and Range Systems, Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Authors David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith and Jason McKenna Published U.S. Department of Energy, 2003 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Citation David D. Blackwell,Kenneth W. Wisian,Maria C. Richards,Mark Leidig,Richard Smith,Jason McKenna. 2003. Geothermal Resource Analysis and Structure of

284

Structural Analysis of the Desert Peak-Brady Geothermal Fields,  

Open Energy Info (EERE)

Structural Analysis of the Desert Peak-Brady Geothermal Fields, Structural Analysis of the Desert Peak-Brady Geothermal Fields, Northwestern Nevada: Implications for Understanding Linkages Between Northeast-Trending Structures and Geothermal Reservoirs in the Humboldt Structural Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Structural Analysis of the Desert Peak-Brady Geothermal Fields, Northwestern Nevada: Implications for Understanding Linkages Between Northeast-Trending Structures and Geothermal Reservoirs in the Humboldt Structural Zone Abstract Detailed geologic mapping, delineation of Tertiary strata, analysis of faults and folds, and a new gravity survey have elucidated the structural controls on the Desert Peak and Brady geothermal fields in the Hot Springs Mountains of northwestern Nevada. The fields lie within the Humboldt

285

California/Geothermal | Open Energy Information  

Open Energy Info (EERE)

California/Geothermal California/Geothermal < California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF California Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in California Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Bald Mountain Geothermal Project Oski Energy LLC Susanville, California 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase II - Resource Exploration and Confirmation Black Rock I Geothermal Project CalEnergy Generation Phase III - Permitting and Initial Development North Shore Mono Lake Geothermal Area Walker-Lane Transition Zone Geothermal Region

286

A Seven-Year Wind ProfilerBased Climatology of the Windward Barrier Jet along Californias Northern Sierra Nevada  

Science Conference Proceedings (OSTI)

This wind profilerbased study highlights key characteristics of the barrier jet along the windward slope of Californias Sierra Nevada. Between 2000 and 2007 roughly 10% of 100 000 hourly wind profiles, recorded at two sites, satisfied the ...

Paul J. Neiman; Ellen M. Sukovich; F. Martin Ralph; Mimi Hughes

2010-04-01T23:59:59.000Z

287

Geothermal areas as analogues to chemical processes in the near-field and altered zone of the potential Yucca Mountain, Nevada repository  

SciTech Connect

The need to bound system performance of the potential Yucca Mountain repository for thousands of years after emplacement of high-level nuclear waste requires the use of computer codes. The use of such codes to produce reliable bounds over such long time periods must be tested using long-lived natural and historical systems as analogues. The geothermal systems of the Taupo Volcanic Zone (TVZ) in New Zealand were selected as the site most amenable to study. The rocks of the TVZ are silicic volcanics that are similar in composition to Yucca Mountain. The area has been subjected to temperatures of 25 to 300 C which have produced a variety of secondary minerals similar to those anticipated at Yucca Mountain. The availability of rocks, fluids and fabricated materials for sampling is excellent because of widespread exploitation of the systems for geothermal power. Current work has focused on testing the ability of the EQ3/6 code and thermodynamic data base to describe mineral-fluid relations at elevated temperatures. Welfare starting long-term dissolution/corrosion tests of rocks, minerals and manufactured materials in natural thermal features in order to compare laboratory rates with field-derived rates. Available field data on rates of silica precipitation from heated fluids have been analyzed and compared to laboratory rates. New sets of precipitation experiments are being planned. The microbially influenced degradation of concrete in the Broadlands-Ohaaki geothermal field is being characterized. The authors will continue to work on these projects in FY 1996 and expand to include the study of naturally occurring uranium and thorium series radionuclides, as a prelude to studying radionuclide migration in heated silicic volcanic rocks. 32 refs.

Bruton, C.J.; Glassley, W.E.; Meike, A.

1995-02-01T23:59:59.000Z

288

Geothermal reservoir assessment, Roosevelt Hot Springs. Final report, October 1, 1977-June 30, 1982  

DOE Green Energy (OSTI)

The geology, geophysics, and geothermal potential of the northern Mineral Mountains, located in Beaver and Millard Counties, Utah, are studied. More specifically, the commercial geothermal potential of lease holdings of the Geothermal Power Corporation is addressed.

Not Available

1982-01-01T23:59:59.000Z

289

Compound and Elemental Analysis At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Nevada Nevada Seismic Zone Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for geothermal exploration, the analysis of lithium and other elements in tufa deposits could serve as exploration guides for hot spring lithium

290

Geothermal Technologies Office: Geothermal Maps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

291

Utah/Geothermal | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Utah/Geothermal < Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Utah Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Utah Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Cove Fort Geothermal Project Oski Energy LLC 50 MW50,000 kW 50,000,000 W 50,000,000,000 mW 0.05 GW 5.0e-5 TW Phase II - Resource Exploration and Confirmation Cove Fort Geothermal Area Northern Basin and Range Geothermal Region Drum Mountain Geothermal Project Raser Technologies Inc Delta, Utah 0 MW0 kW

292

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Gabbs Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

293

Data Acquisition-Manipulation At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Data Acquisition-Manipulation At Central Nevada Seismic Zone Region Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Determining heat loss is one more tool to use in geothermal exploration. It is relatively easy to calculate if the thermal aureole has been mapped with thermal gradient well measurements. With the heat loss information, predicted production capacity can be used to help review the system being explored.

294

Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett,  

Open Energy Info (EERE)

Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

295

Geothermal investigations in Idaho. Part 5. Geochemistry and geologic setting of the thermal waters of the northern Cache Valley area, Franklin County, Idaho  

DOE Green Energy (OSTI)

The thermal waters of the north-south trending graben structure known as northern Cache Valley in southeastern Idaho were sampled during the summer and fall of 1973. Geologic and gravity data for the area indicate fault control for nearly all thermal water occurrences. Thermal-water discharges are generally restricted to the course of the Bear River with few known in areas away from the river. Spring deposits in the form of travertine may not be indications of low temperature thermal waters because abundant limestone and dolomite make up the geologic framework. Much gas, believed to consist mostly of carbon dioxide, is being evolved from many of the springs. The hottest water is found near Battle Creek and Squaw hot springs approximately 4 kilometers northwest of the town of Preston. Metoric waters descend along fault planes, fractures, and fissures to depths at which they are heated by increasing rock temperatures (geothermal gradient of 5/sup 0/C per 100 meters). Due to decreased density, the heated waters rise along the same or adjacent fault planes to the surface. The quartz equilibrium geochemical thermometer applied to the thermal water discharges indicates temperatures approaching 150/sup 0/C may be encountered by deep drilling. Mixing models, based on quartz solubility, indicate higher aquifer temperatures than the quartz equilibrium thermometer, but chloride concentration vs. temperature plots are not linear. The sodium-potassium-calcium geochemical thermometer indicates higher temperatures than quartz equilibrium and mixing models. The thermal waters are higher in total dissolved solids (12,000 to 13,000 milligrams per liter) than are known elsewhere in Idaho and represent potential pollution hazards should large scale withdrawal be attempted.

Mitchell, J.C.

1976-07-01T23:59:59.000Z

296

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using  

Open Energy Info (EERE)

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Abstract Extended logging and surface-to-borehole electromagnetic induction measurements were performed at the Dixie Valley Geothermal Field as part of an ongoing effort to employ electromagnetic induction logging to geothermal reservoir characterization. The principal goal of this effort is to discern subsurface features useful in geothermal production, such as larger scale mapping of geothermal reservoirs and smaller scale mapping of producing

297

Nevada Renewable Energy Projects June 10, 2009  

E-Print Network (OSTI)

Nevada Renewable Energy Projects June 10, 2009 WASHOE ELKO HUMBOLDT EUREKA LANDER PERSHING Winnemucca Reno Carson City Tonopah Ely Las Vegas Pahrump Project Type and Dispostion Solar Energy ROW, Pending Wind Testing ROW, Authorized Wind Energy ROW, Pending Geothermal Energy Leases, Authorized

Laughlin, Robert B.

298

Geothermal: Sponsored by OSTI -- Feasibility study for a 10-MM...  

