Powered by Deep Web Technologies
Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mauna Loa Northeast Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Geothermal Area Mauna Loa Northeast Rift Geothermal Area (Redirected from Mauna Loa Northeast Rift Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mauna Loa Northeast Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

2

Mauna Loa Northeast Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Geothermal Area Mauna Loa Northeast Rift Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mauna Loa Northeast Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

3

Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes A reexamination of all groundwater sources in the Keaau area was undertaken in an effort to confirm the chemical and temperature anomalies that formed the primary basis on which the Keaau area was identified during the preliminary assessment survey. The data generated by this survey (Table 9) determined that all of the anomalous data present in the earlier data base were spurious and that the groundwater chemistry and temperatures in this

4

Aeromagnetic Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Rift Area (Thomas, 1986) Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic data (Godson et al., 1981) for the lower northeast rift of Mauna Loa tend to substantiate this conclusion as well. The lower extension of the rift zone does not exhibit any significant magnetic features that would correspond to a thermal source within the inferred trace of the rift zone. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=40242

5

Gulf of California Rift Zone Geothermal Region | Open Energy...  

Open Energy Info (EERE)

of California Rift Zone Geothermal Region (Redirected from Gulf of California Rift Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Gulf of California Rift Zone...

6

Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Area (Thomas, 1986) Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes Soil mercury and radon emanometry sampling conducted in the Keaau prospect were similarly unable to define any anomalies that could reasonably be interpreted to be due to subsurface thermal effects. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=390060

7

Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Soil mercury and radon emanometry sampling conducted in the Keaau prospect were similarly unable to define any anomalies that could reasonably be interpreted to be due to subsurface thermal effects. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Gas_Flux_Sampling_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=389039"

8

Gulf of California Rift Zone Geothermal Region | Open Energy...  

Open Energy Info (EERE)

Gulf of California Rift Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Gulf of California Rift Zone Geothermal Region edit Details Areas (15)...

9

Rio Grande Rift Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Rift Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rio Grande Rift Geothermal Region edit Details Areas (21) Power Plants (0) Projects (2)...

10

Direct-Current Resistivity Survey At Mauna Loa Northeast Rift...  

Open Energy Info (EERE)

Details Location Mauna Loa Northeast Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The vertical...

11

Hualalai Northwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hualalai Northwest Rift Geothermal Area Hualalai Northwest Rift Geothermal Area (Redirected from Hualalai Northwest Rift Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hualalai Northwest Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

12

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical  

Open Energy Info (EERE)

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Details Activities (0) Areas (0) Regions (0) Abstract: This study, which focuses on the Aluto-Langano geothermal field, is part of the ongoing investigations of the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360°C, in the Lakes District region of the Ethiopian Rift Valley. The upflow zone for the system lies along a deep, young NNE trending fault and is characterized by

13

Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea...  

Open Energy Info (EERE)

SURVEY, 2006 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano,...

14

Kilauea Southwest Rift And South Flank Geothermal Area | Open Energy  

Open Energy Info (EERE)

Kilauea Southwest Rift And South Flank Geothermal Area Kilauea Southwest Rift And South Flank Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Southwest Rift And South Flank Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

15

Mauna Loa Southwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mauna Loa Southwest Rift Geothermal Area Mauna Loa Southwest Rift Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mauna Loa Southwest Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

16

Hualalai Northwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hualalai Northwest Rift Geothermal Area Hualalai Northwest Rift Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hualalai Northwest Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

17

Development Overview of Geothermal Resources In Kilauea East Rift Zone |  

Open Energy Info (EERE)

Development Overview of Geothermal Resources In Kilauea East Rift Zone Development Overview of Geothermal Resources In Kilauea East Rift Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Overview of Geothermal Resources In Kilauea East Rift Zone Abstract This study reviews the geothermal resources associatedwith the Kilauea East Rift Zone (KERZ) of Hawaii islandby focusing on a holistic development strategy for additionalgeothermal production. A review of existing literature inthe fields of geology, drilling, power production and policychallenges, highlights critical issues for geothermalenterprises. A geological assessment of the hydrology,geochemistry, and structural features that characterize theregion is discussed. Available data are interpreted includinggeology, geochemistry, well depth and temperature.

18

Kilauea Southwest Rift And South Flank Geothermal Area | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Kilauea Southwest Rift And South Flank Geothermal Area (Redirected from Kilauea Southwest Rift And South Flank Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Southwest Rift And South Flank Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii

19

Kilauea East Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea East Rift Geothermal Area Kilauea East Rift Geothermal Area (Redirected from Kilauea East Rift Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea East Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (0) 10 Exploration Activities (28) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.47836,"lon":-154.8883,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico  

DOE Green Energy (OSTI)

The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps for the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.

James C Witcher

2002-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Kilauea East Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Kilauea East Rift Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea East Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (0) 10 Exploration Activities (28) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.47836,"lon":-154.8883,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

22

Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano,  

Open Energy Info (EERE)

Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library : Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, HawaiiInfo Graphic/Map/Chart Authors Frank A. Trusdell and Richard B. Moore Published U.S. GEOLOGICAL SURVEY, 2006 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii Citation Frank A. Trusdell,Richard B. Moore. Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii. []. Place of publication not provided. U.S. GEOLOGICAL SURVEY. 2006. Available from: http://pubs.usgs.gov/imap/2614/downloads/pdf/2614map_508.pdf.

23

Direct-Current Resistivity Survey At Mauna Loa Northeast Rift Area (Thomas,  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Mauna Loa Direct-Current Resistivity Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The vertical electrical sounding surveys encountered few difficulties and were able to resolve basement resistivities in all locations. The resistivity sections derived indicated a 3000- 20,000 ohm.m surface layer underlain by a 500- 900 ohm-m cold freshwatersaturated layer and a basement layer of less than 100 ohm.m (Kauahikaua and Mattice, 1981). The depth of penetration of these soundings was estimated to be about 800 m to 900 m b.s.1. and thus the basement resistivities probably correspond to basalts

24

Rio Grande Rift Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

25

Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii  

DOE Green Energy (OSTI)

A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

West, H.B.; Delanoy, G.A.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States). Hawaii Inst. of Geophysics); Gerlach, D.C. (Lawrence Livermore National Lab., CA (United States)); Chen, B.; Takahashi, P.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States) Evans (Charles) and Associates, Redwood City, CA (United States))

1992-01-01T23:59:59.000Z

26

Rift Zone | Open Energy Information  

Open Energy Info (EERE)

Rift Zone Rift Zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rift Zone Dictionary.png Rift Zone: A divergent plate boundary within a continent Other definitions:Wikipedia Reegle Tectonic Settings List of tectonic settings known to host modern geothermal systems: Extensional Tectonics Subduction Zone Rift Zone Hot Spot Non-Tectonic Strike-Slip The Rio Grande Rift exemplifies rift zone tectonics - increased volcanic activity and the formation of graben structures (reference: science-art.com) Rift valleys occur at divergent plate boundaries, resulting in large graben structures and increased volcanism. The East African Rift is an example of a continental rift zone with increased volcanism, while the Atlantic's spreading Mid-Ocean Ridge is host to an enormous amount of geothermal

27

Deep Production Well for Geothermal Direct-Use Heating of A Large Commercial Greenhouse, Radium Springs, Rio Grande Rift, New Mexico  

DOE Green Energy (OSTI)

Expansion of a large commercial geothermally-heated greenhouse is underway and requires additional geothermal fluid production. This report discusses the results of a cost-shared U.S. Department of Energy (DOE) and A.R. Masson, Inc. drilling project designed to construct a highly productive geothermal production well for expansion of the large commercial greenhouse at Radium Springs. The well should eliminate the potential for future thermal breakthrough from existing injection wells and the inducement of inflow from shallow cold water aquifers by geothermal production drawdown in the shallow reservoir. An 800 feet deep production well, Masson 36, was drilled on a US Bureau of Land Management (BLM) Geothermal Lease NM-3479 at Radium Springs adjacent to the A. R. Masson Radium Springs Farm commercial greenhouse 15 miles north of Las Cruces in Dona Ana County, New Mexico just west of Interstate 25 near the east bank of the Rio Grande. The area is in the Rio Grande rift, a tectonically-active region with high heat flow, and is one of the major geothermal provinces in the western United State.

James C. Witcher

2002-01-02T23:59:59.000Z

28

Archaeology in the Kilauea East Rift Zone: Part 1, Land-use model and research design, Kapoho, Kamaili and Kilauea Geothermal Subzones, Puna District, Hawaii Island  

DOE Green Energy (OSTI)

The Puna Geothermal Resource Subzones (GRS) project area encompasses approximately 22,000 acres centered on the Kilauea East Rift Zone in Puna District, Hawaii Island. The area is divided into three subzones proposed for geothermal power development -- Kilauea Middle East Rift, Kamaili and Kapoho GRS. Throughout the time of human occupation, eruptive episodes along the rift have maintained a dynamic landscape. Periodic volcanic events, for example, have changed the coastline configuration, altered patterns of agriculturally suitable sediments, and created an assortment of periodically active, periodically quiescent, volcanic hazards. Because of the active character of the rift zone, then, the area`s occupants have always been obliged to organize their use of the landscape to accommodate a dynamic mosaic of lava flow types and ages. While the specific configuration of settlements and agricultural areas necessarily changed in response to volcanic events, it is possible to anticipate general patterns in the manner in which populations used the landscape through time. This research design offers a model that predicts the spatial results of long-term land-use patterns and relates them to the character of the archaeological record of that use. In essence, the environmental/land-use model developed here predicts that highest population levels, and hence the greatest abundance and complexity of identifiable prehistoric remains, tended to cluster near the coast at places that maximized access to productive fisheries and agricultural soils. With the possible exception of a few inland settlements, the density of archaeological remains expected to decrease with distance from the coastline. The pattern is generally supported in the regions existing ethnohistoric and archaeological record.

Burtchard, G.C.; Moblo, P. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

1994-07-01T23:59:59.000Z

29

New Mexico/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mexico/Geothermal Mexico/Geothermal < New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Mexico Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Mexico Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Lightning Dock I Geothermal Project Raser Technologies Inc Lordsburg, New Mexico Phase I - Resource Procurement and Identification Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Lightning Dock II Geothermal Project Raser Technologies Inc Lordsburg, NV Phase III - Permitting and Initial Development Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in New Mexico

30

Overview of Geothermal Energy Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Energy Geothermal Energy Development Kermit Witherbee Geothermal Geologist/Analyst DOE Office of Indian Energy Webcast: Overview of Geothermal Energy Development Tuesday, January 10, 2012 Geothermal Geology and Resources Environmental Impacts Geothermal Technology - Energy Conversion Geothermal Leasing and Development 2 PRESENTATION OUTLINE GEOTHERMAL GEOLOGY AND RESOURCES 3 Geology - Plate Tectonics 4 Plate Tectonic Processes Schematic Cross-Section "Extensional" Systems- "Rifting" Basin and Range Rio Grand Rift Imperial Valley East Africa Rift Valley "Magmatic" Systems Cascade Range 6 Geothermal Resources(USGS Fact Sheet 2008-3062) 7 State Systems

31

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

32

Evaluation of geothermal potential of Rio Grande rift and Basin and Range province, New Mexico. Final technical report, January 1, 1977-May 31, 1978  

DOE Green Energy (OSTI)

A study was made of the geological, geochemical and geophysical characteristics of potential geothermal areas in the Rio Grande rift and Basin and Range province of New Mexico. Both regional and site-specific information is presented. Data was collected by: (1) reconnaissance and detailed geologic mapping, emphasizing Neogene stratigraphy and structure; (2) petrologic studies of Neogene igneous rocks; (3) radiometric age-dating; (4) geochemical surveying, including regional and site-specific water chemistry, stable isotopic analyses of thermal waters, whole-rock and mineral isotopic studies, and whole-rock chemical analyses; and (5) detailed geophysical surveys, using electrical, gravity and magnetic techniques, with electrical resistivity playing a major role. Regional geochemical water studies were conducted for the whole state. Integrated site-specific studies included the Animas Valley, Las Cruces area (Radium Springs and Las Alturas Estates), Truth or Consequences region, the Albuquerque basin, the San Ysidro area, and the Abiquiu-Ojo Caliente region. The Animas Valley and Las Cruces areas have the most significant geothermal potential of the areas studied. The Truth or Consequences and Albuquerque areas need further study. The San Ysidro and Abiquiu-Ojo Caliente regions have less significant geothermal potential. 78 figs., 16 tabs.

Callender, J.F.

1985-04-01T23:59:59.000Z

33

Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And...  

Open Energy Info (EERE)

Flank Area (Wyss, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And...

34

Modeling-Computer Simulations At Kilauea East Rift Area (Rudman...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Kilauea East Rift Area (Rudman & Epp, 1983) Exploration Activity...

35

Category:Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

Geothermalpower.jpg Geothermalpower.jpg Looking for the Geothermal Regions page? For detailed information on Geothermal Regions, click here. Category:Geothermal Regions Add.png Add a new Geothermal Region Pages in category "Geothermal Regions" The following 22 pages are in this category, out of 22 total. A Alaska Geothermal Region C Cascades Geothermal Region Central Nevada Seismic Zone Geothermal Region G Gulf of California Rift Zone Geothermal Region H Hawaii Geothermal Region Holocene Magmatic Geothermal Region I Idaho Batholith Geothermal Region N Northern Basin and Range Geothermal Region N cont. Northern Rockies Geothermal Region Northwest Basin and Range Geothermal Region O Outside a Geothermal Region R Rio Grande Rift Geothermal Region S San Andreas Geothermal Region San Andreas Split Geothermal Region

36

Colorado/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Colorado/Geothermal Colorado/Geothermal < Colorado Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Colorado Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Colorado No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Colorado No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Colorado Mean Capacity (MW) Number of Plants Owners Geothermal Region Flint Geothermal Geothermal Area Rio Grande Rift Geothermal Region Mt Princeton Hot Springs Geothermal Area 4.615 MW4,614.868 kW 4,614,868.309 W 4,614,868,309 mW 0.00461 GW 4.614868e-6 TW Rio Grande Rift Geothermal Region Poncha Hot Springs Geothermal Area 5.274 MW5,273.619 kW 5,273,618.589 W

37

Hawaii/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Geothermal Hawaii/Geothermal < Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hawaii Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Hawaii Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Haleakala SW Rift Zone Exploration Ormat Technologies Inc , US Department of Energy Haleakala Southwest Rift Zone Haleakala Volcano Geothermal Area Hawaii Geothermal Region Puna Geothermal Venture Ormat Technologies Inc Pahoa, Hawaii 38 MW38,000 kW 38,000,000 W 38,000,000,000 mW 0.038 GW 3.8e-5 TW Kilauea East Rift Geothermal Area Hawaii Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in Hawaii Owner Facility Type Capacity (MW) Commercial Online

38

Arizona/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arizona/Geothermal Arizona/Geothermal < Arizona Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arizona Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arizona No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arizona No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arizona Mean Capacity (MW) Number of Plants Owners Geothermal Region Clifton Hot Springs Geothermal Area 14.453 MW14,453.335 kW 14,453,335.43 W 14,453,335,430 mW 0.0145 GW 1.445334e-5 TW Rio Grande Rift Geothermal Region Gillard Hot Springs Geothermal Area 11.796 MW11,796.115 kW 11,796,114.7 W 11,796,114,700 mW 0.0118 GW 1.179611e-5 TW Rio Grande Rift Geothermal Region

39

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

40

Geothermal investigations in West Virginia  

DOE Green Energy (OSTI)

Deep sedimentary basins and warm-spring systems in West Virginia are potential geothermal resources. A temperature gradient map based on 800 bottom-hole temperatures for West Virginia shows that variations of temperature gradient trend northeasterly, parallel to regional structure. Highest temperature gradient values of about 28/sup 0/C/km occur in east-central West Virginia, and the lowest gradients (18/sup 0/C/km) are found over the Rome Trough. Results from ground-water geochemistry indicate that the warm waters circulate in very shallow aquifers and are subject to seasonal temperature fluctuations. Silica heat-flow data in West Virginia vary from about 0.89 to 1.4 HFU and generally increase towards the west. Bouguer, magnetic, and temperature gradient profiles suggest that an ancient rift transects the state and is the site of several deep sedimentary basins.

Hendry, R.; Hilfiker, K.; Hodge, D.; Morgan, P.; Swanberg, C.; Shannon, S.S. Jr.

1982-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Ground Gravity Survey At Kilauea East Rift Area (Leslie, Et Al...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Kilauea East Rift Area (Leslie, Et Al., 2004) Exploration Activity Details...

42

Texas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Texas/Geothermal Texas/Geothermal < Texas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Texas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Texas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Texas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Texas Mean Capacity (MW) Number of Plants Owners Geothermal Region Fort Bliss Geothermal Area Rio Grande Rift Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Texas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

43

Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas,  

Open Energy Info (EERE)

Hualalai Northwest Rift Area (Thomas, Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A total of seven Schlumberger soundings were performed on Hualalai. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Hualalai_Northwest_Rift_Area_(Thomas,_1986)&oldid=510528" Category: Exploration Activities What links here Related changes

44

An Integrated Geophysical Study Of The Northern Kenya Rift | Open Energy  

Open Energy Info (EERE)

Kenya Rift Kenya Rift Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Integrated Geophysical Study Of The Northern Kenya Rift Details Activities (0) Areas (0) Regions (0) Abstract: The Kenyan part of the East African rift is among the most studied rift zones in the world. It is characterized by: (1) a classic rift valley, (2) sheer escarpments along the faulted borders of the rift valley, (3) voluminous volcanics that flowed from faults and fissures along the rift, and (4) axial and flank volcanoes where magma flow was most intense. In northern Kenya, the rift faults formed in an area where the lithosphere was weakened and stretched by Cretaceous-Paleogene extension, and in central and southern Kenya, it formed along old zones of weakness at the

45

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

46

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area (Redirected from Wister Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

47

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

48

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area (Redirected from Truckhaven Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

49

Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes Two separate phases of geothermal exploratory drilling have occurred on the lower East Rift. The first was essentially a wildcat venture with relatively little surface exploratory data having been gathered, whereas the second was initiated after somewhat more geoscience information had been acquired under the Hawaii Geothermal Project. The results of the successful exploratory drilling program on the Kilauea

50

Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) |  

Open Energy Info (EERE)

Rio Grande Rift Region (Aiken & Ander, 1981) Rio Grande Rift Region (Aiken & Ander, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) Exploration Activity Details Location Rio Grande Rift Geothermal Region Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown References Carlos L.V. Aiken, Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Rio_Grande_Rift_Region_(Aiken_%26_Ander,_1981)&oldid=401473" Category: Exploration Activities What links here Related changes Special pages Printable version

51

Thermomechanical models of the Rio Grande rift  

SciTech Connect

Fully two-dimensional, coupled thermochemical solutions of a continental rift and platform are used to model the crust and mantle structure of a hot, buoyant mantle diapir beneath the Rio Grande rift. The thermomechanical model includes both linear and nonlinear laws of the Weertman type relating shear stress and creep strain rate, viscosity which depends on temperature and pressure, and activation energy, temperature-dependent thermal conductivity, temperature-dependent coefficient of thermal expansion, the Boussinesq approximation for thermal bouyancy, material convection using a stress rate that is invariant to rigid rotations, an elastically deformable crust, and a free surface. The model determines the free surface velocities, solid state flow field in the mantle, and viscosity structure of lithosphere and asthenosphere. Regional topography and crustal heat flow are simulated. A suite of symmetric models, assumes continental geotherms on the right and the successively increasing rift geotherms on the left. These models predict an asthenospheric flow field which transfers cold material laterally toward the rift at > 300 km, hot, buoyant material approx. 200 km wide which ascends vertically at rates of 1 km/my between 175 to 325 km, and spreads laterally away from the rift at the base of the lithosphere. Crustal spreading rates are similar to uplift rates. The lithosphere acts as stiff, elastic cap, damping upward motion through decreased velocities of 1 km/10 my and spreading uplift laterally. A parameter study varying material coefficients for the Weertman flow law suggests asthenospheric viscosities of approx. 10/sup 22/ to 10/sup 23/ poise. Similar studies predict crustal viscosities of approx. 10/sup 25/ poise. The buoyant process of mantle flow narrows and concentrates heat transport beneath the rift, increases upward velocity, and broadly arches the lithosphere. 10 figures, 1 table.

Bridwell, R.J.; Anderson, C.A.

1980-01-01T23:59:59.000Z

52

Self Potential At Mauna Loa Southwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Southwest Rift Area (Thomas, 1986) Southwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Mauna Loa Southwest Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Southwest Rift Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Field surveys in the South Point area were limited to a series of Schlumberger soundings and a self-potential traverse across the rift zone. The absence of groundwater wells and time and funding constraints precluded any geochemical field surveys. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Self_Potential_At_Mauna_Loa_Southwest_Rift_Area_(Thomas,_1986)&oldid=389751

53

Refraction Survey At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Refraction Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Seismic refraction surveys conducted by Broyles and Furumoto (1978) and Suyenaga et al. (1978) developed a cross-sectional model of the rift zone near the present site of HGP-A that proposed a 12- 17 km wide dike complex lying at a depth of 2 to 3 km (Fig. 51). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Refraction_Survey_At_Kilauea_East_Rift_Area_(Thomas,_1986)&oldid=386690"

54

Volcanology and volcanic activity with a primary focus on potential hazard impacts for the Hawaii geothermal project  

DOE Green Energy (OSTI)

This annotated bibliography reviews published references about potential volcanic hazards on the Island of Hawaii that are pertinent to drilling and operating geothermal wells. The first two sections of this annotated bibliography list the most important publications that describe eruptions of Kilauea volcano, with special emphasis on activity in and near the designated geothermal subzones. References about historic eruptions from Mauna Loa`s northeast rift zone, as well as the most recent activity on the southern flank of dormant Mauna Kea, adjacent to the Humu`ula Saddle are described. The last section of this annotated bibliography lists the most important publications that describe and analyze deformations of the surface of Kilauea and Mauna Loa volcanoes.

