National Library of Energy BETA

Sample records for north slope production

  1. ARM North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sites on the North Slope of Alaska (NSA), to provide data about cloud and radiative ... More Information North Slope of Alaska Website NSA Fact Sheet Visit the North Slope of ...

  2. STUDY OF TRANSPORTATION OF GTL PRODUCTS FROM ALASKAN NORTH SLOPE (ANS) TO MARKETS

    SciTech Connect (OSTI)

    Godwin A. Chukwu, Ph.D., P.E.

    2002-09-01

    The Alaskan North Slope is one of the largest hydrocarbon reserves in the US where Gas-to-Liquids (GTL) technology can be successfully implemented. The proven and recoverable reserves of conventional natural gas in the developed and undeveloped fields in the Alaskan North Slope (ANS) are estimated to be 38 trillion standard cubic feet (TCF) and estimates of additional undiscovered gas reserves in the Arctic field range from 64 TCF to 142 TCF. Transportation of the natural gas from the remote ANS is the key issue in effective utilization of this valuable and abundance resource. The throughput of oil through the Trans Alaska Pipeline System (TAPS) has been on decline and is expected to continue to decline in future. It is projected that by the year 2015, ANS crude oil production will decline to such a level that there will be a critical need for pumping additional liquid from GTL process to provide an adequate volume for economic operation of TAPS. The pumping of GTL products through TAPS will significantly increase its economic life. Transporting GTL products from the North Slope of Alaska down to the Marine terminal at Valdez is no doubt the great challenge facing the Gas to Liquids options of utilizing the abundant natural gas resource of the North Slope. The primary purpose of this study was to evaluate and assess the economic feasibility of transporting GTL products through the TAPS. Material testing program for GTL and GTL/Crude oil blends was designed and implemented for measurement of physical properties of GTL products. The measurement and evaluation of the properties of these materials were necessary so as to access the feasibility of transporting such materials through TAPS under cold arctic conditions. Results of the tests indicated a trend of increasing yield strength with increasing wax content. GTL samples exhibited high gel strengths at temperatures as high as 20 F, which makes it difficult for cold restart following winter shutdowns. Simplified

  3. TRANSPORTATION ISSUES IN THE DELIVERY OF GTL PRODUCTS FROM ALASKAN NORTH SLOPE TO MARKET

    SciTech Connect (OSTI)

    Godwin Chukwu

    2004-01-01

    The Alaskan North Slope (ANS) is one of the largest hydrocarbon reserves in the United States where Gas-to-Liquids (GTL) technology can be successfully implemented. The proven and recoverable reserves of conventional natural gas in the developed and undeveloped fields in the Alaskan North Slope (ANS) are estimated to be 38 trillion standard cubic feet (TCF) and estimates of additional undiscovered gas reserves in the Arctic field range from 64 TCF to 142 TCF. Because the domestic gas market in the continental United States is located thousands of miles from the ANS, transportation of the natural gas from the remote ANS to the market is the key issue in effective utilization of this valuable and abundant resource. The focus of this project is to study the operational challenges involved in transporting the gas in converted liquid (GTL) form through the existing Trans Alaska Pipeline System (TAPS). A three-year, comprehensive research program was undertaken by the Petroleum Development Laboratory, University of Alaska Fairbanks, under cooperative agreement No. DE-FC26-98FT40016 to study the feasibility of transporting GTL products through TAPS. Cold restart of TAPS following an extended winter shutdown and solids deposition in the pipeline were identified as the main transportation issues in moving GTL products through the pipeline. The scope of work in the current project (Cooperative Agreement No. DE-FC26-01NT41248) included preparation of fluid samples for the experiments to be conducted to augment the comprehensive research program.

  4. North Slope (Wahluke Slope) expedited response action cleanup plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  5. Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils

    SciTech Connect (OSTI)

    Tao Zhu; Jack A. Walker; J. Liang

    2008-12-31

    Due to increasing oil demand, oil companies are moving into arctic environments and deep-water areas for oil production. In these regions of lower temperatures, wax deposits begin to form when the temperature in the wellbore falls below wax appearance temperature (WAT). This condition leads to reduced production rates and larger pressure drops. Wax problems in production wells are very costly due to production down time for removal of wax. Therefore, it is necessary to develop a solution to wax deposition. In order to develop a solution to wax deposition, it is essential to characterize the crude oil and study phase behavior properties. The main objective of this project was to characterize Alaskan North Slope crude oil and study the phase behavior, which was further used to develop a dynamic wax deposition model. This report summarizes the results of the various experimental studies. The subtasks completed during this study include measurement of density, molecular weight, viscosity, pour point, wax appearance temperature, wax content, rate of wax deposition using cold finger, compositional characterization of crude oil and wax obtained from wax content, gas-oil ratio, and phase behavior experiments including constant composition expansion and differential liberation. Also, included in this report is the development of a thermodynamic model to predict wax precipitation. From the experimental study of wax appearance temperature, it was found that wax can start to precipitate at temperatures as high as 40.6 C. The WAT obtained from cross-polar microscopy and viscometry was compared, and it was discovered that WAT from viscometry is overestimated. From the pour point experiment it was found that crude oil can cease to flow at a temperature of 12 C. From the experimental results of wax content, it is evident that the wax content in Alaskan North Slope crude oil can be as high as 28.57%. The highest gas-oil ratio for a live oil sample was observed to be 619.26 SCF

  6. Gas Production From a Cold, Stratigraphically Bounded Hydrate Deposit at the Mount Elbert Site, North Slope, Alaska

    SciTech Connect (OSTI)

    Moridis, G.J.; Silpngarmlert, S.; Reagan, M. T.; Collett, T.S.; Zhang, K.

    2009-09-01

    As part of an effort to identify suitable targets for a planned long-term field test, we investigate by means of numerical simulation the gas production potential from unit D, a stratigraphically bounded (Class 3) permafrost-associated hydrate occurrence penetrated in the ount Elbert well on North Slope, Alaska. This shallow, low-pressure deposit has high porosities, high intrinsic permeabilities and high hydrate saturations. It has a low temperature because of its proximity to the overlying permafrost. The simulation results indicate that vertical ells operating at a constant bottomhole pressure would produce at very low rates for a very long period. Horizontal wells increase gas production by almost two orders of magnitude, but production remains low. Sensitivity analysis indicates that the initial deposit temperature is y the far the most important factor determining production performance (and the most effective criterion for target selection) because it controls the sensible heat available to fuel dissociation.

  7. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    NPRA Colville River Area ANWR 1002 Area (No 2001 Reserves) North Slope Regional NPRA Barrow Area NPRA ANWR NPRA Wells OIL GAS , INJECTOR 2001 Liquid Reserve Class No 2001...

  8. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    NPRA Colville River Area ANWR 1002 Area (No 2001 Reserves) North Slope Regional NPRA Barrow Area NPRA ANWR NPRA 2001 BOE Reserve Classes 1,000.1 - 10,000 MBOE 10,000.1 - 100,000...

  9. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    NPRA Colville River Area ANWR 1002 Area (No 2001 Reserves) North Slope Regional NPRA Barrow Area NPRA ANWR NPRA Gas Reserve Class 1,000.1 to 10,000 MMCF 10,000.1 to 100,000 MMCF...

  10. Data from Innovative Methane Hydrate Test on Alaska's North Slope...

    Office of Environmental Management (EM)

    Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on NETL Website Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on ...

  11. North Slope Borough Power & Light | Open Energy Information

    Open Energy Info (EERE)

    Borough Power & Light Jump to: navigation, search Name: North Slope Borough Power & Light Place: Alaska Phone Number: (907) 852-0489 Website: www.north-slope.orgdepartment Outage...

  12. Atmospheric Radiation Measurement (ARM) Data from the North Slope...

    Office of Scientific and Technical Information (OSTI)

    North Slope Alaska (NSA) Site Title: Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site You are accessing a document from the Department of ...

  13. Atmospheric Radiation Measurement (ARM) Data from the North Slope...

    Office of Scientific and Technical Information (OSTI)

    North Slope Alaska (NSA) Site Title: Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site The Atmospheric Radiation Measurement (ARM) Program is the ...

  14. Assessment of primary production and optical variability in shelf and slope waters near Cape Hatteras, North Carolina. Final project report

    SciTech Connect (OSTI)

    Redalje, Donald G.; Lohrenz, Stevern E.

    2001-02-12

    In this project we determined primary production and optical variability in the shelf and slope waters off of Cape Hatteras, N.C. These processes were addressed in conjunction with other Ocean Margins Program investigators, during the Spring Transition period and during Summer. We found that there were significant differences in measured parameters between Spring and Summer, enabling us to develop seasonally specific carbon production and ecosystem models as well as seasonal and regional algorithm improvements for use in remote sensing applications.

  15. ARM - Lesson Plans: North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Slope of Alaska Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: North Slope of Alaska Adapting to Survive (PDF, 12.4K) Arctic Microclimates (PDF, 34.3K) Also available in a PowerPoint Version, (PPT, 80K) Arctic Microclimate Worksheet (PDF, 19.6K) Bringing Climate Change

  16. north-slope-resources | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Slope Resources photo of TAPS Alaska North Slope Resources Additional oil production from known resources as well as new discoveries are essential for keeping the Trans Alaska Pipeline System (TAPS) operating both technically and economically. The lower limit of effective operation for TAPS is in the range of 200,000 barrels per day. Current production rates are about 700,000 barrels per day down from a maximum of over 2 million barrels per day in 1988. The economic limit of TAPS will

  17. Evaluation of a deposit in the vicinity of the PBU L-106 Site, North Slope, Alaska, for a potential long-term test of gas production from hydrates

    SciTech Connect (OSTI)

    Moridis, G.J.; Reagan, M.T.; Boyle, K.L.; Zhang, K.

