National Library of Energy BETA

Sample records for north-south temperature gradient

  1. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  2. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  3. Short wavelength ion temperature gradient turbulence

    SciTech Connect (OSTI)

    Chowdhury, J.; Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar (India); Brunner, S.; Lapillonne, X.; Villard, L. [CRPP, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Jenko, F. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr. 2, D-85748 Garching (Germany)

    2012-10-15

    The ion temperature gradient (ITG) mode in the high wavenumber regime (k{sub y}{rho}{sub s}>1), referred to as short wavelength ion temperature gradient mode (SWITG) is studied using the nonlinear gyrokinetic electromagnetic code GENE. It is shown that, although the SWITG mode may be linearly more unstable than the standard long wavelength (k{sub y}{rho}{sub s}<1) ITG mode, nonlinearly its contribution to the total thermal ion heat transport is found to be low. We interpret this as resulting from an increased zonal flow shearing effect on the SWITG mode suppression.

  4. Geology and Temperature Gradient Surveys Blue Mountain Geothermal...

    Open Energy Info (EERE)

    Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  5. Thermoacoustic mixture separation with an axial temperature gradient

    SciTech Connect (OSTI)

    Geller, Drew W; Swift, Gregory A

    2008-01-01

    The theory of thermoacoustic mixture separation is extended to include the effect of a nonzero axial temperature gradient. The analysis yields a new term in the second-order mole flux that is proportional to the temperature gradient and to the square of the volumetric velocity and is independent of the phasing of the wave. Because of this new term, thermoacoustic separation stops at a critical temperature gradient and changes direction above that gradient. For a traveling wave, this gradient is somewhat higher than that predicted by a simple four-step model. An experiment tests the theory for temperature gradients from 0 to 416 K/m in 50-50 He-Ar mixtures.

  6. Critical gradient formula for toroidal electron temperature gradient modes F. Jenko, W. Dorland,a)

    E-Print Network [OSTI]

    Hammett, Greg

    Critical gradient formula for toroidal electron temperature gradient modes F. Jenko, W. Dorland and edge plasmas are presented. An algebraic formula for the threshold of the linear instability is derived formula. We discuss the results with respect to previous analytical results and to experimental

  7. Field Investigations And Temperature-Gradient Drilling At Marine...

    Open Energy Info (EERE)

    Field Investigations And Temperature-Gradient Drilling At Marine Corps Air-Ground Combat Center (Mcagcc), Twenty-Nine Palms, Ca Jump to: navigation, search OpenEI Reference...

  8. Edge Temperature Gradient as Intrinsic Rotation Drive in AlcatorC...

    Office of Scientific and Technical Information (OSTI)

    Edge Temperature Gradient as Intrinsic Rotation Drive in AlcatorC-Mod Tokamak Plasmas Citation Details In-Document Search Title: Edge Temperature Gradient as Intrinsic Rotation...

  9. Oil displacement through a porous medium with a temperature gradient

    E-Print Network [OSTI]

    Oliveira, C L N; Herrmann, H J

    2011-01-01

    We investigate the effect of a temperature gradient on oil recovery in a two-dimensional pore-network model. The oil viscosity depends on temperature as, $\\mu_o=exp(B/T)$, where $B$ is a physico-chemical parameter depending on the type of oil, and $T$ is the temperature. A temperature gradient is applied across the medium in the flow direction. Initially, the porous medium is saturated with oil and, then, another fluid is injected. We have considered two cases representing different injection strategies. In the first case, the invading fluid viscosity is constant (finite viscosity ratio) while in the second one, the invading fluid is inviscid (infinite viscosity ratio). Our results show that, for the case of finite viscosity ratio, recovery increases with $\\Delta T$ independently on strength or sign of the gradient. For an infinite viscosity ratio, a positive temperature gradient is necessary to enhance recovery. Moreover, we show that, for $\\Delta T>0$, the percentage of oil recovery generally decreases (inc...

  10. Validation of electron temperature gradient turbulence in the Columbia Linear Machine

    E-Print Network [OSTI]

    Lin, Zhihong

    Validation of electron temperature gradient turbulence in the Columbia Linear Machine X. R. Fu,1 W hydrogen plasma of the Columbia Linear Machine. Electron temperature profiles with strong gradients; published online 6 March 2012) The electron temperature gradient (ETG) mode, which is a universal mechanism

  11. Electron geodesic acoustic modes in electron temperature gradient mode turbulence

    SciTech Connect (OSTI)

    Anderson, Johan; Nordman, Hans [Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Singh, Raghvendra; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2012-08-15

    In this work, the first demonstration of an electron branch of the geodesic acoustic mode (el-GAM) driven by electron temperature gradient (ETG) modes is presented. The work is based on a fluid description of the ETG mode retaining non-adiabatic ions and the dispersion relation for el-GAMs driven nonlinearly by ETG modes is derived. A new saturation mechanism for ETG turbulence through the interaction with el-GAMs is found, resulting in a significantly enhanced ETG turbulence saturation level compared to the mixing length estimate.

  12. Effects of Temperature Gradients and Heat Fluxes on High-Temperature Oxidation

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2008-04-01

    The effects of a temperature gradient and heat flux on point defect diffusion in protective oxide scales were examined. Irreversible thermodynamics were used to expand Fick’s first law of diffusion to include a heat-flux term—a Soret effect. Oxidation kinetics were developed for the oxidation of cobalt and of nickel doped with chromium. Research is described to verify the effects of a heat flux by oxidizing pure cobalt in a temperature gradient at 900 °C, and comparing the kinetics to isothermal oxidation. No evidence of a heat flux effect was found.

  13. Coherent structures in ion temperature gradient turbulence-zonal flow

    SciTech Connect (OSTI)

    Singh, Rameswar; Singh, R.; Kaw, P.; Gürcan, Ö. D.; Diamond, P. H.

    2014-10-15

    Nonlinear stationary structure formation in the coupled ion temperature gradient (ITG)-zonal flow system is investigated. The ITG turbulence is described by a wave-kinetic equation for the action density of the ITG mode, and the longer scale zonal mode is described by a dynamic equation for the m?=?n?=?0 component of the potential. Two populations of trapped and untrapped drift wave trajectories are shown to exist in a moving frame of reference. This novel effect leads to the formation of nonlinear stationary structures. It is shown that the ITG turbulence can self-consistently sustain coherent, radially propagating modulation envelope structures such as solitons, shocks, and nonlinear wave trains.

  14. Assessment of temperature gradients in multianvil assemblies using spinel layer growth kinetics

    E-Print Network [OSTI]

    van Westrenen, Wim

    Assessment of temperature gradients in multianvil assemblies using spinel layer growth kinetics Wim Geophysical Laboratory and Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad

  15. Water transport inside a single-walled carbon nanotube driven by temperature gradient

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Water transport inside a single-walled carbon nanotube driven by temperature gradient J. Shiomi that the water cluster is transported with the average acceleration proportional to the temperature gradient of the confined water is sufficient to realize the transport. Particularly for the system with hydrophobic

  16. Pararell Electron temperature and Density Gradients measured in the JET Mk I Divertor using Thermal Helium Beams

    E-Print Network [OSTI]

    Pararell Electron temperature and Density Gradients measured in the JET Mk I Divertor using Thermal Helium Beams

  17. Observation of a Critical Gradient Threshold for Electron Temperature Fluctuations in the DIII-D Tokamak

    E-Print Network [OSTI]

    White, Anne E.

    A critical gradient threshold has been observed for the first time in a systematic, controlled experiment for a locally measured turbulent quantity in the core of a confined high-temperature plasma. In an experiment in the ...

  18. Computation of Growth Rates and Threshold of the Electromagnetic Electron Temperature Gradient Modes in Tokamaks

    E-Print Network [OSTI]

    Varun Tangri

    2013-01-29

    In this manuscript, eigenvalues of the Electron Temperature Gradient (ETG) modes and Ion Temperature Gradient (ITG) modes are determined numerically using Hermite and Sinc differentiation matrices based methods. It is shown that these methods are very useful for the computation of growth rates and threshold of the ETG and ITG modes. The total number of accurately computed eigenvalues for the modes have also been computed. The ideas developed here are also of relevance to other modes that use Ballooning formalism.

  19. Computation of Growth Rates and Threshold of the Electromagnetic Electron Temperature Gradient Modes in Tokamaks

    E-Print Network [OSTI]

    Tangri, Varun

    2013-01-01

    In this manuscript, eigenvalues of the Electron Temperature Gradient (ETG) modes and Ion Temperature Gradient (ITG) modes are determined numerically using Hermite and Sinc differentiation matrices based methods. It is shown that these methods are very useful for the computation of growth rates and threshold of the ETG and ITG modes. The total number of accurately computed eigenvalues for the modes have also been computed. The ideas developed here are also of relevance to other modes that use Ballooning formalism.

  20. Droplet motion with phase change in a temperature gradient Akira Onuki and Kentaro Kanatani

    E-Print Network [OSTI]

    2005 We examine the droplet motion in one-component fluids in a small temperature gradient by solving changes the hydro- dynamic flow around the droplet. As a result, the temperature becomes almost the Reynolds number Re=vgR/ gR3 1- / / 2 is small. Here = / is the exterior kinematic viscosity. As another

  1. Probing plasma turbulence by modulating the electron temperature gradient

    E-Print Network [OSTI]

    DeBoo, J. C.

    The local value of a/L[subscript Te], a turbulence drive term, was modulated with electron cyclotron heating in L-mode discharges on DIII-D [ J. L. Luxon, Nucl. Fusion 42, 614 (2002) ] and the density and electron temperature ...

  2. Compressed ion temperature gradient turbulence in diverted tokamak edgea...

    E-Print Network [OSTI]

    Lin, Zhihong

    and Space Sciences and Department of Physics, University of California, San Diego, La Jolla, California 92093, USA 4 Department of Physics and Astronomy, University of California, Irvine, California 92697 the thermal transport and the temperature profile saturate quickly, the E B rotation shows a longer time

  3. Finite ballooning angle effects on ion temperature gradient driven mode in gyrokinetic flux tube simulations

    SciTech Connect (OSTI)

    Singh, Rameswar, E-mail: rameswar.singh@lpp.polytechnique.fr [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India) [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Laboratoire de Physique des Plasmas, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Brunner, S. [CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)] [CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Ganesh, R. [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India)] [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Jenko, F. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)] [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2014-03-15

    This paper presents effects of finite ballooning angles on linear ion temperature gradient (ITG) driven mode and associated heat and momentum flux in Gyrokinetic flux tube simulation GENE. It is found that zero ballooning angle is not always the one at which the linear growth rate is maximum. The ITG mode acquires a short wavelength (SW) branch (k{sub ?}?{sub i}?>?1) when growth rates maximized over all ballooning angles are considered. However, the SW branch disappears on reducing temperature gradient showing characteristics of zero ballooning angle SWITG in case of extremely high temperature gradient. Associated heat flux is even with respect to ballooning angle and maximizes at nonzero ballooning angle while the parallel momentum flux is odd with respect to the ballooning angle.

  4. Plasma size and power scaling of ion temperature gradient driven turbulence

    SciTech Connect (OSTI)

    Idomura, Yasuhiro [Japan Atomic Energy Agency, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8587 (Japan)] [Japan Atomic Energy Agency, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8587 (Japan); Nakata, Motoki [Japan Atomic Energy Agency, Obuchi-Omotedate 2-166, Rokkasho, Kamikita, Aomori 039-3212 (Japan)] [Japan Atomic Energy Agency, Obuchi-Omotedate 2-166, Rokkasho, Kamikita, Aomori 039-3212 (Japan)

    2014-02-15

    The transport scaling with respect to plasma size and heating power is studied for ion temperature gradient driven turbulence using a fixed-flux full-f gyrokinetic Eulerian code. It is found that when heating power is scaled with plasma size, the ion heat diffusivity increases with plasma size in a local limit regime, where fixed-gradient ?f simulations predict a gyro-Bohm scaling. In the local limit regime, the transport scaling is strongly affected by the stiffness of ion temperature profiles, which is related to the power degradation of confinement.

  5. Temperature Gradients are Supported by Cantori in Chaotic S.R.Hudson 1), J.Breslau 1)

    E-Print Network [OSTI]

    Hudson, Stuart

    fields, and show that the temperature, generally a function of three-dimensional space, takes the simple the temperature is a surface function, T = T(), where labels flux surfaces, and gradients can be supportedTH/3-2 Temperature Gradients are Supported by Cantori in Chaotic Fields S.R.Hudson 1), J.Breslau 1

  6. Dynamics of Ion Temperature Gradient Turbulence and Transport with a Static Magnetic Island

    E-Print Network [OSTI]

    Izacard, Olivier; James, Spencer D; Brennan, Dylan P

    2015-01-01

    The quantification of the interaction mechanism between large-scale magnetohydrodynamics instabilities and small-scale drift-wave microturbulence is essential for predicting and optimizing the performance of magnetic confinement based fusion energy experiments. We report progress on understanding these interactions using both analytic theory and numerical simulation, with BOUT++ [B. Dudson et al., Comput. Phys. Comm. 180, 1467 (2009)] used to evolve simple five-field fluid models in a sheared slab geometry. This work focuses upon understanding the dynamics of the ion temperature gradient instability in the presence of a background static magnetic island in a weakly electromagnetic two-dimensional five-field model as key parameters such as ion temperature gradient, magnetic gradients and static magnetic island size are varied. The simulation results are then used to calculate the effective turbulent transport coefficient (i.e. resistivity) that is compared against classical coefficient. As part of this work, t...

  7. Temperature-Aware MPSoC Scheduling for Reducing Hot Spots and Gradients

    E-Print Network [OSTI]

    Coskun, Ayse

    to manufacture reliable systems while meeting energy and performance constraints. In this work, we solve the task, San Diego Abstract-- Thermal hot spots and temperature gradients on the die need to be minimized is optimal. We compare our technique against optimal scheduling methods for energy minimization, energy

  8. Phenotypic Plasticity of Leaf Shape along a Temperature Gradient in Acer rubrum

    E-Print Network [OSTI]

    Royer, Dana

    Phenotypic Plasticity of Leaf Shape along a Temperature Gradient in Acer rubrum Dana L. Royer1 plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection

  9. Molecular dynamics simulations of a chemical reaction; conditions for local equilibrium in a temperature gradient

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Molecular dynamics simulations of a chemical reaction; conditions for local equilibrium have examined a simple chemical reaction in a temperature gradient; 2F $ F2. A mechanical model molecular dynamics simulations showed that the chemical reaction is in local thermodynamic as well

  10. Seismic evidence for a tilted mantle plume and north^south mantle ow beneath Iceland

    E-Print Network [OSTI]

    Shen, Yang

    Seismic evidence for a tilted mantle plume and north^south mantle £ow beneath Iceland Yang Shen a.W., Washington, DC 20015, USA c Science Institute, University of Iceland, Reykjavik, Iceland d Department, Grensasvegi 9, Reykjavik, Iceland f Meteorological O/ce of Iceland, Bustadavegi 9, Reykjavik, Iceland g US

  11. ESTIMATION OF IN-SITU THERMAL CONDUCTIVITIES FROM TEMPERATURE GRADIENT MEASUREMENTS

    E-Print Network [OSTI]

    Hoang, V.T.

    2010-01-01

    to Evaluate Regional Geothermal Gradients t " Journal ofin wells, a linear geothermal gradient profile has beenfluid saturations. The geothermal gradient is caused by the

  12. A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence

    SciTech Connect (OSTI)

    Mavridis, M.; Isliker, H.; Vlahos, L.; Görler, T.; Jenko, F.; Told, D.

    2014-10-15

    An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.

  13. Comparing linear ion-temperature-gradient-driven mode stability of the National Compact Stellarator Experiment and a shaped tokamak

    SciTech Connect (OSTI)

    Baumgaertel, J. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Hammett, G. W.; Mikkelsen, D. R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2013-02-15

    One metric for comparing confinement properties of different magnetic fusion energy configurations is the linear critical gradient of drift wave modes. The critical gradient scale length determines the ratio of the core to pedestal temperature when a plasma is limited to marginal stability in the plasma core. The gyrokinetic turbulence code GS2 was used to calculate critical temperature gradients for the linear, collisionless ion temperature gradient (ITG) mode in the National Compact Stellarator Experiment (NCSX) and a prototypical shaped tokamak, based on the profiles of a JET H-mode shot and the stronger shaping of ARIES-AT. While a concern was that the narrow cross section of NCSX at some toroidal locations would result in steep gradients that drive instabilities more easily, it is found that other stabilizing effects of the stellarator configuration offset this so that the normalized critical gradients for NCSX are competitive with or even better than for the tokamak. For the adiabatic ITG mode, NCSX and the tokamak had similar adiabatic ITG mode critical gradients, although beyond marginal stability, NCSX had larger growth rates. However, for the kinetic ITG mode, NCSX had a higher critical gradient and lower growth rates until a/L{sub T} Almost-Equal-To 1.5 a/L{sub T,crit}, when it surpassed the tokamak's. A discussion of the results presented with respect to a/L{sub T} vs. R/L{sub T} is included.

  14. Turbulent electron transport in edge pedestal by electron temperature gradient turbulence

    SciTech Connect (OSTI)

    Singh, R.; Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 ; Jhang, Hogun; Diamond, P. H.; CMTFO and CASS, University of California, San Diego 92093-0424, California

    2013-11-15

    We present a model for turbulent electron thermal transport at the edge pedestal in high (H)-mode plasmas based on electron temperature gradient (ETG) turbulence. A quasi-linear analysis of electrostatic toroidal ETG modes shows that both turbulent electron thermal diffusivity and hyper-resistivity exhibits the Ohkawa scaling in which the radial correlation length of turbulence becomes the order of electron skin depth. Combination of the Ohkawa scales and the plasma current dependence results in a novel confinement scaling inside the pedestal region. It is also shown that ETG turbulence induces a thermoelectric pinch, which may accelerate the density pedestal formation.

  15. Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown

    E-Print Network [OSTI]

    Molaro, Jamie L; Langer, Steve A

    2015-01-01

    Thermomechanical processes such as fatigue and shock have been suggested to cause and contribute to rock breakdown on Earth, and on other planetary bodies, particularly airless bodies in the inner solar system. In this study, we modeled grain-scale stresses induced by diurnal temperature variations on simple microstructures made of pyroxene and plagioclase on various solar system bodies. We found that a heterogeneous microstructure on the Moon experiences peak tensile stresses on the order of 100 MPa. The stresses induced are controlled by the coefficient of thermal expansion and Young's modulus of the mineral constituents, and the average stress within the microstructure is determined by relative volume of each mineral. Amplification of stresses occurs at surface-parallel boundaries between adjacent mineral grains and at the tips of pore spaces. We also found that microscopic spatial and temporal surface temperature gradients do not correlate with high stresses, making them inappropriate proxies for investig...

  16. Ion-temperature-gradient sensitivity of the hydrodynamic instability caused by shear in the magnetic-field-aligned plasma flow

    SciTech Connect (OSTI)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June; Koepke, M. E.

    2014-07-15

    The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combined ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ?}?{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.

  17. Non-equilibrium isothermal transformations in a temperature gradient from a microscopic dynamics

    E-Print Network [OSTI]

    Stefano Olla; Viviana Letizia

    2015-05-19

    We consider a chain of anharmonic oscillators immersed in a heat bath with a temperature gradient and a time varying tension applied to one end of the chain while the other side is fixed to a point. We prove that under diffusive space-time rescaling the volume strain distribution of the chain evolves following a non-linear diffusive equation. The stationary states of the dynamics are of non-equilibrium and have a positive entropy production, so the classical relative entropy methods cannot be used. We develop new estimates based on entropic hypocoercivity, that allows to control the distribution of the positions configurations of the chain. The macroscopic limit can be used to model isothermal thermodynamic transformations between non-equilibrium stationary states.

  18. Concentration of isotopic hydrogen by temperature gradient effect in soluble metal

    SciTech Connect (OSTI)

    Uhm, H.S.; Lee, W.W.

    1991-01-01

    This invention relates to the enrichment of isotopic hydrogen in a solid-state metal by use of temperature gradient effects, and is related to the subject matter disclosed in prior copending application Serial No. 07/724,083, filed July 1, 1991. High concentration of isotopic hydrogen in the form of deuterium atoms in a soluble metal such as palladium, is very useful for various electro-chemical studies including nuclear fusion investigations. A conventional technique used for deuterium enrichment purposes involves electrolysis, where a palladium rod is immersed in heavy water as the cathode. According to the prior copending application, aforementioned, deuterium density inside a palladium rod is increased by making use of plasma ion implantation. Patent Applications.

  19. Fast Ion Stabilization of the Ion Temperature Gradient Driven Modes in the Joint European Torus Hybrid-Scenario Plasmas: A Trigger Mechanism for Internal Transport Barrier Formation

    E-Print Network [OSTI]

    Fast Ion Stabilization of the Ion Temperature Gradient Driven Modes in the Joint European Torus Hybrid-Scenario Plasmas: A Trigger Mechanism for Internal Transport Barrier Formation

  20. Soil-Structure System Identification of Millikan Library NorthSouth Response during Four Earthquakes (19702002): What Caused

    E-Print Network [OSTI]

    Southern California, University of

    Soil-Structure System Identification of Millikan Library North­South Response during Four study is Millikan Library in Pasadena, Cali- fornia. Results are shown for four earthquakes between 1970 and verify these trends. Introduction Long-term seismic monitoring of structures has dem- onstrated

  1. Standard Test Method for Measuring Heat Flux Using Flush-Mounted Insert Temperature-Gradient Gages

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method describes the measurement of the net heat flux normal to a surface using gages inserted flush with the surface. The geometry is the same as heat-flux gages covered by Test Method E 511, but the measurement principle is different. The gages covered by this standard all use a measurement of the temperature gradient normal to the surface to determine the heat that is exchanged to or from the surface. Although in a majority of cases the net heat flux is to the surface, the gages operate by the same principles for heat transfer in either direction. 1.2 This general test method is quite broad in its field of application, size and construction. Two different gage types that are commercially available are described in detail in later sections as examples. A summary of common heat-flux gages is given by Diller (1). Applications include both radiation and convection heat transfer. The gages used for aerospace applications are generally small (0.155 to 1.27 cm diameter), have a fast time response ...

  2. Vertical distribution of larval stages of the horn fly, Haematobia irritans irritans (L.), in relation to manure pat temperature gradients 

    E-Print Network [OSTI]

    March, Philip Anderson

    1981-01-01

    control strategists to recommend the mechanical destruction of the intact manure pat by harrowing (Smith 1889). Mariatt ( 1910) suggested placement of swine in cattle pastures to achieve the same purpose. Rapid dessication of the scattered manure...VERTICAL DISTRISUTION OF LARVAL STAGES OF THE HORN FLY, HAEMATOBIA IRRITANS IRRITANS (L. ), IN RELATION TO MANURE PAT TEMPERATURE GRADIENTS A Thesis by PHILIP ANDERSON MARCH Submitted to the Graduate College of Texas AijM University...

  3. North-South non-Gaussian asymmetry in Planck CMB maps

    SciTech Connect (OSTI)

    Bernui, A.; Oliveira, A.F.; Pereira, T.S. E-mail: adhimar@unifei.edu.br

    2014-10-01

    We report the results of a statistical analysis performed with the four foreground-cleaned Planck maps by means of a suitably defined local-variance estimator. Our analysis shows a clear dipolar structure in Planck's variance map pointing in the direction (l,b) ? (220°,-32°), thus consistent with the North-South asymmetry phenomenon. Surprisingly, and contrary to previous findings, removing the CMB quadrupole and octopole makes the asymmetry stronger. Our results show a maximal statistical significance, of 98.1% CL, in the scales ranging from ?=4 to ?=500. Additionally, through exhaustive analyses of the four foreground-cleaned and individual frequency Planck maps, we find unlikely that residual foregrounds could be causing this dipole variance asymmetry. Moreover, we find that the dipole gets lower amplitudes for larger masks, evidencing that most of the contribution to the variance dipole comes from a region near the galactic plane. Finally, our results are robust against different foreground cleaning procedures, different Planck masks, pixelization parameters, and the addition of inhomogeneous real noise.

  4. Large-scale spatial variability of riverbed temperature gradients in Snake River fall Chinook salmon spawning areas

    SciTech Connect (OSTI)

    Hanrahan, Timothy P.

    2007-02-01

    In the Snake River basin of the Pacific northwestern United States, hydroelectric dam operations are often based on the predicted emergence timing of salmon fry from the riverbed. The spatial variability and complexity of surface water and riverbed temperature gradients results in emergence timing predictions that are likely to have large errors. The objectives of this study were to quantify the thermal heterogeneity between the river and riverbed in fall Chinook salmon spawning areas and to determine the effects of thermal heterogeneity on fall Chinook salmon emergence timing. This study quantified river and riverbed temperatures at 15 fall Chinook salmon spawning sites distributed in two reaches throughout 160 km of the Snake River in Hells Canyon, Idaho, USA, during three different water years. Temperatures were measured during the fall Chinook salmon incubation period with self-contained data loggers placed in the river and at three different depths below the riverbed surface. At all sites temperature increased with depth into the riverbed, including significant differences (p<0.05) in mean water temperature of up to 3.8°C between the river and the riverbed among all the sites. During each of the three water years studied, river and riverbed temperatures varied significantly among all the study sites, among the study sites within each reach, and between sites located in the two reaches. Considerable variability in riverbed temperatures among the sites resulted in fall Chinook salmon emergence timing estimates that varied by as much as 55 days, depending on the source of temperature data used for the estimate. Monitoring of riverbed temperature gradients at a range of spatial scales throughout the Snake River would provide better information for managing hydroelectric dam operations, and would aid in the design and interpretation of future empirical research into the ecological significance of physical riverine processes.

  5. North-south asymmetric solar cycle evolution: Signatures in the photosphere and consequences in the corona

    SciTech Connect (OSTI)

    Virtanen, I. I.; Mursula, K., E-mail: ilpo.virtanen@oulu.fi [University of Oulu, P. O. Box 3000, FI-90014 Oulu (Finland)

    2014-02-01

    The heliospheric current sheet is the continuum of the coronal magnetic equator that divides the heliospheric magnetic field into two sectors (polarities). Several recent studies have shown that the heliospheric current sheet is southward shifted during approximately 3 years in the solar declining phase (the so-called bashful ballerina phenomenon). In this article we study the hemispherical asymmetry in the photospheric and coronal magnetic fields using Wilcox Solar Observatory measurements of the photospheric magnetic field since 1976 as well as the potential field source surface model. Multipole analysis of the photospheric magnetic field shows that during the late declining phase of solar cycles since the 1970s, the 'bashful ballerina phenomenon' is a consequence of the g{sub 2}{sup 0} quadrupole term, signed oppositely to the dipole moment. Surges of new flux transport magnetic field from low latitudes to the poles, thus leading to a systematically varying contribution to the g{sub 2}{sup 0}-term from different latitudes. In the case of a north-south asymmetric flux production, this is seen as a quadrupole contribution traveling toward higher latitudes. When the quadrupole term is largest, the main contribution comes from the polar latitudes. At least during the four recent solar cycles, the g{sub 2}{sup 0}-term arises because the magnitude of the southern polar field is larger than the magnitude found in the north in the declining phase of the cycle. In the heliosphere this hemispheric asymmetry of the coronal fields is seen as a southward shift of the heliospheric current sheet by about 2°.

  6. Investigation of electron temperature gradient driven micro-reconnecting modes in toroidal high-energy plasmas

    E-Print Network [OSTI]

    Takasaki, Kevin T. (Keven Takao)

    2007-01-01

    Experiments carried out with magnetically confined, high temperature plasmas have revealed important effects that have yet to be justified by existing theory. In particular, there arises an anomalous particle inflow in the ...

  7. It's getting hot in here : temperature gradients in lithium-ion battery packs

    E-Print Network [OSTI]

    Niewood, Benjamin

    2015-01-01

    A 5 channel, 40A battery cycler was constructed for the purpose of carrying out thermal studies on Lithium-ion battery packs. Boston Power Swing Key 442 battery blocks were tested to determine the magnitude of the temperature ...

  8. Coupling of ion temperature gradient and trapped electron modes in the presence of impurities in tokamak plasmas

    SciTech Connect (OSTI)

    Du, Huarong; Wang, Zheng-Xiong, E-mail: zxwang@dlut.edu.cn [MOE Key Laboratory of Materials Modification by Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [MOE Key Laboratory of Materials Modification by Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Dong, J. Q. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China) [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Liu, S. F. [School of Physics, Nankai University, Tianjin 300071 (China)] [School of Physics, Nankai University, Tianjin 300071 (China)

    2014-05-15

    The coupling of ion temperature gradient (ITG or ?{sub i}) mode and trapped electron mode (TEM) in the presence of impurity ions is numerically investigated in toroidal collisionless plasmas, using the gyrokinetic integral eigenmode equation. A framework for excitations of the ITG modes and TEMs with respect to their driving sources is formulated first, and then the roles of impurity ions played in are analyzed comprehensively. In particular, the characteristics of the ITG and TEM instabilities in the presence of impurity ions are emphasized for both strong and weak coupling (hybrid and coexistent) cases. It is found that the impurity ions with inwardly (outwardly) peaked density profiles have stabilizing (destabilizing) effects on the hybrid (namely the TE-ITG) modes in consistence with previous works. A new finding of this work is that the impurity ions have stabilizing effects on TEMs in small ?{sub i} (?{sub i}?1) regime regardless of peaking directions of their density profiles whereas the impurity ions with density gradient L{sub ez}=L{sub ne}/L{sub nz}>1 (L{sub ez}<1) destabilize (stabilize) the TEMs in large ?{sub i} (?{sub i}?1) regime. In addition, the dependences of the growth rate, real frequency, eigenmode structure, and wave spectrum on charge concentration, charge number, and mass of impurity ions are analyzed in detail. The necessity for taking impurity ion effects on the features of turbulence into account in future transport experimental data analyses is also discussed.

  9. Temperature gradient transport growth of potassium tantalate niobate, KTa??xNbxO?, single crystals 

    E-Print Network [OSTI]

    Goeking, Kent Wayne

    1987-01-01

    temperature and Curie point ill KTN compositional analysis . 29 . 30 Ix LIST OF FIGURES FIGURE Page Cubic perovskite structure - paraelectric phase. Tetragonal distorted perovskite structure - ferroelectric phase. . . 3 Ferroelectric polarization vs..., this material was found to display ferroelectric behavior. Unlike early ferroelectrics, BaTIOs had a simple cubic centrosymmetric perovskite structure that allowed extensive investigation into the mechanics of ferroelectricity. Following this discovery...

  10. Momentum transport in the vicinity of q{sub min} in reverse shear tokamaks due to ion temperature gradient turbulence

    SciTech Connect (OSTI)

    Singh, Rameswar; Laboratoire de Physique des Plasmas, Ecole Polytechnique route de Saclay, 91128 Palaiseau Cedex ; Singh, R; WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 ; Jhang, Hogun; Diamond, P. H.; Center for Momentum Transport and Flow Organization, University of California, San Diego, California 92093; Center for Astrophysics and Space Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0424

    2014-01-15

    We present an analytic study of momentum transport of tokamak plasmas in the vicinity of minimum safety factor (q) position in reversed magnetic shear configuration. Slab ion temperature gradient modes with an equilibrium flow profile are considered in this study. Quasi-linear calculations of momentum flux clearly show the novel effects of q-curvature on the generation of intrinsic rotation and mean poloidal flow without invoking reflectional symmetry breaking of parallel wavenumber (k{sub ?}). This q-curvature effect originates from the inherent asymmetry in k{sub ?} populations with respect to a rational surface due to the quadratic proportionality of k{sub ?} when q-curvature is taken into account. Discussions are made of possible implications of q-curvature induced plasma flows on internal transport barrier formation in reversed shear tokamaks.

  11. Modelling of ultrasonic propagation in turbulent liquid sodium with temperature gradient

    SciTech Connect (OSTI)

    Massacret, N. [CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-Lez-Durance (France); Aix-Marseille Université, LMA UPR 7051 CNRS, site LCND, 13625 Aix-en-Provence (France); Moysan, J., E-mail: joseph.moysan@univ-amu.fr; Ploix, M. A.; Corneloup, G. [Aix-Marseille Université, LMA UPR 7051 CNRS, site LCND, 13625 Aix-en-Provence (France); Jeannot, J. P. [CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-Lez-Durance (France)

    2014-05-28

    The use of ultrasonic instrumentation in sodium-cooled fast reactors requires to understand and to predict how ultrasonic waves can be deflected, slowed down or speeded up, depending on the thermo-hydraulic characteristics of the liquid sodium. These thermo-hydraulic characteristics are mainly the local temperature and flow speed of the sodium. In this study we show that ray theory can be used to simulate ultrasonic propagation in a medium similar to the core of a sodium-cooled fast reactor, in order to study ultrasonic instrumentation and prepare it installation and utilisation in the sodium of the nuclear reactor. A suitable model has been developed and a set of thermo-hydraulics data has been created, taking account of the particularities of the sodium flow. The results of these simulations are then analysed within the framework of acoustic thermometry, in order to determine which disturbance must be taken into account for the correct operation of the temperature measurement.

  12. Outgassing, Temperature Gradients and the Radiometer Effect in LISA: A Torsion Pendulum Investigation

    E-Print Network [OSTI]

    Scott E Pollack; Stephan Schlamminger; Jens H Gundlach

    2007-02-08

    Thermal modeling of the LISA gravitational reference sensor (GRS) includes such effects as outgassing from the proof mass and its housing and the radiometer effect. Experimental data in conditions emulating the LISA GRS are required to confidently predict the GRS performance. Outgassing and the radiometer effect are similar in characteristics and are difficult to decouple experimentally. The design of our torsion balance allows us to investigate differential radiation pressure, the radiometer effect, and outgassing on closely separated conducting surfaces with high sensitivity. A thermally controlled split copper plate is brought near a freely hanging plate-torsion pendulum.We have varied the temperature on each half of the copper plate and have measured the resulting forces on the pendulum. We have determined that to first order the current GRS model for the radiometer effect, outgassing, and radiation pressure are mostly consistent with our torsion balance measurements and therefore these thermal effects do not appear to be a large hindrance to the LISA noise budget. However, there remain discrepancies between the predicted dependence of these effects on the temperature of our apparatus.

  13. Statistical mechanical theory for the structure of steady state systems: Application to a Lennard-Jones fluid with applied temperature gradient

    E-Print Network [OSTI]

    Attard, Phil

    Statistical mechanical theory for the structure of steady state systems: Application to a Lennard-Jones fluid with applied temperature gradient Phil Attard School of Chemistry F11, University of Sydney, New statistical mechanics for inhomogeneous systems may now be applied to determining the structure

  14. Design, prototyping, and testing of an apparatus for establishing a linear temperature gradient in experimental fish tanks

    E-Print Network [OSTI]

    Kadri, Romi Sinclair

    2014-01-01

    Immunology researchers require a new type of fish tank that provides a linear thermal gradient for experimental zebrafish in order to improve the accuracy and validity of their research. Zebrafish require the ability to ...

  15. An experimental investigaion of seawater/basalt interactions: the role of water/rock ratios and temperature gradients 

    E-Print Network [OSTI]

    Archer, Paul Lawrence

    1978-01-01

    in the precipitation of Fe-sulfides (pyri te and pyrrhoti te) in both 5/1 and 50/1 water/rock ratio systems. As a result of this precipitation, Fe was effectively fractionated from Mn and the Fe/Mn ratio of the fluid decreased. Because the 50/1 systems had lower pH.... EPR). This investi- gation also provides data potentially useful in predicting the occur- rence and kind of mineralization at ocean spreading centers as a function of the temperature and water/rock ratio regime of that system. 11 METHODS Ex...