NLE Websites -- All DOE Office Websites (Extended Search)

study for a 10-MM-GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume 1. Process and plant design Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

299

Refraction Survey At Central Nevada Seismic Zone Region (Heimgartner, Et  

Open Energy Info (EERE)

Refraction Survey At Central Nevada Seismic Zone Region (Heimgartner, Et Refraction Survey At Central Nevada Seismic Zone Region (Heimgartner, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Central Nevada Seismic Zone Region (Heimgartner, Et Al., 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Refraction Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Michelle Heimgartner, James B. Scott, Weston Thelen, Christopher R. Lopez, John N. Louie (2005) Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old And New Refraction Data Retrieved from "http://en.openei.org/w/index.php?title=Refraction_Survey_At_Central_Nevada_Seismic_Zone_Region_(Heimgartner,_Et_Al.,_2005)&oldid=401382

300

Geographic Information System At Nevada Test And Training Range Area  

Open Energy Info (EERE)

Geographic Information System At Nevada Test And Training Range Area Geographic Information System At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes Nellis Air Force Range (NAFR) occupies over 3 million acres in southern Nevada (Figure 1). We recently assessed potential utility-grade geothermal resources and possible target areas for exploration by constructing a GIS of this area and applying the occurrence model ideas outlined above (ITSI, 2003; Sabin et al., 2004). We list below many of the factors considered.

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Magnetotelluric Studies In Grass Valley, Nevada | Open Energy Information  

Open Energy Info (EERE)

Studies In Grass Valley, Nevada Studies In Grass Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Magnetotelluric Studies In Grass Valley, Nevada Details Activities (1) Areas (1) Regions (0) Abstract: A program of detail magnetotelluric soundings was initiated in 1974 in Green Valley, Nevada, as part of the Lawrence Berkeley Laboratory's major study of techniques for geothermal exploration in north central Nevada. The magnetotelluric program had three main goals; the determination of resistivity distribution at depths greater than that conveniently measured with other techniques; a comparison of the interpreted resistivity at shallow depth with the results of the other techniques ; and the evaluation of the SQUID or Josephson effect magnetometer i n practical

302

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

303

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area (Redirected from Salt Wells Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

304

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

305

Geothermal Power of America | Open Energy Information  

Open Energy Info (EERE)

Power of America Power of America Jump to: navigation, search Name Geothermal Power of America Place Los Angeles, California Sector Geothermal energy Product A Nevada-based company focusing on geothermal project development and operation. References Geothermal Power of America[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Geothermal Power of America is a company located in Los Angeles, California . References ↑ "Geothermal Power of America" Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Power_of_America&oldid=345810" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

306

Augusta Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Augusta Mountains Geothermal Area Augusta Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Augusta Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

307

Property:Geothermal/OtherPrincipalInvestigator | Open Energy Information  

Open Energy Info (EERE)

OtherPrincipalInvestigator OtherPrincipalInvestigator Jump to: navigation, search Property Name Geothermal/OtherPrincipalInvestigator Property Type String Description Other Principal Investigators Subproperties This property has the following 2 subproperties: A A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project D Development of Chemical Model to Predict the Interactions between Supercritical CO2 and Fluid, Rocks in EGS Reservoirs Geothermal Project Pages using the property "Geothermal/OtherPrincipalInvestigator" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + John Louie, University of Nevada and Lisa Shevenell, University of Nevada +

308

McCoy Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

McCoy Geothermal Area McCoy Geothermal Area (Redirected from Mccoy Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: McCoy Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

309

Categorical Exclusion Determinations: Nevada | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 14, 2010 September 14, 2010 CX-003721: Categorical Exclusion Determination City of Henderson Solar Project CX(s) Applied: B5.1 Date: 09/14/2010 Location(s): Henderson, Nevada Office(s): Energy Efficiency and Renewable Energy, Golden Field Office September 7, 2010 CX-003905: Categorical Exclusion Determination Geothermal Research and Outreach at the Great Basin Center for Geothermal Energy CX(s) Applied: A9, B3.1 Date: 09/07/2010 Location(s): Nevada Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 30, 2010 CX-003599: Categorical Exclusion Determination Renewable Energy and Energy Efficiency Revolving Loan Program - Desert Hills CX(s) Applied: B5.1 Date: 08/30/2010 Location(s): Yerington, Nevada Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

310

EA-1921: Silver Peak Area Geothermal Exploration Project Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

921: Silver Peak Area Geothermal Exploration Project 921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada EA-1921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada SUMMARY The Bureau of Land Management (BLM)(lead agency) and DOE are jointly preparing this EA, which evaluates the potential environmental impacts of a project proposed by Rockwood Lithium Inc (Rockwood), formerly doing business as Chemetall Foote Corporation. Rockwood has submitted to the BLM, Tonopah Field Office, an Operations Plan for the construction, operation, and maintenance of the Silver Peak Area Geothermal Exploration Project within Esmeralda County, Nevada. The purpose of the project is to determine subsurface temperatures, confirm the existence of geothermal resources, and

311

Effectiveness of Shallow Temperatures Surveys to Target a Geothermal  

Open Energy Info (EERE)

Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Site at Mcgee Mountain, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Site at Mcgee Mountain, Nevada Author Richard Zehner Organization U.S. Department of Energy Published U.S. Department of Energy, 2010 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Site at Mcgee Mountain, Nevada Citation Richard Zehner (U.S. Department of Energy). 2010. Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously

312

Exploration and Development Techniques for Basin and Range Geothermal  

Open Energy Info (EERE)

Techniques for Basin and Range Geothermal Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Abstract Abstract unavailable. Authors David D. Blackwell, Mark Leidig, Richard P. Smith, Stuart D. Johnson and Kenneth W. Wisian Conference GRC Annual Meeting; Reno, NV; 2002/09/22 Published Geothermal Resources Council, 2002 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Citation David D. Blackwell,Mark Leidig,Richard P. Smith,Stuart D. Johnson,Kenneth

313

BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project |  

Open Energy Info (EERE)

BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Abstract No abstract available. Author Bureau of Land Management Organization Bureau of Land Management, Carson City Field Office, Nevada Published U.S. Department of the Interior, 2011 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Citation Bureau of Land Management (Bureau of Land Management, Carson City Field Office, Nevada). 2011. BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project. Carson City, Nevada: U.S. Department of the

314

EA-1921: Silver Peak Area Geothermal Exploration Project Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

921: Silver Peak Area Geothermal Exploration Project 921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada EA-1921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada SUMMARY The Bureau of Land Management (BLM)(lead agency) and DOE are jointly preparing this EA, which evaluates the potential environmental impacts of a project proposed by Rockwood Lithium Inc (Rockwood), formerly doing business as Chemetall Foote Corporation. Rockwood has submitted to the BLM, Tonopah Field Office, an Operations Plan for the construction, operation, and maintenance of the Silver Peak Area Geothermal Exploration Project within Esmeralda County, Nevada. The purpose of the project is to determine subsurface temperatures, confirm the existence of geothermal resources, and

315

A Preliminary Structural Model for the Blue Mountain Geothermal Field,  

Open Energy Info (EERE)

Structural Model for the Blue Mountain Geothermal Field, Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Preliminary Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Abstract The Blue Mountain geothermal field is a blind geothermalprospect (i.e., no surface hot springs) along the west flank of BlueMountain in southern Humboldt County, Nevada. Developmentwells in the system have high flow rates and temperatures above190°C at depths of ~600 to 1,070 m. Blue Mountain is a small~8-km-long east-tilted fault block situated between the EugeneMountains and Slumbering Hills. The geothermal field occupiesthe intersection between a regional NNE- to ENE-striking,west-dipping

316

Isotopic Analysis At Central Nevada Seismic Zone Region (Kennedy & Van  

Open Energy Info (EERE)

Isotopic Analysis At Central Nevada Seismic Zone Region (Kennedy & Van Isotopic Analysis At Central Nevada Seismic Zone Region (Kennedy & Van Soest, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Central Nevada Seismic Zone Region (Kennedy & Van Soest, 2007) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced permeability and that mantle fluids can penetrate the ductile lithosphere, even in regions where there is no substantial magmatism. Superimposed on the regional trend are local,

317

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Well Field Geothermal/Well Field < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (42) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques There are many different techniques that are utilized in geothermal well field development and reservoir maintenance depending on the region's geology, economic considerations, project maturity, and other considerations such as land access and permitting requirements. Well field

318

Low-to-moderate temperature geothermal resource assessment for Nevada: Area specific studies, final report for the period June 1, 1980-August 30, 1981  

DOE Green Energy (OSTI)

The Hawthorne study area is located in Mineral County, Nevada and surrounds the municipality of the same name. It encompasses an area of approximately 310 sq. km (120 sq. mi), and most of the land belongs to the US Army Ammunition Plant. The energy needs of the military combined with those of the area population (over 5,000 residents) are substantial. The area is classified as having a high potential for direct applications using the evaluation scheme described in Trexler and others (1979). A variety of scientific techniques was employed during area-wide resource assessment. General geologic studies demonstrate the lithologic diversity in the area; these studies also indicate possible sources for dissolved fluid constituents. Geophysical investigations include aeromagnetic and gravity surveys which aid in defining the nature of regional, and to a lesser extent, local variations in subsurface configurations. Surface and near-surface structural features are determined using various types of photo imagery including low sun-angle photography. An extensive shallow depth temperature probe survey indicates two zones of elevated temperature on opposite sides of the Walker Lake basin. Temperature-depth profiles from several wells in the study area indicate significant thermal fluid-bearing aquifers. Fluid chemical studies suggest a wide spatial distribution for the resource, and also suggest a meteoric recharge source in the Wassuk Range. Finally, a soil-mercury survey was not a useful technique in this study area. Two test holes were drilled to conclude the area resource assessment, and thermal fluids were encountered in both wells. The western well has measured temperatures as high as 90 C (194 F) within 150 meters (500 ft) of the surface. Temperature profiles in this well indicate a negative temperature gradient below 180 meters (590 ft). The eastern hole had a bottom hole temperature of 61 C (142 F) at a depth of only 120 meters (395 ft). A positive gradient is observed to a total depth in the well.

