National Library of Energy BETA

Sample records for northeast high-level radioactive

  1. Northeast High-Level Radioactive Waste Transportation Task Force Agenda |

    Office of Environmental Management (EM)

    Department of Energy Northeast High-Level Radioactive Waste Transportation Task Force Agenda Northeast High-Level Radioactive Waste Transportation Task Force Agenda PDF icon Northeast High-Level Radioactive Waste Transportation Task Force Agenda More Documents & Publications NTSF Spring 2013 Save The Date NTSF 2013 Agenda NTSF Spring 2010 Final Agenda

  2. High-level radioactive wastes. Supplement 1

    SciTech Connect (OSTI)

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  3. Report on Separate Disposal of Defense High- Level Radioactive Waste

    Office of Environmental Management (EM)

    on Separate Disposal of Defense High- Level Radioactive Waste March 2015 [This page left blank.] i EXECUTIVE SUMMARY Purpose This report considers whether a separate repository for high-level radioactive waste (HLW) resulting from atomic energy defense activities ("Defense HLW Repository") is "required" within the meaning of Section 8(b)(2) of the Nuclear Waste Policy Act of 1982 (NWPA). In 1985, the U.S. Department of Energy (DOE) and President Reagan considered this

  4. RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS

    SciTech Connect (OSTI)

    Fox, K.

    2010-09-07

    High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

  5. Spent Fuel and High-Level Radioactive Waste Transportation Report

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  6. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  7. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  8. Long-term management of high-level radioactive waste (HLW) and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF)...

  9. Report on Separate Disposal of Defense High-Level Radioactive Waste |

    Energy Savers [EERE]

    Department of Energy Report on Separate Disposal of Defense High-Level Radioactive Waste Report on Separate Disposal of Defense High-Level Radioactive Waste This report considers whether a separate repository for high-level radioactive waste resulting from atomic energy defense activities is "required" within the meaning of Section 8(b)(2) of the Nuclear Waste Policy Act of 1982. PDF icon Report on Separate Disposal of Defense High-Level Radioactive Waste More Documents &

  10. Northeast High-Level Radioactive Waste Transportation Task Force...

    Office of Environmental Management (EM)

    members & alternates appointment status Legislative Liaisons Staff ... (by speaker phone) 1:45 p.m. Update: Decommissioning Plant Coalition Nuclear Waste ...

  11. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  12. Control of high level radioactive waste-glass melters

    SciTech Connect (OSTI)

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs.

  13. Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste

    Energy Savers [EERE]

    and Spent Nuclear Fuel | Department of Energy Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel The Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel report assesses the technical options for the safe and permanent disposal of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) managed

  14. Locations of Spent Nuclear Fuel and High-Level Radioactive Waste |

    Office of Environmental Management (EM)

    Department of Energy Locations of Spent Nuclear Fuel and High-Level Radioactive Waste Locations of Spent Nuclear Fuel and High-Level Radioactive Waste Map of the United States of America showing the locations of spent nuclear fuel and high-level radioactive waste. PDF icon Slide 1 More Documents & Publications Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel End of Year 2010 SNF & HLW Inventories Evaluation of Options for Permanent

  15. Synergistic Inhibitors for Dilute High-Level Radioactive Waste

    SciTech Connect (OSTI)

    Wiersma, B.J.; Zapp, P.E.

    1995-11-01

    Cyclic potentiodynamic polarization scans were conducted to determine the effectiveness of various combinations of anodic inhibitors in the prevention of pitting in carbon steel exposed to dilute radioactive waste. Chromate, molybdate, and phosphate were investigated as replacements for nitrite, whose effective concentrations are incompatible with the waste vitrification process. The polarization scans were performed in non-radioactive waste simulants. Their results showed that acceptable combinations of phosphate with chromate and phosphate with molybdate effectively prevented pitting corrosion. Chromate with molybdate could not replace nitrite.

  16. THERMAL ANALYSIS OF GEOLOGIC HIGH-LEVEL RADIOACTIVE WASTE PACKAGES

    SciTech Connect (OSTI)

    Hensel, S.; Lee, S.

    2010-04-20

    The engineering design of disposal of the high level waste (HLW) packages in a geologic repository requires a thermal analysis to provide the temperature history of the packages. Calculated temperatures are used to demonstrate compliance with criteria for waste acceptance into the geologic disposal gallery system and as input to assess the transient thermal characteristics of the vitrified HLW Package. The objective of the work was to evaluate the thermal performance of the supercontainer containing the vitrified HLW in a non-backfilled and unventilated underground disposal gallery. In order to achieve the objective, transient computational models for a geologic vitrified HLW package were developed by using a computational fluid dynamics method, and calculations for the HLW disposal gallery of the current Belgian geological repository reference design were performed. An initial two-dimensional model was used to conduct some parametric sensitivity studies to better understand the geologic system's thermal response. The effect of heat decay, number of co-disposed supercontainers, domain size, humidity, thermal conductivity and thermal emissivity were studied. Later, a more accurate three-dimensional model was developed by considering the conduction-convection cooling mechanism coupled with radiation, and the effect of the number of supercontainers (3, 4 and 8) was studied in more detail, as well as a bounding case with zero heat flux at both ends. The modeling methodology and results of the sensitivity studies will be presented.

  17. Long-term management of high-level radioactive waste (HLW) and spent

    Energy Savers [EERE]

    nuclear fuel (SNF) | Department of Energy Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) GC-52 provides legal advice to DOE regarding the long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF). SNF is nuclear fuel that has been used as fuel in a reactor to generate nuclear energy but that has been removed from the reactor as no

  18. DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel

    Office of Environmental Management (EM)

    Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel October 2014 [This page left blank.] FOREWORD In January 2012, the final report of the Blue Ribbon Commission on America's Nuclear Future urged the Administration to conduct a review of the current policy to dispose of defense and commercial high level radioactive waste and spent nuclear fuel in a single repository or repositories. Based on that recommendation, in January 2013, the Administration's

  19. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall, the results of the reference design development and the cost analysis support the technical feasibility of the deep borehole disposal concept for high-level radioactive waste.

  20. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    SciTech Connect (OSTI)

    R.A. Levich; J.S. Stuckless

    2006-09-25

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  1. Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms

    SciTech Connect (OSTI)

    Aurah, Mirwaise Y.; Roberts, Mark A.

    2013-12-12

    Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed.

  2. SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE

    SciTech Connect (OSTI)

    Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

    2009-10-01

    Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

  3. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect (OSTI)

    Gdowski, G.E.; Bullen, D.B. )

    1988-08-01

    Six alloys are being considered as possible materials for the fabrication of containers for the disposal of high-level radioactive waste. Three of these candidate materials are copper-based alloys: CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). The other three are iron- to nickel-based austenitic materials: Types 304L and 316L stainless steels and Alloy 825. Radioactive waste will include spent-fuel assemblies from reactors as well as waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The waste-package containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, the containers must be retrievable from the disposal site. Shortly after emplacement of the containers in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. This radiation will promote the radiolytic decomposition of moist air to hydrogen. This volume surveys the available data on the effects of hydrogen on the six candidate alloys for fabrication of the containers. For copper, the mechanism of hydrogen embrittlement is discussed, and the effects of hydrogen on the mechanical properties of the copper-based alloys are reviewed. The solubilities and diffusivities of hydrogen are documented for these alloys. For the austenitic materials, the degradation of mechanical properties by hydrogen is documented. The diffusivity and solubility of hydrogen in these alloys are also presented. For the copper-based alloys, the ranking according to resistance to detrimental effects of hydrogen is: CDA 715 (best) > CDA 613 > CDA 102 (worst). For the austenitic alloys, the ranking is: Type 316L stainless steel {approx} Alloy 825 > Type 304L stainless steel (worst). 87 refs., 19 figs., 8 tabs.

  4. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect (OSTI)

    Farmer, J.C.; Van Konynenburg, R.A.; McCright, R.D. ); Bullen, D.B. )

    1988-04-01

    Three iron- to nickel-based austenitic alloys (Types 304L and 316L stainless steels and Alloy 825) are being considered as candidate materials for the fabrication of high-level radioactive-waste containers. Waste will include fuel assemblies from reactors as well as high-level waste in borosilicate glass forms, and will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides in the repository will result in the generation of substantial heat and in fluences of gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including atmospheric oxidation; uniform aqueous phase corrosion; pitting; crevice corrosion; sensitization and intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This report is an analysis of data relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of the three austenitic candidate alloys. The candidates are compared in terms of their susceptibilities to these forms of corrosion. Although all three candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these types of localized corrosion (LC); such resistance is important because pits can penetrate the metal and serve as crack initiation sites. Both Types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented in Alloy 825 under comparable conditions. Gamma radiation has been found to enhance SCC in Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while the effects of microbiologically induced corrosion have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. 211 refs., 49 figs., 10 tabs.

  5. Control of high level radioactive waste-glass melters. Part 5, Modelling of complex redox effects

    SciTech Connect (OSTI)

    Bickford, D.F.; Choi, A.S.

    1991-12-31

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs.

  6. Shale disposal of U.S. high-level radioactive waste.

    SciTech Connect (OSTI)

    Sassani, David Carl; Stone, Charles Michael; Hansen, Francis D.; Hardin, Ernest L.; Dewers, Thomas A.; Martinez, Mario J.; Rechard, Robert Paul; Sobolik, Steven Ronald; Freeze, Geoffrey A.; Cygan, Randall Timothy; Gaither, Katherine N.; Holland, John Francis; Brady, Patrick Vane

    2010-05-01

    This report evaluates the feasibility of high-level radioactive waste disposal in shale within the United States. The U.S. has many possible clay/shale/argillite basins with positive attributes for permanent disposal. Similar geologic formations have been extensively studied by international programs with largely positive results, over significant ranges of the most important material characteristics including permeability, rheology, and sorptive potential. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in shale media. We develop scoping performance analyses, based on the applicable features, events, and processes identified by international investigators, to support a generic conclusion regarding post-closure safety. Requisite assumptions for these analyses include waste characteristics, disposal concepts, and important properties of the geologic formation. We then apply lessons learned from Sandia experience on the Waste Isolation Pilot Project and the Yucca Mountain Project to develop a disposal strategy should a shale repository be considered as an alternative disposal pathway in the U.S. Disposal of high-level radioactive waste in suitable shale formations is attractive because the material is essentially impermeable and self-sealing, conditions are chemically reducing, and sorption tends to prevent radionuclide transport. Vertically and laterally extensive shale and clay formations exist in multiple locations in the contiguous 48 states. Thermal-hydrologic-mechanical calculations indicate that temperatures near emplaced waste packages can be maintained below boiling and will decay to within a few degrees of the ambient temperature within a few decades (or longer depending on the waste form). Construction effects, ventilation, and the thermal pulse will lead to clay dehydration and deformation, confined to an excavation disturbed zone within a few meters of the repository, that can be reasonably characterized. Within a few centuries after waste emplacement, overburden pressures will seal fractures, resaturate the dehydrated zones, and provide a repository setting that strongly limits radionuclide movement to diffusive transport. Coupled hydrogeochemical transport calculations indicate maximum extents of radionuclide transport on the order of tens to hundreds of meters, or less, in a million years. Under the conditions modeled, a shale repository could achieve total containment, with no releases to the environment in undisturbed scenarios. The performance analyses described here are based on the assumption that long-term standards for disposal in clay/shale would be identical in the key aspects, to those prescribed for existing repository programs such as Yucca Mountain. This generic repository evaluation for shale is the first developed in the United States. Previous repository considerations have emphasized salt formations and volcanic rock formations. Much of the experience gained from U.S. repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, is applied here to scoping analyses for a shale repository. A contemporary understanding of clay mineralogy and attendant chemical environments has allowed identification of the appropriate features, events, and processes to be incorporated into the analysis. Advanced multi-physics modeling provides key support for understanding the effects from coupled processes. The results of the assessment show that shale formations provide a technically advanced, scientifically sound disposal option for the U.S.

  7. Granite disposal of U.S. high-level radioactive waste.

    SciTech Connect (OSTI)

    Freeze, Geoffrey A.; Mariner, Paul E.; Lee, Joon H.; Hardin, Ernest L.; Goldstein, Barry; Hansen, Francis D.; Price, Ronald H.; Lord, Anna Snider

    2011-08-01

    This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, based on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site selection and safety assessment.

  8. Role of Congress in the High Level Radioactive Waste Odyssey: The Wisdom and Will of the Congress - 13096

    SciTech Connect (OSTI)

    Vieth, Donald L. [DOE/NVOO Project Manager for Yucca Mountain, 1982 thru 1987, 1154 Cheltenham Place, Maineville, OH 45039 (United States)] [DOE/NVOO Project Manager for Yucca Mountain, 1982 thru 1987, 1154 Cheltenham Place, Maineville, OH 45039 (United States); Voegele, Michael D. [Nye County Nuclear Waste Repository Project Office, 7404 Oak Grove Ave, Las Vegas, NV 89117 (United States)] [Nye County Nuclear Waste Repository Project Office, 7404 Oak Grove Ave, Las Vegas, NV 89117 (United States)

    2013-07-01

    Congress has had a dual role with regard to high level radioactive waste, being involved in both its creation and its disposal. A significant amount of time has passed between the creation of the nation's first high level radioactive waste and the present day. The pace of addressing its remediation has been highly irregular. Congress has had to consider the technical, regulatory, and political issues and all have had specific difficulties. It is a true odyssey framed by an imperative and accountability, by a sense of urgency, by an ability or inability to finish the job and by consequences. Congress had set a politically acceptable course by 1982. However, President Obama intervened in the process after he took office in January 2009. Through the efforts of his Administration, by the end of 2012, the US government has no program to dispose of high level radioactive waste and no reasonable prospect of a repository for high level radioactive waste. It is not obvious how the US government program will be reestablished or who will assume responsibility for leadership. The ultimate criteria for judging the consequences are 1) the outcome of the ongoing NRC's Nuclear Waste Confidence Rulemaking and 2) the concomitant permissibility of nuclear energy supplying electricity from operating reactors in the US. (authors)

  9. Caustic leaching of high-level radioactive tank sludge: A critical literature review

    SciTech Connect (OSTI)

    McGinnis, C.P.; Welch, T.D.; Hunt, R.D.

    1998-08-01

    The Department of Energy (DOE) must treat and safely dispose of its radioactive tank contents, which can be separated into high-level waste (HLW) and low-level waste (LLW) fractions. Since the unit costs of treatment and disposal are much higher for HLW than for LLW, technologies to reduce the amount of HLW are being developed. A key process currently being studied to reduce the volume of HLW sludges is called enhanced sludge washing (ESW). This process removes, by water washes, soluble constituents such as sodium salts, and the washed sludge is then leached with 2--3 M NaOH at 60--100 C to remove nonradioactive metals such as aluminum. The remaining solids are considered to be HLW while the solutions are LLW after radionuclides such as {sup 137}Cs have been removed. Results of bench-scale tests have shown that the ESW will probably remove the required amounts of inert constituents. While both experimental and theoretical results have shown that leaching efficiency increases as the time and temperature of the leach are increased, increases in the caustic concentration above 2--3 M will only marginally improve the leach factors. However, these tests were not designed to validate the assumption that the caustic used in the ESW process will generate only a small increase (10 Mkg) in the amount of LLW; instead the test conditions were selected to maximize leaching in a short period and used more water and caustic than is planned during full-scale operations. Even though calculations indicate that the estimate for the amount of LLW generated by the ESW process appears to be reasonable, a detailed study of the amount of LLW from the ESW process is still required. If the LLW analysis indicates that sodium management is critical, then a more comprehensive evaluation of the clean salt process or caustic recycle would be needed. Finally, experimental and theoretical studies have clearly demonstrated the need for the control of solids formation during and after leaching.

  10. Caustic leaching of high-level radioactive tank sludge: A critical literature review

    SciTech Connect (OSTI)

    McGinnis, C.P.; Welch, T.D.; Hunt, R.D.

    1997-12-31

    The Department of Energy (DOE) must treat and safely dispose of its radioactive tank contents, which can be separated into high-level waste (HLW) and low-level waste (LLW) fractions. Since the unit costs of treatment and disposal are much higher for HLW than for LLW, technologies to reduce the amount of HLW are being developed. A key process currently being studied to reduce the volume of HLW sludges is called enhanced sludge washing (ESW). This process removes, by water washes, soluble constituents such as sodium salts, and the washed sludge is then leached with 2--3 M NaOH at 60--100 C to remove nonradioactive metals such as aluminum. The remaining solids are considered to be HLW while the solutions are LLW after radionuclides such as {sup 137}Cs have been removed. Results of bench-scale tests have shown that the ESW will probably remove the required amounts of inert constituents. While both experimental and theoretical results have shown that leaching efficiency increases as the time and temperature of the leach are increased, increases in the caustic concentration above 2--3 M will only marginally improve the leach factors. However, these tests were not designed to validate the assumption that the caustic used in the ESW process will generate only a small increase (10 Mkg) in the amount of LLW; instead, the test conditions were selected to maximize leaching in a short period and used more water and caustic than is planned during full-scale operations. Even though calculations indicate that the estimate for the amount of LLW generated by the ESW process appears to be reasonable, a detailed study of the amount of LLW from the ESW process is still required. If the LLW analysis indicates that sodium management is critical, then a more comprehensive evaluation of the clean salt process or caustic recycle would be needed. Finally, experimental and theoretical studies have clearly demonstrated the need for the control of solids formation during and after leaching.

  11. Geological Repository Layout for Radioactive High Level Long Lived Waste in Argilite

    SciTech Connect (OSTI)

    Gaussen, J.L.

    2006-07-01

    In the framework of the 1991 French radioactive waste act, ANDRA has studied the feasibility of a geological repository in the argillite layer of the Bure site for high-level long-lived waste. This presentation is focused on the underground facilities that constitute the specific component of this project. The preliminary underground layout, which has been elaborated, is based on four categories of data: - the waste characteristics and inventory; - the geological properties of the host argillite; - the long term performance objectives of the repository; - the specifications in term of operation and reversibility. The underground facilities consist of two types of works: the access works (shafts and drifts) and the disposal cells. The function of the access works is to permit the implementation of two concurrent activities: the nuclear operations (transfer and emplacement of the disposal packages into the disposal cells) and the construction of the next disposal cells. The design of the drifts network which matches up to this function is also influenced by two other specifications: the minimisation of the drift dimensions in order to limit their influence on the integrity of the geological formation and the necessity of a safe ventilation in case of fire. The resulting layout is a network of 4 parallel drifts (2 of them being dedicated to the operation, the other two being dedicated to the construction activities). The average diameter of these access drifts is 7 meters. 4 shafts ensure the link between the surface and the underground. The most important function of the disposal cells is to contribute to the long-term performance of the repository. In this regard, the thermal and geotechnical considerations play an important role. The B wastes (intermediate level wastes) are not (or not very) exothermic. Consequently, the design of their disposal cells result mainly from geotechnical considerations. The disposal packages (made of concrete) are piled up in big cavities the diameter of which is about 10 meters and the length of which is about 250 meters. On the other hand, the design of the C waste disposal cells (vitrified waste) is mainly derived from their thermal power (about 500 W after a 60 year period of interim storage). The disposal cell is a tunnel the diameter of which is about 0,70 m and the length of which is about 40 m. The number of the disposal packages (made of steel) per cell, the spacing between two adjacent canisters within a given cell and the spacing between two adjacent cells are adjusted to limit the peak of temperature in the host formation at 100 deg. C. The disposal cells are also characterized by favourable design factors that would facilitate the potential retrieval of the wastes. The whole underground layout would represent a surface area of several km{sup 2}. (authors)

  12. Midwestern High-Level Radioactive Waste Transportation Project. Highway infrastructure report

    SciTech Connect (OSTI)

    Sattler, L.R.

    1992-02-01

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE`s development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE`s Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade.

  13. A Low-Tech, Low-Budget Storage Solution for High Level Radioactive Sources

    SciTech Connect (OSTI)

    Brett Carlsen; Ted Reed; Todd Johnson; John Weathersby; Joe Alexander; Dave Griffith; Douglas Hamelin

    2014-07-01

    The need for safe, secure, and economical storage of radioactive material becomes increasingly important as beneficial uses of radioactive material expand (increases inventory), as political instability rises (increases threat), and as final disposal and treatment facilities are delayed (increases inventory and storage duration). Several vendor-produced storage casks are available for this purpose but are often costly — due to the required design, analyses, and licensing costs. Thus the relatively high costs of currently accepted storage solutions may inhibit substantial improvements in safety and security that might otherwise be achieved. This is particularly true in areas of the world where the economic and/or the regulatory infrastructure may not provide the means and/or the justification for such an expense. This paper considers a relatively low-cost, low-technology radioactive material storage solution. The basic concept consists of a simple shielded storage container that can be fabricated locally using a steel pipe and a corrugated steel culvert as forms enclosing a concrete annulus. Benefits of such a system include 1) a low-tech solution that utilizes materials and skills available virtually anywhere in the world, 2) a readily scalable design that easily adapts to specific needs such as the geometry and radioactivity of the source term material), 3) flexible placement allows for free-standing above-ground or in-ground (i.e., below grade or bermed) installation, 4) the ability for future relocation without direct handling of sources, and 5) a long operational lifetime . ‘Le mieux est l’ennemi du bien’ (translated: The best is the enemy of good) applies to the management of radioactive materials – particularly where the economic and/or regulatory justification for additional investment is lacking. Development of a low-cost alternative that considerably enhances safety and security may lead to a greater overall risk reduction than insisting on solutions that remain economically and/or politically ‘out of reach’.

  14. Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste Rob P. Rechard a,n , Geoff A. Freeze b , Frank V. Perry c a Nuclear Waste Disposal Research & Analysis, Sandia National Laboratories, P.O. Box 5800, Albuquerque 87185-0747, NM, USA b Applied Systems Analysis & Research, Sandia National Laboratories, P.O. Box 5800, Albuquerque 87185-0747, NM, USA c Earth and Environmental Sciences Division, Los Alamos National

  15. Disposing of High-Level Radioactive Waste in Germany - A Note from the Licensing Authority - 12530

    SciTech Connect (OSTI)

    Pick, Thomas Stefan; Bluth, Joachim; Lauenstein, Christof; Markhoefer, Joerg

    2012-07-01

    Following the national German consensus on the termination of utilisation of nuclear energy in the summer of 2011, the Federal and Laender Governments have declared their intention to work together on a national consensus on the disposal of radioactive waste as well. Projected in the early 1970's the Federal Government had started exploring the possibility to establish a repository for HLW at the Gorleben site in 1977. However, there is still no repository available in Germany today. The delay results mainly from the national conflict over the suitability of the designated Gorleben site, considerably disrupting German society along the crevice that runs between supporters and opponents of nuclear energy. The Gorleben salt dome is situated in Lower Saxony, the German state that also hosts the infamous Asse mine repository for LLW and ILW and the Konrad repository project designated to receive LLW and ILW as well. With the fourth German project, the Morsleben L/ILW repository only 20 km away across the state border, the state of Lower Saxony carries the main load for the disposal of radioactive waste in Germany. After more than 25 years of exploration and a 10 year moratorium the Gorleben project has now reached a cross-road. Current plans for setting up a new site selection procedure in Germany call for the selection and exploration of up to four alternative sites, depending only on suitable geology. In the meantime the discussion is still open on whether the Gorleben project should be terminated in order to pacify the societal conflict or being kept in the selection process on account of its promising geology. The Lower Saxony Ministry for Environment and Climate Protection proposes to follow a twelve-step-program for finding the appropriate site, including the Gorleben site in the process. With its long history of exploration the site is the benchmark that alternative sites will have to compare with. Following the national consensus of 2011 on the termination of nuclear energy utilisation, it is now the time to reach a national consensus on the disposal of radioactive waste as well. This is a task that the country and society, federal and state governments, political parties and the citizens will have to jointly master within the current generation and within German territory. The basis for the consensus will be a reset to the beginning of this process. It has to start with a new site selection procedure that will take into account and compare up to four alternative sites. This procedure will have to follow the principle of highest possible security. It should be based on a stepwise approach, strictly following scientific criteria. Public confidence in the process and trust can only be achieved by a transparent procedure allowing for the participation of the public and the stakeholders. It is therefore mandatory to consult, both on a national and regional level, all involved parties (public authority, scientist and citizen). The national consensus must also include a decision on the future of the Gorleben exploratory site. The site selection procedure must therefore take this site into account as well. Furthermore, the final decision on safe disposal of German radioactive wastes must be made by sovereign rule by Federal Parliament and Federal Council. (authors)

  16. Environmental program overview for a high-level radioactive waste repository at Yucca Mountain

    SciTech Connect (OSTI)

    1988-12-01

    The United States plans to begin operating the first repository for the permanent disposal of high-level nuclear waste early in the next century. In February 1983, the US Department of Energy (DOE) identified Yucca Mountain, in Nevada, as one of nine potentially acceptable sites for a repository. To determine its suitability, the DOE evaluated the Yucca Mountain site, along with eight other potentially acceptable sites, in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The purpose of the Environmental Program Overview (EPO) for the Yucca Mountain site is to provide an overview of the overall, comprehensive approach being used to satisfy the environmental requirements applicable to sitting a repository at Yucca Mountain. The EPO states how the DOE will address the following environmental areas: aesthetics, air quality, cultural resources (archaeological and Native American components), noise, radiological studies, soils, terrestrial ecosystems, and water resources. This EPO describes the environmental program being developed for the sitting of a repository at Yucca Mountain. 1 fig., 3 tabs.

  17. A guide for the ASME code for austenitic stainless steel containment vessels for high-level radioactive materials

    SciTech Connect (OSTI)

    Raske, D.T.

    1995-06-01

    The design and fabrication criteria recommended by the US Department of Energy (DOE) for high-level radioactive materials containment vessels used in packaging is found in Section III, Division 1, Subsection NB of the ASME Boiler and Pressure Vessel Code. This Code provides material, design, fabrication, examination, and testing specifications for nuclear power plant components. However, many of the requirements listed in the Code are not applicable to containment vessels made from austenitic stainless steel with austenitic or ferritic steel bolting. Most packaging designers, engineers, and fabricators are intimidated by the sheer volume of requirements contained in the Code; consequently, the Code is not always followed and many requirements that do apply are often overlooked during preparation of the Safety Analysis Report for Packaging (SARP) that constitutes the basis to evaluate the packaging for certification.

  18. National survey of crystalline rocks and recommendations of regions to be explored for high-level radioactive waste repository sites

    SciTech Connect (OSTI)

    Smedes, H.W.

    1983-04-01

    A reconnaissance of the geological literature on large regions of exposed crystalline rocks in the United States provides the basis for evaluating if any of those regions warrant further exploration toward identifying potential sites for development of a high-level radioactive waste repository. The reconnaissance does not serve as a detailed evaluation of regions or of any smaller subunits within the regions. Site performance criteria were selected and applied insofar as a national data base exists, and guidelines were adopted that relate the data to those criteria. The criteria include consideration of size, vertical movements, faulting, earthquakes, seismically induced ground motion, Quaternary volcanic rocks, mineral deposits, high-temperature convective ground-water systems, hydraulic gradients, and erosion. Brief summaries of each major region of exposed crystalline rock, and national maps of relevant data provided the means for applying the guidelines and for recommending regions for further study. It is concluded that there is a reasonable likelihood that geologically suitable repository sites exist in each of the major regions of crystalline rocks. The recommendation is made that further studies first be conducted of the Lake Superior, Northern Appalachian and Adirondack, and the Southern Appalachian Regions. It is believed that those regions could be explored more effectively and suitable sites probably could be found, characterized, verified, and licensed more readily there than in the other regions.

  19. EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High-Level Radioactive Waste Storage, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

  20. EIS-0023: Long-Term Management of Defense High-Level Radioactive Wastes (Research and Development Program for Immobilization), Savannah River Plant, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    This environmental impact statement (EIS) analyzes the environmental implications of the proposed continuation of a large Federal research and development (R&D) program directed toward the immobilization of the high-level radioactive wastes resulting from chemical separations operations for defense radionuclides production at the DOE Savannah River Plant (SRP) near Aiken, South Carolina.

  1. Northeast

    Energy Savers [EERE]

    Northeast Climate C hange a nd t he U .S. E nergy S ector: Regional v ulnerabilities a nd r esilience s olutions Summary i n B rief The N ortheast c onsists o f a n umber o f l arge a nd d ensely populated u rban a nd i ndustrial a reas, a s w ell a s w ide--- ranging r ural a reas a nd d eciduous f orestland. T he c limate i s characterized b y c old w inters a nd w arm, h umid s ummers. The r egion r elies p rimarily o n t hermoelectric p ower, including n atural g as---fired, n uclear, a nd c

  2. EIS-0074: Long-Term Management of Defense High-Level Radioactive Wastes Idaho Chemical Processing Plant, Idaho National Engineering Lab, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to analyze the environmental implications of the proposed selection of a strategy for long-term management of the high-level radioactive wastes generated as part of the national defense effort at the Department's Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. The project was cancelled after the Draft Environmental Impact Statement was produced.

  3. Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519

    SciTech Connect (OSTI)

    Dilger, Fred; Halstead, Robert J.; Ballard, James D.

    2013-07-01

    Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)

  4. Uncertainty and sensitivity analysis in the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada.

    SciTech Connect (OSTI)

    Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

    2010-05-01

    Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. As part of this development, an extensive performance assessment (PA) for the YM repository was completed in 2008 [1] and supported a license application by the DOE to the U.S. Nuclear Regulatory Commission (NRC) for the construction of the YM repository [2]. This presentation provides an overview of the conceptual and computational structure of the indicated PA (hereafter referred to as the 2008 YM PA) and the roles that uncertainty analysis and sensitivity analysis play in this structure.

  5. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    SciTech Connect (OSTI)

    Rechard, Robert P.

    2014-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.

  6. High-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

  7. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    SciTech Connect (OSTI)

    J.S. Stuckless; D. O'Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  8. Groundwater geochemical modeling and simulation of a breached high-level radioactive waste repository in the northern Tularosa Basin, New Mexico

    SciTech Connect (OSTI)

    Chappell, R.W.

    1989-01-01

    The northern Tularosa Basin in south-central New Mexico was ranked favorably as a potential location for a high-level radioactive waste repository by a US Geological Survey pilot screening study of the Basin and Range Province. The favorable ranking was based chiefly on hydrogeologic and descriptive geochemical evidence. A goal of this study was to develop a methodology for predicting the performance of this or any other basin as a potential repository site using geochemical methods. The approach involves first characterizing the groundwater geochemistry, both chemically and isotopically, and reconstructing the probable evolutionary history of, and controls on the ground water chemistry through modeling. In the second phase of the approach, a hypothetically breached repository is introduced into the system, and the mobility of the parent radionuclide, uranium, in the groundwater is predicted. Possible retardation of uranium transport in the downgradient flow direction from the repository by adsorption and mineral precipitation is then considered. The Permian Yeso Formation, the primary aquifer in the northern Tularosa Basin, was selected for study, development and testing of the methodology outlined above. The Yeso Formation contains abundant gypsum and related evaporite minerals, which impart a distinctive chemical signature to the ground water. Ground water data and solubility calculations indicate a conceptual model of irreversible gypsum and dolomite dissolution with concomitant calcite precipitation. Recharge areas are apparent from temperature, {delta}{sup 18}O and {delta}{sup 2} H, and {sup 3}H trends in the aquifer. Corrected {sup 14}C ages range between modern and 31,200 years, and suggest an average ground water velocity of 0.83 m/yr.

  9. EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain  for the disposal of spent nuclear fuel and high-level...

  10. EIS-0250-S2: Supplemental EIS for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada- Nevada Rail Transportation Corridor

    Broader source: Energy.gov [DOE]

    This SEIS is to evaluate the potential environmental impacts of constructing and operating a railroad for shipments of spent nuclear fuel and high-level radioactive waste from an existing rail line in Nevada to a geologic repository at Yucca Mountain. The purpose of the evaluation is to assist the Department in deciding whether to construct and operate a railroad in Nevada, and if so, in which corridor and along which specific alignment within the selected corridor.

  11. EIS-0081: Long-Term Management of Liquid High-Level Radioactive Waste Stored at Western New York Nuclear Service Center, West Valley, New York

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Terminal Waste Disposal and Remedial Action prepared this environmental impact statement to analyze the environmental and socioeconomic impacts resulting from the Department’s proposed action to construct and operate facilities necessary to solidify the liquid high-level wastes currently stored in underground tanks at West Valley, New York.

  12. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part I. Introduction and guidelines

    SciTech Connect (OSTI)

    Bedinger, M.S.; Sargent, K.A.; Reed, J.E.

    1984-12-31

    The US Geological Survey`s program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight states in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the federal government in the evaluation process. Each governor was requested to nominate an earth scientist to represent the state in a province working group composed of state and US Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration. 27 refs., 6 figs., 1 tab.

  13. The siting record: An account of the programs of federal agencies and events that have led to the selection of a potential site for a geologic respository for high-level radioactive waste

    SciTech Connect (OSTI)

    Lomenick, T.F.