  16. Integrating spatial support tools into strategic planning-SEA of the GMS North-South Economic Corridor Strategy and Action Plan

    SciTech Connect (OSTI)

    Ramachandran, Pavit; Linde, Lothar

    2011-11-15

    The GMS countries, supported by the Asian Development Bank, have adopted a holistic, multidimensional approach to strengthen infrastructural linkages and facilitate cross border trade through (i) the establishment of a trans-boundary road connecting two economic nodes across marginalised areas, followed by 2) facilitation of environmentally and socially sound investments in these newly connected areas as a means to develop livelihoods. The North-South Economic Corridor is currently in its second phase of development, with investment opportunities to be laid out in the NSEC Strategy and Action Plan (SAP). It targets the ecologically and culturally sensitive border area between PR China's Yunnan Province, Northern Lao PDR, and Thailand. A trans-boundary, cross-sectoral Strategic Environmental Assessment was conducted to support the respective governments in assessing potential environmental and social impacts, developing alternatives and mitigation options, and feeding the findings back into the SAP writing process. Given the spatial dimension of corridor development-both with regard to opportunities and risks-particular emphasis was put in the application of spatial modelling tools to help geographically locate and quantify impacts as a means to guide interventions and set priorities.

  17. GEOTHERMAL GRADIENT DATA FOR UTAH Robert E. Blackett

    E-Print Network [OSTI]

    Laughlin, Robert B.

    of a geothermal system at depth. Temperature logs of boreholes are made by lowering a sensitive thermistor probeGEOTHERMAL GRADIENT DATA FOR UTAH by Robert E. Blackett February 2004 UTAH GEOLOGICAL SURVEY-gradient boreholes in Utah showing relative gradient magnitudes. PLATE Plate 1. Thermal-gradient boreholes in Utah

  18. Gradients of meteorological parameters in convective and nonconvective areas 

    E-Print Network [OSTI]

    McCown, Milton Samuel

    1976-01-01

    involve horizontal gradients. For example, the equations of motion relate wind speed to pressure gradient, and the thermal wind equation relates vertical wind shear to the horizontal temperature gradient. The study of gradients may help... GRADIENTS OF METEOROLOGICAL PARAMETERS IN CONVECTIVE AND NONCONVECTIVE AREAS A Thesis by Milton Samuel McCown Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER...

  19. Permafrost and organic layer interactions over a climate gradient...

    Office of Scientific and Technical Information (OSTI)

    in permafrost occurrence (PF) and organic layer thickness (OLT) in more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships...

  20. A parametric study of thermomechanical behavior of functionally gradient materials 

    E-Print Network [OSTI]

    Chin, Che-Doong

    1996-01-01

    The dynamic thermoelastic response of functionally gradient cylinders and plates is studied. Thermomechanical coupling is significant in these materials when they are used in high temperature applications, and hence, the coupling is included...

  1. Motivation Smoothing Projected gradient Proximal Gradient Non-Smooth Optimization

    E-Print Network [OSTI]

    Marlin, Benjamin

    Motivation Smoothing Projected gradient Proximal Gradient Non-Smooth Optimization Jason Hartford (with slides from Mark Schmidt) October 2015 #12;Motivation Smoothing Projected gradient Proximal-dimensional problems Nesterov-style and Newton-like methods allow better performance. #12;Motivation Smoothing

  2. Temperature, heat flow maps and temperature gradient holes | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation Jump to:Information 8)

  3. TRANSPORT NUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION

    E-Print Network [OSTI]

    De Jonghe, Lutgard C.

    2014-01-01

    NUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION LutgardNUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION LutgardNUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION Lutgard

  4. TRANSPORT NUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION

    E-Print Network [OSTI]

    De Jonghe, Lutgard C.

    2012-01-01

    NUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION LutgardNUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION LutgardNUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION Lutgard

  5. Gradient zone boundary control in salt gradient solar ponds

    DOE Patents [OSTI]

    Hull, John R. (Downers Grove, IL)

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  6. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, John A. (Ithaca, NY); Greenwald, Shlomo (Haifa, IL)

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  7. Polyakov loop renormalization with gradient flow

    E-Print Network [OSTI]

    Peter Petreczky; Hans-Peter Schadler

    2015-11-14

    We propose to use the gradient flow for the renormalization of Polyakov loops in various representations. We study Polyakov loops in 2+1 flavor QCD using the HISQ action and lattices with temporal extents $N_\\tau$=6, 8, 10 and 12 in various representations, including fundamental, sextet, adjoint, decuplet, 15-plet and 27-plet. This alternative renormalization procedure allows for the renormalization over a large temperature range from $T$=100 MeV - 800 MeV, with small errors not only for the fundamental, but also for the higher representations of the Polyakov loop. We discuss the results of this procedure and Casimir scaling of the Polyakov loop.

  8. Gradient characterization in magnetic resonance imaging

    E-Print Network [OSTI]

    Cheng, Joseph Yitan

    2007-01-01

    Special magnetic resonance (MR) scans, such as spiral imaging and echo-planar imaging, require speed and gradient accuracy while putting high demands on the MR gradient system that may cause gradient distortion. Additionally, ...

  9. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect (OSTI)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

  10. Gas Exchange, Partial Pressure Gradients,

    E-Print Network [OSTI]

    Riba Sagarra, Jaume

    Gas Exchange, Partial Pressure Gradients, and the Oxygen Window Johnny E. Brian, Jr., M. Inherent unsaturation. Partial pressure vacancy. Most divers with an interest in decompression diving have affect the precise gas exchange occurring in individual areas of the lungs and body tissues. To make

  11. Technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC) power plant 

    E-Print Network [OSTI]

    Raiji, Ashok

    1980-01-01

    be used to exploit solar, geothermal or other low grade energy sources is to utilize the temperature gradient that naturally occurs in the atmosphere to provide the temperature differential for a power production cycle. This concept known... low grade energy (geothermal, solar oonds, etc. ) to vaporize the working fluid. The following sections describe the operating principles of the TGUC, the digital computer model, the Atmospheric Thermal Gradient Cycle, the parametric study...

  12. Introduction Importance of temperature in streams

    E-Print Network [OSTI]

    Toran, Laura

    , fish reproduction, and aquatic metabolism rates. Nearly every species is temperature sensitive a downstream gradient as the surface water is exposed to solar radiation. Theurer et al. (1984) listed sources-radiation. Inverted temperature gradients (downstream cooling) have been observed where clear cutting exposed head

  13. An Introduction to the Conjugate Gradient Method

    E-Print Network [OSTI]

    the convergence of the Jacobi Method, Steepest Descent, and Conjugate Gradients. Other topics includeAn Introduction to the Conjugate Gradient Method Without the Agonizing Pain Jonathan Richard 15213 Abstract The Conjugate Gradient Method is the most prominent iterative method for solving sparse

  14. Atmospheric gradients and the stability of expanding jets. [Astrophysics

    SciTech Connect (OSTI)

    Hardee, P.E.; Koupelis, T.; Norman, M.L.; Clarke, D.A. Illinois, University, Urbana )

    1991-05-01

    Numerical simulations of adiabatically expanding slab jets in initial static pressure balance with an external atmosphere have been performed and compared to predictions made by a linear analysis of the stability of expanding jets. It is found that jets are stabilized by jet expansion as predicted by the linear analysis. It is also found that an expanding jet can be destabilized by a positive temperature gradient or temperature jump in the surrounding medium which lowers the Mach number defined by the external sound speed. A temperature gradient or jump is more destabilizing than would be predicted by a linear stability analysis. The enhanced instability compared to an isothermal atmosphere with identical pressure gradient is a result of the reduced external Mach number and a result of a higher jet density relative to the density in the external medium and higher ram speed. Other differences between predictions made by the linear theory and the simulations can be understood qualitatively as a result of a change in wave speed as the wave amplitude increases. 12 refs.

  15. Ion temperature gradient driven turbulence with strong trapped...

    Office of Scientific and Technical Information (OSTI)

    depends on ion free energy and electron dissipation, which implies that non-adiabatic electrons are essential to recover non-trivial dynamics of trapped ion granulations. Relevant...

  16. Field Investigations And Temperature-Gradient Drilling At Marine Corps

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoalFarmlandExpressFersaField

  17. Geology and Temperature Gradient Surveys Blue Mountain Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXAGeminiEnergyHawaii | Open EnergyStudyDiscovery,

  18. Ion temperature gradient driven turbulence with strong trapped ion

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy of aerosols in(Journal Article)Connectresonance (Journal

  19. Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment...

    Open Energy Info (EERE)

    Temperature Measurements at a 2-Meter Depth to Augment Deeper Temperature Gradient Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  20. Time changes in gradient and observed winds 

    E-Print Network [OSTI]

    Carlson, Ronald Dale

    1972-01-01

    OF FIGURES. 1. INXRODUCTION. 2. BACKGROUND AND STATEI'U':NT OF THE PROBLEM. . a. Previous studies. b. Statement of the problem. c. Objectives. 3. THEORETICAL CONSIDERATIONS. a. Gradient wind equation. b. Time rate-of-change of the gradient wind. . 4... for curvature of the height contours on the upper-level synoptic charts. Of the forces and accelerations contained in the complete horizontal equations of motion, those which do not appear in the gradient wind approximation are the frictional force...

  1. Optimization of synchronization in gradient clustered networks

    E-Print Network [OSTI]

    Xingang Wang; Liang Huang; Ying-Cheng Lai; Choy Heng Lai

    2007-11-23

    We consider complex clustered networks with a gradient structure, where sizes of the clusters are distributed unevenly. Such networks describe more closely actual networks in biophysical systems and in technological applications than previous models. Theoretical analysis predicts that the network synchronizability can be optimized by the strength of the gradient field but only when the gradient field points from large to small clusters. A remarkable finding is that, if the gradient field is sufficiently strong, synchronizability of the network is mainly determined by the properties of the subnetworks in the two largest clusters. These results are verified by numerical eigenvalue analysis and by direct simulation of synchronization dynamics on coupled-oscillator networks.

  2. Magneto-Seebeck effect in spin-valve with in-plane thermal gradient

    SciTech Connect (OSTI)

    Jain, S. Bose, A. Palkar, V. R. Tulapurkar, A. A.; Lam, D. D. Suzuki, Y.; Sharma, H. Tomy, C. V.

    2014-12-15

    We present measurements of magneto-Seebeck effect on a spin valve with in-plane thermal gradient. We measured open circuit voltage and short circuit current by applying a temperature gradient across a spin valve stack, where one of the ferromagnetic layers is pinned. We found a clear hysteresis in these two quantities as a function of magnetic field. From these measurements, the magneto-Seebeck effect was found to be same as magneto-resistance effect.

  3. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    SciTech Connect (OSTI)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  4. Approximate error conjugation gradient minimization methods

    DOE Patents [OSTI]

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  5. Measurement of thermodynamics using gradient flow

    E-Print Network [OSTI]

    Masakiyo Kitazawa; Masayuki Asakawa; Tetsuo Hatsuda; Takumi Iritani; Etsuko Itou; Hiroshi Suzuki

    2014-12-15

    We analyze bulk thermodynamics and correlation functions of the energy-momentum tensor in pure Yang-Mills gauge theory using the energy-momentum tensor defined by the gradient flow and small flow time expansion. Our results on thermodynamic observables are consistent with those obtained by the conventional integral method. The analysis of the correlation function of total energy supports the energy conservation. It is also addressed that these analyses with gradient flow require less statistics compared with the previous methods. All these results suggest that the energy-momentum tensor can be successfully defined and observed on the lattice with moderate numerical costs with the gradient flow.

  6. The gradient flow in simple field theories

    E-Print Network [OSTI]

    Monahan, Christopher

    2015-01-01

    The gradient flow is a valuable tool for the lattice community, with applications from scale-setting to implementing chiral fermions. Here I focus on the gradient flow as a means to suppress power-divergent mixing. Power-divergent mixing stems from the hypercubic symmetry of the lattice regulator and is a particular difficulty for calculations of, for example, high moments of parton distribution functions. The gradient flow removes power-divergent mixing on the lattice, provided the flow time is kept fixed in physical units, at the expense of introducing a new physical scale in the continuum. One approach to dealing with this new scale is the smeared operator product expansion, a formalism that systematically connects nonperturbative calculations of flowed operators to continuum physics. I study the role of the gradient flow in suppressing power-divergent mixing and present the first nonperturbative study in scalar field theory.

  7. The gradient flow in simple field theories

    E-Print Network [OSTI]

    Christopher Monahan

    2015-12-01

    The gradient flow is a valuable tool for the lattice community, with applications from scale-setting to implementing chiral fermions. Here I focus on the gradient flow as a means to suppress power-divergent mixing. Power-divergent mixing stems from the hypercubic symmetry of the lattice regulator and is a particular difficulty for calculations of, for example, high moments of parton distribution functions. The gradient flow removes power-divergent mixing on the lattice, provided the flow time is kept fixed in physical units, at the expense of introducing a new physical scale in the continuum. One approach to dealing with this new scale is the smeared operator product expansion, a formalism that systematically connects nonperturbative calculations of flowed operators to continuum physics. I study the role of the gradient flow in suppressing power-divergent mixing and present the first nonperturbative study in scalar field theory.

  8. Results of geothermal gradient core hole TCB-1, Tecuamburro volcano geothermal site, Guatemala, Central America

    SciTech Connect (OSTI)

    Adams, A.I.; Chipera, S.; Counce, D.; Gardner, J.; Goff, S.; Goff, F.; Heiken, G.; Laughlin, A.W.; Musgrave, J.; Trujillo, P.E. Jr. (Los Alamos National Lab., NM (United States)); Aycinena, S.; Martinelli, L. (Swissboring Overseas Corp. Ltd., Guatemala City (Guatemala)); Castaneda, O.; Revolorio, M.; Roldan, A. (Unidad de Desarrollo Geotermico, Guatemala City (Guatemala). Inst. Nacional de Electrificacion); D

    1992-02-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro volcano geothermal site in Guatemala indicated that there is a substantial shallow heat source beneath the area of youngest volcanism. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, hydrothermal alteration, fracturing, and possible inflows of hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro volcano Complex, 300 km south of a 300-m-diameter phreatic crater, Laguna Ixpaco, dated at 2,910 years. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 250--300{degrees}C. The temperature versus depth curve from TCB-1 does not show isothermal conditions and the calculated thermal gradients from 500--800 m is 230{degrees}C/km. Bottom hole temperature is 238{degrees}C. Calculated heat flow values are nearly 9 heat flow units (HFU). The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for containing a commercial geothermal resource.

  9. Thermal Gradient Holes At North Brawley Geothermal Area (Matlick...

    Open Energy Info (EERE)

    gradient wells and Grace Geothermal Corporation drilled 13. Unocal's wells were 76 m deep and Grace Geothermal's were 152 m deep. The thermal gradient wells revealed an anomaly...

  10. Thermal Gradient Holes At Northern Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes...

  11. Scale-up characteristics of salinity gradient power technologies

    E-Print Network [OSTI]

    Feinberg, Benjamin Jacob

    2014-01-01

    gradient power,” Energy and Environmental Science, 4 (2011)gradient power,” Energy and Environmental Science, 4 (2011)to reverse osmosis, Energy & Environmental Science, 3 (2010)

  12. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross, 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...

  13. Thermal Gradient Holes At Central Nevada Seismic Zone Region...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...

  14. Circumstellar Disks revealed by $H$/$K$ Flux Variation Gradients

    E-Print Network [OSTI]

    Nuñez, F Pozo; Chini, R; Ramolla, M; Hodapp, K -W

    2015-01-01

    The variability of young stellar objects (YSO) changes their brightness and color preventing a proper classification in traditional color-color and color magnitude diagrams. We have explored the feasibility of the flux variation gradient (FVG) method for YSOs, using $H$ and $K$ band monitoring data of the star forming region RCW\\,38 obtained at the University Observatory Bochum in Chile. Simultaneous multi-epoch flux measurements follow a linear relation $F_{H}=\\alpha + \\beta \\cdot F_{K}$ for almost all YSOs with large variability amplitude. The slope $\\beta$ gives the mean $HK$ color temperature $T_{var}$ of the varying component. Because $T_{var}$ is hotter than the dust sublimation temperature, we have tentatively assigned it to stellar variations. If the gradient does not meet the origin of the flux-flux diagram, an additional non- or less-varying component may be required. If the variability amplitude is larger at the shorter wavelength, e.g. $\\alpha 0$, the component is hotter like a scattering halo or...

  15. Penrose Well Temperatures

    SciTech Connect (OSTI)

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  16. Ch. VII, Temperature, heat flow maps and temperature gradient holes | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPIDCavalloCerion Energy Inc JumpOpenCastle RockEnergy

  17. High pressure liquid chromatographic gradient mixer

    DOE Patents [OSTI]

    Daughton, Christian G. (San Pablo, CA); Sakaji, Richard H. (El Cerrito, CA)

    1985-01-01

    A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".

  18. High-pressure liquid chromatographic gradient mixer

    DOE Patents [OSTI]

    Daughton, C.G.; Sakaji, R.H.

    1982-09-08

    A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

  19. 17 GHz High Gradient Accelerator Research

    SciTech Connect (OSTI)

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  20. An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    SciTech Connect (OSTI)

    Peterson, J. L.; Hammet, G. W.; Mikkelsen, D. R.; Yuh, H. Y.; Candy, J.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B.

    2011-05-11

    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is non- linearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.

  1. Universal Microfluidic Gradient Generator Daniel Irimia1

    E-Print Network [OSTI]

    Geba, Dan-Andrei

    Universal Microfluidic Gradient Generator Daniel Irimia1 , Dan A Geba2 , Mehmet Toner1 1 Bio, Building 114, 16th St, Charlestown, MA 02129. Email: mtoner@hms.harvard.edu Keywords: microfluidics cells in vitro. While microfluidic devices have shown unmatched capability in generating linear stable

  2. Ant Colony Optimization and Stochastic Gradient Descent

    E-Print Network [OSTI]

    Libre de Bruxelles, Université

    process is biased toward the generation of approximate solutions of improving quality. The historic rst (ACO) for an important logistic problem [R. Palm, personal communication]. As a consequence, the ACO show that some ACO algorithms approximate gradient descent of the expected value of the solution p

  3. Joining of Tungsten Armor Using Functional Gradients

    SciTech Connect (OSTI)

    John Scott O'Dell

    2006-12-31

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  4. Multi-gradient drilling method and system

    DOE Patents [OSTI]

    Maurer, William C. (Houston, TX); Medley, Jr., George H. (Spring, TX); McDonald, William J. (Houston, TX)

    2003-01-01

    A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

  5. Gradient zone-boundary control in salt-gradient solar ponds

    DOE Patents [OSTI]

    Hull, J.R.

    1982-09-29

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizeable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  6. A linear helicon plasma device with controllable magnetic field gradient

    SciTech Connect (OSTI)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2012-06-15

    Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well as its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.

  7. Design Studies of Nb3Sn High-Gradient Quadrupole Models for LARP

    SciTech Connect (OSTI)

    Andreev, Nikolai; Caspi, Shlomo; Dietderich, Daniel; Ferracin, Paolo; Ghosh, Arup; Kashikhin, Vadim; Lietzke, Al; Novitski, Igor; Zlobin, Alexander; McInturff, Alfred; Sabbi, GianLuca

    2007-06-01

    Insertion quadrupoles with large aperture and high gradient are required to achieve the luminosity upgrade goal of 10{sup 35} cm{sup -2} s{sup -1} at the Large Hadron Collider (LHC). In 2004, the US Department of Energy established the LHC Accelerator Research Program (LARP) to develop a technology base for the upgrade. Nb{sub 3}Sn conductor is required in order to operate at high field and with sufficient temperature margin. We report here on the conceptual design studies of a series of 1 m long 'High-gradient Quadrupoles' (HQ) that will explore the magnet performance limits in terms of peak fields, forces and stresses. The HQ design is expected to provide coil peak fields of more than 15 T, corresponding to gradients above 300 T/m in a 90 mm bore. Conductor requirements, magnetic, mechanical and quench protection issues for candidate HQ designs will be presented and discussed.

  8. Renormalization of the Polyakov loop with gradient flow

    E-Print Network [OSTI]

    P. Petreczky; H. -P. Schadler

    2015-11-24

    We use the gradient flow for the renormalization of the Polyakov loop in various representations. Using 2+1 flavor QCD with highly improved staggered quarks and lattices with temporal extents of $N_\\tau=6$, $8$, $10$ and $12$ we calculate the renormalized Polyakov loop in many representations including fundamental, sextet, adjoint, decuplet, 15-plet, 24-plet and 27-plet. This approach allows for the calculations of the renormalized Polyakov loops over a large temperature range from $T=116$ MeV up to $T=815$ MeV, with small errors not only for the Polyakov loop in fundamental representation, but also for the Polyakov loops in higher representations. We compare our results with standard renormalization schemes and discuss the Casimir scaling of the Polyakov loops.

  9. Automated apparatus for producing gradient gels

    DOE Patents [OSTI]

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  10. High gradient accelerators for linear light sources

    SciTech Connect (OSTI)

    Barletta, W.A.

    1988-09-26

    Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs.

  11. Steep Gradient Flume | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jumpand MaintenanceStationary PowerformStecaSteep Gradient

  12. The effect of density gradient on the growth rate of relativistic Weibel instability

    SciTech Connect (OSTI)

    Mahdavi, M.; Khodadadi Azadboni, F.

    2014-02-15

    In this paper, the effect of density gradient on the Weibel instability growth rate is investigated. The density perturbations in the near corona fuel, where temperature anisotropy, ?, is larger than the critical temperature anisotropy, ?{sub c}, (??>??{sub c}), enhances the growth rate of Weibel instability due to the sidebands coupled with the electron oscillatory velocity. But for ???2. The analysis shows that relativistic effects and density gradient tend to stabilize the Weibel instability. The growth rate can be reduced by 88% by reducing ? by a factor of 100 and increasing relativistic parameter by a factor of 3.

  13. Strict convexity of the free energy for non-convex gradient models at moderate $?$

    E-Print Network [OSTI]

    Codina Cotar; Jean-Dominique Deuschel; Stefan Müller

    2008-01-08

    We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. We show using a one-step multiple scale analysis the strict convexity of the surface tension at high temperature. This is an extension of Funaki and Spohn's result, where the strict convexity of potential was crucial in their proof that for every tilt there is a unique, shift invariant, ergodic Gibbs measure for the $\

  14. Temperature, Temperature, Earth, geotherm for

    E-Print Network [OSTI]

    Treiman, Allan H.

    Temperature, Temperature, Earth, geotherm for total global heat flow Venus, geotherm for total global heat flow, 500 Ma #12;Temperature, Temperature, #12;Earth's modern regional continental geotherms Venusian Geotherms, 500 Ma Temperature, Temperature, After Blatt, Tracy, and Owens Petrology #12;Ca2Mg5Si8

  15. Groundwater Flow and Thermal Modeling to Support a Preferred Conceptual Model for the Large Hydraulic Gradient North of Yucca Mountain

    SciTech Connect (OSTI)

    McGraw, D.; Oberlander, P.

    2007-12-18

    The purpose of this study is to report on the results of a preliminary modeling framework to investigate the causes of the large hydraulic gradient north of Yucca Mountain. This study builds on the Saturated Zone Site-Scale Flow and Transport Model (referenced herein as the Site-scale model (Zyvoloski, 2004a), which is a three-dimensional saturated zone model of the Yucca Mountain area. Groundwater flow was simulated under natural conditions. The model framework and grid design describe the geologic layering and the calibration parameters describe the hydrogeology. The Site-scale model is calibrated to hydraulic heads, fluid temperature, and groundwater flowpaths. One area of interest in the Site-scale model represents the large hydraulic gradient north of Yucca Mountain. Nearby water levels suggest over 200 meters of hydraulic head difference in less than 1,000 meters horizontal distance. Given the geologic conceptual models defined by various hydrogeologic reports (Faunt, 2000, 2001; Zyvoloski, 2004b), no definitive explanation has been found for the cause of the large hydraulic gradient. Luckey et al. (1996) presents several possible explanations for the large hydraulic gradient as provided below: The gradient is simply the result of flow through the upper volcanic confining unit, which is nearly 300 meters thick near the large gradient. The gradient represents a semi-perched system in which flow in the upper and lower aquifers is predominantly horizontal, whereas flow in the upper confining unit would be predominantly vertical. The gradient represents a drain down a buried fault from the volcanic aquifers to the lower Carbonate Aquifer. The gradient represents a spillway in which a fault marks the effective northern limit of the lower volcanic aquifer. The large gradient results from the presence at depth of the Eleana Formation, a part of the Paleozoic upper confining unit, which overlies the lower Carbonate Aquifer in much of the Death Valley region. The Eleana Formation is absent at borehole UE-25 p#1 at Yucca Mountain, which penetrated the lower Carbonate Aquifer directly beneath the lower volcanic confining unit. The Site-scale model uses an area of very low permeability, referenced as the east-west barrier, to simulate the large hydraulic gradient. The Site-scale model is further refined in this study to provide a base-case model for exploring the geologic causes of the large hydraulic gradient.

  16. Thermal lens elimination by gradient-reduced zone coupling of optical beams

    DOE Patents [OSTI]

    Page, Ralph H. (San Ramon, CA); Beach, Raymond J. (Livermore, CA)

    2000-01-01

    A thermal gradient-reduced-zone laser includes a laser medium and an optically transparent plate with an index of refraction that is less than the index of refraction of the laser medium. The pump face of the laser medium is bonded to a surface of the optically transparent member. Pump light is directed through the transparent plate to optically pump the solid state laser medium. Heat conduction is mainly through the surface of the laser medium where the heat is introduced by the pump light. Heat flows in a direction opposite to that of the pump light because the side of the laser medium that is opposite to that of the pump face is not in thermal contact with a conductor and thus there is no heat flux (and hence, no temperature gradient), thus producing a thermal gradient-reduced zone. A laser cavity is formed around the laser medium such that laser light oscillating within the laser cavity reflects by total-internal-reflection from the interface between the pump face and the optically transparent plate and enters and exits through a thermal gradient-reduced zone.

  17. Manufacture of gradient micro-structures of magnesium alloys using two stage extrusion dies

    SciTech Connect (OSTI)

    Hwang, Yeong-Maw; Huang, Tze-Hui [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, No. 70, Lien-Hai Rd., Kaohsiung, 804, Taiwan (China); Alexandrov, Sergei [Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow (Russian Federation); Naimark, Oleg Borisovich [Institute of Continuous Media Mechanics, Russian Academy of Sciences, Perm (Russian Federation); Jeng, Yeau-Ren [Department of Mechanical Engineering and Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Ming-Hsiung, Chia-Yi 621, Taiwan (China)

    2013-12-16

    This paper aims to manufacture magnesium alloy metals with gradient micro-structures using hot extrusion process. The extrusion die was designed to have a straight channel part combined with a conical part. Materials pushed through this specially-designed die generate a non-uniform velocity distribution at cross sections inside the die and result in different strain and strain rate distributions. Accordingly, a gradient microstructure product can be obtained. Using the finite element analysis, the forming temperature, effective strain, and effective strain rate distributions at the die exit were firstly discussed for various inclination angles in the conical die. Then, hot extrusion experiments with a two stage die were conducted to obtain magnesium alloy products with gradient micro-structures. The effects of the inclination angle on the grain size distribution at cross sections of the products were also discussed. Using a die of an inclination angle of 15°, gradient micro-structures of the grain size decreasing gradually from 17 ?m at the center to 4 ?m at the edge of product were achieved.

  18. Molecular Rotation and Polarization under Thermal Gradients

    E-Print Network [OSTI]

    Alpha A Lee

    2015-10-21

    Recent molecular dynamics simulations show that a thermal gradient induces an electric field in water that is comparable to that seen in ionic thin films and biomembranes. This counterintuitive phenomena of thermo-orientation is also observed more generally in simulations of polar and non-polar size-assymetric dumbbell fluids. However, a microscopic theory for this novel non-equilibrium phenomenon is yet unknown. We develop a microscopic theory of thermo-orientation using a mean-field, local equilibrium approach. Our theory reveals analytically how thermo-orientation depends on the molecular volume, size anisotropy, and dipole moment. Predictions of the theory agree quantitatively with molecular dynamics simulations. Crucially, our framework shows how thermo-orientation can be controlled and maximised by tuning microscopic molecular properties.

  19. Molecular Rotation and Polarization under Thermal Gradients

    E-Print Network [OSTI]

    Lee, Alpha A

    2015-01-01

    Recent molecular dynamics simulations show that a thermal gradient induces an electric field in water that is comparable to that seen in ionic thin films and biomembranes. This counterintuitive phenomena of thermo-orientation is also observed more generally in simulations of polar and non-polar size-assymetric dumbbell fluids. However, a microscopic theory for this novel non-equilibrium phenomenon is yet unknown. We develop a microscopic theory of thermo-orientation using a mean-field, local equilibrium approach. Our theory reveals analytically how thermo-orientation depends on the molecular volume, size anisotropy, and dipole moment. Predictions of the theory agree quantitatively with molecular dynamics simulations. Crucially, our framework shows how thermo-orientation can be controlled and maximised by tuning microscopic molecular properties.

  20. Constant field gradient planar coupled cavity structure

    DOE Patents [OSTI]

    Kang, Y.W.; Kustom, R.L.

    1999-07-27

    A cavity structure is disclosed having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam. 16 figs.

  1. High gradient lens for charged particle beam

    SciTech Connect (OSTI)

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  2. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  3. Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  4. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff & Bowers, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  5. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  6. Thermal Gradient Holes At North Brawley Geothermal Area (Edmunds...

    Open Energy Info (EERE)

    of the North Brawley, Heber, East Mesa, and Salton Sea Geothermal Areas. Notes Well logs, thermal gradient data, and magnetic data were correlated to form a better geologic...

  7. Gradient induced liquid motion on laser structured black Si surfaces

    E-Print Network [OSTI]

    Paradisanos, I; Anastasiadis, S H; Stratakis, E

    2015-01-01

    This letter reports on the femtosecond laser fabrication of gradient-wettability micro/nano- patterns on Si surfaces. The dynamics of directional droplet spreading on the surface tension gradients developed is systematically investigated and discussed. It is shown that microdroplets on the patterned surfaces spread at a maximum speed of 505 mm/sec, that is the highest velocity demonstrated so far for liquid spreading on a surface tension gradient in ambient conditions. The application of the proposed laser patterning technique for the precise fabrication of surface tension gradients for open microfluidic systems, liquid management in fuel cells and drug delivery is envisaged.

  8. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  9. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 - 2002...

  10. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    regional heat flux around the hot springs and potentially identify the location of the geothermal reservoir feeding the hot springs Notes Eight thermal gradient boreholes were...

  11. Generalized Defect Energy in a Gradient Plasticity Framework

    E-Print Network [OSTI]

    Bayerschen, E

    2015-01-01

    A gradient plasticity model is presented that includes a generalized, power-law type defect energy depending on the gradient of an equivalent plastic strain. Numerical regularization for the case of vanishing gradients is employed in the finite element discretization of the theory. Three exemplary choices of the defect energy exponent are compared in finite element simulations of elastic-plastic tricrystals under tensile loading. The influence of the power-law exponent is discussed related to the distribution of gradients and in regard to size effects. In addition, an analytical solution is presented for the single slip case and allows to interpret the numerical findings.

  12. A Nonmonotone Approach without Differentiability Test for Gradient ...

    E-Print Network [OSTI]

    Elias S. Helou

    2015-03-18

    Mar 18, 2015 ... A Nonmonotone Approach without Differentiability Test for Gradient Sampling Methods. Elias S. Helou(elias ***at*** icmc.usp.br) Sandra A.

  13. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  14. Thermal Gradient Holes At Walker-Lane Transitional Zone Region...

    Open Energy Info (EERE)

    Zone Region (Pritchett, 2004) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date...

  15. Engineering chemoattractant gradients using controlled release polysaccharide microspheres

    E-Print Network [OSTI]

    Wang, Yana, Ph. D. Massachusetts Institute of Technology

    2012-01-01

    Chemoattractant gradients play important roles in the normal function of immune system, from lymphocyte homeostasis to mounting efficient immune responses against infection. Improved fundamental knowledge about the role ...

  16. Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...

    Open Energy Info (EERE)

    gradient holes up to 500' deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five....

  17. Thermal gradient-induced forces on geodesic reference masses for LISA

    SciTech Connect (OSTI)

    Carbone, L.; Ciani, G.; Dolesi, R.; Hueller, M.; Tombolato, D.; Vitale, S.; Weber, W. J.; Cavalleri, A.

    2007-11-15

    The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodesic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the Laser Interferometer Space Antenna (LISA) gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensor that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the current LISA noise estimate, which assumes a maximum net force per degree of temperature difference of 100(pN/K) for the overall thermal gradient-induced effects.

  18. Discharge temperature higher than 30 deg C

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shari Kelley

    2015-06-16

    This submission includes three files from two sources. One file is derived from USGS data and includes a series of manipulations to evaluate only shallow wells with high estimated geothermal gradients. Two other files are springs and wells with discharge temperatures above 30°C from the NMBGMR Aquifer Mapping database

  19. Exploration geothermal gradient drilling, Platanares, Honduras, Central America

    SciTech Connect (OSTI)

    Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.; Goff, F.E.; Heiken, G.; Ramos, N.

    1988-01-01

    This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coring operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.

  20. Relativistic transport theory for simple fluids at first order in the gradients: a stable picture

    E-Print Network [OSTI]

    A. Sandoval-Villalbazo; A. L. Garcia-Perciante; L. S. Garcia-Colin

    2009-06-11

    In this paper we show how using a relativistic kinetic equation the ensuing expression for the heat flux can be casted in the form required by Classical Irreversible Thermodynamics. Indeed, it is linearly related to the temperature and number density gradients and not to the acceleration as the so called \\textit{first order in the gradients} theories propose. Since the specific expressions for the transport coefficients are irrelevant for our purposes, the BGK form of the kinetic equation is used. Moreover, from the resulting hydrodynamic equations it is readily seen that the equilibrium state is stable in the presence of the spontaneous fluctuations in the transverse hydrodynamic velocity mode of the simple relativistic fluid. The implications of this result are thoroughly discussed.

  1. Measurement of laser heating in spin exchange optical pumping by NMR diffusion sensitization gradients

    SciTech Connect (OSTI)

    Parnell, Steven R.; Deppe, Martin H.; Ajraoui, Salma; Parra-Robles, Juan; Wild, Jim M.; Boag, Stephen

    2010-05-15

    This paper details pulsed gradient NMR measurements of the {sup 3}He diffusion coefficient in sealed cells during spin exchange optical pumping. The potential of ultra low field magnetic resonance imgaing (MRI) and NMR for noninvasive measurement of cell pressure is demonstrated. Diffusion sensitization gradients allow measurement of the {sup 3}He diffusion coefficient from which the pressure and/or temperature of the gas can be determined during optical pumping. The pressure measurements were compared with neutron time of flight transmission measurements. Good agreement was observed between the temperature/pressure measurements and predictions based on Chapman-Enskog theory. The technique had sufficient sensitivity to observe the diffusion coefficient increasing with temperature in a sealed cell. With this method, evidence for laser heating of the {sup 3}He during optical pumping was found. The results show that NMR diffusion measurements allow noninvasive measurement of the cell temperature and/or pressure in an optical pumping setup. The method can be expanded using MRI to probe the spatial distribution of the diffusion coefficient. These techniques can be applied to the further investigation of polarization limiting effects such as laser heating.