Moore, R.B. [Federal Center, Denver, CO (United States); Delaney, P.T. [2255 North Gemini Drive, Flagstaff, AZ (United States); Kauahikaua, J.P. [Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory

1993-10-01T23:59:59.000Z

55

Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan, Et Al.,  

Open Energy Info (EERE)

Morgan, Et Al., Morgan, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan, Et Al., 2010) Exploration Activity Details Location Rio Grande Rift Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes San Luis Basin (south-central CO) regional study. References Paul Morgan, Peter Barkmann, Charles Kluth, Matthew Sares (2010) Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Rio_Grande_Rift_Region_(Morgan,_Et_Al.,_2010)&oldid=401472" Category: Exploration

56

Thermal Gradient Holes At Hualalai Northwest Rift Area (Thomas, 1986) |  

Open Energy Info (EERE)

Hualalai Northwest Rift Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes Although not part of the current effort, two deep (approximately 2000 m) exploratory wells were drilled on the north flank of Hualalai near Puu Waawaa cinder cone. The geophysical data used for siting these wells were proprietary and hence unavailable for publication; however, the temperatures measured at the bottoms of the wells were reported to be below 20degrees C. Chemical analysis of water samples taken from these wells did not provide useful geothermal data due to contamination of the well water with drilling muds References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

57

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these surveys yielded complex patterns of mercury concentrations and radon emanation rates that generally did not show coincident anomalies (Figs 42, 43). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

58

Direct-Current Resistivity At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Electrical resistivity studies performed on the Kilauea East Rift Zone have employed a variety of techniques. Bipole mapping was conducted by Keller et al. (1977a) as part of the Hawaii Geothermal Project (HGP) geoscience program and was able to provide data on the regional resistivity structure of the summit and eastern flank of Kilauea. The model developed indicated several different types of resistivity sections depending on the location

59

Direct-Current Resistivity Survey At Kilauea East Rift Area (Thomas, 1986)  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Electrical resistivity studies performed on the Kilauea East Rift Zone have employed a variety of techniques. Bipole mapping was conducted by Keller et al. (1977a) as part of the Hawaii Geothermal Project (HGP) geoscience program and was able to provide data on the regional resistivity structure of the summit and eastern flank of Kilauea. The model developed indicated several different types of resistivity sections depending on the location

60

Aeromagnetic Survey At Kilauea Southwest Rift And South Flank Area (Thomas,  

Open Energy Info (EERE)

Thomas, Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic data (Godson et al., 1981) for the southwest rift appears to substantiate the presence of a thermal resource; there is a marked bipolar magnetic anomaly paralleling the rift zone from the summit to the lower rift near the coast suggesting either that intense hydrothermal alteration has occurred or that subsurface temperatures exceed the Curie temperature. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From  

Open Energy Info (EERE)

Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Seismic And Gravity Data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Seismic And Gravity Data Details Activities (2) Areas (1) Regions (0) Abstract: Two seismic refraction surveys were carried out in 1976 and 1977 on the east rift zone of Kilauea volcano as part of an exploratory program for geothermal resources. The short traverse seismic refraction survey of January 1976 delineated the upper surface structure of the east rift, revealing velocities of 2.5 km/s under the Kalapana line and 3.1 km/s under the Leilani line beneath a surface layer of low, but variable velocity. This survey was not successful in determining the depth of the

62

Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Hualalai Northwest Rift Area (Thomas, 1986) Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these surveys yielded complex patterns of mercury concentrations and radon emanation rates that generally did not show coincident anomalies (Figs 42, 43). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

63

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Obsidian Cliff Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

64

Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area  

Open Energy Info (EERE)

Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The electrical resistivity data acquired on the southwest rift delineated two distinct basement resistivity structures northwest of the rift zone: a high-resistivity basement at approximately 60 m a.s.l, and located north of a prehistoric fissure, and a low-resistivity deep basement (20 m a.s.1.) to the south and east of this fissure (Figs 48, 49). These data suggest that a

65

Ground Magnetics At Kilauea East Rift Area (Leslie, Et Al., 2004) | Open  

Open Energy Info (EERE)

Ground Magnetics At Kilauea East Rift Area (Leslie, Et Al., 2004) Ground Magnetics At Kilauea East Rift Area (Leslie, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Kilauea East Rift Area (Leslie, Et Al., 2004) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes Paper states "magnetic data" - no further clarification regarding type of magnetic survey. References Stephen C. Leslie, Gregory F. Moore, Julia K. Morgan (2004) Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_At_Kilauea_East_Rift_Area_(Leslie,_Et_Al.,_2004)&oldid=390100"

66

Direct-Current Resistivity Survey At Kilauea Southwest Rift And South Flank  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Kilauea Southwest Rift And South Flank Direct-Current Resistivity Survey At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The electrical resistivity data acquired on the southwest rift delineated two distinct basement resistivity structures northwest of the rift zone: a high-resistivity basement at approximately 60 m a.s.l, and located north of a prehistoric fissure, and a low-resistivity deep basement (20 m a.s.1.) to

67

A geochemical model of the Kilauea east rift zone | Open Energy Information  

Open Energy Info (EERE)

A geochemical model of the Kilauea east rift zone A geochemical model of the Kilauea east rift zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A geochemical model of the Kilauea east rift zone Abstract N/A Author Donald Thomas Published Journal US Geological Survey Professional Paper 1350, 1987 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for A geochemical model of the Kilauea east rift zone Citation Donald Thomas. 1987. A geochemical model of the Kilauea east rift zone. US Geological Survey Professional Paper 1350. (!) . Retrieved from "http://en.openei.org/w/index.php?title=A_geochemical_model_of_the_Kilauea_east_rift_zone&oldid=682589" Categories: Missing Required Information References Uncited References Geothermal References

68

Self Potential At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Self Potential At Kilauea East Rift Area (Thomas, Self Potential At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Self Potential Activity Date Usefulness useful DOE-funding Unknown Notes An extensive network of self-potential surveys have been performed over the summit and flanks of Kilauea as part of the HGP exploration surveys and in separate studies of the source mechanism for the potential anomalies observed (Zablocki, 1976, 1977). The geothermal exploration surveys were performed primarily on the lower East Rift Zone and identified four separate self-potential anomalies (Fig. 59) (Zablocki, 1977). The source mechanism for the anomalies observed was inferred to be the result of electrokinetic phenomena; thermal groundwater escaping from a geothermal

69

Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island | Open  

Open Energy Info (EERE)

Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island Abstract Three geophysical research organizations, working together under the auspices of the Hawaii Geothermal Project, have used several electrical and electromagnetic exploration techniques on Kilauea volcano, Hawaii to assess its geothermal resources. This volume contains four papers detailing their methods and conclusions. Keller et al. of the Colorado School of Mines used the dipole mapping and time-domain EM sounding techniques to define low resistivity areas around the summit and flanks of Kilauea. Kauahikaua and Klein of the Hawaii Institute of Geophysics then detailed the East Rift

70

Direct-Current Resistivity Survey At Mauna Loa Southwest Rift Area (Thomas,  

Open Energy Info (EERE)

Area (Thomas, Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mauna Loa Southwest Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Southwest Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Field surveys in the South Point area were limited to a series of Schlumberger soundings and a self-potential traverse across the rift zone. The absence of groundwater wells and time and funding constraints precluded any geochemical field surveys. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Mauna_Loa_Southwest_Rift_Area_(Thomas,_1986)&oldid=510541"

71

ORISE: DOE EERE National Geothermal Student Competition photo gallery  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Office of Energy Efficiency and Renewable Energy National Geothermal Student Competition photo gallery Check out images of the winners of the 2010-2011 National Geothermal Student Competition. Eleven teams were selected and each team received $10,000 to conduct their assessment of the Rio Grande Rift. Photos courtesy of the National Renewable Energy Laboratory (NREL). National Geothermal Student Competition photo National Geothermal Student Competition photo National Geothermal Student Competition photo National Geothermal Student Competition photo National Geothermal Student Competition photo National Geothermal Student Competition photo National Geothermal Student Competition photo National Geothermal Student Competition photo

72

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

73

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Obsidian Cliff Geothermal Area Obsidian Cliff Geothermal Area (Redirected from Obsidian Cliff Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

74

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

75

Florida Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Florida Mountains Geothermal Area Florida Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Florida Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

76

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area (Redirected from Fort Bliss Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

77

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

78

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

79

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

80

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area (Redirected from New River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area (Redirected from Jemez Pueblo Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

82

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area (Redirected from Socorro Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

83

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

84

Haleakala SW Rift Zone Exploration | Open Energy Information  

Open Energy Info (EERE)

Haleakala SW Rift Zone Exploration Haleakala SW Rift Zone Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Haleakala SW Rift Zone Exploration Project Location Information Coordinates 20.63144440367°, -156.37383611407° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.63144440367,"lon":-156.37383611407,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

85

Isotopic Analysis At Kilauea East Rift Area (Quane, Et Al., 2000) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis At Kilauea East Rift Area (Quane, Et Al., 2000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Kilauea East Rift Area (Quane, Et Al., 2000) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown References S. L. Quane, M. O. Garcia, H. Guillou, T. P. Hulsebosch (2000) Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Drill Core From Soh 1 Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Kilauea_East_Rift_Area_(Quane,_Et_Al.,_2000)&oldid=687735"

86

Time-Domain Electromagnetics At Kilauea Southwest Rift And South Flank Area  

Open Energy Info (EERE)

And South Flank Area And South Flank Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes The assessment effort consisted of a reexamination of existing Schlumberger sounding (Hussong and Cox, 1967; Adams et al., 1970) and time-domain electromagnetic (Klein and Kauahikaua, 1975) data for the rift area (Kauahikaua and Mattice, 1981) The electrical resistivity data acquired on the southwest rift delineated two distinct basement resistivity structures northwest of the rift zone: a high-resistivity basement at approximately 60

87

Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone  

Open Energy Info (EERE)

Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Details Activities (3) Areas (1) Regions (0) Abstract: Multichannel seismic reflection, sonobuoy, gravity and magnetics data collected over the submarine length of the 75 km long Puna Ridge, Hawaii, resolve the internal structure of the active rift zone. Laterally continuous reflections are imaged deep beneath the axis of the East Rift Zone (ERZ) of Kilauea Volcano. We interpret these reflections as a layer of abyssal sediments lying beneath the volcanic edifice of Kilauea. Early

88

Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Radon emanometry data for the same locality (Fig. 61) (Cox, 1980) similarly presented a complicated pattern of radon outgassing along the lower rift zone. Even though complexities are present within the rift zone, there

89

Ground Gravity Survey At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Kilauea East Rift Area Ground Gravity Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes This model was later expanded through the examination of detailed and regional gravity data (Krivoy and Eaton, 1961) and regional aeromagnetic data (Malahoff and Woollard, 1966) to a three-dimensional map of the rift zone (Furumoto, 1978b). This model projected a dike complex (presumably at high temperatures) which has a width of approximately 20 km near the summit of Kilauea that narrows to approximately 12 km at the lower quarter of the subaerial portion of the rift (Fig. 52). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

90

Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Self-potential surveys conducted over the summit and flank of Hualalai (Jackson and Sako, 1982; D. B. Jackson, pers. commun., 1983) indicate an elongate self-potential anomaly extending across the summit and down the northwest rift to Kaupulehu Crater. The positively polarized anomaly extends over an area of approximately 6 km 2 and has been interpreted to be the result of one or more buried high-temperature intrusive bodies (Jackson

91

Compound and Elemental Analysis At Kilauea Southwest Rift And South Flank  

Open Energy Info (EERE)

Flank Flank Area (Coombs, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Kilauea Southwest Rift And South Flank Area (Coombs, Et Al., 2006) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown References Michelle L. Coombs, Thomas W. Sisson, Peter W. Lipman (2006) Growth History Of Kilauea Inferred From Volatile Concentrations In Submarine-Collected Basalts Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Kilauea_Southwest_Rift_And_South_Flank_Area_(Coombs,_Et_Al.,_2006)&oldid=510423"

92

Geothermal Technologies Office: Geothermal Maps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

93

The Geochemistry of the HGP-A Geothermal Well: A Review and an Update  

DOE Green Energy (OSTI)

The HGP-A geothermal well, located on the lower east rift system of Kilauea volcano, has provided steam and hot water to a 3 MWe wellhead generator facility on a continuous basis since December 1981.

Thomas, Donald M.

1988-01-01T23:59:59.000Z

94

Conduction Models Of The Temperature Distribution In The East Rift Zone Of  

Open Energy Info (EERE)

Conduction Models Of The Temperature Distribution In The East Rift Zone Of Conduction Models Of The Temperature Distribution In The East Rift Zone Of Kilauea Volcano Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Conduction Models Of The Temperature Distribution In The East Rift Zone Of Kilauea Volcano Details Activities (2) Areas (1) Regions (0) Abstract: Temperature variations in the 1966-meter Hawaii Geothermal Project well HGP-A are simulated by model studies using a finite element code for conductive heat flow. Three models were generated: a constant temperature source from a vertical dike; a constant heat-generating magma chamber; and a transient heat source from a tapered vertical dike. Fair correlation is obtained between the HGP-A well temperature and the tapered dike 125 years after it is injected with an initial (transient) 1200°C

95

Aeromagnetic Survey At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Thomas, 1986) Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes More recent aeromagnetic data (Godson et al., 1981) generally substantiate the presence of a nearly continuous rift zone from the Kilauea summit down to sea level; the apparent width of the magnetic anomaly does not appear to match that projected by Furumoto (1978a) or Broyles et al. (1979); however, to date, no detailed analysis of the more recent data has been completed (R. B. Moore, pers. commun., 1984). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

96

Northeast Biofuels | Open Energy Information  

Open Energy Info (EERE)

Northeast Biofuels Jump to: navigation, search Name Northeast Biofuels Place United Kingdom Sector Biofuels Product Northeast biofuels is a cluster of companies and organisations...

97

Geothermal: About  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - About Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

98

Geothermal: Publications  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Publications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

99

Geothermal Energy  

U.S. Energy Information Administration (EIA)

The word geothermal comes from the Greek words geo (earth) and therme (heat). So, geothermal energy is heat from within the Earth.

100

History and Results of Surface Exploration in the Kilauea East Rift Zone |  

Open Energy Info (EERE)

History and Results of Surface Exploration in the Kilauea East Rift Zone History and Results of Surface Exploration in the Kilauea East Rift Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: History and Results of Surface Exploration in the Kilauea East Rift Zone Abstract Government-funded surveys of the Kilauea East Rift Zone have resulted in a wealth of geophysical and geochemical data from an active volcanic area. All data are clearly of academic interest; Hawaii was used as a testing ground for various geophysical methods in the early days of geothermal exploration. Some surveys, such as gravity and magnetic, are useful a regional perspective for determining broad structural trends and grossly identifying magmatic intrusions. Seismic data are currently being used for a more sitespecific purpose: to determine fault locations and geometries.

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank Area (Wyss, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank Area (Wyss, Et Al., 2001) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes In spite of the complications discovered in this b-value analysis of Kilauea's South Flank, there are many similarities with the case histories of the other volcanoes we have studied, and the correlation of high b-value anomalies withmagma reservoirs is confirmed.

102

Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On  

Open Energy Info (EERE)

Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Drill Core From Soh 1 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Drill Core From Soh 1 Details Activities (4) Areas (1) Regions (0) Abstract: Deep drilling has allowed for the first time an examination of most of the shield stage of a Hawaiian volcano when it is centered over the hotspot and most of its volume is produced. We determined the lithologies, ages, geochemical characteristics and accumulation rates of rocks from the continuously cored, ~1.7 km deep Scientific Observation Hole (SOH) 1, which was drilled into Kilauea's East Rift Zone. The uppermost ~750 m of this hole contain relatively unaltered subaerially quenched lavas; the lower

103

Static Temperature Survey At Kilauea East Rift Area (Rudman & Epp, 1983) |  

Open Energy Info (EERE)

Static Temperature Survey At Kilauea East Rift Area (Rudman & Epp, 1983) Static Temperature Survey At Kilauea East Rift Area (Rudman & Epp, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Kilauea East Rift Area (Rudman & Epp, 1983) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Static Temperature Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Drilling of HGP-A was completed on April 28, 1976. An equilibrium temperature was not measured in HGP-A; the well was flashed before the drilling disturbance was dissipated. However, before the mud was pumped out, temperatures in the well were measured at 15, 75, 97,145, and 193 hours, and at 13, 21, and 22 days after circulation of the drilling mud stopped. These temperature data are shown in Fig. 2. Between 305 m and 914

104

Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea  

Open Energy Info (EERE)

Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii Abstract The local fault and dike structures in Puna, southeastern Hawaii, are of interest both in terms of electricity productionand volcanic hazard monitoring. The geothermal powerplant at Puna has a 30 MW capacity and is built on a sectionof the Kilauea Lower East Rift Zone that was resurfaced by lava flows as recently as 1955 and 1960.The Puna Borehole Network was established in 2006 inorder to provide detailed seismic data about the Puna geothermal field. The array consists of eight 3-component borehole

105

Category:Geothermal References | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Geothermal References Jump to: navigation, search Add a new Reference Pages in category "Geothermal References" The following 200 pages are in this category, out of 323 total. (previous 200) (next 200) 2 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth 2007 Annual Report A A Case History of Injection Through 1991 at Dixie Valley, Nevada A Coordinated Exploration Program for Geothermal Sources on the Island of Hawaii A geochemical model of the Kilauea east rift zone A model for the shallow thermal regime at Dixie Valley geothermal field

106

Geothermal energy resource assessment of parts of Alaska. Final report  

DOE Green Energy (OSTI)

The central Seward Peninsula was the subject of a geological, geophysical and geochemical reconnaissance survey during a 30-day period in the summer of 1980. The survey was designed to investigate the geothermal energy resource potential of this region of Alaska. A continental rift system model was proposed to explain many of the Late Tertiary-to-Quaternary topographic, structural, volcanic and geothermal features of the region. Geologic evidence for the model includes normal faults, extensive fields of young alkalic basalts, alignment of volcanic vents, graben valleys and other features consistent with a rift system active from late Miocene time to the present. Five traverses crossing segments of the proposed rift system were run to look for evidence of structure and geothermal resources not evident from surface manifestation. Gravity, helium and mercury soil concentrations were measured along the traverses. Seismic, resistivity, and VLF studies are presented.

Wescott, E.M.; Turner, D.L.; Kienle, J.

1982-08-01T23:59:59.000Z

107

Magnetotellurics At Kilauea Southwest Rift And South Flank Area (Laney,  

Open Energy Info (EERE)

Laney, Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Kilauea Southwest Rift And South Flank Area (Laney, 2005) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes Magnetotelluric Imaging, G. Michael Hoversten. The project title derived from its inception. The project however moved from the application of MT on Kilauea in 2003 to the use of combined SP and conductivity mapping (MT) in 2004. The beginning of 2004 saw the completions of the Kilauea MT experiment by the acquisition of an additional 45 MT stations on Kilauea. We therefore decided to use the funds available to work at the Fort Bidwell

108

Geothermal Turbine  

SciTech Connect

The first geothermal power generation in the world was started at Larderello, Italy in 1904. Then, New Zealand succeeded in the geothermal power generating country. These developments were then followed by the United States, Mexico, Japan and the Soviet Union, and at present, about 25 countries are utilizing geothermal power, or investigating geothermal resources.

1979-05-01T23:59:59.000Z

109

Fenton Hill Hdr Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area Fenton Hill Hdr Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fenton Hill Hdr Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (26) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

110

San Juan Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

San Juan Volcanic Field Geothermal Area San Juan Volcanic Field Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: San Juan Volcanic Field Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

111

Twenty-Nine Palms Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Twenty-Nine Palms Geothermal Area Twenty-Nine Palms Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Twenty-Nine Palms Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

112

Fenton Hill Hdr Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fenton Hill Hdr Geothermal Area Fenton Hill Hdr Geothermal Area (Redirected from Fenton Hill Hdr Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fenton Hill Hdr Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (26) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

113

Structural Analysis of the Desert Peak-Brady Geothermal Fields,  

Open Energy Info (EERE)

Structural Analysis of the Desert Peak-Brady Geothermal Fields, Structural Analysis of the Desert Peak-Brady Geothermal Fields, Northwestern Nevada: Implications for Understanding Linkages Between Northeast-Trending Structures and Geothermal Reservoirs in the Humboldt Structural Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Structural Analysis of the Desert Peak-Brady Geothermal Fields, Northwestern Nevada: Implications for Understanding Linkages Between Northeast-Trending Structures and Geothermal Reservoirs in the Humboldt Structural Zone Abstract Detailed geologic mapping, delineation of Tertiary strata, analysis of faults and folds, and a new gravity survey have elucidated the structural controls on the Desert Peak and Brady geothermal fields in the Hot Springs Mountains of northwestern Nevada. The fields lie within the Humboldt

114

Geothermal Reservoir Assessment Based on Slim Hole Drilling, Volume 1: Analytical Method  

Science Conference Proceedings (OSTI)

EPRI tested and documented slim hole drilling as a geothermal resource evaluation method. The results of this work confirm that lower cost reservoir evaluations can be performed using slim hole methods. On the basis of this report's probabilistic reservoir size estimate, the Kilauea East Rift Zone on the island of Hawaii could support 100-300 MWe of geothermal power capacity.