    2010-05-01

    As part of the effort to investigate the technical feasibility of gas production from hydrate deposits, a long-term field test (lasting 18-24 months) is under consideration in a project led by the U.S. Department of Energy. We evaluate a candidate deposit involving the C-Unit in the vicinity of the PBU-L106 site in North Slope, Alaska. This deposit is stratigraphically bounded by impermeable shale top and bottom boundaries (Class 3), and is characterized by high intrinsic permeabilities, high porosity, high hydrate saturation, and a hydrostatic pressure distribution. The C-unit deposit is composed of two hydrate-bearing strata separated by a 30-ft-thick shale interlayer, and its temperatrure across its boundaries ranges between 5 and 6.5 C. We investigate by means of numerical simulation involving very fine grids the production potential of these two deposits using both vertical and horizontal wells. We also explore the sensitivity of production to key parameters such as the hydrate saturation, the formation permeability, and the permeability of the bounding shale layers. Finally, we compare the production performance of the C-Unit at the PBU-L106 site to that of the D-Unit accumulation at the Mount Elbert site, a thinner, single-layer Class 3 deposit on the North Slope of Alaska that is shallower, less-pressurized and colder (2.3-2.6 C). The results indicate that production from horizontal wells may be orders of magnitude larger than that from vertical ones. Additionally, production increases with the formation permeability, and with a decreasing permeability of the boundaries. The effect of the hydrate saturation on production is complex and depends on the time frame of production. Because of higher production, the PBU-L106 deposit appears to have an advantage as a candidate for the long-term test.

  18. North Slope Decision Support for Water Resource Planning and Management

    SciTech Connect (OSTI)

    Schnabel, William; Brumbelow, Kelly

    2013-03-31

    The objective of this project was to enhance the water resource decision-making process with respect to oil and gas exploration/production activities on Alaska’s North Slope. To this end, a web-based software tool was developed to allow stakeholders to assemble, evaluate, and communicate relevant information between and amongst themselves. The software, termed North Slope Decision Support System (NSDSS), is a visually-referenced database that provides a platform for running complex natural system, planning, and optimization models. The NSDSS design was based upon community input garnered during a series of stakeholder workshops, and the end product software is freely available to all stakeholders via the project website. The tool now resides on servers hosted by the UAF Water and Environmental Research Center, and will remain accessible and free-of-charge for all interested stakeholders. The development of the tool fostered new advances in the area of data evaluation and decision support technologies, and the finished product is envisioned to enhance water resource planning activities on Alaska’s North Slope.

  19. ARM Airborne Carbon Measurement on the North Slope

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Airborne Carbon Measurement on the North Slope During the summer of 2015, a research campaign gave scientists insight into trends and variability of trace gases in the atmosphere ...

  20. ARM Climate Research Facilities on the North Slope of Alaska...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Research Facilities on the North Slope of Alaska: Field Campaigns in 2007, New Facilities, and the International Polar Year Radiative Heating in Underexplored Bands...

  1. DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2003-07-01

    North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we have developed streamline generation and convection subroutines for miscible gas injection. The WAG injection algorithms are being developed. We formulated a four-phase relative permeability model based on two-phase relative permeabilities. The new relative permeability formulations are being incorporated into the simulator. Wettabilities and relative permeabilities are being measured. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, relative permeability studies with cores, incorporation of complex well-architecture.

  2. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    SciTech Connect (OSTI)

    Duncan, Kathleen E.; Gieg, Lisa M.; Parisi, Victoria A.; Tanner, Ralph S.; Green Tringe, Susannah; Bristow, Jim; Suflita, Joseph M.

    2009-09-16

    Corrosion of metallic oilfield pipelines by microorganisms is a costly but poorly understood phenomenon, with standard treatment methods targeting mesophilic sulfatereducing bacteria. In assessing biocorrosion potential at an Alaskan North Slope oil field, we identified thermophilic hydrogen-using methanogens, syntrophic bacteria, peptideand amino acid-fermenting bacteria, iron reducers, sulfur/thiosulfate-reducing bacteria and sulfate-reducing archaea. These microbes can stimulate metal corrosion through production of organic acids, CO2, sulfur species, and via hydrogen oxidation and iron reduction, implicating many more types of organisms than are currently targeted. Micromolar quantities of putative anaerobic metabolites of C1-C4 n-alkanes in pipeline fluids were detected, implying that these low molecular weight hydrocarbons, routinely injected into reservoirs for oil recovery purposes, are biodegraded and provide biocorrosive microbial communities with an important source of nutrients.

  3. March 13, 1968: Oil discovered on Alaska's North Slope | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968 The Atlantic Richfield Company and Humble Oil and Refining Company announce the discovery of oil on the North Slope of Alaska at Prudhoe Bay

  4. Natural gas hydrates on the North Slope of Alaska

    SciTech Connect (OSTI)

    Collett, T.S.

    1991-01-01

    Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances often have been regarded as a potential (unconventional) source of natural gas. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic including Siberia, the Mackenzie River Delta, and the North Slope of Alaska. On the North Slope, the methane-hydrate stability zone is areally extensive beneath most of the coastal plain province and has thicknesses as great as 1000 meters in the Prudhoe Bay area. Gas hydrates have been identified in 50 exploratory and production wells using well-log responses calibrated to the response of an interval in one well where gas hydrates were recovered in a core by ARCO Alaska and EXXON. Most of these gas hydrates occur in six laterally continuous Upper Cretaceous and lower Tertiary sandstone and conglomerate units; all these gas hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River Oil Field and the western part of the Prudhoe Bay Oil Field. The volume of gas within these gas hydrates is estimated to be about 1.0 {times} 10{sup 12} to 1.2 {times} 10{sup 12} cubic meters (37 to 44 trillion cubic feet), or about twice the volume of conventional gas in the Prudhoe Bay Field. Geochemical analyses of well samples suggest that the identified hydrates probably contain a mixture of deep-source thermogenic gas and shallow microbial gas that was either directly converted to gas hydrate or first concentrated in existing traps and later converted to gas hydrate. The thermogenic gas probably migrated from deeper reservoirs along the same faults thought to be migration pathways for the large volumes of shallow, heavy oil that occur in this area. 51 refs., 11 figs., 3 tabs.

  5. Methane Hydrate Production Technologies to be Tested on Alaska's North

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slope | Department of Energy Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will

  6. Economics of Alaska North Slope gas utilization options

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

    1996-08-01

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

  7. ARMs Climate Change Educational Outreach on the North Slope...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the North Slope of Alaska (NSA), we focus on developing culturally responsive ... ARM's work on the NSA also includes curriculum development, teacher enrichment, teacher ...

  8. File:EIA-AK-NorthSlope-gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    applicationpdf) Description Alaskan North Slope By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  9. Regional long-term production modeling from a single well test, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    SciTech Connect (OSTI)

    Anderson, Brian J.; Kurihara, Masanori; White, Mark D.; Moridis, George J.; Wilson, Scott J.; Pooladi-Darvish, Mehran; Gaddipati, Manohar; Masuda, Yoshihiro; Collett, Timothy S.; Hunter, Robert B.; Narita, Hideo; Rose, Kelly; Boswell, Ray

    2011-02-01

    Following the results from the open-hole formation pressure response test in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) using Schlumberger's Modular Dynamics Formation Tester (MDT) wireline tool, the International Methane Hydrate Reservoir Simulator Code Comparison project performed long-term reservoir simulations on three different model reservoirs. These descriptions were based on 1) the Mount Elbert gas hydrate accumulation as delineated by an extensive history-matching exercise, 2) an estimation of the hydrate accumulation near the Prudhoe Bay L-pad, and 3) a reservoir that would be down-dip of the Prudhoe Bay L-pad and therefore warmer and deeper. All of these simulations were based, in part, on the results of the MDT results from the Mount Elbert Well. The comparison group's consensus value for the initial permeability of the hydrate-filled reservoir (k = 0.12 mD) and the permeability model based on the MDT history match were used as the basis for subsequent simulations on the three regional scenarios. The simulation results of the five different simulation codes, CMG STARS, HydrateResSim, MH-21 HYDRES, STOMP-HYD, and TOUGH+HYDRATE exhibit good qualitative agreement and the variability of potential methane production rates from gas hydrate reservoirs is illustrated. As expected, the predicted methane production rate increased with increasing in situ reservoir temperature; however, a significant delay in the onset of rapid hydrate dissociation is observed for a cold, homogeneous reservoir and it is found to be repeatable. The inclusion of reservoir heterogeneity in the description of this cold reservoir is shown to eliminate this delayed production. Overall, simulations utilized detailed information collected across the Mount Elbert reservoir either obtained or determined from geophysical well logs, including thickness (37 ft), porosity (35%), hydrate saturation (65%), intrinsic permeability (1000 mD), pore water

  10. Exporting Alaskan North Slope crude oil: Benefits and costs

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Department of Energy study examines the effects of lifting the current prohibitions against the export of Alaskan North Slope (ANS) crude. The study concludes that permitting exports would benefit the US economy. First, lifting the ban would expand the markets in which ANS oil can be sold, thereby increasing its value. ANS oil producers, the States of California and Alaska, and some of their local governments all would benefit from increased revenues. Permitting exports also would generate new economic activity and employment in California and Alaska. The study concludes that these economic benefits would be achieved without increasing gasoline prices (either in California or in the nation as a whole). Lifting the export ban could have important implications for US maritime interests. The Merchant Marine Act of 1970 (known as the Jones Act) requires all inter-coastal shipments to be carried on vessels that are US-owned, US-crewed, and US-built. By limiting the shipment of ANS crude to US ports only, the export ban creates jobs for the seafarers and the builders of Jones Act vessels. Because the Jones Act does not apply to exports, however, lifting the ban without also changing US maritime law would jeopardize the jobs associated with the current fleet of Jones Act tankers. Therefore the report analyzes selected economic impacts of several maritime policy alternatives, including: Maintaining current law, which allows foreign tankers to carry oil where export is allowed; requiring exports of ANS crude to be carried on Jones Act vessels; and requiring exports of ANS crude to be carried on vessels that are US-owned and US-crewed, but not necessarily US-built. Under each of these options, lifting the export ban would generate economic benefits.