  2. Hebbian Learning and Gradient Descent Learning Neural Computation : Lecture 5

    E-Print Network [OSTI]

    Bullinaria, John

    Hebbian Learning and Gradient Descent Learning Neural Computation : Lecture 5 © John A. Bullinaria, 2014 1. Hebbian Learning 2. Learning by Error Minimisation 3. Gradient Descent Learning 4. Deriving or persistently takes part in firing it, some growth process or metabolic change takes place on one or both cells

  3. Dynamics of the Dorsal morphogen gradient Jitendra S. Kanodiaa

    E-Print Network [OSTI]

    Shvartsman, Stanislav "Stas"

    Dynamics of the Dorsal morphogen gradient Jitendra S. Kanodiaa , Richa Rikhyb , Yoosik Kima Road, Princeton, NJ 08544; bCell Biology and Metabolism Branch, NIH, Building 32, 18 Library Drive localization gradient of Dorsal (Dl), a protein related to the mammalian NF- B transcription factors. Current

  4. Enhancing Optical Gradient Forces with Metamaterials Vincent Ginis,1

    E-Print Network [OSTI]

    Enhancing Optical Gradient Forces with Metamaterials Vincent Ginis,1 Philippe Tassin,2,* Costas M demonstrate how the optical gradient force between two waveguides can be enhanced using transformation optics perceived by light, resulting in a more than tenfold enhancement of the optical force. This process

  5. Evaluation of liquid lift approach to dual gradient 

    E-Print Network [OSTI]

    Okafor, Ugochukwu Nnamdi

    2009-05-15

    .............................................. 5 2.3 Methods of Achieving Dual Gradient Drilling ...................... 9 2.3.1 Subsea Mudlift Drilling............................................... 10 2.3.2 Hollow Glass Spheres... ................................................... 9 2.5 Schematic diagram of a modified subsea mudlift system .......................... 11 2.6 Hollow glass-spheres dual gradient drilling system................................... 13 2.7 A typical offshore drilling rig modified...

  6. Generalized Hooke's law for isotropic second gradient materials

    E-Print Network [OSTI]

    F. dell'Isola; G. Sciarra; S. Vidoli

    2010-08-17

    In the spirit of Germain the most general objective stored elastic energy for a second gradient material is deduced using a literature result of Fortun\\'e & Vall\\'ee. Linear isotropic constitutive relations for stress and hyperstress in terms of strain and strain-gradient are then obtained proving that these materials are characterized by seven elastic moduli and generalizing previous studies by Toupin, Mindlin and Sokolowski. Using a suitable decomposition of the strain-gradient, it is found a necessary and sufficient condition, to be verified by the elastic moduli, assuring positive definiteness of the stored elastic energy. The problem of warping in linear torsion of a prismatic second gradient cylinder is formulated, thus obtaining a possible measurement procedure for one of the second gradient elastic moduli.

  7. Gradient Flow Analysis on MILC HISQ Ensembles

    E-Print Network [OSTI]

    A. Bazavov; C. Bernard; N. Brown; C. DeTar; J. Foley; Steven Gottlieb; U. M. Heller; J. E. Hetrick; J. Komijani; J. Laiho; L. Levkova; M. Oktay; R. L. Sugar; D. Toussaint; R. S. Van de Water; R. Zhou

    2014-11-14

    We report on a preliminary scale determination with gradient-flow techniques on the $N_f = 2 + 1 + 1$ HISQ ensembles generated by the MILC collaboration. The ensembles include four lattice spacings, ranging from 0.15 to 0.06 fm, and both physical and unphysical values of the quark masses. The scales $\\sqrt{t_0}/a$ and $w_0/a$ are computed using Symanzik flow and the cloverleaf definition of $\\langle E \\rangle$ on each ensemble. Then both scales and the meson masses $aM_\\pi$ and $aM_K$ are adjusted for mistunings in the charm mass. Using a combination of continuum chiral perturbation theory and a Taylor series ansatz in the lattice spacing, the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. Our preliminary results are $\\sqrt{t_0} = 0.1422(7)$fm and $w_0 = 0.1732(10)$fm. We also find the continuum mass-dependence of $w_0$.

  8. Optimization and analysis of experimental parameters for polarization gradient cooling of cold cesium atoms

    E-Print Network [OSTI]

    Ji, Zhonghua; Zhao, Yanting; Chang, Xuefang; Yang, Yonggang; Xiao, Liantuan; Jia, Suotang

    2013-01-01

    We systematically investigate the dependence of cold cesium atomic temperature in polarization gradient cooling (PGC) on experimental parameters, which contain change modes of cooling laser, interaction time, cooling laser frequency and its intensity. We find that the SR mode of cooling laser is the best for PGC, comparing SS, RS, RR modes. We put forward a statistical explanation and an exponential decay function to explain the variation of cold atomic temperature with the time. The heating effect is observed when the cooling laser intensity is lower than the saturation intensity of cold atoms. After optimization, the lowest temperature of cold cesium atoms is observed to be about 4uK with the number of 2x10^9 and a density of 5x10^10/cm^3. The optimization processes and analyses of controllable experimental parameters are also meaningful for other cold atomic systems.

  9. Efficient and robust gradient enhanced Kriging emulators.

    SciTech Connect (OSTI)

    Dalbey, Keith R.

    2013-08-01

    %E2%80%9CNaive%E2%80%9D or straight-forward Kriging implementations can often perform poorly in practice. The relevant features of the robustly accurate and efficient Kriging and Gradient Enhanced Kriging (GEK) implementations in the DAKOTA software package are detailed herein. The principal contribution is a novel, effective, and efficient approach to handle ill-conditioning of GEK's %E2%80%9Ccorrelation%E2%80%9D matrix, RN%CC%83, based on a pivoted Cholesky factorization of Kriging's (not GEK's) correlation matrix, R, which is a small sub-matrix within GEK's RN%CC%83 matrix. The approach discards sample points/equations that contribute the least %E2%80%9Cnew%E2%80%9D information to RN%CC%83. Since these points contain the least new information, they are the ones which when discarded are both the easiest to predict and provide maximum improvement of RN%CC%83's conditioning. Prior to this work, handling ill-conditioned correlation matrices was a major, perhaps the principal, unsolved challenge necessary for robust and efficient GEK emulators. Numerical results demonstrate that GEK predictions can be significantly more accurate when GEK is allowed to discard points by the presented method. Numerical results also indicate that GEK can be used to break the curse of dimensionality by exploiting inexpensive derivatives (such as those provided by automatic differentiation or adjoint techniques), smoothness in the response being modeled, and adaptive sampling. Development of a suitable adaptive sampling algorithm was beyond the scope of this work; instead adaptive sampling was approximated by omitting the cost of samples discarded by the presented pivoted Cholesky approach.

  10. Accuracy of direct gradient sensing by single cells

    E-Print Network [OSTI]

    Robert G. Endres; Ned S. Wingreen

    2009-06-15

    Many types of cells are able to accurately sense shallow gradients of chemicals across their diameters, allowing the cells to move towards or away from chemical sources. This chemotactic ability relies on the remarkable capacity of cells to infer gradients from particles randomly arriving at cell-surface receptors by diffusion. Whereas the physical limits of concentration sensing by cells have been explored, there is no theory for the physical limits of gradient sensing. Here, we derive such a theory, using as models a perfectly absorbing sphere and a perfectly monitoring sphere, which, respectively, infer gradients from the absorbed surface particle density or the positions of freely diffusing particles inside a spherical volume. We find that the perfectly absorbing sphere is superior to the perfectly monitoring sphere, both for concentration and gradient sensing, since previously observed particles are never remeasured. The superiority of the absorbing sphere helps explain the presence at the surfaces of cells of signal degrading enzymes, such as PDE for cAMP in Dictyostelium discoideum (Dicty) and BAR1 for mating factor alpha in Saccharomyces cerevisiae (budding yeast). Quantitatively, our theory compares favorably to recent measurements of Dicty moving up a cAMP gradient, suggesting these cells operate near the physical limits of gradient detection.

  11. Scalar gradient behaviour in MILD combustion

    E-Print Network [OSTI]

    Minamoto, Y.; Swaminathan, N.

    2013-10-22

    must be improved constantly to achieve high efficiency and reduced emission simultaneously to meet the ever stringent emission legisla- tion and environmental requirements. A number of approaches are being explored to meet these requirements. Although... the heat in the exhaust stream. The preheating results in higher flame temperature which can cause the thermal NOx to increase if there is substantial level of oxygen in the reactant stream. The thermal NOx formation can also be reduced by using the exhaust...

  12. The Vertical Metallicity Gradient of the Milky Way Disk: Transitions in [a/Fe] Populations

    E-Print Network [OSTI]

    Schlesinger, Katharine J; Rockosi, Constance M; Lee, Young Sun; Beers, Timothy C; Harding, Paul; Prieto, Carlos Allende; Bird, Jonathan C; Schoenrich, Ralph; Yanny, Brian; Schneider, Donald P; Weaver, Benjamin A; Brinkmann, Jon

    2014-01-01

    Using G dwarfs from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey, we have determined a vertical metallicity gradient over a large volume of the Milky Way's disk, and examined how this gradient varies for different [a/Fe] subsamples. This sample contains over 40,000 stars with low-resolution spectroscopy over 144 lines of sight. We employ the SEGUE Stellar Parameter Pipeline (SSPP) to obtain estimates of effective temperature, surface gravity, [Fe/H], and [a/Fe] for each star and extract multiple volume-complete subsamples of approximately 1000 stars each. Based on the survey's consistent target-selection algorithm, we adjust each subsample to determine an unbiased picture of the disk in [Fe/H] and [a/Fe]; consequently, each individual star represents the properties of many. The SEGUE sample allows us to constrain the vertical metallicity gradient for a large number of stars over a significant volume of the disk, between ~0.3 and 1.6 kpc from the Galactic plane, and examine the...

  13. Propagation of chaos, Wasserstein gradient flows and toric Kahler-Einstein metrics

    E-Print Network [OSTI]

    Robert J. Berman; Magnus Onnheim

    2015-06-09

    Motivated by a probabilistic approach to Kahler-Einstein metrics we consider a general non-equlibrium statistical mechanics model in Euclidean space consisting of the stochastic gradient flow of a given quasi-convex N particle interaction energy. We show that a deterministic macroscopic evolution equation emerges in the large N-limit of many particles. The proof uses the theory of weak gradient flows on the Wasserstein space and in particular De Georgi's notion of minimizing movements. Applied to the setting of permanental point processes at negative temperature the corresponding limiting evolution equation yields a new drift-diffusion equation, coupled to the Monge-Ampere operator, whose static solutions correspond to toric Kahler-Einstein metrics. This drift-diffusion equation is the gradient flow on the Wasserstein space of probability measures of the K-energy functional in Kahler geometry and it can be seen as a fully non-linear version of various extensively studied dissipative evolution equations and conservations laws, including the Keller-Segal equation and Burger's equation. We also obtain a real probabilistic analog of the complex geometric Yau-Tian-Donaldson conjecture in this setting. In another direction applications to singular pair interactions in 1D are given, leading to sharp convergence results. Complex geometric aspects of these results will be discussed elsewhere.

  14. Linear domain interactome and biological function of anterior gradient

    E-Print Network [OSTI]

    Lawrence, Melanie Laura Alexandra

    2013-11-29

    The Anterior Gradient 2 (AGR2) protein has been implicated in a variety of biological systems linked to cancer and metastasis, tamoxifen-induced drug resistance, pro-inflammatory diseases like IBD and asthma, and limb ...

  15. Osteochondral Interface Tissue Engineering using Macroscopic Gradients of Physicochemical Signals

    E-Print Network [OSTI]

    Dormer, Nathan Henry

    2011-04-25

    . When used in a smaller defect site, such as the New Zealand White rabbit mandibular condyle, the bioactive scaffolds were beneficial in regenerating thicker layers of cartilage. Moreover, this thesis has bridged the gradient-based microsphere scaffold...

  16. Colour Gradients in the Optical and Near-IR

    E-Print Network [OSTI]

    Roelof S. de Jong

    1995-09-01

    For many years broadband colours have been used to obtain insight into the contents of galaxies, in particular to estimate stellar and dust content. Broadband colours are easy to obtain for large samples of objects, making them ideal for statistical studies. In this paper I use the radial distribution of the colours in galaxies, which gives more insight into the local processes driving the global colour differences than integrated colours. Almost all galaxies in my sample of 86 face-on galaxies become systematically bluer with increasing radius. The radial photometry is compared to new dust extinction models and stellar population synthesis models. This comparison shows that the colour gradients in face-on galaxies are best explained by age and metallicity gradients in the stellar populations and that dust reddening plays a minor role. The colour gradients imply $M/L$ gradients, making the `missing light' problem as derived from rotation curve fitting even worse.

  17. Modelling Flow through Porous Media under Large Pressure Gradients 

    E-Print Network [OSTI]

    Srinivasan, Shriram

    2013-11-01

    The most interesting and technologically important problems in the study of flow through porous media involve very high pressures and pressure gradients in the flow do- main such as enhanced oil recovery and carbon dioxide ...

  18. Variational constitutive updates for strain gradient isotropic plasticity

    E-Print Network [OSTI]

    Qiao, Lei, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    In the past decades, various strain gradient isotropic plasticity theories have been developed to describe the size-dependence plastic deformation mechanisms observed experimentally in micron-indentation, torsion, bending ...

  19. A Nonlinear Conjugate Gradient Algorithm with An Optimal Property ...

    E-Print Network [OSTI]

    2011-06-15

    State Key Laboratory of Scientific and Engineering Computing, ..... To establish a basic property for the family of conjugate gradient methods (1.3), (2.11) and ...... of Engineering Economic Systems, Stanford University, Stanford, Calif., 1972. 23

  20. Optical gradient force nano-imaging and -spectroscopy

    E-Print Network [OSTI]

    Yang, Honghua U

    2015-01-01

    Nanoscale forces play an important role in different scanning probe microscopies, most notably atomic force microscopy (AFM). In contrast, in scanning near-field optical microscopy (SNOM) a light-induced coupled local optical polarization between tip and sample is typically detected by scattering to the far field. Measurements of the optical gradient force associated with that optical near-field excitation would offer a novel optical scanning probe modality. Here we provide a generalized theory of optical gradient force nano-imaging and -spectroscopy. We quantify magnitude and distance dependence of the optical gradient force and its spectral response. We show that the optical gradient force is dispersive for single particle electronic and vibrational resonances, distinct from recent claims of its experimental observation. In contrast, the force can be absorptive for collective resonances. We provide a guidance for its measurements and distinction from competing processes such as thermal expansion.

  1. Spatial gradient of protein phosphorylation underlies replicative bacterium

    E-Print Network [OSTI]

    Chen, Y. Erin

    Spatial asymmetry is crucial to development. One mechanism for generating asymmetry involves the localized synthesis of a key regulatory protein that diffuses away from its source, forming a spatial gradient. Although ...

  2. Function of the anterior gradient protein family in cancer 

    E-Print Network [OSTI]

    Fourtouna, Argyro

    2009-01-01

    Proteomic technologies verified Anterior Gradient 2, AGR-2, as a protein over-expressed in human cancers, including breast, prostate and oesophagus cancers, with the ability to inhibit the tumour suppressor protein p53. AGR-2 gene is a hormone...

  3. Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...

  4. Abundance gradients in low surface brightness spirals: clues on the origin of common gradients in galactic discs

    E-Print Network [OSTI]

    Bresolin, Fabio

    2015-01-01

    We acquired spectra of 141 HII regions in ten late-type low surface brightness galaxies (LSBGs). The analysis of the chemical abundances obtained from the nebular emission lines shows that metallicity gradients are a common feature of LSBGs, contrary to previous claims concerning the absence of such gradients in this class of galaxies. The average slope, when expressed in units of the isophotal radius, is found to be significantly shallower in comparison to galaxies of high surface brightness. This result can be attributed to the reduced surface brightness range measured across their discs, when combined with a universal surface mass density-metallicity relation. With a similar argument we explain the common abundance gradient observed in high surface brightness galaxy (HSBG) discs and its approximate dispersion. This conclusion is reinforced by our result that LSBGs share the same common abundance gradient with HSBGs, when the slope is expressed in terms of the exponential disc scale length.

  5. Method and apparatus for producing a carbon based foam article having a desired thermal-conductivity gradient

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN) [Knoxville, TN; Cameron, Christopher Stan (Sanford, NC) [Sanford, NC

    2010-03-02

    A carbon based foam article is made by heating the surface of a carbon foam block to a temperature above its graphitizing temperature, which is the temperature sufficient to graphitize the carbon foam. In one embodiment, the surface is heated with infrared pulses until heat is transferred from the surface into the core of the foam article such that the graphitizing temperature penetrates into the core to a desired depth below the surface. The graphitizing temperature is maintained for a time sufficient to substantially entirely graphitize the portion of the foam article from the surface to the desired depth below the surface. Thus, the foam article is an integral monolithic material that has a desired conductivity gradient with a relatively high thermal conductivity in the portion of the core that was graphitized and a relatively low thermal conductivity in the remaining portion of the foam article.

  6. High temperature behavior of metallic inclusions in uranium dioxide

    SciTech Connect (OSTI)

    Yang, R.L.

    1980-08-01

    The object of this thesis was to construct a temperature gradient furnace to simulate the thermal conditions in the reactor fuel and to study the migration of metallic inclusions in uranium oxide under the influence of temperature gradient. No thermal migration of molybdenum and tungsten inclusions was observed under the experimental conditions. Ruthenium inclusions, however, dissolved and diffused atomically through grain boundaries in slightly reduced uranium oxide. An intermetallic compound (probably URu/sub 3/) was formed by reaction of Ru and UO/sub 2-x/. The diffusivity and solubility of ruthenium in uranium oxide were measured.

  7. Environmental regulation of carbon isotope composition and crassulacean acid metabolism in three plant communities along a water availability gradient

    E-Print Network [OSTI]

    2010-01-01

    gradient Á Tissue acidity Á Yucatan Introduction Crassulacean acid metabolism (metabolism in three plant communities along a water availability gradient

  8. THE REDISTRIBUTION OF RUTHENIUM IN UO2 IN A TEMPERATURE GRADIENT

    E-Print Network [OSTI]

    Zhou, S.Y.

    2010-01-01

    of Metallic Fission Products in Reactor Oxide Fuels", Nucl.of metallic fission products in oxide fuel elements.metallic inclusions distributed along grain boundaries or in the central void of the fuel

  9. Velocity-ion temperature gradient driven modes and angular momentum transport in magnetically confined plasmas

    E-Print Network [OSTI]

    Thomas, John Chandler

    2007-01-01

    Plasma confinement experiments continue to uncover fascinating phenomena that motivate theoretical discussion and exploration. In this thesis, we consider the phenomenon of angular momentum transport in magnetically confined ...

  10. Magnetic island evolution in the presence of ion-temperature gradient-driven turbulence

    SciTech Connect (OSTI)

    Ishizawa, A.; Waelbroeck, F. L.

    2013-12-15

    Turbulence is known to drive and sustain magnetic islands of width equal to multiples of the Larmor radius. The nature of the drive is studied here by means of numerical simulations of a fluid electrostatic model in 2D (single helicity) sheared-slab geometry. The electrostatic model eliminates the coalescence of short wavelength islands as a mechanism for sustaining longer wavelength islands. In quiescent islands, the polarization current, which depends on the propagation velocity of the island through the plasma, plays a critical role in determining the growth or decay of island chains. For turbulent islands, the unforced propagation velocity is significantly changed by strong zonal flow. The simulations show, however, that the turbulent fluctuations in the current density are much larger and faster than those in the zonal flow, and that they dominate the steady-state perturbed current density. In order to distinguish the roles of the zonal flow from the direct action of the fluctuations on the islands, a new diagnostic is implemented. This new diagnostic separates the effects of all the sources of parallel current. These are the curvature (which drives Pfirsch-Schlüter currents) and the divergences of the viscous and Reynolds stresses (the latter driving polarization currents). The new diagnostic also enables the contributions from short and long wavelengths to be separated for each term. It shows that in the absence of curvature, the drive is dominated by the contributions to the polarization current from the short wavelength fluctuations, while the long-wavelength fluctuations play a stabilizing role. In the presence of unfavorable curvature, by contrast, the effects of the short- and long-wavelength contributions of the polarization current reverse roles but nearly cancel, leaving the Pfirsch-Schlüter current as the dominant drive.

  11. R655-1-8 Temperature Gradient Wells | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic UtilityQuintas Energy Jump10 Jump to:

  12. Efficient Computation of Entropy Gradient for Semi-Supervised Conditional Random Fields

    E-Print Network [OSTI]

    McCallum, Andrew

    gradient that is significantly more efficient--having the same asymptotic time complexity as su- pervised

  13. Fabrication and evaluation of uniform and gradient density epoxies

    SciTech Connect (OSTI)

    Domeier, L.A.; Skala, D.M.; Goods, S.H. [and others

    1997-11-01

    Filled epoxy materials which vary in density in a designed manner have been fabricated and their mechanical properties evaluated. Density variations were produced by incorporating different volume fractions of either glass microballoons (GMB) or alumina. Several different sample types were evaluated including uniform density (0.8 g/cm{sup 3} < {rho} < 2.0 g/cm{sup 3}) samples and gradient density samples (GMB only, 0.8 g/cm{sup 3} < {rho} < 1.2 g/cm{sup 3}). The uniform density specimens were evaluated for the effects of filler type and concentration on modulus and toughness. Results indicated that addition of alumina filler significantly increased the resulting modulus while addition of GMB had little measurable effect. These differences could be understood in terms of the differing moduli of the additives relative to that of the epoxy matrix. In the former case the alumina particulates had a modulus much greater than that of the epoxy while in the latter case, the modulus of the GMB additive was only slightly greater than that of the matrix. Addition of either filler significantly degraded the toughness of the composite specimens and precluded the use of gradients to enhance toughness performance. Discontinuous {open_quotes}block{close_quotes} gradients used for testing were fabricated by simple sequential pours of formulations with different GMB loadings and were evaluated for modulus, strength and ductility. Continuous gradients were fabricated in process studies by programmed shifts in the peristaltic pumping/mixing ratio of epoxies filled with either alumina or GMB. None of the continuous gradient materials were mechanically tested. These results suggest that applications utilizing gradient materials containing alumina and similar high modulus fillers to provide designed stiffness rather than improved toughness are the most appropriate targets for future investigation.

  14. Gradient catastrophe and flutter in vortex filament dynamics

    E-Print Network [OSTI]

    B. G. Konopelchenko; G. Ortenzi

    2011-06-02

    Gradient catastrophe and flutter instability in the motion of vortex filament within the localized induction approximation are analyzed. It is shown that the origin if this phenomenon is in the gradient catastrophe for the dispersionless Da Rios system which describes motion of filament with slow varying curvature and torsion. Geometrically this catastrophe manifests as a rapid oscillation of a filament curve in a point that resembles the flutter of airfoils. Analytically it is the elliptic umbilic singularity in the terminology of the catastrophe theory. It is demonstrated that its double scaling regularization is governed by the Painlev\\'e-I equation.

  15. Gradient isolator for flow field of fuel cell assembly

    DOE Patents [OSTI]

    Ernst, William D. (Troy, NY)

    1999-01-01

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.

  16. Gradient isolator for flow field of fuel cell assembly

    DOE Patents [OSTI]

    Ernst, W.D.

    1999-06-15

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.

  17. Investigations of low-temperature geothermal potential in New York State

    SciTech Connect (OSTI)

    Hodge, D.S.; De Rito, R.; Hifiker, K.; Morgan, P.; Swanberg, C.A.

    1981-09-01

    Temperature gradient map and published heat flow data indicate a possible potential for a geothermal resource in western and central New York State. A new analysis of bottom-hole temperature data for New York State confirms the existence of three positive gradient anomalies: the East Aurora, Cayuga, and Elmira anomalies, with gradients as high as 32/sup 0/C/km, 36/sup 0/C/km, and 36/sup 0/C/km, respectively. Ground waters from two of these anomalies are enriched in silica relative to surrounding areas. Heat flows based on silica geothermometry are 50 to 70 mWm/sup -2/ for the anomalies and 41.4 mWm/sup -2/ for bordering regional flux. A correlation between Bouguer gravity anomalies and the temperature gradient map suggests that the geothermal anomalies may occur above radioactive granites in the basement.

  18. Low temperature ion source for calutrons

    DOE Patents [OSTI]

    Veach, Allen M. (Oak Ridge, TN); Bell, Jr., William A. (Oak Ridge, TN); Howell, Jr., George D. (Clinton, TN)

    1981-01-01

    A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.

  19. Gradient-based Methods for Production Optimization of Oil Reservoirs

    E-Print Network [OSTI]

    Foss, Bjarne A.

    Gradient-based Methods for Production Optimization of Oil Reservoirs Eka Suwartadi Doctoral Thesis at NTNU, 2012:104 Printed by NTNU-Trykk #12;To my wife and my parents 3 #12;4 #12;Summary Production optimization for water flooding in the secondary phase of oil recovery is the main topic in this thesis

  20. Scale Dependent Definitions of Gradient and Aspect and their Computation

    E-Print Network [OSTI]

    Utrecht, Universiteit

    (isoaspects) can aid in digital terrain modelling. Other geomorphological features in terrains are critical. Using such measures and classifications, the goal is for example to derive drainage maps, specify areas numerical value for gradient, and the classification convex or concave for plan and profile curvature

  1. Topological charge using cooling and the gradient flow

    E-Print Network [OSTI]

    Constantia Alexandrou; Andreas Athenodorou; Karl Jansen

    2015-09-14

    The equivalence of cooling to the gradient flow when the cooling step $n_c$ and the continuous flow step of gradient flow $\\tau$ are matched is generalized to gauge actions that include rectangular terms. By expanding the link variables up to subleading terms in perturbation theory, we relate $n_c$ and $\\tau$ and show that the results for the topological charge become equivalent when rescaling $\\tau \\simeq n_c/({3-15 c_1})$ where $c_1$ is the Symanzik coefficient multiplying the rectangular term. We, subsequently, apply cooling and the gradient flow using the Wilson, the Symanzik tree-level improved and the Iwasaki gauge actions to configurations produced with $N_f=2+1+1$ twisted mass fermions. We compute the topological charge, its distribution and the correlators between cooling and gradient flow at three values of the lattice spacing demonstrating that the perturbative rescaling $\\tau \\simeq n_c/({3-15 c_1})$ leads to equivalent results.

  2. Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow

    E-Print Network [OSTI]

    Hennon, Christopher C.

    Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow The types of atmospheric flows describe here have the following characteristics: 1) Steady state (meaning that the flows do surfaces) These are "idealized" flows, created by balances of horizontal forces. They provide a qualitative

  3. GRADIENT THEORY FOR PLASTICITY VIA HOMOGENIZATION OF DISCRETE DISLOCATIONS

    E-Print Network [OSTI]

    Garroni, Adriana

    GRADIENT THEORY FOR PLASTICITY VIA HOMOGENIZATION OF DISCRETE DISLOCATIONS ADRIANA GARRONI theory for plasticity from a model of discrete dislocations. We restrict our analysis to the case of a cylindrical symmetry for the crystal in exam, so that the mathematical formulation will involve a two

  4. Topological charge using cooling and the gradient flow

    E-Print Network [OSTI]

    Alexandrou, Constantia; Jansen, Karl

    2015-01-01

    The equivalence of cooling to the gradient flow when the cooling step $n_c$ and the continuous flow step of gradient flow $\\tau$ are matched is generalized to gauge actions that include rectangular terms. By expanding the link variables up to subleading terms in perturbation theory, we relate $n_c$ and $\\tau$ and show that the results for the topological charge become equivalent when rescaling $\\tau \\simeq n_c/({3-15 c_1})$ where $c_1$ is the Symanzik coefficient multiplying the rectangular term. We, subsequently, apply cooling and the gradient flow using the Wilson, the Symanzik tree-level improved and the Iwasaki gauge actions to configurations produced with $N_f=2+1+1$ twisted mass fermions. We compute the topological charge, its distribution and the correlators between cooling and gradient flow at three values of the lattice spacing demonstrating that the perturbative rescaling $\\tau \\simeq n_c/({3-15 c_1})$ leads to equivalent results.

  5. Evaluation of liquid lift approach to dual gradient drilling 

    E-Print Network [OSTI]

    Okafor, Ugochukwu Nnamdi

    2008-10-10

    In the past, the oil and gas industry has typically used the single gradient system to drill wells offshore. With this system the bottom hole pressure was controlled by a mud column extending from the drilling rig to the bottom of the wellbore...

  6. A latitudinal diversity gradient in planktonic marine bacteria

    E-Print Network [OSTI]

    Brown, James H.

    A latitudinal diversity gradient in planktonic marine bacteria Jed A. Fuhrman* , Joshua A. Steele and attribute this to their high abundance and dispersal capabilities would suggest that bacteria, the smallest. Despite the high abundance and potentially high dispersal of bacteria, they exhibit geographic patterns

  7. Seasonal mass balance gradients in Norway L. A. Rasmussen1

    E-Print Network [OSTI]

    Rasmussen, L.A.

    16 Aug 05 Seasonal mass balance gradients in Norway L. A. Rasmussen1 and L. M. Andreassen2 1 Norwegian Water Resources and Energy Directorate (NVE) P. O. Box 5091 Majorstua, N-0301 Oslo, Norway in Norway exists in their profiles of both seasonal balances, winter bw(z) and summer bs(z). Unlike many

  8. University of Alberta Gradient Temporal-Difference Learning Algorithms

    E-Print Network [OSTI]

    Sutton, Richard S.

    University of Alberta Gradient Temporal-Difference Learning Algorithms by Hamid Reza Maei A thesis, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies the thesis is converted to, or otherwise made available in digital form, the University of Alberta

  9. Capillary forces and osmotic gradients in salt water -oil systems

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Capillary forces and osmotic gradients in salt water - oil systems Georg Ellila Chemical study. This is to my knowledge the first time the transport mechanisms in capillary oil-salt water and the Vista Program. 1 #12;Abstract This project looks at the capillary systems with salt water and oil

  10. University of Alberta Gradient Temporal-Difference Learning Algorithms

    E-Print Network [OSTI]

    Sutton, Richard S.

    of convergence--in on-policy problems. #12;Acknowledgements This PhD thesis is developed through collaboration;Abstract We present a new family of gradient temporal-difference (TD) learning methods with func- tion- proximation. In particular, convergence cannot be guaranteed for these methods when they are used with off-policy

  11. Intermittency in Turbulent Diffusion Models with a Mean Gradient

    E-Print Network [OSTI]

    Majda, Andrew J.

    Intermittency in Turbulent Diffusion Models with a Mean Gradient Andrew J Majda and Xin T TongE30, 62G32 Submitted to: Nonlinearity 1. Introduction Turbulent diffusion is the transportation and diffusion. Its application ranges from the spread of hazardous plumes and mixing properties of turbulent

  12. Tubular precipitation and redox gradients on a bubbling template

    E-Print Network [OSTI]

    Goldstein, Raymond E.

    Tubular precipitation and redox gradients on a bubbling template David A. Stone* and Raymond E) Tubular structures created by precipitation abound in nature, from chimneys at hydrothermal vents to soda oxides precipitate on the surface of bubbles that linger at the tube rim and then detach, leaving behind

  13. Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States

    SciTech Connect (OSTI)

    D. D. Blackwell; K. W. Wisian; M. C. Richards; J. L. Steele

    2000-04-01

    Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships between structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.

  14. Thermal gradient-induced forces on geodetic reference masses for LISA

    E-Print Network [OSTI]

    L. Carbone; A. Cavalleri; G. Ciani; R. Dolesi; M. Hueller; D. Tombolato; S. Vitale; W. J. Weber

    2007-06-29

    The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodetic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the LISA gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensor that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the LISA sensitivity goals.

  15. Latest Results of ILC High-Gradient R&D 9-cell Cavities at JLAB

    SciTech Connect (OSTI)

    Rongli Geng

    2008-02-11

    It has been over a year since JLAB started processing and testing ILC 9-cell cavities in the frame work of ILC high-gradient cavity R&D, aiming at the goal of a 35 MV/m gradient at a Q #4; of 1E10 with a yield of 90%. The necessary cavity processing steps include field flatness tuning, electropolishing (EP), hydrogen out-gassing under vacuum, high-pressure water rinsing, clean room assembly, and low temperature bake. These are followed by RF test at 2 Kelvin. Ultrasonic cleaning with Micro-90, an effective post-EP rinsing recipe discovered at JLAB, is routinely used. Seven industry manufactured 9-cell TESLAshape cavities are processed and tested repeatedly. So far, 33 EP cycles are accumulated, corresponding to more than 65 hours of active EP time. An emphasis put on RF testing is to discern cavity quench characteristics, including its nature and its location. Often times, the cavity performance is limited by thermal-magnetic quench instead of field emission. The quench field in some cavities is lower than 20 MV/m and remains unchanged despite repeated EP, implying material and/or fabrication defects. The quench field in some other cavities is high but changes unpredictably after repeated EP, suggesting processing induced defects. Based on our experience and results, several areas are identified where improvement is needed to improve cavity performance as well as yield.

  16. Temperature System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexicoConference Tight Oil1 Soil Water and Temperature

  17. Interpreting Horizontal Well Flow Profiles and Optimizing Well Performance by Downhole Temperature and Pressure Data 

    E-Print Network [OSTI]

    Li, Zhuoyi

    2011-02-22

    . Because of geothermal gradient, formation temperature along the depth of the wellbore changes significantly. At such a situation, some small thermal effects, such as fluid thermal expansion and viscous dissipation heating, can be ignored compared... data. For horizontal wells, because geothermal temperature changes are relatively small, the dominating effects on the wellbore temperature changes may be thermal expansion, viscous dissipative heating, and thermal conduction. Model for temperature...

  18. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, Richard M. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Skulina, Kenneth M. (Livermore, CA)

    1995-01-01

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  19. Gradient Plasticity Model and its Implementation into MARMOT

    SciTech Connect (OSTI)

    Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.; Sun, Xin

    2013-08-01

    The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in this model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.

  20. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  1. Radiography to measure the longitudinal density gradients of Pd compacts

    SciTech Connect (OSTI)

    Back, D.D.

    1992-05-14

    This study used radiography to detect and quantify density gradients in green compacts of Palladium powder. Ultrasonic velocity measurements had been tried previously, but they were affected by material properties, in addition to the density, so that an alternative was sought. The alternative technique used radiographic exposures of a series of standard compacts whose density is known and correlated with the radiographic film density. These correlations are used to predict the density in subsequent compacts.

  2. Gradient instabilities of electromagnetic waves in Hall thruster plasma

    SciTech Connect (OSTI)

    Tomilin, Dmitry

    2013-04-15

    This paper presents a linear analysis of gradient plasma instabilities in Hall thrusters. The study obtains and analyzes the dispersion equation of high-frequency electromagnetic waves based on the two-fluid model of a cold plasma. The regions of parameters corresponding to unstable high frequency modes are determined and the dependence of the increments and intrinsic frequencies on plasma parameters is obtained. The obtained results agree with those of previously published studies.