Trexler, Dennis T.; Koeing, Brian A.; Flynn, Thomas; Bruce, James L.; Ghusn, George Jr.

1981-08-30T23:59:59.000Z

319

EnergyFit Nevada (Nevada)  

Energy.gov (U.S. Department of Energy (DOE))

EnergyFit Nevada is a home energy retrofit program. The program assists homeowners in finding and contacting an energy assessment professional to perform an energy assessment and a certified...

320

Property:Geothermal/Partner1 | Open Energy Information  

Open Energy Info (EERE)

Partner1 Partner1 Jump to: navigation, search Property Name Geothermal/Partner1 Property Type String Description Partner 1 Pages using the property "Geothermal/Partner1" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + University of Nevada + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + TBA + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + Los Alamos National Laboratory + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + Lawrence Berkeley National Lab +

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Geothermal: About  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - About Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

322

Geothermal: Publications  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Publications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

323

Geothermal Energy  

U.S. Energy Information Administration (EIA)

The word geothermal comes from the Greek words geo (earth) and therme (heat). So, geothermal energy is heat from within the Earth.

324

Low-to-moderate temperature geothermal resource assessment for Nevada, area specific studies. Final report, June 1, 1980-August 30, 1981  

Science Conference Proceedings (OSTI)

The Hawthorne study area is located in Mineral County, Nevada and surrounds the municipality of the same name. It encompasses an area of approximately 310 sq. km (120 sq. mi), and most of the land belongs to the US Army Ammunition Plant. The energy needs of the military combined with those of the area population (over 5,000 residents) are substantial. The area is classified as having a high potential for direct applications using the evaluation scheme described in Texler and others (1979). A variety of scientific techniques was employed during area-wide resource assessment. General geologic studies demonstrate the lithologic diversity in the area; these studies also indicate possible sources for dissolved fluid constituents. Geophysical investigations include aero-magnetic and gravity surveys which aid in defining the nature of regional, and to a lesser extent, local variations in subsurface configurations. Surface and near-surface structural features are determined using various types of photo imagery including low sun-angle photography. An extensive shallow depth temperature probe survey indicates two zones of elevated temperature on opposite sides of the Walker Lake basin. Temperature-depth profiles from several wells in the study area indicate significant thermal fluid-bearing aquifers. Fluid chemical studies suggest a wide spatial distribution for the resource, and also suggest a meteoric recharge source in the Wassuk Range. Finally, a soil-mercury survey was not a useful technique in this study area. Two test holes were drilled to conclude the area resource assessment, and thermal fluids were encountered in both wells. The western well has measured temperatures as high as 90 C (194 F) within 150 meters (500 ft) of the surface. Temperature profiles in this well indicate a negative temperature gradient below 180 meters (590 ft). The eastern hole had a bottom hole temperature of 61 C (142 F) at a depth of only 120 meters (395 ft). A positive gradient is observed to a total depth in the well. Several conclusions are drawn from this study: the resource is distributed over a relatively large area; resource fluid temperatures can exceed 90 C (194 F), but are probably limited to a maximum of 125 C (257 F); recharge to the thermal system is meteoric, and flow of the fluids in the near surface (< 500 m) is not controlled by faults; heat supplied to the system may be related to a zone of partially melted crustal rocks in the area 25 km (15 mi) south of Hawthorne. Four papers and an introduction are included. A separate abstract was prepared for each paper. (MHR)

Trexler, D.T.; Koenig, B.A.; Flynn, T.; Bruce, J.L.; Ghusn, G. Jr.

1981-01-01T23:59:59.000Z

325

Geothermal Energy Summary  

DOE Green Energy (OSTI)

Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75C water from shallow wells. Power production is assisted by the availability of gravity fed, 7C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earths crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

J. L. Renner

2007-08-01T23:59:59.000Z

326

Steamboat Hills Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facility Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat Hills Geothermal Facility General Information Name Steamboat Hills Geothermal Facility Facility Steamboat Hills Sector Geothermal energy Location Information Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5296329,"lon":-119.8138027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Galena 3 Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Galena 3 Geothermal Facility Galena 3 Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Galena 3 Geothermal Facility General Information Name Galena 3 Geothermal Facility Facility Galena 3 Sector Geothermal energy Location Information Address 1010 Power Plant Drive Location Reno, Nevada Zip 89521 Coordinates 39.388680147984°, -119.74885225296° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.388680147984,"lon":-119.74885225296,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

Beowawe Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facility Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Beowawe Geothermal Facility General Information Name Beowawe Geothermal Facility Facility Beowawe Sector Geothermal energy Location Information Location Beowawe, Nevada Coordinates 40.554765353152°, -116.61741614342° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.554765353152,"lon":-116.61741614342,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

PLES 1 Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

PLES 1 Geothermal Facility PLES 1 Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home PLES 1 Geothermal Facility General Information Name PLES 1 Geothermal Facility Facility PLES-1 Sector Geothermal energy Location Information Location Sierra Nevada Mtns.-Mono, California Coordinates 37.645431°, -118.909434° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.645431,"lon":-118.909434,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Steamboat I Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Steamboat I Geothermal Facility Steamboat I Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat I Geothermal Facility General Information Name Steamboat I Geothermal Facility Facility Steamboat I Sector Geothermal energy Location Information Location Washoe County, Nevada Coordinates 40.5608387°, -119.6035495° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5608387,"lon":-119.6035495,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rhodes Marsh Geothermal Area (Redirected from Rhodes Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase:

332

Stillwater Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facility Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Stillwater Geothermal Facility General Information Name Stillwater Geothermal Facility Facility Stillwater Sector Geothermal energy Location Information Location Fallon, Nevada Coordinates 39.4727622°, -118.778963° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4727622,"lon":-118.778963,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Redfield Campus Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Redfield Campus Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Redfield Campus Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate

334

Steamboat III Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Steamboat III Geothermal Facility Steamboat III Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat III Geothermal Facility General Information Name Steamboat III Geothermal Facility Facility Steamboat III Sector Geothermal energy Location Information Location Washoe, Nevada Coordinates 40.5608387°, -119.6035495° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5608387,"lon":-119.6035495,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Dixie Valley Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Facility Dixie Valley Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Facility General Information Name Dixie Valley Geothermal Facility Facility Dixie Valley Sector Geothermal energy Location Information Location Dixie Valley, Nevada Coordinates 39.966973991529°, -117.85519123077° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.966973991529,"lon":-117.85519123077,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Steamboat IA Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

IA Geothermal Facility IA Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat IA Geothermal Facility General Information Name Steamboat IA Geothermal Facility Facility Steamboat IA Sector Geothermal energy Location Information Location Washoe, Nevada Coordinates 40.5608387°, -119.6035495° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5608387,"lon":-119.6035495,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Richard Burdett Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Richard Burdett Geothermal Facility Richard Burdett Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Richard Burdett Geothermal Facility General Information Name Richard Burdett Geothermal Facility Facility Richard Burdett Sector Geothermal energy Location Information Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5296329,"lon":-119.8138027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Galena 2 Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Galena 2 Geothermal Facility Galena 2 Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Galena 2 Geothermal Facility General Information Name Galena 2 Geothermal Facility Facility Galena 2 Sector Geothermal energy Location Information Address 20590 Wedge Parkway Location Reno, Nevada Zip 89511 Coordinates 39.390554087044°, -119.75488185883° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.390554087044,"lon":-119.75488185883,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Wabuska Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Wabuska Geothermal Facility Wabuska Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Wabuska Geothermal Facility General Information Name Wabuska Geothermal Facility Facility Wabuska Sector Geothermal energy Location Information Location Wabuska, Nevada Coordinates 39.1438073°, -119.1832104° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1438073,"lon":-119.1832104,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Steamboat II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

II Geothermal Facility II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat II Geothermal Facility General Information Name Steamboat II Geothermal Facility Facility Steamboat II Sector Geothermal energy Location Information Location Washoe, Nevada Coordinates 40.5608387°, -119.6035495° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5608387,"lon":-119.6035495,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal overviews of the western United States  

DOE Green Energy (OSTI)

This compendium presents data on geothermal resources for all those western states with geothermal potential. Individual sections, which have been processed separately for inclusion in the EDB data base, are devoted to each of the following states: Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming. A separate section is also devoted to the U.S. Bureau of Reclamation Imperial Valley Project. Maps and references are included for each section. (JGB)

Anderson, D.N.; Axtell, L.H. (comps.)