1994-01-01T23:59:59.000Z

115

Geothermal Reservoir Assessment Based on Slim Hole Drilling, Volume 2: Application in Hawaii  

Science Conference Proceedings (OSTI)

EPRI tested and documented slim hole drilling as a geothermal resource evaluation method. The results of this work confirm that lower cost reservoir evaluations can be performed using slim hole methods. On the basis of this report's probabilistic reservoir size estimate, the Kilauea East Rift Zone on the island of Hawaii could support 100-300 MWe of geothermal power capacity.

1994-01-01T23:59:59.000Z

116

Energy Basics: Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Technologies Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal...

117

Geothermal Reservoir Dynamics - TOUGHREACT  

E-Print Network (OSTI)

Swelling in a Fractured Geothermal Reservoir, presented atTHC) Modeling Based on Geothermal Field Data, Geothermics,and Silica Scaling in Geothermal Production-Injection Wells

2005-01-01T23:59:59.000Z

118

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.

1996-02-01T23:59:59.000Z

119

Geothermal guidebook  

DOE Green Energy (OSTI)

The guidebook contains an overview, a description of the geothermal resource, statutes and regulations, and legislative policy concerns. (MHR)

Not Available

1981-06-01T23:59:59.000Z

120

Chocolate Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Map: Chocolate Mountains Geothermal Area Chocolate Mountains Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Phase II - Resource Exploration and Confirmation Coordinates: 33.352°, -115.353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.352,"lon":-115.353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Geothermal energy  

DOE Green Energy (OSTI)

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

122

Idaho Geothermal Commercialization Program. Idaho geothermal handbook  

DOE Green Energy (OSTI)

The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

Hammer, G.D.; Esposito, L.; Montgomery, M.

1980-03-01T23:59:59.000Z

123

San Juan Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

San Juan Volcanic Field Geothermal Area San Juan Volcanic Field Geothermal Area (Redirected from San Juan Volcanic Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: San Juan Volcanic Field Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

124

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy...

125

Geothermal: Sponsored by OSTI -- Applications of Geothermally...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels Geothermal Technologies...

126

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane...

127

New Mexico Geothermal Commercialization Program. Final report  

SciTech Connect

The New Mexico Geothermal Commercialization Program was developed as a mission-oriented program aimed at accelerating the commercial utilization of geothermal resources. The program provided the US Department of Energy, the State of New Mexico, and the citizens of the state a technical and economic guide for geothermal applications and implementation. This was accomplished by developing market strategies, cultivating public outreach, serving as a broker where appropriate and by providing limited economic and engineering evaluation of specific resource applications. The State of New Mexico used the Commercialization Program as a means to organize, focus and direct all of the state geothermal research, development and demonstration. This action enhanced geothermal development and was strategic to securing $1.8 million from the legislature for geothermal demonstrations. The Commercialization Team identified electrical and direct-use prospects throughout the State. A total of ten sites were classified as inferred electrical grade sites; four sites were classified as potential electrical grade sites; and one site was classified as a proven electrical grade site. Thirty-one sites were classified as direct-use sites: (ten proven, eleven potential and ten inferred). The Commercialization Team defined one geographical area for which the development and utilization of geothermal energy prospects are likely by the year 2020. The Team developed an Area Development Plan for the Rio Grande Rift throughout its entire length within the state.

Scudella, G.

1984-02-01T23:59:59.000Z

128

Geothermal Technologies Office: Geothermal Electricity Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

129

Geothermal Technologies Office: Enhanced Geothermal Systems Technologi...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

130

Geothermal Technologies Office: Enhanced Geothermal Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

131

Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii  

DOE Green Energy (OSTI)

This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

Sorey, M.L.; Colvard, E.M.

1994-07-01T23:59:59.000Z

132

A PACIFIC-WIDE GEOTHERMAL RESEARCH LABORATORY: THE PUNA GEOTHERMAL RESEARCH FACILITY  

SciTech Connect

The Hawaii Geothermal Project (HGP-A) well, located in the Kilauea volcano east rift zone, was drilled to a depth of 6450 feet in 1976. It is considered to be one of the hot-test producing geothermal wells in the world. This single well provides 52,800 pounds per hour of 371 F and 160 pounds per square inch-absolute (psia) steam to a 3-megawatt power plant, while the separated brine is discharged in percolating ponds. About 50,000 pounds per hour of 368 F and 155 psia brine is discharged. Geothermal energy development has increased steadily in Hawaii since the completion of HGP-A in 1976: (1) a 3 megawatt power plant at HGP-A was completed and has been operating since 1981; (2) Hawaiian Electric Company (HECO) has requested that their next increment in power production be from geothermal steam; (3) three development consortia are actively, or in the process of, drilling geothermal exploration wells on the Big Island; and (4) engineering work on the development of a 400 megawatt undersea cable for energy transmission is continuing, with exploratory discussions being initiated on other alternatives such as hydrogen. The purpose for establishing the Puna Geothermal Research Facility (PGRF) is multifold. PGRF provides a facility in Puna for high technology research, development, and demonstration in geothermal and related activities; initiate an industrial park development; and examine multi-purpose dehydration and biomass applications related to geothermal energy utilization.

Takahashi, P.; Seki, A.; Chen, B.

1985-01-22T23:59:59.000Z

133

Structural style of the Turkana Rift, Kenya  

SciTech Connect

Multifold seismic reflection and geologic mapping in part of the eastern branch of the East African Rift system of northern Kenya reveal a major rift structure containing at least 3 km of Neogene sediment fill beneath Lake Turkana. This includes a series of half-graben basins, with centrally located quaternary volcanic centers, which are linked end-to-end by structural accommodation zones. Whereas the geometry of rifting is similar to that of the nonvolcanic western branch of the East African Rift system, the Turkana half-grabens are much smaller and may reflect extension of a thinner lithosphere or development of more closely spaced fracture patterns during rift evolution, or both.

Dunkelman, T.J.; Karson, J.A.; Rosendahl, B.R.

1988-03-01T23:59:59.000Z

134

Ground radon survey of a geothermal area in Hawaii | Open Energy  

Open Energy Info (EERE)

radon survey of a geothermal area in Hawaii radon survey of a geothermal area in Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Ground radon survey of a geothermal area in Hawaii Abstract Rates of ground radon emanation, inthe Puna geothermal area on the lower east riftof Kilauea volcano, were measured by alpha particle sensitive cellulose nitrate films. The survey successfully defined an area of thermal significance associated with the rift structure,and suggests that a thermally driven ground gas convection system exists within, and peripheralto, the rift. This type of survey was found suitable for the basaltic island environment characteristic of Hawaii and is now used in Hawaii as a routine geothermal exploration technique. Author Malcolm E. Cox Published Journal

135

Geothermal energy  

SciTech Connect

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

136

Geothermal Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Geothermal Energy: A Glance Back and a Leap Forward http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward geothermal-energy-glance-back-and-leap-forward" class="title-link"> Geothermal Energy: A Glance Back and a Leap Forward

137

Geothermal News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

138

Geothermal Handbook  

DOE Green Energy (OSTI)

This handbook is intended to assist the physicist, chemist, engineer, and geologist engaged in discovering and developing geothermal energy resources. This first section contains a glossary of the approximately 500 most frequently occurring geological, physical, and engineering terms, chosen from the geothermal literature. Sections 2 through 8 are fact sheets that discuss such subjects as geothermal gradients, rock classification, and geological time scales. Section 9 contains conversion tables for the physical quantities of interest for energy research in general and for geothermal research in particular.

Leffel, C.S., Jr.; Eisenberg, R.A.

1977-06-01T23:59:59.000Z

139

New River Geothermal Research Project, Imperial Valley, California  

Open Energy Info (EERE)

Research Project, Imperial Valley, California Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal Research Project, Imperial Valley, California Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Current models for the tectonic evolution of the Salton Trough provide a refined geologic model to be tested within the New River system and subsequently applied to additional rift dominated settings. Specific concepts to be included in model development include: rifting as expressed by the Brawley Seismic zone setting, northwest extensional migration, detachment faulting and a zone of tectonic subsidence as defining permeability zones; and evaluation and signature identification of diabase dike systems. Lateral continuous permeable sand units will be demonstrated through integration of existing well records with results of drilling new wells in the area.

140

Geothermal Environmental Impact Assessment: Subsurface Environmental Assessment for Four Geothermal Systems  

DOE Green Energy (OSTI)

Geothermal systems are described for Imperial Valley and The Geysers, California; Klamath Falls, Oregon; and the Rio Grande Rift Zone, New Mexico; including information on location, area, depth, temperature, fluid phase and composition, resource base and status of development. The subsurface environmental assessment evaluates potential groundwater degradation, seismicity and subsidence. A general discussion on geothermal systems, pollution potential, chemical characteristics of geothermal fluids and environmental effects of geothermal water pollutants is presented as background material. For the Imperial Valley, all publicly available water quality and location data for geothermal and nongeothermal wells in and near the East Mesa, Salton Sea, Heber, Brawley, Dunes and Glamis KGRAs have been compiled and plotted. The geothermal fluids which will be reinjected range in salinity from a few thousand to more than a quarter million ppm. Although Imperial Valley is a major agricultural center, groundwater use in and near most of these KGRAs is minimal. Extensive seismicity and subsidence monitoring networks have been established in this area of high natural seismicity and subsidence. The vapor-dominated Geysers geothermal field is the largest electricity producer in the world. Groundwater in this mountainous region flows with poor hydraulic continuity in fractured rock. Ground and surface water quality is generally good, but high boron concentrations in hot springs and geothermal effluents is of significant concern; however, spent condensate is reinjected. High microearthquake activity is noted around the geothermal reservoir and potential subsidence effects are considered minimal. In Klamath Falls, geothermal fluids up to 113 C (235 F) are used for space heating, mostly through downhole heat exchangers with only minor, relatively benign, geothermal fluid being produced at the surface. Seismicity is low and is not expected to increase. Subsidence is not recognized. Of all geothermal occurrences in the Rio Grande Rift, the Valles Caldera is currently of primary interest. injection of geothermal effluent from hydrothermal production wells should remove any hydrologic hazard due to some potentially noxious constituents. Waters circulating in the LASL Hot Dry Rock experiment are potable. Seismic effects are expected to be minimal. Subsidence effects could develop.

Sanyal, Subir; Weiss, Richard

1978-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Northeast | OpenEI  

Open Energy Info (EERE)

Northeast Northeast Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 80, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power New York Northeast projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Northeast Power Coordinating Council / Upstate New York- Reference Case (xls, 259.1 KiB)

142

Northeast Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Northeast Solar Energy Northeast Solar Energy Research Center (NSERC) A multi-purpose research facility on the BNL campus Solar PV Array Size and Type * ~1.0 MW total - Area 1 sized for testing utility-scale inverters * System voltage level of 1,000V * Connected to BNL electrical distribution system * Capability to test multiple panel technologies with crystalline silicon PV modules making up the bulk of the array * Capability to re-configure the array into

143

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical...  

Open Energy Info (EERE)

water as steam and produces a cooler saline shallow aquifer. The high partial pressure of carbon dioxide (about 30 bar in the reservoir) depresses the water table and restricts...

144

Mauna Loa Southwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Well Field Information Development Area: Number of Production Wells: Number of Injection Wells: Number of Replacement Wells: Average Temperature of Geofluid: Sanyal...

145

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

146

Geothermal: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links News DOE Geothermal Technologies Program News Geothermal Technologies Legacy Collection September 30, 2008 Update: "Hot Docs" added to the Geothermal Technologies Legacy Collection. A recent enhancement to the geothermal legacy site is the addition of "Hot Docs". These are documents that have been repeatedly searched for and downloaded more than any other documents in the database during the previous month and each preceding month. "Hot Docs" are highlighted for researchers and stakeholders who may find it valuable to learn what others in their field are most interested in. This enhancement could serve, for

147

Navy's Geothermal Program Office: Overview of Recovery Act (ARRA) Funded  

Open Energy Info (EERE)

Navy's Geothermal Program Office: Overview of Recovery Act (ARRA) Funded Navy's Geothermal Program Office: Overview of Recovery Act (ARRA) Funded Exploration in CA and NV and other Exploration Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Navy's Geothermal Program Office: Overview of Recovery Act (ARRA) Funded Exploration in CA and NV and other Exploration Projects Details Activities (9) Areas (6) Regions (0) Abstract: The Navy's Geothermal Program Office (GPO) manages, explores for and supports the development of geothermal resources on Department of Defense (DoD) -managed lands. We are currently conducting exploration in 13 sites or regions on 6 military installations in Nevada and California. We also have tentative plans to expand our activities late this year or early next year into Utah as well as Guam and the Republic of Djibouti, northeast

148

Preliminary studies for geothermal exploration in Hawaii, 1973--1975  

DOE Green Energy (OSTI)

The first volume of the series on geothermal exploration in Hawaii is a compilation of information and data relevant to geothermal resources, which are available prior to the commencement of the exploration program. A narrative account of the exploration program puts into perspective the various stages of the exploration program from 1973 to 1975. The value of this narrative account lies in that it shows how the conclusion was reached to concentrate the exploration program on the east rift of Kilauea volcano as that rift zone showed the most promise of all the volcanic centers and rift zones. The narrative ends at the selection of a drilling site. The geology and hydrology of the east rift was summarized to include data existing before the exploration program and some of the early results of the field surveys. A literature survey of Kilauea volcano attempted to cover the information available on the volcano. A literature survey of the geothermal potential of the volcanoes on the island of Oahu has already been published elsewhere. A short summary and reference is included in the volume.

Furumoto, A.S.; MacDonald, G.A.; Druecker, M.; Fan, P.F.

1977-12-01T23:59:59.000Z

149

A Preliminary Regional Geothermal Assessment Of The Gulf Of Suez, Egypt |  

Open Energy Info (EERE)

Regional Geothermal Assessment Of The Gulf Of Suez, Egypt Regional Geothermal Assessment Of The Gulf Of Suez, Egypt Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Preliminary Regional Geothermal Assessment Of The Gulf Of Suez, Egypt Details Activities (0) Areas (0) Regions (0) Abstract: The tectonic setting of Egypt, in the northeastern corner of the African continent, suggests that it may possess significant geothermal resources, especially along its eastern margin. The most promising areas for geothermal development in the NW Red Sea-Gulf of Suez rift system are locations along the eastern shore of the Gulf of Suez that are characterized by surface thermal manifestations, including a cluster of hot springs with varied temperatures. The Gulf of Suez region is one of the most interesting geothermal areas in Egypt because of the high temperatures

150

Energy Basics: Geothermal Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

151

Energy Basics: Geothermal Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

152

Geothermal Energy Resources (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

Louisiana developed policies regarding geothermal stating that the state should pursue the rapid and orderly development of geothermal resources.

153

2008 NORTHEAST RENEWABLE ENERGY CONFERENCE  

E-Print Network (OSTI)

2008 NORTHEAST RENEWABLE ENERGY CONFERENCE Penn Stater Conference Center State College, Pennsylvania AUGUST 26 - 28, 2008 Renewable Energy ­ It's on everyone's mind. The 2008 Northeast Renewable renewable energy and energy efficiency research, demonstrations, and university

Andrews, Anne M.

154

Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986...  

Open Energy Info (EERE)

Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Water Sampling Activity Date...

155

A Coordinated Exploration Program for Geothermal Sources on the Island of  

Open Energy Info (EERE)

Exploration Program for Geothermal Sources on the Island of Exploration Program for Geothermal Sources on the Island of Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: A Coordinated Exploration Program for Geothermal Sources on the Island of Hawaii Abstract Staff members of the Hawaii Institute of Geophysics carried out an exploration program for geothermal sources on the island of Hawaii by using all relevant geophysical and geochemical methods. Infrared scanning aerial surveys followed by reconnaissance-type electrical surveys and group noise surveys narrowed down the promising area to the east rift of Kilauea. The surveys carried out over the east rift included magnetic, gravity, and electrical surveys by various methods: microearthquake, surveillance, temperature profiling of wells, and chemical analysis of water samples.

156

Geothermal: Sponsored by OSTI -- Fairbanks Geothermal Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fairbanks Geothermal Energy Project Final Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

157

Decision Analysis for Enhanced Geothermal Systems Geothermal...  

Open Energy Info (EERE)

Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Geothermal Analysis Project Description The result of the proposed...

158

Geothermal: Sponsored by OSTI -- Alaska geothermal bibliography  

Office of Scientific and Technical Information (OSTI)

Alaska geothermal bibliography Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

159

Geothermal: Sponsored by OSTI -- Fourteenth workshop geothermal...  

Office of Scientific and Technical Information (OSTI)

Fourteenth workshop geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

160

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geothermal: Sponsored by OSTI -- Engineered Geothermal Systems...  

Office of Scientific and Technical Information (OSTI)

Engineered Geothermal Systems Energy Return On Energy Investment Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

162

Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Technologies Geothermal Technologies August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean,...

163

Southern Colorado Plateau Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Southern Colorado Plateau Geothermal Region Southern Colorado Plateau Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Southern Colorado Plateau Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: {{{Name}}} "The Colorado Plateau is a high standing crustal block of relatively undeformed rocks surrounded by the highly deformed Rocky Mountains, and Basin and Range Provinces. The Uinta Mountains of Utah and Rocky Mountains of Colorado define the northern and northeastern boundaries of the Plateau. The Rio Grande Rift Valley in New Mexico defines the eastern boundary. The southern boundary is marked by the Mogollon Rim, an erosional cuesta that separates the Colorado Plateau from the extensively faulted Basin and Rang Province. To the west is a broad transition zone where the geologic

164

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Snake River Plain Geothermal Region Snake River Plain Geothermal Region (Redirected from Snake River Plain) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high

165

Pumpernickel Valley Geothermal Project Thermal Gradient Wells | Open Energy  

Open Energy Info (EERE)

Valley Geothermal Project Thermal Gradient Wells Valley Geothermal Project Thermal Gradient Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Pumpernickel Valley Geothermal Project Thermal Gradient Wells Details Activities (4) Areas (1) Regions (0) Abstract: The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault,

166

Modeling-Computer Simulations At Kilauea East Rift Area (Rudman & Epp,  

Open Energy Info (EERE)

Rudman & Epp, Rudman & Epp, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Kilauea East Rift Area (Rudman & Epp, 1983) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Three models were generated: a constant temperature source from a vertical dike; a constant heat-generating magma chamber; and a transient heat source from a tapered vertical dike. Fair correlation is obtained between the HGP-A well temperature and the tapered dike 125 years after it is injected with an initial (transient) 1200degrees C temperature. Results provide background information from which to evaluate the importance of water

167

Session: Geopressured-Geothermal  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

1992-01-01T23:59:59.000Z

168

Geology of the Soda Lake geothermal area  

DOE Green Energy (OSTI)

The Soda Lake geothermal area is located in the Carson Desert, west-central Nevada. Hot springs activity has occurred in the Soda Lake area in the past, resulting in surface deposits which have motivated present geothermal exploration. The geothermal anomaly is in Quaternary clastic sediments which are as much as 4600 feet thick. The sediments consist of interbedded deltaic, lacustrine, and alluvial sediments. Quaternary basaltic igneous activity has produced cinder cones, phreatic explosions that formed the maar occupied by Soda Lake, and possible dikes. Opal deposition and soil alteration are restricted to a small area two miles north of Soda Lake. The location of hot springs activity and the surface thermal anomaly may be partially controlled by north-northeast-trending faults.

Sibbett, B.S.

1979-12-01T23:59:59.000Z

169

Qualification Plan for Phase One of True-MidPacific Geothermal Venture: James Campbell - Kahaualea Project, Island of Hawaii  

DOE Green Energy (OSTI)

The objective of this project is to develop the geothermal resources of the James Campbell Estate, comprising acres in the Puna District of the Island of Hawaii. The geothermal resource is assumed to exist in the vicinity of the East Rift of the Kilauea volcano. The location of the proposed geothermal well field and the geothermal-electric power plant are shown on Dwg. No. E-04-001. Access to the project area will be provided by a new road extension from the boundary road south from Glenwood on Highway 11.

None

1981-06-01T23:59:59.000Z

170

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

171

Kakkonda Geothermal Power Plant  

SciTech Connect

A brief general description is given of a geothermal resource. Geothermal exploration in the Takinoue area is reviewed. Geothermal drilling procedures are described. The history of the development at the Takinoue area (the Kakkonda Geothermal Power Plant), and the geothermal fluid characteristics are discussed. The technical specifications of the Kakkonda facility are shown. Photographs and drawings of the facility are included. (MHR)

DiPippo, R.