  3. Determination of dispersivities from a natural-gradient dispersion test 

    E-Print Network [OSTI]

    Hoover, Caroline Marie

    1985-01-01

    Model DESCRIPTION OF THE NATURAL-GRADIENT DISPERSION TEST. Site Geology. Methodology Summary of Results. APPLICATION OF METHODS. Ideal Pl ume Study. Characterization of the Iterative Diagrams. . . Sensitivity Analyses. Field Tracer Study... with contaminant hydrogeology. Cherry et al. (1975) defines contaminant hydrogeology as the application of hydrogeological and geochemical theory and practice to the protection of aquifers and surface waters from contamination, and to the design and monitoring...

  4. Preparation of Genomic DNA from Hawaiian Bobtail Squid (Euprymna scolopes) Tissue by Cesium Chloride Gradient

    E-Print Network [OSTI]

    Ruby, Edward G.

    by Cesium Chloride Gradient Centrifugation Patricia N. Lee1,2 , Margaret J. McFall-Ngai3 , Patrick Callaerts from adult bobtail squid (Euprymna scolopes) tissues by cesium chloride (CsCl) gradient centrifugation

  5. Generating spatially and temporally controllable long-range concentration gradients in a microfluidic device

    E-Print Network [OSTI]

    Vidula, Mahesh K.

    Concentration gradients have important applications in chemical and biological studies. Here we have achieved rapid generation of spatially and temporally controllable concentration gradients of diffusible molecules (i.e. ...

  6. Creation of nonlinear density gradients for use in internal wave research

    E-Print Network [OSTI]

    Harris, Victoria Siân

    2007-01-01

    A method was developed to create a nonlinear density gradient in a tank of water. Such gradients are useful for studying internal waves, an ocean phenomenon that plays an important role in climate and ocean circulation. ...

  7. An evaluation of subsea pump technologies that can be used to achieve dual gradient drilling 

    E-Print Network [OSTI]

    Oluwadairo, Tolulope

    2009-05-15

    Dual Gradient Drilling is an exciting technology which promises to solve the current technical hurdles and economic risks of Deepwater Drilling. Several techniques for Dual Gradient Drilling have been proposed to the ...

  8. Magnetic field gradients in solar wind plasma and geophysics periods

    E-Print Network [OSTI]

    A. Bershadskii

    2006-11-16

    Using recent data obtained by Advanced Composition Explorer (ACE) the pumping scale of the magnetic field gradients of the solar wind plasma has been calculated. This pumping scale is found to be equal to 24h $\\pm$ 2h. The ACE spacecraft orbits at the L1 libration point which is a point of Earth-Sun gravitational equilibrium about 1.5 million km from Earth. Since the Earth's magnetosphere extends into the vacuum of space from approximately 80 to 60,000 kilometers on the side toward the Sun the pumping scale cannot be a consequence of the 24h-period of the Earth's rotation. Vise versa, a speculation is suggested that for the very long time of the coexistence of Earth and of the solar wind the weak interaction between the solar wind and Earth could lead to stochastic synchronization between the Earth's rotation and the pumping scale of the solar wind magnetic field gradients. This synchronization could transform an original period of the Earth's rotation to the period close to the pumping scale of the solar wind magnetic field gradients.

  9. Transcriptomic profiling of the giant kelp, Macrocystis pyrifera, across environmental gradients

    E-Print Network [OSTI]

    Konotchick, Talina Helen

    2012-01-01

    gradients can influence morphology indicating that the nitrate climate can affect change in the regulatory mechanisms and metabolism

  10. Nanowire-Composite based Flexible Thermoelectric Nanogenerators and Self-Powered Temperature Sensors

    E-Print Network [OSTI]

    Wang, Zhong L.

    in harvesting electricity from waste heat with a temperature gradient relative to environmental temperature [2, 3], such as in cars, aircrafts, and power plants. Nanomaterials with higher performance are more and energy-dependent scat- tering of electrical carriers occur in the presence of nanoscale interfaces [4

  11. A fourth-order nonlinear PDE as gradient flow of the Fisher information in Wasserstein spaces

    E-Print Network [OSTI]

    Savaré, Giuseppe

    A fourth-order nonlinear PDE as gradient flow of the Fisher information in Wasserstein spaces://www.imati.cnr.it/savare A-HYKE2, april 2004 ­ p.1 #12;Plan 1. The fourth order equation and its structure 2. Gradient flows. The fourth order equation and its structure 2. Gradient flows and Wasserstein distance 3. Main results

  12. Eddy currents in a gradient coil, modelled as circular loops of strips

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Eddy currents in a gradient coil, modelled as circular loops of strips J.M.B. Kroot, S.J.L. van. Due to induction eddy currents occur which lead to the so-called edge-effect. The edge- effect depends the gradient coils themselves. Eddy currents occur, causing perturbations on the expected gradient field

  13. Enhancement of charged macromolecule capture by nanopores in a salt gradient

    E-Print Network [OSTI]

    Levine, Alex J.

    Enhancement of charged macromolecule capture by nanopores in a salt gradient Tom Choua Department. However, recent experiments have shown that salt concentration gradients applied across nanopores can also length, we obtain accurate analytic expressions showing how salt gradients control the local conductivity

  14. Experimental and theoretical studies of oxygen gradients in rat pial microvessels

    E-Print Network [OSTI]

    Popel, Aleksander S.

    no substantial impact on the transmural PO2 gradient. Journal of Cerebral Blood Flow & Metabolism (2008) 28, 1597Experimental and theoretical studies of oxygen gradients in rat pial microvessels Maithili Sharan1 near cortical arterioles and transmural PO2 gradients in the pial arterioles of the rat. Under control

  15. On the Relation Between Steep Monoclinal Flexure Zones and Steep Hydraulic Gradients

    E-Print Network [OSTI]

    Lyakhovsky, Vladimir

    On the Relation Between Steep Monoclinal Flexure Zones and Steep Hydraulic Gradients by Y. Yechieli1, U. Kafri2, S. Wollman2, V. Lyakhovsky2, and R. Weinberger2 Abstract Steep hydraulic gradients of the hydraulic conductivity, which is responsible for the steep gradients, has seldom been studied. We present

  16. General Method for Forming Micrometer-Scale Lateral Chemical Gradients in Polymer Brushes

    E-Print Network [OSTI]

    Braun, Paul

    ABSTRACT: We report a general diffusion based method to form micrometer-scale lateral chemical gradientsGeneral Method for Forming Micrometer-Scale Lateral Chemical Gradients in Polymer Brushes Hyung chemical potential gradients with a diversity of shapes. INTRODUCTION Surfaces presenting chemical

  17. North-South Contradictions and bridges at the World Social Forum

    E-Print Network [OSTI]

    2006-01-01

    1998. Power in movement: Social movements, collectiveHerkenrath, Mark 2006 “Social movements and the challengesintellectuals in social movements, and several events that

  18. Observations and modelling of North-South asymmetries using a Flux Transport Dynamo

    E-Print Network [OSTI]

    ABSTRACT The peculiar behaviour of the solar cycle 23 and its prolonged minima has been one of the most magnetic flux in the north- ern and southern hemispheres during complete solar cycle 23 and rising phase of solar cycle 24. During the declining phase of solar cycle 23, we find that the magnetic flux

  19. North-south asymmetry in solar activity: predicting the amplitude of the next solar cycle

    E-Print Network [OSTI]

    J. Javaraiah

    2007-01-31

    Using Greenwich and SOON sunspot group data during the period 1874 -- 2005, we find that the sums of the areas of the sunspot groups in $0^\\circ$ -- $10^\\circ$ latitude-interval of the Sun's northern hemisphere and in the time-interval, minus 1.35 year to plus 2.15 year from the time of the preceding minimum--and in the same latitude interval of the southern hemisphere but plus 1.0 year to plus 1.75 year from the time of the maximum--of a sunspot cycle are well correlating with the amplitude (maximum of the smoothed monthly sunspot number) of its immediate following cycle. Using this relationship it is possible to predict the amplitude of a sunspot cycle by about 9 -- 13 years in advance. We predicted $74 \\pm 10$ for the amplitude of the upcoming cycle~24. Variations in solar meridional flows during solar cycles and 9 -- 16 year variations in solar equatorial rotation may be responsible for the aforementioned relationship.

  20. Support for the development of North-South research partnerships Call for applications

    E-Print Network [OSTI]

    Shoubridge, Eric

    partnerships between young Quebec researchers and their peers in low- and middle- income countries (LMIC of the grant The grants will be remitted to the candidates and the mentors; In cases where the Quebec, one from Quebec and the other from a low- or middle-income country (LMIC); Co-candidates from Quebec

  1. North-South Contradictions and bridges at the World Social Forum

    E-Print Network [OSTI]

    2006-01-01

    Rebecca Giem, Erika Gutierrez and Ellen Reese 2006 “TheRebecca L. and Erika J. Gutierrez, 2006 “The Politics ofDunn, Rebecca Giem, Erika Gutierrez and Christine Petit

  2. A New Electrochemical Gradient Generator in Thylakoid Membranes of Green Fabrice Rappaport, Giovanni Finazzi, Yves Pierre,| and Pierre Bennoun*,

    E-Print Network [OSTI]

    A New Electrochemical Gradient Generator in Thylakoid Membranes of Green Algae Fabrice Rappaport generator present in the thylakoid membranes. We have studied the permanent electrochemical gradient (µ~)1

  3. Evaluation of low-temperature geothermal potential in north-central Box Elder County, Utah

    SciTech Connect (OSTI)

    Davis, M.C.; Kolesar, P.T.

    1984-12-01

    The low-temperature geothermal resources of north-central Box Elder County, Utah were assessed. Exploration techniques used included chemical analyses of water from wells and springs, temperature surveys, and temperature-depth measurements in unused wells within the study area. The highest water temperatures (31/sup 0/, 30/sup 0/, and 29/sup 0/C) recorded in this research were located in three separate geographic regions, suggesting that no single warm water occurrence dominates the study area. Total dissolved solid (TDS) concentrations ranged from 294 to 11,590 mg/l. Areas of warm water occurrences generally had TDS values of greater than 1100 mg/l. Reservoir temperatures were estimated using chemical geothermometers. Calculated temperatures ranged between 50/sup 0/ and 100/sup 0/C. Temperature-depth measurements were logged in 16 unused wells. Thermal gradients calculated from the profiles ranged from isothermal to 267/sup 0/C/km. The background gradient for the study area appears to be slightly above the average Basin and Range gradient of 35/sup 0/C/km. The highest gradients were calculated for the area approximately eight kilometers west of Snowville, Utah, which is also an area of warm water. 61 refs., 15 figs., 6 tabs.

  4. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  5. Multi-Scale Gradient Expansion of the Turbulent Stress Tensor

    E-Print Network [OSTI]

    Gregory L. Eyink

    2005-12-10

    We develop an expansion of the turbulent stress tensor into a double series of contributions from different scales of motion and different orders of space-derivatives of velocity, a Multi-Scale Gradient (MSG) expansion. The expansion is proved to converge to the exact stress, as a consequence of the locality of cascade both in scale and in space. Simple estimates show, however, that the convergence rate may be slow for the expansion in spatial gradients of very small scales. Therefore, we develop an approximate expansion, based upon an assumption that similar or `coherent' contributions to turbulent stress are obtained from disjoint subgrid regions. This Coherent-Subregions Approximation (CSA) yields an MSG expansion that can be proved to converge rapidly at all scales and is hopefully still reasonably accurate. As an application, we consider the cascades of energy and helicity in three-dimensional turbulence. To first order in velocity-gradients, the stress has three contributions: a tensile stress along principal directions of strain, a contractile stress along vortex lines, and a shear stress proportional to `skew-strain.' While vortex-stretching plays the major role in energy cascade, there is a second, less scale-local contribution from `skew-strain'. For helicity cascade the situation is reversed, and it arises scale-locally from `skew-strain' while the stress along vortex-lines gives a secondary, less scale-local contribution. These conclusions are illustrated with simple exact solutions of 3D Euler equations. In the first, energy cascade occurs by Taylor's mechanism of stretching and spin-up of small-scale vortices due to large-scale strain. In the second, helicity cascade occurs by `twisting' of small-scale vortex filaments due to a large-scale screw.

  6. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    SciTech Connect (OSTI)

    Arntz, Floyd; Kardo-Sysoev, A.; Krasnykh, A.; /SLAC

    2008-12-16

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to linac applications; for instance, it could be employed to both accelerate the beam and to stabilize the superbunch mode of operation in circular track machines.

  7. Tecuamburro Volcano, Guatemala geothermal gradient core hole drilling, operations, and preliminary results

    SciTech Connect (OSTI)

    Goff, S.; Heiken, G.; Goff, F.; Gardner, J. (Los Alamos National Lab., NM (USA)); Duffield, W. (Geological Survey, Flagstaff, AZ (USA)); Martinelli, L.; Aycinena, S. (Swissboring Overseas Corp. Ltd., Guatemala City (Guatemala)); Castaneda, O. (Unidad de Desarrollo Geotermico, Guatemala City (Guatemala). Inst. Nacional de Electrificacion)

    1990-01-01

    A geothermal gradient core hole (TCB-1) was drilled to a depth of 700+ m at the Tecuamburro geothermal site, Guatemala during February and March, 1990. The core hole is located low on the northern flank of the Tecuamburro Volcano complex. Preliminary analysis of cores (>98% core recovery) indicates that the hydrothermal system may be centered in the 4-km-diameter Chupadero Crater, which has been proposed as the source of pyroxene pumice deposits in the Tecuamburro area. TCB-1 is located 300 m south of a 300-m-diameter phreatic crater, Laguna Ixpaco; the core hole penetrates the thin edge of a tuff ring surrounding Ixpaco and zones of hydrothermal brecciation within the upper 150 m may be related to the phreatic blast, dated at 2,910 {sup 14}C years. At the time of this writing, the unequilibrated temperature at a depth of 570m was 180{degree}C. Data on fracturing, permeability, hydrothermal alteration, and temperature will be presented. 3 refs., 3 figs.

  8. Fabrication of high gradient insulators by stack compression

    DOE Patents [OSTI]

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  9. Conjugate gradient solvers on Intel Xeon Phi and NVIDIA GPUs

    E-Print Network [OSTI]

    O. Kaczmarek; C. Schmidt; P. Steinbrecher; M. Wagner

    2014-11-17

    Lattice Quantum Chromodynamics simulations typically spend most of the runtime in inversions of the Fermion Matrix. This part is therefore frequently optimized for various HPC architectures. Here we compare the performance of the Intel Xeon Phi to current Kepler-based NVIDIA Tesla GPUs running a conjugate gradient solver. By exposing more parallelism to the accelerator through inverting multiple vectors at the same time, we obtain a performance greater than 300 GFlop/s on both architectures. This more than doubles the performance of the inversions. We also give a short overview of the Knights Corner architecture, discuss some details of the implementation and the effort required to obtain the achieved performance.

  10. High and ulta-high gradient quadrupole magnets

    SciTech Connect (OSTI)

    Brunk, W.O.; Walz, D.R.

    1985-05-01

    Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e/sup +//e/sup -/ super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%.

  11. Category:Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal Gradient Holes Jump to: navigation, search

  12. Solar production of intermediate temperature process heat. Phase I design. Final report. [For sugarcane processing plant in Hawaii

    SciTech Connect (OSTI)

    None

    1980-08-01

    This report is the final effort in the Phase I design of a solar industrial process heat system for the Hilo Coast Processing Company (HCPC) in Pepeekeo, Hawaii. The facility is used to wash, grind and extract sugar from the locally grown sugarcane and it operates 24 hours a day, 305 days per year. The major steam requirements in the industrial process are for the prime movers (mill turbines) in the milling process and heat for evaporating water from the extracted juices. Bagasse (the fibrous residue of milled sugarcane) supplied 84% of the fuel requirement for steam generation in 1979, while 65,000 barrels of No. 6 industrial fuel oil made up the remaining 16%. These fuels are burned in the power plant complex which produces 825/sup 0/F, 1,250 psi superheated steam to power a turbogenerator set which, in addition to serving the factory, generates from 7 to 16 megawatts of electricity that is exported to the local utility company. Extracted steam from the turbo-generator set supplies the plant's process steam needs. The system consists of 42,420 ft./sup 2/ of parabolic trough, single axis tracking, concentrating solar collectors. The collectors will be oriented in a North-South configuration and will track East-West. A heat transfer fluid (Gulf Synfluid 4cs) will be circulated in a closed loop fashion through the solar collectors and a series of heat exchangers. The inlet and outlet fluid temperatures for the collectors are 370/sup 0/F and 450/sup 0/F respectively. It is estimated that the net useable energy delivered to the industrial process will be 7.2 x 10/sup 9/ Btu's per year. With an HCPC boiler efficiency of 78% and 6.2 x 10/sup 6/ Btu's per barrel of oil, the solar energy system will displace 1489 barrels of oil per year. (WHK)

  13. Toward Oxide Scale Behavior Management At High Temperature

    SciTech Connect (OSTI)

    Deltombe, R.; Dubar, M.; Dubois, A.; Dubar, L.

    2011-01-17

    Oxide scales grow freely on bare metallic surface under environmental conditions such as high temperature and oxygen. These act as thermal and mechanical shields, especially during high hot forming processes (>1000 deg. C). But product quality can be impacted by these oxide scales due to scale remaining on product or sticking on tools. Thus the TEMPO laboratory has created an original methodology in order to characterize oxide scale under high temperature, pressure and strain gradients. An experimental device has been developed. The final purpose of this work is to understand the scale behavior as a function of temperature, reduction ratio and steel composition.

  14. gradient, df/dz, across the condensate. Such a gradient may be imprinted by a condensate velocity, because df=dz mv=h, where

    E-Print Network [OSTI]

    Ganichev, Sergey

    gradient, df/dz, across the condensate. Such a gradient may be imprinted by a condensate velocity,13 , which accounts for far fewer atoms than the number contained in the initial repulsive condensate. Apparently, most of the atoms from the collapsing condensate are lost, while only a small fraction remain

  15. The development of a high-throughput gradient array apparatus for the study of porous polymer networks.

    SciTech Connect (OSTI)

    Majumdar, Partha; Lee, Elizabeth; Chisholm, Bret J.; Dirk, Shawn M.; Weisz, Michael; Bahr, James; Schiele, Kris

    2010-01-01

    A gradient array apparatus was constructed for the study of porous polymers produced using the process of chemically-induced phase separation (CIPS). The apparatus consisted of a 60 element, two-dimensional array in which a temperature gradient was placed in the y-direction and composition was varied in the x-direction. The apparatus allowed for changes in opacity of blends to be monitored as a function of temperature and cure time by taking images of the array with time. The apparatus was validated by dispense a single blend composition into all 60 wells of the array and curing them for 24 hours and doing the experiment in triplicate. Variations in micron scale phase separation were readily observed as a function of both curing time and temperature and there was very good well-to-well consistency as well as trial-to-trial consistency. Poragen of samples varying with respect to cure temperature was removed and SEM images were obtained. The results obtained showed that cure temperature had a dramatic affect on sample morphology, and combining data obtained from visual observations made during the curing process with SEM data can enable a much better understanding of the CIPS process and provide predictive capability through the relatively facile generation of composition-process-morphology relationships. Data quality could be greatly enhanced by making further improvements in the apparatus. The primary improvements contemplated include the use of a more uniform light source, an optical table, and a CCD camera with data analysis software. These improvements would enable quantification of the amount of scattered light generated from individual elements as a function of cure time. In addition to the gradient array development, porous composites were produced by incorporating metal particles into a blend of poragen, epoxy resin, and crosslinker. The variables involved in the experiment were metal particle composition, primary metal particle size, metal concentration, and poragen composition. A total of 16 different porous composites were produced and characterized using SEM. In general, the results showed that pore morphology and the distribution of metal particles was dependent on multiple factors. For example, the use of silver nanoparticles did not significantly affect pore morphology for composites derived from decanol as the poragen, but exceptionally large pores were obtained with the use of decane as the poragen. With regard to the effect of metal particle size, silver nanoparticles were essentially exclusively dispered in the polymer matrix while silver microparticles were found in pores. For nickel particles, both nanoparticles and microparticles were largely dispersed in the polymer matrix and not in the pores.

  16. Feedback Mechanism for Microtubule Length Regulation by Stathmin Gradients

    E-Print Network [OSTI]

    Maria Zeitz; Jan Kierfeld

    2014-12-09

    We formulate and analyze a theoretical model for the regulation of microtubule (MT) polymerization dynamics by the signaling proteins Rac1 and stathmin. In cells, the MT growth rate is inhibited by cytosolic stathmin, which, in turn, is inactivated by Rac1. Growing MTs activate Rac1 at the cell edge, which closes a positive feedback loop. We investigate both tubulin sequestering and catastrophe promotion as mechanisms for MT growth inhibition by stathmin. For a homogeneous stathmin concentration in the absence of Rac1, we find a switch-like regulation of the MT mean length by stathmin. For constitutively active Rac1 at the cell edge, stathmin is deactivated locally, which establishes a spatial gradient of active stathmin. In this gradient, we find a stationary bimodal MT length distributions for both mechanisms of MT growth inhibition by stathmin. One subpopulation of the bimodal length distribution can be identified with fast growing and long pioneering MTs in the region near the cell edge, which have been observed experimentally. The feedback loop is closed through Rac1 activation by MTs. For tubulin sequestering by stathmin, this establishes a bistable switch with two stable states: one stable state corresponds to upregulated MT mean length and bimodal MT length distributions, i.e., pioneering MTs; the other stable state corresponds to an interrupted feedback with short MTs. Stochastic effects as well as external perturbations can trigger switching events. For catastrophe promoting stathmin we do not find bistability.

  17. The latitudinal gradient of the NO peak density

    SciTech Connect (OSTI)

    Fesen, C.G.; Rusch, D.W. (Univ. of Colorado, Boulder (United States)); Gerard, J.C. (Univ. de Liege (Belgium))

    1990-11-01

    The latitudinal gradients of the maximum nitric oxide densities near 110 km are presented for solstice and equinox periods from 1982 through 1985 as observed by the Solar Mesosphere Explorer satellite. The data indicate that the response of the maximum NO densities to the declining level of solar activity is latitudinally and seasonally dependent: the polar regions exhibit little sensitivity to solar activity, while the low latitude NO responds strongly. The data also reveal marked asymmetries in the latitudinal structure of the two hemispheres for each season. During June solstice periods, the latitudinal distribution is fairly flat, unlike December solstice periods which tend to show a definite minimum near 30{degree}N. Similarly, March data show very little latitudinal variation in the NO peak density between about {plus minus} 40{degree}, while the September data show marked gradients for the later years. The SME data further indicate that the nitric oxide densities vary considerably from day to day, even during very quiet geomagnetic periods, suggesting that the concept of an average distribution is of limited usefulness in understanding nitric oxide. A two-dimensional model is used to simualte the June solar cycle minimum data. The latitudinally averaged magnitudes of the observed NO peak densities are reproduced reasonably well by the model, but the shape of the latitudinal variation is not.

  18. Convergence in gradient systems with branching of equilibria

    SciTech Connect (OSTI)

    Galaktionov, V A [University of Bath (United Kingdom); Pohozaev, Stanislav I [Steklov Mathematical Institute, Russian Academy of Sciences (Russian Federation); Shishkov, A E [Institute of Applied Mathematics and Mechanics of the National Academy of Sciences of Ukraine, Donetsk (Ukraine)

    2007-06-30

    The basic model is a semilinear elliptic equation with coercive C{sup 1} non-linearity: {delta}{psi}+f({psi})=0 in {omega}, {psi}=0 on {partial_derivative}{omega}, where {omega} subset of R{sup N} is a bounded smooth domain. The main hypothesis (H{sub R}) about resonance branching is as follows: if a branching of equilibria occurs at a point {psi} with k-dimensional kernel of the linearized operator {delta}+f'({psi})I, then the branching subset S{sub k} at {psi} is a locally smooth k-dimensional manifold. For N=1 the first result on the stabilization to a single equilibrium is due to Zelenyak (1968). It is shown that Zelenyak's approach, which is based on the analysis of Lyapunov functions, can be extended to general gradient systems in Hilbert spaces with smooth resonance branching. The case of asymptotically small non-autonomous perturbations of such systems is also considered. The approach developed here represents an alternative to Hale's stabilization method (1992) and other similar techniques in the theory of gradient systems. Bibliography: 32 titles.

  19. Dielectric-Lined High-Gradient Accelerator Structure

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-04-24

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ({approx}2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 {micro}s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10{sup 5} RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS operating at 30 GHz. It was shown that the ratio of maximum surface electric field to accelerating field at the metal wall is only 0.35-0.4 for DLA, much smaller than the value 2.2 for HDS; and the ratio of surface magnetic field to accelerating field is 3.0 mA/V for DLA, compared with 3.45 mA/V for HDS. These values bode well for DLA in helping to avoid breakdown and to reducing pulsed surface heating and fatigue. The shunt impedance is found to be 160-175 M{Omega}/m for DLA, as compared to 99 M{Omega}/m for HDS. Conclusions are reached from this project that CVD diamond appears promising as a dielectric with a high threshold for RF breakdown, and that rectangular accelerator structures can be devised using planar CVD diamond elements that could be operated at higher acceleration gradients with low probability of RF breakdown, as compared with corresponding all-metallic structures.

  20. Improved gradient flow for step scaling function and scale setting

    E-Print Network [OSTI]

    Anna Hasenfratz

    2015-01-30

    The gradient flow renormalized coupling offers a simple and relatively inexpensive way to calculate the step scaling function and the lattice scale, but both applications can be hindered by large lattice artifacts. Recently we introduced an empirical non-perturbative improvement that can reduce, even remove $\\mathcal{O}(a^2)$ lattice artifacts. The method is easy to implement and can be applied to any lattice gauge theory of interest both in step scaling studies and for scale setting. In this talk I will briefly review this improvement method and discuss its application for determining the discrete $\\beta$ function of the 8 and 12 flavor SU(3) systems and for improved scale setting in 2+1+1 flavor QCD

  1. On O($a^2$) effects in gradient flow observables

    E-Print Network [OSTI]

    Alberto Ramos; Stefan Sint

    2015-04-18

    In lattice gauge theories, the gradient flow has been used extensively both, for scale setting and for defining finite volume renormalization schemes for the gauge coupling. Unfortunately, rather large cutoff effects have been observed in some cases. We here investigate these effects to leading order in perturbation theory, considering various definitions of the lattice observable, the lattice flow equation and the Yang Mills lattice action. These considerations suggest an improved set- up for which we perform a scaling test in the pure SU(3) gauge theory, demonstrating strongly reduced cutoff effects. We then attempt to obtain a more complete understanding of the structure of O($a^2$) effects by applying Symanzik's effective theory approach to the 4+1 dimensional local field theory with flow time as the fifth dimension. From these considerations we are led to a fully O($a^2$) improved set-up the study of which is left to future work.

  2. Modified Magnicon for High-Gradient Accelerator R&D

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2011-12-19

    Analysis, and low-power cold tests are described on a modified design intended for the Ka-band pulsed magnicon now in use for high-gradient accelerator R and D and rare elementary particle searches at the Yale University Beam Physics Laboratory. The modification is mainly to the output cavity of the magnicon, which presently operates in the TM310 mode. It is proposed to substitute for this a dual-chamber TE311 cavity structure. The first chamber is to extract about 40% of the beam power (about 25 MW) at 34.272 GHz, while the second chamber is to convey the power to four WR-28 output waveguides. Minor design changes are also proposed for the penultimate 11.424 GHz cavity and the beam collector. The intention of these design changes is to allow the magnicon to operate reliably 24/7, with minor sensitivity to operating parameters.

  3. Operational experience with CW high gradient and high QL cryomodules

    SciTech Connect (OSTI)

    Hovater, J. Curt [JLAB; Allison, Trent L. [JLAB; Bachimanchi, Ramakrishna [JLAB; Daly, Edward F. [JLAB; Drury, Michael A. [JLAB; Lahti, George E. [JLAB; Mounts, Clyde I. [JLAB; Nelson, Richard M. [JLAB; Plawski, Tomasz E. [JLAB

    2014-12-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of ten new 100 MV cryomodules (80 cavities). The superconducting RF cavities are designed to operate CW at an accelerating gradient of 19.3 MV/m with a QL of 3×107. The RF system employs single cavity control using new digital LLRF controls and 13 kW klystrons. Recently, all of the new cryomodules and associated RF hardware and software have been commissioned and operated in the CEBAF accelerator. Electrons at linac currents up to 10 ?A have been successfully accelerated and used for nuclear physics experiments. This paper reports on the commissioning and operation of the cryomodules and RF system.

  4. Accretion, radial flows and abundance gradients in spiral galaxies

    E-Print Network [OSTI]

    Pezzulli, Gabriele

    2015-01-01

    The metal-poor gas continuously accreting onto the discs of spiral galaxies is unlikely to arrive from the intergalactic medium (IGM) with exactly the same rotation velocity as the galaxy itself and even a small angular momentum mismatch inevitably drives radial gas flows within the disc, with significant consequences to galaxy evolution. Here we provide some general analytic tools to compute accretion profiles, radial gas flows and abundance gradients in spiral galaxies as a function of the angular momentum of accreting material. We generalize existing solutions for the decomposition of the gas flows, required to reproduce the structural properties of galaxy discs, into direct accretion from the IGM and a radial mass flux within the disc. We then solve the equation of metallicity evolution in the presence of radial gas flows with a novel method, based on characteristic lines, which greatly reduces the numerical demand on the computation and sheds light on the crucial role of boundary conditions on the abunda...

  5. (2+1)-flavor QCD Thermodynamics from the Gradient Flow

    E-Print Network [OSTI]

    Itou, Etsuko; Taniguchi, Yusuke; Umeda, Takashi

    2015-01-01

    Recently, we proposed a novel method to define and calculate the energy-momentum tensor (EMT) in lattice gauge theory on the basis of the Yang-Mills gradient flow [1]. In this proceedings, we summarize the basic idea and technical steps to obtain the bulk thermodynamic quantities in lattice gauge theory using this method for the quenched and $(2+1)$-flavor QCD. The revised results of integration measure (trace anomaly) and entropy density of the quenched QCD with corrected coefficients are shown. Furthermore, we also show the flow time dependence of the parts of EMT including the dynamical fermions. This work is based on a joint-collaboration between FlowQCD and WHOT QCD.

  6. Shape measurement biases from underfitting and ellipticity gradients

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bernstein, Gary M.

    2010-08-21

    With this study, precision weak gravitational lensing experiments require measurements of galaxy shapes accurate to more »and/or by sampling. We propose a new shape-measurement technique that is explicitly confined to observable regions of k-space. A second bias arises for galaxies whose ellipticity varies with radius. For most shape-measurement methods, such galaxies are subject to "ellipticity gradient bias". We show how to reduce such biases by factors of 20–100 within the new shape-measurement method. The resulting shear estimator has multiplicative errors 3 for high-S/N images, even for highly asymmetric galaxies. Without any training or recalibration, the new method obtains Q = 3000 in the GREAT08 Challenge of blind shear reconstruction on low-noise galaxies, several times better than any previous method.« less

  7. Gradient recovery in adaptive finite element methods for parabolic problems

    E-Print Network [OSTI]

    Lakkis, Omar

    2009-01-01

    We derive energy-norm aposteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the first completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the analysis is the elliptic reconstruction technique. Our theoretical results are backed with extensive numerical experimentation aimed at (a) testing the practical sharpness and asymptotic behaviour of the error estimator against the error, and (b) deriving an adaptive method based on our estimators. An extra novelty provided is an implementation of a coarsening error "preindicator", with a complete implementation guide in ALBERTA.

  8. DNA translocation through nanopores with salt gradients: The role of osmotic flow

    E-Print Network [OSTI]

    Hatlo, Marius M; van Roij, René

    2010-01-01

    Recent experiments of translocation of double stranded DNA through nanopores [M. Wanunu et al. Nature Nanotech. 5, 160 (2010)] reveal that the DNA capture rate can be significantly influenced by a salt gradient across the pore. We show that osmotic flow combined with electrophoresis can quantitatively explain the experimental data on the capture rate. The osmotic flow is induced by the salt gradient across the nanopore, and can be the dominant mechanism for DNA translocation through nanopores with a salt gradient.

  9. Mineral density volume gradients in normal and diseased human tissues

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.; Aikawa, Elena

    2015-04-09

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-raymore »fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.« less

  10. Sources of stress gradients in electrodeposited Ni MEMS.

    SciTech Connect (OSTI)

    Hearne, Sean Joseph; Floro, Jerrold Anthony; Dyck, Christopher William

    2004-06-01

    The ability of future integrated metal-semiconductor micro-systems such as RF MEMS to perform highly complex functions will depend on developing freestanding metal structures that offer improved conductivity and reflectivity over polysilicon structures. For example, metal-based RF MEMS technology could replace the bulky RF system presently used in communications, navigation, and avionics systems. However, stress gradients that induce warpage of active components have prevented the implementation of this technology. Figure 1, is an interference micrograph image of a series of cantilever beams fabricated from electrodeposited Ni. The curvature in the beams was the result of stress gradients intrinsic to the electrodeposition process. To study the sources of the stress in electrodeposition of Ni we have incorporated a wafer curvature based stress sensor, the multibeam optical stress sensor, into an electrodeposition cell. We have determined that there are two regions of stress induced by electrodepositing Ni from a sulfamate-based bath (Fig 2). The stress evolution during the first region, 0-1000{angstrom}, was determined to be dependent only on the substrate material (Au vs. Cu), whereas the stress evolution during the second region, >1000{angstrom}, was highly dependent on the deposition conditions. In this region, the stress varied from +0.5 GPa to -0.5GPa, depending solely on the deposition rate. We examined four likely sources for the compressive intrinsic stress, i.e. reduction in tensile stress, and determined that only the adatom diffusion into grain boundaries model of Sheldon, et al. could account for the observed compressive stress. In the presentation, we shall discuss the compressive stress generation mechanisms considered and the ramifications of these results on fabrication of electrodeposited Ni for MEMS applications.

  11. Temperature estimates from the zircaloy oxidation kinetics in the. cap alpha. plus. beta. phase region. [PWR; BWR

    SciTech Connect (OSTI)

    Olsen, C.S.

    1981-01-01

    Oxidation rates of zircaloy in steam were measured at temperatures between 961 and 1264 K and for duration times between 25 and 1900 seconds in order to calculate, in conjunction with measurements from postirradiation metallographic examination, the prior peak temperatures of zircaloy fuel rod cladding. These temperature estimates will be used in light water reactor research programs to assess (a) the accuracy of temperature measurements of fuel rod cladding peak temperatures from thermocouples attached to the surface during loss-of-coolant experiments (LOCEs), (b) the perturbation of the fuel rod cladding LOCE temperature history caused by the presence of thermocouples, and (c) the measurements of cladding azimuthal temperature gradients near thermocouple locations.

  12. Effect of RF Gradient upon the Performance of the Wisconsin SRF Electron Gun

    SciTech Connect (OSTI)

    Bosch, Robert; Legg, Robert A.

    2013-12-01

    The performance of the Wisconsin 200-MHz SRF electron gun is simulated for several values of the RF gradient. Bunches with charge of 200 pC are modeled for the case where emittance compensation is completed during post-acceleration to 85 MeV in a TESLA module. We first perform simulations in which the initial bunch radius is optimal for the design gradient of 41 MV/m. We then optimize the radius as a function of RF gradient to improve the performance for low gradients.