1972-01-01T23:59:59.000Z

342

Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. Hyperspectral data was also used to successfully map soil-mineral anomalies that are structurally related in Dixie Valley, Nevada. In the area of the power plant, 20 m spatial resolution AVIRIS data were used. For Dixie Meadows, Nevada, 3 m spatial resolution HyVista HyMap hyperspectral data

343

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain,  

Open Energy Info (EERE)

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Abstract Shallow exploration drilling on the west flank of Blue Mountain discovered sub economic gold mineralization and a spatially associated active geothermal system. The gold mineralization is an unusual example of an acid sulfate type epithermal system developed in pre Tertiary sedimentary host rocks. The geothermal system is largely unexplored but is unusual in that surface manifestation s typically associated with active geothermal system are not present. Authors Andrew J. Parr and Timothy J. Percival

344

Geothermal Resource Analysis And Structure Of Basin And Range Systems,  

Open Energy Info (EERE)

Analysis And Structure Of Basin And Range Systems, Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Details Activities (12) Areas (5) Regions (0) Abstract: Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy

345

Brawley- Resurrection Of A Previously Developed Geothermal Field | Open  

Open Energy Info (EERE)

Brawley- Resurrection Of A Previously Developed Geothermal Field Brawley- Resurrection Of A Previously Developed Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Brawley- Resurrection Of A Previously Developed Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: The Brawley Geothermal Field was originally developed by Unocal. In addition to drilling geothermal wells, this development included building and operating a 10 MWe power plant. Corrosion and scaling issues resulted in Unocal abandoning the project in the 1980's. Ormat Nevada investigated the potential of the shallow sands in 2006. It was concluded that these matrixpermeable sands contained moderately saline water, high porosity, and could support a binary-type power plant. In 2007, Ormat Nevada drilled and tested five wells. These test results confirmed the

346

McCoy Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

McCoy Geothermal Area McCoy Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: McCoy Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

347

Conceptual Model At Coso Geothermal Area (1990) | Open Energy Information  

Open Energy Info (EERE)

Conceptual Model At Coso Geothermal Area (1990) Conceptual Model At Coso Geothermal Area (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Conceptual Model Activity Date 1990 Usefulness useful DOE-funding Unknown Exploration Basis To develop an understanding of the fracture hydrology of the Coso Mountains crystalline terrain and its hydrologic connection to regional groundwater and thermal source Notes An interpreted, conceptually balanced regional cross section that extends from the Sierra Nevada through the geothermal reservoir to the Panamint Mountains is presented. The cross section is constrained by new reflection and refraction seismic data, gravity and magnetic modeling, drilling data from the geothermal reservoir, and published regional geologic mapping. The

348

Geothermal Turbine  

SciTech Connect

The first geothermal power generation in the world was started at Larderello, Italy in 1904. Then, New Zealand succeeded in the geothermal power generating country. These developments were then followed by the United States, Mexico, Japan and the Soviet Union, and at present, about 25 countries are utilizing geothermal power, or investigating geothermal resources.

1979-05-01T23:59:59.000Z

349

Direct-Current Resistivity At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

At Central Nevada Seismic At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general type is to carry out simultaneous SP and low-frequency MT surveys, and then

350

Preliminary Site Assessment Of The Redfield Campus, Reno, Nevada, Usa |  

Open Energy Info (EERE)

Site Assessment Of The Redfield Campus, Reno, Nevada, Usa Site Assessment Of The Redfield Campus, Reno, Nevada, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Preliminary Site Assessment Of The Redfield Campus, Reno, Nevada, Usa Details Activities (1) Areas (1) Regions (0) Abstract: To develop a foundation to support future geothermal potential assessment on the Redfield campus property, this project compiled a GIS with the framework coming from existing geologic, hydrologic, and geoscience information. Along with the GIS, an InSAR deformation study was conducted from a suite of previously created interferograms from 1993-2005. Geochemical data were also re-evaluated in the context of fault controlled flow paths and the InSAR data results. Estimates of vertical and horizontal surface displacements associated with production of geothermal fluids were

351

Nevada's natural resources put to work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada's natural resources put to work Nevada's natural resources put to work Nevada's natural resources put to work February 22, 2010 - 11:58am Addthis The Faulkner 1 geothermal power plant sits atop Blue Mountain, just outside Winnemucca, Nev.| Photo courtesy NGP The Faulkner 1 geothermal power plant sits atop Blue Mountain, just outside Winnemucca, Nev.| Photo courtesy NGP Joshua DeLung What will the project do? The site could eventually produce of 100 MW of power a year. Americans are seeing renewable energy sources put to use all around the country, and now some power plants are taking advantage of one source that rests deep within the Earth - geothermal energy. Just a short distance down the dusty Winnemucca road in Humboldt County, Nev., rests a power plant at Blue Mountain. And nearby residents are ecstatic.

352

Isotopic Analysis At Central Nevada Seismic Zone Region (Laney, 2005) |  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

353

Geographic Information System At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Blewitt, Et Al., 2003) Blewitt, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_Central_Nevada_Seismic_Zone_Region_(Blewitt,_Et_Al.,_2003)&oldid=401370"

354

Self Potential At Central Nevada Seismic Zone Region (Pritchett, 2004) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Self Potential At Central Nevada Seismic Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Self Potential Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden"

355

Geothermal/Water Use | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Water Use Geothermal/Water Use < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Water Use General Regulatory Roadmap The Geysers in northern California is the world's largest producer of geothermal power. The dry-steam field has successfully produced power since the early 1960s when Pacific Gas & Electric installed the first 11-megawatt plant. The dry steam plant consumes water by emitting water vapor into the atmosphere. Geothermal power production utilizes water in two major ways: The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second is using water for cooling (for some plants only).

356

Compound and Elemental Analysis At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Compound and Elemental Analysis At Central Nevada Compound and Elemental Analysis At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

357

Geochemical Sampling of Thermal Waters in Nevada | Open Energy Information  

Open Energy Info (EERE)

Geochemical Sampling of Thermal Waters in Nevada Geochemical Sampling of Thermal Waters in Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geochemical Sampling of Thermal Waters in Nevada Abstract There are 1000 thermal springs in Nevada for which a location is known, but for which there are no available temperature (or chemical) measurements. Although many of these sites are within known geothermal areas and are located near springs for which temperature and/or geochemical data are available for one of the springs, many of these sites are not so located and require evaluation before the geothermal potential of the area can be assessed. In order to begin filling in data gaps, water sampling commenced in 2002 when over 70 analyses were obtained from springs with previously

358

Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino  

Open Energy Info (EERE)

Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein Abstract A series of four tracer tests was recently conducted at the Dixie Valley, Nevada, geothermal reservoir in order to determine fluid-flow processes and to evaluate candidate tracers for use in hydrothermal systems. These tests have resulted in the first successful use of the compounds amino G and pyrenetetrasulfonate as tracers in a geothermal reservoir. The tracer candidates were subjected to simulated hydrothermal conditions in laboratory reactors at temperatures as high as 300°C in order to determine

359

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada,  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Abstract Borehole televiewer, temperature, and flowmeter datarecorded in six wells penetrating a geothermalreservoir associated with the Stillwater fault zone inDixie Valley, Nevada, were used to investigate therelationship between reservoir permeability and thecontemporary in situ stress field. Data from wellsdrilled into productive and nonproductive segments ofthe Stillwater fault zone indicate that permeability inall wells is dominated by a relatively small number offractures striking parallel to the local trend of

360

Magnetotelluric studies in Grass Valley, Nevada  

DOE Green Energy (OSTI)

A program of detailed magnetotelluric soundings was initiated in 1974 in Green Valley, Nevada, as part of the Lawrence Berkeley Laboratory's major study of techniques for geothermal exploration in north central Nevada. The magnetotelluric program had three main goals; the determination of resistivity distribution at depths greater than that conveniently measured with other techniques; a comparison of the interpreted resistivity at shallow depth with the results of the other techniques; and the evaluation of the SQUID or Josephson effect magnetometer in practical field surveys. In addition, new numerical models were developed so that interpretation could be carried out in terms of fairly complex two-dimensional models.