    1996-03-01

    This record of siting a geologic repository for high-level radioactive wastes (HLW) and spent fuel describes the many investigations that culminated on December 22, 1987 in the designation of Yucca Mountain (YM), as the site to undergo detailed geologic characterization. It recounts the important issues and events that have been instrumental in shaping the course of siting over the last three and one half decades. In this long task, which was initiated in 1954, more than 60 regions, areas, or sites involving nine different rock types have been investigated. This effort became sharply focused in 1983 with the identification of nine potentially suitable sites for the first repository. From these nine sites, five were subsequently nominated by the U.S. Department of Energy (DOE) as suitable for characterization and then, in 1986, as required by the Nuclear Waste Policy Act of 1982 (NWPA), three of these five were recommended to the President as candidates for site characterization. President Reagan approved the recommendation on May 28, 1986. DOE was preparing site characterization plans for the three candidate sites, namely Deaf Smith County, Texas; Hanford Site, Washington; and YM. As a consequence of the 1987 Amendment to the NWPA, only the latter was authorized to undergo detailed characterization. A final Site Characterization Plan for Yucca Mountain was published in 1988. Prior to 1954, there was no program for the siting of disposal facilities for high-level waste (HLW). In the 1940s and 1950s, the volume of waste, which was small and which resulted entirely from military weapons and research programs, was stored as a liquid in large steel tanks buried at geographically remote government installations principally in Washington and Tennessee.

  14. Process for solidifying high-level nuclear waste

    DOE Patents [OSTI]

    Ross, Wayne A. (Richland, WA)

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  15. West Valley Demonstration Project High-Level Waste Management

    Office of Environmental Management (EM)

    DRAFT_19507_1 High-Level Waste Management Bryan Bower, DOE Director - WVDP DOE High-Level Waste Corporate Board Meeting Savannah River Site April 1, 2008 West Valley Demonstration Project West Valley Demonstration Project DRAFT_19507_2 West Valley High-Level Waste To solidify the radioactive material from approximately 600,000 gallons of high-level radioactive waste into a durable, high-quality glass, both a pretreatment system to remove salts and sulfates from the waste and a vitrification

  16. Geologyy of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)

    SciTech Connect (OSTI)

    W.R. Keefer; J.W. Whitney; D.C. Buesch

    2006-09-25

    Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor (< 5% crystal fragments) member, and an intervening thin transition zone. Rocks within the crystal-poor member of the Topopah Spring Tuff, lying some 280 m below the crest of Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal-mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during Pleistocene and Holocene times; these paleoseismic studies form the basis for evaluating the potential for future earthquakes and fault displacements. Thermoluminescence and U-series analyses were used to date the surficial materials involved in the Quaternary faulting events. The rate of erosional downcutting of bedrock on the ridge crests and hillslopes of Yucca Mountain, being of particular concern with respect to the potential for breaching of the proposed underground storage facility, was studied by using rock varnish cation-ratio and {sup 10}Be and {sup 36}Cl cosmogenic dating methods to determine the length of time bedrock outcrops and hillslope boulder deposits were exposed to cosmic rays, which then served as a basis for calculating long-term erosion rates. The results indicate rates ranging from 0.04 to 0.27 cm/k.y., which represent the maximum downcutting along the summit of Yucca Mountain under all climatic conditions that existed there during most of Quaternary time. Associated studies include the stratigraphy of surficial deposits in Fortymile Wash, the major drainage course in the area, which record a complex history of four to five cut-and-fill cycles within the channel during middle to late Quaternary time. The last 2 to 4 m of incision probably occurred during the last pluvial climatic period, 22 to 18 ka, followed by aggradation to the present time.

  17. Northeast Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Northeast Reserves Reserves inventories are not considered to be in the commercial sector and are excluded from EIA's commercial motor gasoline and distillate fuel oil supply and disposition statistics, such as those reported in the Weekly Petroleum Status Report, Petroleum Supply Monthly, and This Week In Petroleum. Northeast Home Heating Oil Reserve classified as ultra-low sulfur distillate (15 parts per million) Terminal operator Location Thousand Barrels Buckeye Partners LP Groton, CT 500

  18. EIS-0303: Savannah River Site High-Level Waste Tank Closure

    Broader source: Energy.gov [DOE]

    This EIS evaluates alternatives for closing 49 high-level radioactive waste tanks and associated equipment such as evaporator systems, transfer pipelines, diversion boxes, and pump pits. DOE...

  19. High-Level Liquid Waste Tank Integrity Workshop - 2008

    Office of Environmental Management (EM)

    Liquid Waste Tank Integrity Workshop - 2008 Karthik Subramanian Bruce Wiersma November 2008 High Level Waste Corporate Board Meeting karthik.subramanian@srnl.doe.gov bruce.wiersma@srnl.doe.gov 2 Acknowledgements * Bruce Wiersma (SRNL) * Kayle Boomer (Hanford) * Michael T. Terry (Facilitator) * SRS - Liquid Waste Organization * Hanford Tank Farms * DOE-EM 3 Background * High level radioactive waste (HLW) tanks provide critical interim confinement for waste prior to processing and permanent

  20. High Level Waste System Plan Revision 9

    SciTech Connect (OSTI)

    Davis, N.R.; Wells, M.N.; Choi, A.S.; Paul, P.; Wise, F.E.

    1998-04-01

    Revision 9 of the High Level Waste System Plan documents the current operating strategy of the HLW System at SRS to receive, store, treat, and dispose of high-level waste.

  1. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    SciTech Connect (OSTI)

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  2. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    DOE Patents [OSTI]

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  3. High-level waste tank farm set point document

    SciTech Connect (OSTI)

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

  4. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Credit: Northeast Energy Efficiency ...

  5. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Credit: Northeast Energy Efficiency...

  6. AEMC Northeast Regional Summit

    Broader source: Energy.gov [DOE]

    The Energy Department's Clean Energy Manufacturing Initiative will host a Northeast Regional Summit to showcase the achievements in American Energy & Manufacturing through public-private partnerships.

  7. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    SciTech Connect (OSTI)

    CERTA, P.J.

    2006-02-22

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  8. EIS-0113: Disposal of Hanford Defense High-Level, Transuranic and Tank

    Office of Environmental Management (EM)

    Waste, Hanford Site, Richland, Washington | Department of Energy 113: Disposal of Hanford Defense High-Level, Transuranic and Tank Waste, Hanford Site, Richland, Washington EIS-0113: Disposal of Hanford Defense High-Level, Transuranic and Tank Waste, Hanford Site, Richland, Washington SUMMARY The U.S. Department of Energy developed this EIS to examine the potential environmental impacts of final disposal options for legacy and future radioactive defense wastes stored at the Hanford Site.

  9. Northeast Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Northeast Biofuels Place: United Kingdom Sector: Biofuels Product: Northeast biofuels is a cluster of companies and organisations...

  10. High-Level Waste Melter Study Report

    SciTech Connect (OSTI)

    Perez Jr, Joseph M; Bickford, Dennis F; Day, Delbert E; Kim, Dong-Sang; Lambert, Steven L; Marra, Sharon L; Peeler, David K; Strachan, Denis M; Triplett, Mark B; Vienna, John D; Wittman, Richard S

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  11. High-level waste management technology program plan

    SciTech Connect (OSTI)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

  12. High Level Waste Corporate Board Charter | Department of Energy

    Energy Savers [EERE]

    High Level Waste Corporate Board Charter High Level Waste Corporate Board Charter PDF icon High Level Waste Corporate Board Charter More Documents & Publications Corporate Board By-Laws NNMCAB Bylaws ORSSAB Bylaws

  13. Northeast Biofuels Collaborative | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Collaborative Jump to: navigation, search Logo: Northeast Biofuels Collaborative Name: Northeast Biofuels Collaborative Address: 101 Tremont Street Place: Boston,...

  14. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  15. Progress of the High Level Waste Program at the Defense Waste Processing Facility - 13178

    SciTech Connect (OSTI)

    Bricker, Jonathan M.; Fellinger, Terri L.; Staub, Aaron V.; Ray, Jeff W.; Iaukea, John F. [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)] [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)

    2013-07-01

    The Defense Waste Processing Facility at the Savannah River Site treats and immobilizes High Level Waste into a durable borosilicate glass for safe, permanent storage. The High Level Waste program significantly reduces environmental risks associated with the storage of radioactive waste from legacy efforts to separate fissionable nuclear material from irradiated targets and fuels. In an effort to support the disposition of radioactive waste and accelerate tank closure at the Savannah River Site, the Defense Waste Processing Facility recently implemented facility and flowsheet modifications to improve production by 25%. These improvements, while low in cost, translated to record facility production in fiscal years 2011 and 2012. In addition, significant progress has been accomplished on longer term projects aimed at simplifying and expanding the flexibility of the existing flowsheet in order to accommodate future processing needs and goals. (authors)

  16. High-Level Waste Corporate Board Presentation Archive | Department of

    Energy Savers [EERE]

    Energy High-Level Waste Corporate Board Presentation Archive High-Level Waste Corporate Board Presentation Archive Archived Documents PDF icon High-Level Waste Corporate Board, Dr. Inés Triay PDF icon High-Level Waste Corporate Board, Mark Gilbertson PDF icon EM Engineering & Technology Roadmap and Major Technology Demonstrations PDF icon Office of River Protection PDF icon Idaho National Laboratory Description, Chellenges, Technology, Issues, and Needs PDF icon West Valley

  17. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  18. In-tank pretreatment of high-level tank wastes: The SIPS system

    SciTech Connect (OSTI)

    Reich, M.; Powell, J.; Barletta, R.

    1996-03-01

    A new approach, termed SIPS (Small In-Tank Processing System), that enables the in-tank processing and separation of high-level tank wastes into high-level waste (HLW) and low-level waste (LLW) streams that are suitable for vitrification, is described. Presently proposed pretreatment systems, such as enhanced sludge washing (ESW) and TRUEX, require that the high-level tank wastes be retrieved and pumped to a large, centralized processing facility, where the various waste components are separated into a relatively small, radioactively concentrated stream (HLW), and a relatively large, predominantly non-radioactive stream (LLW). In SIPS, a small process module, typically on the order of 1 meter in diameter and 4 meters in length, is inserted into a tank. During a period of approximately six months, it processes the solid/liquid materials in the tank, separating them into liquid HLW and liquid LLW output streams that are pumped away in two small diameter (typically 3 cm o.d.) pipes. The SIPS concept appears attractive for pretreating high level wastes, since it would: (1) process waste in-situ in the tanks, (2) be cheaper and more reliable than a larger centralized facility, (3) be quickly demonstrable at full scale, (4) have less technical risk, (5) avoid having to transfer unstable slurries for long distances, and (6) be simple to decommission and dispose of. Further investigation of the SIPS concept appears desirable, including experimental testing and development of subscale demonstration units.

  19. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  20. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    SciTech Connect (OSTI)

    D.C. Richardson

    2003-03-19

    In accordance with the Nuclear Waste Policy Amendments Act of 1987, Yucca Mountain was designated as the site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is desirable to the Office of Civilian Waste Management (OCRWM) Program because of the potential of rail transportation to reduce costs and to reduce the number of shipments relative to highway transportation. A Preliminary Rail Access Study evaluated 13 potential rail spur options. Alternative routes within the major options were also developed. Each of these options was then evaluated for potential land use conflicts and access to regional rail carriers. Three potential routes having few land use conflicts and having access to regional carriers were recommended for further investigation. Figure 1-1 shows these three routes. The Jean route is estimated to be about 120 miles long, the Carlin route to be about 365 miles long, and Caliente route to be about 365 miles long. The remaining ten routes continue to be monitored and should any of the present conflicts change, a re-evaluation of that route will be made. Complete details of the evaluation of the 13 routes can be found in the previous study. The DOE has not identified any preferred route and recognizes that the transportation issues need a full and open treatment under the National Environmental Policy Act. The issue of transportation will be included in public hearings to support development of the Environmental Impact Statement (EIS) proceedings for either the Monitored Retrievable Storage Facility or the Yucca Mountain Project or both.

  1. Decomposition of tetraphenylborate precipitates used to isolate Cs-137 from Savannah River Site high-level waste

    SciTech Connect (OSTI)

    Ferrara, D.M.; Bibler, N.E.; Ha, B.C.

    1993-03-01

    This paper presents results of the radioactive demonstration of the Precipitate Hydrolysis Process (PHP) that will be performed in the Defense Waste Processing Facility (DWPF) at the Savannah River Site. The PHP destroys the tetraphenylborate precipitate that is used at SRS to isolate Cs-137 from caustic High-Level Waste (HLW) supernates. This process is necessary to decrease the amount of organic compounds going to the melter in the DWPF. Actual radioactive precipitate containing Cs-137 was used for this demonstration.

  2. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls |

    Energy Savers [EERE]

    Department of Energy Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Credit: Northeast Energy Efficiency Partnerships Credit: Northeast Energy Efficiency Partnerships Lead Performer: Northeast Energy Efficiency Partnerships, Lexington, MA Partners: Burlington Electric Department, Cape Light Compact, Connecticut Light and Power, Efficiency Vermont, National Grid, NSTAR Electric and Gas, NYSERDA, PSEG -

  3. NERC Presentation: Accommodating High Levels of Variable Generation,

    Office of Environmental Management (EM)

    October 29, 2010 | Department of Energy NERC Presentation: Accommodating High Levels of Variable Generation, October 29, 2010 NERC Presentation: Accommodating High Levels of Variable Generation, October 29, 2010 North American Electric Reliability Corporation (NERC) presentation to the Electricity Advisory Committee, October 29, 2010, on accommodating high levels of variable electricity eneration. Variable resources are types of electric power generation that rely on an uncontrolled,

  4. High Level Computational Chemistry Approaches to the Prediction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Level Computational Chemistry Approaches to the Prediction of Energetic Properties of Chemical Hydrogen Storage Systems High Level Computational Chemistry Approaches to the ...

  5. Qualification of Innovative High Level Waste Pipeline Unplugging Technologies

    SciTech Connect (OSTI)

    McDaniel, D.; Gokaltun, S.; Varona, J.; Awwad, A.; Roelant, D.; Srivastava, R.

    2008-07-01

    In the past, some of the pipelines have plugged during high level waste (HLW) transfers resulting in schedule delays and increased costs. Furthermore, pipeline plugging has been cited by the 'best and brightest' technical review as one of the major issues that can result in unplanned outages at the Waste Treatment Plant causing inconsistent operation. As the DOE moves toward a more active high level waste retrieval, the site engineers will be faced with increasing cross-site pipeline waste slurry transfers that will result in increased probability of a pipeline getting plugged. Hence, availability of a pipeline unplugging tool/technology is crucial to ensure smooth operation of the waste transfers and in ensuring tank farm cleanup milestones are met. FIU had earlier tested and evaluated various unplugging technologies through an industry call. Based on mockup testing, two technologies were identified that could withstand the rigors of operation in a radioactive environment and with the ability to handle sharp 90 elbows. We present results of the second phase of detailed testing and evaluation of pipeline unplugging technologies and the objective is to qualify these pipeline unplugging technologies for subsequent deployment at a DOE facility. The current phase of testing and qualification comprises of a heavily instrumented 3-inch diameter (full-scale) pipeline facilitating extensive data acquisition for design optimization and performance evaluation, as it applies to three types of plugs atypical of the DOE HLW waste. Furthermore, the data from testing at three different lengths of pipe in conjunction with the physics of the process will assist in modeling the unplugging phenomenon that will then be used to scale-up process parameters and system variables for longer and site typical pipe lengths, which can extend as much as up to 19,000 ft. Detailed information resulting from the testing will provide the DOE end-user with sufficient data and understanding of the technology, and its limitations to aid in the benefit-cost analysis for management decision whether to deploy the technology or to abandon the pipeline as has been done in the past. In conclusion: The ultimate objective of this study is to qualify NuVision's unplugging technology for use at Hanford. Experimental testing has been conducted using three pipeline lengths and three types of blockages. Erosion rates have been obtained and pressure data is being analyzed. An amplification of the inlet pressure has been observed along the pipeline and is the key to determining up to what pipe lengths the technology can be used without surpassing the site pressure limit. In addition, we will attempt to establish what the expected unplugging rates will be at the longer pipe lengths for each of the three blockages tested. Detailed information resulting from the testing will provide the DOE end-user with sufficient data and understanding of the technology, and its limitations so that management decisions can be made whether the technology has a reasonable chance to successfully unplug a pipeline, such as a cross site transfer line or process transfer pipeline at the Waste Treatment Plant. (authors)

  6. Northeast Sustainable Energy Association | Open Energy Information

    Open Energy Info (EERE)

    Association Jump to: navigation, search Logo: Northeast Sustainable Energy Association Name: Northeast Sustainable Energy Association Address: 50 Miles Street Place: Greenfield,...

  7. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  8. Process description and plant design for preparing ceramic high-level waste forms

    SciTech Connect (OSTI)

    Grantham, L.F.; McKisson, R.L.; Guon, J.; Flintoff, J.F.; McKenzie, D.E.

    1983-02-25

    The ceramics process flow diagram has been simplified and upgraded to utilize only two major processing steps - fluid-bed calcination and hot isostatic press consolidating. Full-scale fluid-bed calcination has been used at INEL to calcine high-level waste for 18 y; and a second-generation calciner, a fully remotely operated and maintained calciner that meets ALARA guidelines, started calcining high-level waste in 1982. Full-scale hot isostatic consolidation has been used by DOE and commercial enterprises to consolidate radioactive components and to encapsulate spent fuel elements for several years. With further development aimed at process integration and parametric optimization, the operating knowledge of full-scale demonstration of the key process steps should be rapidly adaptable to scale-up of the ceramic process to full plant size. Process flowsheets used to prepare ceramic and glass waste forms from defense and commercial high-level liquid waste are described. Preliminary layouts of process flow diagrams in a high-level processing canyon were prepared and used to estimate the preliminary cost of the plant to fabricate both waste forms. The estimated costs for using both options were compared for total waste management costs of SRP high-level liquid waste. Using our design, for both the ceramic and glass plant, capital and operating costs are essentially the same for both defense and commercial wastes, but total waste management costs are calculated to be significantly less for defense wastes using the ceramic option. It is concluded from this and other studies that the ceramic form may offer important advantages over glass in leach resistance, waste loading, density, and process flexibility. Preliminary economic calculations indicate that ceramics must be considered a leading candidate for the form to immobilize high-level wastes.

  9. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, supersedes DOE M 435.1-1 Chg 1.

  10. Microwave energy for post-calcination treatment of high-level nuclear wastes

    SciTech Connect (OSTI)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary.

  11. Reference commercial high-level waste glass and canister definition.

    SciTech Connect (OSTI)

    Slate, S.C.; Ross, W.A.; Partain, W.L.

    1981-09-01

    This report presents technical data and performance characteristics of a high-level waste glass and canister intended for use in the design of a complete waste encapsulation package suitable for disposal in a geologic repository. The borosilicate glass contained in the stainless steel canister represents the probable type of high-level waste product that will be produced in a commercial nuclear-fuel reprocessing plant. Development history is summarized for high-level liquid waste compositions, waste glass composition and characteristics, and canister design. The decay histories of the fission products and actinides (plus daughters) calculated by the ORIGEN-II code are presented.

  12. Assessment of Disposal Options for DOE-Managed High-Level Radioactive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for some DOE-managed HLW and SNF. The report recommends that the Department begin implementation of a phased, adaptive, and consent-based strategy with development of a...

  13. Report on interim storage of spent nuclear fuel. Midwestern high-level radioactive waste transportation project

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  14. QER- Comment of Northeast Gas Association

    Broader source: Energy.gov [DOE]

    Please find enclosed comments of the Northeast Gas Association regarding the Quadrennial Energy Review. Thank you.

  15. Neptunium estimation in dissolver and high-level-waste solutions

    SciTech Connect (OSTI)

    Pathak, P.N.; Prabhu, D.R.; Kanekar, A.S.; Manchanda, V.K.

    2008-07-01

    This papers deals with the optimization of the experimental conditions for the estimation of {sup 237}Np in spent-fuel dissolver/high-level waste solutions using thenoyltrifluoroacetone as the extractant. (authors)

  16. High Level Overview of DOE Biomass Logistics II Project Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Level Overview of DOE Biomass Logistics II Project Activities High Level Overview of DOE Biomass Logistics II Project Activities Breakout Session 1B-Integration of Supply Chains I: ...

  17. EIS-0287: Idaho High-Level Waste & Facilities Disposition

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid...

  18. High Level Overview of DOE Biomass Logistics II Project Activities

    Broader source: Energy.gov [DOE]

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers High Level Overview of DOE Biomass Logistics II Project Activities Kevin Comer, Associate Principal, Antares Group Inc.

  19. A TWP-ICE High-Level Cloud Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A TWP-ICE High-Level Cloud Case Study Mace, Gerald University of Utah Category: Field Campaigns The Tropical Warm Pool International Cloud Experiment (TWP ICE) was conducted near...

  20. Application of Synergistic Technologies to Achieve High Levels of Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Downsizing | Department of Energy Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing Application of Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing Discussed technologies applied in highly downsized efficient gasoline engine concept such as multiple injection, advanced boosting, cooled exhaust gas recirculation, and electrical supercharger PDF icon deer11_boggs.pdf More Documents & Publications Meeting the CO2 Challenge DEER

  1. Spray Calciner/In-Can Melter high-level waste solidification technical manual

    SciTech Connect (OSTI)

    Larson, D.E.

    1980-09-01

    This technical manual summarizes process and equipment technology developed at Pacific Northwest Laboratory over the last 20 years for vitrification of high-level liquid waste by the Spray Calciner/In-Can Melter process. Pacific Northwest Laboratory experience includes process development and demonstration in laboratory-, pilot-, and full-scale equipment using nonradioactive synthetic wastes. Also, laboratory- and pilot-scale process demonstrations have been conducted using actual high-level radioactive wastes. In the course of process development, more than 26 tonnes of borosilicate glass have been produced in 75 canisters. Four of these canisters contained radioactive waste glass. The associated process and glass chemistry is discussed. Technology areas described include calciner feed treatment and techniques, calcination, vitrification, off-gas treatment, glass containment (the canister), and waste glass chemistry. Areas of optimization and site-specific development that would be needed to adapt this base technology for specific plant application are indicated. A conceptual Spray Calciner/In-Can Melter system design and analyses are provided in the manual to assist prospective users in evaluating the process for plant application, to provide equipment design information, and to supply information for safety analyses and environmental reports. The base (generic) technology for the Spray Calciner/In-Can Melter process has been developed to a point at which it is ready for plant application.

  2. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  3. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOE Patents [OSTI]

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  4. Comparison of selected foreign plans and practices for spent fuel and high-level waste management

    SciTech Connect (OSTI)

    Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.; Johnson, A.B. Jr.; Hazelton, R.F.; Bradley, D.J.

    1990-04-01

    This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal of spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.

  5. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    SciTech Connect (OSTI)

    Rudisill, T.; King, W.; Hay, M.; Jones, D.

    2015-11-19

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

  6. High-Level Waste Corporate Board, Mark Gilbertson

    Office of Environmental Management (EM)

    High-Level Waste Corporate Board April 1, 2008 safety v performance v cleanup v closure M E Environmental Management Environmental Management Path Forward * Initial meeting lays groundwork for future meetings * There are enough issues to manage that meetings will be more frequent than semiannual * HLW Issues Board will address include: - Within Site - Between Sites - Affecting Entire Complex

  7. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    SciTech Connect (OSTI)

    Ray, J.W. [Savannah River Remediation (United States)] [Savannah River Remediation (United States); Marra, S.L.; Herman, C.C. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  8. Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Ray, J. W.; Marra, S. L.; Herman, C. C.

    2013-01-09

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form.

  9. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    SciTech Connect (OSTI)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  10. Operational considerations for high level blast furnace fuel injection

    SciTech Connect (OSTI)

    Poveromo, J.J.

    1996-12-31

    Injection levels of over 400 lbs/NTHM for coal, over 250 lbs/NTHM for natural gas and over 200 lbs/NTHM for oil have been achieved. Such high levels of fuel injection has a major impact on many aspects of blast furnace operation. In this paper the author begins by reviewing the fundamentals of fuel injection with emphasis on raceway thermochemical phenomena. The operational impacts which are generic to high level injection of any injectant are then outlined. The author will then focus on the particular characteristics of each injectant, with major emphasis on coal and natural gas. Operational considerations for coping with these changes and methods of maximizing the benefits of fuel injection will be reviewed.

  11. High Level Waste Corporate Board Newsletter - 06/03/08

    Office of Environmental Management (EM)

    3 June 2008 UPCOMING EVENTS: Next High-Level Waste Corporate Board meeting will be held at DOE-ID on 24 July 2008. Meeting details will be presented here and e-mailed to those persons with an interest to participate. Topics for discussion include: * Strategic Planning Initiative * Technology Development / Needs Collection / Prioritization * Waste Acceptance Product Specification This meeting will include a members-only executive session OTHER NEWS DOE SELECTS WASHINGTON RIVER PROTECTION

  12. Operating experience during high-level waste vitrification at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    Valenti, P.J.; Elliott, D.I.

    1999-01-01

    This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes.

  13. Technical Exchange on Improved Design and Performance of High Level Waste Melters - Final Report

    SciTech Connect (OSTI)

    SK Sundaram; ML Elliott; D Bickford

    1999-11-19

    SIA Radon is responsible for management of low- and intermediate-level radioactive waste (LILW) produced in Central Russia. In cooperation with Minatom organizations Radon carries out R and D programs on treatment of simulated high level waste (HLW) as well. Radon scientists deal with a study of materials for LILW, HLW, and Nuclear Power Plants (NPP) wastes immobilization, and development and testing of processes and technologies for waste treatment and disposal. Radon is mostly experienced in LILW vitrification. This experience can be carried over to HLW vitrification especially in field of melting systems. The melter chosen as a basic unit for the vitrification plant is a cold crucible. Later on Radon experience in LILW vitrification as well as our results on simulated HLW vitrification are briefly described.

  14. Advanced waste form and melter development for treatment of troublesome high-level wastes

    SciTech Connect (OSTI)

    Marra, James; Kim, Dong -Sang; Maio, Vincent

    2015-09-02

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these "troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approached to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.

  15. Cold Crucible Induction Melting Technology for Vitrification of High Level Waste: Development and Status in India

    SciTech Connect (OSTI)

    Sugilal, G.; Sengar, P.B.S. [Nuclear Recycle Group, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2008-07-01

    Cold crucible induction melting is globally emerging as an alternative technology for the vitrification of high level radioactive waste. The new technology offers several advantages such as high temperature availability with long melter life, high waste loading, high specific capacity etc. Based on the laboratory and bench scale studies, an engineering scale cold crucible induction melter was locally developed in India. The melter was operated continuously to assess its performance. The electrical and thermal efficiencies were found to be in the range of 70-80 % and 10-20 % respectively. Glass melting capacities up to 200 kg m{sup -2} hr{sup -1} were accomplished using the ESCCIM. Industrially adaptable melter operating procedures for start-up, melting and pouring operations were established (author)

  16. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    SciTech Connect (OSTI)

    G. Radulesscu; J.S. Tang

    2000-06-07

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.

  17. Methods of calculating the post-closure performance of high-level waste repositories

    SciTech Connect (OSTI)

    Ross, B.

    1989-02-01

    This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs.

  18. Silicon-Polymer Encapsulation of High-Level Calcine Waste for Transportation or Disposal

    SciTech Connect (OSTI)

    G. G. Loomis; C. M. Miller; J. A. Giansiracusa; R. Kimmel; S. V. Prewett

    2000-01-01

    This report presents the results of an experimental study investigating the potential uses for silicon-polymer encapsulation of High Level Calcine Waste currently stored within the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The study investigated two different applications of silicon polymer encapsulation. One application uses silicon polymer to produce a waste form suitable for disposal at a High Level Radioactive Waste Disposal Facility directly, and the other application encapsulates the calcine material for transportation to an offsite melter for further processing. A simulated waste material from INTEC, called pilot scale calcine, which contained hazardous materials but no radioactive isotopes was used for the study, which was performed at the University of Akron under special arrangement with Orbit Technologies, the originators of the silicon polymer process called Polymer Encapsulation Technology (PET). This document first discusses the PET process, followed by a presentation of past studies involving PET applications to waste problems. Next, the results of an experimental study are presented on encapsulation of the INTEC calcine waste as it applies to transportation or disposal of calcine waste. Results relating to long-term disposal include: (1) a characterization of the pilot calcine waste; (2) Toxicity Characteristic Leaching Procedure (TCLP) testing of an optimum mixture of pilot calcine, polysiloxane and special additives; and, (3) Material Characterization Center testing MCC-1P evaluation of the optimum waste form. Results relating to transportation of the calcine material for a mixture of maximum waste loading include: compressive strength testing, 10-m drop test, melt testing, and a Department of Transportation (DOT) oxidizer test.

  19. Polysiloxane Encapsulation of High Level Calcine Waste for Transportation or Disposal

    SciTech Connect (OSTI)

    Loomis, Guy George

    2000-03-01

    This report presents the results of an experimental study investigating the potential uses for silicon-polymer encapsulation of High Level Calcine Waste currently stored within the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The study investigated two different applications of silicon polymer encapsulation. One application uses silicon polymer to produce a waste form suitable for disposal at a High Level Radioactive Waste Disposal Facility directly, and the other application encapsulates the calcine material for transportation to an offsite melter for further processing. A simulated waste material from INTEC, called pilot scale calcine, which contained hazardous materials but no radioactive isotopes was used for the study, which was performed at the University of Akron under special arrangement with Orbit Technologies, the originators of the silicon polymer process called Polymer Encapsulation Technology (PET). This document first discusses the PET process, followed by a presentation of past studies involving PET applications to waste problems. Next, the results of an experimental study are presented on encapsulation of the INTEC calcine waste as it applies to transportation or disposal of calcine waste. Results relating to long-term disposal include: 1) a characterization of the pilot calcine waste; 2) Toxicity Characteristic Leaching Procedure (TCLP) testing of an optimum mixture of pilot calcine, polysiloxane and special additives; and, 3) Material Characterization Center testing MCC-1P evaluation of the optimum waste form. Results relating to transportation of the calcine material for a mixture of maximum waste loading include: compressive strength testing, 10-m drop test, melt testing, and a Department of Transportation (DOT) oxidizer test.

  20. Investigation of Flammable Gas Releases from High Level Waste Tanks during Periodic Mixing

    SciTech Connect (OSTI)

    Swingle, R.F.

    1999-01-07

    The Savannah River Site processes high-level radioactive waste through precipitation by the addition of sodium tetraphenylborate in a large (approximately 1.3 million gallon) High Level Waste Tank. Radiolysis of water produces a significant amount of hydrogen gas in this slurry. During quiescent periods the tetraphenylborate slurry retains large amounts of hydrogen as dissolved gas and small bubbles. When mixing pumps start, large amounts of hydrogen release due to agitation of the slurry. Flammability concerns necessitate an understanding of the hydrogen retention mechanism in the slurry and a model of how the hydrogen releases from the slurry during pump operation. Hydrogen concentration data collected from the slurry tank confirmed this behavior in the full-scale system. These measurements also provide mass transfer results for the hydrogen release during operation. The authors compared these data to an existing literature model for mass transfer in small, agitated reactors and developed factors to scale this existing model to the 1.3 million gallon tanks in use at the Savannah River Site. The information provides guidance for facility operations.

  1. High Level Waste Corporate Board Newsletter - 09/11/08

    Office of Environmental Management (EM)

    UPCOMING EVENTS: The Low-Level Waste Federal Review Group (LFRG) in Washington, DC on 16-18 September 2008. Contact Maureen O'Dell for details (MAUREEN.O'DELL@hq.doe.gov) Next High-Level Waste Corporate Board meeting will be held at DOE- RL on 6 November 2008. Meeting details will be presented here and e- mailed to those persons with an interest to participate. Topics for discussion include but are not limited to:  Results of the Tank Integrity Workshop  Strategic Initiative Briefing 

  2. Market Designs for High Levels of Variable Generation: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Holttinen, H.; Kiviluoma, J.; Orths, A.; Lynch, M.; Soder, L.

    2014-10-01

    Variable renewable generation is increasing in penetration in modern power systems, leading to higher variability in the supply and price of electricity as well as lower average spot prices. This raises new challenges, particularly in ensuring sufficient capacity and flexibility from conventional technologies. Because the fixed costs and lifetimes of electricity generation investments are significant, designing markets and regulations that ensure the efficient integration of renewable generation is a significant challenge. This papers reviews the state of play of market designs for high levels of variable generation in the United States and Europe and considers new developments in both regions.

  3. Risk perception on management of nuclear high-level and transuranic waste storage

    SciTech Connect (OSTI)

    Dees, L.A.

    1994-08-15

    The Department of Energy`s program for disposing of nuclear High-Level Waste (HLW) and transuranic (TRU) waste has been impeded by overwhelming political opposition fueled by public perceptions of actual risk. Analysis of these perceptions shows them to be deeply rooted in images of fear and dread that have been present since the discovery of radioactivity. The development and use of nuclear weapons linked these images to reality and the mishandling of radioactive waste from the nations military weapons facilities has contributed toward creating a state of distrust that cannot be erased quickly or easily. In addition, the analysis indicates that even the highly educated technical community is not well informed on the latest technology involved with nuclear HLW and TRU waste disposal. It is not surprising then, that the general public feels uncomfortable with DOE`s management plans for with nuclear HLW and TRU waste disposal. Postponing the permanent geologic repository and use of Monitored Retrievable Storage (MRS) would provide the time necessary for difficult social and political issues to be resolved. It would also allow time for the public to become better educated if DOE chooses to become proactive.

  4. The Northeast Blackout of 1965

    SciTech Connect (OSTI)

    Vassell, G.S.