  11. Benthic study of the continental slope off Cape Hatteras, North Carolina. Volume 3. Appendices

    SciTech Connect (OSTI)

    Diaz, R.J.; Blake, J.A.; Lohse, D.P.

    1993-03-01

    The Point is an area that supports a most productive pelagic fishery, including tuna, swordfish, marlin, and more. The objective of the study is to analyze video tapes from near the Point, in order to provide data on epibenthic, megafaunal invertebrates including species composition, relative abundances, and large scale (1 km) distribution. The Point is not a defined spot on a chart. Although fishermen do use the steep shelf break for location, they generally look for the west wall of the Gulf Stream. The Point and the oil lease site coincidentally occur where the Gulf Stream parts the continental slope, just north of the eastern-most tip of Cape Hatteras.

  12. FACT SHEET U.S. Department of Energy North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Slope of Alaska Because the environment in the Arctic is changing rapidly, the North Slope of Alaska has become a focal point for atmospheric and ecological research. Aerosols and clouds have strong impacts on the Arctic surface energy balance through absorption and reflection of shortwave and longwave radiation, and in turn, changes in the surface conditions, such as melting of sea ice, snow, or permafrost, can feed back to atmospheric structure and circulation, water vapor, gas and

  13. Session Papers North Slope of Alaska and Adjacent Arctic Ocean Cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Session Papers North Slope of Alaska and Adjacent Arctic Ocean Cloud and Radiation Testbed: Science and Siting Strategies B. D. Zak Sandia National Laboratories Albuquerque, New Mexico K. Stamnes University of Alaska Fairbanks, Alaska Introduction This paper serves as a summary of the current thinking regarding the development of the Atmospheric Radiation Measurement (ARM) Program's North Slope of Alaska and adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) site. Ellingson et

  14. Alaska North Slope Tundra Travel Model and Validation Study

    SciTech Connect (OSTI)

    Harry R. Bader; Jacynthe Guimond

    2006-03-01

    The Alaska Department of Natural Resources (DNR), Division of Mining, Land, and Water manages cross-country travel, typically associated with hydrocarbon exploration and development, on Alaska's arctic North Slope. This project is intended to provide natural resource managers with objective, quantitative data to assist decision making regarding opening of the tundra to cross-country travel. DNR designed standardized, controlled field trials, with baseline data, to investigate the relationships present between winter exploration vehicle treatments and the independent variables of ground hardness, snow depth, and snow slab thickness, as they relate to the dependent variables of active layer depth, soil moisture, and photosynthetically active radiation (a proxy for plant disturbance). Changes in the dependent variables were used as indicators of tundra disturbance. Two main tundra community types were studied: Coastal Plain (wet graminoid/moist sedge shrub) and Foothills (tussock). DNR constructed four models to address physical soil properties: two models for each main community type, one predicting change in depth of active layer and a second predicting change in soil moisture. DNR also investigated the limited potential management utility in using soil temperature, the amount of photosynthetically active radiation (PAR) absorbed by plants, and changes in microphotography as tools for the identification of disturbance in the field. DNR operated under the assumption that changes in the abiotic factors of active layer depth and soil moisture drive alteration in tundra vegetation structure and composition. Statistically significant differences in depth of active layer, soil moisture at a 15 cm depth, soil temperature at a 15 cm depth, and the absorption of photosynthetically active radiation were found among treatment cells and among treatment types. The models were unable to thoroughly investigate the interacting role between snow depth and disturbance due to a lack

  15. Alaska North Slope National Energy Strategy initiative: Analysis of five undeveloped fields

    SciTech Connect (OSTI)

    Thomas, C.P.; Allaire, R.B.; Doughty, T.C.; Faulder, D.D.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1993-05-01

    The US Department of Energy was directed in the National Energy Strategy to establish a federal interagency task force to identify specific technical and regulatory barriers to the development of five undeveloped North Slope Alaska fields and make recommendations for their resolution. The five fields are West Sak, Point Thomson, Gwydyr Bay, Seal Island/Northstar, and Sandpiper Island. Analysis of environmental, regulatory, technical, and economic information, and data relating to the development potential of the five fields leads to the following conclusions: Development of the five fields would result in an estimated total of 1,055 million barrels of oil and 4.4 trillion cubic feet of natural gas and total investment of $9.4 billion in 1992 dollars. It appears that all five of the fields will remain economically marginal developments unless there is significant improvement in world oil prices. Costs of regulatory compliance and mitigation, and costs to reduce or maintain environmental impacts at acceptable levels influence project investments and operating costs and must be considered in the development decision making process. The development of three of the fields (West Sak, Point Thomson, and Gwydyr Bay) that are marginally feasible would have an impact on North Slope production over the period from about 2000 to 2014 but cannot replace the decline in Prudhoe Bay Unit production or maintain the operation of the Trans-Alaska Pipeline System (TAPS) beyond about 2014 with the assumption that the TAPS will shut down when production declines to the range of 400 to 200 thousand barrels of oil/day. Recoverable reserves left in the ground in the currently producing fields and soon to be developed fields, Niakuk and Point McIntyre, would range from 1 billion to 500 million barrels of oil corresponding to the time period of 2008 to 2014 based on the TAPS shutdown assumption.

  16. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Science and Implementation Plan

    SciTech Connect (OSTI)

    Biraud, S

    2015-05-01

    Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO₂ and/or CH₄) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols, and cloud properties at the North Slope of Alaska are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections.

  17. Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

  18. Benthic study of the continental slope off Cape Hatteras, North Carolina. Volume 2. Final report

    SciTech Connect (OSTI)

    Diaz, R.J.; Blake, J.A.; Lohse, D.P.

    1993-03-01

    A number of blocks off Cape Hatteras have been leased by Mobil Oil, which has requested permission to drill an exploratory well, at 820-m depth, in a block identified as Manteo 467. The proposed well location is 39 miles from the coast of North Carolina. The possibility of extracting gas from the continental slope off the coast of North Carolina, particularly at slope depths, has raised a number of environmental concerns that cannot be addressed from existing data. The present study was developed by the Minerals Management Service to better define the nature of the continental slope benthic communities off Cape Hatteras and to delineate their areal extent. Emphasis was placed on the area around the proposed drill site in the Manteo 467 lease block.

  19. The Wahluke (North) Slope of the Hanford Site: History and present challenges

    SciTech Connect (OSTI)

    Gerber, M.S.

    1996-04-16

    The Hanford Site was founded in early 1943 for the top secret government mission of producing plutonium for the world`s first atomic weapons. A great deal of land was needed, both to separate various Site facilities from each other, and to provide buffer zones for safety and security purposes. In total, 640 square miles were occupied by the original Hanford Site and its buffer zones. Much of this land had been earmarked for inclusion in the Columbia Basin Irrigation Project (CBP). After World War II ended, a series of national decisions led to a long-term mission for the Hanford Site, and area residents learned that the Site lands they had hoped to farm would be withheld from agricultural production for the foreseeable future. A long set of negotiations commenced between the federal management agency responsible for Hanford (the Atomic Energy Commission -- AEC), and the Bureau of Reclamation (BOR), Department of the Interior that managed the CBP. Some lands were turned back to agriculture, and other compromises made, in the Site`s far northern buffer lands known as the Wahluke Slope, during the 1950s. In the mid-1960s, further negotiations were about to allow farming on lands just north of the Columbia River, opposite Hanford`s reactors, when studies conducted by the BOR found drainage barriers to irrigation. As a result of these findings, two wildlife refuges were created on that land in 1971. Today, after the Hanford Site plutonium production mission has ended and as Site cleanup goes forward, the possibility of total release of Wahluke Slope lands from the control of the Department of Energy (DOE -- a successor agency to the AEC) is under discussion. Such discussion encompasses not just objective and clearly visible criteria, but it resurrects historical debates about the roles of farming and government presence in the Columbia Basin.

  20. Expansion of Facilities on the North Slope of Alaska in Time for the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Polar Year Expansion of Facilities on the North Slope of Alaska in Time for the International Polar Year Zak, Bernard Sandia National Laboratories Ivey, Mark Sandia National Laboratories Zirzow, Jeffrey Sandia National Laboratories Brower, Walter UIC Science Division ARM/NSA Ivanoff, James NSA Whiteman, Doug NSA/AAO Sassen, Kenneth University of Alaska Fairbanks Truffer-Moudra, Dana University of Alaska Fairbanks Category: Infrastructure & Outreach The International Polar

  1. Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002 J. A. Shaw and B. Thurairajah Department of Electrical and Computer Engineering Montana State University Bozeman, Montana E. Edqvist National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado K. Mizutani Communications Research Laboratory Koganei, Tokyo, Japan Introduction Starting in February 2002, we deployed a new cloud-radiation sensor called the infrared cloud imager

  2. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  3. ,"North Dakota Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9:53:45 AM" "Back to Contents","Data 1: North Dakota Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050ND2" "Date","North Dakota Natural Gas Marketed Production ...

  4. ,"North Dakota Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9:53:46 AM" "Back to Contents","Data 1: North Dakota Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050ND2" "Date","North Dakota Natural Gas Marketed Production ...

  5. Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska

    SciTech Connect (OSTI)

    Hinzman, Larry D.; Lilly, Michael R.; Kane, Douglas L.; Miller, D. Dan; Galloway, Braden K.; Hilton, Kristie M.; White, Daniel M.

    2005-09-30

    Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

  6. Issues facing the future use of Alaskan NorthSlope natural gas

    SciTech Connect (OSTI)

    Bowsher, C.A.

    1983-05-12

    The North Slope of Alaska contains over 26 trillion cubic feet of natural gas. In 1977, the President and the Congress approved construction of a 4800-mile gas pipeline to bring this gas to US consumers by 1983. However, completion of the project is not now expected until late 1989 at the earliest. This report examines the status and outlook for the Alaskan gas pipeline (the Alaska Natural Gas Transportation System). It also evaluates the pros and cons of (1) alternative systems to deliver this gas to market, including a gas pipeline with Alaska for export of liquefied natural gas; (2) processing the gas in Alaska by converting it to methanol and petrochemicals for export; and (3) using the gas within Alaska.