Morrison, H.F.; Lee, K.H.; Oppliger, G.; Dey, A.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Understanding Fault Characteristics And Sediment Depth For Geothermal  

Open Energy Info (EERE)

Understanding Fault Characteristics And Sediment Depth For Geothermal Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The Southern Walker Lake Basin, situated in the Walker Lake structural domain, consists of primarily E-W directed extension along N-NNW striking normal faults. Water well drilling on the eastern slopes of the Wassuk Range, west of the city of Hawthorne, Nevada showed elevated temperatures. Two recent drill holes reaching downhole depths of more than 4000 ft give some insight to the geologic picture, but more information

362

Identification of a New Blind Geothermal System with Hyperspectral Remote  

Open Energy Info (EERE)

Identification of a New Blind Geothermal System with Hyperspectral Remote Identification of a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Identification of a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Abstract Hyperspectral remote sensing-derived mineral maps and follow-up shallow temperature measurements were used to identify a new blind geothermal target in the Columbus Salt Marsh playa, Esmeralda County, Nevada. The hyperspectral survey was conducted with the ProSpecTIR VS2 instrument and consists of 380 km2 of 4-meter spatial resolution data acquired on October

363

Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation-  

Open Energy Info (EERE)

Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Results From The Alum 25-29 Well, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Results From The Alum 25-29 Well, Nevada Details Activities (6) Areas (1) Regions (0) Abstract: This paper presents the results of analysis of a state of the art set of wireline petrophysical and wellbore image logs recorded in the Alum 25-29 well, southwestern Nevada. The Alum well penetrated nearly 2000 ft (610 m) of volcano-clastic rocks and more than 1000 ft of basement, separated from the sediments by a shallowly dipping detachment fault. The logs were acquired both to characterize the site and also to select the

364

GRC Workshop: The Power of the National Geothermal Data System | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System October 2, 2013 (All day) Flyer for the National Geothermal Data System workshop at the Geothermal Resources Council Annual Meeting on October 2, 2013 in Las Vegas. Drilling Down: How Legacy and New Research Data Can Advance Geothermal Development-The Power of the National Geothermal Data System (NGDS) A workshop at the Geothermal Resources Council Annual Meeting in Las Vegas, Nevada Abstract: The National Geothermal Data System's (NGDS) launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production forward. By aggregating findings from the Energy Department's RD&D projects

365

A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of  

Open Energy Info (EERE)

Of Geothermal Potential For The Great Basin, Usa- Recognition Of Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Details Activities (8) Areas (4) Regions (0) Abstract: A 1:1,000,000 scale geothermal favorability map of the Great Basin is currently being published through the Nevada Bureau of Mines and Geology (NBMG) and is now available at the web site (http://www.unr.edu/geothermal/geothermal_gis2. htm) of the Great Basin Center for Geothermal Energy (GBCGE). This map allows for separate assessment of the potential for magmatically heated and extensional-type geothermal systems. Added to the map are temperature gradient wells from

366

ORISE: 2012 DOE EERE National Geothermal Student Competition  

NLE Websites -- All DOE Office Websites (Extended Search)

Winners of 2012 DOE EERE National Geothermal Student Competition Announced Winners of 2012 DOE EERE National Geothermal Student Competition Announced The U.S. Department of Energy announced the top three winners in the 2012 National Geothermal Student Competition at the 36th Annual Geothermal Resources Council Meeting in Reno, Nevada. This student competition challenged teams at universities across the country to conduct cutting-edge research in geology, geoscience, chemical and bio-molecular energy, and engineering that could lead to breakthroughs in geothermal energy development. First place: Idaho State University Second place: Boise State University Third place: Southern Methodist University Geothermal Laboratory Geothermal power station First place winners: Idaho State University Photo courtesy of the Geothermal Resources Council

367

Walker Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Walker Lake Valley Geothermal Area Walker Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Walker Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

368

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

369

Winnemucca Dry Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Winnemucca Dry Lake Geothermal Area Winnemucca Dry Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Winnemucca Dry Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

370

Property:Geothermal/LocationOfProject | Open Energy Information  

Open Energy Info (EERE)

LocationOfProject LocationOfProject Jump to: navigation, search Property Name Geothermal/LocationOfProject Property Type Page Description Location of Project Pages using the property "Geothermal/LocationOfProject" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Soda Lake, Nevada + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Butte, Montana + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + Socorro, New Mexico +

371

Gabbs Alkali Flat Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Alkali Flat Geothermal Area Gabbs Alkali Flat Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Alkali Flat Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

372

Nevada Offsites Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE))

The Nevada Offsites refers to sites where underground nuclear tests and experiments were performed outside of the primary testing location formerly known as the Nevada Test Site (now the Nevada...

373

Nevada's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

2nd congressional district: Energy Resources 2nd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Nevada. Registered Energy Companies in Nevada's 2nd congressional district Arete Power Inc Biodiesel Solutions Inc BlackHawk Fund Brady Power Partners Chapeau Inc dba BluePoint Energy Inc China Recycling Energy Corp CREG Collier Technologies Inc Constellation Operating Services ElectraTherm Inc ElectraTherm, Inc. Empire Geothermal Power LLC Geothermal Development Associates Geothermal Technical Partners Gradient Resources Kodali Inc Lumenergi Magma Energy NV Energy Sierra Pacific Resources NV Energy formerly Sierra Pacific Power Newcore Energy Inc OHm Geothermal Ormat Funding Corp

374

Magnetotellurics At Central Nevada Seismic Zone Region (Pritchett, 2004) |  

Open Energy Info (EERE)

Pritchett, 2004) Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general

375

Geothermal direct-heat utilization assistance. Quarterly project progress report, April--June 1993  

DOE Green Energy (OSTI)

Technical assistance was provided to 60 requests from 19 states. R&D progress is reported on: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Two presentations and one tour were conducted, and three technical papers were prepared. The Geothermal Progress Monitor reported: USGS Forum on Mineral Resources, Renewable Energy Tax Credits Not Working as Congress Intended, Geothermal Industry Tells House Panel, Newberry Pilot Project, and Low-Temperature Geothermal Resources in Nevada.

Lienau, P.

1993-06-01T23:59:59.000Z

376

A study of geothermal drilling and the production of electricity from geothermal energy  

DOE Green Energy (OSTI)

This report gives the results of a study of the production of electricity from geothermal energy with particular emphasis on the drilling of geothermal wells. A brief history of the industry, including the influence of the Public Utilities Regulatory Policies Act, is given. Demand and supply of electricity in the United States are touched briefly. The results of a number of recent analytical studies of the cost of producing electricity are discussed, as are comparisons of recent power purchase agreements in the state of Nevada. Both the costs of producing electricity from geothermal energy and the costs of drilling geothermal wells are analyzed. The major factors resulting in increased cost of geothermal drilling, when compared to oil and gas drilling, are discussed. A summary of a series of interviews with individuals representing many aspects of the production of electricity from geothermal energy is given in the appendices. Finally, the implications of these studies are given, conclusions are presented, and program recommendations are made.

Pierce, K.G. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, Inc., Encinitas, CA (United States)

1994-01-01T23:59:59.000Z

377

Nevada | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada--Nevada Rail Transportation Corridor October 12, 2007 EIS-0250-S2: Draft Supplemental Environmental...

378

Nevada | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Nevada July 12, 2013 Renewable Energy Systems Property Tax Exemption Renewable energy systems which serve a residential, commercial or industrial building or irrigation...

379

nevada_50mwind  

NLE Websites -- All DOE Office Websites (Extended Search)

DataTechnologySpecificUnitedStatesWindHighResolutionNevadaWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Nevada,...

380

Category:Geothermal References | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Geothermal References Jump to: navigation, search Add a new Reference Pages in category "Geothermal References" The following 200 pages are in this category, out of 323 total. (previous 200) (next 200) 2 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth 2007 Annual Report A A Case History of Injection Through 1991 at Dixie Valley, Nevada A Coordinated Exploration Program for Geothermal Sources on the Island of Hawaii A geochemical model of the Kilauea east rift zone A model for the shallow thermal regime at Dixie Valley geothermal field

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Western States Geothermal Company | Open Energy Information  

Open Energy Info (EERE)

States Geothermal Company States Geothermal Company Jump to: navigation, search Name Western States Geothermal Company Place Sparks, Nevada Zip 89432-2627 Sector Geothermal energy Product Geothermal power plant developer and operator. Acquired by Ormat in 2001. Coordinates 35.61145°, -96.821309° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.61145,"lon":-96.821309,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

383

Energy Basics: Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Technologies Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal...