    1990-10-11

    Twenty-five years ago, on November 9, 1965, the electric utility industry - and the nation - experienced the biggest power failure in history. While major power outages did happen before and after this unique event, none of them came even close to the Great Northeast Blackout of 1965 - not in terms of the size of the area or the number of people affected, not in terms of the trauma inflicted on the society at large, and not in terms of its impact on the electric utility industry. With our institution memory - as a society - being as short as it is, many of the lessons that were learned by the industry, by the regulators, and by the nation at large in the wake of the Northeast Blackout have been, by now, mostly forgotten. The 25th anniversary of this event offers a unique opportunity, therefore, to refresh our institutional memory in this regard and, by doing so, bring to bear our past experience to the problems of today. This article has been written with this objective in mind and from the perspective of an individual who experienced firsthand - as an active electric utility industry participant - the Northeast Blackout itself, its aftermath, and the subsequent evolution of the industry to the present day.

  5. High Level Waste System Impacts from Acid Dissolution of Sludge

    SciTech Connect (OSTI)

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  6. Calculates Neutron Production in Canisters of High-level Waste

    Energy Science and Technology Software Center (OSTI)

    1993-01-15

    ALPHN calculates the (alpha,n) neutron production rate of a canister of vitrified high-level waste. The user supplies the chemical composition of the glass or glass-ceramic and the curies of the alpha-emitting actinides present. The output of the program gives the (alpha,n) neutron production of each actinide in neutrons per second and the total for the canister. The (alpha,n) neutron production rates are source terms only; that is, they are production rates within the glass andmore » do not take into account the shielding effect of the glass. For a given glass composition, the user can calculate up to eight cases simultaneously; these cases are based on the same glass composition but contain different quantities of actinides per canister.« less

  7. EIA - Natural Gas Pipeline System - Northeast Region

    Gasoline and Diesel Fuel Update (EIA)

    Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These

  8. Northeast Gasoline Supply Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast Gasoline Supply Reserve Northeast Gasoline Supply Reserve The Northeast region of the U.S. is particularly vulnerable to gasoline disruptions as a result of hurricanes and other natural events. Hurricane Sandy in 2012 caused widespread issues related to the availability of gasoline. In response to help build a more secure and resilient energy infrastructure, the Energy Department established the first federal regional refined petroleum product reserve containing gasoline. To help

  9. Northeast Biodiesel Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Company LLC Jump to: navigation, search Name: Northeast Biodiesel Company, LLC Place: Massachusetts Zip: 1301 Product: Massachusetts-based biodiesel producer and project developer....

  10. Northeast Kansas Bioenergy LLC | Open Energy Information

    Open Energy Info (EERE)

    Kansas Bioenergy LLC Jump to: navigation, search Name: Northeast Kansas Bioenergy LLC Place: Hiawatha, Kansas Zip: 66434 Product: Developing and integrated Bioethanol Biodiesel...

  11. Northeast Piscataquis, Maine: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Northeast Piscataquis, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.9376353, -69.1023106 Show Map Loading map......

  12. Northeast Honshu Arc | Open Energy Information

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Northeast Honshu Arc Details Areas (5) Power Plants (8) Projects (0) Techniques (0) References Geothermal Region Data Country(ies) Japan...

  13. Northeast Sustainable Energy Association (Massachusetts) | Open...

    Open Energy Info (EERE)

    (Massachusetts) Jump to: navigation, search Name: Northeast Sustainable Energy Association Address: 50 Miles Street Place: Greenfield, Massachusetts Zip: 01301 Region: Greater...

  14. Defense High Level Waste Disposal Container System Description

    SciTech Connect (OSTI)

    2000-10-12

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials will be selected for the disposal container inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lids will be a barrier made of high-nickel alloy. The defense HLW disposal container interfaces with the emplacement drift environment and the internal waste by transferring heat from the canisters to the external environment and by protecting the canisters and their contents from damage/degradation by the external environment. The disposal container also interfaces with the canisters by limiting access of moderator and oxidizing agents to the waste. A loaded and sealed disposal container (waste package) interfaces with the Emplacement Drift System's emplacement drift waste package supports upon which the waste packages are placed. The disposal container interfaces with the Canister Transfer System, Waste Emplacement /Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement, and retrieval for the disposal container/waste package.

  15. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    SciTech Connect (OSTI)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.

  16. Vitrification of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  17. HIGH LEVEL WASTE SLUDGE BATCH 4 VARIABILITY STUDY

    SciTech Connect (OSTI)

    Fox, K; Tommy Edwards, T; David Peeler, D; David Best, D; Irene Reamer, I; Phyllis Workman, P

    2006-10-02

    The Defense Waste Processing Facility (DWPF) is preparing for vitrification of High Level Waste (HLW) Sludge Batch 4 (SB4) in early FY2007. To support this process, the Savannah River National Laboratory (SRNL) has provided a recommendation to utilize Frit 503 for vitrifying this sludge batch, based on the composition projection provided by the Liquid Waste Organization on June 22, 2006. Frit 418 was also recommended for possible use during the transition from SB3 to SB4. A critical step in the SB4 qualification process is to demonstrate the applicability of the durability models, which are used as part of the DWPF's process control strategy, to the glass system of interest via a variability study. A variability study is an experimentally-driven assessment of the predictability and acceptability of the quality of the vitrified waste product that is anticipated from the processing of a sludge batch. At the DWPF, the durability of the vitrified waste product is not directly measured. Instead, the durability is predicted using a set of models that relate the Product Consistency Test (PCT) response of a glass to the chemical composition of that glass. In addition, a glass sample is taken during the processing of that sludge batch, the sample is transmitted to SRNL, and the durability is measured to confirm acceptance. The objective of a variability study is to demonstrate that these models are applicable to the glass composition region anticipated during the processing of the sludge batch - in this case the Frit 503 - SB4 compositional region. The success of this demonstration allows the DWPF to confidently rely on the predictions of the durability/composition models as they are used in the control of the DWPF process.

  18. Review of high-level waste form properties. [146 bibliographies

    SciTech Connect (OSTI)

    Rusin, J.M.

    1980-12-01

    This report is a review of waste form options for the immobilization of high-level-liquid wastes from the nuclear fuel cycle. This review covers the status of international research and development on waste forms as of May 1979. Although the emphasis in this report is on waste form properties, process parameters are discussed where they may affect final waste form properties. A summary table is provided listing properties of various nuclear waste form options. It is concluded that proposed waste forms have properties falling within a relatively narrow range. In regard to crystalline versus glass waste forms, the conclusion is that either glass of crystalline materials can be shown to have some advantage when a single property is considered; however, at this date no single waste form offers optimum properties over the entire range of characteristics investigated. A long-term effort has been applied to the development of glass and calcine waste forms. Several additional waste forms have enough promise to warrant continued research and development to bring their state of development up to that of glass and calcine. Synthetic minerals, the multibarrier approach with coated particles in a metal matrix, and high pressure-high temperature ceramics offer potential advantages and need further study. Although this report discusses waste form properties, the total waste management system should be considered in the final selection of a waste form option. Canister design, canister materials, overpacks, engineered barriers, and repository characteristics, as well as the waste form, affect the overall performance of a waste management system. These parameters were not considered in this comparison.

  19. Next Generation Extractants for Cesium Separation from High-Level Waste

    SciTech Connect (OSTI)

    Moyer, Bruce A; Bazelaire, Eve; Bonnesen, Peter V; Custelcean, Radu; Delmau, Laetitia Helene; Ditto, Mary E; Engle, Nancy L; Gorbunova, Maryna; Haverlock, Tamara; Levitskaia, Tatiana G.; Bartsch, Richard A.; Surowiec, Malgorzata A.; Marquez, Manuel; Zhou, Hui

    2006-01-01

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed bear upon cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit applied projects funded by the USDOE Office of Environmental Management to clean up sites such as the Savannah River Site (SRS), Hanford, and the Idaho National Environmental and Engineering Laboratory. The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste. Disposal of high-level waste is horrendously expensive, in large part because the actual radioactive matter in underground waste tanks at various USDOE sites has been diluted over 1000-fold by ordinary inorganic chemicals. To vitrify the entire mass of the high-level waste would be prohibitively expensive. Accordingly, an urgent need has arisen for technologies to remove radionuclides such as {sup 137}Cs from the high-level waste so that the bulk of it may be diverted to cheaper low-level waste forms and cheaper storage. To address this need in part, chemical research at Oak Ridge National Laboratory (ORNL) has focused on calixcrown extractants, molecules that combine a crown ether with a calixarene. This hybrid possesses a cavity that is highly complementary for the Cs{sup +} ion vs. the Na+ ion, making it possible to cleanly separate cesium from wastes that contain 10,000- to 1,000,000-fold higher concentrations of sodium. Previous EMSP results in Project 55087 elucidated the underlying extraction equilibria in cesium nitrate extraction by the calixcrown used in the CSSX process, calix[4]arene-bis(t-octylbenzo-crown-6), designated here as BOBCalixC6 (see structure). This understanding led to key improvements in the development of the CSSX process under the EM Efficient Separations and Crosscutting Program, entailing a method to back-extract or 'strip' cesium from the calixcrown subsequent to cesium extraction from waste. Having this stripping method allowed the cesium to be concentrated in a relatively pure aqueous stream and the extractant to be regenerated for recycle. Closing the cycle then made possible the design of a process flowsheet and successful demonstration through collaboration with Argonne National Laboratory and Savannah River Technology Center under funding from the USDOE Office of Project Completion and Tanks Focus Area. Despite these successes, the CSSX process represents young technology that can benefit substantially from further fundamental inquiry. First, reversibility of the process (stripping efficiency) still presents the greatest potential for problems and the greatest potential for improvement. Second, although the calixcrown extractants for cesium are two orders of magnitude stronger than the next best simple crown ether, a minor fraction of the extractant capacity is utilized. Third, potassium competes significantly with cesium for the calixcrown binding site, an important issue in dealing with Hanford wastes having potassium concentrations as high as 1 M. Fourth, the calixcrown solubility needs to be improved. And finally, the mechanism of extraction must be understood in detail to provide the base of knowledge from which further development of the technology can be rationally made.

  20. 2016 Northeast Energy Efficiency Summit | Department of Energy

    Energy Savers [EERE]

    Northeast Energy Efficiency Summit 2016 Northeast Energy Efficiency Summit June 13, 2016 7:30AM EDT to June 14, 2016 3:3

  1. Northeast Energy Efficiency Partnerships, Inc | Open Energy Informatio...

    Open Energy Info (EERE)

    Energy Efficiency Partnerships, Inc Jump to: navigation, search Logo: Northeast Energy Efficiency Partnerships, Inc Name: Northeast Energy Efficiency Partnerships, Inc Address: 5...

  2. 2016 Northeast Energy Efficiency Summit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast Energy Efficiency Summit 2016 Northeast Energy Efficiency Summit June 13, 2016 7:30AM EDT to June 14, 2016 3:3

  3. Northeast Home Heating Oil Reserve - Guidelines for Release ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Reserve Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release The Energy Policy and Conservation ...

  4. Additional Storage Contracts Awarded for Northeast Home Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve September 30, 2011 - 1:00pm ...

  5. Towards increased waste loading in high level waste glasses: Developing a better understanding of crystallization behavior

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marra, James C.; Kim, Dong -Sang

    2014-12-18

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Thus, recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized.more » Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (with higher Al2O3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.« less

  6. World first in high level waste vitrification - A review of French vitrification industrial achievements

    SciTech Connect (OSTI)

    Brueziere, J.; Chauvin, E. [AREVA, 1 place Jean Millier, 92084 Paris La Defense (France); Piroux, J.C. [Joint Vitrification Laboratory - LCV, Marcoule, BP171, 30207 Bagnols sur Ceze (France)

    2013-07-01

    AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process was implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.

  7. SUMO, System performance assessment for a high-level nuclear waste repository: Mathematical models

    SciTech Connect (OSTI)

    Eslinger, P.W.; Miley, T.B.; Engel, D.W.; Chamberlain, P.J. II

    1992-09-01

    Following completion of the preliminary risk assessment of the potential Yucca Mountain Site by Pacific Northwest Laboratory (PNL) in 1988, the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE) requested the Performance Assessment Scientific Support (PASS) Program at PNL to develop an integrated system model and computer code that provides performance and risk assessment analysis capabilities for a potential high-level nuclear waste repository. The system model that has been developed addresses the cumulative radionuclide release criteria established by the US Environmental Protection Agency (EPA) and estimates population risks in terms of dose to humans. The system model embodied in the SUMO (System Unsaturated Model) code will also allow benchmarking of other models being developed for the Yucca Mountain Project. The system model has three natural divisions: (1) source term, (2) far-field transport, and (3) dose to humans. This document gives a detailed description of the mathematics of each of these three divisions. Each of the governing equations employed is based on modeling assumptions that are widely accepted within the scientific community.

  8. Towards increased waste loading in high level waste glasses: Developing a better understanding of crystallization behavior

    SciTech Connect (OSTI)

    Marra, James C.; Kim, Dong -Sang

    2014-12-18

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Thus, recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (with higher Al2O3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.

  9. A COMPLETE HISTORY OF THE HIGH-LEVEL WASTE PLANT AT THE WEST VALLEY DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Petkus, Lawrence L.; Paul, James; Valenti, Paul J.; Houston, Helene; May, Joseph

    2003-02-27

    The West Valley Demonstration Project (WVDP) vitrification melter was shut down in September 2002 after being used to vitrify High Level Waste (HLW) and process system residuals for six years. Processing of the HLW occurred from June 1996 through November 2001, followed by a program to flush the remaining HLW through to the melter. Glass removal and shutdown followed. The facility and process equipment is currently in a standby mode awaiting deactivation. During HLW processing operations, nearly 24 million curies of radioactive material were vitrified into 275 canisters of HLW glass. At least 99.7% of the curies in the HLW tanks at the WVDP were vitrified using the melter. Each canister of HLW holds approximately 2000 kilograms of glass with an average contact dose rate of over 2600 rem per hour. After vitrification processing ended, two more cans were filled using the Evacuated Canister Process to empty the melter at shutdown. This history briefly summarizes the initial stages of process development and earlier WVDP experience in the design and operation of the vitrification systems, followed by a more detailed discussion of equipment availability and failure rates during six years of operation. Lessons learned operating a system that continued to function beyond design expectations also are highlighted.

  10. Towards increased waste loading in high level waste glasses: developing a better understanding of crystallization behavior

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marra, James C.; Kim, Dong-Sang

    2014-12-18

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glasses and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulationsmore »have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 composition represents a waste group that is waste loading limited primarily due to high concentration of Fe2O3. Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste group.« less

  11. Technical considerations for evaluating substantially complete containment of high-level waste within the waste package

    SciTech Connect (OSTI)

    Manaktala, H.K. (Southwest Research Inst., San Antonio, TX (USA). Center for Nuclear Waste Regulatory Analyses); Interrante, C.G. (Nuclear Regulatory Commission, Washington, DC (USA). Div. of High-Level Waste Management)

    1990-12-01

    This report deals with technical information that is considered essential for demonstrating the ability of the high-level radioactive waste package to provide substantially complete containment'' of its contents (vitrified waste form or spent light-water reactor fuel) for a period of 300 to 1000 years in a geological repository environment. The discussion is centered around technical considerations of the repository environment, materials and fabrication processes for the waste package components, various degradation modes of the materials of construction of the waste packages, and inspection and monitoring of the waste package during the preclosure and retrievability period, which could begin up to 50 years after initiation of waste emplacement. The emphasis in this report is on metallic materials. However, brief references have been made to other materials such as ceramics, graphite, bonded ceramic-metal systems, and other types of composites. The content of this report was presented to an external peer review panel of nine members at a workshop held at the Center for Nuclear Waste Regulatory Analyses (CNWRA), Southwest Research Institute, San Antonio, Texas, April 2--4, 1990. The recommendations of the peer review panel have been incorporated in this report. There are two companion reports; the second report in the series provides state-of-the-art techniques for uncertainty evaluations. 97 refs., 1 fig.

  12. Towards increased waste loading in high level waste glasses: developing a better understanding of crystallization behavior

    SciTech Connect (OSTI)

    Marra, James C.; Kim, Dong-Sang

    2014-12-18

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glasses and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 composition represents a waste group that is waste loading limited primarily due to high concentration of Fe2O3. Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste group.

  13. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    SciTech Connect (OSTI)

    Bardal, M.A. [PaR Systems, Inc., Shoreview, MN (United States); Darwen, N.J. [Bechtel National, Inc., Richland, WA (United States)

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification. Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)

  14. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    SciTech Connect (OSTI)

    Marzolf, A.; Folsom, M.

    2010-08-31

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame time-of-flight data (3D image) collected with a single laser pulse, high frame rates, direct calculation of range, blur-free images without motion distortion, no need for precision scanning mechanisms, ability to combine 3D flash LIDAR with 2D cameras for 2D texture over 3D depth, and no moving parts. The major disadvantage of the 3D flash LIDAR camera is the cost of approximately $150,000, not including the software development time and repackaging of the camera for deployment in the waste tanks.

  15. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Bryan, Jeffrey C.; Delmau, Latitia H.; Engle, Nancy L.; Gorbunova, Maryna G.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Tomkins, Bruce A.

    2004-06-30

    General project objectives. This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed pertain to cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit cleanup projects funded by the USDOE Office of Environmental Management to treat and dispose of high-level radioactive wastes currently stored in underground tanks at the Savannah River Site (SRS), the Hanford site, and the Idaho National Environmental and Engineering Laboratory.1 The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high level tank waste.2 This technology owes its development in part to fundamental results obtained in this program.

  16. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A; Bazelaire, Eve; Bonnesen, Peter V.; Bryan, Jeffrey C.; Delmau, Laetitia H.; Engle, Nancy L.; Gorbunova, Maryna G.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Tomkins, Bruce A.; Bartsch, Richard A.; Talanov, Vladimir S.; Gibson, Harry W.; Jones, Jason W.; Hay, Benjamin P.

    2003-09-01

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed pertain to cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit cleanup projects funded by the USDOE Office of Environmental Management to treat and dispose of high-level radioactive wastes currently stored in underground tanks at the Savannah River Site (SRS), the Hanford site, and the Idaho National Environmental and Engineering Laboratory.1 The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste.2 This technology owes its development in part to fundamental results obtained in this program.

  17. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, Donald K.; Van Cleve, Jr., John E.

    1982-01-01

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  18. Canister arrangement for storing radioactive waste

    DOE Patents [OSTI]

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  19. Improved Alumina Loading in High-Level Waste Glasses

    SciTech Connect (OSTI)

    Kim, D.; Vienna, J.D. [Pacific Northwest National Laboratory, Richland, WA (United States); Peeler, D.K.; Fox, K.M. [Savannah River National Laboratory, Aiken, SC (United States); Aloy, A.; Trofimenko, A.V. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation); Gerdes, K.D. [EM-21, Office of Waste Processing, U.S. Department of Energy, Washington, DC (United States)

    2008-07-01

    Recent tank retrieval, blending, and treatment strategies at both the Savannah River Site (SRS) and Hanford have identified increased amounts of high-Al{sub 2}O{sub 3} waste streams that are scheduled to be processed through their respective high-level waste (HLW) vitrification facilities. It is well known that the addition of small amounts of Al{sub 2}O{sub 3} to borosilicate glasses generally enhances the durability of the waste glasses. However, at higher Al{sub 2}O{sub 3} concentrations nepheline (NaAlSiO{sub 4}) formation can result in a severe deterioration of the chemical durability of the slowly cooled glass near the center of the canister. Additionally, higher concentrations of Al{sub 2}O{sub 3} generally increase the liquidus temperature of the melt and decrease the processing rate. Pacific Northwest National Laboratory (PNNL), Savannah River National Laboratory (SRNL), and Khlopin Radium Institute (KRI) are jointly performing laboratory and scaled-melter tests, through US Department of Energy, EM-21 Office of Waste Processing program, to develop glass formulations with increased Al{sub 2}O{sub 3} concentrations. These glasses are formulated for specific DOE waste compositions at Hanford and Savannah River Site. The objectives are to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints such as viscosity, liquidus temperature, and glass durability. This paper summarizes the results of recent tests of simulated Hanford HLW glasses containing up to 26 wt% Al{sub 2}O{sub 3} in glass. In summary: Glasses with Al{sub 2}O{sub 3} loading ranging from 25 to 27 wt% were formulated and tested at a crucible scale. Successful glass formulations with up to 26 wt% Al{sub 2}O{sub 3} that do not precipitate nepheline during CCC treatment and had spinel crystals 1 vol% or less after 24 hr heat treatment at 950 deg. C were obtained. The selected glass, HAL-17 with 26 wt% Al{sub 2}O{sub 3}, had viscosity and electrical conductivity within the boundaries for adequate processing in the Joule heated melters operated at 1150 deg. C. This HAL-17 glass was successfully processed using small-scale (SMK) and larger scale (EP-5) melters. There was no indication of spinel settling during processing. The product glass samples from these melter tests contained 1 to 4 vol% spinel crystals that are likely formed during cooling. The PCT tests on the product glasses are underway. The present study demonstrated that it is possible to formulate the glasses with up to 26 wt% Al{sub 2}O{sub 3} that satisfy the property requirements and is processable with Joule-heated melters operated at 1150 deg. C. The 'nepheline discriminator' for HAL-17 glass is 0.45, which supports that claim that the current rule ('nepheline discriminator' < 0.62) is too restrictive. Considering that the cost of HLW treatment is highly dependent on loading of waste in glass, this result provides a potential for significant cost saving for Hanford. The maximum Al{sub 2}O{sub 3} loading that can be achieved will also depend on concentrations of other components in wastes. For example, the loading of waste used in this study was also limited by the spinel crystallization after 950 deg. C 24 hr heat treatment, which suggests that the concentrations of spinel-forming components such as Fe{sub 2}O{sub 3}, Cr{sub 2}O{sub 3}, NiO, ZnO, and MnO would be critical in addition to Al{sub 2}O{sub 3} for the maximum Al{sub 2}O{sub 3} loading achievable. The observed glass production rate per unit melter surface area of 0.75 MT/(d.m{sup 2}) for SMK test is comparable to the design capacity of WTP HLW melters at 0.8 MT/(d.m{sup 2}). However, the test with EP-5 melter achieved 0.38 MT/(d.m{sup 2}), which is roughly a half of the WTP design capacity. This result may imply that the glass with 26 wt% Al{sub 2}O{sub 3} may not achieve the WTP design production rate. However, this hypothesis is not conclusive because of unknown effects of melter size and operation

  20. Report Comparing the Impacts of Northeast Hurricanes Now Available

    Broader source: Energy.gov [DOE]

    The report "Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure" is now available for download.

  1. PIA - Northeast Home Heating Oil Reserve System (Heating Oil) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PDF icon PIA - Northeast Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified Business Operations General Support

  2. The demonstration of continuous stirred tank reactor operations with high level waste

    SciTech Connect (OSTI)

    Peterson, R.A.

    2000-07-19

    This report contains the results of testing performed at the request of High Level Waste Engineering. These tests involved the operation of two continuous stirred tank reactors with high level waste.

  3. Road Map for Development of Crystal-Tolerant High Level Waste...

    Office of Scientific and Technical Information (OSTI)

    Road Map for Development of Crystal-Tolerant High Level Waste Glasses Citation Details In-Document Search Title: Road Map for Development of Crystal-Tolerant High Level Waste...

  4. 2011 Municipal Consortium Northeast Region Workshop Materials

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Northeast Region Workshop, held in Philadelphia, May 19–20, 2011.

  5. AWEA Wind Energy Regional Summit: Northeast

    Office of Energy Efficiency and Renewable Energy (EERE)

    The AWEA Wind Energy Northeast Regional Summit will connect you with New England-area wind energy professionals and offers the opportunity to discuss significant issues related to land-based and...

  6. Northeast Clean Energy Application Center

    SciTech Connect (OSTI)

    Bourgeois, Tom

    2013-09-30

    From October 1, 2009 through September 30, 2013 (“contract period”), the Northeast Clean Energy Application Center (“NE-CEAC”) worked in New York and New England (Connecticut, Rhode Island, Vermont, Massachusetts, New Hampshire, and Maine) to create a more robust market for the deployment of clean energy technologies (CETs) including combined heat and power (CHP), district energy systems (DES), and waste heat recovery (WHR) systems through the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers. CHP, DES, and WHR can help reduce greenhouse gas emissions, reduce electrical and thermal energy costs, and provide more reliable energy for users throughout the United States. The NE-CEAC’s efforts in the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers helped advance the market for CETs in the Northeast thereby helping the region move towards the following outcomes: • Reduction of greenhouse gas emissions and criteria pollutants • Improvements in energy efficiency resulting in lower costs of doing business • Productivity gains in industry and efficiency gains in buildings • Lower regional energy costs • Strengthened energy security • Enhanced consumer choice • Reduced price risks for end-users • Economic development effects keeping more jobs and more income in our regional economy Over the contract period, NE-CEAC provided technical assistance to approximately 56 different potential end-users that were interested in CHP and other CETs for their facility or facilities. Of these 56 potential end-users, five new CHP projects totaling over 60 MW of install capacity became operational during the contract period. The NE-CEAC helped host numerous target market workshops, trainings, and webinars; and NE-CEAC staff delivered presentations at many other workshops and conferences. In total, over 60 different workshops, conferences, webinars, and presentation were hosted or delivered during the contract period. The NE-CEAC also produced publically available educational materials such as CHP project profiles. Finally, the NE-CEAC worked closely with the relevant state agencies involved with CHP development. In New York, the NE-CEAC played an important role in securing and maintaining funding for CHP incentive programs administered by the New York State Energy Research Development Authority. NE-CEAC was also involved in the NYC Mayor's Office DG Collaborative. The NECEAC was also named a strategic resource for the Connecticut Department of Energy and Environmental Protection’s innovative Microgrid Pilot Program.

  7. Northeast States Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast States' Hydrogen Economy U.S. Department of Energy Fuel Cell Technologies Office December 1 st , 2015 Presenter: Joel Rinebold - Connecticut Center for Advanced Technology, Inc. DOE Host: Peter Devlin- DOE Fuel Cell Technologies Office Question and Answer * Please type your questions into the question box 2 Northeast States' Hydrogen Economy Economic Development, Environmental Performance, Energy Reliability Joel M. Rinebold Connecticut Center for Advanced Technology, Inc. December 1,

  8. Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole

    SciTech Connect (OSTI)

    Hadgu, Teklu; Stein, Emily; Hardin, Ernest; Freeze, Geoffrey A.; Hammond, Glenn Edward

    2015-11-01

    Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predict that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.

  9. Some logistical considerations in designing a system of deep boreholes for disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Gray, Genetha Anne; Brady, Patrick Vane; Arnold, Bill Walter

    2012-09-01

    Deep boreholes could be a relatively inexpensive, safe, and rapidly deployable strategy for disposing Americas nuclear waste. To study this approach, Sandia invested in a three year LDRD project entitled %E2%80%9CRadionuclide Transport from Deep Boreholes.%E2%80%9D In the first two years, the borehole reference design and backfill analysis were completed and the supporting modeling of borehole temperature and fluid transport profiles were done. In the third year, some of the logistics of implementing a deep borehole waste disposal system were considered. This report describes what was learned in the third year of the study and draws some conclusions about the potential bottlenecks of system implementation.

  10. ENVIRONMENTAL RADIOACTIVITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NVO-410-15 ENVIRONMENTAL RADIOACTIVITY "* -AT THE -NEVADA TEST SITE July, 1966 through June, 1967 REYNOLDS ELECTRICAL & ENGINEERING CO., INC. ENVIRONMENTAL SCIENCES DEPARTMENT LAS VEGAS, NEVADA 89114 MAY, 1968 PREPARED FOR THE U. S. ATOMIC ENERGY COMMISSION, NEVADA OPERATIONS OFFICE UNDER CONTRACT NO. AT(26-I)-410 ENVIRONMENTAL RADIOAC~TY AT THE NEVADA TEST SITE JULY, 1966 THROUGH JUNE, 1967 MAY, 1968 REYNOLDS ELECTRICAL AND ENGID CO., INC. AN &&#iMW COMPANY ACKNOWLEDGEMENTS The

  11. Unsaturated flow and transport through fractured rock related to high-level waste repositories; Final report, Phase 3

    SciTech Connect (OSTI)

    Evans, D.D.; Rasmussen, T.C. [Arizona Univ., Tucson, AZ (USA). Dept. of Hydrology and Water Resources

    1991-01-01

    Research results are summarized for a US Nuclear Regulatory Commission contract with the University of Arizona focusing on field and laboratory methods for characterizing unsaturated fluid flow and solute transport related to high-level radioactive waste repositories. Characterization activities are presented for the Apache Leap Tuff field site. The field site is located in unsaturated, fractured tuff in central Arizona. Hydraulic, pneumatic, and thermal characteristics of the tuff are summarized, along with methodologies employed to monitor and sample hydrologic and geochemical processes at the field site. Thermohydrologic experiments are reported which provide laboratory and field data related to the effects conditions and flow and transport in unsaturated, fractured rock. 29 refs., 17 figs., 21 tabs.

  12. LIFE ESTIMATION OF HIGH LEVEL WASTE TANK STEEL FOR F-TANK FARM CLOSURE PERFORMANCE ASSESSMENT - 9310

    SciTech Connect (OSTI)

    Subramanian, K; Bruce Wiersma, B; Stephen Harris, S

    2009-01-12

    High level radioactive waste (HLW) is stored in underground carbon steel storage tanks at the Savannah River Site. The underground tanks will be closed by removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations, and severing/sealing external penetrations. The life of the carbon steel materials of construction in support of the performance assessment has been completed. The estimation considered general and localized corrosion mechanisms of the tank steel exposed to grouted conditions. A stochastic approach was followed to estimate the distributions of failures based upon mechanisms of corrosion accounting for variances in each of the independent variables. The methodology and results used for one-type of tank is presented.

  13. Preliminary total-system analysis of a potential high-level nuclear waste repository at Yucca Mountain

    SciTech Connect (OSTI)

    Eslinger, P.W.; Doremus, L.A.; Engel, D.W.; Miley, T.B.; Murphy, M.T.; Nichols, W.E.; White, M.D. [Pacific Northwest Lab., Richland, WA (United States); Langford, D.W.; Ouderkirk, S.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-01-01

    The placement of high-level radioactive wastes in mined repositories deep underground is considered a disposal method that would effectively isolate these wastes from the environment for long periods of time. This report describes modeling performed at PNL for Yucca Mountain between May and November 1991 addressing the performance of the entire repository system related to regulatory criteria established by the EPA in 40 CFR Part 191. The geologic stratigraphy and material properties used in this study were chosen in cooperation with performance assessment modelers at Sandia National Laboratories (SNL). Sandia modeled a similar problem using different computer codes and a different modeling philosophy. Pacific Northwest Laboratory performed a few model runs with very complex models, and SNL performed many runs with much simpler (abstracted) models.

  14. Lessons learned by southern states in transportation of radioactive materials

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report has been prepared under a cooperative agreement with DOE`s Office of Civilian Radioactive Waste Management (OCRWM) and is a summary of the lessons learned by southern states regarding the transportation of radioactive materials including High-Level Radioactive Wastes (HLRW) and Spent Nuclear Fuel (SNF). Sources used in this publication include interviews of state radiological health and public safety officials that are members of the Southern States Energy Board (SSEB) Advisory Committee on Radioactive Materials Transportation, as well as the Board`s Transuranic (TRU) Waste Transportation Working Group. Other sources include letters written by the above mentioned committees concerning various aspects of DOE shipment campaigns.

  15. Coupled Model for Heat and Water Transport in a High Level Waste Repository

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Salt | Department of Energy Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt This report summarizes efforts to simulate coupled thermal-hydrological-chemical (THC) processes occurring within a generic hypothetical high-level waste (HLW) repository in bedded salt; chemical processes of the system allow precipitation and dissolution of salt with elevated temperatures that

  16. The effect of high-level waste glass composition on spinel liquidus

    Office of Scientific and Technical Information (OSTI)

    temperature (Journal Article) | SciTech Connect Journal Article: The effect of high-level waste glass composition on spinel liquidus temperature Citation Details In-Document Search Title: The effect of high-level waste glass composition on spinel liquidus temperature Spinel crystals precipitate in high-level waste glasses containing Fe, Cr, Ni , Mn, Zn, and Ru. The liquidus temperature (TL) of spinel as the primary crystallization phase is a function of glass composition and the spinel

  17. High Level Computational Chemistry Approaches to the Prediction of Energetic Properties of Chemical Hydrogen Storage Systems

    Broader source: Energy.gov [DOE]

    Presentation on the High Level Computational Chemistry given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006.

  18. The effect of high-level waste glass composition on spinel liquidus...

    Office of Scientific and Technical Information (OSTI)

    on spinel liquidus temperature Citation Details In-Document Search Title: The effect of high-level waste glass composition on spinel liquidus temperature Spinel crystals ...

  19. Conformance Tool High Level Design Document: IEC 61850 Cyber Security Acceleration Project

    SciTech Connect (OSTI)

    Edgar, Thomas W.

    2013-05-01

    This document is the high level design document for the Pacific Northwest National Laboratory (PNNL) IEC 62351-3, 4 and 6 standards conformance test software toolkit.

  20. Canister storage building evaluation of nuclear safety for solidified high-level waste transfer and storage

    SciTech Connect (OSTI)

    Kidder, R.J., Westinghouse Hanford

    1996-09-17

    This document is issued to evaluate the safety impacts to the Canister Storage Building from transfer and storage of solidified high-level waste.

  1. Northeast Missouri El Pwr Coop | Open Energy Information

    Open Energy Info (EERE)

    Pwr Coop Jump to: navigation, search Name: Northeast Missouri El Pwr Coop Place: Missouri Phone Number: 573-769-2107 Website: www.northeast-power.coop Outage Hotline: 573-769-2107...