  7. Role of slope stability in cumulative impact assessment of hydropower development: North Cascades, Washington

    SciTech Connect (OSTI)

    Lee, R.R.; Staub, W.P.

    1993-08-01

    Two environmental assessments considered the potential cumulative environmental impacts resulting from the development of eight proposed hydropower projects in the Nooksack River Basin and 11 proposed projects in the Skagit River Basin, North Cascades, Washington, respectively. While not identified as a target resource, slope stability and the alteration of sediment supply to creeks and river mainstems significantly affect other resources. The slope stability assessment emphasized the potential for cumulative impacts under disturbed conditions (e.g., road construction and timber harvesting) and a landslide-induced pipeline rupture scenario. In the case of small-scale slides, the sluicing action of ruptured pipeline water on the fresh landslide scarp was found to be capable of eroding significantly more material than the original landslide. For large-scale landslides, sluiced material was found to be a small increment of the original landslide. These results predicted that hypothetical accidental pipeline rupture by small-scale landslides may result in potential cumulative impacts for 12 of the 19 projects with pending license applications in both river basins. 5 refs., 2 tabs.

  8. North Dakota Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Shale Production (Billion Cubic Feet) North Dakota Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 3 25...

  9. North Dakota Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production ... Referring Pages: NGPL Production, Gaseous Equivalent North Dakota Natural Gas Plant ...

  10. Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}

    SciTech Connect (OSTI)

    Umekwe, Pascal; Mongrain, Joanna; Ahmadi, Mohabbat; Hanks, Catherine

    2013-03-15

    The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

  11. Geologic interrelations relative to gas hydrates within the North Slope of Alaska: Task No. 6, Final report

    SciTech Connect (OSTI)

    Collett, T.S.; Bird, K.J.; Kvenvolden, K.A.; Magoon, L.B.

    1988-01-01

    The five primary objectives of the US Geological Survey North Slope Gas Hydrate Project were to: (1) Determine possible geologic controls on the occurrence of gas hydrate; (2) locate and evaluate possible gas-hydrate-bearing reservoirs; (3) estimate the volume of gas within the hydrates; (4) develop a model for gas-hydrate formation; and (5) select a coring site for gas-hydrate sampling and analysis. Our studies of the North Slope of Alaska suggest that the zone in which gas hydrates are stable is controlled primarily by subsurface temperatures and gas chemistry. Other factors, such as pore-pressure variations, pore-fluid salinity, and reservior-rock grain size, appear to have little effect on gas hydrate stability on the North Slope. Data necessary to determine the limits of gas hydrate stability field are difficult to obtain. On the basis of mud-log gas chromatography, core data, and cuttings data, methane is the dominant species of gas in the near-surface (0--1500 m) sediment. Gas hydrates were identified in 34 wells utilizing well-log responses calibrated to the response of an interval in one well where gas hydrates were actually recovered in a core by an oil company. A possible scenario describing the origin of the interred gas hydrates on the North Slope involves the migration of thermogenic solution- and free-gas from deeper reservoirs upward along faults into the overlying sedimentary rocks. We have identified two (dedicated) core-hole sites, the Eileen and the South-End core-holes, at which there is a high probability of recovering a sample of gas hydrate. At the Eileen core-hole site, at least three stratigraphic units may contain gas hydrate. The South-End core-hole site provides an opportunity to study one specific rock unit that appears to contain both gas hydrate and oil. 100 refs., 72 figs., 24 tabs.

  12. Benthic study of the continental slope off Cape Hatteras, North Carolina. Volume 1. Executive summary

    SciTech Connect (OSTI)

    Diaz, R.J.; Blake, J.A.; Rhoads, D.C.

    1993-03-01

    Because of the potential impact on the environment associated with development and production activities, the Oil Pollution Act of 1990 mandated that a panel of experts, the North Carolina Environmental Sciences Review Panel (NCESRP), be convened. Their purpose was to consider whether the availability of scientific information was adequate for making decisions about oil and gas leasing, exploration, and development off North Carolina. The present study was developed by the Minerals Management Service because of concern raised by the NCESRP (1992) that not more than 5 percent of the unusual benthic community be covered by drill muds and cuttings. The principal task of the study was to determine if the communities extended over an area of the sea floor that was 20 time larger then the area estimated to be covered by drill muds and cuttings. If more than 5 percent of the unusual benthic community were covered by drill muds and cuttings, the NCESRP recommended that a study be carried out to determine the recovery rate of this community.

  13. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work

  14. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

  15. North Dakota Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production North Dakota Dry Natural Gas Proved Reserves ...

  16. ,"Louisiana - North Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana - North Dry Natural Gas Expected Future Production ... "Back to Contents","Data 1: Louisiana - North Dry Natural Gas Expected Future Production ...

  17. North Dakota Quantity of Production Associated with Reported...

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) North ... Quantity of Natural Gas Production Associated with Reported Wellhead Value North Dakota ...

  18. North Dakota Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) North Dakota Dry Natural Gas Expected ... Dry Natural Gas Proved Reserves as of Dec. 31 North Dakota Dry Natural Gas Proved Reserves ...

  19. Louisiana - North Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - North Dry ... Dry Natural Gas Proved Reserves as of Dec. 31 North Louisiana Dry Natural Gas Proved ...

  20. Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Santanu Khataniar

    2008-12-31

    amount of geographically diverse data, it is not possible to develop a comprehensive predictive model. Based on the comprehensive phase behavior analysis of Alaska North Slope crude oil, a reservoir simulation study was carried out to evaluate the performance of a gas injection enhanced oil recovery technique for the West Sak reservoir. It was found that a definite increase in viscous oil production can be obtained by selecting the proper injectant gas and by optimizing reservoir operating parameters. A comparative analysis is provided, which helps in the decision-making process.

  1. ,"North Dakota Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Dry Natural Gas Production (Million ... 9:54:27 AM" "Back to Contents","Data 1: North Dakota Dry Natural Gas Production (Million ...

  2. ,"North Dakota Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... for" ,"Data 1","North Dakota Natural Gas Plant Liquids, Expected Future Production ...

  3. North Dakota Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids, Expected Future Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  4. The North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) cart site begins operation: Collaboration with SHEBA and FIRE

    SciTech Connect (OSTI)

    Zak, D. B.; Church, H.; Ivey, M.; Yellowhorse, L.; Zirzow, J.; Widener, K. B.; Rhodes, P.; Turney, C.; Koontz, A.; Stamnes, K.; Storvold, R.; Eide, H. A.; Utley, P.; Eagan, R.; Cook, D.; Hart, D.; Wesely, M.

    2000-04-04

    Since the 1997 Atmospheric Radiation Measurement (ARM) Science Team Meeting, the North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) site has come into being. Much has happened even since the 1998 Science Team Meeting at which this paper was presented. To maximize its usefulness, this paper has been updated to include developments through July 1998.

  5. A comparison of cloud properties at a coastal and inland site at the North Slope of Alaska

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doran, J. C.; Zhong, S.; Liljegren, J. C.; Jakob, C.

    2002-06-11

    In this study, we have examined differences in cloud liquid water paths (LWPs) at a coastal (Barrow) and an inland (Atqasuk) location on the North Slope of Alaska using microwave radiometer (MWR) data collected by the U.S. Department of Energy's Atmospheric Radiation Measurement program for the period June-September 1999. Revised retrieval procedures and a filtering algorithm to eliminate data contaminated by wet windows on the MWRs were employed to extract high-quality data suitable for this study. For clouds with low base heights (<350 m), the LWPs at the coastal site were significantly higher than those at the inland site, butmore » for clouds with higher base heights the differences were small. Air-surface interactions may account for some of the differences. Comparisons were also made between observed LWPs and those simulated with the European Centre for Medium-Range Weather Forecasts (ECMWF) model. The model usually successfully captured the occurrence of cloudy periods but it underpredicted the LWPs by approximately a factor of two. It was also unsuccessful in reproducing the observed differences in LWPs between Barrow and Atqasuk. Some suggestions on possible improvements in the model are presented.« less

  6. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    SciTech Connect (OSTI)

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  7. North Dakota Natural Gas Plant Liquids Production Extracted in North Dakota

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) North Dakota (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 48,504 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent North Dakota-North

  8. North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management and Budget / Office of Civil Rights No Fear Act The NNSA Office of Civil Rights is committed to upholding anti-discrimination and civil rights laws. This is the NNSA reporting page for the Notification and Federal Employee Anti-discrimination and Retaliation Act of 2002 (No Fear Act), Public Law 207-174. Signed by President George W. Bush on May 15, 2002, the Act increases accountability of Federal Departments and agencies for acts of discrimination or reprisal against employees

  9. Using a Neural Network to Determine the Hatch Status of the AERI at the ARM North Slope of Alaska Site

    SciTech Connect (OSTI)

    Zwink, AB; Turner, DD

    2012-03-19

    The fore-optics of the Atmospheric Emitted Radiance Interferometer (AERI) are protected by an automated hatch to prevent precipitation from fouling the instrument's scene mirror (Knuteson et al. 2004). Limit switches connected with the hatch controller provide a signal of the hatch state: open, closed, undetermined (typically associated with the hatch being between fully open or fully closed during the instrument's sky view period), or an error condition. The instrument then records the state of the hatch with the radiance data so that samples taken when the hatch is not open can be removed from any subsequent analysis. However, the hatch controller suffered a multi-year failure for the AERI located at the ARM North Slope of Alaska (NSA) Central Facility in Barrow, Alaska, from July 2006-February 2008. The failure resulted in misreporting the state of the hatch in the 'hatchOpen' field within the AERI data files. With this error there is no simple solution to translate what was reported back to the correct hatch status, thereby making it difficult for an analysis to determine when the AERI was actually viewing the sky. As only the data collected when the hatch is fully open are scientifically useful, an algorithm was developed to determine whether the hatch was open or closed based on spectral radiance data from the AERI. Determining if the hatch is open or closed in a scene with low clouds is non-trivial, as low opaque clouds may look very similar spectrally as the closed hatch. This algorithm used a backpropagation neural network; these types of neural networks have been used with increasing frequency in atmospheric science applications.