384

Geothermal Reservoir Dynamics - TOUGHREACT  

E-Print Network (OSTI)

Swelling in a Fractured Geothermal Reservoir, presented atTHC) Modeling Based on Geothermal Field Data, Geothermics,and Silica Scaling in Geothermal Production-Injection Wells

2005-01-01T23:59:59.000Z

385

Nevada State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Nevada Nevada State Regulations: Nevada State of Nevada The Nevada Division of Minerals (Nevada Commission of Mineral Resources) administers programs and activities to further the responsible development and production of Nevada's mineral resources, including the regulation of oil- and gas-well drilling operations. Otherwise, the Nevada Division of Environmental Protection (Nevada Department of Conservation and Mineral Resources) administers the major environmental protection laws. Contact Nevada Division of Minerals (Carson City Office) 400 West King Street, Suite 106 Carson City, NV 89703 (775) 684-7040 (phone) (775) 684-7052 (fax) (Las Vegas Office) 2030 East Flamingo Road, Suite 220 Las Vegas, NV 89119 (702) 486-4343 (phone) (702) 486-4345 (fax) Nevada Division of Environmental Protection

386

Brawley Resurrection of a Previously Developed Geothermal Field | Open  

Open Energy Info (EERE)

Brawley Resurrection of a Previously Developed Geothermal Field Brawley Resurrection of a Previously Developed Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Brawley Resurrection of a Previously Developed Geothermal Field Abstract The Brawley Geothermal Field was originally developed byUnocal. In addition to drilling geothermal wells, this developmentincluded building and operating a 10 MWe power plant.Corrosion and scaling issues resulted in Unocal abandoning theproject in the 1980's. Ormat Nevada investigated the potentialof the shallow sands in 2006. It was concluded that these matrixpermeablesands contained moderately saline water, high porosity,and could support a binary-type power plant. In 2007, OrmatNevada drilled and tested five wells. These test results confirmedthe earlier conclusions and

387

Geology and Temperature Gradient Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Geology and Temperature Gradient Surveys Blue Mountain Geothermal Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Abstract Triassic argillite and sandstone of the Grass Valley Formation and phyllitic mudstone of the overlying Raspberry Formation, also of Triassic age, host a blind geothermal system under exploration by Blue Mountain Power Company Inc. with assistance from the Energy & Geoscience Institute. Geologically young, steeply dipping, open fault sets, striking N50-60°E,N50-60°W, and N-S intersect in the geothermal zone providing deep permeability over a wide area. Extensive silicification andhydro

388

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.

1996-02-01T23:59:59.000Z

389

Modeling-Computer Simulations At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Blackwell, Et Al., 2003) Exploration...

390

Empire Geothermal Power LLC | Open Energy Information  

Open Energy Info (EERE)

Power LLC Power LLC Jump to: navigation, search Name Empire Geothermal Power LLC Place Reno, Nevada Zip 89509 Sector Geothermal energy Product Empire owns and operates a 3.5MW geothermal project in Nevada. Coordinates 32.944065°, -97.578279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.944065,"lon":-97.578279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Geothermal guidebook  

DOE Green Energy (OSTI)

The guidebook contains an overview, a description of the geothermal resource, statutes and regulations, and legislative policy concerns. (MHR)

Not Available

1981-06-01T23:59:59.000Z

392

Geothermal energy  

DOE Green Energy (OSTI)

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

393

Idaho Geothermal Commercialization Program. Idaho geothermal handbook  

DOE Green Energy (OSTI)

The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

Hammer, G.D.; Esposito, L.; Montgomery, M.

1980-03-01T23:59:59.000Z

394

Pumpernickel Valley Geothermal Project Thermal Gradient Wells  

DOE Green Energy (OSTI)

The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

Z. Adam Szybinski

2006-01-01T23:59:59.000Z

395

Beowawe Bottoming Binary Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Beowawe Bottoming Binary Project Geothermal Project Beowawe Bottoming Binary Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Beowawe Bottoming Binary Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The proposed two-year project supports the DOE GTP's goal of promoting the development and commercial application of energy production from low-temperature geothermal fluids, i.e., between 150°F and 300°F. State Nevada Objectives Demonstrate the technical and economic feasibility of electricity generation from nonconventional geothermal resources of 205°F using the first commercial use of a cycle at a geothermal power plant inlet temperature of less than 300°F.

396

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques |  

Open Energy Info (EERE)

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Abstract In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrates of mercy are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Nova, Japan. Zones containing high mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations

397

Winnemucca Dry Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Winnemucca Dry Lake Geothermal Area Winnemucca Dry Lake Geothermal Area (Redirected from Winnemucca Dry Lake Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Winnemucca Dry Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

398

Remote Sensing For Geothermal Exploration Over Buffalo Valley, Nv | Open  

Open Energy Info (EERE)

Sensing For Geothermal Exploration Over Buffalo Valley, Nv Sensing For Geothermal Exploration Over Buffalo Valley, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Remote Sensing For Geothermal Exploration Over Buffalo Valley, Nv Details Activities (1) Areas (1) Regions (0) Abstract: Remote sensing is a useful tool for identifying the surface expression of geothermal systems based on characteristic mineral assemblages that result from hydrothermal alteration (Kratt et al., 2004; Vaughan et al., 2005). Buffalo Valley in Pershing and Lander Counties, Nevada, is an area of high potential for geothermal energy production (Shevenell et al., 2004). Geothermal heat is expressed by several hot springs with surface temperatures of up to 79°C (Olmsted et al., 1975). The hot springs and a chain of Quaternary cinder cones appear to be

399

Gabbs Alkali Flat Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Alkali Flat Geothermal Area Gabbs Alkali Flat Geothermal Area (Redirected from Gabbs Alkali Flat Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Alkali Flat Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

400

Walker Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Walker Lake Valley Geothermal Area Walker Lake Valley Geothermal Area (Redirected from Walker Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Walker Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Digital Mapping Of Structurally Controlled Geothermal Features With Gps  

Open Energy Info (EERE)

Digital Mapping Of Structurally Controlled Geothermal Features With Gps Digital Mapping Of Structurally Controlled Geothermal Features With Gps Units And Pocket Computers Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Digital Mapping Of Structurally Controlled Geothermal Features With Gps Units And Pocket Computers Details Activities (1) Areas (1) Regions (0) Abstract: Hand-held global positioning system (GPS) units and pocket personal computers (PCs) were used to map surface geothermal features at the Bradys Hot Springs and Salt Wells geothermal systems, Churchill County, Nevada, in less time and with greater accuracy than would have been possible with conventional mapping methods. Geothermal features that were mapped include fumaroles, mud pots, warm ground, sinter, and a variety of silicified rocks. In both areas, the digital mapping was able to resolve

402

Dixie Valley Geothermal Prospect Churchill County, Nevada  

DOE Green Energy (OSTI)

Attempts were made to cause well Dixie Federal 45-14 to flow by reducing the wellbore pressure opposing possible producing formation. Such pressure reduction was accomplished by using a Magcobar air compressor to lift the water column out of the wellbore. Three series of efforts using this method were performed. The conclusions from these last attempts to flow Dixie Federal 45-14 were: (1) the massive water entry at 5820-5870 feet was shut off; (2) the compressor, with some help from the mud pumps, was able to virtually clear the wellbore of water above the point of air injection; (3) despite evacuating water from the wellbore to as deep as 7500 feet, the Dixie Federal 45-14 had insufficient permeability to commence flowing on its own as of 7-8-79. The possible benefits of temperature equilibration or other time adjustments within the prospective interval below 8000 feet may include eventual capacity to flow. This potential will be evaluated with future flow attempts; and (4) there is some small liquid entry somewhere between 6290 and 9022 feet which caused the air compressor to go through very long (3-4 hour) cycles of unloading and slowly re-filling the wellbore.

none

1979-07-01T23:59:59.000Z

403

Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada,  

Open Energy Info (EERE)

Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir Abstract Borehole televiewer, temperature and flowmeter logs and hydraulic fracturing stress measurements conducted in six wells penetrating a geothermal reservoir associated with the Stillwater fault zone in Dixie Valley, Nevada, were used to investigate the relationship between reservoir permeability and the contemporary in situ stress field. Data from wells drilled into productive and nonproductive segments of the Stillwater fault zone indicate that permeability in all wells is dominated by a relatively

404

Geodetic Survey At Central Nevada Seismic Zone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Geodetic Survey At Central Nevada Seismic Zone Region (Laney, 2005) Geodetic Survey At Central Nevada Seismic Zone Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Targeting of Potential Geothermal Resources in the Great Basin from Regional to Basin-Scale Relationships Between Geodetic Strain and Geological Structures, Geoffrey Blewitt. The objectives of this project are to assess the use of inter-seismic crustal strain rates derived from GPS-stations as an exploration tool for non-magmatic high-temperature

405

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy...

406

Geothermal: Sponsored by OSTI -- Applications of Geothermally...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels Geothermal Technologies...

407

Geothermal policy project. Quarterly report, November 1, 1979-January 31, 1980  

DOE Green Energy (OSTI)

Solicitation letters for geothermal and ground water heat-pump energy were sent to ten new states, and initial contact was made in two other states, Arizona and Nevada, concerning 1980 project activities. Follow-up contacts were made with several existing project states, and state meetings and workshops were held in five project states. The Preliminary Geothermal Profile for the state of Nevada as well as other project materials were prepared.