  2. Northeast States' Hydrogen Economy Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast States' Hydrogen Economy Webinar Northeast States' Hydrogen Economy Webinar Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Northeast States' Hydrogen Economy" held on December 1, 2015. PDF icon Northeast States' Hydrogen Economy Webinar Slides More Documents & Publications Connecticut Fuel Cell Activities: Markets, Programs, and Models 2009 DOE Hydrogen Program Review Presentation Transportation and Stationary

  3. State and Local Code Implementation: Northeast Region - 2014 BTO Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Northeast Region - 2014 BTO Peer Review State and Local Code Implementation: Northeast Region - 2014 BTO Peer Review Presenter: Carolyn Sarno, Northeast Energy Efficiency Partnerships View the Presentation PDF icon State and Local Code Implementation: Northeast Region - 2014 BTO Peer Review More Documents & Publications State and Local Code Implementation: South-central Region - 2014 BTO Peer Review Building Energy Codes Program - 2014 BTO Peer Review State

  4. ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES

    SciTech Connect (OSTI)

    Fox, K.; Peeler, D.; Herman, C.

    2014-05-15

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e.g., glass composition and temperature, will evolve as additional data on crystal accumulation are gathered. Model validation steps will be included to guide the development process and ensure the value of the effort (i.e., increased waste loading and waste throughput). A summary of the stages of the road map for developing the crystal-tolerant glass approach, their estimated durations, and deliverables is provided.

  5. Advanced waste form and Melter development for treatment of troublesome high-level wastes

    SciTech Connect (OSTI)

    Marra, James; Kim, Dong -Sang; Maio, Vincent

    2015-10-01

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these “troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (also with high Al2O3 concentrations). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group. An extended duration CCIM melter test was conducted on an AZ-101 waste simulant using the CCIM platform at the Idaho National Laboratory (INL). The melter was continually operated for approximately 80 hours demonstrating that the AZ-101 high waste loading glass composition could be readily processed using the CCIM technology. The resulting glass was close to the targeted composition and exhibited excellent durability in both the as poured state and after being slowly cooled according to the canister centerline cooling (CCC) profile. Glass formulation development was also completed on other Hanford tank wastes that were identified to further challenge waste loading due to the presence of appreciable quantities (>750 g) of plutonium in the waste tanks. In addition to containing appreciable Pu quantities, the C-102 waste tank and the 244-TX waste tank contain high concentrations of aluminum and iron, respectively that will further challenge vitrification processing. Glass formulation testing also demonstrated that high waste loadings could be achieved with these tank compositions using the attributes afforded by the CCIM technology.

  6. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    SciTech Connect (OSTI)

    WILLIS, W.L.

    2000-06-15

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  7. QER- Comment of American Hydrogen Northeast, Inc.

    Broader source: Energy.gov [DOE]

    Dear Sir or Madam, Attached please find the Hydrogen Association and the American Hydrogen Northeast,inc's Comments on the first round of QER review. I wish to thank Secretary Moniz and Senator Reed for attending the Providence hearing and providing this opportunity to submit these comments.

  8. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    SciTech Connect (OSTI)

    Rechard, R.P.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

  9. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  10. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  11. A report on high-level nuclear waste transportation: Prepared pursuant to assembly concurrent resolution No. 8 of the 1987 Nevada Legislature

    SciTech Connect (OSTI)

    1988-12-01

    This report has been prepared by the staff of the State of Nevada Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) in response to Assembly Concurrent Resolution No. 8 (ACR 8), passed by the Nevada State Legislature in 1987. ACR 8 directed the NWPO, in cooperation with affected local governments and the Legislative committee on High-Level Radioactive Waste, to prepare this report which scrutinizes the US Department of Energy`s (DOE) plans for transportation of high-level radioactive waste to the proposed yucca Mountain repository, which reviews the regulatory structure under which shipments to a repository would be made and which presents NWPO`s plans for addressing high-level radioactive waste transportation issues. The report is divided into three major sections. Section 1.0 provides a review of DOE`s statutory requirements, its repository transportation program and plans, the major policy, programmatic, technical and institutional issues and specific areas of concern for the State of Nevada. Section 2.0 contains a description of the current federal, state and tribal transportation regulatory environment within which nuclear waste is shipped and a discussion of regulatory issues which must be resolved in order for the State to minimize risks and adverse impacts to its citizens. Section 3.0 contains the NWPO plan for the study and management of repository-related transportation. The plan addresses four areas, including policy and program management, regulatory studies, technical reviews and studies and institutional relationships. A fourth section provides recommendations for consideration by State and local officials which would assist the State in meeting the objectives of the plan.

  12. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    SciTech Connect (OSTI)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  13. Graphical and tabular summaries of decay characteristics for once-through PWR, LMFBR, and FFTF fuel cycle materials. [Spent fuel, high-level waste fuel can scrap

    SciTech Connect (OSTI)

    Croff, A.G.; Liberman, M.S.; Morrison, G.W.

    1982-01-01

    Based on the results of ORIGEN2 and a newly developed code called ORMANG, graphical and summary tabular characteristics of spent fuel, high-level waste, and fuel assembly structural material (cladding) waste are presented for a generic pressurized-water reactor (PWR), a liquid-metal fast breeder reactor (LMFBR), and the Fast Flux Test Facility (FFTF). The characteristics include radioactivity, thermal power, and toxicity (water dilution volume). Given are graphs and summary tables containing characteristic totals and the principal nuclide contributors as well as graphs comparing the three reactors for a single material and the three materials for a single reactor.

  14. SRS Workers Moved Millions of Gallons of High-Level Waste Safely in 2014 |

    Energy Savers [EERE]

    Department of Energy Workers Moved Millions of Gallons of High-Level Waste Safely in 2014 SRS Workers Moved Millions of Gallons of High-Level Waste Safely in 2014 February 26, 2015 - 12:00pm Addthis A view of the Savannah River Site, which includes underground waste tanks and facilities. A view of the Savannah River Site, which includes underground waste tanks and facilities. AIKEN, S.C. - EM and its liquid waste contractor safely transferred more than 20 million gallons of high-level waste

  15. Evaluation of high-level clouds in cloud resolving model simulations...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations: HIGH CLOUD IN CRM Citation Details In-Document Search This content will ...

  16. Comments of Santiago Grijalva: High-Level Response to DOE RFI on Smart Grid Policy

    Broader source: Energy.gov [DOE]

    High-Level Response to DOE RFI on Smart Grid Policy: This document responds to DOE questions regarding smart grid policy. The approach followed herein is to write concise comments addressing the...

  17. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    SciTech Connect (OSTI)

    F. Hua; P. Pasupathi; N. Brown; K. Mon

    2005-09-19

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, calcium ions, and galvanic coupling to less noble metals are further considered. It is concluded that, as far as materials degradation is concerned, the materials and design adopted in the U.S. Yucca Mountain Project will provide sufficient safety margins within the 10,000-years regulatory period.

  18. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  19. Secretary Bodman and Pakistan Officials Hold High-Level Energy Meeting |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Pakistan Officials Hold High-Level Energy Meeting Secretary Bodman and Pakistan Officials Hold High-Level Energy Meeting March 13, 2006 - 11:48am Addthis Discuss Pakistan's energy opportunities; Follows United States-Pakistan Strategic Partnership launched by President Bush earlier this month WASHINGTON, DC - Energy Secretary Samuel W. Bodman today visited Pakistan, the first stop in his four-nation swing where he will discuss ways that the U.S. and Pakistan can increase

  20. Statement on Launch of the U.S.-Republic of Korea High Level Bilateral

    Energy Savers [EERE]

    Commission Pursuant to the Agreement for Cooperation between the United States and Republic of Korea Concerning Peaceful Uses of Nuclear Energy | Department of Energy Statement on Launch of the U.S.-Republic of Korea High Level Bilateral Commission Pursuant to the Agreement for Cooperation between the United States and Republic of Korea Concerning Peaceful Uses of Nuclear Energy Statement on Launch of the U.S.-Republic of Korea High Level Bilateral Commission Pursuant to the Agreement for

  1. Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zheng; Muhlbauer, Andreas; Ackerman, Thomas

    2015-11-05

    In this paper, we evaluate high-level clouds in a cloud resolving model during two convective cases, ARM9707 and KWAJEX. The simulated joint histograms of cloud occurrence and radar reflectivity compare well with cloud radar and satellite observations when using a two-moment microphysics scheme. However, simulations performed with a single moment microphysical scheme exhibit low biases of approximately 20 dB. During convective events, two-moment microphysical overestimate the amount of high-level cloud and one-moment microphysics precipitate too readily and underestimate the amount and height of high-level cloud. For ARM9707, persistent large positive biases in high-level cloud are found, which are not sensitivemore » to changes in ice particle fall velocity and ice nuclei number concentration in the two-moment microphysics. These biases are caused by biases in large-scale forcing and maintained by the periodic lateral boundary conditions. The combined effects include significant biases in high-level cloud amount, radiation, and high sensitivity of cloud amount to nudging time scale in both convective cases. The high sensitivity of high-level cloud amount to the thermodynamic nudging time scale suggests that thermodynamic nudging can be a powerful ‘‘tuning’’ parameter for the simulated cloud and radiation but should be applied with caution. The role of the periodic lateral boundary conditions in reinforcing the biases in cloud and radiation suggests that reducing the uncertainty in the large-scale forcing in high levels is important for similar convective cases and has far reaching implications for simulating high-level clouds in super-parameterized global climate models such as the multiscale modeling framework.« less

  2. AWEA Regional Wind Energy Conference—Northeast

    Broader source: Energy.gov [DOE]

    The American Wind Energy Association (AWEA) will be hosting a conference that focuses on the key issues in the northeast region. The event will provide attendees with a comprehensive view of the critical issues for wind power’s growth in this part of the country and cover both land-based wind power development, as well as the nascent efforts to develop off-shore wind power off the New England coast.

  3. CREATING THE NORTHEAST GASOLINE SUPPLY RESERVE

    Broader source: Energy.gov [DOE]

    In 2012, Superstorm Sandy made landfall in the northeastern United States and caused heavy damage to two refineries and left more than 40 terminals in New York Harbor closed due to water damage and loss of power. This left some New York gas stations without fuel for as long as 30 days. As part of the Obama Administration’s ongoing response to the storm, the Department of Energy created the first federal regional refined product reserve, the Northeast Gasoline Supply Reserve.

  4. Adsorption of Ruthenium, Rhodium and Palladium from Simulated High-Level Liquid Waste by Highly Functional Xerogel - 13286

    SciTech Connect (OSTI)

    Onishi, Takashi [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan)] [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan); Koyama, Shin-ichi [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan)] [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan); Mimura, Hitoshi [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University Aramaki-Aza-Aoba 6-6-01-2,Aoba-ku, Sendai-shi, Miyagi-ken, 980-8579 (Japan)] [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University Aramaki-Aza-Aoba 6-6-01-2,Aoba-ku, Sendai-shi, Miyagi-ken, 980-8579 (Japan)

    2013-07-01

    Fission products are generated by fission reactions in nuclear fuel. Platinum group (Pt-G) elements, such as palladium (Pd), rhodium (Rh) and ruthenium (Ru), are also produced. Generally, Pt-G elements play important roles in chemical and electrical industries. Highly functional xerogels have been developed for recovery of these useful Pt-G elements from high - level radioactive liquid waste (HLLW). An adsorption experiment from simulated HLLW was done by the column method to study the selective adsorption of Pt-G elements, and it was found that not only Pd, Rh and Ru, but also nickel, zirconium and tellurium were adsorbed. All other elements were not adsorbed. Adsorbed Pd was recovered by washing the xerogel-packed column with thiourea solution and thiourea - nitric acid mixed solution in an elution experiment. Thiourea can be a poison for automotive exhaust emission system catalysts, so it is necessary to consider its removal. Thermal decomposition and an acid digestion treatment were conducted to remove sulfur in the recovered Pd fraction. The relative content of sulfur to Pd was decreased from 858 to 0.02 after the treatment. These results will contribute to design of the Pt-G element separation system. (authors)

  5. Transportation of Spent Nuclear Fuel and High Level Waste to Yucca Mountain: The Next Step in Nevada

    SciTech Connect (OSTI)

    Sweeney, Robin L,; Lechel, David J.

    2003-02-25

    In the U.S. Department of Energy's ''Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada,'' the Department states that certain broad transportation-related decisions can be made. These include the choice of a mode of transportation nationally (mostly legal-weight truck or mostly rail) and in Nevada (mostly rail, mostly legal-weight truck, or mostly heavy-haul truck with use of an associated intermodal transfer station), as well as the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. Although a rail line does not service the Yucca Mountain site, the Department has identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. If mostly rail is selected for Nevada, the Department would then identify a preference for one of the rail corridors in consultation with affected stakeholders, particularly the State of Nevada. DOE would then select the rail corridor and initiate a process to select a specific rail alignment within the corridor for the construction of a rail line. Five proposed rail corridors were analyzed in the Final Environmental Impact Statement. The assessment considered the impacts of constructing a branch rail line in the five 400-meter (0.25mile) wide corridors. Each corridor connects the Yucca Mountain site with an existing mainline railroad in Nevada.

  6. A Prototype Performance Assessment Model for Generic Deep Borehole Repository for High-Level Nuclear Waste - 12132

    SciTech Connect (OSTI)

    Lee, Joon H.; Arnold, Bill W.; Swift, Peter N.; Hadgu, Teklu; Freeze, Geoff; Wang, Yifeng

    2012-07-01

    A deep borehole repository is one of the four geologic disposal system options currently under study by the U.S. DOE to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic deep borehole repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a deep borehole. A prototype performance assessment model for a generic deep borehole repository has been developed using the approach for a mined geological repository. The preliminary results from the simplified deep borehole generic repository performance assessment indicate that soluble, non-sorbing (or weakly sorbing) fission product radionuclides, such as I-129, Se-79 and Cl-36, are the likely major dose contributors, and that the annual radiation doses to hypothetical future humans associated with those releases may be extremely small. While much work needs to be done to validate the model assumptions and parameters, these preliminary results highlight the importance of a robust seal design in assuring long-term isolation, and suggest that deep boreholes may be a viable alternative to mined repositories for disposal of both HLW and UNF. (authors)

  7. Annual report, spring 2015. Alternative chemical cleaning methods for high level waste tanks-corrosion test results

    SciTech Connect (OSTI)

    Wyrwas, R. B.

    2015-07-06

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludge in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.

  8. Second Anniversary of Northeast Blackout Marked with Progress | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Anniversary of Northeast Blackout Marked with Progress Second Anniversary of Northeast Blackout Marked with Progress August 12, 2005 - 2:41pm Addthis Electric Reliability Standards Made Clearer and Enforceable WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today marked the second anniversary of the Northeast blackout during which 50 million Americans lost electricity by highlighting important progress that has been made to make North American electricity grids more reliable.

  9. Northeast Home Heating Oil Reserve - Guidelines for Release | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Heating Oil Reserve » Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release The Energy Policy and Conservation Act, as amended, sets conditions for the release of the Northeast Home Heating Oil Reserve. The Secretary of Energy has the authority to sell, exchange, or otherwise dispose of petroleum distillate from the Reserve in order to maintain the quality or quantity of the petroleum distillate or to maintain the

  10. Heating and Cooling with Mini Splits in the Northeast

    Energy Savers [EERE]

    buildingscience.com Heating and Cooling with Mini Splits in the Northeast Kohta Ueno October 23, 2014 2014 BA Webinar Mini Splits in Northeast 2 © buildingscience.com Background 2014 BA Webinar Mini Splits in Northeast 3 © buildingscience.com Overview  Transformations, Inc. currently building net-zero homes in Massachusetts  Mini split heat pumps (MSHPs) part of builder's strategy: tradeoff package  Single point of heating/ cooling on each floor  BA study of temperatures throughout

  11. Time-Domain Electromagnetics At Mauna Loa Northeast Rift Area...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration...

  12. Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details...

  13. Clean Cities: Northeast Ohio Clean Cities coalition (Cleveland...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Data Center. Cleveland Car Dealership Working Toward a More Sustainable Future Text version Search Coalitions Search for another coalition Northeast Ohio Clean...

  14. Northeast Gateway Natural Gas Liquefied Natural Gas Imports from...

    Gasoline and Diesel Fuel Update (EIA)

    Release Date: 10302015 Next Release Date: 11302015 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Northeast Gateway LNG Imports from TrinidadTobago...

  15. Northeast Gateway Natural Gas Liquefied Natural Gas Imports ...

    Gasoline and Diesel Fuel Update (EIA)

    data. Release Date: 10302015 Next Release Date: 11302015 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Northeast Gateway LNG Imports from All Countries...

  16. RAIL ROUTING - CURRENT PRACTICES FOR SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE SHIPMENTS,

    Office of Environmental Management (EM)

    4.31 Final 7/30 RAIL ROUTING - CURRENT PRACTICES FOR SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE SHIPMENTS, AND A COMPARATIVE ANALYSIS OF HIGHWAY REGULATORY GUIDELINES APPLIED TO RAIL A DISCUSSION PAPER PREPARED BY THE RAIL TOPIC GROUP OF THE TRANSPORTATION EXTERNAL COORDINATION WORKING GROUP JULY 2004 1 Revision 4.31 Final 7/30 Rail Routing- Current Practices for Spent Nuclear Fuel And High-Level Waste Shipments, And a Comparative Analysis Of Highway Regulatory Guidelines Applied to Rail I.

  17. SRS Crosses Halfway Mark on Closing Another High-Level Waste Tank |

    Energy Savers [EERE]

    Department of Energy SRS Crosses Halfway Mark on Closing Another High-Level Waste Tank SRS Crosses Halfway Mark on Closing Another High-Level Waste Tank February 25, 2016 - 12:20pm Addthis Work is more than halfway complete on grouting Tank 12, the eighth to be operationally closed at Savannah River Site. Work is more than halfway complete on grouting Tank 12, the eighth to be operationally closed at Savannah River Site. AIKEN, S.C. - Savannah River Site (SRS) moved past the halfway mark

  18. Tank waste remediation system phase I high-level waste feed processability assessment report

    SciTech Connect (OSTI)

    Lambert, S.L.; Stegen, G.E., Westinghouse Hanford

    1996-08-01

    This report evaluates the effects of feed composition on the Phase I high-level waste immobilization process and interim storage facility requirements for the high-level waste glass.Several different Phase I staging (retrieval, blending, and pretreatment) scenarios were used to generate example feed compositions for glass formulations, testing, and glass sensitivity analysis. Glass models and data form laboratory glass studies were used to estimate achievable waste loading and corresponding glass volumes for various Phase I feeds. Key issues related to feed process ability, feed composition, uncertainty, and immobilization process technology are identified for future consideration in other tank waste disposal program activities.

  19. Road Map for Development of Crystal-Tolerant High Level Waste Glasses

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Road Map for Development of Crystal-Tolerant High Level Waste Glasses Citation Details In-Document Search Title: Road Map for Development of Crystal-Tolerant High Level Waste Glasses This road map guides the research and development for formulation and processing of crystal-tolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford

  20. EVMS Training Snippet: 4.9 High-level EVM Expectations | Department of

    Office of Environmental Management (EM)

    Energy 9 High-level EVM Expectations EVMS Training Snippet: 4.9 High-level EVM Expectations This EVMS Training Snippet, sponsored by the Office of Project Management (PM) focuses on the DOE Federal Project Director's expectations of the contractor's earned value management system and the resultant EVM data. Link to Video Presentation | Prior Snippet (4.8) | Next Snippet (5.1) | Return to Index PDF icon Slides Only PDF icon Slides with Notes More Documents & Publications EVMS Training

  1. Looking northeast over the ITER construction site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking northeast over the ITER construction site. A power shovel removes the first of some 230,000 cubic meters from the Tokamak Pit. Operations and Safety on the ITER Platform are being carefully coordinated by the Engage Consortium and the French company APAVE. Bulldozers and scrapers are busy leveling the 14,000 square-meter area that will host the huge PF Coils Assembly Building. Welcome to the first U.S. ITER newsletter. We have prepared this publication as part of our effort to better

  2. Advanced Inverter Functions to Support High Levels of Distributed Solar: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This paper explains how advanced inverter functions (sometimes called 'smart inverters') contribute to the integration of high levels of solar PV generation onto the electrical grid and covers the contributions of advanced functions to maintaining grid stability. Policy and regulatory considerations associated with the deployment of advanced inverter functions are also introduced.

  3. The high level programmer and user interface of the NSLS control system

    SciTech Connect (OSTI)

    Tang, Y.N.; Smith, J.D.; Sathe, S.

    1993-07-01

    This paper presents the major components of the high level software in the NSLS upgraded control system. Both programmer and user interfaces are discussed. The use of the high-speed work stations, fast network communications, UNIX system, X-window and Motif have greatly changed and improved these interfaces.

  4. Structural integrity and potential failure modes of hanford high-level waste tanks

    SciTech Connect (OSTI)

    Han, F.C.

    1996-09-30

    Structural Integrity of the Hanford High-Level Waste Tanks were evaluated based on the existing Design and Analysis Documents. All tank structures were found adequate for the normal operating and seismic loads. Potential failure modes of the tanks were assessed by engineering interpretation and extrapolation of the existing engineering documents.

  5. West Valley Demonstration Project Prepares to Relocate High-Level Waste

    Broader source: Energy.gov [DOE]

    WEST VALLEY, N.Y. – With completion of the recently constructed interim storage pad at the West Valley Demonstration Project (WVDP), EM crews have begun a multi-year effort to relocate high-level waste (HLW) canisters stored inside the Main Plant Process Building to prepare the facility for demolition.

  6. "Table HC11.13 Lighting Usage Indicators by Northeast Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing ... Division" ,,"Total Northeast" "Lighting Usage Indicators",,,"Middle ...

  7. "Table HC11.8 Water Heating Characteristics by Northeast Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Northeast Census Region, 2005" " Million U.S. Housing ... ,,,"Census Division" ,,"Total Northeast" "Water Heating Characteristics",,,"Middle ...

  8. Corrosion resistant storage container for radioactive material

    DOE Patents [OSTI]

    Schweitzer, D.G.; Davis, M.S.

    1984-08-30

    A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  9. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    SciTech Connect (OSTI)

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

  10. SETTLING OF SPINEL IN A HIGH-LEVEL WASTE GLASS MELTER

    SciTech Connect (OSTI)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-07

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors called melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 decrees C to create a melt that becomes glass on cooling.

  11. 4.1.1.50 High Level Techno-Economic Analysis of Innovative Technology Concepts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IOWA STATE UNIVERSITY DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review 4.1.1.50 High Level Techno-Economic Analysis of Innovative Technology Concepts 3-24-2015 Analysis & Sustainability Pacific Northwest National Laboratory: Sue Jones Iowa State University: Mark Wright This presentation does not contain any proprietary, confidential, or otherwise restricted information IOWA STATE UNIVERSITY Goal Statement 2 GOAL: Enable R&D of economically viable biomass derived liquid

  12. DELPHI expert panel evaluation of Hanford high level waste tank failure modes and release quantities

    SciTech Connect (OSTI)

    Dunford, G.L.; Han, F.C.

    1996-09-30

    The Failure Modes and Release Quantities of the Hanford High Level Waste Tanks due to postulated accident loads were established by a DELPHI Expert Panel consisting of both on-site and off-site experts in the field of Structure and Release. The Report presents the evaluation process, accident loads, tank structural failure conclusion reached by the panel during the two-day meeting.

  13. Microsoft PowerPoint - Snippet 4.9 High Level EVM Expectations 20140711 [Compatibility Mode]

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    focuses on the DOE Federal Project Director's expectations of the contractor's earned value management system and the resultant EVM data. The high-level EVM expectations presented in this Snippet will cover these areas: EVM concepts and objectives, the scheduling and budgeting process, work authorization, level of effort concerns, variance analysis and reporting, evaluation of the contractor's estimate at completion, baseline control and revisions, and a synopsis of expectations. The requirement

  14. Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing

    SciTech Connect (OSTI)

    Kelly, Steven E.

    2013-11-11

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok's accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.

  15. 10 Years after the 2003 Northeast Blackout

    Broader source: Energy.gov [DOE]

    Ten years ago today, large portions of the Midwest and Northeast United States and into Canada went dark. The cascading event, which started shortly after 4:00 PM on August 14, 2003, ended up affecting an estimated 50 million people. For some customers, power was not restored for nearly four days. The Department of Energy and Natural Resources Canada jointly commissioned a task force that examined the underlying causes of the blackout and recommended forty-six actions to enhance the reliability of the North American power system. A number of the recommendations were incorporated into law passed by Congress and enacted in the Energy Policy Act of 2005 and the Energy Infrastructure Security Act of 2007.

  16. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    SciTech Connect (OSTI)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  17. DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy, through its agent, DLA Energy, has issued a solicitation for new contracts to store two million barrels of ultra low sulfur distillate for the Northeast Home Heating Oil Reserve in New York Harbor and New England. Offers are due no later than 9:00 a.m. EDT on March 29, 2011. Of the U.S.

  18. DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve |

    Office of Environmental Management (EM)

    Department of Energy Storage Contracts for Northeast Home Heating Oil Reserve DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve August 18, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced that new contracts have been awarded for commercial storage of 650,000 barrels of ultra low sulfur distillate (ULSD) for the Northeast Home Heating Oil Reserve (NEHHOR). Awards were made to two companies for storage in New England--Hess Corporation

  19. Webinar December 1: Northeast States' Hydrogen Economy | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Energy Department will present a live webinar titled "Northeast States' Hydrogen Economy" on Tuesday, December 1, from 12:00 to 1:00 p.m. Eastern Standard Time (EST). The webinar will focus on state efforts to support the regional development of hydrogen infrastructure for the deployment of fuel cell electric vehicles (FCEV) in the Northeast United States. The presentation will identify strategies, methods, and policies being employed in the Northeast states, from Maine to

  20. Webinar: Northeast States' Hydrogen Economy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    , 2015 12:00PM to 1:00PM EST The Energy Department will present a live webinar titled "Northeast States' Hydrogen Economy" on Tuesday, December 1, from 12:00 to 1:00 p.m. Eastern Standard Time (EST). The webinar will focus on state efforts to support the regional development of hydrogen infrastructure for the deployment of fuel cell electric vehicles (FCEV) in the Northeast United States. The presentation will identify strategies, methods, and policies being employed in the Northeast

  1. NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM | Department of Energy

    Office of Environmental Management (EM)

    NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM Historical Northeast Home Heating Oil Reserve Trigger Mechanism Charts PDF icon 2014-2015 Heating Oil Season.pdf PDF icon 2013-2014 Heating Oil Season.pdf PDF icon 2012-2013 Heating Oil Season.pdf PDF icon 2011-2012 Heating Oil Season.pdf PDF icon 2010-2011 Heating Oil Season.pdf PDF icon 2009-2010 Heating Oil Season.pdf PDF icon 2008-2009 Heating Oil Season.pdf PDF icon 2007-2008 Heating

  2. High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facilty

    SciTech Connect (OSTI)

    Charles Park

    2006-12-01

    High-Level Functional & Operational Requirements for the AFCF -This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy.

  3. HIGH LEVEL WASTE (HLW) VITRIFICATION EXPERIENCE IN THE US: APPLICATION OF GLASS PRODUCT/PROCESS CONTROL TO OTHERHLW AND HAZARDOUS WASTES

    SciTech Connect (OSTI)

    Jantzen, C; James Marra, J

    2007-09-17

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. At the Savannah River Site (SRS) actual HLW tank waste has successfully been processed to stringent product and process constraints without any rework into a stable borosilicate glass waste since 1996. A unique 'feed forward' statistical process control (SPC) has been used rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. In SQC, the glass product is sampled after it is vitrified. Individual glass property models form the basis for the 'feed forward' SPC. The property models transform constraints on the melt and glass properties into constraints on the feed composition. The property models are mechanistic and depend on glass bonding/structure, thermodynamics, quasicrystalline melt species, and/or electron transfers. The mechanistic models have been validated over composition regions well outside of the regions for which they were developed because they are mechanistic. Mechanistic models allow accurate extension to radioactive and hazardous waste melts well outside the composition boundaries for which they were developed.

  4. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  5. F-Area Northeast Expansion Report, Volumes 1

    SciTech Connect (OSTI)

    Syms, F.H.

    1999-08-23

    A geotechnical program has been complexed in F-Area at the Savannah River Site in South Carolina. This program investigated the subsurface conditions for the area known as the ''northeast expansion'' located in the F-Area.

  6. MIE Regional Climate Change Impact Webinar Series: Northeast

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) Minorities in Energy Initiative is hosting a webinar on Northeast impacts of climate change on minority and tribal communities featuring presentations by...

  7. MIE Regional Climate Change Impact Webinar Series: Northeast

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) Minorities in Energy Initiative is hosting a webinar on Northeast impacts of climate change on minority and tribal communities featuring presentations by...

  8. Northeast Home Heating Oil Reserve- Online Bidding System

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has developed an on-line bidding system - an anonymous auction program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve.

  9. Price of Northeast Gateway Natural Gas LNG Imports from Trinidad...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Tobago (Dollars per Thousand Cubic Feet) Price of Northeast Gateway Natural Gas LNG Imports from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr...

  10. Price of Northeast Gateway Natural Gas LNG Imports (Dollars per...

    Gasoline and Diesel Fuel Update (EIA)

    (Dollars per Thousand Cubic Feet) Price of Northeast Gateway Natural Gas LNG Imports (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015...

  11. ARM - Field Campaign - 1999 Northeast Corridor Ozone & Particulate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 1999 Northeast Corridor Ozone & Particulate Study 1999.07.23 - 1999.08.11 Lead...

  12. CREATING THE NORTHEAST GASOLINE SUPPLY RESERVE | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    diesel, which was used for the first time by first-responders and to fill emergency generators in the wake of Superstorm Sandy. Beyond the Northeast, the Energy Department is not...

  13. Northeast Nebraska P P D | Open Energy Information

    Open Energy Info (EERE)

    P P D Jump to: navigation, search Name: Northeast Nebraska P P D Place: Nebraska Phone Number: 402-375-1360 Website: nnppd.com Outage Hotline: 800-750-9277 References: EIA Form...

  14. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    SciTech Connect (OSTI)

    Christian, J. H.

    2015-08-18

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO4) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe, Cr)2O4), while not detrimental to glass durability, can cause an array of processing problems inside HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies. Higher waste loadings and more efficient processing strategies will reduce the overall HLW Hanford Tank Waste Treatment and Immobilization Plant (WTP) vitrification facilities mission life.

  15. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 2

    SciTech Connect (OSTI)

    Cunnane, J.C.; Bates, J.K.; Bradley, C.R.

    1994-03-01

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion.This document is organized into three volumes. Volumes I and II represent a tiered set of information intended for somewhat different audiences. Volume I is intended to provide an overview of waste glass corrosion, and Volume 11 is intended to provide additional experimental details on experimental factors that influence waste glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II. Volume I is intended for managers, decision makers, and modelers, the combined set of Volumes I, II, and III is intended for scientists and engineers working in the field of high-level waste.

  16. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    SciTech Connect (OSTI)

    Christian, J. H.

    2015-08-01

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO?) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe,Cr)?O?), while not detrimental to glass durability, can cause an array of processing problems inside of HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies.

  17. Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast 2004 Diesel Engine Emissions Reduction (DEER) Presentation: North East States for Coordinated Air Use Management PDF icon 2004_deer_block.pdf More Documents & Publications Dumping Dirty Diesels: The View From the Bridge EPA Diesel Update Ultra-Low Sulfur diesel Update & Future Light Duty Diesel

  18. Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure

    Energy Savers [EERE]

    (April 2013) | Department of Energy Northeast Hurricanes on Energy Infrastructure (April 2013) Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure (April 2013) Two major hurricanes, Irene in 2011 and Sandy in 2012, have impacted the Northeastern United States over the past 2 years, devastating coastal communities and causing widespread impacts to the region's energy infrastructure, supply, and markets. Although Sandy was weaker than Irene at landfall, Sandy brought

  19. Northeast Heating Fuel Market The, Assessment and Options

    Reports and Publications (EIA)

    2000-01-01

    In response to the President's request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of the energy markets in the Northeast

  20. Integrated High-Level Waste System Planning - Utilizing an Integrated Systems Planning Approach to Ensure End-State Definitions are Met and Executed - 13244

    SciTech Connect (OSTI)

    Ling, Lawrence T.; Chew, David P.