  13. Constraints on the Cosmic-Ray Density Gradient Beyond the Solar...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Constraints on the Cosmic-Ray Density Gradient Beyond the Solar Circle From Fermi Gamma-Ray Observations of the Third Galactic Quadrant Citation Details...

  14. Scrape-off Layer Flows With Pressure Gradient Scale Length ~ {rho}{sub p}

    SciTech Connect (OSTI)

    Robert J. Goldston

    2013-03-08

    A heuristic model for the plasma scrape-off width balances magnetic drifts against parallel loss at c{sub s} /2, resulting in a SOL width ~ {rho}{sub p}. T{sub sep} is calculated from Spitzer–Härm parallel thermal conduction. This results in a prediction for the power scrape-off width in quantitative agreement both in magnitude and scaling with recent experimental data. To achieve the ~ c{sub s} /2 flow assumed in this model and measured experimentally sets requirements on the ratio of upstream to total SOL particle sources, relative to the square-root of the ratio of target to upstream temperature. The Pfisch-Schlüter model for equilibrium flows has been modified to allow near-sonic flows, appropriate for gradient scale lengths of order {rho}{sub p}, resulting in a new quadrupole radial flow pattern. The strong parallel flows and plasma charging implied by this model suggest a mechanism for H-mode transition, consistent with many observations

  15. Chemical evolution of the inner 2 degrees of the Milky Way bulge: [alpha/Fe] trends and metallicity gradients

    E-Print Network [OSTI]

    Ryde, N; Grieco, V; Matteucci, F; Rich, R M; Uttenthaler, S

    2015-01-01

    The structure, formation, and evolution of the Milky Way bulge is a matter of debate. Important diagnostics for discriminating between bulge models include alpha-abundance trends with metallicity, and spatial abundance and metallicity gradients. Due to the severe optical extinction in the inner Bulge region, only a few detailed investigations have been performed of this region. Here we aim at investigating the inner 2 degrees by observing the [alpha/Fe] element trends versus metallicity, and by trying to derive the metallicity gradient. [alpha/Fe] and metallicities have been determined by spectral synthesis of 2 micron spectra observed with VLT/CRIRES of 28 M-giants, lying along the Southern minor axis at (l,b)=(0,0), (0,-1), and (0,-2). VLT/ISAAC spectra are used to determine the effective temperature of the stars. We present the first connection between the Galactic Center and the Bulge using similar stars, high spectral resolution, and analysis techniques. The [alpha/Fe] trends in all our 3 fields show a l...

  16. Gradient symplectic algorithms for solving the radial Schrdinger equation Siu A. China

    E-Print Network [OSTI]

    Chin, Siu A.

    Gradient symplectic algorithms for solving the radial Schrödinger equation Siu A. China and Petr for their excellent conservation properties. The class of gradient symplectic algorithms is particularly suited. 69, 161 1993 for decomposing time-ordered operators, these algorithms can be easily applied

  17. Gradient flow and IR fixed point in SU(2) with Nf=8 flavors

    E-Print Network [OSTI]

    Viljami Leino; Tuomas Karavirta; Jarno Rantaharju; Teemu Rantalaiho; Kari Rummukainen; Joni M. Suorsa; Kimmo Tuominen

    2015-11-11

    We study the running of the coupling in SU(2) gauge theory with 8 massless fundamental representation fermion flavours, using the gradient flow method with the Schr\\"odinger functional boundary conditions. Gradient flow allows us to measure robust continuum limit for the step scaling function. The results show a clear indication of infrared fixed point consistent with perturbation theory.

  18. Fast Gradient-Descent Methods for Temporal-Difference Learning with Linear Function Approximation

    E-Print Network [OSTI]

    Szepesvari, Csaba

    Fast Gradient-Descent Methods for Temporal-Difference Learning with Linear Function Approximation with both linear function ap- proximation and off-policy training, and whose complexity scales only linearly requirements. 1. Motivation Temporal-difference methods based on gradient descent and linear function

  19. Fluctuation estimates for sub-quadratic gradient field actions David Brydges and Thomas Spencer

    E-Print Network [OSTI]

    Brydges, David

    Fluctuation estimates for sub-quadratic gradient field actions David Brydges and Thomas Spencer) Fluctuation estimates for sub-quadratic gradient field actions David Brydges1 and Thomas Spencer2 1 Department://dx.doi.org/10.1063/1.4747194] Dedicated to Elliott Lieb on the occasion of his 80th birthday The theory

  20. Mobility of large woody debris (LWD) jams in a low gradient channel Joanna C. Curran

    E-Print Network [OSTI]

    Curran, Joanna C.

    Mobility of large woody debris (LWD) jams in a low gradient channel Joanna C. Curran University debris Morphodynamics Wood jams Mobility Mobility of large woody debris (LWD) in low gradient channels is an important but often overlooked transport process. The majority of studies on LWD have focused on its role

  1. Polymer Brushes Patterned with Micrometer-Scale Chemical Gradients Using Laminar Co-Flow

    E-Print Network [OSTI]

    Braun, Paul

    Polymer Brushes Patterned with Micrometer-Scale Chemical Gradients Using Laminar Co-Flow Hyung as narrow as 5 m was created by controlling these parameters. The chemical gradient by laminar co validates the numerical procedures established in this study. Flow of multiple laminar streams of reactive

  2. A COMBINED VARIABLE METRIC -CONJUGATE GRADIENT ALGORITHM FOR A CLASS OF LARGE SCALE UNCONSTRAINED MINIMIZATION

    E-Print Network [OSTI]

    Oren, Shmuel S.

    A COMBINED VARIABLE METRIC - CONJUGATE GRADIENT ALGORITHM FOR A CLASS OF LARGE SCALE UNCONSTRAINED, California Abstract An algorithm is being presented for a special class of unconstrained minimization that is updated by the Rank One update, using gradients obtained in the preceeding steps. Two classes of problems

  3. Stem respiration in tropical forests along an elevation gradient in the Amazon and Andes

    E-Print Network [OSTI]

    Malhi, Yadvinder

    Stem respiration in tropical forests along an elevation gradient in the Amazon and Andes A M A N D metabolism, resulting in the release of carbon dioxide as a by-product. Little is known of how autotrophic respiration components vary across environmental gradients, particularly in tropical ecosystems. Here, we

  4. Intra--modality Image Registration using Gradients Mutawarra Hussain and Ela Claridge

    E-Print Network [OSTI]

    Claridge, Ela

    Intra--modality Image Registration using Gradients Mutawarra Hussain and Ela Claridge School--subject volumetric images has been achieved by using the variance of gradient ratios (VGR) technique. This technique intensity provides functional information on the metabolism of the region to be studied. The temporal

  5. Eddy currents in a gradient coil, modeled as circular loops of strips

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Eddy currents in a gradient coil, modeled as circular loops of strips J.M.B. Kroot, S.J.L. van to induction, eddy currents occur, resulting in a so-called edge-effect. Higher frequencies cause stronger edge by a gradient coil induces eddy currents in the conducting structures. The eddy currents cause perturbations

  6. Seasonal Changes in Bacterial and Archaeal Gene Expression Patterns across Salinity Gradients in the

    E-Print Network [OSTI]

    their metabolic activities, microbial populations mediate the impact of high gradient regions on ecologicalSeasonal Changes in Bacterial and Archaeal Gene Expression Patterns across Salinity Gradients in nitrogen and carbon metabolism in the CRCM. Initial experiments with the environmental microarrays were

  7. Determination and modeling of the 3-D gradient refractive indices in crystalline lenses

    E-Print Network [OSTI]

    Chan, Derek Y C

    Determination and modeling of the 3-D gradient refractive indices in crystalline lenses Derek Y. C gradient refractive-index profiles in crystalline lenses is proposed. The input data are derivedfrom 2 crystalline lenses.2 This method is based on measuring the total refraction suffered by a light beam

  8. Production of stream habitat gradients by montane watersheds: hypothesis tests based on

    E-Print Network [OSTI]

    that lotic communities are structured by the quality and quantity of energy inputs to a streamProduction of stream habitat gradients by montane watersheds: hypothesis tests based on spatially of mountain watersheds interact to cause gradients in three stream attributes: baseflow stream widths, total

  9. Free-space microwave focusing by a negative-index gradient lens T. Driscolla

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    Free-space microwave focusing by a negative-index gradient lens T. Driscolla and D. N. Basov gradient-index lens with an index of refraction ranging from -2.67 edge to -0.97 center . Experimentally technology which offers significant design, mechanical, and cost advantages over other microwave lens

  10. SECOND GENERATION HIGH GRADIENT QUADRUPOLES FOR THE LHC INTERACTION REGIONS1

    E-Print Network [OSTI]

    Large Hadron Collider Program

    SECOND GENERATION HIGH GRADIENT QUADRUPOLES FOR THE LHC INTERACTION REGIONS1 T. Sen, J. Strait-gradient Nb3Sn quadrupoles, suitable for use in a second generation LHC interaction region, are presented generation of low-beta quadrupoles for the LHC IR inner triplets based on NbTi superconductor is being

  11. Spatially addressable design of gradient index structures through spatial light modulator based holographic lithography

    SciTech Connect (OSTI)

    Ohlinger, Kris; Lutkenhaus, Jeff [Department of Physics, University of North Texas, Denton, Texas 76203 (United States); Arigong, Bayaner; Zhang, Hualiang [Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States); Lin, Yuankun, E-mail: yuankun.lin@unt.edu [Department of Physics, University of North Texas, Denton, Texas 76203 (United States); Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States)

    2013-12-07

    In this paper, we present an achievable gradient refractive index in bi-continuous holographic structures that are formed through five-beam interference. We further present a theoretic approach for the realization of gradient index devices by engineering the phases of the interfering beams with a pixelated spatial light modulator. As an example, the design concept of a gradient index Luneburg lens is verified through full-wave electromagnetic simulations. These five beams with desired phases can be generated through programming gray level super-cells in a diffractive spatial light modulator. As a proof-of-concept, gradient index structures are demonstrated using synthesized and gradient phase patterns displayed in the spatial light modulator.

  12. Gradient flow and scale setting on MILC HISQ ensembles

    E-Print Network [OSTI]

    MILC Collaboration; A. Bazavov; C. Bernard; N. Brown; C. DeTar; J. Foley; Steven Gottlieb; U. M. Heller; J. Komijani; J. Laiho; L. Levkova; R. L. Sugar; D. Toussaint; R. S. Van de Water

    2015-03-24

    We report on a scale determination with gradient-flow techniques on the $N_f=2+1+1$ HISQ ensembles generated by the MILC collaboration. The ensembles include four lattice spacings, ranging from approximately 0.15 to 0.06 fm, and both physical and unphysical values of the quark masses. The scales $\\sqrt{t_0}/a$ and $w_0/a$ and their tree-level improvements, $\\sqrt{t_{0,{\\rm imp}}}$ and $w_{0,{\\rm imp}}$, are computed on each ensemble using Symanzik flow and the cloverleaf definition of the energy density $E$. Using a combination of continuum chiral perturbation theory and a Taylor-series ansatz for the lattice-spacing and strong-coupling dependence, the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. We determine the scales $\\sqrt{t_0} = 0.1416({}_{-5}^{+8})$ fm and $w_0 = 0.1717({}_{-11}^{+12})$ fm, where the errors are sums, in quadrature, of statistical and all systematic errors. The precision of $w_0$ and $\\sqrt{t_0}$ is comparable to or more precise than the best previous estimates, respectively. We also find the continuum mass-dependence of $w_0$ that will be useful for estimating the scales of other ensembles. We also estimate the integrated autocorrelation length of $\\langle E(t) \\rangle$. For long flow times, the autocorrelation length of $\\langle E \\rangle$ appears to be comparable to or smaller than that of the topological charge.

  13. Analysis Code for High Gradient Dielectric Insulator Surface Breakdown

    SciTech Connect (OSTI)

    Ives, Robert Lawrence [Calabazas Creek Research, Inc.; Verboncoeur, John [University of California - Berkeley; Aldan, Manuel [University of California, Berkeley

    2010-05-30

    High voltage (HV) insulators are critical components in high-energy, accelerator and pulsed power systems that drive diverse applications in the national security, nuclear weapons science, defense and industrial arenas. In these systems, the insulator may separate vacuum/non-vacuum regions or conductors with high electrical field gradients. These insulators will often fail at electric fields over an order of magnitude lower than their intrinsic dielectric strength due to flashover at the dielectric interface. Decades of studies have produced a wealth of information on fundamental processes and mechanisms important for flashover initiation, but only for relatively simple insulator configurations in controlled environments. Accelerator and pulsed power system designers are faced with applying the fundamental knowledge to complex, operational devices with escalating HV requirements. Designers are forced to rely on “best practices” and expensive prototype testing, providing boundaries for successful operation. However, the safety margin is difficult to estimate, and system design must be very conservative for situations where testing is not practicable, or replacement of failed parts is disruptive or expensive. The Phase I program demonstrated the feasibility of developing an advanced code for modeling insulator breakdown. Such a code would be of great interest for a number of applications, including high energy physics, microwave source development, fusion sciences, and other research and industrial applications using high voltage devices.

  14. Gradient flow and scale setting on MILC HISQ ensembles

    E-Print Network [OSTI]

    Bazavov, A; Brown, N; DeTar, C; Foley, J; Gottlieb, Steven; Heller, U M; Komijani, J; Laiho, J; Levkova, L; Sugar, R L; Toussaint, D; Van de Water, R S

    2015-01-01

    We report on a scale determination with gradient-flow techniques on the $N_f=2+1+1$ HISQ ensembles generated by the MILC collaboration. The ensembles include four lattice spacings, ranging from approximately 0.15 to 0.06 fm, and both physical and unphysical values of the quark masses. The scales $\\sqrt{t_0}/a$ and $w_0/a$ and their tree-level improvements, $\\sqrt{t_{0,{\\rm imp}}}$ and $w_{0,{\\rm imp}}$, are computed on each ensemble using Symanzik flow and the cloverleaf definition of the energy density $E$. Using a combination of continuum chiral perturbation theory and a Taylor-series ansatz for the lattice-spacing and strong-coupling dependence, the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. We determine the scales $\\sqrt{t_0} = 0.1416({}_{-5}^{+8})$ fm and $w_0 = 0.1717({}_{-11}^{+12})$ fm, where the errors are sums, in quadrature, of statistical and all systematic errors. The precision of $w_0$ and $\\sqrt{t_0}$ is comparable to or more precise than...

  15. High Temperature ESP Monitoring

    Broader source: Energy.gov [DOE]

    The purpose of the High Temperature ESP Monitoring project is to develop a down-hole monitoring system to be used in wells with bottom hole temperature up to 300 °C for measuring motor temperature; pump discharge pressure; and formation temperature and pressure.

  16. Finite Temperature Schrödinger Equation

    E-Print Network [OSTI]

    Xiang-Yao Wu; Bai-Jun Zhang; Xiao-Jing Liu; Nuo Ba; Yi-Heng Wu; Qing-Cai Wang; Yan Wang

    2011-06-11

    We know Schr\\"{o}dinger equation describes the dynamics of quantum systems, which don't include temperature. In this paper, we propose finite temperature Schr\\"{o}dinger equation, which can describe the quantum systems in an arbitrary temperature. When the temperature T=0, it become Shr\\"{o}dinger equation.

  17. Structural Evolution and Li Dynamics in Nanophase Li3PS4 by Solid-State and Pulsed Field Gradient NMR

    SciTech Connect (OSTI)

    Gobet, Mallory [Hunter College of the City University of New York] [Hunter College of the City University of New York; Greenbaum, Steve [Hunter College of the City University of New York] [Hunter College of the City University of New York; Sahu, Gayatri [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL

    2014-01-01

    The ceramic lithium ion conductor -Li3PS4 has a disordered and nanoporous structure that leads to an enhancement in ionic conductivity by some three orders of magnitude compared to the crystalline phase. The phase is prepared by thermal treatment of an inorganic-organic complex based on Li3PS4 and THF. Multinuclear (1H, 6,7Li, 31P) solid state NMR spectroscopy is used to characterize the structural phase evolution of the starting material at various steps in the thermal treatment. The phase formed after high temperature treatment is recognized as spectroscopically distinct from the bulk -Li3PS4 compound. Also formed is an amorphous lithium thiophosphate phase that is metastable as verified by annealing over an extended period. Lithium ion self-diffusion coefficients are measurable by standard pulsed gradient NMR methods at 100oC and with values consistent with the high ionic conductivity previously reported for this material.

  18. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P. (Idaho Falls, ID)

    1992-01-01

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  19. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  20. Towards a lower mantle reference temperature and composition Frederic Deschamps*, Jeannot Trampert

    E-Print Network [OSTI]

    Deschamps, Frédéric

    Abstract We aim to constrain the lower mantle geotherm and average composition from 1D seismic models an isentropic third-order Birch­ Murnaghan equation of state, which is in excellent agreement with recent ab temperature that fits the seismic models, and compute a tempera- ture profile from the adiabatic gradient

  1. Digital Manufacturing of Gradient Meshed SOFC Sealing Composites with Self-Healing Capabilities

    SciTech Connect (OSTI)

    Kathy Lu; Christopher Story; W.T. Reynolds

    2007-12-21

    Solid oxide fuel cells (SOFC) hold great promise for clean power generation. However, high temperature stability and long term durability of the SOFC components have presented serious problems in SOFC technological advancement and commercialization. The seals of the fuel cells are the most challenging area to address. A high temperature gas seal is highly needed which is durable against cracking and gas leakage during thermal cycling and extended operation. This project investigates a novel composite seal by integrating 3D printed shape memory alloy (SMA) wires into a glass matrix. The SMA we use is TiNiHf and the glass matrix we use is SrO-La{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-SiO{sub 2} (SLABS). Dilatometry shows to be an extremely useful tool in providing the CTEs. It pinpoints regions of different CTEs under simulated SOFC thermal cycles for the same glass. For the studied SLABS glass system, the region with the greatest CTE mismatch between the glass seal and the adjacent components is 40-500 C, the typical heating and cooling regions for SOFCs. Even for low temperature SOFC development, this region is still present and needs to be addressed. We have demonstrated that the proposed SLABS glass has great potential in mitigating the thermal expansion mismatch issues that are limiting the operation life of SOFCs. TiNiHf alloy has been successfully synthesized with the desired particle size for the 3DP process. The TiNiHf SMA shape memory effect very desirably overlaps with the problematic low CTE region of the glass. This supports the design intent that the gradient structure transition, phase transformation toughening, and self-healing of the SMA can be utilized to mitigate/eliminate the seal problem. For the 3DP process, a new binder has been identified to match with the specific chemistry of the SMA particles. This enables us to directly print SMA particles. Neutron diffraction shows to be an extremely useful tool in providing information regarding the austenite to martensite phase transformation, SMA alloy lattice constant change, and the corresponding thermal stress from the glass matrix. It pinpoints regions of SMA phase transformation and the thermal stress effect under simulated SOFC thermal cycles. The bilayer test shows that there is still much work to be done for the proper integration of the seal components. Large scale production should lower the cost associated with the proposed approach, especially on the raw material cost and 3D printing.

  2. Deflagration Behavior of PBX 9501 at Elevated Temperature and Pressure

    SciTech Connect (OSTI)

    Maienschein, J L; Koerner, J G

    2008-04-15

    We report the deflagration behavior of PBX 9501 at pressures up to 300 MPa and temperatures of 150-180 C where the sample has been held at the test temperature for several hours before ignition. The purpose is to determine the effect on the deflagration behavior of material damage caused by prolonged exposure to high temperature. This conditioning is similar to that experienced by an explosive while it being heated to eventual explosion. The results are made more complicated by the presence of a significant thermal gradient along the sample during the temperature ramp and soak. Three major conclusions are: the presence of nitroplasticizer makes PBX 9501 more thermally sensitive than LX-04 with an inert Viton binder; the deflagration behavior of PBX 9501 is more extreme and more inconsistent than that of LX-04; and something in PBX 9501 causes thermal damage to 'heal' as the deflagration proceeds, resulting in a decelerating deflagration front as it travels along the sample.

  3. Lithologic descriptions and temperature profiles of five wells in the southwestern Valles caldera region, New Mexico

    SciTech Connect (OSTI)

    Shevenell, L.; Goff, F.; Miles, D.; Waibel, A.; Swanberg, C.

    1988-01-01

    The subsurface stratigraphy and temperature profiles of the southern and western Valles caldera region have been well constrained with the use of data from the VC-1, AET-4, WC 23-4, PC-1 and PC-2 wells. Data from these wells indicate that thermal gradients west of the caldera margin are between 110 and 140)degrees)C/km, with a maximum gradient occurring in the bottom of PC-1 equal to 240)degrees)C/km as a result of thermal fluid flow. Gradients within the caldera reach a maximum of 350)degrees)C/km, while the maximum thermal gradient measured southwest of the caldera in the thermal outflow plume is 140)degrees)C/km. The five wells exhibit high thermal gradients (>60)deghrees)C/km) resulting from high conductive heat flow associated with the Rio Grande rift and volcanism in the Valles caldera, as well as high convective heat flow associated with circulating geothermal fluids. Gamma logs run in four of the five wells appear to be of limited use for stratigraphic correlations in the caldera region. However, stratigraphic and temperature data from the five wells provide information about the structure and thermal regime of the southern and western Valles caldera region. 29 refs., 9 figs. 2 tabs.

  4. Gradient optimization of analytic controls: the route to high accuracy quantum optimal control

    E-Print Network [OSTI]

    Shai Machnes; David J. Tannor; Frank K. Wilhelm; Elie Assémat

    2015-07-15

    We argue that quantum optimal control can and should be done with analytic control functions, in the vast majority of applications. First, we show that discretizing continuous control functions as piecewise-constant functions prevents high accuracy optimization at reasonable computational costs. Second, we argue that the number of control parameters required is on-par with the dimension of the object manipulated, and therefore one may choose parametrization by other considerations, e.g. experimental suitability and the potential for physical insight into the optimized pulse. Third, we note that optimal control algorithms which make use of the gradient of the goal function with respect to control parameters are generally faster and reach higher final accuracies than non gradient-based methods. Thus, if the gradient can be efficiently computed, it should be used. Fourth, we present a novel way of computing the gradient based on an equation of motion for the gradient, which we evolve in time by the Taylor expansion of the propagator. This allows one to calculate any physically relevant analytic controls to arbitrarily high precision. The combination of the above techniques is GOAT (Gradient Optimization of Analytic conTrols) - gradient-based optimal control for analytic control functions, utilizing exact evolution in time of the derivative of the propagator with respect to arbitrary control parameters.

  5. Comparing linear ion-temperature-gradient-driven mode stability of the National Compact Stellarator Experiment and a shaped tokamak

    E-Print Network [OSTI]

    Hammett, Greg

    Experiment and a shaped tokamak J. A. Baumgaertel, G. W. Hammett, and D. R. Mikkelsen Citation: Phys. Plasmas superconducting tokamak Phys. Plasmas 20, 022311 (2013) Identification and control of plasma vertical position using neural network in Damavand tokamak Rev. Sci. Instrum. 84, 023504 (2013) On the toroidal plasma

  6. Influence of the Coast and Vegetation on Temperature Gradients across the Los Angeles Basin using Mobile Transect Techniques

    E-Print Network [OSTI]

    Lee, Audrey

    2012-01-01

    Urban Canopy Model for Heat Island Simulation in Chongqing,of the Phoenix urban heat island. J. Arizona-Nevada AcademyModeling of the Urban Heat Island of the City of Utrecht (

  7. Overturning Circulation in an Eddy-Resolving Model: The Effect of the Pole-to-Pole Temperature Gradient

    E-Print Network [OSTI]

    Cessi, Paola

    be explicitly eddy free (e.g., Toggweiler and Samuels 1995, 1998; Samelson 1999, 2004) or at- tempt; Henning and Vallis 2004, 2005; Cessi et al. 2006). It is reason- able, then, to expect that the inclusion

  8. Vitality and chemistry of roots of red spruce in forest floors of stands with a gradient of soil

    E-Print Network [OSTI]

    David, Mark B.

    Vitality and chemistry of roots of red spruce in forest floors of stands with a gradient of soil Al) dominated by red spruce and with a gradient of forest floor exchangeable Al/Ca ratios. Root vitality

  9. Temperature Fluctuation and an Expected Limit of Hubble Parameter in the Self-Consistent Model

    E-Print Network [OSTI]

    A. B. Morcos

    2004-12-08

    The temperature gradient of microwave background radiation (CMBR) is calculated in the Self Consistent Model. An expected values for Hubble parameter have been presented in two different cases. In the first case the temperature is treated as a function of time only, while in the other one the temperature depends on relaxation of isotropy condition in the self-consistent model and the assumption that the universe expands adiabatically. The COBE's or WMAP's fluctuations in temperature of CMBR may be used to predict a value for Hubble parameter.

  10. An Elementary Extension of Korn's First Inequality to H(Curl) motivated by Gradient Plasticity with Plastic Spin

    E-Print Network [OSTI]

    Patrizio Neff; Dirk Pauly; Karl-Josef Witsch

    2011-06-30

    We prove a Korn-type inequality for tensor fields without gradient structure, which generalizes Korn's first inequality.

  11. A gradient system on the quantum information space that realizes the Karmarkar flow for linear programming

    E-Print Network [OSTI]

    Yoshio Uwano; Hiromi Yuya

    2008-07-25

    In the paper of Uwano [Czech. J. of Phys., vol.56, pp.1311-1316 (2006)], a gradient system is found on the space of density matrices endowed with the quantum SLD Fisher metric (to be referred to as the quantum information space) that realizes a generalization of a gradient system on the space of multinomial distributions studied by Nakamura [Japan J. Indust. Appl. Math., vol.10, pp.179-189 (1993)]. On motived by those papers, the present paper aims to construct a gradient system on the quantum information space that realizes the Karmarkar flow, the continuous limit of the Karmarkar projective scaling algorithm for linear programming.

  12. Proton Gradient Regulation 5-Mediated Cyclic Electron Flow under ATP-or Redox-Limited Conditions: A Study of

    E-Print Network [OSTI]

    Proton Gradient Regulation 5-Mediated Cyclic Electron Flow under ATP- or Redox-Limited Conditions.K.N.) The Chlamydomonas reinhardtii proton gradient regulation5 (Crpgr5) mutant shows phenotypic and functional traits discriminate two pathways for CEF and determine their maximum electron flow rates. The PGR5/proton gradient

  13. Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives Modern Convex Optimization Methods for

    E-Print Network [OSTI]

    Marlin, Benjamin

    Motivation Gradient Method Stochastic Subgradient Finite-Sum Methods Non-Smooth Objectives Modern) International Conference on Machine Learning Peter Richt´arik and Mark Schmidt July 2015 #12;Motivation Gradient. Not gigabytes, but terabytes or petabytes (and beyond). #12;Motivation Gradient Method Stochastic Subgradient

  14. Exclusion of cosmic rays in protoplanetary disks. II. Chemical gradients and observational signatures

    SciTech Connect (OSTI)

    Cleeves, L. Ilsedore; Bergin, Edwin A.; Adams, Fred C. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States)

    2014-10-20

    The chemical properties of protoplanetary disks are especially sensitive to their ionization environment. Sources of molecular gas ionization include cosmic rays (CRs), stellar X-rays, and short-lived radionuclides, each of which varies with location in the disk. This behavior leads to a significant amount of chemical structure, especially in molecular ion abundances, which is imprinted in their submillimeter rotational line emission. Using an observationally motivated disk model, we make predictions for the dependence of chemical abundances on the assumed properties of the ionizing field. We calculate the emergent line intensity for abundant molecular ions and simulate sensitive observations with the Atacama Large Millimeter/Sub-millimeter Array (ALMA) for a disk at D = 100 pc. The models readily distinguish between high ionization rates (? ? 10{sup –17} s{sup –1} per H{sub 2}) and below, but it becomes difficult to distinguish between low ionization models when ? ? 10{sup –19} s{sup –1}. We find that H{sub 2}D{sup +} emission is not detectable for sub-interstellar CR rates with ALMA (6h integration), and that N{sub 2}D{sup +} emission may be a more sensitive tracer of midplane ionization. HCO{sup +} traces X-rays and high CR rates (?{sub CR} ? 10{sup –17} s{sup –1}), and provides a handle on the warm molecular ionization properties where CO is present in the gas. Furthermore, species like HCO{sup +}, which emits from a wide radial region and samples a large gradient in temperature, can exhibit ring-like emission as a consequence of low-lying rotational level de-excitation near the star. This finding highlights a scenario where rings are not necessarily structural or chemical in nature, but simply a result of the underlying line excitation properties.

  15. Low-temperature geothermal resources of Washington

    SciTech Connect (OSTI)

    Schuster, J.E. [Washington State Dept. of Natural Resources, Olympia, WA (United States). Div. of Geology and Earth Resources] [Washington State Dept. of Natural Resources, Olympia, WA (United States). Div. of Geology and Earth Resources; Bloomquist, R.G. [Washington State Energy Office, Olympia, WA (United States)] [Washington State Energy Office, Olympia, WA (United States)

    1994-06-01

    This report presents information on the location, physical characteristics, and water chemistry of low-temperature geothermal resources in Washington. The database includes 941 thermal (>20C or 68F) wells, 34 thermal springs, lakes, and fumaroles, and 238 chemical analyses. Most thermal springs occur in the Cascade Range, and many are associated with stratovolcanoes. In contrast, 97 percent of thermal wells are located in the Columbia Basin of southeastern Washington. Some 83.5 percent are located in Adams, Benton, Franklin, Grant, Walla Walla, and Yakima Counties. Yakima County, with 259 thermal wells, has the most. Thermal wells do not seem to owe their origin to local sources of heat, such as cooling magma in the Earth`s upper crust, but to moderate to deep circulation of ground water in extensive aquifers of the Columbia River Basalt Group and interflow sedimentary deposits, under the influence of a moderately elevated (41C/km) average geothermal gradient.

  16. WATER TEMPERATURE RECORDS FROM

    E-Print Network [OSTI]

    ? WATER TEMPERATURE RECORDS FROM CALIFORNIA'S CENTRAL VALLEY 1939-1948 Marine Biological i STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE #12;#12;a WATER TEMPERATURE RECORDS FROM arid to avoid delay in publication. Washington D. CWATER TEMPERATURE RECORDS FROM

  17. Stoichiometry and grazer community composition over gradients of light, nutrients, and predation risk

    E-Print Network [OSTI]

    Hall, Spencer R.; Leibold, Mathew A.; Lytle, David A.; Smith, Val H.

    2004-08-01

    mesocosms (cattle tanks) by creating gradients of resource supply and predation risk, to which we added diverse assemblages of algal producer and zooplankton grazer species. We then characterized the end-point composition of grazer assemblages and quantity...

  18. Stoichiometry and planktonic grazer composition over gradients of light, nutrients, and predation risk

    E-Print Network [OSTI]

    Hall, Spencer R.; Leibold, Mathew A.; Lytle, David A.; Smith, Val H.

    2004-01-01

    mesocosms (cattle tanks) by creating gradients of resource supply and predation risk, to which we added diverse assemblages of algal producer and zooplankton grazer species. We then characterized the end-point composition of grazer assemblages and quantity...

  19. Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability

    E-Print Network [OSTI]

    Smith, Jennifer E.

    Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability to have specific microbiomes. In contrast, local environmental factors are predicted to select for specific metabolic pathways in microbes. To reconcile these two predictions, we hypothesized

  20. Evaluation of residual stress gradients in ductile cast iron using critical refracted longitudinal (Lcr) wave technique 

    E-Print Network [OSTI]

    Pfluger, Ron Atlan

    1995-01-01

    Critically refracted longitudinal (LCR) waves have been investigated as a possible technique for the evaluation of the residual stress gradients present in ductile iron castings. Residual stresses are likely to develop in ductile cast iron during...

  1. Quadrature Rotating-Frame Gradient Fields for Ultra-Low Field Nuclear Magnetic Resonance and Imaging

    E-Print Network [OSTI]

    Bouchard, Louis-Serge

    2005-01-01

    Frame Gradient Fields For Ultra-Low Field Nuclear Magneticslow, as in the limit of ultra-low ?elds. In the ?rst case,B. Slice selection in ultra-low ?elds We ?rst examine the

  2. ENERGY SCAVENGING BASED ON TRANSIENT THERMAL GRADIENTS: APPLICATION TO STRUCTURAL HEALTH MONITORING OF AIRCRAFTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ENERGY SCAVENGING BASED ON TRANSIENT THERMAL GRADIENTS: APPLICATION TO STRUCTURAL HEALTH MONITORING health monitoring 1. INTRODUCTION Aircraft in-service structural health monitoring (SHM) by wireless be considered in the context of aircraft structural health monitoring, we will restrict ourselves

  3. Studies of the superconducting traveling wave cavity for high gradient LINAC

    E-Print Network [OSTI]

    Avrakhov, Pavel; Kanareykin, Alexei; Solyak, Nikolay; Yakovlev, Vyacheslav P

    2015-01-01

    Use of a traveling wave (TW) accelerating structure with a small phase advance per cell instead of standing wave may provide a significant increase of accelerating gradient in a superconducting linear accelerator. The TW section achieves an accelerating gradient 1.2-1.4 larger than TESLA-shaped standing wave cavities for the same surface electric and magnetic fields. Recent tests of an L-band single-cell cavity with a waveguide feedback demonstrated an accelerating gradient comparable to the gradient in a single-cell ILC-type cavity from the same manufacturer. This article presents the next stage of the 3- cell TW resonance ring development which will be tested in the traveling wave regime. The main simulation results of the microphonics and Lorentz Force Detuning (LFD) are also considered.

  4. On a class of strain gradient plasticity theories : formulation and numerical implementation

    E-Print Network [OSTI]

    Lele, Suvrat Pratapsinh

    2008-01-01

    This study develops strain-gradient theories for isotropic and crystal plasticity. The following four theories were developed and numerically implemented: * A one-dimensional theory to understand the basic nature of strain ...

  5. Gradient Projection Anti-windup Scheme on Constrained Planar LTI Systems

    E-Print Network [OSTI]

    Teo, Justin

    2010-03-15

    The gradient projection anti-windup (GPAW) scheme was recently proposed as an anti-windup method for nonlinear multi-input-multi-output systems/controllers, the solution of which was recognized as a largely open problem ...

  6. Osteochondral Tissue Engineering for the TMJ Condyle Using a Novel Gradient Scaffold

    E-Print Network [OSTI]

    Singh, Milind

    2008-10-22

    sustains the greatest damage in TMDs. The objective of this thesis was to characterize the condylar cartilage biomechanics, and to explore novel routes to fabricate integrated gradient-based osteochondral constructs. Pioneering efforts were made toward...

  7. Future applications of the Yang-Mills gradient flow in lattice QCD

    E-Print Network [OSTI]

    Martin Lüscher

    2013-08-26

    The Yang--Mills gradient flow has many interesting applications in lattice QCD. In this talk, some recent and possible future uses of the flow are discussed, emphasizing the underlying theoretical concepts rather than any computational aspects.

  8. Accounting for the Change in the Gradient: Health Inequality among Infants

    E-Print Network [OSTI]

    Lin, Wanchuan

    2006-01-01

    Accounting for the Change in the Gradient: Health InequalityLine Working Paper Series Accounting for the Change in thethe most important factor in accounting for the closing gap.