Sacarto, D.M.

1980-02-01T23:59:59.000Z

408

Geothermal: Sponsored by OSTI -- Nevada low-temperaure geothermal...  

Office of Scientific and Technical Information (OSTI)

Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You are...

409

Feasibility study for a 10-MM-GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume 1. Process and plant design  

DOE Green Energy (OSTI)

An investigation was performed to determine the technical and economic viability of constructing and operating a geothermally heated, biomass, motor fuel alcohol plant at Brady's Hot Springs. The results of the study are positive, showing that a plant of innovative, yet proven design can be built to adapt current commerical fermentation-distillation technology to the application of geothermal heat energy. The specific method of heat production from the Brady's Hot Spring wells has been successful for some time at an onion drying plant. Further development of the geothermal resource to add the capacity needed for an ethanol plant is found to be feasible for a plant sized to produce 10 million gallons of motor fuel grade ethanol per year. A very adequate supply of feedgrains is found to be available for use in the plant without impact on the local or regional feedgrain market. The effect of diverting supplies from the animal feedlots in Northern Nevada and California will be mitigated by the by-product output of high-protein feed supplements that the plant will produce. The plant will have a favorable impact on the local farming economies of Fallon, Lovelock, Winnemucca and Elko, Nevada. It will make a positive and significant socioeconomic contribution to Churchill County, providing direct employment for an additional 61 persons. Environmental impact will be negligible, involving mostly a moderate increase in local truck traffic and railroad siding activity. The report is presented in two volumes. Volume 1 deals with the technical design aspects of the plant. The second volume addresses the issue of expanded geothermal heat production at Brady's Hot Springs, goes into the details of feedstock supply economics, and looks at the markets for the plant's primary ethanol product, and the markets for its feed supplement by-products. The report concludes with an analysis of the economic viability of the proposed project.

Not Available

1980-09-01T23:59:59.000Z

410

Exploration and Development at Dixie Valley, Nevada- Summary of Doe Studies  

Open Energy Info (EERE)

at Dixie Valley, Nevada- Summary of Doe Studies at Dixie Valley, Nevada- Summary of Doe Studies Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Exploration and Development at Dixie Valley, Nevada- Summary of Doe Studies Authors David D. Blackwell, Richard P. Smith and Maria C. Richards Conference Thirty-Second Workshop on Geothermal Reservoir Engineering; Stanford University, Stanford, California; 39083 Published Thirty-Second Workshop on Geothermal Reservoir Engineering;, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Exploration and Development at Dixie Valley, Nevada- Summary of Doe Studies Citation David D. Blackwell,Richard P. Smith,Maria C. Richards. 2007. Exploration and Development at Dixie Valley, Nevada- Summary of Doe Studies. In:

411

Integrated dense array and transect MT surveying at dixie valley geothermal  

Open Energy Info (EERE)

dense array and transect MT surveying at dixie valley geothermal dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Conference proceedings, 32th workshop on geothermal reservoir Engineering, Stanford University; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal

412

BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project |  

Open Energy Info (EERE)

BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Abstract No abstract available. Author Bureau of Land Management Organization Bureau of Land Management, Carson City Field Office, Nevada Published U.S. Department of the Interior, 2011 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Citation Bureau of Land Management (Bureau of Land Management, Carson City Field Office, Nevada). 2011. BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project. Carson City, Nevada: U.S. Department of the

413

Seismic Reflection Data and Conceptual Models for Geothermal Development in  

Open Energy Info (EERE)

Seismic Reflection Data and Conceptual Models for Geothermal Development in Seismic Reflection Data and Conceptual Models for Geothermal Development in Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Seismic Reflection Data and Conceptual Models for Geothermal Development in Nevada Abstract Seismic reflection data were collected in two geothermalareas in Nevada to support geologic structural models andgeothermal well targeting. The data were integrated withsurface mapping, well results, and other geophysical data inconceptual geologic models in both areas. Faults wereinterpreted from reflection data based on reflector offsetsand apparent fault surface reflectors dipping away from therange front. Interpreted faults at Blue Mt., where severalwells have been drilled, correlated with well entries.Subsequent well targeting based on the conceptualstructural model

414

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Details Activities (3) Areas (1) Regions (0) Abstract: Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that similar to 7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow of mantle-derived helium up along the

415

Roosevelt Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Roosevelt Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Heat Source 11 Geofluid Geochemistry 12 NEPA-Related Analyses (0) 13 Exploration Activities (9) 14 References Map: Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Milford, Utah Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

416

Roosevelt Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area (Redirected from Roosevelt Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Roosevelt Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Heat Source 11 Geofluid Geochemistry 12 NEPA-Related Analyses (0) 13 Exploration Activities (9) 14 References Map: Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Milford, Utah Exploration Region: Northern Basin and Range Geothermal Region

417

Northern California Power Agency's Notice of Intention to seek certification for NCPA Geothermal Project No. 1 (79-NOI-1). Summary and Hearing Order  

DOE Green Energy (OSTI)

The principal issues raised in the proceedings to date are summarized and the following are identified: issues to be adjudicated in subsequent hearings, issues which have been eliminated from the proceedings, and issues which should be deferred until the certification process. The proposed geothermal project is described and the hearing record is summarized. Findings are presented on the following: air quality, hydrology and water resources, water quality, geology and seismicity, soils, biological resources, noise, cultural resources, socioeconomic effects, need for the project, financial impacts, public health, safety and reliability, transmission lines, and civil and structural engineering. (MHR)

Not Available

1979-12-01T23:59:59.000Z

418

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane...

419

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

420

NREL: Learning - Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Production Electricity Production Photo of a geothermal power plant. This geothermal power plant generates electricity for the Imperial Valley in California. Geothermal power plants use steam produced from reservoirs of hot water found a few miles or more below the Earth's surface to produce electricity. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Dry Steam Dry steam power plants draw from underground resources of steam. The steam is piped directly from underground wells to the power plant where it is directed into a turbine/generator unit. There are only two known underground resources of steam in the United States: The Geysers in northern California and Yellowstone National Park in Wyoming, where there's

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geothermal Technologies Office: Geothermal Electricity Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

422

Geothermal Technologies Office: Enhanced Geothermal Systems Technologi...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

423

Geothermal Technologies Office: Enhanced Geothermal Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

424

Solid-sample geochemistry study of western Dixie Valley, Churchill County, Nevada. Part II. Soil geochemistry  

Science Conference Proceedings (OSTI)

Numerous thermal springs present in northern Dixie Valley, Nevada, are the surface expression of a deep-seated geothermal system. The structural setting, a complex asymmetric graben controls the location of surface springs and migration of thermal fluids to the surface. The distribution of arsenic and mercury in the soils of the valley correlates well with the occurrence of structures which may be in communication with the underlying geothermal system. Generally anomalous arsenic values occur along structures near the playa where fine-grained sediments and a high water table occur. Mercury values are uniformly low near the playa but are typically anomalous along structures in the coarser fan deposits. The complementary geochemical signatures of arsenic and mercury which arise from basic differences in elemental chemical behavior have been useful in delineating the structural trends of the valley. The structural model indicated by the geochemistry and results of drilling suggest future targets should be selected east of the Dixie Meadows fault, within the inner graben.

Juncal, R.W. (Geothermal Development Associates, Reno, NV); Bell, E.J.

1981-10-01T23:59:59.000Z

425

Nevada | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 13, 2010 Sierra Geothermal discovered temperatures hot enough for large-scale geothermal energy production at one of its wells near Silver Peak, Nev. | Photo courtesy of...

426

Geothermal energy  

SciTech Connect

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

427

Geothermal/Water Use | Open Energy Information  

Open Energy Info (EERE)

Water Use Water Use < Geothermal(Redirected from Water Use) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Water Use General Regulatory Roadmap The Geysers in northern California is the world's largest producer of geothermal power. The dry-steam field has successfully produced power since the early 1960s when Pacific Gas & Electric installed the first 11-megawatt plant. The dry steam plant consumes water by emitting water vapor into the atmosphere. Geothermal power production utilizes water in two major ways: The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second is using water for cooling (for some plants only).

428

Geothermal Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Geothermal Energy: A Glance Back and a Leap Forward http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward geothermal-energy-glance-back-and-leap-forward" class="title-link"> Geothermal Energy: A Glance Back and a Leap Forward

429

Geothermal Handbook  

DOE Green Energy (OSTI)

This handbook is intended to assist the physicist, chemist, engineer, and geologist engaged in discovering and developing geothermal energy resources. This first section contains a glossary of the approximately 500 most frequently occurring geological, physical, and engineering terms, chosen from the geothermal literature. Sections 2 through 8 are fact sheets that discuss such subjects as geothermal gradients, rock classification, and geological time scales. Section 9 contains conversion tables for the physical quantities of interest for energy research in general and for geothermal research in particular.