    2013-07-01

    The Savannah River Site (SRS) is a Department of Energy site which has produced nuclear materials for national defense, research, space, and medical programs since the 1950's. As a by-product of this activity, approximately 37 million gallons of high-level liquid waste containing approximately 292 million curies of radioactivity is stored on an interim basis in 45 underground storage tanks. Originally, 51 tanks were constructed and utilized to support the mission. Four tanks have been closed and taken out of service and two are currently undergoing the closure process. The Liquid Waste System is a highly integrated operation involving safely storing liquid waste in underground storage tanks; removing, treating, and dispositioning the low-level waste fraction in grout; vitrifying the higher activity waste at the Defense Waste Processing Facility; and storing the vitrified waste in stainless steel canisters until permanent disposition. After waste removal and processing, the storage and processing facilities are decontaminated and closed. A Liquid Waste System Plan (hereinafter referred to as the Plan) was developed to integrate and document the activities required to disposition legacy and future High-Level Waste and to remove from service radioactive liquid waste tanks and facilities. It establishes and records a planning basis for waste processing in the liquid waste system through the end of the program mission. The integrated Plan which recognizes the challenges of constrained funding provides a path forward to complete the liquid waste mission within all regulatory and legal requirements. The overarching objective of the Plan is to meet all Federal Facility Agreement and Site Treatment Plan regulatory commitments on or ahead of schedule while preserving as much life cycle acceleration as possible through incorporation of numerous cost savings initiatives, elimination of non-essential scope, and deferral of other scope not on the critical path to compliance. There is currently a premium on processing and storage space in the radioactive liquid waste tank system. To enable continuation of risk reduction initiatives, the Plan establishes a processing strategy that provides tank space required to meet, or minimizes the impacts to meeting, programmatic objectives. The Plan also addresses perturbations in funding and schedule impacts. (authors)

  1. Repository size for deep geological disposal of partitioning and transmutation high level waste

    SciTech Connect (OSTI)

    Nishihara, Kenji; Nakayama, Shinichi; Oigawa, Hiroyuki

    2007-07-01

    In order to reveal the impact of the partitioning and transmutation (PT) technology on the geological disposal, we investigated the production and disposal of the radioactive wastes from the PT facilities including the dry reprocessing for the spent fuel from accelerator-driven system. After classifying the PT wastes according to the heat generations, the emplacement configurations in the repository were assumed for each group based on the several disposal concepts proposed for the conventional glass waste form. Then, the sizes of the repositories represented by the vault length, emplacement area and excavation volume were estimated. The repository sizes were reduced by PT technology for all disposal concepts. (authors)

  2. IMPACT OF NOBLE METALS AND MERCURY ON HYDROGEN GENERATION DURING HIGH LEVEL WASTE PRETREATMENT AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Stone, M; Tommy Edwards, T; David Koopman, D

    2009-03-03

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies radioactive High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. HLW consists of insoluble metal hydroxides (primarily iron, aluminum, calcium, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The pretreatment process in the Chemical Processing Cell (CPC) consists of two process tanks, the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) as well as a melter feed tank. During SRAT processing, nitric and formic acids are added to the sludge to lower pH, destroy nitrite and carbonate ions, and reduce mercury and manganese. During the SME cycle, glass formers are added, and the batch is concentrated to the final solids target prior to vitrification. During these processes, hydrogen can be produced by catalytic decomposition of excess formic acid. The waste contains silver, palladium, rhodium, ruthenium, and mercury, but silver and palladium have been shown to be insignificant factors in catalytic hydrogen generation during the DWPF process. A full factorial experimental design was developed to ensure that the existence of statistically significant two-way interactions could be determined without confounding of the main effects with the two-way interaction effects. Rh ranged from 0.0026-0.013% and Ru ranged from 0.010-0.050% in the dried sludge solids, while initial Hg ranged from 0.5-2.5 wt%, as shown in Table 1. The nominal matrix design consisted of twelve SRAT cycles. Testing included: a three factor (Rh, Ru, and Hg) study at two levels per factor (eight runs), three duplicate midpoint runs, and one additional replicate run to assess reproducibility away from the midpoint. Midpoint testing was used to identify potential quadratic effects from the three factors. A single sludge simulant was used for all tests and was spiked with the required amount of noble metals immediately prior to performing the test. Acid addition was kept effectively constant except to compensate for variations in the starting mercury concentration. SME cycles were also performed during six of the tests.

  3. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    SciTech Connect (OSTI)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  4. High Level Trigger Configuration and Handling of Trigger Tables in the CMS Filter Farm

    SciTech Connect (OSTI)

    Bauer, G; Behrens, U; Boyer, V; Branson, J; Brett, A; Cano, E; Carboni, A; Ciganek, M; Cittolin, S; O'dell, V; Erhan, S; Gigi, D; Glege, F; Gomez-Reino, R; Gulmini, M; Gutleber, J; Hollar, J; Lange, D; Kim, J C; Klute, M; Lipeles, E; Perez, J L; Maron, G; Meijers, F; Meschi, E; Moser, R; Mlot, E G; Murray, S; Oh, A; Orsini, L; Paus, C; Petrucci, A; Pieri, M; Pollet, L; Racz, A; Sakulin, H; Sani, M; Schieferdecker, P; Schwick, C; Sumorok, K; Suzuki, I; Tsirigkas, D; Varela, J

    2009-11-22

    The CMS experiment at the CERN Large Hadron Collider is currently being commissioned and is scheduled to collect the first pp collision data in 2008. CMS features a two-level trigger system. The Level-1 trigger, based on custom hardware, is designed to reduce the collision rate of 40 MHz to approximately 100 kHz. Data for events accepted by the Level-1 trigger are read out and assembled by an Event Builder. The High Level Trigger (HLT) employs a set of sophisticated software algorithms, to analyze the complete event information, and further reduce the accepted event rate for permanent storage and analysis. This paper describes the design and implementation of the HLT Configuration Management system. First experiences with commissioning of the HLT system are also reported.

  5. A pilot test of partitioning for the simulated highly saline high level waste

    SciTech Connect (OSTI)

    Chen, Jing; Wang, Jianchen; Jing, Shan

    2007-07-01

    It is a problem how to treat the highly saline high level waste (HLW). A partitioning process for HLW was developed at INET. The partitioning process includes the removal of actinides by TRPO extraction, the removal of Sr by crown ether extraction, and the removal of Cs by ion exchange. A 72-hour test was carried out in a pilot facility using the simulated HLW. Nd and Zr were used to simulate Am and Pu, respectively. The decontamination factors are >3000, >500, >1000, {approx}150 and {approx}94 for U, Nd, Zr, Sr and Cs, respectively. The results meet the requirement to change the highly saline HLW into a non-{alpha} and intermediate level waste. (authors)

  6. Guidelines for development of structural integrity programs for DOE high-level waste storage tanks

    SciTech Connect (OSTI)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; Rooyen, D. van; Weeks, J.

    1997-01-01

    Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided in companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.

  7. 1989 OCRWM [Office of Civilian Radioactive Waste Management] Bulletin compilation and index

    SciTech Connect (OSTI)

    1990-02-01

    The OCRWM Bulletin is published by the Department of Energy, Office of Civilian Radioactive Waste Management to provide current information about the national program for managing spent fuel and high-level radioactive waste. This document is a compilation of issues from the 1989 calendar year. A table of contents and one index have been provided to assist in finding information contained in this year`s Bulletins. The pages have been numbered consecutively at the bottom for easy reference. 7 figs.

  8. Geological problems in radioactive waste isolation

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  9. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect (OSTI)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.

  10. EIS-0023: Long-Term Management of Defense High-Level Radioactive Wastes (Research and Development Program for Immobilization) Savannah River Plant, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental implications of the proposed continuation of a large Federal research and development (R&D) program directed toward the immobilization of the high...

  11. Secretary Bodman Provides Report to the President and the Congress on the Need for a Second Repository for Spent Nuclear Fuel and High-Level Radioactive Waste

    Broader source: Energy.gov [DOE]

    Washington D.C. - U.S. Secretary of Energy Samuel W. Bodman today transmitted The Report to the President and the Congress by the Secretary of Energy on the Need for a Second Repository to the...

  12. High-level waste canister storage final design, installation, and testing. Topical report

    SciTech Connect (OSTI)

    Connors, B.J.; Meigs, R.A.; Pezzimenti, D.M.; Vlad, P.M.

    1998-04-01

    This report is a description of the West Valley Demonstration Project`s radioactive waste storage facility, the Chemical Process Cell (CPC). This facility is currently being used to temporarily store vitrified waste in stainless steel canisters. These canisters are stacked two-high in a seismically designed rack system within the cell. Approximately 300 canisters will be produced during the Project`s vitrification campaign which began in June 1996. Following the completion of waste vitrification and solidification, these canisters will be transferred via rail or truck to a federal repository (when available) for permanent storage. All operations in the CPC are conducted remotely using various handling systems and equipment. Areas adjacent to or surrounding the cell provide capabilities for viewing, ventilation, and equipment/component access.

  13. Dynamic radioactive particle source

    DOE Patents [OSTI]

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  14. Radioactive Materials Emergencies Course Presentation

    Broader source: Energy.gov [DOE]

    The Hanford Fire Department has developed this training to assist emergency responders in understanding the hazards in responding to events involving radioactive materials, to know the fundamentals of radioactive contamination, to understand the biological affects of exposure to radioactive materials, and to know how to appropriately respond to hazardous material events involving radioactive materials.

  15. High Level Waste System Impacts from Small Column Ion Exchange Implementation

    SciTech Connect (OSTI)

    McCabe, D. J.; Hamm, L. L.; Aleman, S. E.; Peeler, D. K.; Herman, C. C.; Edwards, T. B.

    2005-08-18

    The objective of this task is to identify potential waste streams that could be treated with the Small Column Ion Exchange (SCIX) and perform an initial assessment of the impact of doing so on the High-Level Waste (HLW) system. Design of the SCIX system has been performed as a backup technology for decontamination of High-Level Waste (HLW) at the Savannah River Site (SRS). The SCIX consists of three modules which can be placed in risers inside underground HLW storage tanks. The pump and filter module and the ion exchange module are used to filter and decontaminate the aqueous tank wastes for disposition in Saltstone. The ion exchange module contains Crystalline Silicotitanate (CST in its engineered granular form is referred to as IONSIV{reg_sign} IE-911), and is selective for removal of cesium ions. After the IE-911 is loaded with Cs-137, it is removed and the column is refilled with a fresh batch. The grinder module is used to size-reduce the cesium-loaded IE-911 to make it compatible with the sludge vitrification system in the Defense Waste Processing Facility (DWPF). If installed at the SRS, this SCIX would need to operate within the current constraints of the larger HLW storage, retrieval, treatment, and disposal system. Although the equipment has been physically designed to comply with system requirements, there is also a need to identify which waste streams could be treated, how it could be implemented in the tank farms, and when this system could be incorporated into the HLW flowsheet and planning. This document summarizes a preliminary examination of the tentative HLW retrieval plans, facility schedules, decontamination factor targets, and vitrified waste form compatibility, with recommendations for a more detailed study later. The examination was based upon four batches of salt solution from the currently planned disposition pathway to treatment in the SCIX. Because of differences in capabilities between the SRS baseline and SCIX, these four batches were combined into three batches for a total of about 3.2 million gallons of liquid waste. The chemical and radiological composition of these batches was estimated from the SpaceMan Plus{trademark} model using the same data set and assumptions as the baseline plans.

  16. Design Improvements and Analysis of Innovative High-Level Waste Pipeline Unplugging Technologies - 12171

    SciTech Connect (OSTI)

    Pribanic, Tomas; Awwad, Amer; Crespo, Jairo; McDaniel, Dwayne; Varona, Jose; Gokaltun, Seckin; Roelant, David

    2012-07-01

    Transferring high-level waste (HLW) between storage tanks or to treatment facilities is a common practice performed at the Department of Energy (DoE) sites. Changes in the chemical and/or physical properties of the HLW slurry during the transfer process may lead to the formation of blockages inside the pipelines resulting in schedule delays and increased costs. To improve DoE's capabilities in the event of a pipeline plugging incident, FIU has continued to develop two novel unplugging technologies: an asynchronous pulsing system and a peristaltic crawler. The asynchronous pulsing system uses a hydraulic pulse generator to create pressure disturbances at two opposite inlet locations of the pipeline to dislodge blockages by attacking the plug from both sides remotely. The peristaltic crawler is a pneumatic/hydraulic operated crawler that propels itself by a sequence of pressurization/depressurization of cavities (inner tubes). The crawler includes a frontal attachment that has a hydraulically powered unplugging tool. In this paper, details of the asynchronous pulsing system's ability to unplug a pipeline on a small-scale test-bed and results from the experimental testing of the second generation peristaltic crawler are provided. The paper concludes with future improvements for the third generation crawler and a recommended path forward for the asynchronous pulsing testing. (authors)

  17. US Department of Energy Storage of Spent Fuel and High Level Waste

    SciTech Connect (OSTI)

    Sandra M Birk

    2010-10-01

    ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

  18. Studies Related to Chemical Mechanisms of Gas Formation in Hanford High-Level Nuclear Wastes

    SciTech Connect (OSTI)

    E. Kent Barefield; Charles L. Liotta; Henry M. Neumann

    2002-04-08

    The objective of this work is to develop a more detailed mechanistic understanding of the thermal reactions that lead to gas production in certain high-level waste storage tanks at the Hanford, Washington site. Prediction of the combustion hazard for these wastes and engineering parameters for waste processing depend upon both a knowledge of the composition of stored wastes and the changes that they undergo as a result of thermal and radiolytic decomposition. Since 1980 when Delagard first demonstrated that gas production (H2and N2O initially, later N2 and NH3)in the affected tanks was related to oxidative degradation of metal complexants present in the waste, periodic attempts have been made to develop detailed mechanisms by which the gases were formed. These studies have resulted in the postulation of a series of reactions that account for many of the observed products, but which involve several reactions for which there is limited, or no, precedent. For example, Al(OH)4 has been postulated to function as a Lewis acid to catalyze the reaction of nitrite ion with the metal complexants, NO is proposed as an intermediate, and the ratios of gaseous products may be a result of the partitioning of NO between two or more reactions. These reactions and intermediates have been the focus of this project since its inception in 1996.

  19. HIGH-LEVEL WASTE FEED CERTIFICATION IN HANFORD DOUBLE-SHELL TANKS

    SciTech Connect (OSTI)

    THIEN MG; WELLS BE; ADAMSON DJ

    2010-01-14

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's River Protection Project (RPP) mission modeling and WTP facility modeling assume that individual 3785 cubic meter (l million gallon) HLW feed tanks are homogenously mixed, representatively sampled, and consistently delivered to the WTP. It has been demonstrated that homogenous mixing ofHLW sludge in Hanford DSTs is not likely achievable with the baseline design thereby causing representative sampling and consistent feed delivery to be more difficult. Inconsistent feed to the WTP could cause additional batch-to-batch operational adjustments that reduce operating efficiency and have the potential to increase the overall mission length. The Hanford mixing and sampling demonstration program will identify DST mixing performance capability, will evaluate representative sampling techniques, and will estimate feed batch consistency. An evaluation of demonstration program results will identify potential mission improvement considerations that will help ensure successful mission completion. This paper will discuss the history, progress, and future activities that will define and mitigate the mission risk.

  20. ESTIMATING HIGH LEVEL WASTE MIXING PERFORMANCE IN HANFORD DOUBLE SHELL TANKS

    SciTech Connect (OSTI)

    THIEN MG; GREER DA; TOWNSON P

    2011-01-13

    The ability to effectively mix, sample, certify, and deliver consistent batches of high level waste (HLW) feed from the Hanford double shell tanks (DSTs) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. The Department of Energy's (DOE's) Tank Operations Contractor (TOC), Washington River Protection Solutions (WRPS) is currently demonstrating mixing, sampling, and batch transfer performance in two different sizes of small-scale DSTs. The results of these demonstrations will be used to estimate full-scale DST mixing performance and provide the key input to a programmatic decision on the need to build a dedicated feed certification facility. This paper discusses the results from initial mixing demonstration activities and presents data evaluation techniques that allow insight into the performance relationships of the two small tanks. The next steps, sampling and batch transfers, of the small scale demonstration activities are introduced. A discussion of the integration of results from the mixing, sampling, and batch transfer tests to allow estimating full-scale DST performance is presented.

  1. Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates

    SciTech Connect (OSTI)

    Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

    2014-01-13

    The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

  2. SHAM: High-level seismic tests of piping at the HDR

    SciTech Connect (OSTI)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Malcher, L.; Schrammel, D.; Steinhilber, H.; Costello, J.F.

    1988-01-01

    As part of the second phase of vibrational/earthquake investigations at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG, high-level simulated seismic tests (SHAM) were performed during April--May 1988 on the VKL (Versuchskreislauf) in-plant piping system with two servohydraulic actuators, each capable of generating 40 tons of force. The purpose of these experiments was to study the behavior of piping subjected to seismic excitation levels that exceed design levels manifold and may result in failure/plastification of pipe supports and pipe elements, and to establish seismic margins for piping and pipe supports. The performance of six different dynamic pipe support systems was compared in these tests and the response, operability, and fragility of dynamic supports and of a typical US gate valve were investigated. Data obtained in the tests are used to validate analysis methods. Very preliminary evaluations lead to the observation that, in general, failures of dynamic supports (in particular snubbers) occur only at load levels that substantially exceed the design capacity. Pipe strains at load levels exceeding the design level threefold are quite small, and even when exceeding the design level eightfold are quite tolerable. Hence, under seismic loading, even at extreme levels and in spite of multiple support failures, pipe failure is unlikely. 5 refs., 16 figs.

  3. Alternate approaches to verifying the structural adequacy of the Defense High Level Waste Shipping Cask

    SciTech Connect (OSTI)

    Zimmer, A.; Koploy, M.

    1991-12-01

    In the early 1980s, the US Department of Energy/Defense Programs (DOE/DP) initiated a project to develop a safe and efficient transportation system for defense high level waste (DHLW). A long-standing objective of the DHLW transportation project is to develop a truck cask that represents the leading edge of cask technology as well as one that fully complies with all applicable DOE, Nuclear Regulatory Commission (NRC), and Department of Transportation (DOT) regulations. General Atomics (GA) designed the DHLW Truck Shipping Cask using state-of-the-art analytical techniques verified by model testing performed by Sandia National Laboratories (SNL). The analytical techniques include two approaches, inelastic analysis and elastic analysis. This topical report presents the results of the two analytical approaches and the model testing results. The purpose of this work is to show that there are two viable analytical alternatives to verify the structural adequacy of a Type B package and to obtain an NRC license. It addition, this data will help to support the future acceptance by the NRC of inelastic analysis as a tool in packaging design and licensing.

  4. Geochemistry research planning for the underground storage of high-level nuclear waste

    SciTech Connect (OSTI)

    Apps, J.A.

    1983-09-01

    This report is a preliminary attempt to plan a comprehensive program of geochemistry research aimed at resolving problems connected with the underground storage of high-level nuclear waste. The problems and research needs were identified in a companion report to this one. The research needs were taken as a point of departure and developed into a series of proposed projects with estimated manpowers and durations. The scope of the proposed research is based on consideration of an underground repository as a multiple barrier system. However, the program logic and organization reflect conventional strategies for resolving technological problems. The projects were scheduled and the duration of the program, critical path projects and distribution of manpower determined for both full and minimal programs. The proposed research was then compared with ongoing research within DOE, NRC and elsewhere to identify omissions in current research. Various options were considered for altering the scope of the program, and hence its cost and effectiveness. Finally, recommendations were made for dealing with omissions and uncertainties arising from program implementation. 11 references, 6 figures, 4 tables.

  5. Minor component study for simulated high-level nuclear waste glasses (Draft)

    SciTech Connect (OSTI)

    Li, H.; Langowskim, M.H.; Hrma, P.R.; Schweiger, M.J.; Vienna, J.D.; Smith, D.E.

    1996-02-01

    Hanford Site single-shell tank (SSI) and double-shell tank (DSI) wastes are planned to be separated into low activity (or low-level waste, LLW) and high activity (or high-level waste, HLW) fractions, and to be vitrified for disposal. Formulation of HLW glass must comply with glass processibility and durability requirements, including constraints on melt viscosity, electrical conductivity, liquidus temperature, tendency for phase segregation on the molten glass surface, and chemical durability of the final waste form. A wide variety of HLW compositions are expected to be vitrified. In addition these wastes will likely vary in composition from current estimates. High concentrations of certain troublesome components, such as sulfate, phosphate, and chrome, raise concerns about their potential hinderance to the waste vitrification process. For example, phosphate segregation in the cold cap (the layer of feed on top of the glass melt) in a Joule-heated melter may inhibit the melting process (Bunnell, 1988). This has been reported during a pilot-scale ceramic melter run, PSCM-19, (Perez, 1985). Molten salt segregation of either sulfate or chromate is also hazardous to the waste vitrification process. Excessive (Cr, Fe, Mn, Ni) spinel crystal formation in molten glass can also be detrimental to melter operation.

  6. Amended Record of Decision for the Idaho High-Level Waste (HLW) and Facilities Disposition Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is amending its Record of Decision (ROD) published December 19, 2005 (70 Federal Register (FR) 75165), pursuant to the Idaho HIgh-Level Waste and Facilities...

  7. EIS-0287: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002)

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid...

  8. Advanced Inverter Functions to Support High Levels of Distributed Solar: Policy and Regulatory Considerations (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADVANCED INVERTER FUNCTIONS TO SUPPORT HIGH LEVELS OF DISTRIBUTED SOLAR POLICY AND REGULATORY CONSIDERATIONS The use of advanced inverters in the design of solar photovoltaic (PV) systems can address some of the challenges to the integration of high levels of distributed solar generation on the electricity system. Although the term "advanced inverters" seems to imply a special type of inverter, some of the inverters currently deployed with PV systems can already provide advanced

  9. Radioactivity in food crops

    SciTech Connect (OSTI)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  10. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    SciTech Connect (OSTI)

    PACQUET, E.A.

    2000-07-20

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineering case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.

  11. Northeast Feedstock Supply Technical and Economica (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Northeast Feedstock Supply Technical and Economica Citation Details In-Document Search Title: Northeast Feedstock Supply Technical and Economica This in-depth analysis considers the current and f Authors: Corrie Nichol ; Kara Cafferty ; Richard Boardman Publication Date: 2013-03-01 OSTI Identifier: 1093395 Report Number(s): INL/EXT-13-28876 DOE Contract Number: DE-AC07-05ID14517 Resource Type: Technical Report Research Org: Idaho National Laboratory (INL) Sponsoring Org: DOE

  12. Northeast Site Area A NAPL Remediation Final Report.doc

    Office of Legacy Management (LM)

    82-TAC U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy DE-AC13-02GJ79491 Approved for public release; distribution is unlimited. Pinellas Environmental Restoration Project Northeast Site Area A NAPL Remediation Final Report September 2003 N0065200 GJO- 2003- 482- TAC GJO- PIN 13.12.10 Pinellas Environmental Restoration Project Northeast Site Area A NAPL Remediation Final Report Young - Rainey STAR Center September 2003 Prepared by U.S. Department

  13. Expected environments in high-level nuclear waste and spent fuel repositories in salt

    SciTech Connect (OSTI)

    Claiborne, H.C.; Rickertsen, L.D., Graham, R.F.

    1980-08-01

    The purpose of this report is to describe the expected environments associated with high-level waste (HLW) and spent fuel (SF) repositories in salt formations. These environments include the thermal, fluid, pressure, brine chemistry, and radiation fields predicted for the repository conceptual designs. In this study, it is assumed that the repository will be a room and pillar mine in a rock-salt formation, with the disposal horizon located approx. 2000 ft (610 m) below the surface of the earth. Canistered waste packages containing HLW in a solid matrix or SF elements are emplaced in vertical holes in the floor of the rooms. The emplacement holes are backfilled with crushed salt or other material and sealed at some later time. Sensitivity studies are presented to show the effect of changing the areal heat load, the canister heat load, the barrier material and thickness, ventilation of the storage room, and adding a second row to the emplacement configuration. The calculated thermal environment is used as input for brine migration calculations. The vapor and gas pressure will gradually attain the lithostatic pressure in a sealed repository. In the unlikely event that an emplacement hole will become sealed in relatively early years, the vapor space pressure was calculated for three scenarios (i.e., no hole closure - no backfill, no hole closure - backfill, and hole closure - no backfill). It was assumed that the gas in the system consisted of air and water vapor in equilibrium with brine. A computer code (REPRESS) was developed assuming that these changes occur slowly (equilibrium conditions). The brine chemical environment is outlined in terms of brine chemistry, corrosion, and compositions. The nuclear radiation environment emphasized in this report is the stored energy that can be released as a result of radiation damage or crystal dislocations within crystal lattices.

  14. Potential Application Of Radionuclide Scaling Factors To High Level Waste Characterization

    SciTech Connect (OSTI)

    Reboul, S. H.

    2013-09-30

    Production sources, radiological properties, relative solubilities in waste, and laboratory analysis techniques for the forty-five radionuclides identified in Hanford?s Waste Treatment and Immobilization Plant (WTP) Feed Acceptance Data Quality Objectives (DQO) document are addressed in this report. Based on Savannah River Site (SRS) experience and waste characteristics, thirteen of the radionuclides are judged to be candidates for potential scaling in High Level Waste (HLW) based on the concentrations of other radionuclides as determined through laboratory measurements. The thirteen radionuclides conducive to potential scaling are: Ni-59, Zr-93, Nb-93m, Cd-113m, Sn-121m, Sn-126, Cs-135, Sm-151, Ra-226, Ra-228, Ac-227, Pa-231, and Th-229. The ability to scale radionuclides is useful from two primary perspectives: 1) it provides a means of checking the radionuclide concentrations that have been determined by laboratory analysis; and 2) it provides a means of estimating radionuclide concentrations in the absence of a laboratory analysis technique or when a complex laboratory analysis technique fails. Along with the rationale for identifying and applying the potential scaling factors, this report also provides examples of using the scaling factors to estimate concentrations of radionuclides in current SRS waste and into the future. Also included in the report are examples of independent laboratory analysis techniques that can be used to check results of key radionuclide analyses. Effective utilization of radionuclide scaling factors requires understanding of the applicable production sources and the chemistry of the waste. As such, the potential scaling approaches identified in this report should be assessed from the perspective of the Hanford waste before reaching a decision regarding WTP applicability.

  15. A Dual Regime Reactive Transport Model for Simulation of High Level Waste Tank Closure Scenarios - 13375

    SciTech Connect (OSTI)

    Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C.; Meeussen, Hans; Van der Sloot, Hans

    2013-07-01

    A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)

  16. Low-temperature lithium diffusion in simulated high-level boroaluminosilicate nuclear waste glasses

    SciTech Connect (OSTI)

    Neeway, James J.; Kerisit, Sebastien N.; Gin, Stephane; Wang, Zhaoying; Zhu, Zihua; Ryan, Joseph V.

    2014-12-01

    Ion exchange is recognized as an integral, if underrepresented, mechanism influencing glass corrosion. However, due to the formation of various alteration layers in the presence of water, it is difficult to conclusively deconvolute the mechanisms of ion exchange from other processes occurring simultaneously during corrosion. In this work, an operationally inert non-aqueous solution was used as an alkali source material to isolate ion exchange and study the solid-state diffusion of lithium. Specifically, the experiments involved contacting glass coupons relevant to the immobilization of high-level nuclear waste, SON68 and CJ-6, which contained Li in natural isotope abundance, with a non-aqueous solution of 6LiCl dissolved in dimethyl sulfoxide at 90 °C for various time periods. The depth profiles of major elements in the glass coupons were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Lithium interdiffusion coefficients, DLi, were then calculated based on the measured depth profiles. The results indicate that the penetration of 6Li is rapid in both glasses with the simplified CJ-6 glass (D6Li ? 4.0-8.0 Ś 10-21 m2/s) exhibiting faster exchange than the more complex SON68 glass (DLi ? 2.0-4.0 Ś 10-21 m2/s). Additionally, sodium ions present in the glass were observed to participate in ion exchange reactions; however, different diffusion coefficients were necessary to fit the diffusion profiles of the two alkali ions. Implications of the diffusion coefficients obtained in the absence of alteration layers to the long-term performance of nuclear waste glasses in a geological repository system are also discussed.

  17. DOE to Purchase Heating Oil for the Northeast Home Heating Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchase Heating Oil for the Northeast Home Heating Oil Reserve DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve June 23, 2008 - 1:29pm Addthis WASHINGTON, DC ...

  18. DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis ...

  19. Impact of Interruptible Natural Gas Service on Northeast Heating Oil Demand

    Reports and Publications (EIA)

    2001-01-01

    Assesses the extent of interruptible natural gas contracts and their effect on heating oil demand in the Northeast.

  20. Container for radioactive materials

    DOE Patents [OSTI]

    Fields, S.R.

    1984-05-30

    A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

  1. Control of radioactive waste-glass melters

    SciTech Connect (OSTI)

    Bickford, D.F. ); Hrma, P. ); Bowan, B.W. II )

    1990-01-01

    Slurries of simulated high level radioactive waste and glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, their effect on glass production rate, and the development of leach resistance. Melting rates of waste batches have been increased by the addition of reducing agents (formic acid, sucrose) and nitrates. The rate increases are attributable in part to exothermic reactions which occur at critical stages in the vitrification process. Nitrates must be balanced by adequate reducing agents to avoid the formation of persistent foam, which would destabilize the melting process. The effect of foaming on waste glass production rates is analyzed, and melt rate limitations defined for waste-glass melters, based upon measurable thermophysical properties. Minimum melter residence times required to homogenize glass and assure glass quality are much smaller than those used in current practice. Thus, melter size can be reduced without adversely affecting glass quality. Physical chemistry and localized heat transfer of the waste-glass melting process are examined, to refine the available models for predicting and assuring glass production rate. It is concluded that the size of replacement melters and future waste processing facilities can be significantly decreased if minimum heat transfer requirements for effective melting are met by mechanical agitation. A new class of waste glass melters has been designed, and proof of concept tests completed on simulated High Level Radioactive Waste slurry. Melt rates have exceeded 155 kg m{sup {minus}2} h{sup {minus}1} with slurry feeds (32 lb ft{sup {minus}2} h{sup {minus}1}), and 229 kg kg m{sup {minus}2} h{sup {minus}1} with dry feed (47 lb ft{sup {minus}2} h{sup {minus}1}). This is about 8 times the melt rate possible in conventional waste- glass melters of the same size. 39 refs., 5 figs., 9 tabs.

  2. REGIONAL BINNING FOR CONTINUED STORAGE OF SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTES

    SciTech Connect (OSTI)

    W. Lee Poe, Jr

    1998-10-01

    In the Continued Storage Analysis Report (CSAR) (Reference 1), DOE decided to analyze the environmental consequences of continuing to store the commercial spent nuclear fuel (SNF) at 72 commercial nuclear power sites and DOE-owned spent nuclear fuel and high-level waste at five Department of Energy sites by region rather than by individual site. This analysis assumes that three commercial facilities pairs--Salem and Hope Creek, Fitzpatrick and Nine-Mile Point, and Dresden and Moms--share common storage due to their proximity to each other. The five regions selected for this analysis are shown on Figure 1. Regions 1, 2, and 3 are the same as those used by the Nuclear Regulatory Commission in their regulatory oversight of commercial power reactors. NRC Region 4 was subdivided into two regions to more appropriately define the two different climates that exist in NRC Region 4. A single hypothetical site in each region was assumed to store all the SNF and HLW in that region. Such a site does not exist and has no geographic location but is a mathematical construct for analytical purposes. To ensure that the calculated results for the regional analyses reflect appropriate inventory, facility and material degradation, and radionuclide transport, the waste inventories, engineered barriers, and environmental conditions for the hypothetical sites were developed from data for each of the existing sites within the given region. Weighting criteria to account for the amount and types of SNF and HLW at each site were used in the development of the environmental data for the regional site, such that the results of the analyses for the hypothetical site were representative of the sum of the results of each actual site if they had been modeled independently. This report defines the actual site data used in development of this hypothetical site, shows how the individual site data was weighted to develop the regional site, and provides the weighted data used in the CSAR analysis. It is divided into Part 1 that defines time-dependent releases from each regional site, Part 2 that defines transport conditions through the groundwater, and Part 3 that defines transport through surface water and populations using the surface waters for drinking.

  3. Northeast utilities` energy saver lighting rebate program evaluation

    SciTech Connect (OSTI)

    Amalfi, J.; Bhagani, D.

    1996-01-01

    This paper summarizes 1993 evaluation activities conducted by Northeast Utilities (NU) for its major commercial lighting retrofut initiative, the Energy Saver Lighting Rebate (ESLR) program. These evaluations are discussed in context of company information needs and changing market conditions in the NU servcie territory, and specifically address the strengths and waknesses of these evaluation approaches.

  4. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

  5. End of FY10 report - used fuel disposition technical bases and lessons learned : legal and regulatory framework for high-level waste disposition in the United States.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Blink, James A.; Rechard, Robert Paul; Perry, Frank; Jenkins-Smith, Hank C.; Carter, Joe; Nutt, Mark; Cotton, Tom

    2010-09-01

    This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardous constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.

  6. Regulatory compliance in the design of packages used to transport radioactive materials

    SciTech Connect (OSTI)

    Raske, D.T.

    1993-06-01

    Shipments of radioactive materials within the regulatory jurisdiction of the US Department of Energy (DOE) must meet the package design requirements contained in Title 10 of the Code of Federal Regulations, Part 71, and DOE Order 5480.3. These regulations do not provide design criteria requirements, but only detail the approval standards, structural performance criteria, and package integrity requirements that must be met during transport. The DOE recommended design criterion for high-level Category I radioactive packagings is Section III, Division 1, of the ASME Boiler and Pressure Vessel Code. However, alternative design criteria may be used if all the design requirements are satisfied. The purpose of this paper is to review alternatives to the Code criteria and discuss their applicability to the design of containment vessels in packages for high-level radioactive materials. Issues such as design qualification by physical testing, the use of scale models, and problems encountered using a non-ASME design approach are addressed.