  9. ORGANIC MATTER DISTRIBUTION AND TURNOVER ALONG A GRADIENT FROM FOREST TO TIDAL CREEK

    E-Print Network [OSTI]

    Lawrence, Deborah

    i ORGANIC MATTER DISTRIBUTION AND TURNOVER ALONG A GRADIENT FROM FOREST TO TIDAL CREEK A Thesis. A nested plot design was used to harvest vegetation, obtain soil cores, and collect quantitative data... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .18 Qualitative Vegetation Analysis

  10. A gradient optimization method for efficient design of three-dimensional deformation processes

    E-Print Network [OSTI]

    Zabaras, Nicholas J.

    A gradient optimization method for efficient design of three-dimensional deformation processes Swagato Acharjee and Nicholas Zabaras Materials Process Design and Control Laboratory, Sibley School processes. The optimization is based on the continuum sensitivity method (CSM). CSM involves differentiation

  11. On the relationship between water-flux and hydraulic gradient for unsaturated and saturated clay

    E-Print Network [OSTI]

    Liu, H.H.

    2014-01-01

    Threshold gradient for water flow in clay systems. Soil.Darcy’s law for the flow of water in soils. Soil Science 93:1970. Saturated flow of water through clay loam subsoil

  12. High-Gradient Tests of the Single-Cell SC Cavity with a Feedback Waveguide

    SciTech Connect (OSTI)

    Yakovlev, V.; Solyak, N.; Wu, G.; Ge, M.; Gonin, I.; Khabiboulline, T.; Ozelis, J.; Rowe, A. [Fermilab, Batavia, IL 60510 (United States); Avrakhov, P.; Kanareykin, A. [Euclid TechLabs, LLC, Solon, Ohio 44139 (United States); Rathke, J. [AES, Medford, NY 11763 (United States)

    2010-11-04

    Use of a superconducting (SC) traveling-wave accelerating (STWA) structure with a small phase advance per cell, rather than a standing-wave structure, may provide a significant increase in the accelerating gradient in the ILC linac [1]. For the same surface electric and magnetic fields, the STWA achieves an accelerating gradient 1.2 larger than TESLA-like standing-wave cavities. In addition, the STWA allows longer acceleration cavities, reducing the number of gaps between them. However, the STWA structure requires a SC feedback waveguide to return the few hundreds of MW of circulating RF power from the structure output to the structure input. A test single-cell cavity with feedback was designed and manufactured to demonstrate the possibility of proper processing to achieve a high accelerating gradient. The first results of high-gradient tests of a prototype 1.3 GHz single-cell cavity with feedback waveguide will be presented.

  13. Highly Parallel Magnetic Resonance Imaging with a Fourth Gradient Channel for Compensation of RF Phase Patterns 

    E-Print Network [OSTI]

    Bosshard, John 1983-

    2012-08-20

    A fourth gradient channel was implemented to provide slice dependent RF coil phase compensation for arrays in dual-sided or "sandwich" configurations. The use of highly parallel arrays for single echo acquisition magnetic resonance imaging allows...

  14. Effect of Density Gradient Centrifugation on Quality and Recovery Rate of Equine Sperm 

    E-Print Network [OSTI]

    Edmond, Ann J.

    2010-07-14

    Density gradient centrifugation of sperm is a common assisted-reproduction procedure in humans used to improve semen quality. The technique allows sperm separation based on their isopycnic points. Sperm with morphologic abnormalities are often more...

  15. Critical gradient for internal erosion in earthen d ams : a comparative analysis of two predictive methodologies

    E-Print Network [OSTI]

    Donohue, Catherine, M. Eng. Massachusetts Institute of Technology

    2013-01-01

    Minimizing the uncertainty in predicting the critical gradient of a dam (i.e. the critical reservoir pool level) is important during the risk analysis of dams. Uncertainty leads to inexact relative risk in portfolio ...

  16. Top hole drilling with dual gradient technology to control shallow hazards 

    E-Print Network [OSTI]

    Elieff, Brandee Anastacia Marie

    2006-10-30

    , shallow gas and shallow water flows. These negative aspects of "Pump and Dump" are in addition to the environmental impact, high drilling fluid (mud) costs and limited mud options. Dual gradient technology offers a closed system, which improves drilling...

  17. Resonance in Optimal Perturbation Evolution. Part II: Effects of a Nonzero Mean PV Gradient

    E-Print Network [OSTI]

    de Vries, Hylke

    Resonance in Optimal Perturbation Evolution. Part II: Effects of a Nonzero Mean PV Gradient H. DE (PV) perturbations and the surface edge wave plays a key role in the surface dynamics (e.g. De Vries

  18. Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer

    SciTech Connect (OSTI)

    Sorrentino, F.; Lien, Y.-H.; Rosi, G.; Tino, G. M.; Bertoldi, A.; Bodart, Q.; Cacciapuoti, L.; Angelis, M. de; Prevedelli, M.

    2012-09-10

    We demonstrate a method to measure the gravitational acceleration with a dual cloud atom interferometer; the use of simultaneous atom interferometers reduces the effect of seismic noise on the gravity measurement. At the same time, the apparatus is capable of accurate measurements of the vertical gravity gradient. The ability to determine the gravity acceleration and gravity gradient simultaneously and with the same instrument opens interesting perspectives in geophysical applications.

  19. Thomas-BMT equation generalized to electric dipole moments and field gradients

    E-Print Network [OSTI]

    Metodiev, Eric M

    2015-01-01

    An expression is presented for the relativistic equations of motion, including field gradients, of a particle and its spin with electric and magnetic dipole moments aligned along the spin axis. An electromagnetic duality transformation is used to generalize a Thomas-BMT equation with gradient terms. Corrections to particle dynamics in storage rings for precision $(g-2)$ and electric dipole moment measurements are calculated, and applications to precision particle tracking programs are considered.

  20. Effect of pressure gradient on the drag reduction performance of two and three dimensional riblets 

    E-Print Network [OSTI]

    Hall, Aaron Chenault

    1991-01-01

    EFFECT OF PRESSURE GRADIENT ON THE DRAG REDUCTION PERFORMANCE OF TWO AND THREE DIMENSIONAL RIBLETS A Thesis by AARON CHENAULT HALL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1991 Major Subject: Aerospace Engineering EFFECT OF PRESSURE GRADIENT ON THE DRAG REDUCTION PERFORMANCE OF TWO AND THREE DIMENSIONAL RIBLETS A Thesis by AARON CHENAULT HALL Approved as to style and content by...

  1. International Snow Science Workshop Grenoble Chamonix Mont-Blanc -2013 Limitations of using an infrared camera to measure snow pit-wall temperatures

    E-Print Network [OSTI]

    Jamieson, Bruce

    International Snow Science Workshop Grenoble ­ Chamonix Mont-Blanc - 2013 Limitations of using an infrared camera to measure snow pit-wall temperatures Michael Schirmer and Bruce Jamieson Department of Civil Engineering, University of Calgary, Canada ABSTRACT: Driven by temperature gradients, kinetic snow

  2. Intraarterial Pressure Gradients After Randomized Angioplasty or Stenting of Iliac Artery Lesions

    SciTech Connect (OSTI)

    Tetteroo, Eric; Haaring, Cees [Department of Radiology, Room E.01.132, University Hospital Utrecht, Heidelberglaan 100, NL-3584 CX Utrecht (Netherlands); Graaf, Yolanda van der [Department of Clinical Epidemiology, University Hospital Utrecht, Heidelberglaan 100, NL-3584 CX Utrecht (Netherlands); Schaik, Jan P.J. van; Engelen, A.D. van; Mali, Willem P.T.M. [Department of Radiology, Room E.01.132, University Hospital Utrecht, Heidelberglaan 100, NL-3584 CX Utrecht (Netherlands)

    1996-11-15

    Purpose: To determine initial technical results of percutaneous transluminal angioplasty (PTA) and stent procedures in the iliac artery, mean intraarterial pressure gradients were recorded before and after each procedure. Methods: We randomly assigned 213 patients with typical intermittent claudication to primary stent placement (n= 107) or primary PTA (n= 106), with subsequent stenting in the case of a residual mean pressure gradient of > 10 mmHg (n= 45). Eligibility criteria included angiographic iliac artery stenosis (> 50% diameter reduction) and/or a peak systolic velocity ratio > 2.5 on duplex examination. Mean intraarterial pressures were simultaneously recorded above and below the lesion, at rest and also during vasodilatation in the case of a resting gradient {<=} 10 mmHg. Results: Pressure gradients in the primary stent group were 14.9 {+-} 10.4 mmHg before and 2.9 {+-} 3.5 mmHg after stenting. Pressure gradients in the primary PTA group were 17.3 {+-} 11.3 mmHg pre-PTA, 4.2 {+-} 5.4 mmHg post-PTA, and 2.5 {+-} 2.8 mmHg after selective stenting. Compared with primary stent placement, PTA plus selective stent placement avoided application of a stent in 63% (86/137) of cases, resulting in a considerable cost saving. Conclusion: Technical results of primary stenting and PTA plus selective stenting are similar in terms of residual pressure gradients.

  3. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  4. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael (Plano, TX)

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  5. Low Frequency Modulation of Extreme Temperature Regimes in a Changing Climate

    SciTech Connect (OSTI)

    Black, Robert X.

    2014-11-24

    The project examines long-term changes in extreme temperature episodes (ETE) associated with planetary climate modes (PCMs) in both the real atmospheric and climate model simulations. The focus is on cold air outbreaks (CAOs) and warm waves (WWs) occurring over the continental US during the past 60 winters. No significant long-term trends in either WWs or CAOs are observed over the US. The annual frequency of CAOs is affected by the (i) North Atlantic Oscillation (NAO) over the Southeast US and (ii) Pacific–North American (PNA) pattern over the Northwest US. WW frequency is influenced by the (i) NAO over the eastern US and (ii) combined influence of PNA, Pacific decadal oscillation (PDO), and ENSO over the southern US. The collective influence of PCMs accounts for as much as 50% of the regional variability in ETE frequency. During CAO (WW) events occurring over the southeast US, there are low (high) pressure anomalies at higher atmospheric levels over the southeast US with oppositely-signed pressure anomalies in the lower atmosphere over the central US. These patterns lead to anomalous northerly (for CAOs) or southerly (for WWs) flow into the southeast leading to cold or warm surface air temperature anomalies, respectively. One distinction is that CAOs involve substantial air mass transport while WW formation is more local in nature. The primary differences among event categories are in the origin and nature of the pressure anomaly features linked to ETE onset. In some cases, PCMs help to provide a favorable environment for event onset. Heat budget analyses indicate that latitudinal transport in the lower atmosphere is the main contributor to regional cooling during CAO onset. This is partly offset by adiabatic warming associated with subsiding air. Additional diagnoses reveal that this latitudinal transport is partly due to the remote physical influence of a shallow cold pool of air trapped along the east side of the Rocky Mountains. ETE and PCM behavior is also studied in (CMIP5) climate model simulations. Although the climate models considered are able to represent the overall behavior of ETEs, the frequency of WWs (CAOs) is too high (low) in many models. While all models qualitatively replicate the overall structure of the PNA pattern, a small minority of models fails to properly simulate the NAO pattern. Model shortcomings in representing the NAO and PNA patterns have important consequences for simulating associated regional variability in surface air temperature and storm track behavior. The influence of PCMs on ETEs is underestimated in most CMIP5 models. In particular, none of the models are able to accurately simulate observed linkages between ETEs and the PDO, due to a gross misrepresentation of the PDO pattern in most models. Our results indicate that predictions of future CAO and WW behavior are currently limited by the ability of climate models to accurately represent PCM characteristics. Our study also considers the behavior of PCMs known as annular modes. It is determined that north-south movements in the stratospheric jet stream (related to the Polar Annular Mode) result in long-lasting impacts upon surface weather conditions including regional air temperature anomalies. The structure and dynamics of the stratospheric northern annular mode (or SNAM, related to changes in the strength of the stratospheric jet stream) was studied in CMIP5 models. In models with poorly-resolved stratospheres, the amplitude of SNAM at stratospheric altitudes is typically too weak, consistent with weaker stratospheric jet variability. However, this distinction does not carry over to the associated tropospheric signature of SNAM. A regional analysis illustrates that most CMIP5 models (regardless of whether the stratosphere is well-resolved) have anomalously weak and eastward shifted (compared to observed SNAM events) storm track and sea level pressure anomaly patterns during SNAM events. Analyses of stratosphere–troposphere coupling reveal that large-scale wave activity in the stratosphere is anomalously weak in CMIP5 model

  6. Solid oxide fuel cell operable over wide temperature range

    DOE Patents [OSTI]

    Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

    2001-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  7. Density gradient free electron collisionally excited x-ray laser

    DOE Patents [OSTI]

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  8. Density gradient free electron collisionally excited X-ray laser

    DOE Patents [OSTI]

    Campbell, Edward M. (Pleasanton, CA); Rosen, Mordecai D. (Berkeley, CA)

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  9. Magnetic nanoparticle temperature estimation

    SciTech Connect (OSTI)

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  10. Superconductivity at Any Temperature

    E-Print Network [OSTI]

    Anber, Mohamed M; Sabancilar, Eray; Shaposhnikov, Mikhail

    2015-01-01

    We construct a 2+1 dimensional model that sustains superconductivity at all temperatures. This is achieved by introducing a Chern Simons mixing term between two Abelian gauge fields A and Z. The superfluid is described by a complex scalar charged under Z, whereas a sufficiently strong magnetic field of A forces the superconducting condensate to form at all temperatures. In fact, at finite temperature, the theory exhibits Berezinsky-Kosterlitz-Thouless phase transition due to proliferation of topological vortices admitted by our construction. However, the critical temperature is proportional to the magnetic field of A, and thus, the phase transition can be postponed to high temperatures by increasing the strength of the magnetic field. This model can be a step towards realizing the long sought room temperature superconductivity.

  11. High-temperature sensor

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  12. Automatic temperature adjustment apparatus

    DOE Patents [OSTI]

    Chaplin, James E. (66 Overlook Rd., Bloomingdale, NJ 07403)

    1985-01-01

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  13. Temperature and RH Targets

    Broader source: Energy.gov [DOE]

    Presented by Vishal O Mittal of the Florida Solar Energy Center at the High Temperature Membrane Working Group Meeting, San Francisco, September 14, 2006.

  14. Evaluation of permanent magnets for high temperature operations 

    E-Print Network [OSTI]

    Van Hees, Elizabeth

    1985-01-01

    as 3H F = x. m. H- &x where x = the magnetic susceptibility, which is the magnetic moment, M, divided by H, the field strength. The partial differential, 3H/ax, is the field gradient of the magnet, and m is the mass of the sample. This equation... is to inves- tigate the relevent magnetic properties of commercially availalbe magnetic materials for prolonged use in a high temperature environment (200'C to 450'C). Such materials can be utilized in geothermal and petroleum well logging. A device...

  15. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    SciTech Connect (OSTI)

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  16. Vertical two-phase flow regimes and pressure gradients: Effect of viscosity

    SciTech Connect (OSTI)

    Da Hlaing, Nan; Sirivat, Anuvat; Siemanond, Kitipat [The Petroleum and Petrochemical College, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Wilkes, James O. [Department of Chemical Engineering, The University of Michigan, Ann Arbor, MI 48109-2136 (United States)

    2007-05-15

    The effect of liquid viscosity on the flow regimes and the corresponding pressure gradients along the vertical two-phase flow was investigated. Experiment was carried out in a vertical transparent tube of 0.019 m in diameter and 3 m in length and the pressure gradients were measured by a U-tube manometer. Water and a 50 vol.% glycerol solution were used as the working fluids whose kinematic viscosities were 0.85 x 10{sup -6} and 4.0 x 10{sup -6} m{sup 2}/s, respectively. In our air-liquid annular two-phase flow, the liquid film of various thicknesses flowed adjacent to the wall and the gas phase flowed at the center of the tube. The superficial air velocity, j{sub air}, was varied between 0.0021 and 58.7 m/s and the superficial liquid velocity, j{sub liquid}, was varied between 0 and 0.1053 m/s. In the bubble, the slug and the slug-churn flow regimes, the pressure gradients decreased with increasing Reynolds number. But in the annular and the mist flow regimes, pressure gradients increased with increasing Reynolds number. Finally, the experimentally measured pressure gradient values were compared and are in good agreement with the theoretical values. (author)

  17. Fiber optic temperature sensor

    SciTech Connect (OSTI)

    Rabold, D.

    1995-12-01

    Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

  18. Thermoelectric Temperature Control

    E-Print Network [OSTI]

    Saffman, Mark

    NOTE 201TM TECHNICAL Optimizing Thermoelectric Temperature Control Systems #12;2 May 1995 92-040000A © 1995 Wavelength Electronics, Inc. Thermoelectric coolers (TECs) are used in a variety understanding of thermal management techniques and carefully select the thermoelectric module, temperature

  19. Fabrication of a simple apparatus for the Seebeck coefficient measurement in the temperature range of 300-620 K

    E-Print Network [OSTI]

    Singh, Saurabh

    2015-01-01

    A simple apparatus for the measurement of Seebeck coefficient ({\\alpha}) in the temperature range 300-620 K has been fabricated. Our design is appropriate for the characterization of samples with different geometries like disk and rod shaped. The sample holder assembly of the apparatus has been designed in such a way that, single heater used for sample heating purpose is enough to provide a self maintain temperature gradient (1-10 K) across the sample. The value of $\\alpha$ is obtained without explicit measurement of temperature gradient. The whole apparatus is fabricated from the materials, which are commonly available, so that any part can be replaced in case of any damage. Commercially available standard Nickel (Ni) metal sample has been used as a reference material for calibration of the instrument. The experimentally observed value of {\\alpha} by our apparatus gives the similar temperature dependent behavior as reported in the literature.

  20. High Temperature ESP Monitoring

    SciTech Connect (OSTI)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  1. Superconducting Open-Gradient Magnetic Separation for the Pretreatment of Radioactive or Mixed Waste Vitrification Feeds

    SciTech Connect (OSTI)

    Nunez', L.; Kaminsky', M.D.,; Crawford, C.; Ritter, J.A.

    1999-12-31

    An open-gradient magnetic separation (OGMS) process is being considered to separate deleterious elements from radioactive and mixed waste streams prior to vitrification or stabilization. By physically segregating solid wastes and slurries based on the magnetic properties of the solid constituents, this potentially low-cost process may serve the U.S. Department of Energy (DOE) by reducing the large quantities of glass produced from defense-related high-level waste (HLW). Furthermore, the separation of deleterious elements from low-level waste (LLW) also can reduce the total quantity of waste produced in LLW immobilization activities. Many HLW 'and LLW waste' streams at both Hanford and the Savannah River Site (SRS) include constituents deleterious to the durability of borosilicate glass and the melter many of the constituents also possess paramagnetism. For example, Fe, Cr, Ni, and other transition metals may limit the waste loading and affect the durability of the glass by forming spine1 phases at the high operating temperature used in vitrification. Some magnetic spine1 phases observed in glass formation are magnetite (Fe,O,), chromite (FeCrO,), and others [(Fe, Ni, Mg, Zn, Mn)(Al, Fe, Ti, Cr)O,] as described elsewhere [Bates-1994, Wronkiewicz-1994] Stable spine1 phases can cause segregation between the glass and the crystalline phases. As a consequence of the difference in density, the spine1 phases tend to accumulate at the bottom of the glass melter, which decreases the conductivity and melter lifetime [Sproull-1993]. Crystallization also can affect glass durability [Jantzen-1985, Turcotte- 1979, Buechele-1990] by changing the chemical composition of the matrix glass surrounding the crystals or causing stress at the glass/crystal interface. These are some of the effects that can increase leaching [Jantzen-1985]. A SRS glass that was partially crystallized to contain 10% vol. crystals composed of spinels, nepheline, and acmite phases showed minimal changes in short term leachability [Jantzen-1985, Hench-1982]. However, Jantzen et k > al. found that leaching increased preferentially at grain boundary interfaces [Jantzen-1985]. For a SRL 165 glass crystallized up to 30% vol., leachability measured by normalized boron release increased by a factor of three compared to the uncrystallized glass [Kelly-1975, Plodinec-1979]. In general, the magnitude of the crystallization effect depends highly on glass composition and cooling rate.

  2. Photon storage in Lambda-type optically dense atomic media. IV. Optimal control using gradient ascent

    E-Print Network [OSTI]

    Alexey V. Gorshkov; Tommaso Calarco; Mikhail D. Lukin; Anders S. Sorensen

    2008-04-07

    We use the numerical gradient ascent method from optimal control theory to extend efficient photon storage in Lambda-type media to previously inaccessible regimes and to provide simple intuitive explanations for our optimization techniques. In particular, by using gradient ascent to shape classical control pulses used to mediate photon storage, we open up the possibility of high efficiency photon storage in the non-adiabatic limit, in which analytical solutions to the equations of motion do not exist. This control shaping technique enables an order-of-magnitude increase in the bandwidth of the memory. We also demonstrate that the often discussed connection between time reversal and optimality in photon storage follows naturally from gradient ascent. Finally, we discuss the optimization of controlled reversible inhomogeneous broadening.

  3. The gas metallicity gradient and the star formation activity of disc galaxies

    E-Print Network [OSTI]

    Tissera, Patricia B; Sillero, Emanuel; Vilchez, Jose M

    2015-01-01

    We study oxygen abundance profiles of the gaseous disc components in simulated galaxies in a hierarchical universe. We analyse the disc metallicity gradients in relation to the stellar masses and star formation rates of the simulated galaxies. We find a trend for galaxies with low stellar masses to have steeper metallicity gradients than galaxies with high stellar masses at z ~0. We also detect that the gas-phase metallicity slopes and the specific star formation rate (sSFR) of our simulated disc galaxies are consistent with recently reported observations at z ~0. Simulated galaxies with high stellar masses reproduce the observed relationship at all analysed redshifts and have an increasing contribution of discs with positive metallicity slopes with increasing redshift. Simulated galaxies with low stellar masses a have larger fraction of negative metallicity gradients with increasing redshift. Simulated galaxies with positive or very negative metallicity slopes exhibit disturbed morphologies and/or have a clo...

  4. Gravity-Gradient Subtraction in 3rd Generation Underground Gravitational-Wave Detectors in Homogeneous Media

    E-Print Network [OSTI]

    Jan Harms; Riccardo DeSalvo; Steven Dorsher; Vuk Mandic

    2009-10-15

    In this paper, we develop a new approach to gravity-gradient noise subtraction for underground gravitational-wave detectors in homogeneous rock. The method is based on spatial harmonic expansions of seismic fields. It is shown that gravity-gradient noise produced by seismic fields from distant sources, stationary or non-stationary, can be calculated from seismic data measured locally at the test mass. Furthermore, the formula is applied to seismic fields from stationary local sources. It is found that gravity gradients from these fields can be subtracted using local seismic measurements. The results are confirmed numerically with a finite-element simulation. A new seismic-array design is proposed that provides the additional information about the seismic field required to ensure applicability of the approach to realistic scenarios even with inhomogeneous rock and non-stationary local sources.

  5. Millisecond ordering of block-copolymer films via photo-thermal gradients

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Majewski, Pawel W.; Yager, Kevin G.

    2015-03-12

    For the promise of self-assembly to be realized, processing techniques must be developed that simultaneously enable control of the nanoscale morphology, rapid assembly, and, ideally, the ability to pattern the nanostructure. Here, we demonstrate how photo-thermal gradients can be used to control the ordering of block-copolymer thin films. Highly localized laser heating leads to intense thermal gradients, which induce a thermophoretic force on morphological defects. This increases the ordering kinetics by at least 3 orders-of-magnitude, compared to conventional oven annealing. By simultaneously exploiting the thermal gradients to induce shear fields, we demonstrate uniaxial alignment of a block-copolymer film in lessmore »than a second. Finally, we provide examples of how control of the incident light-field can be used to generate prescribed configurations of block-copolymer nanoscale patterns.« less

  6. Summary report of working group 3: High gradient and laser-structure based acceleration

    SciTech Connect (OSTI)

    Solyak, N.; Cowan, B.M.; /Tech-X, Boulder

    2010-01-01

    The charge for the working group on high gradient and laser-structure based acceleration was to assess the current challenges involved in developing an advanced accelerator based on electromagnetic structures, and survey state-of-the-art methods to address those challenges. The topics of more than 50 presentations in the working group covered a very broad range of issues, from ideas, theoretical models and simulations, to design and manufacturing of accelerating structures and, finally, experimental results on obtaining extremely high accelerating gradients in structures from conventional microwave frequency range up to THz and laser frequencies. Workshop discussion topics included advances in the understanding of the physics of breakdown and other phenomena, limiting high gradient performance of accelerating structures. New results presented in this workshop demonstrated significant progress in the fields of conventional vacuum structure-based acceleration, dielectric wakefield acceleration, and laser-structure acceleration.

  7. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    SciTech Connect (OSTI)

    Neupane, Ghanashyam; Mattson, Earl D.; McLing, Travis L.; Palmer, Carl D.; Smith, Robert W.; Wood, Thomas R.; Podgorney, Robert K.

    2015-03-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 – 61 ºC/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 ºC) to over 175 ºC. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

  8. Coexistence of colossal stress and texture gradients in sputter deposited nanocrystalline ultra-thin metal films

    SciTech Connect (OSTI)

    Kuru, Yener; Welzel, Udo; Mittemeijer, Eric J.

    2014-12-01

    This paper demonstrates experimentally that ultra-thin, nanocrystalline films can exhibit coexisting colossal stress and texture depth gradients. Their quantitative determination is possible by X-ray diffraction experiments. Whereas a uniform texture by itself is known to generally cause curvature in so-called sin{sup 2}? plots, it is shown that the combined action of texture and stress gradients provides a separate source of curvature in sin{sup 2}? plots (i.e., even in cases where a uniform texture does not induce such curvature). On this basis, the texture and stress depth profiles of a nanocrystalline, ultra-thin (50?nm) tungsten film could be determined.

  9. Non-preconditioned conjugate gradient on cell and FPCA-based hybrid supercomputer nodes

    SciTech Connect (OSTI)

    Dubois, David H; Dubois, Andrew J; Boorman, Thomas M; Connor, Carolyn M

    2009-03-10

    This work presents a detailed implementation of a double precision, Non-Preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{trademark} in conjunction with x86 Opteron{trademark} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.

  10. Non-preconditioned conjugate gradient on cell and FPGA based hybrid supercomputer nodes

    SciTech Connect (OSTI)

    Dubois, David H; Dubois, Andrew J; Boorman, Thomas M; Connor, Carolyn M

    2009-01-01

    This work presents a detailed implementation of a double precision, non-preconditioned, Conjugate Gradient algorithm on a Roadrunner heterogeneous supercomputer node. These nodes utilize the Cell Broadband Engine Architecture{sup TM} in conjunction with x86 Opteron{sup TM} processors from AMD. We implement a common Conjugate Gradient algorithm, on a variety of systems, to compare and contrast performance. Implementation results are presented for the Roadrunner hybrid supercomputer, SRC Computers, Inc. MAPStation SRC-6 FPGA enhanced hybrid supercomputer, and AMD Opteron only. In all hybrid implementations wall clock time is measured, including all transfer overhead and compute timings.

  11. High gradient magnetic separation of iron oxide minerals from soil clays 

    E-Print Network [OSTI]

    Schulze, Darrell Gene

    1977-01-01

    steel wool, placed in a strong magnetic field (1. 6 Tesla), provides the magnetic field and magnetic field gradients necessary to trap weakly magnetic, clay size particles flowing through the filter as a dilute suspension in pH 10. 5 Na C03 solution...- magnetic particles. 2. There must be magnetic field gradients across the volume of the particles for magnetic attraction and trapping to occur. A magnetic field on the order of 1-2 Tesla produced by an electro- magnet is necessary to magnetize...

  12. OPEN POSITION: Entomological Taxonomist and Research Associate Improving our understanding of the elevational biodiversity gradient of Rocky Mountain National Park

    E-Print Network [OSTI]

    Ishida, Yuko

    of the elevational biodiversity gradient of Rocky Mountain National Park: arthropod diversity and conservation Range, including from Rocky Mountain National Park. The taxonomic groups of most interest include

  13. Environmental regulation of carbon isotope composition and crassulacean acid metabolism in three plant communities along a water availability gradient

    E-Print Network [OSTI]

    2010-01-01

    communities along a water availability gradient M. Fernandawith decreasing water availability. Overall, variation inrelated to water and light availability and CAM appeared to

  14. Sensitivity of CO2 migration estimation on reservoir temperature and pressure uncertainty

    E-Print Network [OSTI]

    Jordan, Preston

    2009-01-01

    to hydrostatic and a geothermal gradient. a) b) Figure 1.Figure 2 shows the geothermal gradient plotted against theshown. Figure 2. Geothermal gradients from initial reservoir

  15. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Z.F.

    1988-04-12

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperatures of 77 degrees Kelvin, is discussed. 3 figs.

  16. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  17. Temperature measuring device

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Sohns, Carl W. (Oak Ridge, TN)

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  18. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  19. North-South asymmetry in the modeled phytoplankton community response to climate change over the 21st century

    E-Print Network [OSTI]

    Marinov, Irina; Doney, Scott C; Lima, Ivan D; Lindsay, K.; Moore, J. K; Mahowald, N.

    2013-01-01

    Lima (2007), Enhanced CO 2 outgassing in the Southern Oceanshown to lead to increased outgassing of deep-ocean CO 2 andor on present day CO 2 outgassing from the Southern Ocean [

  20. North-South asymmetry in the modeled phytoplankton community response to climate change over the 21st century

    E-Print Network [OSTI]

    Marinov, Irina; Doney, Scott C; Lima, Ivan D; Lindsay, K.; Moore, J. K; Mahowald, N.

    2013-01-01

    Functional responses and ecosystem dynamics: How clearance rates explain the in?uence of satia- tion, food-

  1. North-South asymmetry in the modeled phytoplankton community response to climate change over the 21st century

    E-Print Network [OSTI]

    Marinov, Irina; Doney, Scott C; Lima, Ivan D; Lindsay, K.; Moore, J. K; Mahowald, N.

    2013-01-01

    of com- plex Earth System Models uses widely differentacross the IPCC AR5 earth system models, manuscript in

  2. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; Greene, S.; Thalasso, F.

    2014-09-12

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4) and carbon dioxide (CO2) emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to physicochemical limnology and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included Direct Ebullition, Diffusion, Storage flux, and a newly identified Ice-Bubble Storage (IBS) flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lake CH4more »emissions was two times higher than that of CO2. Ebullition and Diffusion were the dominant modes of CH4 and CO2 emissions respectively. IBS, ~ 10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, dystrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. Total CH4 emission was correlated with concentrations of phosphate and total nitrogen in lake water, Secchi depth and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  3. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; Greene, S.; Thalasso, F.

    2015-06-02

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4) and carbon dioxide (CO2) emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to lakes' physicochemical properties and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included direct ebullition, diffusion, storage flux, and a newly identified ice-bubble storage (IBS) flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lakemore »CH4 emissions was 2 times higher than that of CO2. Ebullition and diffusion were the dominant modes of CH4 and CO2 emissions, respectively. IBS, ~10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, mixotrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. The relationship between CO2 emissions and geographic parameters was weak, suggesting high variability among sources and sinks that regulate CO2 emissions (e.g., catchment waters, pH equilibrium). Total CH4 emission was correlated with concentrations of soluble reactive phosphorus and total nitrogen in lake water, Secchi depth, and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  4. High-Temperature High-Efficiency Solar Thermoelectric Generators

    SciTech Connect (OSTI)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  5. Change in biomass of benthic and planktonic algae along a disturbance gradient for 24 Great

    E-Print Network [OSTI]

    McMaster University

    Change in biomass of benthic and planktonic algae along a disturbance gradient for 24 Great Lakes. The PC1 site score was significantly related to both periphyton and phytoplankton biomass, respectively accounted for 18% of the variation in epiphyton biomass. Periphytic and epiphytic biomass were negatively

  6. Policy Gradient Planning for Environmental Decision Making with Existing Mark Crowley and David Poole

    E-Print Network [OSTI]

    Poole, David

    Policy Gradient Planning for Environmental Decision Making with Existing Simulators Mark Crowley policies for sustainable harvest planning of a forest. Introduction In many environmental and natural and David Poole University of British Columbia crowley@cs.ubc.ca poole@cs.ubc.ca Abstract In environmental

  7. Global Convergence of An Iterative Gradient Algorithm for The Nash Equilibrium in An

    E-Print Network [OSTI]

    Pavel, Lacra

    Global Convergence of An Iterative Gradient Algorithm for The Nash Equilibrium in An Extended OSNR constraints within a Nash game framework. In optical wavelength-division multiplexed (WDM) networks, all as the optical link capacity constraint. In our previous work in [1], we proposed an extended OSNR Nash game

  8. Gradient Sensitivity to Within-Category Variation in Words and Syllables Bob McMurray

    E-Print Network [OSTI]

    Makous, Walter

    that during online spoken word recognition, lexical competitors are activated in proportion to their continuous distance from a category boundary. This gradient processing may allow listeners to anticipate a continuous and contextually varying signal into discrete and contextually invariant units such as phonemes

  9. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis

    E-Print Network [OSTI]

    Lawrence, Rick L.

    trees) are increasingly being used for analysis and classification of remotely sensed digital imageryClassification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis Rick Lawrencea,*, Andrew Bunna , Scott Powellb , Michael Zambona a Department

  10. Modeling proton intensity gradients and radiation dose equivalents in the inner

    E-Print Network [OSTI]

    Pringle, James "Jamie"

    Modeling proton intensity gradients and radiation dose equivalents in the inner heliosphere using exposure in IP space. In this paper, we utilize EMMREM to study the radial dependence of proton peak crossfield diffusion at large radial distances. Our results show that radial dependencies of proton peak

  11. Existence theory for finite-strain crystal plasticity with gradient regularization

    E-Print Network [OSTI]

    Mielke, Alexander

    Existence theory for finite-strain crystal plasticity with gradient regularization Alexander Mielke combine the formal ideas for single-crystal plasticity from [OrR99, Mie03] with the recent analytical and the plastic tensor P, which is driven by the plastic slip strain rates pj. We allow for self-hardening as well

  12. Wax diffusivity under given thermal gradient: a mathematical model , A. Fasano

    E-Print Network [OSTI]

    Primicerio, Mario

    Wax diffusivity under given thermal gradient: a mathematical model S. Correra , A. Fasano , L. Fusi , M. Primicerio , F. Rosso Abstract In this paper we describe how to obtain wax diffusivity and solubility in a saturated crude oil using the measurements of solid wax deposit in the experimental apparatus

  13. Offshore Coastal Wind Speed Gradients: issues for the design and development of large offshore windfarms

    E-Print Network [OSTI]

    Pryor, Sara C.