  10. C-N-P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska

    SciTech Connect (OSTI)

    Jiang, Yueyang; Rocha, Adrian; Rastetter, Edward; Shaver, Gaius; Mishra, U.; Zhuang, Qianlai; Kwiatkowski, Bonnie

    2016-01-01

    As climate warms, changes in the carbon (C) balance of arctic tundra will play an important role in the global C balance. The C balance of tundra is tightly coupled to the nitrogen (N) and phosphorus (P) cycles because soil organic matter is the principal source of plant-available nutrients and determines the spatial variation of vegetation biomass across the North Slope of Alaska. Warming will accelerate these nutrient cycles, which should stimulate plant growth.

  11. Louisiana--North Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Shale Production (Billion Cubic Feet) Louisiana--North Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1...

  12. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    SciTech Connect (OSTI)

    2012-09-30

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska�s North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska�s interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009

  13. Montana Natural Gas Plant Liquids Production Extracted in North Dakota

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) North Dakota (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 303 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-North Dakota

  14. Louisiana--North Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 59 63 59 50 38 47 39 33 39 40 1990's 38 38 41 38 48 55 61 50 34 36 2000's 35 35 30 48 53 57 60 69 68 98 2010's 79 54 35 52 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  15. Louisiana--North Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 59 63 59 50 38 47 39 33 39 40 1990's 38 38 41 38 48 55 61 50 34 36 2000's 35 35 30 48 53 57 60 69 68 98 2010's 79 54 35 52 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  16. North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 4 4 5 6 6 5 6 5 5 1990's 5 5 5 5 4 4 4 4 4 4 2000's 5 5 5 4 5 5 6 6 6 8 2010's 9 11 19 26 36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  17. Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

    2013-09-11

    Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

  18. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved Reserves, Reserves Changes, and Production

    + Lease Condensate Proved

  19. Evaluation of Wax Deposition and Its Control During Production...

    Office of Scientific and Technical Information (OSTI)

    Title: Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils Due to increasing oil demand, oil companies are moving into arctic environments and ...

  20. ARM - VAP Product - mmcrmode3ge200404141cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by this product are those considered scientifically relevant. Cloud base height Radar Doppler Radar reflectivity Vertical velocity Locations North Slope Alaska NSA C1 Browse...

  1. ARM - VAP Product - mmcrmode2ci200712011cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by this product are those considered scientifically relevant. Cloud base height Radar Doppler Radar reflectivity Vertical velocity Locations North Slope Alaska NSA C1 Browse...

  2. ARM - VAP Product - mmcrmode1st200404151cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by this product are those considered scientifically relevant. Cloud base height Radar Doppler Radar reflectivity Vertical velocity Locations North Slope Alaska NSA C1 Browse...

  3. ARM - VAP Product - mmcrmode3ge200712011cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by this product are those considered scientifically relevant. Cloud base height Radar Doppler Radar reflectivity Vertical velocity Locations North Slope Alaska NSA C1 Browse...

  4. ARM - VAP Product - mmcrmode2ci200404141cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by this product are those considered scientifically relevant. Cloud base height Radar Doppler Radar reflectivity Vertical velocity Locations North Slope Alaska NSA C1 Browse...

  5. ARM - VAP Product - mmcrmode1bl200712011cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by this product are those considered scientifically relevant. Cloud base height Radar Doppler Radar reflectivity Vertical velocity Locations North Slope Alaska NSA C1 Browse...

  6. Rock slope stability

    SciTech Connect (OSTI)

    Kliche, C.A.

    1999-07-01

    Whether you're involved in surface mine design, surface mine production, construction, education, or regulation, this is an important new book for your library. It describes the basic rock slope failure modes and methods of analysis--both kinematic and kinetic techniques. Chapters include geotechnical and geomechanical analysis techniques, hydrology, rock slope stabilization techniques, and geotechnical instrumentation and monitoring. Numerous examples, drawings and photos enhance the text.

  7. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect (OSTI)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number

  8. Emily North | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Principal Investigators Postdoctoral Fellows Center researchers Graduate Students Undergraduate Students All Bisfuel Center Personnel Emily North Michael Kenney Emily North undergraduate student Subtask 1 * Subtask 2 * Subtask 3 * Subtask 4 * Subtask 5

  9. ,"North Dakota Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals and ... 10:51:41 AM" "Back to Contents","Data 1: North Dakota Natural Gas Gross Withdrawals and ...

  10. ,"North Dakota Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Dry Natural Gas Expected Future ... 9:28:52 AM" "Back to Contents","Data 1: North Dakota Dry Natural Gas Expected Future ...

  11. Expanded North Carolina Lithium Facility Opens, Boosting U.S. Production of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Key Manufacturing Material | Department of Energy North Carolina Lithium Facility Opens, Boosting U.S. Production of a Key Manufacturing Material Expanded North Carolina Lithium Facility Opens, Boosting U.S. Production of a Key Manufacturing Material June 29, 2012 - 12:28pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Today, U.S. Energy Secretary Steven Chu recognized the opening of Rockwood Lithium's expanded manufacturing facility in Kings Mountain, North Carolina. Rockwood is

  12. Full PWA Report: An Assessment of Energy, Waste, and Productivity Improvements for North Star Steel Iowa

    SciTech Connect (OSTI)

    2010-06-25

    North Star Steel's Wilton, Iowa plant (NSSI) was awarded a subcontract through a competitive process to use Department of Energy/OIT funding to examine potential processes and technologies that could save energy, reduce waste, and increase productivity.

  13. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  14. North Dakota Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 201 1980's 239 253 248 257 267 331 293 276 266 313 1990's 334 243 266 274 275 263 255 257 261 250 2000's 264 270 315 316 320 343 357 417 484 1,070 2010's 1,717

  15. North Dakota Natural Gas Plant Liquids Production Extracted in Illinois

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,905 12,104 12,454 1990's 12,742 12,082 12,353 12,650 12,944 13,399 13,789 14,099 14,422 15,050 2000's 15,531 15,740 16,093 16,202 16,443 16,518 16,848 17,013 17,284 17,632 2010's 17,823 18,421 19,089 19,855 20,687 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  16. Potential products from North Dakota lignite fly ash. Final report

    SciTech Connect (OSTI)

    Anderson, G R

    1980-06-01

    Four major areas where fly ash can be used are explored. Concrete building blocks with fly ash replacing 50% of the portland cement have proven to be successful using current ASTM standards. Results in the ceramics area show that a ceramic-like product using fly ash and crushed glass with a small amount of clay as a green binder. Some preliminary results using sulfur ash in building materials are reported and with results of making wallboard from ash. (MHR)

  17. Spallation production of neutron deficient radioisotopes in North America

    SciTech Connect (OSTI)

    Jamriska, D.J.; Peterson, E.J.; Carty, J.

    1997-12-31

    The US Department of Energy produces a number of neutron deficient radioisotopes by high energy proton induced spallation reactions in accelerators at Los Alamos National Laboratory in New Mexico and Brookhaven National Laboratory in New York. Research isotopes are also recovered from targets irradiated at TRIUMF in British Columbia, Canada. The radioisotopes recovered are distributed for use in nuclear medicine, environmental research, physics research, and industry worldwide. In addition to the main product line of Sr-82 from either Mo or Rb targets, Cu-67 from ZnO targets, and Ge-68 and RbBr targets, these irradiation facilities also produce some unique isotopes in quantities not available from any other source such as Al-26, Mg-28, Si-32, Ti-44, Fe-52, Gd-148, and Hg-194. The authors will describe the accelerator irradiation facilities at the Los Alamos and Brookhaven National Laboratories. The high level radiochemical processing facilities at Los Alamos and brief chemical processes will be described.

  18. North Dakota Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    113,867 157,025 258,568 345,787 462,929 581,761 1967-2015 From Gas Wells 10,501 14,287 22,261 24,313 22,354 1967-2014 From Oil Wells 38,306 27,739 17,434 12,854 9,098 1967-2014 From Shale Gas Wells 65,060 114,998 218,873 308,620 431,477 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 0 0 0 0 0 1981-2014 Vented and Flared 24,582 49,652 79,564 102,855 129,384 1967-2014 Nonhydrocarbon Gases Removed 7,448 10,271 6,762 7,221 7,008 1984-2014 Marketed Production 81,837 97,102 172,242

  19. North Dakota Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    8 1,185 1,649 3,147 5,059 6,442 2007-2014 Adjustments 101 235 20 253 -72 719 2009-2014 Revision Increases 119 528 439 901 1,056 933 2009-2014 Revision Decreases 17 343 290 199 554 823 2009-2014 Sales 1 28 115 181 1 593 2009-2014 Acquisitions 1 87 161 142 273 304 2009-2014 Extensions 159 393 340 770 1,475 1,255 2009-2014 New Field Discoveries 6 8 2 1 0 4 2009-2014 New Reservoir Discoveries in Old Fields 1 1 2 14 3 10 2009-2014 Estimated Production 25 64 95 203 268 426

  20. North Dakota Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    50,146 47,912 51,852 47,507 49,979 48,555 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1996-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production 39,686 37,918 41,036 37,597 39,553 38,42

  1. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    ,058 1,887 2,658 3,773 5,683 6,045 2009-2014 Adjustments 12 -8 9 33 -44 -68 2009-2014 Revision Increases 211 709 679 744 994 683 2009-2014 Revision Decreases 69 486 560 370 655 869 2009-2014 Sales 4 63 124 236 44 567 2009-2014 Acquisitions 2 226 224 218 353 310 2009-2014 Extensions 396 533 665 941 1,603 1,234 2009-2014 New Field Discoveries 12 29 14 9 4 3 2009-2014 New Reservoir Discoveries in Old Fields 5 3 16 27 13 30 2009-2014 Estimated Production 84 114 152 251 314 394 (Billion Cubic

  2. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    BOE Reserve Class ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , ! ! ! ! ! £ , £ , £ , £ , £ , COLVILLE RIVER COLVILLE RIVER 150°50'0"W 150°50'0"W 150°55'0"W 150°55'0"W 151°0'0"W 151°0'0"W 151°5'0"W 151°5'0"W 151°10'0"W 151°10'0"W

  3. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Reserve Class ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , ! ! ! ! ! £ , £ , £ , £ , £ , COLVILLE RIVER COLVILLE RIVER 150°50'0"W 150°50'0"W 150°55'0"W 150°55'0"W 151°0'0"W 151°0'0"W 151°5'0"W 151°5'0"W 151°10'0"W 151°10'0"W

  4. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Reserve Class ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , ! ! ! ! ! £ , £ , £ , £ , £ , COLVILLE RIVER COLVILLE RIVER 150°50'0"W 150°50'0"W 150°55'0"W 150°55'0"W 151°0'0"W 151°0'0"W 151°5'0"W 151°5'0"W 151°10'0"W 151°10'0"W

  5. ,"North Dakota Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  6. The Romelt Process -- Prospects for pig iron production in North America

    SciTech Connect (OSTI)

    Thompson, M.W.; Weston, T.R.