  7. RADIOLYTIC HYDROGEN GENERATION INSAVANNAH RIVER SITE (SRS) HIGH LEVEL WASTETANKS COMPARISON OF SRS AND HANFORDMODELING PREDICTIONS

    SciTech Connect (OSTI)

    Crawford, C; Ned Bibler, N

    2009-04-15

    In the high level waste tanks at the Savannah River Site (SRS), hydrogen is produced continuously by interaction of the radiation in the tank with water in the waste. Consequently, the vapor spaces of the tanks are purged to prevent the accumulation of H{sub 2} and possible formation of a flammable mixture in a tank. Personnel at SRS have developed an empirical model to predict the rate of H{sub 2} formation in a tank. The basis of this model is the prediction of the G value for H{sub 2} production. This G value is the number of H{sub 2} molecules produced per 100 eV of radiolytic energy absorbed by the waste. Based on experimental studies it was found that the G value for H{sub 2} production from beta radiation and from gamma radiation were essentially equal. The G value for H{sub 2} production from alpha radiation was somewhat higher. Thus, the model has two equations, one for beta/gamma radiation and one for alpha radiation. Experimental studies have also indicated that both G values are decreased by the presence of nitrate and nitrite ions in the waste. These are the main scavengers for the precursors of H{sub 2} in the waste; thus the equations that were developed predict G values for hydrogen production as a function of the concentrations of these two ions in waste. Knowing the beta/gamma and alpha heat loads in the waste allows one to predict the total generation rate for hydrogen in a tank. With this prediction a ventilation rate can be established for each tank to ensure that a flammable mixture is not formed in the vapor space in a tank. Recently personnel at Hanford have developed a slightly different model for predicting hydrogen G values. Their model includes the same precursor for H{sub 2} as the SRS model but also includes an additional precursor not in the SRS model. Including the second precursor for H{sub 2} leads to different empirical equations for predicting the G values for H{sub 2} as a function of the nitrate and nitrite concentrations in the waste. The difference in the two models has led to the questions of how different are the results predicted by the two models and which model predicts the more conservative (larger) G values. More conservative G values would predict higher H{sub 2} generation rates that would require higher ventilation rates in the SRS tanks. This report compares predictions based on the two models at various nitrate and nitrite concentrations in the SRS HLW tanks for both beta/gamma and for alpha radiation. It also compares predicted G values with those determined by actually measuring the H{sub 2} production from four SRS HLW tanks (Tanks 32H, 35H, 39H, and 42H). Lastly, the H{sub 2} generation rates predicted by the two models are compared for the 47 active SRS high level waste tanks using the most recent tank nitrate and nitrite concentrations and the beta/gamma and alpha heat loads for each tank. The predictions of the models for total H{sub 2} generation rates from the 47 active SRS waste were, for the most part, similar. For example, the predictions for both models applied to 25 tanks agreed within {+-}10% of each other. For the remaining 22 tanks, the SRS prediction was more conservative for 9 tanks (maximum 29% higher) and the Hanford prediction was more conservative for 13 tanks (maximum 19% higher). When comparing G values predicted by the equations presuming only alpha radiation or only beta/gamma was present the results were somewhat different. The results of predictions for alpha radiation, at the 47 current nitrate and nitrite concentrations in the SRS tanks indicated that all the SRS predictions were higher (up to 30%) than the Hanford predictions and thus more conservative. For beta/gamma radiation the predictions for both models agreed to {+-}10% for 18 of the combinations, the Hanford model predicted higher values (11 up to 17%) for 25 of the concentrations considered, and the SRS model predicted higher G values for the remaining two combinations (12 and 17%). For the four SRS tanks, where we compared measured G values to those predicted by the two different models, the results for two tanks (Tanks 35 and 39) were in good agreement with predictions from both models. For the other two tanks (Tanks 32 and 42) the predictions of both models were conservative. The predictions were 3 to 4X higher than the measured G values for H{sub 2} production.

  8. Sealed Radioactive Source Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-12-24

    To establish Department of Energy (DOE) interim policy and to provide guidance for sealed radioactive source accountability. The directive does not cancel any directives. Extended by DOE N 5400.10 to 12-24-93 & Extended by DOE N 5400.12 to 12-24-94.

  9. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

  10. Sealed Radioactive Source Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-12-22

    This Notice extends DOE N 5400.9, Sealed Radioactive Source Accountability, of 12-24-91, until 12-24-95, unless sooner superseded or rescinded. The contents of DOE N 5400.9 will be updated and incorporated in the revised DOE O 5480.11, Radiation Protection for Occupational Workers.

  11. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Supersedes DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

  12. Radioactivity in the ocean: laws and biological effects

    SciTech Connect (OSTI)

    Hunsaker, C.T.

    1985-01-01

    This paper summarizes the literature on US laws and international agreements, experimental and monitoring data, and ongoing studies to provide background information for environmental assessment and regulatory compliance activities for ocean dumping of low-level radioactive waste. The Marine Protection, Research, and Sanctuaries Act is the major US legislation governing ocean disposal of radioactive waste. The major international agreement on ocean dumping is the Convention on the Prevention of Marine Pollution by Dumping of Wastes and other Matter. The United States ended its ocean dumping of radioactive wastes in 1970, but other countries have continued ocean dumping under international supervision in the northeast Atlantic. Monitoring of former US disposal sites has neither revealed significant effects on marine biota nor indicated a hazard to human health. Also, no effects on marine organisms have been found that could be attributed to routine discharges into the Irish Sea from the Windscale reprocessing plant. We must improve our ability to predict the oceanic carrying capacity and the fate and effects of ionizing radiation in the marine environment.

  13. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    SciTech Connect (OSTI)

    Fox, K. M.

    2014-02-27

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides a review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been observed in any of the pour stream glass samples. Spinel was observed at the bottom of DWPF Melter 1 as a result of K-3 refractory corrosion. Issues have occurred with accumulation of spinel in the pour spout during periods of operation at higher waste loadings. Given that both DWPF melters were or have been in operation for greater than 8 years, the service life of the melters has far exceeded design expectations. It is possible that the DWPF liquidus temperature approach is conservative, in that it may be possible to successfully operate the melter with a small degree of allowable crystallization in the glass. This could be a viable approach to increasing waste loading in the glass assuming that the crystals are suspended in the melt and swept out through the riser and pour spout. Additional study is needed, and development work for WTP might be leveraged to support a different operating limit for the DWPF. Several recommendations are made regarding considerations that need to be included as part of the WTP crystal tolerant strategy based on the DWPF development work and operational data reviewed here. These include: Identify and consider the impacts of potential heat sinks in the WTP melter and glass pouring system; Consider the contributions of refractory corrosion products, which may serve to nucleate additional crystals leading to further accumulation; Consider volatilization of components from the melt (e.g., boron, alkali, halides, etc.) and determine their impacts on glass crystallization behavior; Evaluate the impacts of glass REDuction/OXidation (REDOX) conditions and the distribution of temperature within the WTP melt pool and melter pour chamber on crystal accumulation rate; Consider the impact of precipitated crystals on glass viscosity; Consider the impact of an accumulated crystalline layer on thermal convection currents and bubbler effectiveness within the melt pool; Evaluate the impact of spinel accumulation on Joule heating of the WTP melt pool; and Include noble metals in glass melt experiments because of their potential to act as nucleation site

  14. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    SciTech Connect (OSTI)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4.9 2017 2 3 3 2 4 2 9.8 2018 3 3 3 3 4 3 7.9 2019 3 3 3 3 4 3 5.1 2020 3 3 3 3 4 3 14.6 2021 3 3 3 3 4 3 7.3 2022 3 3 3 3 4 3 8.8 2023 4 4 4 4 4 4 9.1 2024 5 5 5 5 5 5 6.9 2025 6 6 6 6 6 6 6.9 CCC = canister cooling and crystallization; FMP = feeding, melting, and pouring; GCF = glass ceramic formulation; MSA = mixing, sampling, and analyses. This TMP is intended to guide the development of the glass ceramics waste form and process to the point where it is ready for industrialization.

  15. Method for calcining radioactive wastes

    DOE Patents [OSTI]

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  16. Enterprise Assessments Review of Radioactive Waste Management...

    Office of Environmental Management (EM)

    Review of Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant December ......... 2 5.1 Radioactive Waste Management Planning ......

  17. FUELS; 54 ENVIRONMENTAL SCIENCES; RADIOACTIVE EFFLUENTS; EMISSION...

    Office of Scientific and Technical Information (OSTI)

    SRP radioactive waste releases. Startup through 1959 Ashley, C. 05 NUCLEAR FUELS; 54 ENVIRONMENTAL SCIENCES; RADIOACTIVE EFFLUENTS; EMISSION; ENVIRONMENTAL MATERIALS;...

  18. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, K.E.; Weeks, D.R.

    1997-08-12

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.

  19. Radioactive ion detector

    DOE Patents [OSTI]

    Bower, Kenneth E. (Los Alamos, NM); Weeks, Donald R. (Saratoga, CA)

    1997-01-01

    Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.

  20. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

  1. Radioactive waste storage issues

    SciTech Connect (OSTI)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  2. The Northeast heating fuel market: Assessment and options

    SciTech Connect (OSTI)

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  3. Northeast regional biomass program. Retrospective, 1983--1993

    SciTech Connect (OSTI)

    Savitt, S.; Morgan, S.

    1995-01-01

    Ten years ago, when Congress initiated the Regional Biomass Energy Program, biomass fuel use in the Northeast was limited primarily to the forest products industry and residential wood stoves. An enduring form of energy as old as settlement in the region, residential wood-burning now takes its place beside modern biomass combustion systems in schools and other institutions, industrial cogeneration facilities, and utility-scale power plants. Biomass today represents more than 95 percent of all renewable energy consumed in the Northeast: a little more than one-half quadrillion BTUs yearly, or five percent of the region`s total energy demand. Yet given the region`s abundance of overstocked forests, municipal solid waste and processed wood residues, this represents just a fraction of the energy potential the biomass resource has to offer.This report provides an account of the work of the Northeast Regional Biomass Program (NRBP) over it`s first ten years. The NRBP has undertaken projects to promote the use of biomass energy and technologies.

  4. Radioactive Material Transportation Requirements for the Department of Energy

    SciTech Connect (OSTI)

    John, Mark Earl; Fawcett, Ricky Lee; Bolander, Thane Weston

    2000-07-01

    The Department of Energy (DOE) created the National Transportation Program (NTP) whose goal is to ensure the availability of safe, efficient, and timely transportation of DOE materials. The Integration and Planning Group of the NTP, assisted by Global Technologies Incorporated (GTI), was tasked to identify requirements associated with the transport of DOE Environmental Management (EM) radiological waste/material. A systems engineering approach was used to identify source documents, extract requirements, perform a functional analysis, and set up a transportation requirements management database in RDD-100. Functions and requirements for transporting the following DOE radioactive waste/material are contained in the database: high level radioactive waste (HLW), low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), nuclear materials (NM), spent nuclear fuel (SNF), and transuranic waste (TRU waste). The requirements will be used in the development of standard transportation protocols for DOE shipping. The protocols will then be combined into a DOE Transportation Program Management Guide, which will be used to standardize DOE transportation processes.

  5. Radioactive waste management in the USSR: A review of unclassified sources. Volume 2

    SciTech Connect (OSTI)

    Bradley, D.J.

    1991-03-01

    The Soviet Union does not currently have an overall radioactive waste management program or national laws that define objectives, procedures, and standards, although such a law is being developed, according to the Soviets. Occupational health and safety does not appear to receive major attention as it does in Western nations. In addition, construction practices that would be considered marginal in Western facilities show up in Soviet nuclear power and waste management operations. The issues involved with radioactive waste management and environmental restoration are being investigated at several large Soviet institutes; however, there is little apparent interdisciplinary integration between them, or interaction with the USSR Academy of Sciences. It is expected that a consensus on technical solutions will be achieved, but it may be slow in coming, especially for final disposal of high-level radioactive wastes and environmental restoration of contaminated areas. Meanwhile, many treatment, solidification, and disposal options for radioactive waste management are being investigated by the Soviets.

  6. Radioactive waste management in the USSR: A review of unclassified sources

    SciTech Connect (OSTI)

    Bradley, D.J.

    1991-03-01

    The Soviet Union does not currently have an overall radioactive waste management program or national laws that define objectives, procedures, and standards, although such a law is being developed, according to the Soviets. Occupational health and safety does not appear to receive major attention as it does in Western nations. In addition, construction practices that would be considered marginal in Western facilities show up in Soviet nuclear power and waste management operations. The issues involved with radioactive waste management and environmental restoration are being investigated at several large Soviet institutes; however, there is little apparent interdisciplinary integration between them, or interaction with the USSR Academy of Sciences. It is expected that a consensus on technical solutions will be achieved, but it may be slow in coming, especially for final disposal of high-level radioactive wastes and environmental restoration of contaminated areas. Meanwhile, many treatment, solidification, and disposal options for radioactive waste management are being investigated by the Soviets.

  7. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  8. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  9. I-NERI-2007-004-K, DEVELOPMENT AND CHARACTERIZATION OF NEW HIGH-LEVEL WASTE FORMS FOR ACHIEVING WASTE MINIMIZATION FROM PYROPROCESSING

    SciTech Connect (OSTI)

    S.M. Frank

    2011-09-01

    Work describe in this report represents the final year activities for the 3-year International Nuclear Energy Research Initiative (I-NERI) project: Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing. Used electrorefiner salt that contained actinide chlorides and was highly loaded with surrogate fission products was processed into three candidate waste forms. The first waste form, a high-loaded ceramic waste form is a variant to the CWF produced during the treatment of Experimental Breeder Reactor-II used fuel at the Idaho National Laboratory (INL). The two other waste forms were developed by researchers at the Korean Atomic Energy Research Institute (KAERI). These materials are based on a silica-alumina-phosphate matrix and a zinc/titanium oxide matrix. The proposed waste forms, and the processes to fabricate them, were designed to immobilize spent electrorefiner chloride salts containing alkali, alkaline earth, lanthanide, and halide fission products that accumulate in the salt during the processing of used nuclear fuel. This aspect of the I-NERI project was to demonstrate 'hot cell' fabrication and characterization of the proposed waste forms. The outline of the report includes the processing of the spent electrorefiner salt and the fabrication of each of the three waste forms. Also described is the characterization of the waste forms, and chemical durability testing of the material. While waste form fabrication and sample preparation for characterization must be accomplished in a radiological hot cell facility due to hazardous radioactivity levels, smaller quantities of each waste form were removed from the hot cell to perform various analyses. Characterization included density measurement, elemental analysis, x-ray diffraction, scanning electron microscopy and the Product Consistency Test, which is a leaching method to measure chemical durability. Favorable results from this demonstration project will provide additional options for fission product immobilization and waste management associated the electrochemical/pyrometallurgical processing of used nuclear fuel.

  10. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bonnesen, Peter V.; Bryan, Jeffrey C.; Engle, Nancy L.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Bartsch, Richard A.; Talanov, Vladimir S.; Gibson, Harry W.; Jones, Jason W.

    2001-08-20

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed bear upon cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit applied projects funded by the USDOE Office of Environmental Management to clean up sites such as the Savannah River Site (SRS), Hanford, and the Idaho National Environmental and Engineering Laboratory. The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste.

  11. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bonnesen, Peter V.; Bryan, Jeffrey C.; Engle, Nancy L.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Bartsch, Richard A.; Talanov, Vladimir S.; Gibson, Harry W.; Jones, Jason W.; Hay, Benjamin P.

    2002-06-01

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed bear upon cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit applied projects funded by the USDOE Office of Environmental Management to clean up sites such as the Savannah River Site (SRS), Hanford, and the Idaho National Environmental and Engineering Laboratory. The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste.

  12. Flexibility Reserve Reductions from an Energy Imbalance Market with High Levels of Wind Energy in the Western Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexibility Reserve Reductions from an Energy Imbalance Market with High Levels of Wind Energy in the Western Interconnection J. King and B. Kirby Consultants M. Milligan National Renewable Energy Laboratory S. Beuning Xcel Energy Technical Report NREL/TP-5500-52330 October 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole

  13. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site

    SciTech Connect (OSTI)

    N /A

    1996-07-31

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authority of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40 CFR 300.430(e)(9): ( 1) overall protection of human health and the environment; (2) compliance with applicable or relevant and appropriated requirement: (ARARs); (3) long-term effectiveness and permanence; (4) reduction of toxicity, mobility, or volume through treatment; (5) short-term effectiveness; (6) implementability; (7) cost; (8) state acceptable; and (9) community acceptance. Closure of each tank involves two separate operations after bulk waste removal has been accomplished: (1) cleaning of the tank (i.e., removing the residual contaminants), and (2) the actual closure or filling of the tank with an inert material, (e.g., grout). This process would continue until all the tanks and ancillary equipment and systems have been closed. This is expected to be about year 2028 for Type I, II, and IV tanks and associated systems. Subsequent to that, Type III tanks and systems will be closed.

  14. Implementation of seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    SciTech Connect (OSTI)

    Conrads, T.J.

    1993-06-01

    In the fall of 1992, a draft of the Seismic Design and Evaluation Guidelines for the Department of Energy (DOE) High-level Waste Storage Tanks and Appurtenances was issued. The guidelines were prepared by the Tanks Seismic Experts Panel (TSEP) and this task was sponsored by DOE, Environmental Management. The TSEP is comprised of a number of consultants known for their knowledge of seismic ground motion and expertise in the analysis of structures, systems and components subjected to seismic loads. The development of these guidelines was managed by staff from Brookhaven National Laboratory, Engineering Research and Applications Division, Department of Nuclear Energy. This paper describes the process used to incorporate the Seismic Design and Evaluation Guidelines for the DOE High-Level Waste Storage Tanks and Appurtenances into the design criteria for the Multi-Function Waste Tank Project at the Hanford Site. This project will design and construct six new high-level waste tanks in the 200 Areas at the Hanford Site. This paper also discusses the vehicles used to ensure compliance to these guidelines throughout Title 1 and Title 2 design phases of the project as well as the strategy used to ensure consistent and cost-effective application of the guidelines by the structural analysts. The paper includes lessons learned and provides recommendations for other tank design projects which might employ the TSEP guidelines.

  15. Control of Sealed Radioactive Sources

    Energy Savers [EERE]

    appropriate hazards controls were not identified and implemented. CONCLUSION Loss of control of radioactive material can result in unplanned personnel exposures and spread of...

  16. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, Robert E.; Ziegler, Anton A.; Serino, David F.; Basnar, Paul J.

    1987-01-01

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  17. Comments of the Northeast Power Coordinating Council FE Docket No. 99-1 |

    Office of Environmental Management (EM)

    Department of Energy the Northeast Power Coordinating Council FE Docket No. 99-1 Comments of the Northeast Power Coordinating Council FE Docket No. 99-1 On July 21, 1999 the Department of Energy, hereinafter "DOE" or the "Department" issued its Notice of Proposed Amendment to the Predidential Permits and Export Authorizations and Delegation and Assignment to the Federal Energy Regulatory Commission. PDF icon Comments of the Northeast Power Coordinating Council FE Docket

  18. DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil

    Office of Environmental Management (EM)

    Reserve | Department of Energy Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve August 26, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy (DOE), through its agent DLA Energy, has issued a solicitation seeking commercial storage contracts for the remaining 350,000 barrels of ultra low sulfur distillate needed to complete the fill of the Northeast Home Heating Oil

  19. DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur

    Office of Environmental Management (EM)

    Distillate | Department of Energy Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said

  20. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  1. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    SciTech Connect (OSTI)

    West, B.; Waltz, R.

    2011-06-23

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

  2. An Overview of Project Planning for Hot-Isostatic Pressure Treatment of High-Level Waste Calcine for the Idaho Cleanup Project - 12289

    SciTech Connect (OSTI)

    Nenni, Joseph A.; Thompson, Theron J.

    2012-07-01

    The Calcine Disposition Project is responsible for retrieval, treatment by hot-isostatic pressure, packaging, and disposal of highly radioactive calcine stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site in southeast Idaho. In the 2009 Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement the Department of Energy documented the selection of hot-isostatic pressure as the technology to treat the calcine. The Record of Decision specifies that the treatment results in a volume-reduced, monolithic waste form suitable for transport outside of Idaho by a target date of December 31, 2035. That target date is specified in the 1995 Idaho Settlement Agreement to treat and prepare the calcine for transport out of Idaho in exchange for allowing storage of Navy spent nuclear fuel at the INL Site. The project is completing the design of the calcine-treatment process and facility to comply with Record of Decision, Settlement Agreement, Idaho Department of Environmental Quality, and Department of Energy requirements. A systems engineering approach is being used to define the project mission and requirements, manage risks, and establish the safety basis for decision making in compliance with DOE O 413.3B, 'Program and Project Management for the Acquisition of Capital Assets'. The approach draws heavily on 'design-for-quality' tools to systematically add quality, predict design reliability, and manage variation in the earliest possible stages of design when it is most efficient. Use of these tools provides a standardized basis for interfacing systems to interact across system boundaries and promotes system integration on a facility-wide basis. A mass and energy model was developed to assist in the design of process equipment, determine material-flow parameters, and estimate process emissions. Data generated from failure modes and effects analysis and reliability, availability, maintainability, and inspectability analysis were incorporated into a time and motion model to validate and verify the capability to complete treatment of the calcine within the required schedule. The Calcine Disposition Project systems engineering approach, including use of industry-proven design-for-quality tools and quantitative assessment techniques, has strengthened the project's design capability to meet its intended mission in a safe, cost-effective, and timely manner. Use of these tools has been particularly helpful to the project in early design planning to manage variation; improve requirements and high-consequence risk management; and more effectively apply alternative, interface, failure mode, RAMI, and time and motion analyses at the earliest possible stages of design when their application is most efficient and cost effective. The project is using these tools to design and develop HIP treatment of highly radioactive calcine to produce a volume-reduced, monolithic waste form with immobilization of hazardous and radioactive constituents. (authors)

  3. Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity...

  4. Northeast United States U.S. Department of Energy Office of Electricit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    makers and emergency response officials in assessing ... endanger life, health, or maintenance of physical property." ... Total annual gas consumption 4 in the Northeast is ...

  5. Application of the ASME code in designing containment vessels for packages used to transport radioactive materials

    SciTech Connect (OSTI)

    Raske, D.T.; Wang, Z.

    1992-07-01

    The primary concern governing the design of shipping packages containing radioactive materials is public safety during transport. When these shipments are within the regulatory jurisdiction of the US Department of Energy, the recommended design criterion for the primary containment vessel is either Section III or Section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code, depending on the activity of the contents. The objective of this paper is to discuss the design of a prototypic containment vessel representative of a packaging for the transport of high-level radioactive material.

  6. Radioactive Material Transportation Practices Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04

    This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Supersedes DOE M 460.2-1.

  7. EIS-0062: Double-Shell Tanks for Defense High Level Waste Storage, Savannah River Site, Aiken, SC

    Broader source: Energy.gov [DOE]

    This EIS analyzes the impacts of the various design alternatives for the construction of fourteen 1.3 million gallon high-activity radioactive waste tanks. The EIS further evaluates the effects of these alternative designs on tank durability, on the ease of waste retrieval from such tanks, and the choice of technology and timing for long-term storage or disposal of the wastes.

  8. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  9. Final Report Northeast Site Area B NAPL Remediation Project

    Office of Legacy Management (LM)

    Northeast Site Area B NAPL Remediation Project at the Young - Rainey STAR Center Largo, Pinellas County, Florida April 2007 Office of Legacy Management DOE M/1457 2007 - -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy This page intentionally left blank

  10. Midwestern Radioactive Materials Transportation Committee Agenda |

    Office of Environmental Management (EM)

    Department of Energy Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation Committee Agenda PDF icon Midwestern Radioactive Materials Transportation Committee Agenda More Documents & Publications NTSF Spring 2012 Agenda NTSF Spring 2011 Agenda NTSF 2013 Agenda

  11. A Review and Analysis of European Industrial Experience in Handling LWR Spent Fuel and Vitrified High-Level Waste

    SciTech Connect (OSTI)

    Blomeke, J.O.

    2001-07-10

    The industrial facilities that have been built or are under construction in France, the United Kingdom, Sweden, and West Germany to handle light-water reactor (LWR) spent fuel and canisters of vitrified high-level waste before ultimate disposal are described and illustrated with drawings and photographs. Published information on the operating performance of these facilities is also given. This information was assembled for consideration in planning and design of similar equipment and facilities needed for the Federal Waste Management System in the United States.

  12. Development of integraded mechanistically-based degradation-mode models for performance assessment of high-level waste containers

    SciTech Connect (OSTI)

    Farmer, J. C., LLNL

    1998-06-01

    A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological repository at Yucca Mountain, Nevada is a two-tayer canister. In this particular design, the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 825, 625 or C-22, while the outer barrier is made of a corrosion-allowance material (CAM) such as A516 Gr 55 or Monel 400. At the present time, Alloy C- 22 and A516 Gr 55 are favored.

  13. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    SciTech Connect (OSTI)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  14. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    SciTech Connect (OSTI)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  15. Office of Civilian Radioactive Waste Management | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A chart detailling the Office of Civilian Radioactive Waste Management. Office of Civilian Radioactive Waste Management More Documents & Publications Reassessment of NAF Mission...

  16. One million curies of radioactive material recovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive material recovered One million curies of radioactive material recovered The accomplishment represents a major milestone in protecting our nation and the world from...

  17. Civilian Radioactive Waste Management System Requirements Document...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Civilian Radioactive Waste Management System Requirements Document Civilian Radioactive Waste Management System Requirements Document This document specifies the top-level...

  18. Enterprise Assessments Review of Radioactive Waste Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant - December 2015 Enterprise Assessments Review of Radioactive Waste Management at the Portsmouth Gaseous...

  19. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Ditto, Mary E.; Engle, Nancy L.; Gorbunova, Maryna G.; Haverlock, Tamara J.; Levitskaia, Taiana G.; Bartsch, Richard A.; Surowiec, Malgorzata A.; Hui Zhou

    2005-07-06

    This project unites expertise at Oak Ridge National Laboratory (ORNL) and Texas Tech University (TTU, Prof. Richard A. Bartsch) to answer fundamental questions addressing the problem of cesium removal from high-level tank waste. Efforts focus on novel solvent-extraction systems containing calixcrown extractants designed for enhanced cesium binding and release. Exciting results are being obtained in three areas: (1) a new lipophilic cesium extractant with a high solubility in the solvent; (2) new proton-ionizable calixcrowns that both strongly extract cesium and "switch off" when protonated; and (3) an improved solvent system that may be stripped with more than 100-fold greater efficiency. Scientific questions primarily concern how to more effectively reverse extraction, focusing on the use of amino groups and proton-ionizable groups to enable pH-switching. Synthesis is being performed at ORNL (amino calixcrowns) and TTU (proton-ionizable calixcrowns). At ORNL, the extraction behavior is being surveyed to assess the effectiveness of candidate solvent systems, and systematic distribution measurements are under way to obtain a thermodynamic understanding of partitioning and complexation equilibria. Crystal structures obtained at ORNL are revealing the structural details of cesium binding. The overall objective is a significant advance in the predictability and efficiency of cesium extraction from high-level waste in support of potential implementation at U. S. Department of Energy (USDOE) sites.

  20. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Ditto, Mary E.; Engle, Nancy L.; Gorbunova, Maryna G.; Haverlock, Tamara J.; Levitskaia, Tatiana G.; Bartsch, Richard A.; Surowiec, Malgorzata A.; Zhou, Hui

    2005-07-06

    This project unites expertise at Oak Ridge National Laboratory (ORNL) and Texas Tech University (TTU, Prof. Richard A. Bartsch) to answer fundamental questions addressing the problem of cesium removal from high-level tank waste. Efforts focus on novel solvent-extraction systems containing calixcrown extractants designed for enhanced cesium binding and release. Exciting results are being obtained in three areas: (1) a new lipophilic cesium extractant with a high solubility in the solvent; (2) new proton-ionizable calixcrowns that both strongly extract cesium and ''switch off'' when protonated; and (3) an improved solvent system that may be stripped with more than 100-fold greater efficiency. Scientific questions primarily concern how to more effectively reverse extraction, focusing on the use of amino groups and proton-ionizable groups to enable pH-switching. Synthesis is being performed at ORNL (amino calixcrowns) and TTU (proton-ionizable calixcrowns). At ORNL, the extraction behavior is being surveyed to assess the effectiveness of candidate solvent systems, and systematic distribution measurements are under way to obtain a thermodynamic understanding of partitioning and complexation equilibria. Crystal structures obtained at ORNL are revealing the structural details of cesium binding. The overall objective is a significant advance in the predictability and efficiency of cesium extraction from high-level waste in support of potential implementation at U. S. Department of Energy (USDOE) sites.

  1. A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests

    SciTech Connect (OSTI)

    Thien, Mike G.; Barnes, Steve M.

    2013-01-17

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described.

  2. Effects of Hanford high-level waste components on sorption of cobalt, strontium, neptunium, plutonium, and americium on Hanford sediments

    SciTech Connect (OSTI)

    Delegard, C H; Barney, G S

    1983-03-01

    To judge the feasibility of continued storage of high-level waste solutions in existing tanks, effects of chemical waste components on the sorption of hazardous radioelements were determined. Experiments identified the effects of 12 Hanford high-level waste-solution components on the sorption of cobalt, strontium, neptunium, plutonium, and americium on 3 Hanford 200 Area sediments. The degree of sorption of strontium, neptunium, plutonium, and americium on two Hanford sediments was then quantified in terms of the concentrations of the influential waste components. Preliminary information on the influence of the waste components on radioelement solubility was gathered. Of the 12 Hanford waste-solution components studied, the most influential on radioelement sorption were NaOH, NaAlO/sub 2/, HEDTA, and EDTA. The chelating complexants, HEDTA and EDTA, generally decreased sorption by complexation of the radioelement metal ions. The components NaOH and NaAlO/sub 2/ decreased neptunium and plutonium sorption and increased cobalt sorption. Americium sorption was increased by NaOH. The three Hanford sediments' radioelement sorption behaviors were similar, implying that their sorption reactions were also similar. Sorption prediction equations were generated for strontium, neptunium, plutonium, and americium sorption reactions on two Hanford sediments. The equations yielded values of the distribution coefficient, K/sub d/, as quadratic functions of waste-component concentrations and showed that postulated radioelement migration rates through Hanford sediment could change by factors of 13 to 40 by changes in Hanford waste composition.

  3. Geological problems in radioactive waste isolation - second worldwide review

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  4. Radioactive decay data tables

    SciTech Connect (OSTI)

    Kocher, D.C.

    1981-01-01

    The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals.

  5. STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    Aaron, G.; Wilmarth, B.

    2011-09-19

    Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the salt and sludge processing life cycle, thereby reducing the Defense Waste Processing Facility (DWPF) mission by 7 years. Additionally at the Hanford site, problematic waste streams, such as high boehmite and phosphate wastes, could be treated prior to receipt by WTP and thus dramatically improve the capacity of the facility to process HLW. Treatment of boehmite by continuous sludge leaching (CSL) before receipt by WTP will dramatically reduce the process cycle time for the WTP pretreatment facility, while treatment of phosphate will significantly reduce the number of HLW borosilicate glass canisters produced at the WTP. These and other promising technologies will be discussed.

  6. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    SciTech Connect (OSTI)

    Jantzen, C; Michael Stone, M

    2007-03-30

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass and liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn{sub 2}O{sub 3} species to MnO during melter preprocessing. At the lower redox limit of Fe{sup +2}/{summation}Fe {approx} 0.09 about 99% of the Mn{sup +4}/Mn{sup +3} is converted to Mn{sup +2}. Therefore, the lower REDOX limits eliminates melter foaming from deoxygenation.

  7. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  8. Radioactive waste material melter apparatus

    DOE Patents [OSTI]

    Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  9. SIPS: A small modular process unit for the in-tank pretreatment of high-level wastes

    SciTech Connect (OSTI)

    Reich, M.; Powell, J.; Barletta, R. [Brookhaven National Lab., Upton, NY (United States)

    1996-12-31

    As a result of the U.S. weapons production program, there are now hundreds of large tanks containing highly radioactive wastes. Safe disposal of these wastes requires their processing and separations into a small volume of highly radioactive waste (HLW) and a much larger volume of low-level waste (LLW). The HLW waste would then be vitrified and transported to a geologic repository. To date, the principal approach proposed for the separation envisions a large, centralized process facility. The small in-tank processing system (SIPS) is a proposed new, small modular concept for the in-tank processing and separation of wastes into HLW and LLW output streams suitable for vitrification. Instead of pumping the retrieved tank wastes as a solid/liquid slurry over long distances to a centralized process facility, SIPS would employ a small process module, typically {approximately}1 m in diameter and 4 m long, which would be inserted into the tank. Over a period of {approx} 6 months, the module would process the solid/liquid materials in the tank, producing separated liquid HLW and liquid LLW output streams that are pumped away in two small-diameter ({approx}3-cm outside diameter) pipes. The SIPS module would be serviced by five auxiliary small pipes - a water feed pipe, a water feed pipe containing micron-size ferromagnetic particles, a nitric acid ({approx}3 M) feed pipe, and input/out pipes to hydraulically load/unload ion exchange beads.

  10. APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD

    SciTech Connect (OSTI)

    TEDESCHI AR; WILSON RA

    2010-01-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  11. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 7

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This Requirements Identification Document (RID) describes an Occupational Health and Safety Program as defined through the Relevant DOE Orders, regulations, industry codes/standards, industry guidance documents and, as appropriate, good industry practice. The definition of an Occupational Health and Safety Program as specified by this document is intended to address Defense Nuclear Facilities Safety Board Recommendations 90-2 and 91-1, which call for the strengthening of DOE complex activities through the identification and application of relevant standards which supplement or exceed requirements mandated by DOE Orders. This RID applies to the activities, personnel, structures, systems, components, and programs involved in maintaining the facility and executing the mission of the High-Level Waste Storage Tank Farms.