    -situ and remote sensing data from offshore wind farms in Denmark, are used to examine both horizontal and vertical the area of the wind farm appear to be small and negligible. 1. INTRODUCTION As large offshore wind farmsOffshore Coastal Wind Speed Gradients: issues for the design and development of large offshore

  14. Kirchhoff prestack depth migration in velocity models with and without vertical gradients

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Kirchhoff prestack depth migration in velocity models with and without vertical gradients-mail: bucha@seis.karlov.mff.cuni.cz Summary The Kirchhoff prestack depth migration is used to calculate. The bottom layer is isotropic and homogeneous. We apply the Kirchhoff prestack depth migration to both

  15. Kirchhoff prestack depth migration in velocity models with and without gradients: Comparison

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Kirchhoff prestack depth migration in velocity models with and without gradients: Comparison@seis.karlov.mff.cuni.cz Summary We use the Kirchhoff prestack depth migration to calculate migrated sections in simple anisotropic is isotropic and homogeneous. We apply the Kirchhoff prestack depth migration to both heterogeneous

  16. MPC for Wind Power Gradients --Utilizing Forecasts, Rotor Inertia, and Central Energy Storage

    E-Print Network [OSTI]

    MPC for Wind Power Gradients -- Utilizing Forecasts, Rotor Inertia, and Central Energy Storage the control of a wind power plant, possibly consisting of many individual wind turbines. The goal. INTRODUCTION Today, wind power is the most important renewable energy source. For the years to come, many

  17. Habitat change and the scale of habitat selection: shifting gradients used by coexisting Arctic rodents

    E-Print Network [OSTI]

    Morris, Douglas W.

    of association with the structure and composition of habitat. Abundant collared lemmings abandoned stations where altered habitat characteristics caused a shift to new locations along the wet-to-dry gradient convincing case that habitat loss and change thus represent the most pressing issue for the conservation

  18. A Novel Gradient Induced Main Subject Segmentation Algorithm for Digital Still Cameras

    E-Print Network [OSTI]

    Evans, Brian L.

    A Novel Gradient Induced Main Subject Segmentation Algorithm for Digital Still Cameras Serene, it is often rst necessary to detect and seg- ment the main subject. We propose an detection and segmentation, an auto-focus lter rst puts the main subject in focus and takes a picture. Then, we open the shutter

  19. HELIUM CONTAMINATION FROM THE PROGENITOR STARS OF PLANETARY NEBULAE: THE HE/H RADIAL GRADIENT AND

    E-Print Network [OSTI]

    Maciel, Walter Junqueira

    HELIUM CONTAMINATION FROM THE PROGENITOR STARS OF PLANETARY NEBULAE: THE HE/H RADIAL GRADIENT of a sample of disk planetary nebulae (PN). First, an application of corrections owing to the contamination such as 4 He on the basis of these objects, it is necessary to take into account the He contamination

  20. Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna

    E-Print Network [OSTI]

    Levin, Lisa

    Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans Oxygen minimum zone Benthos Arabian Sea Biodiversity Deep sea a b s t r a c t The Pakistan Margin where oxygen levels were lowest. The rarity of larger animals between 300 and 700 m on the Pakistan

  1. Hydroecological factors governing surface water flow on a low-gradient floodplain

    E-Print Network [OSTI]

    to flow reductions associated with flood control. We measured flow velocity, water depth, and wind with the square of water surface slope and the fourth power of stem diameter, decreases in direct proportionHydroecological factors governing surface water flow on a low-gradient floodplain Judson W. Harvey

  2. Systematic variation of bedrock channel gradients in the central Oregon Coast Range: implications for rock uplift

    E-Print Network [OSTI]

    Roering, Joshua J.

    for rock uplift and shallow landsliding Jeremiah S. Kobor*, Joshua J. Roering Department of Geological rock uplift for several million years, did not experience Pleistocene glaciation, boasts a relatively variability in bedrock channel gradients resulting from differential rock uplift or other sources. Consistent

  3. Gradient texture unit coding for texture analysis Chein-I Chang, FELLOW SPIE

    E-Print Network [OSTI]

    Chang, Chein-I

    Gradient texture unit coding for texture analysis Chein-I Chang, FELLOW SPIE Yuan Chen University features to capture in image characteristics. A recent texture unit-based texture spectrum approach, referred to as texture unit coding (TUC) developed by Wang and He has shown promise in texture

  4. A complete implementation of the conjugate gradient algorithm on a reconfigurable supercomputer

    SciTech Connect (OSTI)

    Dubois, David H [Los Alamos National Laboratory; Dubois, Andrew J [Los Alamos National Laboratory; Connor, Carolyn M [Los Alamos National Laboratory; Boorman, Thomas M [Los Alamos National Laboratory; Poole, Stephen W [ORNL

    2008-01-01

    The conjugate gradient is a prominent iterative method for solving systems of sparse linear equations. Large-scale scientific applications often utilize a conjugate gradient solver at their computational core. In this paper we present a field programmable gate array (FPGA) based implementation of a double precision, non-preconditioned, conjugate gradient solver for fmite-element or finite-difference methods. OUf work utilizes the SRC Computers, Inc. MAPStation hardware platform along with the 'Carte' software programming environment to ease the programming workload when working with the hybrid (CPUIFPGA) environment. The implementation is designed to handle large sparse matrices of up to order N x N where N <= 116,394, with up to 7 non-zero, 64-bit elements per sparse row. This implementation utilizes an optimized sparse matrix-vector multiply operation which is critical for obtaining high performance. Direct parallel implementations of loop unrolling and loop fusion are utilized to extract performance from the various vector/matrix operations. Rather than utilize the FPGA devices as function off-load accelerators, our implementation uses the FPGAs to implement the core conjugate gradient algorithm. Measured run-time performance data is presented comparing the FPGA implementation to a software-only version showing that the FPGA can outperform processors running up to 30x the clock rate. In conclusion we take a look at the new SRC-7 system and estimate the performance of this algorithm on that architecture.

  5. Critical gradients and plasma flows in the edge plasma of Alcator C-Mod

    SciTech Connect (OSTI)

    LaBombard, B.; Hughes, J. W.; Smick, N.; Marr, K.; McDermott, R.; Reinke, M.; Greenwald, M.; Lipschultz, B.; Terry, J. L.; Whyte, D. G.; Graf, A.; Zweben, S. J.

    2008-05-15

    Recent experiments have led to a fundamental shift in our view of edge transport physics; transport near the last-closed flux surface may be more appropriately described in terms of a critical gradient phenomenon rather than a diffusive and/or convective paradigm. Edge pressure gradients, normalized by the square of the poloidal magnetic field strength, appear invariant in plasmas with the same normalized collisionality, despite vastly different currents and magnetic fields--a behavior that connects with first-principles electromagnetic plasma turbulence simulations. Near-sonic scrape-off layer (SOL) flows impose a cocurrent rotation boundary condition on the confined plasma when Bx{nabla}B points toward the active x-point, suggesting a link to the concomitant reduction in input power needed to attain high-confinement modes. Indeed, low-confinement mode plasmas are found to attain higher edge pressure gradients in this configuration, independent of the direction of B, evidence that SOL flows may affect transport and 'critical gradient' values in the edge plasma.

  6. Cosmological constraints from the redshift dependence of the Alcock-Paczynski test: galaxy density gradient field

    SciTech Connect (OSTI)

    Li, Xiao-Dong; Park, Changbom; Forero-Romero, J. E.; Kim, Juhan E-mail: cbp@kias.re.kr E-mail: kjhan@kias.re.kr

    2014-12-01

    We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter ? {sub m} or the dark energy equation of state w are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradient field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without bias. Our method is complementary to the baryon acoustic oscillation or topology methods as it depends on D{sub AH} , the product of the angular diameter distance and the Hubble parameter.

  7. Development of high gradient laser wakefield accelerators towards nuclear detection applications at LBNL

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    compact systems. Laser-driven, plasma wakefield accelerators (LWFAs) [2] in use at LBNL provide high than conventional linacs, and confirms the anticipated scaling of laser driven accelerators to GeDevelopment of high gradient laser wakefield accelerators towards nuclear detection applications

  8. Dendroclimatic Response along a Moisture Gradient in the Southern Rocky Mountains 

    E-Print Network [OSTI]

    Young, Shelby Lynn

    2015-06-01

    the moisture gradient. Using tree-ring analysis, I found growth to be slower and more sensitive to climate at the low moisture distributional limit than elsewhere within the spatial distribution. Trees at this site were more impacted by the 1950s drought...

  9. Seasonal mass-balance gradients in Norway L.A. RASMUSSEN,1

    E-Print Network [OSTI]

    Rasmussen, L.A.

    Seasonal mass-balance gradients in Norway L.A. RASMUSSEN,1 L.M. ANDREASSEN2,3 1 Department of Earth, Norway 3 Department of Geosciences, University of Oslo, Blindern, NO-0316 Oslo, Norway ABSTRACT. Previously discovered regularity in vertical profiles of net balance, bnðzÞ, on ten glaciers in Norway also

  10. Land use and habitat gradients determine bird community diversity and abundance in suburban, rural

    E-Print Network [OSTI]

    Thomas, David D.

    Land use and habitat gradients determine bird community diversity and abundance in suburban, rural, with reserves slightly below rural. Although reserves were like rural lands in diversity of bird communities bird communities, but differed in grassland and savanna bird communities. The extensive rural forests

  11. A gradient flow approach to an evolution problem arising in superconductivity

    E-Print Network [OSTI]

    Serfaty, Sylvia

    A gradient flow approach to an evolution problem arising in superconductivity Luigi Ambrosio for the evolution of the vortex-density in a superconductor. We treat the case of a bounded domain where vortices in studying the following "mean-field model" (also called hydrodynamic limit) for superconductivity which

  12. Free Energy based Policy Gradients Evangelos A. Theodorou1, Jiri Najemnik2 , and Emo Todorov2

    E-Print Network [OSTI]

    Todorov, Emanuel

    Free Energy based Policy Gradients Evangelos A. Theodorou1, Jiri Najemnik2 , and Emo Todorov2 spaces and continuous time for free energy-like cost functions. The derivation is based on successive, we derive PGs for cost functions that have the form of free energy. Free energy functions appear

  13. Activated Charcoal Based Diffusive Gradients in Thin Films for in Situ Monitoring of Bisphenols in Waters

    E-Print Network [OSTI]

    Ma, Lena

    Activated Charcoal Based Diffusive Gradients in Thin Films for in Situ Monitoring of Bisphenols, Gainesville, Florida 32611, United States *S Supporting Information ABSTRACT: Widespread use of bisphenols monitoring of BPs in waters. Endocrine-disrupting chemicals, including bisphenols (BPs), are widely used

  14. Capacitive Mixing Power Production from Salinity Gradient Energy Enhanced through ExoelectrogenGenerated Ionic Currents

    E-Print Network [OSTI]

    Capacitive Mixing Power Production from Salinity Gradient Energy Enhanced through Exoelectrogen for an external power supply, the voltage window remains limited by the #12;3 3 membrane potential which used. #12;5 5 Fig. 2s: Steady state whole cell power density for three chamber microbial fuel

  15. Roadmaps using Gradient Extremal Paths Ioannis Filippidis and Kostas J. Kyriakopoulos

    E-Print Network [OSTI]

    Low, Steven H.

    Roadmaps using Gradient Extremal Paths Ioannis Filippidis and Kostas J. Kyriakopoulos Abstract-- This work proposes a motion planning method based on the construction of a roadmap connecting the critical methods due to local minima caused by concave obstacles. The roadmap is incre- mentally constructed

  16. Power Grid Analysis Using a Flexible Conjugate Gradient Algorithm with Sparsification

    E-Print Network [OSTI]

    Freund, Roland W.

    Power Grid Analysis Using a Flexible Conjugate Gradient Algorithm with Sparsification Peter power grid analysis. The algorithm allows changing preconditioners and sparsification of the search and sparsification. The algorithm is applied to a number of realistic power grid examples. I. INTRODUCTION The design

  17. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    E-Print Network [OSTI]

    to address global energy needs, such as reverse electro- dialysis1-4 (RED), capacitive energy extraction are the predominant ions in many natural water sources.12 Thermolytic salts, such as aqueous ammonium bicarbonate (AmB), are being considered for salinity gradient energy production because these solutions permit closed

  18. Transient effective hydraulic conductivities under slowly and rapidly varying mean gradients in bounded three-

    E-Print Network [OSTI]

    Tartakovsky, Daniel M.

    Transient effective hydraulic conductivities under slowly and rapidly varying mean gradients it Darcian in real or transformed domains. Each such situation gives rise to an effective hydraulic-time. In this paper we develop first-order analytical expressions for effective hydraulic conductivity under three

  19. Kramers' formula for chemical reactions in the context of Wasserstein gradient flows

    E-Print Network [OSTI]

    Michael Herrmann; Barbara Niethammer

    2010-11-05

    We derive Kramers' formula as singular limit of the Fokker-Planck equation with double-well potential. The convergence proof is based on the Rayleigh principle of the underlying Wasserstein gradient structure and complements a recent result by Peletier, Savar\\'e and Veneroni.

  20. Cancer classification by gradient LDA technique using microarray gene expression data

    E-Print Network [OSTI]

    Cancer classification by gradient LDA technique using microarray gene expression data Alok Sharma a) Dimensionality reduction Cancer classification Feature selection Feature extraction a b s t r a c t Cancer techniques are applied for cancer classification, they face the small sample size (SSS) problem of gene

  1. Modeling Robustness Tradeoffs in Yeast Cell Polarization Induced by Spatial Gradients

    E-Print Network [OSTI]

    Chou, Ching-Shan; Nie, Qing; Yi, Tau-Mu

    2008-01-01

    Yi T-M, Chen S, Chou C-S, Nie Q (2007) Modeling yeast cellGradients Ching-Shan Chou 1 , Qing Nie 1. , Tau-Mu Yi 2. * 1Citation: Chou C-S, Nie Q, Yi T-M (2008) Modeling Robustness

  2. Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints

    E-Print Network [OSTI]

    Meju, Max

    Joint two-dimensional DC resistivity and seismic travel time inversion with cross to evaluate the structural features common to both methods. The cross-gradients function is incorporated method. The resultant iterative two-dimensional (2-D) joint inversion scheme is successfully applied

  3. Beryllium7 in soils and vegetation along an arid precipitation gradient in Owens Valley, California

    E-Print Network [OSTI]

    Elmore, Andrew J.

    Beryllium7 in soils and vegetation along an arid precipitation gradient in Owens Valley, California; revised 29 March 2011; accepted 1 April 2011; published 7 May 2011. [1] Beryllium7 is a potentially potential as a sediment tracer in desert environments. Beryllium7 in vegetation and the upper few cm of soil

  4. Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and

    E-Print Network [OSTI]

    Brolo, Alexandre G.

    Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and quantification of ovarian cancer markers. Calibration curves based on controlled concentrations of the analyte. The biosensors were first used to detect the immobilization of ovarian cancer marker antibodies, and subsequently

  5. Development of Ultra High Gradient and High Q{sub 0} Superconducting Radio Frequency Cavities

    SciTech Connect (OSTI)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Clemens, William A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Follkie, James E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Harris, Teena M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kushnick, Peter W. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Machie, Danny [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Martin, Robert E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Palczewski, Ari D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Perry, Era A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Slack, Gary L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Williams, R. S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Adolphsen, C. [SLAC, Menlo Park, California, (United States); Li, Z. [SLAC, Menlo Park, California, (United States); Hao, J. K. [Peking University, Beijing (China); Li, Y. M. [Peking University, Beijing (China); Liu, K. X. [Peking University, Beijing (China)

    2013-06-01

    We report on the recent progress at Jefferson Lab in developing ultra high gradient and high Q{sub 0} superconducting radio frequency (SRF) cavities for future SRF based machines. A new 1300 MHz 9-cell prototype cavity is being fabricated. This cavity has an optimized shape in terms of the ratio of the peak surface field (both magnetic and electric) to the acceleration gradient, hence the name low surface field (LSF) shape. The goal of the effort is to demonstrate an acceleration gradient of 50 MV/m with Q{sub 0} of 10{sup 10} at 2 K in a 9-cell SRF cavity. Fine-grain niobium material is used. Conventional forming, machining and electron beam welding method are used for cavity fabrication. New techniques are adopted to ensure repeatable, accurate and inexpensive fabrication of components and the full assembly. The completed cavity is to be first mechanically polished to a mirror-finish, a newly acquired in-house capability at JLab, followed by the proven ILC-style processing recipe established already at JLab. In parallel, new single-cell cavities made from large-grain niobium material are made to further advance the cavity treatment and processing procedures, aiming for the demonstration of an acceleration gradient of 50 MV/m with Q{sub 0} of 2?10{sup 10} at 2K.

  6. Neighborhood Analyses of Canopy Tree Competition along Environmental Gradients in New England Forests

    E-Print Network [OSTI]

    Uriarte, Maria

    RubensteinSchool of Environmentand Natural Resources, Universityof Vermont, 590 Main St., Burlington, Vermont, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use of these cases, abundance was displaced to the more resource-poorend of the environmental gradient (either low

  7. Nordic Society Oikos Trophic Control across a Natural Productivity Gradient with Sap-Feeding Herbivores

    E-Print Network [OSTI]

    Uriarte, Maria

    Nordic Society Oikos Trophic Control across a Natural Productivity Gradient with Sap's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR the discovery and use of these resources. For more information about JSTOR, please contact support

  8. Latitudinal gradients in sea ice and primary production determine Arctic seabird colony

    E-Print Network [OSTI]

    Laidre, Kristin L.

    -scale control on energy flux and primary and secondary production, ultimately reaching the top of the food chainLatitudinal gradients in sea ice and primary production determine Arctic seabird colony size Naturama, Dronningemaen 30, 5700 Svendborg, Denmark 4 Department of Arctic Environment, National

  9. Pulsed Gradient Spin Echo Nuclear Magnetic Resonance Imaging of Diffusion in Granular Flow

    SciTech Connect (OSTI)

    Seymour, Joseph D.; Caprihan, Arvind; Altobelli, Stephen A.; Fukushima, Eiichi

    2000-01-10

    We derive the formalism to obtain spatial distributions of collisional correlation times for macroscopic particles undergoing granular flow from pulsed gradient spin echo nuclear magnetic resonance diffusion data. This is demonstrated with an example of axial motion in the shear flow regime of a 3D granular flow in a horizontal rotating cylinder at one rotation rate. (c) 2000 The American Physical Society.

  10. Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous deposition

    E-Print Network [OSTI]

    Jackson, Robert B.

    Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous sequestration of plant-carbon (C) inputs to soil may mitigate rising atmo- spheric carbon dioxide (CO2) concentrations and related climate change but how this sequestration will respond to anthropogenic nitrogen (N

  11. Annealing Thin Colloidal Crystals with Optical Gradient Forces Pamela T. Korda and David G. Grier

    E-Print Network [OSTI]

    Grier, David

    Annealing Thin Colloidal Crystals with Optical Gradient Forces Pamela T. Korda and David G. Grier of Chicago, Chicago, IL 60637 (January 9, 2001) We describe methods for annealing colloidal crystals using a natural tendency to organize themselves into regular three-dimensional arrays known as colloidal crystals

  12. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  13. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  14. Investigation of Turbulent transition in plane Couette flows Using Energy Gradient Method

    E-Print Network [OSTI]

    Hua-Shu Dou; Boo Cheong Khoo

    2010-06-07

    The energy gradient method has been proposed with the aim of better understanding the mechanism of flow transition from laminar flow to turbulent flow. In this method, it is demonstrated that the transition to turbulence depends on the relative magnitudes of the transverse gradient of the total mechanical energy which amplifies the disturbance and the energy loss from viscous friction which damps the disturbance, for given imposed disturbance. For a given flow geometry and fluid properties, when the maximum of the function K (a function standing for the ratio of the gradient of total mechanical energy in the transverse direction to the rate of energy loss due to viscous friction in the streamwise direction) in the flow field is larger than a certain critical value, it is expected that instability would occur for some initial disturbances. In this paper, using the energy gradient analysis, the equation for calculating the energy gradient function K for plane Couette flow is derived. The result indicates that K reaches the maximum at the moving walls. Thus, the fluid layer near the moving wall is the most dangerous position to generate initial oscillation at sufficient high Re for given same level of normalized perturbation in the domain. The critical value of K at turbulent transition, which is observed from experiments, is about 370 for plane Couette flow when two walls move in opposite directions (anti-symmetry). This value is about the same as that for plane Poiseuille flow and pipe Poiseuille flow (385-389). Therefore, it is concluded that the critical value of K at turbulent transition is about 370-389 for wall-bounded parallel shear flows which include both pressure (symmetrical case) and shear driven flows (anti-symmetrical case).

  15. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  16. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  17. Root responses along a subambient to elevated CO2 gradient in a C3C4 grassland

    E-Print Network [OSTI]

    Jackson, Robert B.

    Root responses along a subambient to elevated CO2 gradient in a C3­C4 grassland L A U R E L J . A N C3­C4 grassland exposed to a gradient of Ca from preglacial to future levels (230­550 lmol molÀ1 studies have docu- mented increases in belowground plant productivity and metabolism with increased

  18. Environmental effects on distributions of culturable soil oligotrophic bacteria along an elevational gradient in the Chihuahuan Desert

    E-Print Network [OSTI]

    Strauss, Richard E.

    an elevational gradient in the Chihuahuan Desert James H. Campbell*, John C. Zak, Randall M. Jeter, Richard E from five sites along an elevational and vegetational gradient within Big Bend National Park during the first stressors to be investigated. Microbes capable of metabolism at low concentra- tions of carbon

  19. 696 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 5, MAY 2005 A Basic Formula for Online Policy Gradient Algorithms

    E-Print Network [OSTI]

    Cao, Xiren

    696 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 5, MAY 2005 A Basic Formula for Online Policy Gradient Algorithms Xi-Ren Cao Abstract--This note presents a (new) basic formula for sample learning literature). With this basic formula, many policy-gradient algorithms, including those that have

  20. Radial gradients of phase space density of the outer radiation belt electrons prior to sudden solar wind pressure enhancements

    E-Print Network [OSTI]

    Li, Xinlin

    PSD radial gradient at and beyond GEO prior to a sudden solar wind pressure impact based on the fact by a sudden solar wind pressure enhancement, dayside trapped electrons are transported radially inwards), Radial gradients of phase space density of the outer radiation belt electrons prior to sudden solar wind

  1. On the Complete Integrability of Nonlinear Dynamical Systems on Discrete Manifolds within the Gradient-Holonomic Approach

    E-Print Network [OSTI]

    Yarema A. Prykarpatsky; Nikolai N. Bogolubov Jr; Anatoliy K. Prykarpatsky; Valeriy H. Samoylenko

    2011-05-22

    A gradient-holonomic approach for the Lax type integrability analysis of differentialdiscrete dynamical systems is devised. The asymptotical solutions to the related Lax equation are studied, the related gradient identity is stated. The integrability of a discrete nonlinear Schredinger type dynamical system is treated in detail.

  2. Apparatus for the investigation of liquid systems in a shear gradient by small angle neutron scattering (SANS)

    E-Print Network [OSTI]

    Boyer, Edmond

    of small angle neutron scattering from fluids in a constant shear gradient. Typical systems which can angle neutron scattering experiments with liquids have given information about structural pro- perties759 Apparatus for the investigation of liquid systems in a shear gradient by small angle neutron

  3. Algorithm for obtaining the gradient expansion of the local density of states and the free energy of a superconductor

    E-Print Network [OSTI]

    Algorithm for obtaining the gradient expansion of the local density of states and the free energy for obtaining the gauge-invariant gradient expansion of the local density of states and the free energy confirm a recent calculation of the fourth order correction to the free energy by Kosztin, Kos, Stone

  4. The mechanics of coating delamination in thermal gradients A.G. Evans a,, J.W. Hutchinson b

    E-Print Network [OSTI]

    Hutchinson, John W.

    The mechanics of coating delamination in thermal gradients A.G. Evans a,, J.W. Hutchinson b in revised form 16 March 2007 Available online 27 March 2007 Abstract Oxide coatings used for various stress gradient in the coating, governed by these thermal circumstances. Two extreme cool-down scenarios

  5. Dynamics of Singular Vectors in the Semi-Infinite Eady Model: Nonzero but Zero Mean PV Gradient

    E-Print Network [OSTI]

    de Vries, Hylke

    Dynamics of Singular Vectors in the Semi-Infinite Eady Model: Nonzero but Zero Mean PV Gradient H approach based on the potential vorticity (PV) perspective is used to compute the singular vector (SV. The basic-state buoyancy frequency and zonal wind profile are chosen such that the basic-state PV gradient

  6. An Interpretation of Baroclinic Initial Value Problems: Results for Simple Basic States with Nonzero Interior PV Gradients

    E-Print Network [OSTI]

    de Vries, Hylke

    with Nonzero Interior PV Gradients HYLKE DE VRIES, JOHN METHVEN, AND THOMAS H. A. FRAME Department, where the meridional potential vorticity (PV) gradient is zero, perturbation energy growth can, resonance occurs as interior PV anomalies excite the edge waves, and the Orr mechanism involves only

  7. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, Robert W. (Livermore, CA); Shell, Thomas E. (Livermore, CA)

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  8. Temperature estimates from the Zircaloy oxidation kinetics in the. cap alpha. plus. beta. phase region. [PWR; BWR

    SciTech Connect (OSTI)

    Olsen, C.S.

    1981-01-01

    Oxidation rates of Zircaloy in steam were measured at temperatures between 961 and 1264 K and for duration times between 25 and 1900 seconds in order to calculate, in conjunction with measurements from postirradiation metallographic examination, the prior peak temperatures of Zircaloy fuel rod cladding. These temperature estimates will be used in light water reactor research programs to assess (a) the accuracy of temperature measurements of fuel rod cladding peak temperatures from thermocouples attached to the surface during loss-of-coolant experiments (LOCEs), (b) the perturbation of the fuel rod cladding LOCE temperature history caused by the presence of thermocouples, and (c) the measurements of cladding azimuthal temperature gradients near the thermocouple locations.

  9. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, D.M.; Bionta, R.M.

    1995-01-17

    The joining technique is disclosed that requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process. 5 figures.

  10. Fluorescent temperature sensor

    DOE Patents [OSTI]

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-03-03

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  11. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G. (Albuquerque, NM); Gurary, Alexander I. (Bridgewater, NJ); Boguslavskiy, Vadim (Princeton, NJ)

    2002-01-01

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  12. High temperature storage battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1988-06-07

    A high temperature electrochemical cell is described comprising: a solid-state divalent cation conducting electrolyte; a positive electrode in contact with the electrolyte; a solid-state negative electrode contacting a divalent cation conducting molten salt mediating agent providing ionic mediation between the solid-state negative electrode and the solid-state electrolyte.

  13. Temperature differential detection device

    DOE Patents [OSTI]

    Girling, Peter M. (Allentown, PA)

    1986-01-01

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

  14. Transition temperature in QCD

    SciTech Connect (OSTI)

    Cheng, M.; Christ, N. H.; Mawhinney, R. D. [Physics Department, Columbia University, New York, New York 10027 (United States); Datta, S.; Jung, C.; Schmidt, C.; Umeda, T. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Heide, J. van der; Kaczmarek, O.; Laermann, E.; Miao, C. [Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Karsch, F. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Petreczky, P. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973 (United States); Petrov, K. [Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)

    2006-09-01

    We present a detailed calculation of the transition temperature in QCD with two light and one heavier (strange) quark mass on lattices with temporal extent N{sub {tau}}=4 and 6. Calculations with improved staggered fermions have been performed for various light to strange quark mass ratios in the range, 0.05{<=}m-circumflex{sub l}/m-circumflex{sub s}{<=}0.5, and with a strange quark mass fixed close to its physical value. From a combined extrapolation to the chiral (m-circumflex{sub l}{yields}0) and continuum (aT{identical_to}1/N{sub {tau}}{yields}0) limits we find for the transition temperature at the physical point T{sub c}r{sub 0}=0.457(7) where the scale is set by the Sommer-scale parameter r{sub 0} defined as the distance in the static quark potential at which the slope takes on the value (dV{sub qq}(r)/dr){sub r=r{sub 0}}=1.65/r{sub 0}{sup 2}. Using the currently best known value for r{sub 0} this translates to a transition temperature T{sub c}=192(7)(4) MeV. The transition temperature in the chiral limit is about 3% smaller. We discuss current ambiguities in the determination of T{sub c} in physical units and also comment on the universal scaling behavior of thermodynamic quantities in the chiral limit.

  15. Localized temperature stability of low temperature cofired ceramics

    SciTech Connect (OSTI)

    Dai, Steven Xunhu

    2013-11-26

    The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.

  16. Temperature Driven Annealing of Perforations in Bicellar Model Membranes

    SciTech Connect (OSTI)

    Nieh, Mu-Ping [University of Connecticut, Storrs; Raghunathan, V.A. [Raman Research Institute, India; Pabst, Georg [Austrian Academy of Sciences, Graz, Austria; Harroun, Thad [Brock University, St. Catharines, ON, Canada; Nagashima, K [University of Toronto, Mississauga, ON, Canada; Morales, H [University of Toronto, Mississauga, ON, Canada; Katsaras, John [ORNL; Macdonald, P [University of Toronto, Mississauga, ON, Canada

    2011-01-01

    Bicellar model membranes composed of 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dihexanoylphosphatidylcholine (DHPC), with a DMPC/DHPC molar ratio of 5, and doped with the negatively charged lipid 1,2-dimyristoylphosphatidylglycerol (DMPG), at DMPG/DMPC molar ratios of 0.02 or 0.1, were examined using small angle neutron scattering (SANS), {sup 31}P NMR, and {sup 1}H pulsed field gradient (PFG) diffusion NMR with the goal of understanding temperature effects on the DHPC-dependent perforations in these self-assembled membrane mimetics. Over the temperature range studied via SANS (300-330 K), these bicellar lipid mixtures exhibited a well-ordered lamellar phase. The interlamellar spacing d increased with increasing temperature, in direct contrast to the decrease in d observed upon increasing temperature with otherwise identical lipid mixtures lacking DHPC. {sup 31}P NMR measurements on magnetically aligned bicellar mixtures of identical composition indicated a progressive migration of DHPC from regions of high curvature into planar regions with increasing temperature, and in accord with the 'mixed bicelle model' (Triba, M. N.; Warschawski, D. E.; Devaux, P. E. Biophys. J.2005, 88, 1887-1901). Parallel PFG diffusion NMR measurements of transbilayer water diffusion, where the observed diffusion is dependent on the fractional surface area of lamellar perforations, showed that transbilayer water diffusion decreased with increasing temperature. A model is proposed consistent with the SANS, {sup 31}P NMR, and PFG diffusion NMR data, wherein increasing temperature drives the progressive migration of DHPC out of high-curvature regions, consequently decreasing the fractional volume of lamellar perforations, so that water occupying these perforations redistributes into the interlamellar volume, thereby increasing the interlamellar spacing.

  17. The nucleon electric dipole moment with the gradient flow: the $\\theta$-term contribution

    E-Print Network [OSTI]

    Shindler, Andrea; de Vries, Jordy

    2015-01-01

    We propose a new method to calculate electric dipole moments induced by the strong QCD $\\theta$-term. The method is based on the gradient flow for gauge fields and is free from renormalization ambiguities. We test our method by computing the nucleon electric dipole moments in pure Yang-Mills theory at several lattice spacings, enabling a first-of-its-kind continuum extrapolation. The method is rather general and can be applied for any quantity computed in a $\\theta$ vacuum. This first application of the gradient flow has been successful and demonstrates proof-of-principle, thereby providing a novel method to obtain precise results for nucleon and light nuclear electric dipole moments.

  18. Particle Capture Efficiency in a Multi-Wire Model for High Gradient Magnetic Separation

    E-Print Network [OSTI]

    Eisenträger, Almut; Griffiths, Ian M

    2014-01-01

    High gradient magnetic separation (HGMS) is an efficient way to remove magnetic and paramagnetic particles, such as heavy metals, from waste water. As the suspension flows through a magnetized filter mesh, high magnetic gradients around the wires attract and capture the particles, removing them from the fluid. We model such a system by considering the motion of a paramagnetic tracer particle through a periodic array of magnetized cylinders. We show that there is a critical Mason number (ratio of viscous to magnetic forces) below which the particle is captured irrespective of its initial position in the array. Above this threshold, particle capture is only partially successful and depends on the particle's entry position. We determine the relationship between the critical Mason number and the system geometry using numerical and asymptotic calculations. If a capture efficiency below 100% is sufficient, our results demonstrate how operating the HGMS system above the critical Mason number but with multiple separa...

  19. Analytical nuclear gradients for the range-separated many-body dispersion model of noncovalent interactions

    E-Print Network [OSTI]

    Blood-Forsythe, Martin A; DiStasio, Robert A; Car, Roberto; Aspuru-Guzik, Alán

    2015-01-01

    Accurate treatment of the long-range electron correlation energy, including van der Waals (vdW) or dispersion interactions, is essential for describing the structure, dynamics, and function of a wide variety of systems. Among the most accurate models for including dispersion into density functional theory (DFT) is the range-separated many-body dispersion (MBD) method [A. Ambrossetti et al., J. Chem. Phys. 140, 18A508 (2014)], in which the correlation energy is modeled at short-range by a semi-local density functional and at long-range by a model system of coupled quantum harmonic oscillators. In this work, we develop analytical gradients of the MBD energy with respect to nuclear coordinates, including all implicit coordinate dependencies arising from the partitioning of the charge density into Hirshfeld effective volumes. To demonstrate the efficiency and accuracy of these MBD gradients for geometry optimizations of systems with intermolecular and intramolecular interactions, we optimized conformers of the be...

  20. The nucleon electric dipole moment with the gradient flow: the $?$-term contribution

    E-Print Network [OSTI]

    Andrea Shindler; Thomas Luu; Jordy de Vries

    2015-07-09

    We propose a new method to calculate electric dipole moments induced by the strong QCD $\\theta$-term. The method is based on the gradient flow for gauge fields and is free from renormalization ambiguities. We test our method by computing the nucleon electric dipole moments in pure Yang-Mills theory at several lattice spacings, enabling a first-of-its-kind continuum extrapolation. The method is rather general and can be applied for any quantity computed in a $\\theta$ vacuum. This first application of the gradient flow has been successful and demonstrates proof-of-principle, thereby providing a novel method to obtain precise results for nucleon and light nuclear electric dipole moments.

  1. A magnetically shielded room with ultra low residual field and gradient

    SciTech Connect (OSTI)

    Altarev, I.; Chesnevskaya, S.; Gutsmiedl, E.; Kuchler, F.; Lins, T.; Marino, M.; McAndrew, J.; Niessen, B.; Paul, S.; Petzoldt, G.; Singh, J.; Stoepler, R.; Stuiber, S.; Sturm, M.; Taubenheim, B. [Physikdepartment, Technische Universität München, D-85748 Garching (Germany); Babcock, E. [Jülich Center for Neutron Science, Lichtenbergstrasse 1, D-85748 Garching (Germany); Beck, D.; Sharma, S. [Physics Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Burghoff, M.; Fan, I. [Physikalisch-Technische Bundesanstalt Berlin, D-10587 Berlin (Germany); and others

    2014-07-15

    A versatile and portable magnetically shielded room with a field of (700 ± 200) pT within a central volume of 1 m × 1 m × 1 m and a field gradient less than 300 pT/m, achieved without any external field stabilization or compensation, is described. This performance represents more than a hundredfold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. This has implications for developments of magnetometry beyond the femto-Tesla scale in, for example, biomagnetism, geosciences, and security applications and in general low-field nuclear magnetic resonance (NMR) measurements.

  2. Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant

    SciTech Connect (OSTI)

    Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat [The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330 (Thailand); Wilkes, James O. [Department of Chemical Engineering, The University of Michigan, Ann Arbor, MI 48109-2136 (United States)

    2008-01-15

    Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, the bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)

  3. A genealogy of convex solids via local and global bifurcations of gradient vector fields

    E-Print Network [OSTI]

    Gábor Domokos; Philip Holmes; Zsolt Lángi

    2015-08-19

    Three-dimensional convex bodies can be classified in terms of the number and stability types of critical points on which they can balance at rest on a horizontal plane. For typical bodies these are nondegenerate maxima, minima, and saddle-points, the numbers of which provide a primary classification. Secondary and tertiary classifications use graphs to describe orbits connecting these critical points in the gradient vector field associated with each body. In previous work it was shown that these classifications are complete in that no class is empty. Here we construct 1- and 2-parameter families of convex bodies connecting members of adjacent primary and secondary classes and show that transitions between them can be realized by codimension 1 saddle-node and saddle-saddle (heteroclinic) bifurcations in the gradient vector fields. Our results indicate that all combinatorially possible transitions can be realized in physical shape evolution processes, e.g. by abrasion of sedimentary particles.