1979-01-01T23:59:59.000Z

172

Property:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

Property Name GeothermalRegion Property Name GeothermalRegion Property Type Page Pages using the property "GeothermalRegion" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + Northern Basin and Range Geothermal Region + Adak Geothermal Area + Alaska Geothermal Region + Aidlin Geothermal Facility + Holocene Magmatic Geothermal Region + Akun Strait Geothermal Area + Alaska Geothermal Region + Akutan Fumaroles Geothermal Area + Alaska Geothermal Region + Akutan Geothermal Project + Alaska Geothermal Region + Alum Geothermal Area + Walker-Lane Transition Zone Geothermal Region + Alum Geothermal Project + Walker-Lane Transition Zone Geothermal Region + Alvord Hot Springs Geothermal Area + Northwest Basin and Range Geothermal Region +

173

Geothermal turbine  

SciTech Connect

A turbine for the generation of energy from geothermal sources including a reaction water turbine of the radial outflow type and a similar turbine for supersonic expansion of steam or gases. The rotor structure may incorporate an integral separator for removing the liquid and/or solids from the steam and gas before the mixture reaches the turbines.

Sohre, J.S.

1982-06-22T23:59:59.000Z

174

Pumpernickel Valley Geothermal Project Thermal Gradient Wells  

DOE Green Energy (OSTI)

The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

Z. Adam Szybinski

2006-01-01T23:59:59.000Z

175

Geothermal component test facility  

DOE Green Energy (OSTI)

A description is given of the East Mesa geothermal facility and the services provided. The facility provides for testing various types of geothermal energy-conversion equipment and materials under field conditions using geothermal fluids from three existing wells. (LBS)

Not Available

1976-04-01T23:59:59.000Z

176

Geothermal Technologies Program: Utah  

DOE Green Energy (OSTI)

Geothermal Technologies Program Utah fact sheet describes the geothermal areas and use in Utah, focusing on power generation as well as direct use, including geothermally heated greenhouses, swimming pools, and therapeutic baths.

Not Available

2005-06-01T23:59:59.000Z

177

The northeast Georgia hydroelectric plants.  

E-Print Network (OSTI)

??The Northeast Georgia hydroelectric plants are important cultural resources to the state of Georgia and the communities immediately adjacent. If the early technology of these (more)

Kelly, Nancy Elizabeth

2005-01-01T23:59:59.000Z

178

Geothermal probabilistic cost study  

DOE Green Energy (OSTI)

A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

1981-08-01T23:59:59.000Z

179

NREL: Geothermal Technologies - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Program Web site or search the NREL Publications Database. For additional geothermal documents, including those published since 1970, please visit the Office of Science and Technology Information Geothermal Legacy Collection. Policymakers' Guidebooks Five steps to effective policy. Geothermal Applications Market and Policy Analysis Program Activities R&D Activities Geothermal Applications

180

Geothermal: Promotional Video  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Promotional Video Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geothermal: Site Map  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Site Map Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

182

Geothermal: Bibliographic Citation  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Bibliographic Citation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

183

Geothermal: Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Related Links Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

184

Geothermal: Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Home Page Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced...

185

Geothermal: Contact Us  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Contact Us Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

186

Geothermal: Hot Documents Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

187

Geothermal: Basic Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Basic Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

188

Geothermal: Educational Zone  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Educational Zone Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

189

Energy Basics: Geothermal Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Resources Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are...

190

Geothermal Resources Council's ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications...

191

NREL: Geothermal Technologies - News  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Geothermal News...

192

Geothermal energy  

SciTech Connect

Dry hot rock in the Earth's crust represents the largest and most broadly distributed reservoir of usable energy accessible to man. The engineering equipment and methods required to extract and use this energy appear to exist and are now being investigated actively at LASL. At least for deep systems in relatively impermeable rock, not close to active faults, the extraction of energy frtom dry geothermal resertvoirs should involve no significant environmental hazards. The principal environmental effects of such energy systems will be those associated with the surface facilities that use the geothermal heat; these will be visual, in land use, and in the thermal-pollution potential of low-temperature power plants. The energy extraction system itself should be clean; safe, unobtrusive, and economical. (auth)

Smith, M.C.

1973-01-01T23:59:59.000Z

193

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

194

Geothermal Today: 2005 Geothermal Technologies Program Highlights  

DOE Green Energy (OSTI)

This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

Not Available

2005-09-01T23:59:59.000Z

195

Northeast Home Heating Oil Reserve  

Gasoline and Diesel Fuel Update (EIA)

Northeast Home Heating Oil Reserve Northeast Home Heating Oil Reserve Information on the Northeast Home Heating Oil Reserve is available from the U.S. Department of Energy (DOE) Office of Petroleum Reserves web site at http://www.fossil.energy.gov/programs/reserves/heatingoil/. Northeast Home Heating Oil Reserve (NEHHOR) inventories now classified as ultra-low sulfur distillate (15 parts per million) are not considered to be in the commercial sector and therefore are excluded from distillate fuel oil supply and disposition statistics in Energy Information Administration publications, such as the Weekly Petroleum Status Report, Petroleum Supply Monthly, and This Week In Petroleum. Northeast Home Heating Oil Reserve Terminal Operator Location (Thousand Barrels) Hess Corp. Groton, CT 500*

196

Geothermal Literature Review At International Geothermal Area, Iceland  

Open Energy Info (EERE)

Geothermal Literature Review At International Geothermal Area, Iceland Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Iceland Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Iceland_(Ranalli_%26_Rybach,_2005)&oldid=510812

197

National Geothermal Data System (NGDS) Geothermal Data Domain...  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library...

198

Geothermal: Sponsored by OSTI -- Two-phase flow in geothermal...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Two-phase flow in geothermal energy sources. Annual report, June 1, 1975--May 31, 1976 Geothermal Technologies...

199

Geothermal: Sponsored by OSTI -- Hybrid Cooling for Geothermal...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report Geothermal Technologies Legacy Collection...

200

Geothermal Tomorrow 2008  

Science Conference Proceedings (OSTI)

Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

Not Available

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alaska geothermal bibliography  

DOE Green Energy (OSTI)

The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.) [comps.

1987-05-01T23:59:59.000Z

202

Energy Basics: Geothermal Electricity Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Electricity Production A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep...

203

Newberry Geothermal | Open Energy Information  

Open Energy Info (EERE)

Newberry Geothermal Jump to: navigation, search Davenport Newberry Holdings (previously named Northwest Geothermal Company) started to develop a 120MW geothermal project on its...

204

Geothermal Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources Geothermal Resources August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production...

205

Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Geothermal Technologies August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from...

206

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network (OSTI)

of Subsiding Areas and Geothermal Subsidence Potential25 Project 2-Geothermal Subsidence Potential Maps . . . . .Subsidence Caused by a Geothermal Project and Subsidence Due

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

207

Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

208

Session: Geopressured-Geothermal  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

1992-01-01T23:59:59.000Z

209

Geophysical Evidence for the Availability of Geothermal Energy in New Britian  

DOE Green Energy (OSTI)

This paper combines some of the results and interpretations of geological mapping, seismic refraction, marine seismic, and gravity surveys to show that large tracts of New Britain could be favorable targets for geothermal power development. It is shown that the fractured and faulted lithosphere is associated with grabens and rifts in which mantle material has risen to within 10 to 15 km from the surface. The grabens and rifts are marked by volcanism in which the dominant volcanic rocks are olivine--and tholeiitic--basalts, with a sprinkling of more acid volcanics ranging from dacite to andesite. Following A. Rittman the basalts are believed to have originated in the asthenosphere when the lithosphere was broken up under a tensional stress regime; the acid volcanics were formed by magmatic differentiation within the crust. it was argued that ideal geothermal reservoirs are capped with altered ash deposits or other nonpermeable volcanics. To feed such reservoirs conduits are required which are naturally located on fault or shear zones. The two areas selected as favorable for future geothermal power development are located between Talasea and Lolobau Is., say around Hoskins; and near Rabaul, between Matupi Harbor and Matupi. As a type area, the rift between the Gazelle Peninsula and New Ireland resembles the Afar triangle, at the northern end of the Great Valley Rift system of Africa.

Wiebenga, W. A.; Furumoto, A. S.

1974-01-01T23:59:59.000Z

210

Aeromagnetic Survey At Kilauea Southwest Rift And South Flank...  

Open Energy Info (EERE)

appears to substantiate the presence of a thermal resource; there is a marked bipolar magnetic anomaly paralleling the rift zone from the summit to the lower rift near the coast...

211

Remote Sensing for Biodiversity Conservation of the Albertine Rift  

E-Print Network (OSTI)

183 10 Remote Sensing for Biodiversity Conservation of the Albertine Rift in Eastern Africa Samuel 2003). The rapidly developing field of remote sensing has been invaluable to biodiversity conservation...............................................................................................184 10.3 Remote Sensing of the Albertine Rift .....................................................185

Wang, Y.Q. "Yeqiao"

212

Alligator Geothermal Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Alligator Geothermal Geothermal Project Alligator Geothermal Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Alligator Geothermal Geothermal Project Project Location Information Coordinates 39.741169444444°, -115.51666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.741169444444,"lon":-115.51666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

214

Susanville Geothermal Investigations, California, Special Report  

DOE Green Energy (OSTI)

This report documents the investigations by the Bureau of Reclamation and others of the geothermal resource potential of the Susanville-Honey Lake Valley area, California, made during 1975 and the early part of 1976. Included are discussions on the nature of the resource and the analyses of the data gathered. Susanville is located in northeastern California about 210 miles (330 kilometers) northeast of San Francisco. The purpose of the study was to appraise the geothermal resources in the Susanville-Honey Lake area within the constraints of limited funds and available personnel. The main thrust of the studies consisted of: gathering and analyzing existing data; conducting and evaluating an electrical resistivity survey and an aerial thermal infrared survey; and drilling and logging of temperature gradient holes. The heat flow or energy potential of the resource was not determined.

none

1976-06-01T23:59:59.000Z

215

Third Northeast Regional Operational Workshop  

Science Conference Proceedings (OSTI)

The Third Northeast Regional Operational Workshop, focusing on hydrometeorology in the northeastern United States, was held 6-7 November 2001 in Albany, New York. Sessions covered cold season events, warm season events, modeling,and operational ...

Eugene P. Auciello

2002-07-01T23:59:59.000Z

216

Energy Basics: Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

217

Geothermal Technologies Office: Electricity Generation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

218

Category:Geothermal Development Phases | Open Energy Information  

Open Energy Info (EERE)

of 6 total. G GeothermalExploration GeothermalLand Use GeothermalLeasing GeothermalPower Plant GeothermalTransmission GeothermalWell Field Retrieved from "http:...

219

Stratigraphy and rifting history of the Mesozoic-Cenozoic Anza rift, Kenya  

Science Conference Proceedings (OSTI)

Lithological and compositional relationships, thicknesses, and palynological data from drilling cuttings from five wells in the Anza rift, Kenya, indicate active rifting during the Late Cretaceous and Eocene-Oligocene. The earlier rifting possibly started in the Santonian-Coniacian, primarily occurred in the Campanian, and probably extended into the Maastrichtian. Anza rift sedimentation was in lacustrine, lacustrine-deltaic, fluvial, and flood-basin environments. Inferred synrift intervals in wells are shalier, thicker, more compositionally immature, and more poorly sorted than Lower Cretaceous ( )-lower Upper Cretaceous and upper Oligocene( )-Miocene interrift deposits. Synrift sandstone is mostly feldspathic or arkosic wacke. Sandstone deposited in the Anza basin during nonrift periods is mostly quartz arenite, and is coarser and has a high proportion of probable fluvial deposits relative to other facies. Volcanic debris is absent in sedimentary strata older than Pliocene-Holocene, although small Cretaceous intrusions are present in the basin. Cretaceous sandstone is cemented in places by laumontite, possibly recording Campanian extension. Early Cretaceous history of the Anza basin is poorly known because of the limited strata sampled; Jurassic units were not reached. Cretaceous rifting in the Anza basin was synchronous with rifting in Sudan and with the breakup and separation of South America and Africa; these events likely were related. Eocene-Oligocene extension in the Anza basin reflects different stresses. The transition from active rifting to passive subsidence in the Anza basin at the end of the Neogene, in turn, records a reconfigured response of east African plates to stresses and is correlated with formation of the East Africa rift.

Winn, R.D. Jr.; Steinmetz, J.C. (Marathon Oil Co., Littleton, CO (United States)); Kerekgyarto, W.L. (Marathon Oil Co., Houston, TX (United States))

1993-11-01T23:59:59.000Z

220

Geothermal: Help  

NLE Websites -- All DOE Office Websites (Extended Search)

Help Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Help Table of Contents Basic Search Advanced Search Sorting Term searching Author select Subject select Limit to Date searching Distributed Search Search Tips General Case sensitivity Drop-down menus Number searching Wildcard operators Phrase/adjacent term searching Boolean Search Results Results Using the check box Bibliographic citations Download or View multiple citations View and download full text Technical Requirements Basic Search Enter your search term (s) in the search box and your search will be conducted on all available indexed fields, including full text. Advanced Search Sorting Your search results will be sorted in ascending or descending order based

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Guidebook to Geothermal Finance  

Science Conference Proceedings (OSTI)

This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

2011-03-01T23:59:59.000Z

222

Geothermal: Sponsored by OSTI -- Advanced Electric Submersible...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Advanced Electric Submersible Pump Design Tool for Geothermal Applications Geothermal Technologies Legacy...

223

Holocene Magmatic Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Holocene Magmatic Geothermal Region (Redirected from Holocene Magmatic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Holocene Magmatic Geothermal Region Details...

224

A Fossilized Opal A To Opal C-T Transformation On The Northeast Atlantic  

Open Energy Info (EERE)

Fossilized Opal A To Opal C-T Transformation On The Northeast Atlantic Fossilized Opal A To Opal C-T Transformation On The Northeast Atlantic Margin- Support For A Significantly Elevated Palaeogeothermal Gradient During The Neogene? Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Fossilized Opal A To Opal C-T Transformation On The Northeast Atlantic Margin- Support For A Significantly Elevated Palaeogeothermal Gradient During The Neogene? Details Activities (0) Areas (0) Regions (0) Abstract: Rock samples-collected from a recent deep-water exploration well drilled in the Faeroe-Shetland Channel, northwest of the UK-confirm that a distinctive high-amplitude seismic reflector that crosscuts the Upper Palaeogene and Neogene succession and covers an area of 10 000 km(2) is an example of a fossilized Opal A to Opal C/T (Cristobalite/Tridymite)

225

Geothermal Literature Review At International Geothermal Area, Italy  

Open Energy Info (EERE)

International Geothermal Area, Italy International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Italy Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Italy_(Ranalli_%26_Rybach,_2005)&oldid=510813

226

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

227

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

228

Geothermal: Sponsored by OSTI -- Geothermal pump program  

Office of Scientific and Technical Information (OSTI)

pump program Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News...

229

Geothermal: Sponsored by OSTI -- Geothermal resource evaluation...  

Office of Scientific and Technical Information (OSTI)

resource evaluation of the Yuma area Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search...

230

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

231

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

232

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

233

Forrest County Geothermal Energy Project Geothermal Project ...  

Open Energy Info (EERE)

of replacing the existing air cooled chiller with geothermal water to water chillers for energy savings at the Forrest County Multi Purpose Center. The project will also replace...

234

New Hampshire/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < New Hampshire Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Hampshire Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Hampshire No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Hampshire No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Hampshire Mean Capacity (MW) Number of Plants Owners Geothermal Region White Mountains Geothermal Area Other GRR-logo.png Geothermal Regulatory Roadmap for New Hampshire Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

235

Wisconsin/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal < Wisconsin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wisconsin Geothermal edit General Regulatory Roadmap Geothermal Power Projects Under...

236

EIA Energy Kids - Geothermal - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Geothermal Basics What Is Geothermal Energy? The word geothermal comes from the Greek words geo (earth) and therme (heat). So, geothermal energy is heat from within ...

237

Category:Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Systems (EGS) G Geothermal Direct Use G cont. GeothermalExploration Ground Source Heat Pumps H Hydrothermal System S Sedimentary Geothermal Systems Retrieved from...

238

Geothermal Technologies Program: Washington  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Washington State. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

239

Geothermal Technologies Program: Alaska  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

240

Geothermal Technologies Program: Oregon  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Oregon. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Regional geothermal exploration in north central New Mexico. Final report  

DOE Green Energy (OSTI)

A broad-based geothermal resource reconnaissance study covering Bernalillo, Los Alamos, Rio Arriba, San Miguel, Sandoval, Santa Fe, Taos, Torrance, and Valencia counties in north central New Mexico was conducted from June 15, 1981, through September 30, 1983. Specific activities included the compilation of actual temperature, bottom-hole temperature gradient, and geotemperature data; tabulation of water chemistry data; field collection of temperature-depth data from existing wells; and drilling of temperature gradient holes in the Ojo Caliente, San Ysidro, Rio Puerco, and Polvadera areas. The data collected were used to perform: (1) a regional analysis of the geothermal energy potential of north central New Mexico; (2) two site-specific studies of the potential relationship between groundwater constrictions and geothermal resources; (3) an evaluation of the geothermal energy potential at Santa Ana Pueblo; (4) a general analysis of the geothermal energy resources of the Rio Grande Rift, including specific data on the Valles Caldera; and (5) an evaluation of the use of geothermometers on New Mexico groundwaters. Separate abstracts were prepared for individual chapters.

Icerman, L. (ed.) [ed.

1984-02-01T23:59:59.000Z

242

Geothermal well stimulation treatments  

DOE Green Energy (OSTI)

The behavior of proppants in geothermal environments and two field experiments in well stimulation are discussed. (MHR)

Hanold, R.J.

1980-01-01T23:59:59.000Z

243

Geothermal Energy Technology Guide  

Science Conference Proceedings (OSTI)

Geothermal power production is a renewable technology with a worldwide operating capacity of more than 11,000 MW. Geothermal reservoirs have been a commercial reality in Italy, Japan, the United States, Iceland, New Zealand, and Mexico for many decades. According to the Energy Information Administration, the United States is the world leader in electricity production from geothermal resources with approximately 16,791 GWh of net production in 2012. Future geothermal power generation will depend on ...

2013-12-23T23:59:59.000Z

244

South Dakota geothermal handbook  

SciTech Connect

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

1980-06-01T23:59:59.000Z

245

Geophysical Setting of the Blue Mountain Geothermal Area, North-Central  

Open Energy Info (EERE)

Setting of the Blue Mountain Geothermal Area, North-Central Setting of the Blue Mountain Geothermal Area, North-Central Nevada and Its Relationship to a Crustal-Scale Fracture Associated with the Inception of the Yellowstone Hotspot Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geophysical Setting of the Blue Mountain Geothermal Area, North-Central Nevada and Its Relationship to a Crustal-Scale Fracture Associated with the Inception of the Yellowstone Hotspot Abstract The Blue Mountain geothermal field, located about 35 km northwest of Winnemucca, Nevada, is situated along a prominent crustal-scale fracture interpreted from total intensity aeromagnetic and gravity data. Aeromagnetic data indicate that this feature is related to the intrusion of mafic dikes, similar to the Northern Nevada Rift (Zoback et al.,1994), and

246

An Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii | Open  

Open Energy Info (EERE)

Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii Abstract Concentrations of soil mercury of 15 to 1250ppb were determined in the Puna geothermal areaon the lower east rift zone of Kilauea volcano. As the area is young and volcanically active a wide range of soils exist. Hg concentrations are partly controlled by such factors as soil development and organic content, which tend to complicate interpretation of the absolute concentrations measured. The pH of both ground gas and soil may also influence transport and fixation of the Hg, and some low pH soils may be due to SO2 and C02 in ground gas. By relating the Hg concentration of

247

Geothermal energy in Nevada  

SciTech Connect

The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

1980-01-01T23:59:59.000Z

248

Direct-Current Resistivity Survey At Raft River Geothermal Area (1983) |  

Open Energy Info (EERE)

Raft River Geothermal Area (1983) Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes The objectives of the resistivity measurements were to determine if measureable changes could be observed and whether they could be used to infer the direction of fluid flow. Most of the apparent resistivity changes observed after the injection phase of Test 5 are smaller than the estimated standard deviation of the measurements. However, the contour map of the changes suggest an anomalous trend to the northeast which is similar to the

249

A Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles  

Open Energy Info (EERE)

Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles Caldera, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles Caldera, New Mexico Details Activities (10) Areas (2) Regions (0) Abstract: The Baca location #1 geothermal field is located in north-central New Mexico within the western half of the Plio-Pleistocene Valles Caldera. Steam and hot water are produced primarily from the northeast-trending Redondo Creek graben, where downhole temperatures exceed 260°C at depths of less than 2 km. Stratigraphically the reservoir region can be described as a five-layer sequence that includes Tertiary and Quaternary volcanic rocks, and Mesozoic and Tertiary sediments overlying Precambrian granitic

250

Structure of continental rifts: Role of older features and magmatism  

SciTech Connect

Recent geological and geophysical studies in several continental rifts have begun to shed light on the details of the processes which govern the structural evolution of these important exploration targets. In Kenya and Tanzania, the classic East African rift has been the object of several investigations which reveal that its location follows the boundary (suture ) between the Tanzanian craton (Archean) and Mozambiquan belt (Proterozoic), The Baikal rift also follows a similar boundary, and the Mid-continent rift of North America appears to do the same. Rifts themselves often act as zones of weakness which are reactivated by younger tectonic regimes. The classic North American example of this effect is the Eocambrian Southern Oklahoma aulacogen which was deformed to create the Anadarko basin and Wichita uplift in the late Paleozoic. The Central basin platform has a similar history although the original rift formed at [approximately]1,100Ma. Integration of geophysical data with petrologic and geochemical data from several rift zones has also provided a new picture of the nature and extent of magmatic modification of the crust. An interesting contradiction is that Phanerozoic rifts, except the Afar region, show little evidence for major magmatic modification of the crust whereas, at least in North America, many Precambrian rifts are associated with very large mafic bodies in the crust. The Kenya rift displays evidence for modification of the lower crust in a two-phase magmatic history, but upper crustal magmatic features are limited to local intrusions associated with volcanoes. In this rift, complex basement structure plays a much more important role than previously realized, and the geophysical signatures of basement structure and magmatism are easy to confuse. If this is also the case in other rifts, additional rift basins remain to be discovered.