  12. Laboratory Report on Performance Evaluation of Key Constituents during Pre-Treatment of High Level Waste Direct Feed

    SciTech Connect (OSTI)

    Huber, Heinz J.

    2013-06-24

    The analytical capabilities of the 222-S Laboratory are tested against the requirements for an optional start up scenario of the Waste Treatment and Immobilization Plant on the Hanford Site. In this case, washed and in-tank leached sludge would be sent directly to the High Level Melter, bypassing Pretreatment. The sludge samples would need to be analyzed for certain key constituents in terms identifying melter-related issues and adjustment needs. The analyses on original tank waste as well as on washed and leached material were performed using five sludge samples from tanks 241-AY-102, 241-AZ-102, 241-AN-106, 241-AW-105, and 241-SY-102. Additionally, solid phase characterization was applied to determine the changes in mineralogy throughout the pre-treatment steps.

  13. Property Valuation and Radioactive Materials Transportation: A Legal, Economic and Public Perception Analysis

    SciTech Connect (OSTI)

    Holm, J. A.; Thrower, A. W.; Widmayer, D. A.; Portner, W.

    2003-02-26

    The shipment of transuranic (TRU) radioactive waste to the Waste Isolation Pilot Plant (WIPP) in New Mexico raised a serious socioeconomic issue - the potential devaluation of property values due to the transportation of TRU waste from generator sites to the disposal facility. In 1992, the New Mexico Supreme Court held in City of Santa Fe v. Komis that a loss in value from public perception of risk was compensable. This issue has become an extremely important one for the development of the Yucca Mountain repository in Nevada for disposal of spent nuclear fuel and high-level radioactive waste. Much research has been conducted about the potential impacts of transportation of spent fuel and radioactive waste. This paper examines the pertinent studies conducted since the Komis case. It examines how the public debate on radioactive materials transportation continues and is now focused on transportation of high-level waste and spent nuclear fuel to the proposed Yucca Mountain repository. Finally, the paper suggests a path forward DOE can take to address this issue.

  14. Comparison of SRP high-level waste disposal costs for borosilicate glass and crystalline ceramic waste forms

    SciTech Connect (OSTI)

    McDonell, W R

    1982-04-01

    An evaluation of costs for the immobilization and repository disposal of SRP high-level wastes indicates that the borosilicate glass waste form is less costly than the crystalline ceramic waste form. The wastes were assumed immobilized as glass with 28% waste loading in 10,300 reference 24-in.-diameter canisters or as crystalline ceramic with 65% waste loading in either 3400 24-in.-diameter canisters or 5900 18-in.-diameter canisters. After an interim period of onsite storage, the canisters would be transported to the federal repository for burial. Total costs in undiscounted 1981 dollars of the waste disposal operations, excluding salt processing for which costs are not yet well defined, were about $2500 million for the borosilicate glass form in reference 24-in.-diameter canisters, compared to about $2900 million for the crystalline ceramic form in 24-in.-diameter canisters and about $3100 million for the crystalline ceramic form in 18-in.-diameter canisters. No large differences in salt processing costs for the borosilicate glass and crystalline ceramic forms are expected. Discounting to present values, because of a projected 2-year delay in startup of the DWPF for the crystalline ceramic form, preserved the overall cost advantage of the borosilicate glass form. The waste immobilization operations for the glass form were much less costly than for the crystalline ceramic form. The waste disposal operations, in contrast, were less costly for the crystalline ceramic form, due to fewer canisters requiring disposal; however, this advantage was not sufficient to offset the higher development and processing costs of the crystalline ceramic form. Changes in proposed Nuclear Regulatory Commission regulations to permit lower cost repository packages for defense high-level wastes would decrease the waste disposal costs of the more numerous borosilicate glass forms relative to the crystalline ceramic forms.

  15. Storage depot for radioactive material

    DOE Patents [OSTI]

    Szulinski, Milton J. (Richland, WA)

    1983-01-01

    Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

  16. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  17. Emergency Responder Radioactive Material Quick Reference Sheet

    Broader source: Energy.gov [DOE]

    Transportation Emergency Preparedness Program (TEPP) Emergency Responder Radioactive Material Quick Reference Sheet

  18. Low-level radioactive waste disposal technologies used outside the United States

    SciTech Connect (OSTI)

    Templeton, K.J.; Mitchell, S.J.; Molton, P.M.; Leigh, I.W.

    1994-01-01

    Low-level radioactive waste (LLW) disposal technologies are an integral part of the waste management process. In the United States, commercial LLW disposal is the responsibility of the State or groups of States (compact regions). The United States defines LLW as all radioactive waste that is not classified as spent nuclear fuel, high- level radioactive waste, transuranic waste, or by-product material as defined in Section II(e)(2) of the Atomic Energy Act. LLW may contain some long-lived components in very low concentrations. Countries outside the United States, however, may define LLW differently and may use different disposal technologies. This paper outlines the LLW disposal technologies that are planned or being used in Canada, China, Finland, France, Germany, Japan, Sweden, Taiwan, and the United Kingdom (UK).

  19. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Bartsch, Richard A.

    2003-06-01

    Calix[4]arenebiscrown-6 molecules are currently the selected technology for removal of radioactive cesium-137 from DOE nuclear wastes. By attachment of an acidic function to such molecules, the efficiency with which cesium ion can be extracted from an aqueous solution into an organic diluent is markedly increased since the requirement for concomitant extraction of an aqueous phase anion is avoided. Thus, cesium ion extraction by proton-ionizable calix[4]arenebiscrown-6 molecules may be the ''second-generation'' technology for removal of cesium-137 from DOE nuclear wastes. During Year 1 of this EMSP project, we have established synthetic routes to new, lipophilic, proton-ionizable calix[4]arenebiscrown-6 molecules to be evaluated for solvent extraction of cesium ion at Oak Ridge National Laboratory. Analogous calix[4]arenecrown-6 compounds are also being prepared to determine if even higher cesium ion selectivities can be obtained with extractants having a single crown ether unit.

  20. Information needs for characterization of high-level waste repository sites in six geologic media. Volume 1. Main report

    SciTech Connect (OSTI)

    1985-05-01

    Evaluation of the geologic isolation of radioactive materials from the biosphere requires an intimate knowledge of site geologic conditions, which is gained through precharacterization and site characterization studies. This report presents the results of an intensive literature review, analysis and compilation to delineate the information needs, applicable techniques and evaluation criteria for programs to adequately characterize a site in six geologic media. These media, in order of presentation, are: granite, shale, basalt, tuff, bedded salt and dome salt. Guidelines are presented to assess the efficacy (application, effectiveness, and resolution) of currently used exploratory and testing techniques for precharacterization or characterization of a site. These guidelines include the reliability, accuracy and resolution of techniques deemed acceptable, as well as cost estimates of various field and laboratory techniques used to obtain the necessary information. Guidelines presented do not assess the relative suitability of media. 351 refs., 10 figs., 31 tabs.

  1. THE IMPACT OF OZONE ON THE LOWER FLAMMABLE LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    SciTech Connect (OSTI)

    Sherburne, Carol; Osterberg, Paul; Johnson, Tom; Frawely, Thomas

    2013-01-23

    The Savannah River Site, in conjunction with AREVA Federal services, has designed a process to treat dissolved radioactive waste solids with ozone. It is known that in this radioactive waste process, radionuclides radiolytically break down water into gaseous hydrogen and oxygen, which presents a well defined flammability hazard. Flammability limits have been established for both ozone and hydrogen separately; however, there is little information on mixtures of hydrogen and ozone. Therefore, testing was designed to provide critical flammability information necessary to support safety related considerations for the development of ozone treatment and potential scale-up to the commercial level. Since information was lacking on flammability issues at low levels of hydrogen and ozone, a testing program was developed to focus on filling this portion of the information gap. A 2-L vessel was used to conduct flammability tests at atmospheric pressure and temperature using a fuse wire ignition source at 1 percent ozone intervals spanning from no ozone to the Lower Flammable Limit (LFL) of ozone in the vessel, determined as 8.4%(v/v) ozone. An ozone generator and ozone detector were used to generate and measure the ozone concentration within the vessel in situ, since ozone decomposes rapidly on standing. The lower flammability limit of hydrogen in an ozone-oxygen mixture was found to decrease from the LFL of hydrogen in air, determined as 4.2 % (v/v) in this vessel. From the results of this testing, Savannah River was able to develop safety procedures and operating parameters to effectively minimize the formation of a flammable atmosphere.

  2. ARM - Field Campaign - 1996 NARSTO Northeast Field Study (NARSTO-NE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 NARSTO Northeast Field Study (NARSTO-NE) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 1996 NARSTO Northeast Field Study (NARSTO-NE) 1996.07.01 - 1996.07.28 Lead Scientist : Larry Kleinman For data sets, see below. Abstract The DOE G-1 aircraft was deployed in the New York City metropolitan area as part of the North American Research Strategy for Tropospheric Ozone-Northeast effort to determine the

  3. ARM - Field Campaign - 2004 NEAX (Northeast Aerosol Experiment), G-1 data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 NEAX (Northeast Aerosol Experiment), G-1 data ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2004 NEAX (Northeast Aerosol Experiment), G-1 data 2004.07.20 - 2004.08.15 Lead Scientist : Peter Daum For data sets, see below. Abstract Brookhaven National Laboratory conducted a series of aircraft flights with the DOE G-1 aircraft during the 2004 Northeast Aerosol Experiment (NEAX). The flights accomplished

  4. Table HC1-9a. Housing Unit Characteristics by Northeast Census Region,

    Gasoline and Diesel Fuel Update (EIA)

    9a. Housing Unit Characteristics by Northeast Census Region, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 20.3 14.8 5.4 NE Census Region and Division Northeast ..................................................... 20.3 20.3 14.8 5.4 NF New England

  5. "Table HC11.1 Housing Unit Characteristics by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    Housing Unit Characteristics by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units" ,,,"Census Division" ,,"Total Northeast" "Housing Unit Characteristics",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Urban/Rural Location (as Self-Reported)" "City",47.1,6.9,4.7,2.2 "Town",19,6,4.2,1.9

  6. "Table HC11.11 Home Electronics Characteristics by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Home Electronics Characteristics by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Home Electronics Characteristics",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Personal Computers" "Do Not Use a Personal Computer ",35.5,6.9,5.3,1.6 "Use a

  7. "Table HC11.2 Living Space Characteristics by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Living Space Characteristics by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Living Space Characteristics",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Floorspace (Square Feet)" "Total Floorspace1" "Fewer than 500",3.2,0.9,0.5,0.4

  8. "Table HC11.4 Space Heating Characteristics by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Space Heating Characteristics by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Space Heating Characteristics",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Do Not Have Space Heating Equipment",1.2,"Q","Q","Q" "Have Main

  9. "Table HC11.6 Air Conditioning Characteristics by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Air Conditioning Characteristics",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Do Not Have Cooling Equipment",17.8,4,2.4,1.7 "Have Coolling

  10. "Table HC11.9 Home Appliances Characteristics by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.9 Home Appliances Characteristics by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Home Appliances Characteristics",,,"Middle Atlantic","New England" "Total U.S.",111.1,20.6,15.1,5.5 "Cooking Appliances" "Conventional Ovens" "Use an

  11. DOE Accepts Bids for Northeast Home Heating Oil Stocks | Department of

    Office of Environmental Management (EM)

    Energy Accepts Bids for Northeast Home Heating Oil Stocks DOE Accepts Bids for Northeast Home Heating Oil Stocks February 3, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today has awarded contracts to three companies who successfully bid for the purchase of 984,253 barrels of heating oil from the Northeast Home Heating Oil Reserve. Awardee Amount Morgan Stanley 500,000 barrels Shell Trading U.S. Company 250,000 barrels George E. Warren Corporation 234,253

  12. DOE Completes Sale of Northeast Home Heating Oil Stocks | Department of

    Office of Environmental Management (EM)

    Energy Completes Sale of Northeast Home Heating Oil Stocks DOE Completes Sale of Northeast Home Heating Oil Stocks February 10, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today has awarded contracts to four companies who successfully bid for the purchase of 1,000,000 barrels of heating oil from the Northeast Home Heating Oil Reserve storage sites in Groton and New Haven, CT. Hess Groton Terminal, Groton, CT Shell Trading U.S. Company 150,000 barrels Sprague

  13. Seismic design and evaluation guidelines for the Department of Energy High-Level Waste Storage Tanks and Appurtenances

    SciTech Connect (OSTI)

    Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

    1995-10-01

    This document provides seismic design and evaluation guidelines for underground high-level waste storage tanks. The guidelines reflect the knowledge acquired in the last two decades in defining seismic ground motion and calculating hydrodynamic loads, dynamic soil pressures and other loads for underground tank structures, piping and equipment. The application of the guidelines is illustrated with examples. The guidelines are developed for a specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document. The original version of this document was published in January 1993. Since then, additional studies have been performed in several areas and the results are included in this revision. Comments received from the users are also addressed. Fundamental concepts supporting the basic seismic criteria contained in the original version have since then been incorporated and published in DOE-STD-1020-94 and its technical basis documents. This information has been deleted in the current revision.

  14. A natural analogue for high-level waste in tuff: Chemical analysis and modeling of the Valles site

    SciTech Connect (OSTI)

    Stockman, H.W.; Krumhansl, J.L.; Ho, C.K.; Kovach, L.; McConnell, V.S.

    1995-03-01

    The contact between an obsidian flow and a steep-walled tuff canyon was examined as an analogue for a high-level waste repository. The analogue site is located in the Valles Caldera in New Mexico, where a massive obsidian flow filled a paleocanyon in the Battleship Rock Tuff. The obsidian flow provided a heat source, analogous to waste panels or an igneous intrusion in a repository, and caused evaporation and migration of water. The tuff and obsidian samples were analyzed for major and trace elements and mineralogy by INAA, XRF, x-ray diffraction, and scanning electron microscopy and electron microprobe. Samples were also analyzed for D/H and {sup 39}Ar/{sup 40}Ar isotopic composition. Overall, the effects of the heating event seem to have been slight and limited to the tuff nearest the contact. There is some evidence of devitrification and migration of volatiles in the tuff within 10 m of the contact, but variations in major and trace element chemistry are small and difficult to distinguish from the natural (pre-heating) variability of the rocks.

  15. Separation of americium, curium, and rare earths from high-level wastes by oxalate precipitation: experiments with synthetic waste solutions

    SciTech Connect (OSTI)

    Forsberg, C.W.

    1980-01-01

    The separation of trivalent actinides and rare earths from other fission products in high-level nuclear wastes by oxalate precipitation followed by ion exchange (OPIX) was experimentally investigated using synthetic wastes and a small-scale, continuous-flow oxalic acid precipitation and solid-liquid separation system. Trivalent actinide and rare earth oxalates are relatively insoluble in 0.5 to 1.0 M HNO/sub 3/ whereas other fission product oxalates are not. The continuous-flow system consisted of one or two stirred-tank reactors in series for crystal growth. Oxalic acid and waste solutions were mixed in the first tank, with the product solid-liquid slurry leaving the second tank. Solid-liquid separation was tested by filters and by a gravity settler. The experiments determined the fraction of rare earths precipitated and separated from synthetic waste streams as a function of number of reactors, system temperature, oxalic acid concentration, liquid residence time in the process, power input to the stirred-tank reactors, and method of solid-liquid separation. The crystalline precipitate was characterized with respect to form, size, and chemical composition. These experiments are only the first step in converting a proposed chemical flowsheet into a process flowsheet suitable for large-scale remote operations at high activity levels.

  16. Development of the high-level waste high-temperature melter feed preparation flowsheet for vitrification process testing

    SciTech Connect (OSTI)

    Seymour, R.G.

    1995-02-17

    High-level waste (HLW) feed preparation flowsheet development was initiated in fiscal year (FY) 1994 to evaluate alternative flowsheets for preparing melter feed for high-temperature melter (HTM) vitrification testing. Three flowsheets were proposed that might lead to increased processing capacity relative to the Hanford Waste Vitrification Plant (HWVP) and that were flexible enough to use with other HLW melter technologies. This document describes the decision path that led to the selection of flowsheets to be tested in the FY 1994 small-scale HTM tests. Feed preparation flowsheet development for the HLW HTM was based on the feed preparation flowsheet that was developed for the HWVP. This approach allowed the HLW program to build upon the extensive feed preparation flowsheet database developed under the HWVP Project. Primary adjustments to the HWVP flowsheet were to the acid adjustment and glass component additions. Developmental background regarding the individual features of the HLW feed preparation flowsheets is provided. Applicability of the HWVP flowsheet features to the new HLW vitrification mission is discussed. The proposed flowsheets were tested at the laboratory-scale at Pacific Northwest Laboratory. Based on the results of this testing and previously established criteria, a reductant-based flowsheet using glycolic acid and a nitric acid-based flowsheet were selected for the FY 1994 small-scale HTM testing.

  17. Transportation functions of the Civilian Radioactive Waste Management System

    SciTech Connect (OSTI)

    Shappert, L.B.; Attaway, C.R.; Pope, R.B.; Best, R.E.; Danese, F.L.; Dixon, L.D.; Jones, R.H.; Klimas, M.J.; Peterson, R.W.

    1992-03-01

    Within the framework of Public Law 97.425 and provisions specified in the Code of Federal Regulations, Title 10 Part 961, the US Department of Energy has the responsibility to accept and transport spent fuel and high-level waste from various organizations which have entered into a contract with the federal government in a manner that protects the health and safety of the public and workers. In implementing these requirements, the Office of Civilian Radioactive Waste Management (OCRWM) has, among other things, supported the identification of functions that must be performed by a transportation system (TS) that will accept the waste for transport to a federal facility for storage and/or disposal. This document, through the application of system engineering principles, identifies the functions that must be performed to transport waste under this law.

  18. Storage containers for radioactive material

    DOE Patents [OSTI]

    Groh, Edward F. (Naperville, IL); Cassidy, Dale A. (Valparaiso, IN); Dates, Leon R. (Elmwood Park, IL)

    1981-01-01

    A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or

  19. Storage containers for radioactive material

    DOE Patents [OSTI]

    Groh, E.F.; Cassidy, D.A.; Dates, L.R.

    1980-07-31

    A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

  20. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization

    SciTech Connect (OSTI)

    Darsh T. Wasan

    2002-02-20

    Radioactive waste treatment processes usually involve concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like sludge chemical processing and melter operations. Hence, the objective of this research was to study the mechanisms that produce foaming during nuclear waste treatment, to identify key parameters which aggravate foaming, and to identify effective ways to eliminate or mitigate foaming. Experimental and theoretical investigations of the surface phenomenon, suspension rheology, and bubble generation and interactions that lead to the formation of foam during waste processing were pursued under this EMSP project. Advanced experimental techniques including a novel capillary force balance in conjunction with the combined differential and common interferometry were developed to characterize particle-particle interactions at the foam lamella surfaces as well as inside the foam lamella. Laboratory tests were conducted using a non-radioactive simulant slurry containing high levels of noble metals and mercury similar to the High-Level Waste. We concluded that foaminess of the simulant sludge was due to the presence of colloidal particles such as aluminum, iron, and manganese. We have established the two major mechanisms of formation and stabilization of foams containing such colloidal particles: (1) structural and depletion forces; and (2) steric stabilization due to the adsorbed particles at the surfaces of the foam lamella. Based on this mechanistic understanding of foam generation and stability, an improved antifoam agent was developed by us, since commercial antifoam agents were found to be ineffective in the aggressive physical and chemical environment present in the sludge processing. The improved antifoamer was subsequently tested in a pilot plant at the Savannah River Site (SRS) and was found to be effective. Also, in the SRTC experiment, the irradiated antifoamer appeared to be as effective as nonirradiated antifoamers. Therefore, the results of this research have led to the successful development, demonstration and deployment of the new antifoam in the Defense Waste Processing Facility chemical processing.

  1. Reductions in Northeast Refining Activity: Potential Implications for Petroleum Product Markets

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reductions in Northeast Refining Activity: Potential Implications for Petroleum Product Markets December 2011 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Reductions in Northeast Refining Activity: Potential Implications for Petroleum Product Markets i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy.

  2. NorthEast Center for Chemical Energy Storage (NECCES) | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) NorthEast Center for Chemical Energy Storage (NECCES) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers NorthEast Center for Chemical Energy Storage (NECCES) Print Text Size: A A A FeedbackShare Page NECCES Header Director M. Stanley Whittingham Lead Institution Binghamton University Year Established 2009 Mission To develop an understanding of how key

  3. Potential Impacts of Reductions in Refinery Activity on Northeast Petroleum Product Markets

    Reports and Publications (EIA)

    2012-01-01

    Potential Impacts of Reductions in Refinery Activity on Northeast Petroleum Product Markets is an update to a previous Energy Information Administration (EIA) report, Reductions in Northeast Refining Activity: Potential Implications for Petroleum Product Markets, released in December 2011. This update analyzes possible market responses and impacts in the event Sunoco's Philadelphia refinery closes this summer, in addition to the recently idled refineries on the East Coast and in the U.S. Virgin Islands.

  4. Northeast United States U.S. Department of Energy Office of Electricity Delivery and Energy Reliability

    Energy Savers [EERE]

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Energy Infrastructure Modeling and Analysis Division November 2013 Northeast U.S. Natural Gas Pipeline Adequacy Assessment, 2013 2 Preface In 2005-06, the U.S. DOE Office of Electricity Delivery and Energy Reliability (OE) conducted a study on the adequacy of interstate natural gas pipeline capacity serving the northeastern

  5. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    SciTech Connect (OSTI)

    TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  6. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

  7. Development of Effective Solvent Modifiers for the Solvent Extraction of Cesium from Alkaline High-Level Tank Waste.

    SciTech Connect (OSTI)

    Bonnesen, Peter V.; Delmau, Laetitia H.; Moyer, Bruce A.; Lumetta, Gregg J. )

    2003-01-01

    A series of novel alkylphenoxy fluorinated alcohols were prepared and investigated for their effectiveness as modifiers in solvents containing calix[4]arene-bis-(tert-octylbenzo)-crown-6 for extracting cesium from alkaline nitrate media. A modifier that contained a terminal 1,1,2,2-tetrafluoroethoxy group was found to decompose following long-term exposure to warm alkaline solutions. However, replacement of the tetrafluoroethoxy group with a 2,2,3,3-tetrafluoropropoxy group led to a series of modifiers that possessed the alkaline stability required for a solvent extraction process. Within this series of modifiers, the structure of the alkyl substituent (tert-octyl, tert-butyl, tert-amyl, and sec-butyl) of the alkylphenoxy moiety was found to have a profound impact on the phase behavior of the solvent in liquid-liquid contacting experiments, and hence on the overall suitability of the modifier for a solvent extraction process. The sec-butyl derivative[1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol] (Cs-7SB) was found to possess the best overall balance of properties with respect to third phase and coalescence behavior, cleanup following degradation, resistance to solids formation, and cesium distribution behavior. Accordingly, this modifier was selected for use as a component of the solvent employed in the Caustic-Side Solvent Extraction (CSSX) process for removing cesium from high level nuclear waste (HLW) at the U.S. Department of Energy?s (DOE) Savannah River Site. In batch equilibrium experiments, this solvent has also been successfully shown to extract cesium from both simulated and actual solutions generated from caustic leaching of HLW tank sludge stored in tank B-110 at the DOE?s Hanford Site.

  8. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    SciTech Connect (OSTI)

    Powell, J.; Reich, M.; Barletta, R.

    1996-03-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small ({approximately}1 m{sup 3}) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ``secondary.`` The induced current in the ``secondary`` heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., {approximately}1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature.

  9. Assessment of degradation concerns for spent fuel, high-level wastes, and transuranic wastes in monitored retrievalbe storage

    SciTech Connect (OSTI)

    Guenther, R.J.; Gilbert, E.R.; Slate, S.C.; Partain, W.L.; Divine, J.R.; Kreid, D.K.

    1984-01-01

    It has been concluded that there are no significant degradation mechanisms that could prevent the design, construction, and safe operation of monitored retrievable storage (MRS) facilities. However, there are some long-term degradation mechanisms that could affect the ability to maintain or readily retrieve spent fuel (SF), high-level wastes (HLW), and transuranic wastes (TRUW) several decades after emplacement. Although catastrophic failures are not anticipated, long-term degradation mechanisms have been identified that could, under certain conditions, cause failure of the SF cladding and/or failure of TRUW storage containers. Stress rupture limits for Zircaloy-clad SF in MRS range from 300 to 440/sup 0/C, based on limited data. Additional tests on irradiated Zircaloy (3- to 5-year duration) are needed to narrow this uncertainty. Cladding defect sizes could increase in air as a result of fuel density decreases due to oxidation. Oxidation tests (3- to 5-year duration) on SF are also needed to verify oxidation rates in air and to determine temperatures below which monitoring of an inert cover gas would not be required. Few, if any, changes in the physical state of HLW glass or canisters or their performance would occur under projected MRS conditions. The major uncertainty for HLW is in the heat transfer through cracked glass and glass devitrification above 500/sup 0/C. Additional study of TRUW is required. Some fraction of present TRUW containers would probably fail within the first 100 years of MRS, and some TRUW would be highly degraded upon retrieval, even in unfailed containers. One possible solution is the design of a 100-year container. 93 references, 28 figures, 17 tables.

  10. Development of low-level radioactive waste disposal capacity in the United States - progress or stalemate?

    SciTech Connect (OSTI)

    Devgun, J.S. [Argonne National Lab., IL (United States); Larson, G.S. [Midwest Low-Level Radioactive Waste Commission, St. Paul, MN (United States)

    1995-12-31

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The U.S. nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW - industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW - face the same storage and cost uncertainties. This paper will summarize the current status of U.S. low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change.

  11. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  12. Reporting of Radioactive Sealed Sources

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-02-27

    To establish U.S. Department of Energy requirements for inventory reporting, transaction reporting, verification of reporting, and assign responsibilities for reporting of radioactive sealed sources. DOE N 251.86 extends this notice until 5-6-11. No cancellations. Canceled by DOE O 231.1B

  13. Conceptual Design of a Simplified Skid-Mounted Caustic-Side Solvent Extraction Process for Removal of Cesium from Savannah Rive Site High-Level Waste

    SciTech Connect (OSTI)

    Birdwell, JR.J.F.

    2004-05-12

    This report presents the results of a conceptual design of a solvent extraction process for the selective removal of {sup 137}Cs from high-level radioactive waste currently stored in underground tanks at the U.S. Department of Energy's Savannah River Site (SRS). This study establishes the need for and feasibility of deploying a simplified version of the Caustic-Side Solvent Extraction (CSSX) process; cost/benefit ratios ranging from 33 to 55 strongly support the considered deployment. Based on projected compositions, 18 million gallons of dissolved salt cake waste has been identified as having {sup 137}Cs concentrations that are substantially lower than the worst-case design basis for the CSSX system that is to be deployed as part of the Salt Waste Processing Facility (SWPF) but that does not meet the waste acceptance criteria for immobilization as grout in the Saltstone Manufacturing and Disposal Facility at SRS. Absent deployment of an alternative cesium removal process, this material will require treatment in the SWPF CSSX system, even though the cesium decontamination factor required is far less than that provided by that system. A conceptual design of a CSSX processing system designed for rapid deployment and having reduced cesium decontamination factor capability has been performed. The proposed accelerated-deployment CSSX system (CSSX-A) has been designed to have a processing rate of 3 million gallons per year, assuming 90% availability. At a more conservative availability of 75% (reflecting the novelty of the process), the annual processing capacity is 2.5 million gallons. The primary component of the process is a 20-stage cascade of centrifugal solvent extraction contactors. The decontamination and concentration factors are 40 and 15, respectively. The solvent, scrub, strip, and wash solutions are to have the same compositions as those planned for the SWPF CSSX system. As in the SWPF CSSX system, the solvent and scrub flow rates are equal. The system is designed to facilitate remote operation and direct maintenance. Two general deployment concepts were considered: (1) deployment in an existing but unused SRS facility and (2) deployment in transportable containers. Deployment in three transportable containers was selected as the preferred option, based on concerns regarding facility availability (due to competition from other processing alternatives) and decontamination and renovation costs. A risk assessment identified environmental, safety, and health issues that exist. These concerns have been addressed in the conceptual design by inclusion of mitigating system features. Due to the highly developed state of CSSX technology, only a few technical issues remain unresolved; however, none of these issues have the potential to make the technology unviable. Recommended development tasks that need to be performed to address technical uncertainties are discussed in this report. Deployment of the proposed CSSX-A system provides significant qualitative and quantitative benefits. The qualitative benefits include (1) verification of full-scale contactor performance under CSSX conditions that will support SWPF CSSX design and deployment; (2) development of design, fabrication, and installation experience bases that will be at least partially applicable to the SWPF CSSX system; and (3) availability of the CSSX-A system as a means of providing contactor-based solvent extraction system operating experience to SWPF CSSX operating personnel. Estimates of fixed capital investment, development costs, and annual operating cost for SRS deployment of the CSSX-A system (in mid-2003 dollars) are $9,165,199, $2,734,801, and $2,108,820, respectively. When the economics of the CSSX-A system are compared with those of the baseline SWPF CSSX system, benefit-to-cost ratios ranging from 20 to 47 are obtained. The benefits in the cost/benefit comparison arise from expedited tank closure and reduced engineering, construction, and operating costs for the SWPF CSSX system. No significant impediments to deployment were determined in the reported a

  14. Categorical Exclusion Determinations: Civilian Radioactive Waste Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Civilian Radioactive Waste Management Categorical Exclusion Determinations: Civilian Radioactive Waste Management Categorical Exclusion Determinations issued by Civilian Radioactive Waste Management. DOCUMENTS AVAILABLE FOR DOWNLOAD April 5, 2011 CX-005549: Categorical Exclusion Determination Hot Springs Energy Efficiency and Conservation Block Grant Project CX(s) Applied: B2.5, B5.1 Date: 04/05/2011 Location(s): Hot Springs, Arkansas Office(s): Civilian Radioactive

  15. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    SciTech Connect (OSTI)

    Jantzen, C.

    2010-03-18

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  16. Geological problems in radioactive waste isolation - A world wide review

    SciTech Connect (OSTI)

    Witherspoon, P.A. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high-level waste (HLW), which must be isolated in the underground and away from the biosphere for thousands of years. The most widely accepted method of doing this is to seal the radioactive materials in metal canisters that are enclosed by a protective sheath and placed underground in a repository that has been carefully constructed in an appropriate rock formation. Much new technology is being developed to solve the problems that have been raised, and there is a continuing need to publish the results of new developments for the benefit of all concerned. Table 1 presents a summary of the various formations under investigation according to the reports submitted for this world wide review. It can be seen that in those countries that are searching for repository sites, granitic and metamorphic rocks are the prevalent rock type under investigation. Six countries have developed underground research facilities that are currently in use. All of these investigations are in saturated systems below the water table, except the United States project, which is in the unsaturated zone of a fractured tuff.

  17. The EU Approach for Responsible and Safe Management of Spent Fuel and Radioactive Waste - 12118

    SciTech Connect (OSTI)

    Blohm-Hieber, Ute; Necheva, Christina [European Commission, Directorate-General for Energy, Luxembourg L-2920 (Luxembourg)

    2012-07-01

    In July 2011 legislation on responsible and safe management of spent fuel and radioactive waste was adopted in the European Union (EU). It aims at ensuring a high level of safety, avoiding undue burdens on future generations and enhancing transparency. EU Member States are responsible for the management of their spent fuel and/or radioactive waste. Each Member State remains free to define its fuel cycle policy. The spent fuel can be regarded either as a valuable resource that may be reprocessed or as radioactive waste that is destined for direct disposal. Whatever option is chosen, the disposal of high level waste, separated at reprocessing, or of spent fuel regarded as waste should be considered. The storage of radioactive waste, including long-term storage, is an interim solution, but not an alternative to disposal. To this end, each Member State has to establish, maintain and implement national policy, framework and programme for management of spent fuel and/or radioactive waste in the long term. Member States will invite international peer reviews to ensure that high safety standards are achieved. The EU approach is anchored in internationally endorsed principles and requirements of the IAEA safety standards and the Joint Convention and in this context makes them legally binding and enforceable in the EU. The EU approach of regulating the management of spent fuel and radioactive waste is anchored in the competence of the national regulatory authorities and in the internationally endorsed principles and requirements of the IAEA Safety Standards and the Joint Convention. Member States have to report to the Commission on the implementation of Directive 2011/70/Euratom for the first time by 23 August 2015, and every 3 years thereafter, taking advantage of the review and reporting under the Joint Convention. On the basis of the Member States' reports, the Commission will submit to the European Parliament and the Council a report on progress made and an inventory of radioactive waste and spent fuel present in the EU territory and the future prospects. Directive 2011/70/Euratom is a logical next step after the Council Directive 2009/71/Euratom on the nuclear safety of nuclear installations. The EU is the first major regional actor providing a binding legal framework on nuclear safety and on responsible and safe management of spent fuel and radioactive waste, and thus is a real model to progress spent fuel and waste management in a safe and responsible manner. (authors)

  18. Civilian radioactive waste management program plan. Revision 2

    SciTech Connect (OSTI)

    1998-07-01

    This revision of the Civilian Radioactive Waste Management Program Plan describes the objectives of the Civilian Radioactive Waste management Program (Program) as prescribed by legislative mandate, and the technical achievements, schedule, and costs planned to complete these objectives. The Plan provides Program participants and stakeholders with an updated description of Program activities and milestones for fiscal years (FY) 1998 to 2003. It describes the steps the Program will undertake to provide a viability assessment of the Yucca Mountain site in 1998; prepare the Secretary of Energy`s site recommendation to the President in 2001, if the site is found to be suitable for development as a repository; and submit a license application to the Nuclear Regulatory Commission in 2002 for authorization to construct a repository. The Program`s ultimate challenge is to provide adequate assurance to society that an operating geologic repository at a specific site meets the required standards of safety. Chapter 1 describes the Program`s mission and vision, and summarizes the Program`s broad strategic objectives. Chapter 2 describes the Program`s approach to transform strategic objectives, strategies, and success measures to specific Program activities and milestones. Chapter 3 describes the activities and milestones currently projected by the Program for the next five years for the Yucca Mountain Site Characterization Project; the Waste Acceptance, Storage and Transportation Project; ad the Program Management Center. The appendices present information on the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992; the history of the Program; the Program`s organization chart; the Commission`s regulations, Disposal of High-Level Radioactive Wastes in geologic Repositories; and a glossary of terms.