  4. Development of Ti/Ti{sub 3}Sn functionally gradient material produced by eutectic bonding method

    SciTech Connect (OSTI)

    Kirihara, S.; Takeda, M.; Tsujimoto, T. [Ibaraki Univ., Hitachi (Japan). Faculty of Engineering] [Ibaraki Univ., Hitachi (Japan). Faculty of Engineering

    1996-07-15

    Although many materials which have a single function have been developed, future needs are anticipated to include materials which have various functions. A functionally gradient material (FGM) which has characteristics of two different materials is a promising candidate for multi-functional material. The present methods for production of FGM, however, are very complicated and costly. In this study the authors answer the serious problem of high production cost by fabricating the FGM by a eutectic bonding method. This fabrication method includes structural control of FGM by changing the cooling process. They describe Ti/Ti{sub 3}Sn FGM obtained by the eutectic bonding method, and tell how the structure of its composition gradient part is changed by controlling the cooling process.

  5. Zero Temperature Hope Calculations

    SciTech Connect (OSTI)

    Rozsnyai, B F

    2002-07-26

    The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the outer part of the self-consistent potential in such a way that in the final state after photoexcitation or photoionization the newly occupied orbital sees the hole left in the initial state. This is very important to account for the large number of Rydberg states in the case of low densities. In the next Section we show calculated photoabsorptions compared with experimental data in figures with some rudimentary explanations.

  6. Towards an Optimal Gradient-dependent Energy Functional of the PZ-SIC Form

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jónsson, Elvar Örn; Lehtola, Susi; Jónsson, Hannes

    2015-06-01

    Results of Perdew–Zunger self-interaction corrected (PZ-SIC) density functional theory calculations of the atomization energy of 35 molecules are compared to those of high-level quantum chemistry calculations. While the PBE functional, which is commonly used in calculations of condensed matter, is known to predict on average too high atomization energy (overbinding of the molecules), the application of PZ-SIC gives a large overcorrection and leads to significant underestimation of the atomization energy. The exchange enhancement factor that is optimal for the generalized gradient approximation within the Kohn-Sham (KS) approach may not be optimal for the self-interaction corrected functional. The PBEsol functional, wheremore »the exchange enhancement factor was optimized for solids, gives poor results for molecules in KS but turns out to work better than PBE in PZ-SIC calculations. The exchange enhancement is weaker in PBEsol and the functional is closer to the local density approximation. Furthermore, the drop in the exchange enhancement factor for increasing reduced gradient in the PW91 functional gives more accurate results than the plateaued enhancement in the PBE functional. A step towards an optimal exchange enhancement factor for a gradient dependent functional of the PZ-SIC form is taken by constructing an exchange enhancement factor that mimics PBEsol for small values of the reduced gradient, and PW91 for large values. The average atomization energy is then in closer agreement with the high-level quantum chemistry calculations, but the variance is still large, the F2 molecule being a notable outlier.« less

  7. Gravitational resonance spectroscopy with an oscillating magnetic field gradient in the GRANIT flow through arrangement

    E-Print Network [OSTI]

    G. Pignol; S. Baessler; V. V. Nesvizhevsky; K. Protasov; D. Rebreyend; A. Yu. Voronin

    2014-08-05

    Gravitational resonance spectroscopy consists in measuring the energy spectrum of bouncing ultracold neutrons above a mirror by inducing resonant transitions between different discrete quantum levels. We discuss how to induce the resonances with a flow through arrangement in the GRANIT spectrometer, excited by an oscillating magnetic field gradient. The spectroscopy could be realized in two distinct modes (so called DC and AC) using the same device to produce the magnetic excitation. We present calculations demonstrating the feasibility of the newly proposed AC mode.

  8. Thermodynamics and reference scale of SU(3) gauge theory from gradient flow on fine lattices

    E-Print Network [OSTI]

    Masakiyo Kitazawa; Masayuki Asakawa; Tetsuo Hatsuda; Takumi Iritani; Etsuko Itou; Hiroshi Suzuki

    2015-11-17

    We study the parametrization of lattice spacing and thermodynamics of SU(3) gauge theory on the basis of the Yang-Mills gradient flow on fine lattices. The lattice spacing of the Wilson gauge action is determined over a wide range $6.3\\le\\beta\\le7.5$ with high accuracy. The measurements of the flow time and lattice spacing dependences of the expectation values of the energy-momentum tensor are performed on fine lattices.

  9. High gradient magnetic beneficiation of dry pulverized coal via upwardly directed recirculating fluidization

    DOE Patents [OSTI]

    Eissenberg, David M. (Oak Ridge, TN); Liu, Yin-An (Opelika, AL)

    1980-01-01

    This invention relates to an improved device and method for the high gradient magnetic beneficiation of dry pulverized coal, for the purpose of removing sulfur and ash from the coal whereby the product is a dry environmentally acceptable, low-sulfur fuel. The process involves upwardly directed recirculating air fluidization of selectively sized powdered coal in a separator having sections of increasing diameters in the direction of air flow, with magnetic field and flow rates chosen for optimum separations depending upon particulate size.

  10. Thermodynamics and reference scale of SU(3) gauge theory from gradient flow on fine lattices

    E-Print Network [OSTI]

    Kitazawa, Masakiyo; Hatsuda, Tetsuo; Iritani, Takumi; Itou, Etsuko; Suzuki, Hiroshi

    2015-01-01

    We study the parametrization of lattice spacing and thermodynamics of SU(3) gauge theory on the basis of the Yang-Mills gradient flow on fine lattices. The lattice spacing of the Wilson gauge action is determined over a wide range $6.3\\le\\beta\\le7.5$ with high accuracy. The measurements of the flow time and lattice spacing dependences of the expectation values of the energy-momentum tensor are performed on fine lattices.

  11. The building up of the disk galaxy M33 and the evolution of the metallicity gradient

    E-Print Network [OSTI]

    Laura Magrini; Edvige Corbelli; Daniele Galli

    2007-04-24

    The evolution of radial gradients of metallicity in disk galaxies and its relation with the disk formation are not well understood. Theoretical models of galactic chemical evolution make contrasting predictions about the time evolution of metallicity gradients. To test chemical evolution models and trace the star formation and accretion history of low luminosity disk galaxies we focus on the Local Group galaxy M33. We analyze O/H and S/H abundances in planetary nebulae, H{\\sc ii} regions, and young stars, together with known [Fe/H] abundances in the old stellar population of M33. With a theoretical model, we follow the time evolution of gas (diffuse and condensed in clouds), stars, and chemical abundances in the disk of M33, assuming that the galaxy is accreting gas from an external reservoir. Our model is able to reproduce the available observational constraints on the distribution of gas and stars in M33 and to predict the time evolution of several chemical abundances. In particular, we find that a model characterized by a continuous infall of gas on the disk, at a rate of $\\dot M_{\\rm inf}\\approx 1$ $M_\\odot$ yr$^{-1}$, almost constant with time, can also account for the relatively high rate of star formation and for the shallow chemical gradients. Supported by a large sample of high resolution observations for this nearby galaxy, we conclude that the metallicity in the disk of M33 has increased with time at all radii, with a continuous flattening of the gradient over the last $\\sim 8$ Gyr.

  12. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  13. Dirac Equation at Finite Temperature

    E-Print Network [OSTI]

    Xiang-Yao Wu; Bo-Jun Zhang; Xiao-Jing Liu; Nuo Ba; Yi-Heng Wu; Si-Qi Zhang; Jing Wang; Chun-Hong Li

    2012-12-01

    In this paper, we propose finite temperature Dirac equation, which can describe the quantum systems in an arbitrary temperature for a relativistic particle of spin-1/2. When the temperature T=0, it become Dirac equation. With the equation, we can study the relativistic quantum systems in an arbitrary temperature.

  14. Diffraction Profiles of Elasticity Bent Single Crystals with Constant Strain Gradients

    SciTech Connect (OSTI)

    Yan,H.; Kalenci, O.; Noyan, I.

    2007-01-01

    This work presents a set of equations that can be used to predict the dynamical diffraction profile from a non-transparent single crystal with a constant strain gradient examined in Bragg reflection geometry with a spherical incident X-ray beam. In agreement with previous work, the present analysis predicts two peaks: a primary diffraction peak, which would have still been observed in the absence of the strain gradient and which exits the specimen surface at the intersection point of the incident beam with the sample surface, and a secondary (mirage) peak, caused by the deflection of the wavefield within the material, which exits the specimen surface further from this intersection point. The integrated intensity of the mirage peak increases with increasing strain gradient, while its separation from the primary reflection peak decreases. The directions of the rays forming the mirage peak are parallel to those forming the primary diffraction peak. However, their spatial displacement might cause (fictitious) angular shifts in diffractometers equipped with area detectors or slit optics. The analysis results are compared with experimental data from an Si single-crystal strip bent in cantilever configuration, and the implications of the mirage peak for Laue analysis and high-precision diffraction measurements are discussed.

  15. Coronal Heating Driven by Magnetic-gradient Pumping Mechanism in Solar Plasmas

    E-Print Network [OSTI]

    Tan, Baolin

    2014-01-01

    The solar coronal heating is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with considerable magnetic gradient from solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism and try to explain the formation of hot plasma upflows, such as the hot type II spicules and hot plasma ejections, etc. In MGP mechanism, the magnetic gradients drive the energetic particles to move upwards from the underlying solar atmosphere and form hot upflows. These upflow energetic particles deposit in corona and make it becoming very hot. Roughly estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km/s in chromosphere and about 130 km/s in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them and deposit in the corona. The deposition of energetic particles will make the corona become...

  16. Coronal heating driven by a magnetic gradient pumping mechanism in solar plasmas

    SciTech Connect (OSTI)

    Tan, Baolin

    2014-11-10

    The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s{sup –1} in the chromosphere and about 130 km s{sup –1} in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.

  17. Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial

    SciTech Connect (OSTI)

    Park, Sang-Gil; Jeong, Ki-Hun, E-mail: kjeong@kaist.ac.kr [Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); KAIST Institute for Optical Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Kanghee; Han, Daehoon; Ahn, Jaewook [KAIST Institute for Optical Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2014-09-01

    Structuring at subwavelength scales brings out artificial media with anomalous optical features called metamaterials. All-dielectric metamaterials have high potential for practical applications over the whole electromagnetic spectrum owing to low loss and optical isotropy. Here, we report subwavelength silicon through-hole arrays as an all-dielectric gradient index metamaterial with broadband THz operation. The unit cell consists of a single subwavelength through-hole on highly resistive monocrystalline silicon. Depending on the fill-factor and period, the effective index was linearly modulated at 0.3–1.6 THz. The experimental results also demonstrate silicon gradient refractive index (Si-GRIN) lenses with parabolic index profiles through the spatial modification of a single unit cell along the radial direction. Si-GRIN lenses either focus 0.4–1.6 THz beam to the diffraction-limit or serve as a flat and thin solid immersion lens on the backside of THz photoconductive antenna for highly efficient pulse extraction. This all-dielectric gradient index metamaterial opens up opportunities for integrated THz GRIN optics.

  18. Radial convection of finite ion temperature, high amplitude plasma blobs

    SciTech Connect (OSTI)

    Wiesenberger, M. Kendl, A.; Madsen, J.

    2014-09-15

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion temperature, the initial blob width, and the initial amplitude, we found an FLR dominated regime where the blob behavior is significantly different from what is predicted by cold-ion models. The transition to this regime is very well described by the ratio of the ion gyroradius to the characteristic gradient scale length of the blob. We compare the global gyrofluid model with a partly linearized local model. For low ion temperatures, we find that simulations of the global model show more coherent blobs with an increased cross-field transport compared to blobs simulated with the local model. The maximal blob amplitude is significantly higher in the global simulations than in the local ones. When the ion temperature is comparable to the electron temperature, global blob simulations show a reduced blob coherence and a decreased cross-field transport in comparison with local blob simulations.

  19. Auburn low-temperature geothermal well. Volume 6. Final report

    SciTech Connect (OSTI)

    Lynch, R.S.; Castor, T.P.

    1983-12-01

    The Auburn well was drilled to explore for low temperature geothermal resources in central New York State. The Auburn site was selected based on: its proximity to the Cayuga County anomaly (30/sup 0/C/km), its favorable local geological conditions and the potential to provide hot water and space heating to two educational facilities. The well was drilled to a total depth of 5250 feet and into the Pre-Cambrian Basement. The well was extensively logged, flow and stress tested, hydraulically stimulated, and pump (pressure transient analysis) tested. The low-temperature geothermal potential was assessed in terms of: geological environment; hydrological conditions; reservoir characteristics; and recoverable hydrothermal reserves. The average geothermal gradient was measured to be as high as 26.7/sup 0/C/km with a bottom-hole temperature of 126/sup 0/ +- 1/sup 0/F. The proved volumetric resources were estimated to be 3.0 x 10/sup 6/ stock tank barrels (STB) with a maximum initial deliverability of approx.11,600 STB/D and a continuous deliverability of approx.3400 STB/D. The proved hydrothermal reserves were estimated to be 21.58 x 10/sup 10/ Btu based on a volumetric component (4.13 x 10/sup 10/ Btu), and a reinjection component (17.45 x 10/sup 10/ Btu). The conclusion was made that the Auburn low-temperature reservoir could be utilized to provide hot water and space heating to the Auburn School District.

  20. The bends in the slopes of radial abundance gradients in the disks of spiral galaxies -- do they exist?

    E-Print Network [OSTI]

    L. S. Pilyugin

    2002-10-17

    Spiral galaxies with a reported bend in the slope of gradient in the oxygen abundances (O/H)_R23, derived with traditionally used R23 - method, were examined. It is shown that the artificial origin of the reported bends can be naturally explained. Two reasons that result in a false bend in the slope of (O/H)_R23 gradient are indicated. It is concluded that at the present time there is no example of a galaxy with an undisputable established bend in the slope of the oxygen abundance gradient.

  1. Noise in the processing and application of magnetic gradients Leon Foks, Kristofer Davis, and Yaoguo Li, Center for Gravity, Electrical, and Magnetics, Colorado School of Mines,

    E-Print Network [OSTI]

    Noise in the processing and application of magnetic gradients Leon Foks, Kristofer Davis SUMMARY The increased use of magnetic gradients brings about the need for reliable noise characterization to characterize noise in magnetic gradient data. We use an equivalent source technique and finite differ- ence

  2. Attachment of Cells to Islands Presenting Gradients of Adhesion Ligands Rafe T. Petty, Hung-Wing Li, Jane H. Maduram, Rustem Ismagilov, and Milan Mrksich*

    E-Print Network [OSTI]

    Ismagilov, Rustem F.

    Attachment of Cells to Islands Presenting Gradients of Adhesion Ligands Rafe T. Petty, Hung-Wing Li@uchicago.edu Mammalian and bacterial cells live in gradients. Soluble and immobilized gradients of signaling proteins guide the trafficking of cells and direct their development and maintenance.1 New methods to determine

  3. Acta Appl.Math., 106, N3, (2009), 473-499. Dynamical Systems Gradient method for solving nonlinear equations with monotone

    E-Print Network [OSTI]

    2009-01-01

    Acta Appl.Math., 106, N3, (2009), 473-499. Dynamical Systems Gradient method for solving nonlinear@math.ksu.edu 1 #12;Dynamical Systems Gradient method for solving nonlinear equations with monotone operators N. S A version of the Dynamical Systems Gradient Method for solving ill-posed nonlinear monotone operator

  4. Thermionic converter temperature controller

    DOE Patents [OSTI]

    Shaner, Benjamin J. (McMurray, PA); Wolf, Joseph H. (Pittsburgh, PA); Johnson, Robert G. R. (Trafford, PA)

    2001-04-24

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  5. Drexel University Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) Drexel University Project 31091 irradiation. The objective of this test was to assess the radiation performance of new ceramic materials for advanced reactor applications. Accordingly, irradiations of transition metal carbides and nitrides were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in static capsules inserted into the A-3 and East Flux Trap Position 5 locations of the ATR.

  6. Crowdsourcing urban air temperatures from smartphone battery?temperatures

    E-Print Network [OSTI]

    Overeem, A.

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on ...

  7. Electrical Circuit Flashover Model of Polluted Insulators under AC Voltage Based on the Arc Root Voltage Gradient Criterion

    E-Print Network [OSTI]

    Yang, Qing

    In order to study the flashover mechanism of polluted insulators under AC voltage, a new arc propagation criterion which is based on an arc root voltage gradient is proposed. This criterion can explain the variation of the ...

  8. Vehicle Technologies Office Merit Review 2015: NMR and Pulse Field Gradient Studies of SEI and Electrode Structure

    Broader source: Energy.gov [DOE]

    Presentation given by U. of Cambridge at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about NMR and pulse field gradient...

  9. Community Metabolism Along Nutrient and Salinity Gradients of the Potomac River Estuary: An Application from Continuous Monitoring Sites

    E-Print Network [OSTI]

    Boynton, Walter R.

    Community Metabolism Along Nutrient and Salinity Gradients of the Potomac River Estuary to make metabolism estimates. We used data from 14 of these locations from March through October 2007

  10. New Solutions of Half-Space Contact Problems Using Potential Theory, Surface Elasticity and Strain Gradient Elasticity 

    E-Print Network [OSTI]

    Zhou, Songsheng

    2012-02-14

    - the adhesive contact mechanics, surface elasticity and strain gradient elasticity - are employed to study the mechanical behaviors of a semi-infinite solid induced by the boundary forces. A unified treatment of axisymmetric adhesive contact problems...

  11. Solutions of Eshelby-Type Inclusion Problems and a Related Homogenization Method Based on a Simplified Strain Gradient Elasticity Theory 

    E-Print Network [OSTI]

    Ma, Hemei

    2011-08-08

    Eshelby-type inclusion problems of an infinite or a finite homogeneous isotropic elastic body containing an arbitrary-shape inclusion prescribed with an eigenstrain and an eigenstrain gradient are analytically solved. The solutions are based on a...

  12. Formation of the Galactic bulge from a two-component stellar disk: Explaining cylindrical rotation and vertical metallicity gradient

    E-Print Network [OSTI]

    Bekki, Kenji

    2011-01-01

    Recent observational studies have revealed that the Galactic bulge has cylindrical rotation and a steeper vertical metallicity gradient. We adopt two representative models for the bulge formation and thereby investigate whether the two models can explain both the observed cylindrical rotation and vertical metallicity gradient in a self-consistent manner. One is the "pure disk scenario" (PDS) in which the bulge is formed from a pure thin stellar disk through spontaneous bar instability. The other is the "two-component disk scenario" (TCDS) in which the bulge is formed from a disk composed of thin and thick disks through bar instability. Our numerical simulations show that although PDS can reproduce the cylindrical rotation, it shows a rather flatter vertical metallicity gradient that is inconsistent with observations. The derived flatter metallicity gradient is due to the vertical mixing of stars with different initial metallicities by the stellar bar. This result implies that the bulge can not be simply forme...

  13. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil

    E-Print Network [OSTI]

    2009-01-01

    of Mato Grosso, Brasil, Water Resour. Res. , 38(6), 1094,2009 Patterns of water and heat flux across a biome gradientFigueira (2004), Seasonality of water and heat fluxes over a

  14. Numerical simulations of the bending of narrow-angle-tail radio jets by ram pressure or pressure gradients

    SciTech Connect (OSTI)

    Soker, N.; Sarazin, C.L.; O'Dea, C.P.

    1988-04-01

    Three-dimensional numerical hydrodynamic simulations are used to study the bending of radio jets. The simulations are compared with observations of jets in narrow-angle-tail radio sources. Two mechanisms for the observed bending are considered: direct bending of quasi-continuous jets by ram pressure from intergalactic gas and bending by pressure gradients in the interstellar gas of the host galaxy, the pressure gradients themselves being the result of ram pressure by intergalactic gas. It is shown that the pressure gradients are much less effective in bending jets, implying that the jets have roughly 30 times lower momentum fluxes if they are bent by this mechanism. Ram-pressure bending produces jets with kidney-shaped cross sections; when observed from the side, these jets appear to have diffuse extensions on the downstream side. On the other hand, pressure-gradient bending causes the jets to be densest near their upstream side. 31 references.

  15. A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA

    E-Print Network [OSTI]

    Wu, Jianguo "Jingle"

    A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region the spatial pattern of urbanization in the Phoenix metropolitan area, Arizona, USA. Several landscape metrics

  16. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOE Patents [OSTI]

    Yu, David U. L. (1912 MacArthur St., Rancho Palos Verdes, CA 90732)

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  17. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    DOE Patents [OSTI]

    Yeung, Edward S. (Ames, IA); Chen, Guoying (Laramie, WY)

    1990-05-01

    A method and means for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived.

  18. High-temperature-measuring device

    DOE Patents [OSTI]

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  19. Philosophy 26 High Temperature Superconductivity

    E-Print Network [OSTI]

    Callender, Craig

    Philosophy 26 High Temperature Superconductivity By Ohm's Law, resistance will dim. Low temperature superconductivity was discovered in 1911 by Heike was explained by BCS theory. BCS theory explains superconductivity microscopically

  20. Overview of high gradient SRF R&D for ILC cavities at Jefferson Lab

    SciTech Connect (OSTI)

    Geng, Rongli [JLAB

    2009-11-01

    We report the progress on high gradient R&D of ILC cavities at Jefferson Lab (JLab) since the Beijing workshop. Routine 9-cell cavity electropolishing (EP) processing and RF testing has been enhanced with added surface mapping and T-mapping instrumentations. 12 new 9-cell cavities (10 of them are baseline fine-grain TESLA-shape cavities: 5 built by ACCEL/Research Instruments, 4 by AES and 1 by JLab; 2 of them are alternative cavities: 1 fine-grain ICHIRO-shape cavity built by KEK/Japan industry and 1 large-grain TESLA-shape cavity built by JLab) are EP processed and tested. 76 EP cycles are accumulated, corresponding to more than 200 hours of active EP time. Field emission (FE) and quench behaviors of electropolished 9-cell cavities are studied. EP process continues to be optimized, resulting in advanced procedures and hence improved cavity performance. Several 9-cell cavities reached 35 MV/m after the first light EP processing. FE-free performance has been demonstrated in 9-cell cavities in 35-40 MV/m range. 1-cell cavity studies explore new techniques for defect removal as well as advanced integrated cavity processing. Surface studies of niobium samples electropolished together with real cavities provide new insight into the nature of field emitters. Close cooperation with the US cavity fabrication industry has been undertaking with the successful achievement of 41 MV/m for the first time in a 9-cell ILC cavity built by AES. As the size of the data set grows, it is now possible to construct gradient yield curves, from which one can see that significant progress has been made in raising the high gradient yield.

  1. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  2. Double active shielded magnetic field gradient design with minimum inductance method 

    E-Print Network [OSTI]

    Wang, Xu

    1992-01-01

    ratio, m; may have 2i + 1 values, i, i ? 1, . . . . . . , ? i. For the hydrogen nucleus, the spin is &i, and p is 42. 58 MHz/Tesla. The Hamiltonian for this system in the lab frame can be written as H = H, yg+ H;?u (1. 1. 2) where = p' H, fy ? + V... As has been discussed before, some MRI techniques require fast switching of the gradient. However, in many MRI instruments today, the main static magnetic fields (around the order of 1 Tesla) are provided by superconducting inagnets. They have...

  3. Mitigating illumination gradients in a SAR image based on the image data and antenna beam pattern

    DOE Patents [OSTI]

    Doerry, Armin W.

    2013-04-30

    Illumination gradients in a synthetic aperture radar (SAR) image of a target can be mitigated by determining a correction for pixel values associated with the SAR image. This correction is determined based on information indicative of a beam pattern used by a SAR antenna apparatus to illuminate the target, and also based on the pixel values associated with the SAR image. The correction is applied to the pixel values associated with the SAR image to produce corrected pixel values that define a corrected SAR image.

  4. Renormalization constants of the lattice energy momentum tensor using the gradient flow

    E-Print Network [OSTI]

    Francesco Capponi; Luigi Del Debbio; Agostino Patella; Antonio Rago

    2015-12-14

    We employ a new strategy for a non perturbative determination of the renormalized energy momentum tensor. The strategy is based on the definition of suitable lattice Ward identities probed by observables computed along the gradient flow. The new set of identities exhibits many interesting qualities, arising from the UV finiteness of flowed composite operators. In this paper we show how this method can be used to non perturbatively renormalize the energy momentum tensor for a SU(3) Yang-Mills theory, and report our numerical results.

  5. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOE Patents [OSTI]

    Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

    1996-11-12

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

  6. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOE Patents [OSTI]

    Balachandran, Uthamalingam (Hinsdale, IL); Dusek, Joseph T. (Lombard, IL); Kleefisch, Mark S. (Napersville, IL); Kobylinski, Thadeus P. (Lisle, IL)

    1996-01-01

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

  7. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    DOE Patents [OSTI]

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  8. Boundary Entropy of One-Dimensional Quantum Systems at Low Temperature Daniel Friedan1,2,* and Anatoly Konechny3,

    E-Print Network [OSTI]

    Gustafsson, Torgny

    is a small temperature that sets the renormalization scale (or, equivalently, a small energy or inverse time with a boundary, lnZ lnTr expÿ#12;H takes the universal form [1] c=6L=#12; lng, where H is the Hamiltonian, #12 to the constant lng. We prove here a gradient formula gab#12;b ÿ@s=@a; (3) where the a form a complete set

  9. Toluene pyrolysis studies and high temperature reactions of propargyl chloride

    SciTech Connect (OSTI)

    Kern, R.D.; Chen, H.; Qin, Z. [Univ. of New Orleans, LA (United States)

    1993-12-01

    The main focus of this program is to investigate the thermal decompositions of fuels that play an important role in the pre-particle soot formation process. It has been demonstrated that the condition of maximum soot yield is established when the reaction conditions of temperature and pressure are sufficient to establish a radical pool to support the production of polyaromatic hydrocarbon species and the subsequent formation of soot particles. However, elevated temperatures result in lower soot yields which are attributed to thermolyses of aromatic ring structures and result in the bell-shaped dependence of soot yield on temperature. The authors have selected several acyclic hydrocarbons to evaluate the chemical thermodynamic and kinetic effects attendant to benzene formation. To assess the thermal stability of the aromatic ring, the authors have studied the pyrolyses of benzene, toluene, ethylbenzene, chlorobenzene and pyridine. Time-of-flight mass spectrometry (TOF) is employed to analyze the reaction zone behind reflected shock waves. Reaction time histories of the reactants, products, and intermediates are constructed and mechanisms are formulated to model the experimental data. The TOF work is often performed with use of laser schlieren densitometry (LS) to measure density gradients resulting from the heats of various reactions involved in a particular pyrolytic system. The two techniques, TOF and LS, provide independent and complementary information about ring formation and ring rupture reactions.

  10. Role of ion temperature on scrape-off layer plasma turbulence

    SciTech Connect (OSTI)

    Bisai, N.; Kaw, P. K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2013-04-15

    Turbulence in Scrape-off layer (SOL) of tokamak plasma has been studied numerically using interchange modes with the help of electron continuity, quasineutrality, and ion energy equations. Electron temperature is assumed uniform. We have studied dynamics of seeded plasma blob and plasma turbulence to identify the role of ion temperature and its gradient. The ion temperature elongates the blob poloidally and reduces its radial velocity. Initial dipole nature of the plasma blob potential breaks and generates few more dipoles during its propagation in the SOL. Plasma turbulence simulation shows poloidally elongated density and ion temperature structures that are similar to the seeded blob simulation studies. Fluctuations of the density and ion temperature have been presented as function of scale lengths of the density and ion temperature. Reduction of the SOL width and increase of radial electric field have been measured in the presence of the ion temperature. Particle and energy transports have been also presented as the function of the density and ion temperature scale lengths.

  11. Quantum Chemistry at Finite Temperature

    E-Print Network [OSTI]

    Liqiang Wei

    2006-05-23

    In this article, we present emerging fields of quantum chemistry at finite temperature. We discuss its recent developments on both experimental and theoretical fronts. First, we describe several experimental investigations related to the temperature effects on the structures, electronic spectra, or bond rupture forces for molecules. These include the analysis of the temperature impact on the pathway shifts for the protein unfolding by atomic force microscopy (AFM), the temperature dependence of the absorption spectra of electrons in solvents, and the temperature influence over the intermolecular forces measured by the AFM. On the theoretical side, we review advancements made by the author in the coming fields of quantum chemistry at finite temperature. Starting from the Bloch equation, we have derived the sets of hierarchy equations for the reduced density operators in both canonical and grand canonical ensembles. They provide a law according to which the reduced density operators vary in temperature for the identical and interacting many-body systems. By taking the independent particle approximation, we have solved the equations in the case of a grand canonical ensemble, and obtained an energy eigenequation for the molecular orbitals at finite temperature. The explicit expression for the temperature-dependent Fock operator is also given. They form a mathematical foundation for the examination of the molecular electronic structures and their interplay with finite temperature. Moreover, we clarify the physics concerning the temperature effects on the electronic structures or processes of the molecules, which is crucial for both theoretical understanding and computation. Finally, ....

  12. Performance of conjugate gradient-like algorithms in transient two-phase subchannel analysis

    SciTech Connect (OSTI)

    Turner, J.A. (Los Alamos National Lab., NM (USA)); Doster, M.J. (North Carolina State Univ., Raleigh, NC (USA). Dept. of Nuclear Engineering)

    1991-01-01

    A transient, drift-flux subchannel analysis code (SWIRL) has been created for the development and evaluation of algorithms for the solution of weakly three-dimensional fluid flow problems. Spatial discretization on a staggered grid, semi-implicit temporal discretization, and algebraic reduction of the conservation equations of mass, energy, and momentum result in nonsymmetric block-tridiagonal linear systems of equations that must be solved for the pressure distribution at each time step of a transient. The solution of these systems of equations is the most time-consuming portion of the code, and direct, stationary iterative, and preconditioned conjugate gradient (CG)-like methods have been investigated both for a simple approach to steady-state and for a severe transient. The best direct algorithm appears to be an efficient implementation of block elimination, and iterative methods are compared to this algorithm for accuracy, robustness, and efficiency. Results presented here indicate that preconditioned CG-like methods such as Sonneveld's conjugate gradients squared are superior to an efficient direct method. 44 refs., 13 figs.

  13. HIGH-GRADIENT, HIGH-TRANSFORMER-RATIO, DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-04-12

    The Phase I work reported here responds to DoE'ss stated need "...to develop improved accelerator designs that can provide very high gradient (>200 MV/m for electrons...) acceleration of intense bunches of particles." Omega-P'�s approach to this goal is through use of a ramped train of annular electron bunches to drive a coaxial dielectric wakefield accelerator (CDWA) structure. This approach is a direct extension of the CDWA concept from acceleration in wake fields caused by a single drive bunch, to the more efficient acceleration that we predict can be realized from a tailored (or ramped) train of several drive bunches. This is possible because of a much higher transformer ratio for the latter. The CDWA structure itself has a number of unique features, including: a high accelerating gradient G, potentially with G > 1 GeV/m; continuous energy coupling from drive to test bunches without transfer structures; inherent transverse focusing forces for particles in the accelerated bunch; highly stable motion of high charge annular drive bunches; acceptable alignment tolerances for a multi-section system. What is new in the present approach is that the coaxial dielectric structure is now to be energized by-not one-�but by a short train of ramped annular-shaped drive bunches moving in the outer coaxial channel of the structure. We have shown that this allows acceleration of an electron bunch traveling along the axis in the inner channel with a markedly higher transformer ratio T than for a single drive bunch. As described in this report, the structure will be a GHz-scale prototype with cm-scale transverse dimensions that is expected to confirm principles that can be applied to the design of a future THz-scale high gradient (> 500 MV/m) accelerator with mm-scale transverse dimensions. We show here a new means to significantly increase the transformer ratio T of the device, and thereby to significantly improve its suitability as a flexible and effective component in a future high energy, high gradient accelerator facility. We predict that the T of a high gradient CDWA can be increased by a substantial factor; this enhancement is dramatically greater than what has been demonstrated heretofore. This large enhancement in T that we predict arises from using a train of three or four drive bunches in which the spacing of the bunches and their respective charges are selected according to a simple principle that requires each bunch lose energy to the wakefields at the same rate, so as not to sacrifice drive beam efficiency�¢����as would be the case if one bunch exhausted its available energy while others had not. It is anticipated that results from the study proposed here can have a direct impact on design of the dielectric accelerator in a TeV-scale collider concept, and in the accelerator for an x-ray FEL.

  14. High temperature interfacial superconductivity

    DOE Patents [OSTI]

    Bozovic, Ivan (Mount Sinai, NY); Logvenov, Gennady (Port Jefferson Station, NY); Gozar, Adrian Mihai (Port Jefferson, NY)

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  15. DESIGN AND FABRICATION OF 33 GHZ HIGH-GRADIENT ACCELERATOR SECTIONS

    E-Print Network [OSTI]

    Hopkins, D.B.

    2008-01-01

    void formation and outgassing at bakeout temperatures asa 650°C bakeout. Some outgassing studies were performed.produced significant outgassing of carbonaceous species. The

  16. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect (OSTI)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  17. Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for Room-temperature Nuclear Radiation Detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander; Okwechime, Ifechukwude O.; Gray, Justin; Hales, Zaveon M.; Hossain, Anwar; Camarda, Guiseppe S.; Bolotnikov, Aleksey E.; James, Ralph B.

    2015-02-11

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an ordermore »of 102. During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10-5 mbar, we observed the diffusion of Te from the sample, causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 ?m/s. During the temperature-gradient annealing of CZT in a vacuum of 10-5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on certain conditions.« less

  18. Quantum Chaos at Finite Temperature

    E-Print Network [OSTI]

    L. A. Caron; H. Jirari; H. Kröger; X. Q. Luo; G. Melkonyan; K. J. M. Moriarty

    2001-06-23

    We use the quantum action to study quantum chaos at finite temperature. We present a numerical study of a classically chaotic 2-D Hamiltonian system - harmonic oscillators with anharmonic coupling. We construct the quantum action non-perturbatively and find temperature dependent quantum corrections in the action parameters. We compare Poincar\\'{e} sections of the quantum action at finite temperature with those of the classical action.

  19. Comparison of Two Models for Identifying Low Gradient, Unconfined Streams and Valley Bottom Extent

    E-Print Network [OSTI]

    In Support of Stream Temperature Modeling Associated with Fire Effects USDA Forest Service, Rocky Mountain, bedrock controlled channels. In order to test the influence of valley confinement on stream temperature, we developed an in-house algorithm to delineate wide, flat valley bottoms using DEM data as input. We

  20. RECHARGEABLE HIGH-TEMPERATURE BATTERIES

    E-Print Network [OSTI]

    Cairns, Elton J.

    2014-01-01

    F. Eshman, High-Performance Batteries for Electric-VehicleS. Sudar, High Performance Batteries for Electric-VehicleHIGH-TEMPERATURE BATTERIES Elton J. Cairns January 1981 TWO-