    1997-12-31

    The iron and steel industry in North America is undergoing dramatic changes and is being driven by three factors. First, the introduction of new technologies and pace of innovation has placed North America at the forefront of commercializing new technologies. Second, new technologies have changed the market for steelmaking raw materials and stimulated an industry-wide discussion of the ``value in use`` of scrap and scrap substitutes. Finally, an increase in environmental costs has fundamentally changed management`s view toward the environmental impact of iron and steelmaking, particularly in the integrated steel industry. This paper discusses the Romelt Process, an emerging ironmaking technology developed by the Moscow Institute for Steels and Alloys, in the context of these industry trends. ICF Kaiser, a worldwide licensee to the Romelt technology, believes that the current North American climate is probably the most conducive of all steelmaking regions to the commercialization of new technologies. Liquid or cast pig iron, the product of the Romelt Process, is the highest value feed for both the EAF and BOF steelmaking processes. In terms of environmental benefits, Romelt uses non-coking coals for its fuel and reductant, and has a proven large scale pilot plant track record in smelting both low grade fine ores and iron bearing wastes from the integrated works.

  7. Figure 6. Projected Production for the Low Development Rate of Technically

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Oil 6. Projected Production for the Low Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the Alaska North Slope fig6.jpg (41132

  8. From Pandemic Preparedness to Biofuel Production: Tobacco Finds Its Biotechnology Niche in North America

    SciTech Connect (OSTI)

    Powell, Joshua D.

    2015-09-25

    As part of my NSD Innovation awarded funds (95470 Powell Innovation: charge code N38540) one my deliverables was a review article for journal submission summarizing my work on this project. My NSD Innovation project is expressing Ebola antibodies in tobacco plants. I've attached abstract below Title: From pandemic preparedness to biofuel production: tobacco finds its biotechnology niche in North America Abstract: Abstract: In 2012 scientists funded by the U.S. Defense Advanced Research Projects Agency (DARPA) produced 10 million doses of influenza vaccine in tobacco in a milestone deadline of one month. Recently the experimental antibody cocktail Zmapp™, also produced in tobacco, has shown promise as an emergency intervention therapeutic against Ebola. These two examples showcase how collaborative efforts between government, private industry and academia are applying plant biotechnology to combat pathogenic agents. Opportunities now exist repurposing tobacco expression systems for exciting new applications in synthetic biology, biofuels production and industrial enzyme production. As plant-produced biotherapeutics become more mainstream, government funding agencies need to be cognizant of the idea that many plant-produced biologicals are often safer, cheaper and just as efficacious as their counterparts that are produced using traditional expression systems.

  9. From pandemic preparedness to biofuel production: Tobacco finds its biotechnology niche in North America

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Powell, Joshua D.

    2015-09-25

    As part of my NSD Innovation awarded funds (95470 Powell Innovation: charge code N38540) one my deliverables was a review article for journal submission summarizing my work on this project. My NSD Innovation project is expressing Ebola antibodies in tobacco plants. I've attached abstract below Title: From pandemic preparedness to biofuel production: tobacco finds its biotechnology niche in North America Abstract: Abstract: In 2012 scientists funded by the U.S. Defense Advanced Research Projects Agency (DARPA) produced 10 million doses of influenza vaccine in tobacco in a milestone deadline of one month. Recently the experimental antibody cocktail Zmapp™, also produced inmore » tobacco, has shown promise as an emergency intervention therapeutic against Ebola. These two examples showcase how collaborative efforts between government, private industry and academia are applying plant biotechnology to combat pathogenic agents. Opportunities now exist repurposing tobacco expression systems for exciting new applications in synthetic biology, biofuels production and industrial enzyme production. Lastly, as plant-produced biotherapeutics become more mainstream, government funding agencies need to be cognizant of the idea that many plant-produced biologicals are often safer, cheaper and just as efficacious as their counterparts that are produced using traditional expression systems.« less

  10. From pandemic preparedness to biofuel production: Tobacco finds its biotechnology niche in North America

    SciTech Connect (OSTI)

    Powell, Joshua D.

    2015-09-25

    As part of my NSD Innovation awarded funds (95470 Powell Innovation: charge code N38540) one my deliverables was a review article for journal submission summarizing my work on this project. My NSD Innovation project is expressing Ebola antibodies in tobacco plants. I've attached abstract below Title: From pandemic preparedness to biofuel production: tobacco finds its biotechnology niche in North America Abstract: Abstract: In 2012 scientists funded by the U.S. Defense Advanced Research Projects Agency (DARPA) produced 10 million doses of influenza vaccine in tobacco in a milestone deadline of one month. Recently the experimental antibody cocktail Zmapp™, also produced in tobacco, has shown promise as an emergency intervention therapeutic against Ebola. These two examples showcase how collaborative efforts between government, private industry and academia are applying plant biotechnology to combat pathogenic agents. Opportunities now exist repurposing tobacco expression systems for exciting new applications in synthetic biology, biofuels production and industrial enzyme production. Lastly, as plant-produced biotherapeutics become more mainstream, government funding agencies need to be cognizant of the idea that many plant-produced biologicals are often safer, cheaper and just as efficacious as their counterparts that are produced using traditional expression systems.

  11. Fact #933: July 11, 2016 Texas, North Dakota, and the Gulf of Mexico Account for Two-Thirds of U.S. Crude Oil Production- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Texas, North Dakota, and the Gulf of Mexico Account for Two-Thirds of U.S. Crude Oil Production

  12. City of North Bonneville, Washington: Geothermal Exploration Project, production test well, Phase II. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    Based on discussions with the City of North Bonneville, the production test well was drilled to a depth that would also explore for ground water temperatures near 130/sup 0/F (54.4/sup 0/C). Depth projections to a 130/sup 0/F bottom hole temperature were made by assuming a constant ground water temperature rise greater than 50/sup 0/C per kilometer, and by assuming that essentially homogeneous or equivalent conductive rock units would be encountered. Minimum water production requirements were not set, although the City determined that about 800 gpm would be acceptable. Large upper casing diameters of 16 and 12 inches were installed in order to provide the future use of either a vertical turbine or submersible pump, as desired by the city. The scope of work included interpretation of well characteristics, evaluation of ground water as a geothermal resource, geologic analysis of data from drilling and testing, drilling supervision, daily drilling cost accounting, and preparation of a final report. The report includes geologic evaluation of the drilling and test data, ground water and geothermal potential.

  13. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  14. Oxidation of North Dakota scrubber sludge for soil amendment and production of gypsum. Final report

    SciTech Connect (OSTI)

    Hassett, D.J.; Moe, T.A.

    1997-10-01

    Cooperative Power`s Coal Creek Station (CCS) the North Dakota Industrial Commission, and the US Department of Energy provided funds for a research project at the Energy and Environmental Research Center. The goals of the project were (1) to determine conditions for the conversion of scrubber sludge to gypsum simulating an ex situ process on the laboratory scale; (2) to determine the feasibility of scaleup of the process; (3) if warranted, to demonstrate the ex situ process for conversion on the pilot scale; and (4) to evaluate the quality and handling characteristics of the gypsum produced on the pilot scale. The process development and demonstration phases of this project were successfully completed focusing on ex situ oxidation using air at low pH. The potential to produce a high-purity gypsum on a commercial scale is excellent. The results of this project demonstrate the feasibility of converting CCS scrubber sludge to gypsum exhibiting characteristics appropriate for agricultural application as soil amendment as well as for use in gypsum wallboard production. Gypsum of a purity of over 98% containing acceptable levels of potentially problematic constituents was produced in the laboratory and in a pilot-scale demonstration.

  15. NorthWinds Renewables | Open Energy Information

    Open Energy Info (EERE)

    NorthWinds Renewables Jump to: navigation, search Name: NorthWinds Renewables Place: Harrison, New York Zip: 10528 Sector: Renewable Energy, Wind energy Product: NorthWinds...

  16. Sanyo North America Co | Open Energy Information

    Open Energy Info (EERE)

    North America Co Jump to: navigation, search Name: Sanyo North America Co Place: San Diego, California Zip: CA 92154 Product: Sanyo North America Co, a subsidiary of Japanese...