  19. Low-Level Radioactive Waste Management in the United States: What Have We Wrought? The Richard S. Hodes, M.D. Honor Lecture Award - 12222

    SciTech Connect (OSTI)

    Jacobi, Lawrence R.

    2012-07-01

    In 1979, radioactive waste disposal was an important national issue. State governors were closing the gates on the existing low-level radioactive waste disposal sites and the ultimate disposition of spent fuel was undecided. A few years later, the United States Congress thought they had solved both problems by passing the Low-Level Radioactive Waste Policy Act of 1981, which established a network of regional compacts for low-level radioactive waste disposal, and by passing the Nuclear Waste Policy Act of 1982 to set out how a final resting place for high-level waste would be determined. Upon passage of the acts, State, Regional and Federal officials went to work. Here we are some 30 years later with little to show for our combined effort. The envisioned national repository for high-level radioactive waste has not materialized. Efforts to develop the Yucca Mountain high-level radioactive waste disposal facility were abandoned after spending $13 billion on the failed project. Recently, the Blue Ribbon Commission on America's Nuclear Future issued its draft report that correctly concludes the existing policy toward high-level nuclear waste is 'all but completely broken down'. A couple of new low-level waste disposal facilities have opened since 1981, but neither were the result of efforts under the act. What the Act has done is interject a system of interstate compacts with a byzantine interstate import and export system to complicate the handling of low-level radioactive waste, with attendant costs. As this paper is being written in the fourth-quarter of 2011, after 30 years of political and bureaucratic turmoil, a new comprehensive low-level waste disposal facility at Andrews Texas is approaching its initial operating date. The Yucca Mountain project might be completed or it might not. The US Nuclear Regulatory Commission is commencing a review of their 1981 volume reduction policy statement. The Department of Energy after 26 years has yet to figure out how to implement its obligations under the 1985 amendments to the Low-Level Radioactive Waste Policy Act. But, the last three decades have not been a total loss. A great deal has been learned about radioactive waste disposal since 1979 and the efforts of the public and private sector have shaped and focused the work to be done in the future. So, this lecturer asks the question: 'What have we wrought?' to which he provides his perspective and his recommendations for radioactive waste management policy for the next 30 years. (author)

  20. Radioactive Liquid Waste Treatment Facility Discharges in 2014

    SciTech Connect (OSTI)

    Del Signore, John C.

    2015-07-14

    This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2014.

  1. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    SciTech Connect (OSTI)

    Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time t{sub i} (trajectory positions and velocities x{sub i} = (r{sub i}, v{sub i})) to time t{sub i+1} (x{sub i+1}) by x{sub i+1} = f{sub i}(x{sub i}), the dynamics problem spanning an interval from t{sub 0}…t{sub M} can be transformed into a root finding problem, F(X) = [x{sub i} ? f(x{sub (i?1})]{sub i} {sub =1,M} = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H{sub 2}O AIMD simulation at the MP2 level. The maximum speedup ((serial execution time)/(parallel execution time) ) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow transmission control protocol/Internet protocol networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl + 4H{sub 2}O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. Using these algorithms, we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 s/time step to 6.9 s/time step.

  2. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    SciTech Connect (OSTI)

    Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f , (e.g. Verlet algorithm) is available to propagate the system from time ti (trajectory positions and velocities xi = (ri; vi)) to time ti+1 (xi+1) by xi+1 = fi(xi), the dynamics problem spanning an interval from t0 : : : tM can be transformed into a root finding problem, F(X) = [xi - f (x(i-1)]i=1;M = 0, for the trajectory variables. The root finding problem is solved using a variety of optimization techniques, including quasi-Newton and preconditioned quasi-Newton optimization schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed and the effectiveness of various approaches to solving the root finding problem are tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl+4H2O AIMD simulation at the MP2 level. The maximum speedup obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow TCP/IP networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl+4H2O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. By using these algorithms we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 seconds per time step to 6.9 seconds per time step.

  3. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

    2010-01-04

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and glass melting rate. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of {approx}1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HLW waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150 C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage. The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet WTP Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulfur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings. Results of this work have demonstrated the feasibility of increases in wasteloading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. It is expected that these higher waste loading glasses will reduce the HLW canister production requirement by about 25% or more.

  4. radioactivity | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    radioactivity | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  5. Radioactive Waste Management BasisApril 2006

    SciTech Connect (OSTI)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  6. Transient thermal analysis for radioactive liquid mixing operations in a large-scaled tank

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, S. Y.; Smith, III, F. G.

    2014-07-25

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on radioactive liquid temperature during the process of waste mixing and removal for the high-level radioactive materials stored in Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing longshaft mixer pumps used during waste removal. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermalmore » response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%.« less

  7. Transient thermal analysis for radioactive liquid mixing operations in a large-scaled tank

    SciTech Connect (OSTI)

    Lee, S. Y. [Savannah River Site Nuclear Solutions, LLC, Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, III, F. G. [Savannah River Site Nuclear Solutions, LLC, Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-07-25

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on radioactive liquid temperature during the process of waste mixing and removal for the high-level radioactive materials stored in Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing longshaft mixer pumps used during waste removal. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermal response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%.

  8. radioactivity

    National Nuclear Security Administration (NNSA)

    application of nuclear science. NNSA maintains and enhances the safety, security, reliability and performance of the U.S. nuclear weapons stockpile without nuclear testing;...

  9. Immobilization of sodium-bearing high-level radioactive waste in synroc containing (Na{sub 0.5}Nd{sub 0.5})TiO{sub 3}-type perovskite

    SciTech Connect (OSTI)

    Li, L.; Luo, S.; Tang, B.; Wang, D.

    1997-01-01

    This study on the immobilization of high-sodium-bearing HLW in synroc indicates that (Na{sub 0.5}Nd{sub 0.5})TiO{sub 3}-type perovskite can be used to incorporate a high content of sodium in synroc. Synroc samples containing 13.0 wt% waste oxide and 5.7 wt% Na{sub 2}O show very well chemical durability and physical properties. The standard Synroc-C formulation can incorporate only 2 wt% Na{sub 2}O, so this study greatly improved the immobilization ability of sodium in Synroc-related material.

  10. Heat wave contributes to higher summer electricity demand in the Northeast

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat wave contributes to higher summer electricity demand in the Northeast In its new energy forecast, the U.S. Energy Information Administration expects summer retail electricity prices in the Northeast to be 2.7 percent higher than last summer...mainly due to rising costs for the fuels used to generate electricity. Many households ran their air conditioners more than usual last month to try to beat the East Coast heat wave. While customers in New England are expected to use 1 percent more

  11. Northeast Gateway Natural Gas LNG Imports (Price) From Qatar (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Northeast Gateway Natural Gas LNG Imports (Price) From Qatar (Dollars per Thousand Cubic Feet) Northeast Gateway Natural Gas LNG Imports (Price) From Qatar (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 6.38 -- -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  12. Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report April through June 2003

    Office of Legacy Management (LM)

    7-TAC GJO-PIN 13.5.1-1 U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy DE-AC13-02GJ79491 Approved for public release; distribution is unlimited. Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report April Through June 2003 July 2003 N0063400 GJO- 2003- 467- TAC GJO-PIN 13.5.1-1 Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measures

  13. Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report October through December 2002

    Office of Legacy Management (LM)

    700 GJO-2003-411-TAC GJO-PIN 13.5.1-1 Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report October through December 2002 January 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13-02GJ79491 Task Order Number ST03-107 Document Number N0057700 Contents DOE/Grand Junction Office Northeast Site NAPL Interim Measures Progress Report January 2003 Page

  14. Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report-January through March 2003

    Office of Legacy Management (LM)

    4-TAC GJO-PIN 13.5.1-1 Pinellas Environmental Restoration Project January through March 2003 Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report April 2003 Grand Junction Office U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy DE-AC13-02GJ79491 Approved for public release; distribution is unlimited. N0060900 GJO-2003-434-TAC GJO-PIN 13.5.1-1 Pinellas Environmental Restoration Project Northeast Site Non-Aqueous Phase Liquids

  15. One million curies of radioactive material recovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive material recovered One million curies of radioactive material recovered The accomplishment represents a major milestone in protecting our nation and the world from material that could be used in "dirty bombs" by terrorists. December 22, 2014 Rick Day of Los Alamos National Laboratory's International Threat Reduction group and the Off-Site Source Recovery Project (OSRP) holds a non-radioactive training mockup of what a typical cobalt-60 source might look like. The source is

  16. DOE/NV Radioactive Waste Acceptance Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the Proper Characterization and Disposal of Sealed Radioactive Sources Revision 2, October 1997 Revised by: DOE/NV Radioactive Waste Acceptance Program and The NTSWAC Working Group EXECUTIVE SUMMARY The "Position Paper on the Proper Characterization and Disposal of Sealed Radioactive Sources" was originally developed by the NVO-325 Work Group, Sealed Source Waste Characterization Subgroup. The NVO-325 Workgroup, now called the NTSWAC Working Group, is comprised of representatives

  17. Science with Beams of Radioactive Isotopes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pacifichem 2015 Pacifichem 2015 The International Chemical Congress of Pacific Basin Societies Science with Beams of Radioactive Isotopes (# 340) Honolulu, Hawaii, USA December 15-20, 2015 Science with Beams of Radioactive Isotopes (# 340) All of the elements that make up the periodic chart have been created from nuclear reactions. Many of the stable nuclei in the universe are daughters of unstable isotopes, and their true origin lies in the stellar reactions of these radioactive isotopes. Thus

  18. ORISE: Radiation and Radioactive Contamination FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    does radiation come from? A: Radiation comes from many sources, some natural and some man-made. Naturally occurring radioactive materials, such as uranium, thorium and radon are...

  19. Radioactivity in Precipitation: Methods and Observations from...

    Office of Environmental Management (EM)

    Radioactivity in Precipitation: Methods & Observations from Savannah River Site Dennis Jackson P.E. & Timothy Jannik - Savannah River National Laboratory Teresa Eddy - Savannah...

  20. Annual Transportation Report for Radioactive Waste Shipments...

    National Nuclear Security Administration (NNSA)

    ANNUAL TRANSPORTATION REPORT FY 2008 Radioactive Waste Shipments to and from the Nevada Test Site (NTS) February 2009 United States Department of Energy National Nuclear Security...

  1. Agencies complete comprehensive investigation for radioactive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a CERCLA (Superfund) Remedial Investigation and Baseline Risk Assessment and Feasibility Study of a radioactive and hazardous waste landfill at the U.S. Department of...

  2. radioactive waste | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    radioactive waste | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

  3. Cosmic radioactivity and INTEGRAL results

    SciTech Connect (OSTI)

    Diehl, Roland

    2014-05-02

    Gamma-ray lines from radioactive decay of unstable isotopes co-produced by nucleosynthesis in massive stars and supernova have been measured since more than thirty years. Over the past ten years, INTEGRAL complemented the first sky survey made by COMPTEL. The {sup 26}A1 isotope with 1 My decay time had been first direct proof of currently-ongoing nucleosynthesis in our Galaxy. This has now become a tool to study the ?My history of specific source regions, such as massive-star groups and associations in nearby regions which can be discriminated from the galactic-plane background, and the inner Galaxy, where Doppler shifted lines add to the astronomical information about bar and spiral structure. Recent findings suggest that superbubbles show a remarkable asymmetry, on average, in the spiral arms of our galaxy. {sup 60}Fe is co-produced by the sources of {sup 26}A1, and the isotopic ratio from their nucleosynthesis encodes stellar-structure information. Annihilation gamma-rays from positrons in interstellar space show a puzzling bright and extended source region central to our Galaxy, but also may be partly related to nucleosynthesis. {sup 56}Ni and {sup 44}Ti isotope gamma-rays have been used to constrain supernova explosion mechanisms. Here we report latest results using the accumulated multi-year database of INTEGRAL observations, and discuss their astrophysical interpretations, connecting to other traces of cosmic radioactivity and to other cosmic messengers.

  4. NTSF Spring 2012 Agenda | Department of Energy

    Office of Environmental Management (EM)

    2 Agenda NTSF Spring 2012 Agenda Meeting agenda with times and descriptions of events. PDF icon NTSF Spring 2012 Agenda More Documents & Publications Northeast High-Level Radioactive Waste Transportation Task Force Agenda Midwestern Radioactive Materials Transportation Committee Agenda NTSF 2015

  5. Spring 2012 National Transportation Stakeholder Forum Meetings, Tennessee |

    Energy Savers [EERE]

    Department of Energy 2 National Transportation Stakeholder Forum Meetings, Tennessee Spring 2012 National Transportation Stakeholder Forum Meetings, Tennessee NTSF Registration Website Save The Date! NTSF Spring 2012 Agenda NTSF Agenda Midwestern Radioactive Materials Transportation Committee Agenda Northeast High-Level Radioactive Waste Transportation Task Force Agenda Transuranic Waste Transportation Working Group Agenda Western Governor's Association Agenda NTSF Presentations Session

  6. DEVELOPMENT OF A ROTARY MICROFILTER FOR RADIOACTIVE WASTE APPLICATIONS

    SciTech Connect (OSTI)

    Poirier, M; David Herman, D; Samuel Fink, S

    2008-02-25

    The processing rate of Savannah River Site (SRS) high-level waste decontamination processes are limited by the flow rate of the solid-liquid separation. The baseline process, using a 0.1 micron cross-flow filter, produces {approx}0.02 gpm/sq. ft. of filtrate under expected operating conditions. Savannah River National Laboratory (SRNL) demonstrated significantly higher filter flux for actual waste samples using a small-scale rotary filter. With funding from the U. S. Department of Energy Office of Cleanup Technology, SRNL personnel are evaluating and developing the rotary microfilter for radioactive service at SRS. The authors improved the design for the disks and filter unit to make them suitable for high-level radioactive service. They procured two units using the new design, tested them with simulated SRS wastes, and evaluated the operation of the units. Work to date provides the following conclusions and program status: (1) The authors modified the design of the filter disks to remove epoxy and Ryton{reg_sign}. The new design includes welding both stainless steel and ceramic coated stainless steel filter media to a stainless steel support plate. The welded disks were tested in the full-scale unit. They showed good reliability and met filtrate quality requirements. (2) The authors modified the design of the unit, making installation and removal easier. The new design uses a modular, one-piece filter stack that is removed simply by disassembly of a flange on the upper (inlet) side of the filter housing. All seals and rotary unions are contained within the removable stack. (3) While it is extremely difficult to predict the life of the seal, the vendor representative indicates a minimum of one year in present service conditions is reasonable. Changing the seal face material from silicon-carbide to a graphite-impregnated silicon-carbide is expected to double the life of the seal. Replacement of the current seal with an air seal could increase the lifetime to 5 years and is undergoing testing in the current work. (4) The bottom bushing showed wear due to a misalignment during the manufacture of the filter tank. Replacing the graphite bushing with a more wear resistant material such as a carbide material will increase the lifetime of the bushing. This replacement requires a more wear resistant part or coating to prevent excessive wear of the shaft. The authors are currently conducting testing with the more wear resistant bushing. (5) The project team plans to use the rotary microfilter as a filter in advance of an ion exchange process under development for potential deployment in SRS waste tank risers.

  7. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    SciTech Connect (OSTI)

    Wasan, Darsh T.

    2007-10-09

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).

  8. RESRAD Computer Code - Evaluation of Radioactively Contaminated Sites |

    Energy Savers [EERE]

    Department of Energy RESRAD Computer Code - Evaluation of Radioactively Contaminated Sites RESRAD Computer Code - Evaluation of Radioactively Contaminated Sites The evaluation of sites with radioactive contamination was a problem until the RESidual RADioactivity (RESRAD) Computer Code was first released in 1989. PDF icon RESRAD Computer Code - Evaluation of Radioactively Contaminated Sites More Documents & Publications 2012 Environmental/Radiological Assistance Directory (ERAD)

  9. EMERGENCY RESPONSE TO A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL

    Office of Environmental Management (EM)

    Emer Emer Emer Emer Emergency Response to a T gency Response to a T gency Response to a T gency Response to a T gency Response to a Transportation ransportation ransportation ransportation ransportation Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the

  10. Northeast regional biomass program. Second & third quarterly reports, October 1, 1995--March 31, 1996

    SciTech Connect (OSTI)

    1996-07-01

    The Northeast Regional Biomass Program (NRBP) is comprised of the following states: Connecticut. Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island and Vermont. It is managed for the Department of Energy (DOE) by the CONEG Policy Research Center, Inc. The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional Biomass Program (NRBP) is designed to help the eleven Northeastern states overcome these obstacles and achieve their biomass energy potentials. The objective of this program in the current and future years is to increase the role of biomass fuels in the region`s energy mix by providing the impetus for states and the private sector to develop a viable Northeast biomass fuels market.

  11. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 2. Appendices

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains appendices of supplementary data on waste management systems, geologic disposal, radiological standards, radiation dose calculation models, related health effects, baseline ecology, socio-economic conditions, hazard indices, comparison of defense and commercial wastes, design considerations, and wastes from thorium-based fuel cycle alternatives. (DMC)

  12. Considerations of human inturison in U.S. programs for deep geologic disposal of radioactive waste.

    SciTech Connect (OSTI)

    Swift, Peter N.

    2013-01-01

    Regulations in the United States that govern the permanent disposal of spent nuclear fuel and high-level radioactive waste in deep geologic repositories require the explicit consideration of hypothetical future human intrusions that disrupt the waste. Specific regulatory requirements regarding the consideration of human intrusion differ in the two sets of regulations currently in effect in the United States; one defined by the Environmental Protection Agency's 40 Code of Federal Regulations part 197, applied only to the formerly proposed geologic repository at Yucca Mountain, Nevada, and the other defined by the Environmental Protection Agency's 40 Code of Federal Regulations part 191, applied to the Waste Isolation Pilot Plant in New Mexico and potentially applicable to any repository for spent nuclear fuel and high-level radioactive waste in the United States other than the proposed repository at Yucca Mountain. This report reviews the regulatory requirements relevant to human intrusion and the approaches taken by the Department of Energy to demonstrating compliance with those requirements.

  13. Regulatory and extra-regulatory testing to demonstrate radioactive material packaging safety

    SciTech Connect (OSTI)

    Ammerman, D.J.

    1997-06-01

    Packages for the transportation of radioactive material must meet performance criteria to assure safety and environmental protection. The stringency of the performance criteria is based on the degree of hazard of the material being transported. Type B packages are used for transporting large quantities of radioisotopes (in terms of A{sub 2} quantities). These packages have the most stringent performance criteria. Material with less than an A{sub 2} quantity are transported in Type A packages. These packages have less stringent performance criteria. Transportation of LSA and SCO materials must be in {open_quotes}strong-tight{close_quotes} packages. The performance requirements for the latter packages are even less stringent. All of these package types provide a high level of safety for the material being transported. In this paper, regulatory tests that are used to demonstrate this safety will be described. The responses of various packages to these tests will be shown. In addition, the response of packages to extra-regulatory tests will be discussed. The results of these tests will be used to demonstrate the high level of safety provided to workers, the public, and the environment by packages used for the transportation of radioactive material.

  14. Method for immobilizing radioactive iodine

    DOE Patents [OSTI]

    Babad, Harry (Richland, WA); Strachan, Denis M. (Richland, WA)

    1980-01-01

    Radioactive iodine, present as alkali metal iodides or iodates in an aqueous solution, is incorporated into an inert solid material for long-term storage by adding to the solution a stoichiometric amount with respect to the formation of a sodalite (3M.sub.2 O.3Al.sub.2 O.sub.3. 6SiO.sub.2.2MX, where M=alkali metal; X=I.sup.- or IO.sub.3.sup.-) of an alkali metal, alumina and silica, stirring the solution to form a homogeneous mixture, drying the mixture to form a powder, compacting and sintering the compacted powder at 1073 to 1373 K (800.degree. to 1100.degree. C.) for a time sufficient to form sodalite.

  15. Diverter assembly for radioactive material

    DOE Patents [OSTI]

    Andrews, K.M.; Starenchak, R.W.

    1988-04-11

    A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which moves between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place. 3 figs.

  16. Diverter assembly for radioactive material

    DOE Patents [OSTI]

    Andrews, Katherine M. (Pittsburgh, PA); Starenchak, Robert W. (Youngwood, PA)

    1989-01-01

    A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which mvoes between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place.

  17. Apparatus and method for radioactive waste screening

    DOE Patents [OSTI]

    Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy

    2012-09-04

    An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.

  18. Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9

    SciTech Connect (OSTI)

    Klein, J.A.; Storch, S.N.; Ashline, R.C.

    1994-03-01

    The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  19. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

  20. Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 8

    SciTech Connect (OSTI)

    Payton, M. L.; Williams, J. T.; Tolbert-Smith, M.; Klein, J. A.

    1992-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  1. High Level Waste Management Division High. Level Waste System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... ProdMod tracks three key waste constituents: 1) sodium, ... HLW System will operate as fast as available funding and ... Restoration and Reactors are also treated.After ...

  2. High Level Waste Management Division High-Level Waste System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 558,687 Feb-99 1,023,300 573,104 Mar-gg 1,037,742 650,000 587,521 Apr-99 138,442 ... 2F E:prnts RHLWEI ITPII OthJ es* 1 Oct-gg 18,710 38,610 35,800 27,000 203,000 0 0 ...

  3. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    SciTech Connect (OSTI)

    Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.

    2012-10-19

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.

  4. "Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Home Appliances Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ," U.S. Housing Units (millions) " ,,,"Census Division" ,,"Total Northeast" "Home Appliances Usage Indicators",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A

  5. Hanford Site Shares Lessons Learned in Retrieving Highly Radioactive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shares Lessons Learned in Retrieving Highly Radioactive Material Hanford Site Shares ... equipment that will be used to retrieve highly radioactive sludge at the Hanford site. ...

  6. No increase in background, manmade radioactivity for Los Alamos...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Man-Made Radioactivity For Los Alamos area No increase in background, manmade radioactivity for Los Alamos area Two aerial flyovers found that radioisotopes and their associated...

  7. The Model 9977 Radioactive Material Packaging Primer (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: The Model 9977 Radioactive Material Packaging Primer Citation Details In-Document Search Title: The Model 9977 Radioactive Material Packaging Primer The Model...

  8. Management Not Available 12 MANAGEMENT OF RADIOACTIVE AND NON...

    Office of Scientific and Technical Information (OSTI)

    87 Oak Ridge model conference: Proceedings: Volume I, Part 3, Waste Management Not Available 12 MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 11...

  9. Letter to Congress RE: Office of Civilian Radioactive Waste Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial Report Letter to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial...

  10. Radioactive Tank Waste Remediation Focus Area. Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  11. Resistance Weld Qualification Analysis for Radioactive Waste Canisters

    SciTech Connect (OSTI)

    Gupta, N.K.; Gong, C.

    1995-01-10

    High level radioactive waste canisters are sealed by resistance upset welding to ensure leak tight closures. Resistance welding is fast, uniform, and can be performed remotely to minimize radiation exposure to the operators. Canisters are constructed in accordance with ASME Band PV Code, Section VIII, Division 1, however, the resistance welds are not used in Section VIII. The resistance welds are qualified by analysis using material properties obtained from the test coupons. Burst tests are performed on canister welds to meet ASME Section IX welder qualification requirements. Since burst tests are not used in Section IX for resistance weld qualification, finite element results of canister resistance welds are compared with the finite element analysis results of resistance weld tests in ASME Section IX, QW-196 to establish similarity between the two weld tests. Detailed analyses show that the primary mode of failure in both the tests is shear and, therefore, the use of burst test in place of shear test is acceptable. It is believed that the detailed analyses and results could help in establishing acceptance criteria for resistance upset welding in ASME B&PV Code, Sections VIII, and IX.

  12. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  13. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  14. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  15. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  16. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

  17. Radioactive anomaly discrimination from spectral ratios

    DOE Patents [OSTI]

    Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements

    2013-08-20

    A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.

  18. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

  19. Structure of Low-Lying Excited States of Guanine in DNA and Solution: Combined Molecular Mechanics and High-Level Coupled Cluster Studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kowalski, Karol; Valiev, Marat

    2007-01-01

    High-level ab-initio equation-of-motion coupled-cluster methods with singles, doubles, and noniterative triples are used, in conjunction with the combined quantum mechanical molecular mechanics approach, to investigate the structure of low-lying excited states of the guanine base in DNA and solvated environments. Our results indicate that while the excitation energy of the first excited state is barely changed compared to its gas-phase counterpart, the excitation energy of the second excited state is blue-shifted by 0.24 eV.

  20. SRP RADIOACTIVE WASTE RELEASES S

    Office of Scientific and Technical Information (OSTI)

    .. . . . . -- SRP RADIOACTIVE WASTE RELEASES S t a r t u p t h r o u g h 1 9 5 9 September 1 9 6 0 _- R E C O R D - W O R K S T E C H N I C A L D E P A R T M E N T 1 J. E. C o l e , W i l n i 1 4 W. P. 3ebbii 3 H. Worthington, Wilm 16 C. $?. P~.t-Lei-s~:; - 5 J. D. E l l e t t - 17 E. C. Morris 6 F. H. Endorf 19 3 . L. &tier 7 K. W. F r e n c h 20 bi. C . 3 e i n i g 8 J. K. Lower 2 1 2. 3 . 3 G : - x r 9 K. W. M i l l e t t 22 R . FJ . V 2 x 7 : W ~ ~ C k 1 c - 2 J. B. Tinker, W i h L-, i .

  1. Computer Model Buildings Contaminated with Radioactive Material

    Energy Science and Technology Software Center (OSTI)

    1998-05-19

    The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material.

  2. Radioactive Waste Management Complex Wide Review

    Office of Environmental Management (EM)

    This page intentionally blank i Complex-Wide Review of DOE's Radioactive Waste Management Summary Report TABLE OF CONTENTS Acronyms ........................................................................................................................................ iii Executive Summary ....................................................................................................................... vii 1.0 Overview of the Complex-Wide Review

  3. Radioactive materials shipping cask anticontamination enclosure

    DOE Patents [OSTI]

    Belmonte, Mark S. (Irwin, PA); Davis, James H. (Pittsburgh, PA); Williams, David A. (Pittsburgh, PA)

    1982-01-01

    An anticontamination device for use in storing shipping casks for radioactive materials comprising (1) a seal plate assembly; (2) a double-layer plastic bag; and (3) a water management system or means for water management.

  4. Principles for Sampling Airborne Radioactivity from Stacks

    SciTech Connect (OSTI)

    Glissmeyer, John A.

    2010-10-18

    This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

  5. Radioactive Materials at SSRL | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Run, there are requests from users to transport and use small amounts of radioactive material in their experiments, either as stand alone samples or in a matrix of other...

  6. Radioactive Material or Multiple Hazardous Materials Decontamination

    Broader source: Energy.gov [DOE]

    The purpose of this procedure is to provide guidance for performing decontamination of individuals who have entered a “hot zone” during transportation incidents involving  radioactive.

  7. CRAD, NNSA- Radioactive Waste Management Program (RW)

    Broader source: Energy.gov [DOE]

    CRAD for Radioactive Waste Management Program (RW). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  8. Northeast regional assessment study for solar electric options in the period 1980-2000

    SciTech Connect (OSTI)

    1981-04-01

    Opportunities for demonstration and large scale deployment of solar electric facilities are identified and assessed. Technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation are defined. The following topics are covered: a description of the Northeast Region and its solar resources, central station applications, a dispersed user analysis, user viewpoints and institutional factors, and market potential for dispersed solar electric systems. (MHR)

  9. Table HC11.1 Housing Unit Characteristics by Northeast Census Region, 2005

    Gasoline and Diesel Fuel Update (EIA)

    1.1 Housing Unit Characteristics by Northeast Census Region, 2005 Total......................................................................... 111.1 20.6 15.1 5.5 Urban/Rural Location (as Self-Reported) City....................................................................... 47.1 6.9 4.7 2.2 Town..................................................................... 19.0 6.0 4.2 1.9 Suburbs................................................................ 22.7 4.4 4.0 0.5

  10. Electricity Generation from Geothermal Resources on the Fort Peck Reservation in Northeast Montana

    Office of Environmental Management (EM)

    Electricity Generation from Geothermal Resources on the Fort Peck Reservation in Northeast Montana Shawn Olson Acting Director Economic Development Office Fort Peck Assiniboine & Sioux Tribes DOE Tribal Energy Program Review March 24-27, 2014 US Department of Energy Tribal Energy Program Grant #DEEE0002511 Gradient Geophysics Inc. PO Box 18214 Missoula, MT 59808 406 360-3456 garryjcarlson@gmail.com www.gradientgeo.com Birkby Consulting LLC 238 East Sussex Avenue Missoula, MT 59801

  11. Transport of Radioactive Material by Alpha Recoil

    SciTech Connect (OSTI)

    Icenhour, A.S.

    2005-05-19

    The movement of high-specific-activity radioactive particles (i.e., alpha recoil) has been observed and studied since the early 1900s. These studies have been motivated by concerns about containment of radioactivity and the protection of human health. Additionally, studies have investigated the potential advantage of alpha recoil to effect separations of various isotopes. This report provides a review of the observations and results of a number of the studies.

  12. Northeast Regional Biomass Program. Ninth year, Fourth quarterly report, July--September 1992

    SciTech Connect (OSTI)

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  13. Northeast Regional Biomass Program first and second quarter reports, October 1, 1994--March 31, 1995

    SciTech Connect (OSTI)

    1995-07-01

    The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential commercial, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional biomass Program (NRBP) is designed to help the eleven Northeastern states overcome these obstacles and achieve their biomass energy potentials. The objective of this program in the current and future years is to increase the role of biomass fuels in the region`s energy mix by providing the impetus for states and the private sector to develop a viable Northeast biomass fuels market. This paper contains a management report, state program summaries, technical project status report, and technology transfer activities.

  14. Northeast regional biomass program: Second and Third quarterlies and final report, January 1994--September 30, 1994

    SciTech Connect (OSTI)

    1995-07-01

    The Northeast Regional Biomass Program (NRBP) is comprised of the following states: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania. Rhode Island and Vermont. It is managed for the Department of Energy (DOE) by the CONEG Policy Research Center, Inc. The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential, commercial, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional Biomass Program (NRBP) is designed to help the eleven states overcome obstacles and achieve biomass energy potentials.

  15. PIA - Radioactive Airborne Contamination Survey | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radioactive Airborne Contamination Survey PIA - Radioactive Airborne Contamination Survey PIA - Radioactive Airborne Contamination Survey PDF icon PIA - Radioactive Airborne Contamination Survey More Documents & Publications Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PIA - Bonneville Power Adminstration Ethics Helpline PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009

  16. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    SciTech Connect (OSTI)

    Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

    2011-06-20

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

  17. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  18. CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT

    SciTech Connect (OSTI)

    Marra, J.

    2010-05-05

    The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense application that formed the basis for the commercial nuclear power industry.

  19. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, vertical emplacement mode: Volume 1

    SciTech Connect (OSTI)

    Not Available

    1987-12-01

    This Conceptual Design Report describes the conceptual design of a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. Waste receipt, processing, packing, and other surface facility operations are described. Operations in the shafts underground are described, including waste hoisting, transfer, and vertical emplacement. This report specifically addresses the vertical emplacement mode, the reference design for the repository. Waste retrieval capability is described. The report includes a description of the layout of the surface, shafts, and underground. Major equipment items are identified. The report includes plans for decommissioning and sealing of the facility. The report discusses how the repository will satisfy performance objectives. Chapters are included on basis for design, design analyses, and data requirements for completion of future design efforts. 105 figs., 52 tabs.

  20. Final Report - High Level Waste Vitrification System Improvements, VSL-07R1010-1, Rev 0, dated 04/16/07

    SciTech Connect (OSTI)

    Kruger, Albert A.; Gan, H.; Pegg, I. L.; Gong, W.; Champman, C. C.; Joseph, I.; Matlack, K. S.

    2013-11-13

    This report describes work conducted to support the development and testing of new glass formulations that extend beyond those that have been previously investigated for the Hanford Waste Treatment and Immobilization Plant (WTP). The principal objective was to investigate maximization of the incorporation of several waste components that are expected to limit waste loading and, consequently, high level waste (HLW) processing rates and canister count. The work was performed with four waste compositions specified by the Office of River Protection (ORP); these wastes contain high concentrations of bismuth, chromium, aluminum, and aluminum plus sodium. The tests were designed to identify glass formulations that maximize waste loading while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass formulations, increased glass processing temperature, increased crystallinity, and feed solids content on waste processing rate and product quality.