Keller, G.R. (Univ. of Texas, El Paso, TX (United States))

1996-01-01T23:59:59.000Z

251

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

252

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is in-vesting in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup-ply cutting edge geoinformatics. NGDS geothermal data acquisition, delivery, and methodology are dis-cussed. In particular, this paper addresses the various types of data required to effectively assess

253

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Mean br Capacity Mean br Reservoir br Temp Amedee Geothermal Area Amedee Geothermal Area Walker Lane Transition Zone Geothermal Region Extensional Tectonics Mesozoic granite granodiorite MW K Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Central Nevada Seismic Zone Geothermal Region Extensional Tectonics MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics triassic metasedimentary MW K Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics MW Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone

254

Mono County geothermal activity  

SciTech Connect

Three geothermal projects have been proposed or are underway in Mono County, California. The Mammoth/Chance geothermal development project plans to construct a 10-MW geothermal binary power plant which will include 8 production and 3 injection wells. Pacific Lighting Energy Systems is also planning a 10-MW binary power plant consisting of 5 geothermal wells and up to 4 injection wells. A geothermal research project near Mammoth Lakes has spudded a well to provide a way to periodically measure temperature gradient, pressure, and chemistry of the thermal waters and to investigate the space-heating potential of the area in the vicinity of Mammoth Lakes. All three projects are briefly described.

Lyster, D.L.

1986-01-01T23:59:59.000Z

255

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high angle to the central and eastern Snake River Plains. Its morphology is

256

Ground Gravity Survey At Kilauea East Rift Area (Broyles, Et...  

Open Energy Info (EERE)

Activity Details Location Kilauea East Rift Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown References M. L....

257

Direct-Current Resistivity Survey At Kilauea Southwest Rift And...  

Open Energy Info (EERE)

Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The electrical resistivity data acquired on the southwest rift delineated two distinct...

258

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network (OSTI)

B. Direct Application of Geothermal Energy . . . . . . . . .Reservoir Assessment: Geothermal Fluid Injection, ReservoirD. E. Appendix Small Geothermal Power Plants . . . . . . .

Bresee, J. C.

2011-01-01T23:59:59.000Z

259

Missouri/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Missouri/Geothermal Missouri/Geothermal < Missouri Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Missouri Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Missouri No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Missouri No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Missouri No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Missouri Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

260

Oklahoma/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Oklahoma Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oklahoma Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oklahoma No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Oklahoma No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Oklahoma No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Oklahoma Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Arkansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arkansas/Geothermal Arkansas/Geothermal < Arkansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arkansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arkansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arkansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arkansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Arkansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

262

Maryland/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maryland/Geothermal Maryland/Geothermal < Maryland Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maryland Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maryland No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maryland No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maryland No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maryland Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

263

Alabama/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alabama/Geothermal Alabama/Geothermal < Alabama Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alabama Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alabama No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Alabama No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Alabama No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Alabama Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

264

Illinois/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Illinois/Geothermal Illinois/Geothermal < Illinois Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Illinois Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Illinois No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Illinois No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Illinois No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Illinois Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

265

Minnesota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Geothermal Minnesota/Geothermal < Minnesota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Minnesota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Minnesota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Minnesota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Minnesota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Minnesota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

266

Massachusetts/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Geothermal Massachusetts/Geothermal < Massachusetts Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Massachusetts Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Massachusetts No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Massachusetts No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Massachusetts No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Massachusetts Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

267

Delaware/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Delaware Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Delaware Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Delaware No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Delaware No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Delaware No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Delaware Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

268

Kansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kansas/Geothermal Kansas/Geothermal < Kansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

269

Kentucky/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Geothermal Kentucky/Geothermal < Kentucky Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kentucky Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kentucky No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kentucky No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kentucky No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kentucky Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

270

Nebraska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Geothermal Nebraska/Geothermal < Nebraska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nebraska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nebraska No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Nebraska No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Nebraska No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Nebraska Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

271

Florida/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Florida/Geothermal Florida/Geothermal < Florida Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Florida Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Florida No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Florida No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Florida No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Florida Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

272

Pennsylvania/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Geothermal Pennsylvania/Geothermal < Pennsylvania Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Pennsylvania Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Pennsylvania No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Pennsylvania No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Pennsylvania No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Pennsylvania Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

273

Ohio/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Ohio Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ohio Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Ohio No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Ohio No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Ohio No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Ohio Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

274

Vermont/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Vermont/Geothermal Vermont/Geothermal < Vermont Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Vermont Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Vermont No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Vermont No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Vermont No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Vermont Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

275

Louisiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Geothermal Louisiana/Geothermal < Louisiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Louisiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Louisiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Louisiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Louisiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Louisiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

276

Mississippi/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mississippi/Geothermal Mississippi/Geothermal < Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mississippi Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Mississippi No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Mississippi No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Mississippi No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Mississippi Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

277

Maine/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maine/Geothermal Maine/Geothermal < Maine Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maine Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maine No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maine No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maine No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maine Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

278

Connecticut/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Connecticut Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Connecticut Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Connecticut No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Connecticut No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Connecticut No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Connecticut Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

279

Georgia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Georgia/Geothermal Georgia/Geothermal < Georgia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Georgia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Georgia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Georgia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Georgia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Georgia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

280

Indiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Indiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Indiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Indiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Indiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Indiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Michigan/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Michigan/Geothermal Michigan/Geothermal < Michigan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Michigan Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Michigan No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Michigan No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Michigan No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Michigan Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

282

Reference book on geothermal direct use  

DOE Green Energy (OSTI)

This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

1994-08-01T23:59:59.000Z

283

Geothermal Outreach and Project Financing  

DOE Green Energy (OSTI)

The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

Elizabeth Battocletti

2006-04-06T23:59:59.000Z

284

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM  

Open Energy Info (EERE)

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A finite element model was developed for the fully coupled processes consisting of: thermoporoelastic deformation, hydraulic conduction, thermal osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has

285

Geothermal Literature Review At International Geothermal Area, New Zealand  

Open Energy Info (EERE)

Area, New Zealand Area, New Zealand (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area New Zealand (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area New Zealand Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Lake Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_New_Zealand_(Ranalli_%26_Rybach,_2005)&oldid=510814

286

Geothermal: Sponsored by OSTI -- Economics of geothermal, solar...  

Office of Scientific and Technical Information (OSTI)

Economics of geothermal, solar, and conventional space heating Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

287

Geothermal: Sponsored by OSTI -- Beowawe Geothermal Area evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Beowawe Geothermal Area evaluation program. Final report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

288

Geothermal: Sponsored by OSTI -- Creation of an Enhanced Geothermal...  

Office of Scientific and Technical Information (OSTI)

Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

289

Geothermal: Sponsored by OSTI -- STATUS OF PLOWSHARE GEOTHERMAL...  

Office of Scientific and Technical Information (OSTI)

STATUS OF PLOWSHARE GEOTHERMAL POWER. Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search...

290

Geothermal: Sponsored by OSTI -- Multi-Fluid Geothermal Energy...  

Office of Scientific and Technical Information (OSTI)

Multi-Fluid Geothermal Energy Production and Storage in Stratigraphic Reservoirs Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

291

Geothermal: Sponsored by OSTI -- Enhanced Geothermal System Potential...  

Office of Scientific and Technical Information (OSTI)

Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

292

Geothermal: Sponsored by OSTI -- Twenty-first workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Twenty-first workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

293

Geothermal: Sponsored by OSTI -- Seventeenth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Seventeenth workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

294

Geothermal: Sponsored by OSTI -- Twentieth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Twentieth workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

295

Geothermal: Sponsored by OSTI -- Nineteenth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Nineteenth workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

296

Geothermal: Sponsored by OSTI -- Eighteenth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Eighteenth workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

297

Geothermal: Sponsored by OSTI -- Feasibility of geothermal application...  

Office of Scientific and Technical Information (OSTI)

of geothermal applications for greenhousing and space heating on the Pine Ridge Indian Reservation, South Dakota Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

298

Geothermal: Sponsored by OSTI -- Daemen Alternative Energy/Geothermal...  

Office of Scientific and Technical Information (OSTI)

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

299

Geothermal Plan Justification, Geothermal Project 1976  

SciTech Connect

The report provides information for a five year plan for the Fish and Wildlife Service to deal with developments in the geothermal energy sector in the U.S. [DJE-2005

1976-06-01T23:59:59.000Z

300

Geothermal Technologies Program: Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

Not Available

2004-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hybrid Geothermal Heat Pump Systems  

Science Conference Proceedings (OSTI)

Hybrid geothermal heat pump systems offer many of the benefits of full geothermal systems but at lower installed costs. A hybrid geothermal system combines elements of a conventional water loop heat pump system in order to reduce the geothermal loop heat exchanger costs, which are probably the largest cost element of a geothermal system. These hybrid systems have been used successfully where sufficient ground space to install large heat exchangers for full geothermal options was unavailable, or where the...

2009-12-21T23:59:59.000Z

302

Geothermal Resources Council's 36  

Office of Scientific and Technical Information (OSTI)

Geothermal Resources Council's 36 Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi, Norman Turnquist, Farshad Ghasripoor GE Global Research, 1 Research Circle, Niskayuna, NY, 12309 Tel: 518-387-4748, Email: qixuele@ge.com Abstract Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300°C geothermal water at 80kg/s flow rate in a maximum 10-5/8" diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis

303

Geothermal Well Technology Program  

DOE Green Energy (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the U.S. Department of Energy has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs by 25% by 1982 and by 50% by 1986. An overview of the program is presented. Program justification which relates well cost to busbar energy cost and to DGE power-on-line goals is presented. Technological deficiencies encountered when current rotary drilling techniques are used for geothermal wells are discussed. A program for correcting these deficiencies is described.

Varnado, S.G.

1978-01-01T23:59:59.000Z

304

Geothermal drilling technology update  

DOE Green Energy (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

305

Geothermal Drilling Organization  

DOE Green Energy (OSTI)

The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

Sattler, A.R.

1999-07-07T23:59:59.000Z

306

Modeling of geothermal systems  

DOE Green Energy (OSTI)

During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

1985-03-01T23:59:59.000Z

307

Economics of geothermal energy  

DOE Green Energy (OSTI)

A selected summary is presented of the resource, technical, and financial considerations which influence the economics of geothermal energy in the US. Estimates of resource base and levelized busbar cost of base load power for several types of geothermal resources are compared with similar estimates for more conventional energy resources. Current geothermal electric power plants planned, under construction, and on-line in the US are noted.

Morris, G.E.; Tester, J.W.; Graves, G.A.

1980-01-01T23:59:59.000Z

308

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Heat Pumps Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country...

309

NREL: Learning - Geothermal Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

About Renewable Energy Search More Search Options Site Map Printable Version Geothermal Energy Basics Photo of a hot spring. The Earth's heat-called geothermal...

310

Geothermal energy for industrial application  

DOE Green Energy (OSTI)

The types of geothermal resources are reviewed briefly. The uses of geothermal energy are covered under electrical generation and non-electric direct uses. (MHR)

Fulton, R.L.

1979-03-01T23:59:59.000Z

311

Geothermal Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Blog Geothermal Blog RSS October 23, 2013 This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. April 12, 2013 Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Innovative clean energy project is up and running in Nevada.

312

NREL: Geothermal Technologies - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Projects The NREL...

313

NREL: Geothermal Technologies - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Capabilities The...

314

South Dakota geothermal resources  

SciTech Connect

South Dakota is normally not thought of as a geothermal state. However, geothermal direct use is probably one of the best kept secrets outside the state. At present there are two geothermal district heating systems in place and operating successfully, a resort community using the water in a large swimming pool, a hospital being supplied with part of its heat, numerous geothermal heat pumps, and many individual uses by ranchers, especially in the winter months for heating residences, barns and other outbuildings, and for stock watering.

Lund, J.W.

1997-12-01T23:59:59.000Z

315

List of Geothermal Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search Facility Location Owner Aidlin Geothermal Facility Geysers Geothermal Area Calpine Amedee Geothermal Facility Honey Lake, California Amedee Geothermal Venture BLM Geothermal Facility Coso Junction, California, Coso Operating Co. Bear Canyon Geothermal Facility Clear Lake, California, Calpine Beowawe Geothermal Facility Beowawe, Nevada Beowawe Power LLC Big Geysers Geothermal Facility Clear Lake, California Calpine Blundell 1 Geothermal Facility Milford, Utah PacificCorp Energy Blundell 2 Geothermal Facility Milford, Utah PacificCorp Brady Hot Springs I Geothermal Facility Churchill, Nevada Ormat Technologies Inc CE Turbo Geothermal Facility Calipatria, California CalEnergy Generation Calistoga Geothermal Facility The Geysers, California Calpine

316

Northeast Regional Biomass Energy Program  

DOE Green Energy (OSTI)

The Northeast Regional Biomass Program (NRBP) is entering its ninth year of operation. The management and the objectives have virtually remained unchanged and are stated as follows. The program conducted by NRBP has three basic features: (1) a state grant component that provides funds (with a 50 percent matching requirement) to each of the states in the region to strengthen and integrate the work of state agencies involved in biomass energy; (2) a series of technical reports and studies in areas that have been identified as being of critical importance to the development of biomass energy in the region; and (3) a continuous long range planning component with heavy private sector involvement that helps to identify activities necessary to spur greater development and use of biomass energy in the Northeast.

O'Connell, R.A.

1992-04-01T23:59:59.000Z

317

Northeast Regional Biomass Energy Program  

DOE Green Energy (OSTI)

The Northeast Regional Biomass Program (NRBP) is entering its ninth year of operation. The management and the objectives have virtually remained unchanged and are stated as follows. The program conducted by NRBP has three basic features: (1) a state grant component that provides funds (with a 50 percent matching requirement) to each of the states in the region to strengthen and integrate the work of state agencies involved in biomass energy; (2) a series of technical reports and studies in areas that have been identified as being of critical importance to the development of biomass energy in the region; and (3) a continuous long range planning component with heavy private sector involvement that helps to identify activities necessary to spur greater development and use of biomass energy in the Northeast.

O'Connell, R.A.

1992-02-01T23:59:59.000Z

318

Geothermal Areas | Open Energy Information  

Open Energy Info (EERE)

Geothermal Areas Geothermal Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Areas Geothermal Areas are specific locations of geothermal potential (e.g., Coso Geothermal Area). The base set of geothermal areas used in this database came from the 253 geothermal areas identified by the USGS in their 2008 Resource Assessment.[1] Additional geothermal areas were added, as needed, based on a literature search and on projects listed in the GTP's 2011 database of funded projects. Add.png Add a new Geothermal Resource Area Map of Areas List of Areas Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":2500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

319

CE Geothermal | Open Energy Information  

Open Energy Info (EERE)

CE Geothermal CE Geothermal Jump to: navigation, search Name CE Geothermal Place California Sector Geothermal energy Product CE Geothermal previously owned the assets of Western States Geothermal Company, which owns the 10MW nameplate Desert Peak Geothermal Power Plant. References CE Geothermal[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CE Geothermal is a company located in California . References ↑ "CE Geothermal" Retrieved from "http://en.openei.org/w/index.php?title=CE_Geothermal&oldid=343310" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

320

Property:Geothermal/TargetsMilestones | Open Energy Information  

Open Energy Info (EERE)

TargetsMilestones TargetsMilestones Jump to: navigation, search Property Name Geothermal/TargetsMilestones Property Type Text Description Targets / Milestones Pages using the property "Geothermal/TargetsMilestones" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + The basics of this technology were developed by the oil and gas industry to discern petrologic characteristics of hydrocarbon reservoirs, but the techniques have never been applied to definition and characterization of permeable zones associated with geothermal resources. There is a substantial amount of existing geophysical and wellbore data for the area, and these data will be complemented with modern, state-of-the-art reflection seismic data. Three-component geophones will record full-fold compressional p-wave, converted-wave, and shear-wave data over the 2.5 square miles of proven geothermal resource. The proposed 3D seismic survey involves the generation of ground vibration by "vibroseis" equipment along source points and the recording of reflected sound waves and patterns arising from the different underground geologic strata along receiver lines. The proposed source points are arranged into source lines that run northeast to southwest and are oriented perpendicular to the receiver lines, which run northwest to southeast within the boundary of the project area. The data will be processed first in a conventional way to identify anomalous zones, to which specialized attribute processing will be applied. The results of the processing will be made accessible in a GIS format to facilitate visualization of interrelationships among the data and to build conceptual geologic and/or geothermal reservoir models and define drilling targets.

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Oregon/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Oregon/Geothermal Oregon/Geothermal < Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oregon Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oregon Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Crump Geyser Geothermal Project Nevada Geo Power, Ormat Utah 80 MW80,000 kW 80,000,000 W 80,000,000,000 mW 0.08 GW 8.0e-5 TW Phase II - Resource Exploration and Confirmation Crump's Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Neal Hot Springs Geothermal Project U.S. Geothermal Vale, Oregon Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I - Resource Procurement and Identification Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region

322

Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)  

DOE Green Energy (OSTI)

This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

Not Available

2004-05-01T23:59:59.000Z

323

Geothermal Literature Review At Medicine Lake Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location Medicine Lake Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

324

Geothermal Literature Review At Salton Trough Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Trough Geothermal Area (1984) Trough Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salton Trough Geothermal Area (1984) Exploration Activity Details Location Salton Trough Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

325

Hawaii's geothermal program  

Science Conference Proceedings (OSTI)

Opposition to Hawaii's geothermal program, which is coming not only from the usual citizens' and environmental groups, but also from worshippers of a native god and, it has been alleged, growers of marijuana, is discussed. The clash occurs just as geothermal ...

G. Zorpette

1992-02-01T23:59:59.000Z

326

Montana geothermal handbook  

DOE Green Energy (OSTI)

The permits required for various geothermal projects and the approximate time needed to obtain them are listed. A brief discussion of relevant statutes and regulations is included. Some of the state and federal grant and loan programs available to a prospective geothermal developer are described. The names and addresses of relevant state and federal agencies are given. Legal citations are listed. (MHR)

Perlmutter, S.; Birkby, J.

1980-10-01T23:59:59.000Z

327

Geothermal energy program summary  

DOE Green Energy (OSTI)

This document reviews Geothermal Energy Technology and the steps necessary to place it into service. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research. 16 figs. (FSD)

Not Available

1990-01-01T23:59:59.000Z

328

Geothermal Financing Workbook  

DOE Green Energy (OSTI)

This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

Battocletti, E.C.

1998-02-01T23:59:59.000Z

329

S-cubed geothermal technology and experience  

DOE Green Energy (OSTI)

Summaries of ten research projects are presented. They include: equations describing various geothermal systems, geohydrological environmental effects of geothermal power production, simulation of linear bench-scale experiments, simulation of fluid-rock interactions in a geothermal basin, geopressured geothermal reservoir simulator, user-oriented geothermal reservoir simulator, geothermal well test analyses, geothermal seismic exploration, high resolution seismic mapping of a geothermal reservoir, experimental evaluation of geothermal well logging cables, and list of publications. (MHR)

Not Available

1976-04-01T23:59:59.000Z

330

Geothermal power plants of the United States: a technical survey of existing and planned installations  

DOE Green Energy (OSTI)

The development of geothermal energy as a source of electric power in the United States is reviewed. A thorough description is given of The Geysers geothermal power project in northern California. The recent efforts to exploit the hot-water resources of the Mexicali-Imperial Rift Valley are described. Details are given concerning the geology of the several sites now being used and for those at which power plants will soon be built. Attention is paid to the technical particulars of all existing plants, including wells, gathering systems, energy conversion devices, materials, environmental impacts, economics and operating characteristics. Specifically, plants which either exist or are planned for the following locations are covered: The Geysers, CA; East Mesa, CA; Heber, CA; Roosevelt Hot Springs, UT; Valles Caldera, NM; Salton Sea, CA; Westmorland, CA; Brawley, CA; Desert Peak, NV; and Raft River, ID. The growth of installed geothermal electric generating capacity is traced from the beginning in 1960 and is projected to 1984.

DiPippo, R.

1978-04-01T23:59:59.000Z

331

Geothermal: Home Page  

Office of Scientific and Technical Information (OSTI)

Home Page Home Page Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Search for: (Place phrase in "double quotes") Sort By: Relevance Publication Date System Entry Date Document Type Title Research Org Sponsoring Org OSTI Identifier Report Number DOE Contract Number Ascending Descending Search Quickly and easily search geothermal technical and programmatic reports dating from the 1970's to present day. These "legacy" reports are among the most valuable sources of DOE-sponsored information in the field of geothermal energy technology. See "About" for more information. The Geothermal Technologies Legacy Collection is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy

332

geothermal_test.cdr  

Office of Legacy Management (LM)

The Bureau of Land Management (BLM) began studies The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at

333

Geothermal: Distributed Search Help  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Help Search Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Distributed Search Help Table of Contents General Information Search More about Searching Browse the Geothermal Legacy Collection Obtaining Documents Contact Us General Information The Distributed Search provides a searchable gateway that integrates diverse geothermal resources into one location. It accesses databases of recent and archival technical reports in order to retrieve specific geothermal information - converting earth's energy into heat and electricity, and other related subjects. See About, Help/FAQ, Related Links, or the Site Map, for more information about the Geothermal Technologies Legacy Collection .