  17. SUBTASK 1.7 EVALUATION OF KEY FACTORS AFFECTING SUCCESSFUL OIL PRODUCTION IN THE BAKKEN FORMATION, NORTH DAKOTA PHASE II

    SciTech Connect (OSTI)

    Darren D. Schmidt; Steven A. Smith; James A. Sorensen; Damion J. Knudsen; John A. Harju; Edward N. Steadman

    2011-10-31

    Production from the Bakken and Three Forks Formations continues to trend upward as forecasts predict significant production of oil from unconventional resources nationwide. As the U.S. Geological Survey reevaluates the 3.65 billion bbl technically recoverable estimate of 2008, technological advancements continue to unlock greater unconventional oil resources, and new discoveries continue within North Dakota. It is expected that the play will continue to expand to the southwest, newly develop in the northeastern and northwestern corners of the basin in North Dakota, and fully develop in between. Although not all wells are economical, the economic success rate has been near 75% with more than 90% of wells finding oil. Currently, only about 15% of the play has been drilled, and recovery rates are less than 5%, providing a significant future of wells to be drilled and untouched hydrocarbons to be pursued through improved stimulation practices or enhanced oil recovery. This study provides the technical characterizations that are necessary to improve knowledge, provide characterization, validate generalizations, and provide insight relative to hydrocarbon recovery in the Bakken and Three Forks Formations. Oil-saturated rock charged from the Bakken shales and prospective Three Forks can be produced given appropriate stimulation treatments. Highly concentrated fracture stimulations with ceramic- and sand-based proppants appear to be providing the best success for areas outside the Parshall and Sanish Fields. Targeting of specific lithologies can influence production from both natural and induced fracture conductivity. Porosity and permeability are low, but various lithofacies units within the formation are highly saturated and, when targeted with appropriate technology, release highly economical quantities of hydrocarbons.

  18. Geosynthetic clay liners - slope stability field study

    SciTech Connect (OSTI)

    Carson, D.A.; Daniel, D.E.; Koerner, R.M.; Bonaparte, R.

    1997-12-31

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project.

  19. Fluid and Rock Property Controls On Production And Seismic Monitoring Alaska Heavy Oils

    SciTech Connect (OSTI)

    Liberatore, Matthew; Herring, Andy; Prasad, Manika; Dorgan, John; Batzle, Mike

    2012-10-30

    The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formation's vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations.

  20. Conversion economics for Alaska North Slope natural gas

    SciTech Connect (OSTI)

    Thomas, C.P.; Robertson, E.P.

    1995-07-01

    For the Prudhoe Bay field, this preliminary analysis provides an indication that major gas sales using a gas pipeline/LNG plant scenario, such as Trans Alaska Gas System, or a gas-to-liquids process with the cost parameters assumed, are essentially equivalent and would be viable and profitable to industry and beneficial to the state of Alaska and the federal government. The cases are compared for the Reference oil price case. The reserves would be 12.7 BBO for the base case without major gas sales, 12.3 BBO and 20 Tcf gas for the major gas sales case, and 14.3 BBO for the gas-to-liquids conversion cases. Use of different parameters will significantly alter these results; e.g., the low oil price case would result in the base case for Prudhoe Bay field becoming uneconomic in 2002 with the operating costs and investments as currently estimated.

  1. Sandia Energy - Alaskan North Slope Climate: Hard Data from a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the automated release of a weather balloon ... which measures the Arctic atmosphere's temperature, humidity, and wind speeds at a rapid succession of altitudes as it rises. The...

  2. Newly Installed Alaska North Slope Well Will Test Innovative...

    Broader source: Energy.gov (indexed) [DOE]

    A fully instrumented well that will test innovative technologies for producing methane gas ... Energy Technology Laboratory, will test a technology that involves injecting ...

  3. Clouds and snowmelt on the north slope of Alaska

    SciTech Connect (OSTI)

    Zhang, T.; Stamnes, K.; Bowling, S.A.

    1996-04-01

    Clouds have a large effect on the radiation field. Consequently, possible changes in cloud properties may have a very substantial impact on climate. Of all natural surfaces, seasonal snow cover has the highest surface albedo, which is one of the most important components of the climatic system. Interactions between clouds and seasonal snow cover are expected to have a significant effect on climate and its change at high latitudes. The purpose of this paper is to investigate the sensitivity of the surface cloud-radiative forcing during the period of snowmelt at high latitudes. The primary variables investigated are cloud liquid path (LWP) and droplet equivalent radius (r{sub e}). We will also examine the sensitivity of the surface radiative fluxes to cloud base height and cloud base temperature.

  4. The 2004 North Slope of Alaska Arctic Winter Radiometric Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CETEMPS Universita' dell'Aquila L'Aquila, Italy V. Mattioli Dipartimento di Ingegneria Elettronica e dell'Informazione Perugia, Italy B. L. Weber and S. Dowlatshahi Science ...

  5. Site Scientist for the North Slope of Alaska Site (Technical...

    Office of Scientific and Technical Information (OSTI)

    ... Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  6. North Slope of Alaska ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation steps are listed for each situation at the highest or major level. NSAerpRev3.doc 1 ACRFNSAAAO Revision 3 Emergency Response Plan June 2010 Power Outages Hazard: ...

  7. Biofuels Center of North Carolina | Open Energy Information

    Open Energy Info (EERE)

    Center of North Carolina Jump to: navigation, search Name: Biofuels Center of North Carolina Place: Oxford, North Carolina Zip: 27565 Sector: Biofuels Product: State-funded,...

  8. Experience with offloading in the North Sea: Development of new cost efficient technology for marine storage and production

    SciTech Connect (OSTI)

    Breivik, K.G.

    1995-12-01

    Statoil has 15 years of experience with offshore loading -- or ``off loading`` -- in the North Sea. Initially, this operation was based on a rather complex articulated loading platform (ALP) and a few modified conventional tankers. The technique has developed into today`s simple but efficient submerged turret loading (STL) system and a significant fleet of highly specialized vessels. These include the multipurpose shuttle tanker (MST), the first of which was recently ordered. The efficiency and regularity of off loading operations match that of pipeline transport. Experience gained during 15 years of off loading has yielded a constant series of improvements in operational safety and developments in standardized operating procedures. Statoil ranks today as one of the world`s largest exporters of crude oil, and offshore loading plays a key role in the group`s operations. The recent development of integrated off loading and vessel technologies opens the way to an interesting and promising future for off loading as well as marine storage production.

  9. Invest North Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Invest North Pty Ltd Jump to: navigation, search Name: Invest North Pty Ltd Place: Darwin, Northern Territory, Australia Sector: Solar Product: Onwer of a solar power system atop...

  10. North Cove Capital Advisors | Open Energy Information

    Open Energy Info (EERE)

    Cove Capital Advisors Jump to: navigation, search Name: North Cove Capital Advisors Place: Connecticut Sector: Carbon Product: North Cove is an advisory firm that works...

  11. North Carolina State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: North Carolina State University Place: Raleigh, North Carolina Zip: 27695 Sector: Biofuels, Biomass, Solar Product: Public university...

  12. North America Power Partners | Open Energy Information

    Open Energy Info (EERE)

    North America Power Partners Place: Mount Laurel, New Jersey Product: New Jersey-based demand response specialists focusing on large scale energy savings. References: North...

  13. RES North America LLC | Open Energy Information

    Open Energy Info (EERE)

    RES North America LLC Jump to: navigation, search Name: RES North America LLC Place: Portland, Oregon Zip: 97258 Sector: Wind energy Product: US development arm of RES Ltd....

  14. University of North Carolina | Open Energy Information

    Open Energy Info (EERE)

    Carolina Jump to: navigation, search Name: University of North Carolina Place: Chapel Hill, North Carolina Zip: 27514 Sector: Solar, Wind energy Product: Chapel Hill-based public...

  15. Figure 7. Projected Production for the High Development Rate of Technically

    U.S. Energy Information Administration (EIA) Indexed Site

    Recoverable Oil 7. Projected Production for the High Development Rate of Technically Recoverable Oil Estimated at 5 Percent, Mean, and 95 Percent Probabilities for the ANWR Coastal Plain of the Alaska North Slope fig7.jpg (43335 bytes) Source

  16. Production technology and provenance study of archaeological ceramics from relevant sites in the Alcantara River Valley (North-eastern Sicily, Italy)

    SciTech Connect (OSTI)

    Belfiore, Cristina Maria; Di Bella, Marcella; Triscari, Maurizio; Viccaro, Marco

    2010-04-15

    In this paper, volcanic-rich ceramic remains from the archaeological sites of Francavilla, Naxos and Taormina (Province of Messina, North-eastern Sicily) were studied by using inclusions as main provenance marker. Technological features, such as temper choice, vitrification degree and firing temperatures, were investigated by polarizing microscopy, X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Information on the production centres was obtained through the identification of the source area of raw materials used as temper. Indeed, petrochemical analysis of the volcanic inclusions within the examined ceramics displayed strong affinities with structures/textures and compositions of the locally outcropping mugearitic products, probably ascribed to the eruptive activity of an eccentric vent of Mt. Etna (Mt. Mojo). A local production for the studied pottery samples has been therefore advanced, assuming that the used volcanic temper was easily available from the alluvial deposits along the Alcantara River stream, which is connected to the lava flow of Mt. Mojo.

  17. Post operational investigation of the recovered North East Frigg subsea production equipment after 10 year`s service

    SciTech Connect (OSTI)

    Worley, L.J.; Fjaertoft, L.

    1995-12-31

    Elf Petroleum Norge had for 10 years been operating the North East Frigg field. This gas field was the first subsea field on the Norwegian Continental shelf. It was shut down on the 8th May 1993. Elf Petroleum Norge used the shut down as an ideal opportunity to review the performance of the subsea equipment. An investigation was initiated,its purpose, to gather information regarding the history, wear, effect of cathodic protection, corrosion etc from the X-mas tree components.

  18. Vision Office Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The North Slope of Alaska (NSA) was chosen for the third CART site, mainly because it ... This document describes the most important science issues to be addressed at the NSA and ...

  19. Potential Oil Production from the Coastal Plain of the Arctic National

    U.S. Energy Information Administration (EIA) Indexed Site

    Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Glossary ANILCA: Alaska National Interest Lands Conservation Act ANS: Alaskan North Slope ANWR: Arctic National Wildlife Refuge BBbls: billion barrels Bbls: barrels Daily Petroleum Production Rate: The amount of petroleum extracted per day from a well, group of wells, region, etc. (usually expressed in barrels per day) EIA: Energy Information

  20. North Carolina - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina North Carolina

  1. North Carolina - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina North Carolina

  2. North Carolina - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina North Carolina

  3. North American Polysilicon Technology LLC | Open Energy Information

    Open Energy Info (EERE)

    Technology LLC Jump to: navigation, search Name: North American Polysilicon Technology LLC Product: A US-based company engaged in R&D of polysilicon technology. References: North...