Leffel, C.S., Jr.; Eisenberg, R.A.

1977-06-01T23:59:59.000Z

430

Western Geothermal Partners | Open Energy Information  

Open Energy Info (EERE)

Western Geothermal Partners Western Geothermal Partners Place Reno, Nevada Zip 89509 Sector Geothermal energy Product A Reno-based geothermal development company Coordinates 32.944065°, -97.578279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.944065,"lon":-97.578279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Egs Exploration Methodology Project Using the Dixie Valley Geothermal  

Open Energy Info (EERE)

Egs Exploration Methodology Project Using the Dixie Valley Geothermal Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Authors Joe Iovenitti, Jon Sainsbury, Ileana Tibuleac, Robert Karlin, Philip Wannamaker, Virginia Maris, David Blackwell, Mahesh Thakur, Fletcher H. Ibser, Jennifer Lewicki, B. Mack. Kennedy and Michael Swyer Conference Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University; Stanford, California; 2013 Published Publisher Not Provided, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Egs Exploration Methodology Project Using the

432

Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Abstract Self potential and electrical resistivity surveys have been completed at the Blue Mountain geothermal area to search for the source of thermal fluids discovered during drilling for mineral exploration, and to help characterize the geothermal resource. Two large SP anomalies are associated with the artesian thermal area and the area of highest temperature observed in drill holes. Two similar anomalies were mapped 1 to 3 km to the south

433

Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal  

Open Energy Info (EERE)

Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal Areas- Cove Fort-Sulphurdale, Utah and Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal Areas- Cove Fort-Sulphurdale, Utah and Dixie Valley, Nevada Abstract Geobotanical anomalies have been associated with mineralization and hydrocarbon microseepage. As both of these phenomena have been associated with hydrothermal convection systems in the Great Basin it is likely that geobotanical anomalies are present over geothermal areas. This paper present preliminary results for the ongoing Cove Fort Sulphurdale, Utah and Dixie Valley, Utah, studies. Data acquisition for these areas has included

434

Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid  

Open Energy Info (EERE)

Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid Lake Paiute Reservation, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid Lake Paiute Reservation, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: Over 2000 km2 (772 mi2) of 5 m resolution Hymap hyperspectral data was acquired over the Pyramid Lake Paiute Reservation in the Fall of 2004. Subsequent image processing and data analysis has identified reflectance spectra for alunite, kaolinite/halloysite, illite, gypsum, vegetation, and carbonate. A portable spectrometer is being used for in situ validation, along with laboratory measurements and X-ray diffraction analyses of samples collected in the field. We are in the process of

435

Northwest Basin and Range Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Northwest Basin and Range Geothermal Region Northwest Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northwest Basin and Range Geothermal Region Details Areas (48) Power Plants (8) Projects (15) Techniques (33) The Basin and Range Province in northwestern Nevada and northeastern California is characterized by late Cretaceous - early Cenozoic regional erosion, Oligocene - Miocene volcanism, and subsequent late Miocene extension. Extensional faulting in northwestern Nevada began everywhere at 12 Ma and has continued up to the present. Faulting in the Warner Range in northeastern California can only be constrained to have begun between 14 and 3 Ma, but may represent westward migration of Basin and Range extension during the Pliocene. Compared to the many parts of the Basin and Range in

436

Nevada National Security Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada National Security Site Nevada National Security Site Nevada National Security Site | October 2011 Control Point Nevada National Security Site | October 2011 Control Point...

437

Digital Mapping Of Structurally Controlled Geothermal Features With GPS  

Open Energy Info (EERE)

Digital Mapping Of Structurally Controlled Geothermal Features With GPS Digital Mapping Of Structurally Controlled Geothermal Features With GPS Units And Pocket Computers Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Digital Mapping Of Structurally Controlled Geothermal Features With GPS Units And Pocket Computers Abstract Hand-held global positioning system (GPS) units and pocket personal computers (PCs) were used to map surface geothermal features at the Bradys Hot Springs and Salt Wells geothermal systems, Churchill County, Nevada, in less time and with greater accuracy than would have been possible with conventional mapping methods. Geothermal features that were mapped include fumaroles, mud pots, warm ground, sinter, and a variety of silicified rocks. In both areas, the digital mapping was able to resolve structural

438

New York Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » New York Canyon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New York Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Lovelock, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

439

Soda Lake I Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Soda Lake I Geothermal Facility Soda Lake I Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Soda Lake I Geothermal Facility General Information Name Soda Lake I Geothermal Facility Facility Soda Lake I Sector Geothermal energy Location Information Location Fallon, Nevada Coordinates 39.4727622°, -118.778963° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4727622,"lon":-118.778963,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Et Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aerial Photography Activity Date Usefulness not indicated DOE-funding Unknown Notes Geologic mapping from air photos in some places clearly located the structures in the valley and hence is very site specific. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Aerial_Photography_At_Dixie_Valley_Geothermal_Field_Area_(Blackwell,_Et_Al.,_2003)&oldid=388817

Note: This page contains sample records for the topic "northern nevada geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Isotopic Analysis- Fluid At Coso Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Analysis- Fluid At Coso Geothermal Area (1982) Analysis- Fluid At Coso Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (1982) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine recharge for the system Notes Thirty-nine water samples were collected from the Coso geothermal system and vicinity and were analyzed for major chemical constituents and deltaD and delta18O. Non-thermal ground waters from the Coso Range were found to be isotopically heavier than non-thermal ground waters from the Sierra Nevada to the west. The deltaD value for the deep thermal water at Coso is

442

Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: In 1998 a 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada) to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The results

443

Navy's Geothermal Program Office: Overview of Recovery Act (ARRA) Funded  

Open Energy Info (EERE)

Navy's Geothermal Program Office: Overview of Recovery Act (ARRA) Funded Navy's Geothermal Program Office: Overview of Recovery Act (ARRA) Funded Exploration in CA and NV and other Exploration Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Navy's Geothermal Program Office: Overview of Recovery Act (ARRA) Funded Exploration in CA and NV and other Exploration Projects Details Activities (9) Areas (6) Regions (0) Abstract: The Navy's Geothermal Program Office (GPO) manages, explores for and supports the development of geothermal resources on Department of Defense (DoD) -managed lands. We are currently conducting exploration in 13 sites or regions on 6 military installations in Nevada and California. We also have tentative plans to expand our activities late this year or early next year into Utah as well as Guam and the Republic of Djibouti, northeast

444

Soda Lake II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Soda Lake II Geothermal Facility Soda Lake II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Soda Lake II Geothermal Facility General Information Name Soda Lake II Geothermal Facility Facility Soda Lake II Sector Geothermal energy Location Information Location Fallon, Nevada Coordinates 39.4727622°, -118.778963° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4727622,"lon":-118.778963,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

San Emidio (Empire) Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

San Emidio (Empire) Geothermal Facility San Emidio (Empire) Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home San Emidio (Empire) Geothermal Facility General Information Name San Emidio (Empire) Geothermal Facility Facility San Emidio (Empire) Sector Geothermal energy Location Information Location San Emidio, Nevada Coordinates 40.3999034°, -119.4296313° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3999034,"lon":-119.4296313,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Water Sampling At International Geothermal Area, Philippines (Wood, 2002) |  

Open Energy Info (EERE)

Water Sampling At International Geothermal Area Water Sampling At International Geothermal Area Philippines (Wood, 2002) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

447

Brady Hot Springs I Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Hot Springs I Geothermal Facility Hot Springs I Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Brady Hot Springs I Geothermal Facility General Information Name Brady Hot Springs I Geothermal Facility Facility Brady Hot Springs I Sector Geothermal energy Location Information Location Churchill, Nevada Coordinates 39.796370120458°, -119.00998950005° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.796370120458,"lon":-119.00998950005,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Desert Peak II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

II Geothermal Facility II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Desert Peak II Geothermal Facility General Information Name Desert Peak II Geothermal Facility Facility Desert Peak II Sector Geothermal energy Location Information Location Churchill, Nevada Coordinates 39.753854931241°, -118.95378112793° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.753854931241,"lon":-118.95378112793,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Mammoth Pacific I Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Mammoth Pacific I Geothermal Facility Mammoth Pacific I Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Mammoth Pacific I Geothermal Facility General Information Name Mammoth Pacific I Geothermal Facility Facility Mammoth Pacific I Sector Geothermal energy Location Information Location Sierra Nevada Mtns.-Mono, California Coordinates 37.644943°, -118.91428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.644943,"lon":-118.91428,"alt":0,"address":"","icon":"","group":"","inline