334

geothermal_test.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at an elevation of about 28 feet above sea level. The Salton Sea is approximately 40 miles northwest

335

geothermal2.qxp  

NLE Websites -- All DOE Office Websites (Extended Search)

N N M T R A P E D O F E N E R G Y E T A T S D E T I N U S O F A M E R I CA E GEOTHERMAL TESTING S ince 2006, several geothermal power production companies and the Department of Energy have expressed interest in demonstrating low- temperature geothermal power projects at the Rocky Mountain Oilfield Testing Center (RMOTC). Located at Teapot Dome Oilfield in Naval Petroleum Reserve No. 3 (NPR-3), RMOTC recently expanded its testing and demonstration of power production from low- temperature, co- produced oilfield geothermal waste water. With over 1,000 existing well- bores and its 10,000-acre oil field, RMOTC offers partners the unique opportunity to test their geot- hermal tech- nologies while using existing oilfield infra- structure. RMOTC's current low-temperature geothermal project uses 198°F water separated from Tensleep

336

Idaho Geothermal Handbook  

SciTech Connect

Idaho's energy problems have increased at alarming rates due to their dependency on imports of gas and oil. The large hydroelectric base developed in Idaho has for years kept the electric rates relatively low and supplied them with energy on a consumer demand basis. However, this resource cannot be 4expected to meet their growing demands in the years to come. Energy alternatives, in whatever form, are extremely important to the future welfare of the State of Idaho. This handbook addresses the implications, uses, requirements and regulations governing one of Idaho's most abundant resources, geothermal energy. The intent of the Idaho Geothermal Handbook is to familiarize the lay person with the basis of geothermal energy in Idaho. The potential for geothermal development in the State of Idaho is tremendous. The authors hope this handbook will both increase your knowledge of geothermal energy and speed you on your way to utilizing this renewable resource.

Hammer, Gay Davis; Esposito, Louis; Montgomery, Martin

1979-07-01T23:59:59.000Z

337

Geothermal development in Thailand  

SciTech Connect

San Kampaeng and Fang geothermal areas are considered areas of interest for exploitation of geothermal energy. The technologies of exploration and development have been studied by Thai scientists and engineers during the past four years. The first geothermal deep exploration well was drilled, in cooperation with Japan International Cooperation Agency (JICA), in the San Kampaeng geothermal area. In 1985, supplementary work is planned to define the deep structural setting in greater detail before starting to drill the next deep exploration well. In Fang geothermal area some shallow exploitation wells have been drilled to obtain fluid to feed a demonstration binary system of 120 kWe, with the technical cooperation of BRGM and GEOWATT, France.

Praserdvigai, S.

1986-01-01T23:59:59.000Z

338

Idaho Geothermal Handbook  

DOE Green Energy (OSTI)

Idaho's energy problems have increased at alarming rates due to their dependency on imports of gas and oil. The large hydroelectric base developed in Idaho has for years kept the electric rates relatively low and supplied them with energy on a consumer demand basis. However, this resource cannot be 4expected to meet their growing demands in the years to come. Energy alternatives, in whatever form, are extremely important to the future welfare of the State of Idaho. This handbook addresses the implications, uses, requirements and regulations governing one of Idaho's most abundant resources, geothermal energy. The intent of the Idaho Geothermal Handbook is to familiarize the lay person with the basis of geothermal energy in Idaho. The potential for geothermal development in the State of Idaho is tremendous. The authors hope this handbook will both increase your knowledge of geothermal energy and speed you on your way to utilizing this renewable resource.

Hammer, Gay Davis; Esposito, Louis; Montgomery, Martin

1979-07-01T23:59:59.000Z

339

Geothermal Loan Guaranty Program  

DOE Green Energy (OSTI)

Presently the US imports a large proportion of its petroleum requirements. This dependence on foreign petroleum has had a major impact on our economy. As a result, the Federal government is sponsoring programs to offset this foreign reliance by conservation of oil and gas, conversion of petroleum using facilities to coal and nuclear energy and the development of alternate sources of energy. One of the most acceptable alternate resources is geothermal. It offers an environmentally sound energy resource, can be developed at reasonable cost in comparison to other forms of energy and has a long term production capacity. On September 3, 1974, the Geothermal Energy Research Development and Demonstration Act was enacted to further the research, development and demonstration of geothermal energy technologies. This Act also established the Geothermal Loan Guaranty Program to assist in the financing of geothermal resource development, both electrical and non-electrical. The highlights of that Guaranty Program are detailed in this report.

None

1977-11-17T23:59:59.000Z

340

Geothermal energy: a brief assessment  

DOE Green Energy (OSTI)

This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

1982-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal energy: a brief assessment  

SciTech Connect

This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

1982-07-01T23:59:59.000Z

342

Advanced Geothermal Turbodrill  

DOE Green Energy (OSTI)

Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

W. C. Maurer

2000-05-01T23:59:59.000Z

343

South Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Dakota Dakota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Dakota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Dakota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Dakota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Dakota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

344

Rhode Island/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rhode Island Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Rhode Island No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Rhode Island No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Rhode Island No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Rhode Island Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

345

Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Virginia Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

346

Tennessee/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Tennessee Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Tennessee No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Tennessee No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Tennessee No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Tennessee Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

347

South Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

348

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

Enhanced Geothermal Systems (EGS) Enhanced Geothermal Systems (EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation) EGS Schematic.jpg ] Dictionary.png Enhanced Geothermal Systems: Enhanced Geothermal Systems (EGS) are human engineered hydrothermal reservoirs developed for commercial use as an alternative to naturally

349

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

Bibliography Definition of Geothermal Reservoir EngineeringDevelopment of Geothermal Reservoir Engineering. * 1.4 DataF i r s t Geopressured Geothermal Energy Conference. Austin,

Sudo!, G.A

2012-01-01T23:59:59.000Z

350

American Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name American Geothermal Systems Place Austin, Texas Sector Geothermal energy Product Installer of geothermal heating and cooling technologies, also has a...

351

Geothermal Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Or read more about EERE's geothermal technologies research. Addthis Related Articles Geothermal Direct-Use Basics Glossary of Energy-Related Terms Geothermal Resource Basics...

352

Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Transition Zone Geothermal Region (Redirected from Transition Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Transition Zone Geothermal Region edit Details...

353

Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Transition Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Transition Zone Geothermal Region edit Details Areas (5) Power Plants (0) Projects...

354

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network (OSTI)

on the Cerro Prieto Geothermal Field, Baja California,monitoring at the Geysers Geothermal Field, California,~~W. and Faust, C. R. , 1979, Geothermal resource simulation:

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

355

Induced seismicity associated with enhanced geothermal system  

E-Print Network (OSTI)

Cooper Basin, Australia. Geothermal Resources Council Trans.a hot fractured rock geothermal project. Engineering Geologyseismicity in The Geysers geothermal area, California. J.

Majer, Ernest L.

2006-01-01T23:59:59.000Z

356

MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION  

E-Print Network (OSTI)

compaction, computers, geothermal energy, pore-waternot MODELING SUBSIDENCE DUE T GEOTHERMAL FLUID PRODUCTION Opromise f o r developing geothermal energy i n the United

Lippmann, M.J.

2011-01-01T23:59:59.000Z

357

NORTHERN NEVADA GEOTHERMAL EXPLORATION STRATEGY ANALYSIS  

E-Print Network (OSTI)

School of Mines Nevada Geothermal Study: Report No. 4, Feb.J. , 1976, Assessing the geothermal resource base of the1977, Microseisms in geothermal Studies in Grass Valley,

Goldstein, N.E.

2011-01-01T23:59:59.000Z

358

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

Petroleum Reservoirs. Geothermal Reservoirs IV. DATA1970, Superheating of Geothermal Steam, Proc. of the U.N.the Development & Utilization of Geothermal Resources, Pisa.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

359

Idaho Batholith Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Idaho Batholith Geothermal Region (Redirected from Idaho Batholith) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Idaho Batholith Geothermal Region Details Areas...

360

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network (OSTI)

~Iilora and J. W. Tester, Geothermal Energy as a Source ofpresented at the Susanville Geothermal Energy Converence,of Practical Cycles for Geothermal Power Plants." General

Pope, W.L.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79  

E-Print Network (OSTI)

that well blocks must geothermal reservoir studies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

Pruess, Karsten

2012-01-01T23:59:59.000Z

362

Idaho Batholith Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Idaho Batholith Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Idaho Batholith Geothermal Region Details Areas (24) Power Plants (0) Projects (1)...

363

Sound Geothermal Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Jump to: navigation, search Name Sound Geothermal Corporation Place Sandy, Utah Zip 84094 Sector Geothermal energy Product Sound Geothermal coporation helps...

364

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

365

The Northeast Natural Gas Market in 2030  

U.S. Energy Information Administration (EIA)

9/27/2006: The Northeast Natural Gas Market in 2030. This presentation contains content that your browser may not be able to show properly.

366

NREL: Geothermal Technologies - Geothermal Policymakers' Guidebooks  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map NREL's Policymakers' Guidebooks help guide state and local officials in developing effective policies that support geothermal electricity generation and geothermal heating and cooling technologies. Explore the guidebooks to learn about five key steps for creating useful policy and increasing the deployment of geothermal energy. Electricity Generation Electricity Generation Heating and Cooling Heating and Cooling Printable Version Electricity Generation Heating & Cooling NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

367

Geothermal Energy Program overview  

SciTech Connect

The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

1991-12-01T23:59:59.000Z

368

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984)  

Open Energy Info (EERE)

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow

369

Geothermal Site Assessment Using the National Geothermal Data System  

Open Energy Info (EERE)

Geothermal Site Assessment Using the National Geothermal Data System Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Jump to: navigation, search Tool Summary Name: Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Agency/Company /Organization: University of Nevada-Reno Sector: Energy Focus Area: Renewable Energy, Geothermal Topics: Resource assessment Resource Type: Case studies/examples, Publications Website: www.unr.edu/geothermal/pdffiles/PenfieldGRC2010_GeothermalSiteAssessme Cost: Free Language: English References: Paper[1] "This paper examines the features and functionality of the existing database, its integration into the 50-state NGDS, and its usage in

370

Coordinated exploration program for geothermal sources on the island of Hawaii  

DOE Green Energy (OSTI)

Staff members of the Hawaii Institute of Geophysics carried out an exploration program for geothermal sources on the island of Hawaii by using all relevant geophysical and geochemical methods. Infrared scanning aerial surveys followed by reconnaissance-type electrical surveys and ground noise surveys narrowed down the promising area to the east rift of Kilauea. The surveys carried out over the east rift included magnetic, gravity, and electrical surveys by various methods: microearthquake, surveillance, temperature profiling of wells, and chemical analysis of water samples. Aeromagnetic, regional gravity, and crustal seismic refraction data were available in published literature. A model of the thermal structure of the east rift was put together to account for the data. The dike complex, through which magma from the central vent of Kilauea travels laterally occupies a zone 3-km wide extending from 1-km to 5-km depth. On the south side of the dike complex, there may be a self-sealing geothermal reservoir where groundwater heated by the dike complex is trapped. Not all of the dike complex is hot; hot sections seem to occur in patches.

Furumoto, A.S.

1975-06-01T23:59:59.000Z

371

Navy Geothermal Plan  

SciTech Connect

Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

1984-12-01T23:59:59.000Z

372

Geothermal Electricity Production  

Energy.gov (U.S. Department of Energy (DOE))

Heat from the earthgeothermal energyheats water that has seeped into underground reservoirs. These reservoirs can be tapped for a variety of uses, depending on the temperature of the water. The energy from high-temperature reservoirs (225-600F) can be used to produce electricity. In the United States, geothermal energy has been used to generate electricity on a large scale since 1960. Through research and development, geothermal power is becoming more cost-effective and competitive with fossil fuels.

373

Geothermal Energy Summary  

DOE Green Energy (OSTI)

Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75C water from shallow wells. Power production is assisted by the availability of gravity fed, 7C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earths crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

J. L. Renner

2007-08-01T23:59:59.000Z

374

DOE Seeks Commercial Storage to Complete Fill of Northeast Home...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve August 26,...

375

Northeast Gateway Natural Gas LNG Imports (Price) From Qatar...  

Gasoline and Diesel Fuel Update (EIA)

Northeast Gateway Natural Gas LNG Imports (Price) From Qatar (Dollars per Thousand Cubic Feet) Northeast Gateway Natural Gas LNG Imports (Price) From Qatar (Dollars per Thousand...

376

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

377

Northeast Home Heating Oil Reserve - Guidelines for Release ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating Oil Reserve Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release Petroleum Reserves Strategic...

378

Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure (April 2013) Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure (April 2013) Two major...

379

Wyoming/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wyoming Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Wyoming No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Wyoming No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wyoming Mean Capacity (MW) Number of Plants Owners Geothermal Region Huckleberry Hot Springs Geothermal Area 38.744 MW38,744.243 kW 38,744,243.17 W 38,744,243,170 mW 0.0387 GW 3.874424e-5 TW Yellowstone Caldera Geothermal Region Seven Mile Hole Geothermal Area Yellowstone Caldera Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Wyoming Overview Flowchart The flowcharts listed below were developed as part of the Geothermal

380

Montana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Montana/Geothermal Montana/Geothermal < Montana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Montana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Montana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Montana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Montana Mean Capacity (MW) Number of Plants Owners Geothermal Region Boulder Hot Springs Geothermal Area 5.21 MW5,210.319 kW 5,210,318.609 W 5,210,318,609 mW 0.00521 GW 5.210319e-6 TW Northern Basin and Range Geothermal Region Broadwater Hot Spring Geothermal Area 5.256 MW5,255.823 kW 5,255,823.43 W 5,255,823,430 mW 0.00526 GW 5.255823e-6 TW Northern Basin and Range Geothermal Region

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Assessment of geothermal development in Puna, Hawaii  

SciTech Connect

The following subjects are discussed: the district of Puna prior to geothermal development, socioeconomic conditions, alternative modes of geothermal development, social benefits and costs of geothermal development, and geothermal development policy and its direction. (MHR)

Kamins, R.M.; Tinning, K.J.

1977-01-01T23:59:59.000Z

382

Aeromagnetic Survey At Hualalai Northwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Aeromagnetic Survey At Hualalai Northwest Rift Area Aeromagnetic Survey At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic survey data for Hualalai (Godson et al., 1981) clearly indicate an elongate northwest to southeast trending zone of extremely low total magnetic field over the summit region of Hualalai that extends into the upper northwest rift zone. It is extremely unlikely that the summit region is underlain by intrusive material old enough (greater than 700,000 years of age) to have been emplaced during a period of reversed magnetic field; therefore, the only alternative explanation possible (presuming the data are accurate) is that this region is underlain by material with very

383

Thermal and mechanical development of the East African Rift System  

E-Print Network (OSTI)

The deep basins, uplifted flanks, and volcanoes of the Western and Kenya rift systems have developed along the western and eastern margins of the 1300 km-wide East African plateau. Structural patterns deduced from field, ...

Ebinger, Cynthia Joan

1988-01-01T23:59:59.000Z

384

Refraction Survey At Kilauea East Rift Area (Broyles, Et Al....  

Open Energy Info (EERE)

Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Seismic And Gravity Data Retrieved from "http:en.openei.orgwindex.php?titleRefractionSurveyAtKila...

385

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

386

Geothermal Direct Use | Open Energy Information  

Open Energy Info (EERE)

Direct Use Direct Use Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF [edit] Geothermal Direct Use Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Direct Use Links Related documents and websites EERE's Direct Use Report National Institute of Building Science's Whole Building Design Guide Policy Makers' Guidebook for Geothermal Heating and Cooling Dictionary.png Geothermal Direct Use: Low- to moderate-temperature water from geothermal reservoirs can be used to provide heat directly to buildings, or other applications that require

387

Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Technologies Geothermal Technologies (Redirected from Geothermal Conversion Technologies) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way. Regardless of the energy conversion, geothermal energy requires heat(in the form of rock), water, and flow; and every resources will have different values for each. Some resources have very high temperature rock with high porosity (allowing for flow) but little to know water (see Enhanced Geothermal Systems (EGS). Some resources have plenty of water, great flow, but the temperatures are not very high which are commonly used for direct use. Any combination of those 3 things can be found in nature, and for that reason there are different classifications of geothermal

388

West Texas geothermal resource assessment. Part I. Geothermal exploration in Trans-Pecos, Texas. Final report  

Science Conference Proceedings (OSTI)

All of the new drilling for geothermal gradient and heat flow studies have been concentrated in an area near Hueco Tanks State Park. Interest in the area was raised by the silica geothermometry map of Hoffer (1979) and its proximity to El Paso, which is less than 25 miles away and expanding rapidly toward the area of geothermal interest. Several industries in El Paso appear to be potential users of non-electrical grade hot waters. A total of 14 holes have been drilled for geothermal gradient and heat-flow measurements. Of these, 12 were 50 meters deep and all but two had gradients in excess of 100/sup 0/C/km, one having a gradient as high as 306/sup 0/C/km. Of the remaining two, one penetrated bedrock at about 50 meters and was drilled to a total depth of 125 meters. The gradient in the limestone bedrock is 170/sup 0/C/km and the heat flow is about 11 x 10/sup -6/cal/cm/sup 2/ sec. This is the highest heat flow thus far reported for a locality in the Rio Grande Rift. The last hole is 300 meters deep and has a gradient of 142/sup 0/C/km and a heat flow of 9 x 10/sup -6/cal/cm/sup 2/ sec. The Hueco Tanks site is very promising for at least space heating applications of hot water. Based on the 300 meter hole the potential for electricity grade temperatures still exist, but the tight limestone bedrock may require hot dry rock extraction technology.

Roy, R.F.; Taylor, B.

1980-01-01T23:59:59.000Z

389

The Geothermal Technologies Office Congratulates this Year's ...  

The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees. December 11, 2013. On December 10, the Geothermal Energy Association ...

390

Geothermal Technologies Office: Hydrothermal and Resource Confirmation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

391

EERE: Geothermal Technologies Office Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

392

Thermal Response Testing for Geothermal Heat Exchangers ...  

Science Conference Proceedings (OSTI)

Thermal Response Testing for Geothermal Heat Exchangers Begins. The Net-Zero house features a geothermal heat pump ...

2013-03-12T23:59:59.000Z

393

Geothermal Exploration In Akutan, Alaska, Using Multitemporal...  

Open Energy Info (EERE)

In Akutan, Alaska, Using Multitemporal Thermal Infrared Images Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geothermal Exploration In...

394

RMOTC - Testing - Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Testing Geothermal Testing Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. With the existing geologic structure at RMOTC, promising potential exists for Enhanced Geothermal System (EGS) testing. The field also has two reliable water resources for supporting low-temperature geothermal testing.

395

Geothermal: Distributed Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Search Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Geothermal Collection (DOE) Energy Information Administration (EIA) Environmental Protection Agency (EPA) E-print Network (DOE) National Technical Information Service (NTIS) Geothermal Legacy Collection (DOE) NREL Publications U.S. Patent and Trademark Office (USPTO) Scientific and Technical Information Network (STINET) Select All Enter one or more search terms to search the following fields: [Searches for the following specific fields are available for the sites and databases as indicated below.] Author: (Geothermal Collections, NREL, STINET, and U.S. Patent Server) Title: (All sources except NTIS)

396

Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewables » Geothermal Renewables » Geothermal Geothermal EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. Photo of a geothermal power plant with a fumarole, or steam vent, in the foreground. The U.S. Department of Energy (DOE) develops innovative technologies to

397

geothermal_test.cdr  

Office of Legacy Management (LM)

F A C T S H E E T Overview The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S....

398

Residential Geothermal Systems Credit  

Energy.gov (U.S. Department of Energy (DOE))

A resident individual taxpayer of Montana who installs a geothermal heating or cooling system in their principal dwelling can claim a tax credit based on the installation costs of the system, not...

399

Geothermal Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

1 GEOTHERMAL POWER GENERATION A PRIMER ON LOW-TEMPERATURE, SMALL-SCALE APPLICATIONS by Kevin Rafferty Geo-Heat Center January 2000 REALITY CHECK Owners of low-temperature...

400

Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremesfrom scorching heat in...

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Geothermal Energy: Current abstracts  

DOE Green Energy (OSTI)

This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

Ringe, A.C. (ed.)

1988-02-01T23:59:59.000Z

402

The origin of hydrothermal and other gases in the Kenya Rift Valley  

SciTech Connect

The Kenya Rift Valley (KRV) is part of a major continental rift system from which much outgassing is presently occurring. Previous research on gases in the KRV has tended to concentrate on their geothermal implications; the present paper is an attempt to broaden the interpretation by consideration of new data including helium and carbon isotope analyses from a wide cross-section of sites. In order to do this, gases have been divided into categories dependent on origin. N{sub 2} and noble gases are for the most part atmospherically derived, although their relative concentrations may be altered from ASW ratios by various physical processes. Reduced carbon (CH{sub 4} and homologues) appears to be exclusively derived from the shallow crust, with thermogenic {delta}{sup 13}C values averaging -25{per_thousand} PDB for CH{sub 4}. H{sub 2} is likely also to be crustally formed. CO{sub 2}, generally a dominant constituent, has a narrow {delta}{sup 13}C range averaging -3.7{per_thousand} PDB, and is likely to be derived with little modification from the upper mantle. Consideration of the ratio C/{sup 3}He supports this view in most cases. Sulphur probably also originates there. Ratios of {sup 3}He/{sup 4}He reach a MORB-like maximum of 8.0 R/R{sub A} and provide the best indication of an upper mantle source of gases beneath the KRV. A correlation between {sup 3}He/{sup 4}He and the hydrocarbon parameter log (C{sub 1}/{Sigma}C{sub 2-4}) appears to be primarily temperature related. The highest {sup 3}He/{sup 4}He ratios in spring waters are associated with basalts, perhaps because of the leaching of basalt glasses. There may be a structural control on {sup 3}He/{sup 4}He ratios in the KRV as a whole.

Darling, W.G. [British Geological Survey, Wallingford (United Kingdom)] [British Geological Survey, Wallingford (United Kingdom); Griesshaber, E. [Max-Planck Institut fuer Chemie, Mainz (Germany)] [Max-Planck Institut fuer Chemie, Mainz (Germany); Andrews, J.N. [Univ. of Reading (United Kingdom)] [and others] [Univ. of Reading (United Kingdom); and others

1995-06-01T23:59:59.000Z

403

Analysis of Low-Temperature Utilization of Geothermal Resources Geothermal  

Open Energy Info (EERE)

Temperature Utilization of Geothermal Resources Geothermal Temperature Utilization of Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Analysis of Low-Temperature Utilization of Geothermal Resources Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description In this proposal West Virginia University (WVU) outline a project which will perform an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. Full realization of the potential of what might be considered "low-grade" geothermal resources will require the examination many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source the project will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects.

404

Geothermal reservoir technology  

DOE Green Energy (OSTI)

A status report on Lawrence Berkeley Laboratory's Reservoir Technology projects under DOE's Hydrothermal Research Subprogram is presented. During FY 1985 significant accomplishments were made in developing and evaluating methods for (1) describing geothermal systems and processes; (2) predicting reservoir changes; (3) mapping faults and fractures; and (4) field data analysis. In addition, LBL assisted DOE in establishing the research needs of the geothermal industry in the area of Reservoir Technology. 15 refs., 5 figs.

Lippmann, M.J.

1985-09-01T23:59:59.000Z

405

Geothermal energy: feasibility study  

DOE Green Energy (OSTI)

A research program initiated to investigate the feasibility of using the geothermal energy available in salt domes to generate electrical power and of using cavities developed in salt domes as high temperature, high pressure chemical reaction vessels for converting municipal wastes to fuel oil or gas is described. Power generation from geothermal was not found to be economically feasible. The conversion of waste to fuel is possible if the problems of cavity collapse can be avoided. (MHR)

Hodgson, E.W. Jr.; Ziegler, R.C.

1976-02-01T23:59:59.000Z

406

Geothermal environmental overview project  

DOE Green Energy (OSTI)

The basic purpose of the Geothermal Environmental Overview Project is to summarize and assess the state of environmental issues of the top priority KGRAs from among the 37 KGRAs currently identified by the Division of Geothermal Energy as having possibility for commercial development. The objectives of the Overview Project are inventory of available data, assessment of available data, identification of data gaps, and identification of key issues. (JGB)

Anspaugh, L.R.

1977-10-25T23:59:59.000Z

407

Geothermal induced seismicity program plan  

DOE Green Energy (OSTI)

A plan for a National Geothermal Induced Seismicity Program has been prepared in consultation with a panel of experts from industry, academia, and government. The program calls for baseline seismic monitoring in regions of known future geothermal development, continued seismic monitoring and characterization of earthquakes in zones of geothermal fluid production and injection, modeling of the earthquake-inducing mechanism, and in situ measurement of stresses in the geothermal development. The Geothermal Induced Seismicity Program (GISP) will have as its objectives the evaluation of the seismic hazard, if any, associated with geothermal resource exploitation and the devising of a technology which, when properly utilized, will control or mitigate such hazards.

Not Available

1981-03-01T23:59:59.000Z

408

The Geysers Geothermal Field Update1990/2010  

E-Print Network (OSTI)

in The Geysers. GeothermalResourcesCouncilA planned Enhanced Geothermal System demonstrationproject. Geothermal Resources Council Transactions33,

Brophy, P.

2012-01-01T23:59:59.000Z

409

NREL: Financing Geothermal Power Projects - Planning and Timing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Technology Deployment Energy Systems Integration Financing Geothermal Power Projects Geothermal Technologies Financing Geothermal Power Projects Search...

410

Drilling for Geothermal Resources Rules - Idaho | Open Energy...  

Open Energy Info (EERE)

Geothermal Resources Rules - Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Drilling for Geothermal Resources Rules - Idaho Details...

411

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network (OSTI)

2 Mission of Division of Geothermal Energy . . . . .Coordination with Other Geothermal Programs . . . . . . 6the Behavior of Geothermal Systems . . . . . . . . . 1 6

Bloomster, C.H.

2010-01-01T23:59:59.000Z

412

Idaho/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Idaho/Geothermal Idaho/Geothermal < Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Idaho Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Idaho Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Raft River II Geothermal Project U.S. Geothermal Raft River, AK 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase III - Permitting and Initial Development Raft River Geothermal Area Northern Basin and Range Geothermal Region Raft River III Geothermal Project U.S. Geothermal Raft River, ID 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase I - Resource Procurement and Identification Raft River Geothermal Area Northern Basin and Range Geothermal Region

413

NREL: Financing Geothermal Power Projects - Guidebook to Geothermal Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance The Guidebook to Geothermal Power Finance (the Guidebook), funded by the U.S. Department of Energy's Geothermal Technologies Program, provides insights and conclusions related to past influences and recent trends in the geothermal power project financing market before and after the 2008 economic downturn. Using the information in the Guidebook, developers and investors can innovate in new ways and develop partnerships that match investors' risk tolerance with the capital requirements of geothermal power projects in a dynamic and evolving marketplace. The Guidebook relies heavily on interviews conducted with leaders in the field of geothermal project finance. It includes detailed information on

414

Geothermal Modeling of the Raft River Geothermal Field | Open Energy  

Open Energy Info (EERE)

Geothermal Modeling of the Raft River Geothermal Field Geothermal Modeling of the Raft River Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Modeling of the Raft River Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: This interim report presents the results to date of chemical modeling of the Raft River KGRA. Earlier work indicated a northwest-southeast anomaly in the contours. Modeling techniques applied to more complete data allowed further definition of the anomaly. Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well vicinity. Recommendations

415

Geothermal Literature Review At Coso Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Geothermal Literature Review At Coso Geothermal Area Geothermal Literature Review At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Exploration Basis To characterize the magma beneath melt zones Notes The melt zones of volcanic clusters were analyzed with recent geological and geophysical data for five magma-hydrothermal systems. These were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Coso_Geothermal_Area_(1984)&oldid=510800"

416

SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature Geothermal SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature Geothermal Facility Facility SWTDI Geothermal Aquaculture Facility Sector Geothermal energy Type Greenhouse Location Las Cruces, New Mexico Coordinates 32.3123157°, -106.7783374° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

417

The National Geothermal Collaborative, EERE-Geothermal Program, Final Report  

SciTech Connect

Summary of the work conducted by the National Geothermal Collaborative (a consensus organization) to identify impediments to geothermal development and catalyze events and dialogues among stakeholders to over those impediments.

Jody Erikson

2006-05-26T23:59:59.000Z

418

Hybrid Geothermal Heat Pump System Research Geothermal Project | Open  

Open Energy Info (EERE)

Hybrid Geothermal Heat Pump System Research Geothermal Project Hybrid Geothermal Heat Pump System Research Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Hybrid Geothermal Heat Pump System Research Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 2: Data Gathering and Analysis Project Description Geothermal, or ground-source heat pump systems have been shown to have superior energy performance to conventional heating and cooling systems in many building types and climates. There has been significant growth in the application of these systems; yet, geothermal systems have only been able to capture a few percent of the heating and cooling market. This is due primarily to the prohibitively high cost of installing the necessary ground loop.

419

Geophysical reconnaissance of prospective geothermal areas on the Island of Hawaii using electrical methods  

DOE Green Energy (OSTI)

Resistivity data from several areas were compiled, analyzed, and interpreted in terms of possible geologic models. On the basis of this analysis alone, two areas have been ruled out for possible geothermal exploitation, two have been interpreted to have a moderate-temperature resource, and two have been interpreted to have a high-temperature resource. The two areas which have been ruled out are the Keaau and South Point areas. The Kawaihae area and the lower northwest rift zone of Hualalai appear to have anomalous resistivity structures which suggest a moderate-temperature resource in each of these areas. Finally, specific areas in the lower southwest and lower east rift zones of Kilaauea have been outlined as locations where high-temperature fluids may exist at depth.

Kauahikaua, J.; Mattice, M.

1981-12-01T23:59:59.000Z

420

An inventory survey at the site of the proposed Kilauea Middle East Rift Zone (KMERZ), Well Site No. 2  

DOE Green Energy (OSTI)

At the request of True Mid Pacific Geothermal, Archaeological Consultants of Hawaii, Inc. has conducted an inventory survey at the site of the proposed Kilauea Middle East Rift Zone (KMERZ), Well Site No.2, TMK: 1-2-10:3. The Principal Investigator was Joseph Kennedy M.A., assisted by Jacob Kaio, Field Supervisor and field crew Mark Borrello B.A., Michael O'Shaughnessy B.A., and Randy Adric. This report supercedes all previous reports submitted to the Historic Presentation Section of the Department of Land and Natural Resources. In addition to 100% surface coverage of the 400 x 400 foot well pad itself, 100% surface coverage of a substantial buffer zone was also completed. This buffer zone was established by the Department of Land and Natural Resources, Historic Preservation personnel and extends 1000 feet east and west of the well site and 500 feet north and south of the well site.

Kennedy, Joseph

1991-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geothermal handbook. Geothermal project, 1976. [Ecological effects of geothermal resources development  

DOE Green Energy (OSTI)

The geothermal program of Fish and Wildlife Service, U.S. Dept. of Interior, aims to develop ecologically sound practices for the exploration, development, and management of geothermal resources and the identification of the biological consequences of such development so as to minimize adverse effects on fish and wildlife resources. This handbook provides information about the ecological effects of geothermal resource development. Chapters are included on US geothermal resources; geothermal land leasing; procedures for assessing the effects on fish and game; environmental impact of exploratory and field development operations; and wildlife habitat improvement methods for geothermal development.

Not Available

1976-06-01T23:59:59.000Z

422

Geothermal Heat Pump System for New Student Housing Geothermal...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

423

Geothermal Heat Pump System for Ice Arena Geothermal Project...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

424

Geothermal Impact Analysis Geothermal Project | Open Energy Informatio...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

425

Geothermal project summaries. Geothermal energy research, development, and demonstration program  

SciTech Connect

The Division of Geothermal Energy ''Geothermal Project Summaries'' provides pertinent information on each active ERDA Geothermal project, includes a listing of all contractors and a compilation of completed projects. New project summaries and necessary revisions to current project data will be prepared on a quarterly basis.

1976-04-01T23:59:59.000Z

426

Geothermal project summaries. Geothermal energy research, development, and demonstration program  

DOE Green Energy (OSTI)

The Division of Geothermal Energy ''Geothermal Project Summaries'' provides pertinent information on each active ERDA Geothermal project, includes a listing of all contractors and a compilation of completed projects. New project summaries and necessary revisions to current project data will be prepared on a quarterly basis.

Not Available

1976-04-01T23:59:59.000Z

427

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal power) Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

428

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Geothermal Power) (Redirected from Geothermal Power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Energy RSF GeothermalPowerStation.jpg Geothermal energy is heat extracted from the Earth [Geo (Earth) + thermal (heat)].The temperature of the Earth varies widely, and a wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from several sources, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and steam located both near the Earth's surface as well as several miles deep into the Earth, even reaching the Earth's magma.[2][3] Geothermal

429

Geothermal Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Generation This article is a stub. You can help OpenEI by expanding it. Global Geothermal Energy Generation Global Geothermal Electricity Generation in 2007 (in millions of kWh):[1] United States: 14,637 Philippines: 12,080 Indonesia: 6,083 Mexico: 5,844 (Note: Select countries are listed; this is not an exhaustive list.) United States Geothermal Energy Generation U.S. geothermal energy generation remained relatively stable from 2000 to 2006, with more than 3% growth in 2007 and 2008.[1] U.S. geothermal electricity generation in 2008 was 14,859 GWh.[1] References ↑ 1.0 1.1 1.2 (Published: July 2009) "US DOE 2008 Renewable Energy Data Book" Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Generation&oldid=599391"

430

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal) Geothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

431

Projects Geothermal | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for ProjectsGeothermal Citation Terra-Gen Power LLC. ProjectsGeothermal...

432

Geothermal energy: 1992 program overview  

DOE Green Energy (OSTI)

Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

Not Available

1993-04-01T23:59:59.000Z

433

Geothermal drilling picking up steam  

Science Conference Proceedings (OSTI)

This article discusses developments in geothermal energy exploitation at several California, U.S. locations. The author addresses the issues of capital and time investment, environmental impact, cost of energy produced and gives a view of global geothermal energy production.

Killalea, M

1988-11-01T23:59:59.000Z

434

Geothermal Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources Geothermal Resources August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in...

435

Modern Geothermal Features | Open Energy Information  

Open Energy Info (EERE)

Modern Geothermal Features Modern Geothermal Features Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Modern Geothermal Features Dictionary.png Modern Geothermal Features: Active geothermal manifestations such as hot springs, fumaroles, steaming ground, mud pots, mud pools, mud volcanoes, or geysers. Other definitions:Wikipedia Reegle When geothermal systems have conduits available to the surface, they cause surface manifestations (or geothermal features). These features may vary between steam seeps (fumaroles) or pure fluid manifestations (geysers and hot springs) causing spectacular mineral formations (e.g. sinter terraces, tufa mounds). These types of manifestations are clear indications of an underlying geothermal system. Geothermal systems with no modern surface

436

Geothermal Properties Measurement Tool | Open Energy Information  

Open Energy Info (EERE)

Geothermal Properties Measurement Tool Geothermal Properties Measurement Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Properties Measurement Tool Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Geothermal Topics: Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.ornl.gov/sci/ees/etsd/btric/ground-source.shtml Cost: Free References: Geothermal Properties Measurement Tool [1] Logo: Geothermal Properties Measurement Tool The Geothermal Properties Measurement tool was developed at Oak Ridge National Laboratory for geothermal heat pump (GHP) designers and installers to better determine the geothermal properties of a certain location. The Geothermal Properties Measurement Excel tool was developed at Oak Ridge

437

Report Comparing the Impacts of Northeast Hurricanes Now Available  

Energy.gov (U.S. Department of Energy (DOE))

The report "Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure" is now available for download.

438

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network (OSTI)

Geothermal Field, Monograph on The Geysers GeothermalField, Geothermal Resources Council, Special Report no. 17,Subsidence at The Geysers geothermal field, N. California

Rutqvist, J.

2008-01-01T23:59:59.000Z

439

Geothermal energy | Open Energy Information  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

440

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network (OSTI)

of Subsiding Areas and Geothermal Subsidence Potential25 Project l-Subsidence Case Histories . . . . . . . . . .8 . Subsidence Models . . . . . . . . . . . . . . . .

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Geothermal resources of South Dakota  

SciTech Connect

This document consists of 1:750,000 map showing the accessible stratabound geothermal resources of South Dakota. (BN)

Gosnold, W.D. Jr. (comp.) (North Dakota Univ., Grand Forks, ND (United States). North Dakota Mining and Mineral Resources Research Inst.)

1992-01-01T23:59:59.000Z

442

South Dakota Geothermal Energy Handbook  

SciTech Connect

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are detailed. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resources are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized.

1980-06-01T23:59:59.000Z

443

Geothermal resources of South Dakota  

SciTech Connect

This document consists of 1:750,000 map showing the accessible stratabound geothermal resources of South Dakota. (BN)

Gosnold, W.D. Jr. [comp.] [North Dakota Univ., Grand Forks, ND (United States). North Dakota Mining and Mineral Resources Research Inst.

1992-08-01T23:59:59.000Z

444

Evaluation of lineament analysis as an exploration technique for geothermal energy, western and central Nevada. Final report, June 1976--October 1978  

DOE Green Energy (OSTI)

Lineament analysis as an exploration technique for geothermal energy using multi-scale, multi-format imagery and geophysical data is investigated and evaluated. Two areas in Nevada, each having distinct differences in structural style were studied. One area, which encompasses a portion of the Battle Mountain Heat Flow High, was studied to determine the relationship between regional and local structural controls and geothermal activity. Four geothermal sites within this area (Winnemucca AMS) were selected and studied in detail. These sites include: 1) Leach Hot Springs, 2) Kyle Hot Springs, 3) Beowawe geothermal area and Buffalo Valley Hot Springs. A second area encompassed by the Reno AMS Sheet was selected for further study in a region dominated by three diverse tectonic styles; these are: 1) the Sierra Nevada Front, 2) the Walker Lane, and 3) basin-and-range structures. Geothermal sites analyzed at site specific scales within the Reno AMS Sheet included Steamboat Hot Springs in the Sierra Nevada Front subprovince, Dixie Valley Hot Springs located in typical basin-and-range terrain and the Brady's-Desert Peak area which is marginal to the Walker Lane. Data products employed included LANDSAT imagery, SKYLAB photography, gravity, and aeromagnetic maps. Results of this investigation indicate that in north-central Nevada the major sites of geothermal activity are associated with northeast trending structures related to the Midas Trench lineament and that the most viable geothermal area (Beowawe is located at the intersection of the northeast trend of the Oregon-Nevada Lineament.

Trexler, D.T.; Bell, E.J.; Roquemore, G.R.

1978-10-01T23:59:59.000Z

445

Isotopic Geochemistry and Hydrology of Geothermal Waters in the Ethiopian Rift Valley  

E-Print Network (OSTI)

evidence subsurface water-rock source for a reaction in thissuch source water undergoes isotopic exchange with rocks totype source waters are modified by interaction with rocks to

Isotope Laboratory, Scripps Institution of Oceanography

1977-01-01T23:59:59.000Z

446

Northeast - NY NJ CT PA Area | Open Energy Information  

Open Energy Info (EERE)

Northeast - NY NJ CT PA Area Northeast - NY NJ CT PA Area (Redirected from New York Area - NY NJ CT PA) Jump to: navigation, search Contents 1 Clean Energy Clusters in the Northeast - NY NJ CT PA Area 1.1 Products and Services in the Northeast - NY NJ CT PA Area 1.2 Research and Development Institutions in the Northeast - NY NJ CT PA Area 1.3 Networking Organizations in the Northeast - NY NJ CT PA Area 1.4 Investors and Financial Organizations in the Northeast - NY NJ CT PA Area 1.5 Policy Organizations in the Northeast - NY NJ CT PA Area Clean Energy Clusters in the Northeast - NY NJ CT PA Area Products and Services in the Northeast - NY NJ CT PA Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

447

Northeast - NY NJ CT PA Area | Open Energy Information  

Open Energy Info (EERE)

Northeast - NY NJ CT PA Area Northeast - NY NJ CT PA Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Northeast - NY NJ CT PA Area 1.1 Products and Services in the Northeast - NY NJ CT PA Area 1.2 Research and Development Institutions in the Northeast - NY NJ CT PA Area 1.3 Networking Organizations in the Northeast - NY NJ CT PA Area 1.4 Investors and Financial Organizations in the Northeast - NY NJ CT PA Area 1.5 Policy Organizations in the Northeast - NY NJ CT PA Area Clean Energy Clusters in the Northeast - NY NJ CT PA Area Products and Services in the Northeast - NY NJ CT PA Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

448

Next Generation Geothermal Power Plants  

Science Conference Proceedings (OSTI)

This report analyzes several approaches to reduce the costs and enhance the performance of geothermal power generation plants. Electricity supply planners, research program managers, and engineers evaluating geothermal power plant additions or modifications can use this report to compare today's geothermal power systems to several near- and long-term future options.

1996-04-05T23:59:59.000Z

449

Postgraduate Certificate in Geothermal Energy  

E-Print Network (OSTI)

Postgraduate Certificate in Geothermal Energy Technology Department of Engineering Science to study for the PGCertGeothermTech will require a visa. Details about how to obtain a visa to study in New your visa. Geothermal Training in New Zealand New Zealand is a beautiful country in the South Pacific

Auckland, University of

450

HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

Schroeder, R.C.

2009-01-01T23:59:59.000Z

451

North Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina/Geothermal Carolina/Geothermal < North Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF North Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in North Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in North Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in North Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for North Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

452

Iowa/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Iowa/Geothermal Iowa/Geothermal < Iowa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Iowa Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Iowa No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Iowa No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Iowa No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Iowa Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

453

New York/Geothermal | Open Energy Information  

Open Energy Info (EERE)

New York/Geothermal New York/Geothermal < New York Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New York Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New York No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New York No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New York No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New York Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

454

West Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Geothermal West Virginia/Geothermal < West Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF West Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in West Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in West Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in West Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for West Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

455

Alaska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alaska/Geothermal Alaska/Geothermal < Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alaska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alaska Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Akutan Geothermal Project City Of Akutan Akutan, Alaska 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase II - Resource Exploration and Confirmation Akutan Fumaroles Geothermal Area Alaska Geothermal Region Pilgrim Hot Springs Geothermal Project Unaatuq (Near Nome), OR 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase I - Resource Procurement and Identification Pilgrim Hot Springs Geothermal Area Alaska Geothermal Region Add a geothermal project.

456

New Jersey/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Jersey/Geothermal Jersey/Geothermal < New Jersey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Jersey Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Jersey No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Jersey No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Jersey No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New Jersey Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

457

Blind Geothermal System | Open Energy Information  

Open Energy Info (EERE)

Blind Geothermal System Blind Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Blind Geothermal System Dictionary.png Blind Geothermal System: An area with a geothermal heat source, but no modern surface manifestations. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Many geothermal areas show no signs of geothermal activity at the surface if the heated water is too far below or no conduits to the surface are available. An area of geothermal activity with no surface features is referred to as a "blind geothermal system." Examples Want to add an example to this list? Select a Geothermal Resource Area to

458

Geothermal Reservoir Dynamics - TOUGHREACT  

DOE Green Energy (OSTI)

This project has been active for several years and has focused on developing, enhancing and applying mathematical modeling capabilities for fractured geothermal systems. The emphasis of our work has recently shifted towards enhanced geothermal systems (EGS) and hot dry rock (HDR), and FY05 is the first year that the DOE-AOP actually lists this project under Enhanced Geothermal Systems. Our overall purpose is to develop new engineering tools and a better understanding of the coupling between fluid flow, heat transfer, chemical reactions, and rock-mechanical deformation, to demonstrate new EGS technology through field applications, and to make technical information and computer programs available for field applications. The objectives of this project are to: (1) Improve fundamental understanding and engineering methods for geothermal systems, primarily focusing on EGS and HDR systems and on critical issues in geothermal systems that are difficult to produce. (2) Improve techniques for characterizing reservoir conditions and processes through new modeling and monitoring techniques based on ''active'' tracers and coupled processes. (3) Improve techniques for targeting injection towards specific engineering objectives, including maintaining and controlling injectivity, controlling non-condensable and corrosive gases, avoiding scale formation, and optimizing energy recovery. Seek opportunities for field testing and applying new technologies, and work with industrial partners and other research organizations.

Pruess, Karsten; Xu, Tianfu; Shan, Chao; Zhang, Yingqi; Wu,Yu-Shu; Sonnenthal, Eric; Spycher, Nicolas; Rutqvist, Jonny; Zhang,Guoxiang; Kennedy, Mack

2005-03-15T23:59:59.000Z

459

meeting summary First Northeast Regional Operational Workshop  

Science Conference Proceedings (OSTI)

The First Northeast Regional Operational Workshop, focusing on hydrometeorology in the northeastern United States, was held 2123 September 1999 in Albany, New York. Sessions in local and mesoscale modeling, lakeeffect snow, hydrology, heavy ...

Eugene P. Auciello

2000-06-01T23:59:59.000Z

460

meeting summary: Second Northeast Regional Operational Workshop  

Science Conference Proceedings (OSTI)

The Second Northeast Regional Operational Workshop, focusing on hydrometeorology in the northeastern United States, was held 78 November 2000 in Albany, New York. Sessions in cold season events, warm season events, and operational techniques ...

Eugene P. Auciello

2001-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Atmospherically Forced Eddies in the Northeast Pacific  

Science Conference Proceedings (OSTI)

In the northeast Pacific eddies are observed in the salinity and, to a lesser extent, in the thermal anomalies. In particular, a pronounced eddy is frequently observed a few hundred kilometers west of Sitka, Alaska, latitude 57N. This paper ...

A. J. Willmott; L. A. Mysak

1980-11-01T23:59:59.000Z

462

Continental Slope Flow Northeast of Taiwan  

Science Conference Proceedings (OSTI)

Hydrographic observations and current measurements with a Shipboard Acoustic Doppler Current Profiler over the continental shelfslope junction northeast of Taiwan during 1017 August 1994 allow the construction of the mesoscale flow pattern ...

T. Y. Tang; Y. Hsueh; Y. J. Yang; J. C. Ma

1999-06-01T23:59:59.000Z

463

Summer Surface Flow Characteristics over Northeast Colorado  

Science Conference Proceedings (OSTI)

Surface wind data from the program for Regional Observing and Forecasting Services (PROFS) have been analyzed to investigate the diurnal wind flow pattern over the broad drainage are of the South Platte River in northeast Colorado. A consistent ...

James J. Toth; Richard H. Johnson

1985-09-01T23:59:59.000Z

464

Tropospheric Gases and Aerosols in Northeast Greenland  

Science Conference Proceedings (OSTI)

Measurements of atmospheric pollution have taken place in northeast Greenland since 1990. Weekly samples have been collected for analysis of sulfur dioxide, sulfate in particles, and total gaseous and particulate phases of reduced and of oxidized ...

Niels Z. Heidam; Peter Whlin; Jesper H. Christensen

1999-01-01T23:59:59.000Z

465

Wave Extremes in the Northeast Atlantic  

Science Conference Proceedings (OSTI)

The objective of this study is to compute 100-yr return value estimates of significant wave height using a new hindcast developed by the Norwegian Meteorological Institute. This regional hindcast covers the northeast Atlantic and spans the period ...

Ole Johan Aarnes; yvind Breivik; Magnar Reistad

2012-03-01T23:59:59.000Z

466

Magnetotellurics At Rio Grande Rift Region (Aiken & Ander, 1981...  

Open Energy Info (EERE)

Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http:en.openei.orgwindex.php?titleMagnetote...

467

Regional-scale analysis of the geothermal regime in the western Canada sedimentary basin  

Science Conference Proceedings (OSTI)

This paper reports that radiogenic heat generation at the top of the crystalline Precambrian basement underneath the Western Canada Sedimentary Basin is highly variable, on average higher than for the exposed Canadian Shield, and reflects the basement tectonic structure. The areal distribution of the geothermal gradient across the sediments shows a regional-scale northerly increase, with intermediate- and local-state features correlating with anomalies in heat generation at the top of the basement. Only in the northeast and southeast corners of the basin can high geothermal gradients not be explained by heat generation; there they may be caused by convective fluid flow effects. The temperature distribution at the base of the sediments is highly correlated with the thickness of the sedimentary cover and reflects major topographic and basement features. Overall, the characteristics of the geothermal regime in the Western Canada Sedimentary Basin are indicative of a conduction dominated system.

Bachu, S. (Alberta Geological Survey, Alberta Research Council, P.O. Box 8330, Postal Station F, Edmonton, Alberta T6H 5X2 (CA)); Burwash, R.A. (Dept. of Geology, Univ. of Alberta, 1-26 Earth Sciences Building, Edmonton, Alberta T6G 2E1 (CA))

1991-01-01T23:59:59.000Z

468

Geothermal Literature Review At Coso Geothermal Area (1985) | Open Energy  

Open Energy Info (EERE)

5) 5) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1985 Usefulness not indicated DOE-funding Unknown Exploration Basis Need to develop a reservoir model for Coso Notes Analysis of complex geothermal system was done by looking at the available data on the Coso Geothermal Field References Austin, C.F.; Durbin, W.F. (1 September 1985) Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Coso_Geothermal_Area_(1985)&oldid=510801" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers

469

Geothermal Literature Review At Geysers Geothermal Area (1984) | Open  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Geothermal Area (1984) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Geysers_Geothermal_Area_(1984)&oldid=510811

470

geothermal | OpenEI  

Open Energy Info (EERE)

geothermal geothermal Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

471

Geothermal turbine installation  

SciTech Connect

A geothermal turbine intallation in which high-pressure steam is separated from geothermal steam, which is a mixture of steam and water, with the high pressure steam connected to a high pressure turbine. Low pressure steam produced by flashing the hot water component of the geothermal steam is introduced to a low pressure turbine which is constructed and operates independently of the high pressure turbine. The discharge steam from the high pressure turbine is introduced to a steam condenser operating at a low vacuum while discharge steam from the low pressure turbine is introduced into a steam condenser operating at a high vacuum. The cooling water system of the high and low pressure condensers are connected in series with one another. A maximum power increase is obtained if the flow rates of the high and low pressure steams at the extraction ports of the high and low pressure turbines are made substantially equal to one another.

Nishioka, R.

1983-01-04T23:59:59.000Z

472

Cascades geothermal program  

SciTech Connect

The Cascades region is an area with high geothermal potential but few surface manifestations and limited subsurface data. To stimulate further development of hydrothermal resources, DOE-Idaho Operations Office issued Solicitation Number DE-SC07-85IDI2580. The reason for this solicitation was to secure cost sharing agreements with industry to drill gradient holes that would penetrate the rain curtain and obtain deep thermal, lithologic, and structural data. The data obtained and studies conducted under this program are to be released to the public for the benefit of the geothermal industry and the scientific community. The first thermal gradient hole to be drilled under this program was finished November 1985 by GEO-Newberry Crater, Inc. on the south flank of Newberry volcano. Data for additional wells drilled under the Cascades Geothermal Drilling Program will be released as they become available.

Not Available

1986-01-01T23:59:59.000Z

473

Geothermal hydrogen sulfide removal  

DOE Green Energy (OSTI)

UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

Urban, P.

1981-04-01T23:59:59.000Z

474

Geothermal materials development activities  

DOE Green Energy (OSTI)

This ongoing R&D program is a part of the Core Research Category of the Department of Energy/Geothermal Division initiative to accelerate the utilization of geothermal resources. High risk materials problems that if successfully solved will result in significant reductions in well drilling, fluid transport and energy conversion costs, are emphasized. The project has already developed several advanced materials systems that are being used by the geothermal industry and by Northeastern Electric, Gas and Steam Utilities. Specific topics currently being addressed include lightweight C0{sub 2}-resistant well cements, thermally conductive scale and corrosion resistant liner systems, chemical systems for lost circulation control, elastomer-metal bonding systems, and corrosion mitigation at the Geysers. Efforts to enhance the transfer of the technologies developed in these activities to other sectors of the economy are also underway.

Kukacka, L.E.

1993-06-01T23:59:59.000Z

475

Geothermal energy program summary  

DOE Green Energy (OSTI)

The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

Not Available

1990-01-01T23:59:59.000Z

476

Geothermal energy program summary  

SciTech Connect

The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

1990-01-01T23:59:59.000Z

477

Geothermal waste treatment biotechnology  

DOE Green Energy (OSTI)

Technical feasibility of a biotechnology based on biochemical reactions for detoxification of geothermal brines has been demonstrated. Laboratory-scale studies have shown that the emerging biotechnology is versatile and is applicable to a variety of geothermal sludges and materials with similar geochemical properties. Materials suitable for treatment are those which may contain few or many metals in concentrations exceeding those allowed by regulatory agencies. Comparison of several possible types of bioreactors and processes have led to the conclusion that a number of variables have to be considered in the design and development of a biochemical plant for the detoxification of geothermal type sludges. These include reactor size, effects of agitation, mixed cultures, state of the biomass, pH and dissolved oxygen, concentration of residual sludge, residence time, and temperature. Under optimum conditions, high rates of metal removal can be achieved. Some recent studies, dealing with the process variables and their optimization, will be discussed. 6 refs., 3 figs.

Premuzic, E.T.; Lin, M.S.

1991-05-01T23:59:59.000Z

478

Advanced geothermal technologies  

DOE Green Energy (OSTI)

Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the US Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico, was producing 10 MW thermal - and still climbing - proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction has been demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive. Noteworthy among these technological advances are techniques in computer simulation of geothermal reservoirs, new means for well stimulation, new high-temperature logging tools and packers, new hard-rock penetration techniques, and new methods for mapping fracture flow paths across large underground areas in reservoirs. In addition, many of these same technological advances can be applied by the petroleum industry to help lower production costs in domestic oil and gas fields. 5 refs., 4 figs.

Whetten, J.T.; Murphy, H.D.; Hanold, R.J.; Myers, C.W.; Dunn, J.C.

1988-01-01T23:59:59.000Z

479

Lateral steam flow revealed by a pressure build-up test at the Matsukawa vapor-dominated geothermal field, Japan  

Science Conference Proceedings (OSTI)

Results and discussion of a pressure build-up test at the Matsukawa vapor-dominated geothermal field in north-east Japan are reported. Pressure build-up behavior of three dry steam wells was monitored at the wellhead in October 1986. The observed pressure gradient clearly shows the existence of a lateral steam flow from south-west to north-east in the reservoir. This result suggests that the vapor-dominated reservoir extends further south-west than it is currently being developed. These conclusions are supported by production records and chemical data.

Hanano, M. Sakagawa, Y. (Japan Metals and Chemicals Co. Ltd., 24-Ukai, Takizawa-mura, Iwate 020-01 (JP))

1990-01-01T23:59:59.000Z

480

Geothermal Energy; (USA)  

DOE Green Energy (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

Raridon, M.H.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "northeast rift geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Geothermal well stimulation  

DOE Green Energy (OSTI)

All available data on proppants and fluids were examined to determine areas in technology that need development for 300 to 500/sup 0/F (150/sup 0/ to 265/sup 0/C) hydrothermal wells. While fluid properties have been examined well into the 450/sup 0/F range, proppants have not been previously tested at elevated temperatures except in a few instances. The latest test data at geothermal temperatures is presented and some possible proppants and fluid systems that can be used are shown. Also discussed are alternative stimulation techniques for geothermal wells.

Sinclair, A.R.; Pittard, F.J.; Hanold, R.J.

1980-01-01T23:59:59.000Z

482

Magnetotellurics At Kilauea East Rift Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Magnetotellurics At Kilauea East Rift Area (Laney, Magnetotellurics At Kilauea East Rift Area (Laney, 2005) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes Magnetotelluric Imaging, G. Michael Hoversten. The project title derived from its inception. The project however moved from the application of MT on Kilauea in 2003 to the use of combined SP and conductivity mapping (MT) in 2004. The beginning of 2004 saw the completions of the Kilauea MT experiment by the acquisition of an additional 45 MT stations on Kilauea. We therefore decided to use the funds available to work at the Fort Bidwell Indian reservation where characterization work could be done at relatively low cost. We decided to perform a time lapse SP survey during a flow test

483

2008 Geothermal Technologies Market Report  

Science Conference Proceedings (OSTI)

This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

Cross, J.; Freeman, J.

2009-07-01T23:59:59.000Z

484

Human Resources in Geothermal Development  

DOE Green Energy (OSTI)

Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

Fridleifsson, I.B.

1995-01-01T23:59:59.000Z

485

Geothermal Information Dissemination and Outreach  

SciTech Connect

Project Purpose To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and TV station interviews were conducted during the event. Technical Program included 136 technical papers. All were published in Volume 28 of the GRC Transactions. Volume 28, GRC Transactions Pblished as a high-quality, durable casebound volume, Volume 28 of the Transactions published 119 out of 136 technical papers (692 pp) presented at the GRC 2004 Annual Meeting. The papers were submitted by geothermal experts and professionals from around the world. The papers were reviewed over a 2-day period by 25 volunteer (in-kind) geothermal experts from the private sector and DOE National Laboratories. GRC staff received and cataloged the papers, and maintained interaction with authors for revisions and corrections. DOE Geothermal Technologies Newsletter The Office of Geothermal Technologies quarterly newsletter, Geothermal Technologies, is produced at the National Renewable Energy Laboratory (NREL). This 2-color, 4- to 16-page newsletter summarizes federal geothermal research and development projects and other DOE geothermal news. The GRC receives newsletter disk copy and color-key proof from NREL for each newsletter, then follows through with print production and distribution. Circulation is 1,000 per issue (plus 300 copies of the newsletter shipped to NREL for internal and public distribution). During the project period, the GRC printed, stitched and bound the Geothermal Technologies newsletter into the Sept/Oct 2003, Jan/Feb 2004, and May/June 2004 editions of the GRC Bulletin. Multiple copies (300) of the newsletter sans magazine were provided to NREL for internal DOE distribution. GRC Geothermal Research Library The GRC has built the largest and most comprehensive library in the world devoted to geothermal energy. The GRC Geothermal Library provides rapid accessibility to the majority of technical literature crafted over the past 30 years, and preserves hard copy and on-line databases for future use by geothermal researchers and developers. A bibliography for over half of the physical library's citations is available through keyword search on the GRC web site (www.geothe

Ted J. Clutter, Geothermal Resources Council Executive Director

2005-02-18T23:59:59.000Z

486

Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

Regions Regions Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Regions RegionsMap2012.jpg Geothermal regions were outlined for the western United States (including Alaska and Hawaii) to identify geothermal areas, projects, and exploration trends for each region. These regions were developed based on the USGS physiographic regions (U.S. Geological Survey), and then adjusted to fit geothermal exploration parameters such as differences in geologic regime, structure, heat source, surface effects (weather, vegetation patterns, groundwater flow), and other relevant factors. The 21 regions can be seen outlined in red and overlain on the 2008 USGS Geothermal Favorability Map in Figure 1.[1] Add a new Geothermal Region List of Regions Area (km2) Mean MW

487

Nevada/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nevada/Geothermal Nevada/Geothermal < Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nevada Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nevada Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alligator Geothermal Geothermal Project Oski Energy LLC Ely, Nevada 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase I - Resource Procurement and Identification Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Aurora Geothermal Project Gradient Resources Hawthorne, Nevada 190 MW190,000 kW

488

Washington/Geothermal | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Washington/Geothermal < Washington Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Washington Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Washington No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Washington No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Washington Mean Capacity (MW) Number of Plants Owners Geothermal Region Baker Hot Spring Geothermal Area 22.7 MW22,700 kW 22,700,000 W 22,700,000,000 mW 0.0227 GW 2.27e-5 TW Cascades Geothermal Region

489

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Enhanced Geothermal Systems (EGS) (Redirected from EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation)

490

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring  

E-Print Network (OSTI)

geothermal power plants. US DOE EERE Geothermal Technologieswas made for the US DOE EERE Geothermal Technologies

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z

491

Intermittent upwelling of asthenosphere beneath the Gregory Rift, Kenya  

Science Conference Proceedings (OSTI)

K-Ar dates and chemical compositions of basalts in the Gregory Rift, Kenya, demonstrate marked secular variation of lava chemistry. Two magmatic cycles characterized by incompatible element relative depletion are recognized; both occurring immediately after the peak of basaltic volcanism and coeval with both trachyte/phonolite volcanism and domal uplift of the region. These cycles may be attributed to increasing degree of partial melting of mantle source material in association with thinning of the lithosphere by thermal erosion through contact with hot upwelling asthenospheric mantle. Cyclic variation in asthenosphere upwelling may be considered an important controlling process in the evolution of the Gregory Rift.

Tatsumi, Yoshiyuki (Univ. of Tasmania (Australia) Kyoto Univ. (Japan)); Kimura, Nobukazu (Kyoto Univ. (Japan)); Itaya, Tetsumaru (Okayama Univ. of Science (Japan)); Koyaguchi, Takehiro (Kumamoto Univ. (Japan)); Suwa, Kanenori (Nagoya Univ. (Japan))

1991-06-01T23:59:59.000Z

492

A Coordinated Exploration Program for Geothermal Sources on the...  

Open Energy Info (EERE)

east rift of Kilauea. The surveys carried out over the east rift included magnetic, gravity, and electrical surveys by various methods: microearthquake, surveillance,...

493

Seismic Regionalization In Northeast Russia  

E-Print Network (OSTI)

In an effort to characterize seismicity in support of nuclear explosion monitoring for the continental regions of northeast Russia, we have been analyzing information obtained from regional seismic network operators. Our goal is to merge catalog, bulletin, waveform, and other ground truth data from several regional networks into a comprehensive data set that we will use for various seismic research projects. To date we have compiled a bulletin from published and unpublished event data of about 200,000 events and over 150,000 arrival times. We have also determined that the Russian regional network catalogs are contaminated with mining-explosion events. Hence, one of our primary efforts is to identify mining events when possible and move them into a separate bulletin from the natural earthquakes. We have extended our preliminary analysis of explosion contamination of Russian seismicity catalogs using temporal analysis into the Irkutsk and Chita districts and the Buryat Republic. Based on analysis of epicenters and origin times reported in Material po Seismichnost' Sibiri for 1970 -- 1993, it is likely that considerable explosion contamination occurs in the gold (Bodaibo, northern Irkutsk Region, and in the Chita region), mica (Vitim, northern Irkutsk Region), and other mining areas (Bushulei, Nerchinsk, and Petrovsk in the Buryat and Chita areas). Explosion contamination is also observed in northernmost Mongolia in the mining and industrial district near Darkhan. Explosions associated with the construction of the Baikal-Amur Mainline Railroad are likely, as was observed in the Amur district; however, the amount of natural seismicity dominates the activity and makes it impossible to resolve the railroad separately. In conjunction with the Magadan Seismic Network operators,...

Kevin Mackey Kazuya; Kazuya Fujita; Lee K. Steck; Hans E. Hartse

2002-01-01T23:59:59.000Z