  4. North Carolina State Energy Office | Open Energy Information

    Open Energy Info (EERE)

    Energy Office Jump to: navigation, search Name: North Carolina State Energy Office Place: Raleigh, North Carolina Zip: 27604 1376 Sector: Efficiency, Renewable Energy Product: Lead...

  5. Suez Renewable Energy North America | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy North America Jump to: navigation, search Name: Suez Renewable Energy North America Place: Texas Sector: Biomass, Hydro, Solar, Wind energy Product: Developer of...

  6. Ecotality North America formerly eTec | Open Energy Information

    Open Energy Info (EERE)

    North America formerly eTec Jump to: navigation, search Name: Ecotality North America (formerly eTec) Place: Phoenix, Arizona Zip: 85003 Sector: Vehicles Product: String...

  7. North Carolina Sustainable Energy Association | Open Energy Informatio...

    Open Energy Info (EERE)

    Sustainable Energy Association Jump to: navigation, search Name: North Carolina Sustainable Energy Association Place: Raleigh, North Carolina Zip: 27628 Product: A non-profit...

  8. EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to use federal funds to support and accelerate Northstar Medical Radioisotopes' project to develop domestic, commercial production capability for the medical isotope Molybdenum-99 without the use of highly enriched uranium.

  9. Study of biological processes on the US South Atlantic slope and rise. Phase 1: Benthic characterization. Volume 2. Final report

    SciTech Connect (OSTI)

    Blake, J.A.; Hecker, B.; Grassle, J.F.; Maciolek-Blake, N.; Brown, B.

    1985-06-01

    Concerns about the potential effects of oil and gas exploration on the U.S. Continental Slope and Rise led to the initiation of a deep-sea characterization study off North Carolina. The biological communities off North Carolina were poorly known, and prior to any drilling activities, a limited regional data base was required. The program included a seasonal characterization of biological and surficial geological properties at a limited number of slope and rise sites, with special emphasis on areas of high oil industry interest. A rich and highly diverse benthic infauna was discovered, with a large percentage of the 877 species being new to science. Annelids were the dominant taxa both in terms of density, numbers of species, and biomass. Foraminiferan tests comprised most of the sand fraction. Hydrographic data indicated some intrusion of colder water on the upper slope benthos from deeper water.

  10. Predictive and preventive maintenance of oil and gas production pipelines in the area North Monagas-Venezuela

    SciTech Connect (OSTI)

    Perez, M.A.L.

    1996-12-31

    Predictive maintenance of oil and gas production pipelines has allowed the prediction of operational failures. Specially due to the thermodynamic behavior of the produced fluids, contaminants present in the oil and gas such as sand, water, H{sub 2}S and CO{sub 2}, asphaltene deposition, high temperatures and pressures, physicochemical characteristics of the soil, etc. lead to risks of the installations. In order to minimize risks of failures, the author has established a control and monitoring preventive program of the variables that influence these conditions, such as: nondestructive testing, wall thickness measurements and two dimensional B Scan measurements to detect impurities, laminations and inclusions in the pipeline material, corrosion evaluation of pipelines, characterization of the soil corrosive potential of flow stations and compressing plants. Additionally, he has implemented predictive control through the application of external corrosion prevention techniques such as cathodic protection and coatings. For internal corrosion, the use of corrosion inhibitors, asphaltene dispersants and material selection are used. Increasing the protection through preventive and predictive maintenance can reduce the operational risks involved for the oil and gas production.

  11. SOFAST: Sandia Optical Fringe Analysis Slope Tool

    Energy Science and Technology Software Center (OSTI)

    2012-09-13

    SOFAST is used to characterize the surface slope of reflective mirrors for solar applications. SOFAST uses a large monitor or projection screen to display fringe patterns, and a machine vision camera to image the reflection of these patterns in the subject mirror. From these images, a detailed map of surface normals can be generated and compared to design or fitted mirror shapes. SOFAST uses standard Fringe Reflection (Deflectometry) approaches to measure the mirror surface normals.more »SOFAST uses an extrinsic analysis of key points on the facet to locate the camera and monitor relative to the facet coordinate system. It then refines this position based on the measured surface slope and integrated shape of the mirror facet. The facet is placed into a reference frame such that key points on the facet match the design facet in orientation and position.« less

  12. Sedimentary evolution of the upper Cretaceous and late Oligocene sequences, and its relation to oil production, North Monagas area, Eastern Venezuela

    SciTech Connect (OSTI)

    Sambrano, J.; Rojas, B.; Rendon, J.; Chigne, R.; Maguregui, J.

    1996-08-01

    The most important oil reservoirs of the Eastern Venezuela Basin are located in the North Monagas Area. These reservoirs are contained within a 3500 ft Cretaceous to Late Oligocene sedimentary section. Daily production is rated at about 350 MBO and 1000 MMCFG. At this moment, these reservoirs are undergoing special studies, in order to establish enhanced recovery projects, for which heterogeneity definition is very important. The database consisted of log analyses of 136 wells, sedimentological and biostratigraphic interpretation of 10,200 ft of cores, and biostratigraphic interpretation of ditch samples from 13 wells. Sedimentary models, based on facies analyses and deltaic conceptual models of 31 separate genetic units were defined. The models allowed for the interpretation of paleoenvironments, sedimentary facies architecture, direction of sedimentation and depocenters. The preferred sediment orientation was determined to be West-East. In the Santa Barbara and Pirital reservoirs the Late Oligocene sediments are composed of fluvial deposits, and the Cretaceous sediments of estuarine deposits. In the Carito-Mulata reservoirs, the Late Oligocene sediments are composed of fluvial to marine deposits, and the Upper Cretaceous sediments of estuarine deposits. Possible preferred transmissibility pathways for fluid injection were described, providing a great support for the enhanced recovery phases of these reservoirs.

  13. REpower North China Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Ltd Jump to: navigation, search Name: REpower North (China) Ltd Place: Baotou, Inner Mongolia Autonomous Region, China Zip: 14033 Product: Joint venture to manufacture 2MW...

  14. North American Hydro | Open Energy Information

    Open Energy Info (EERE)

    Hydro Jump to: navigation, search Name: North American Hydro Place: Schofield, Wisconsin Zip: 54476 Sector: Hydro Product: Focused on developing, upgrading, owning, and operating...

  15. North American Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: North American Biofuels Place: Bohemia, New York Product: Biodiesel eqwuipment manufacturer and producer of biodiesel Coordinates:...

  16. North Associated Power Corporation | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: North Associated Power Corporation Place: Huhehaote, Inner Mongolia Autonomous Region, China Zip: 10020 Product: A company generating power for Inner...

  17. North Country Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Country Ethanol LLC Jump to: navigation, search Name: North Country Ethanol LLC Place: Rosholt, South Dakota Zip: 57260 Product: 20mmgy (75.7m litresy) ethanol producer....

  18. North Carolina Solar Center | Open Energy Information

    Open Energy Info (EERE)

    Solar Center Jump to: navigation, search Name: North Carolina Solar Center Sector: Renewable Energy Product: Promotes the use of renewable energy technologies with funding from the...

  19. North American Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    North American Biodiesel Place: Menmonee Falls, Wisconsin Product: Biodiesel producer currently developing a biodiesel plant in Butler, Wisconsin and with plans to develop another...

  20. Solar radiation on variously oriented sloping surfaces

    SciTech Connect (OSTI)

    Gopinathan, K.K. )

    1991-01-01

    Monthly average daily irradiation on surfaces tilted towards the equator and also inclined at various azimuth angles are estimated for two locations in Lesotho and the results are presented. The isotropic model suggested by Liu and Jordan (Trans. of Ashrae, 526, 1962) along with the modified equation of Klein (Solar Energy, 19, 4, 1977) are employed for the estimation purposes. Surface orientations are selected at three inclinations for six different azimuth angles. Conclusions are reached for optimum tilt and orientation for summer, winter and annual collection. Total annual radiation values are computed for all the slopes and orientations.

  1. SOFAST: Sandia Optical Fringe Analysis Slope Tool

    Energy Science and Technology Software Center (OSTI)

    2015-10-20

    SOFAST is used to characterize the surface slope of reflective mirrors for solar applications. SOFAST uses a large monitor or projections screen to display fringe patterns, and a machine vision camera to image the reflection of these patterns in the subject mirror. From these images, a detailed map of surface normals can be generated and compared to design or fitted mirror shapes. SOFAST uses standard Fringe Reflection (Deflectometry) approaches to measure the mirror surface normals.more » SOFAST uses an extrinsic analysis of key points on the facet to locate the camera and monitor relative to the facet coordinate system. It then refines this position based on the measured surface slope and integrated shape of the mirror facet. The facet is placed into a reference frame such that key points on the facet match the design facet in orientation and position. This is key to evaluating a facet as suitable for a specific solar application. SOFAST reports the measurements of the facet as detailed surface normal location in a format suitable for ray tracing optical analysis codes. SOFAST also reports summary information as to the facet fitted shape (monomial) and error parameters. Useful plots of the error distribution are also presented.« less

  2. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2001-10-31

    The Nash Draw Brushy Canyon Pool (NDP) in southeast New Mexico is one of the nine projects selected in 1995 by the U.S. Department of Energy (DOE) for participation in the Class III Reservoir Field Demonstration Program. The goals of the DOE cost-shared Class Program are to: (1) extend economic production, (2) increase ultimate recovery, and (3) broaden information exchange and technology application. Reservoirs in the Class III Program are focused on slope basin and deep-basin clastic depositional types. Production at the NDP is from the Brushy Canyon formation, a low-permeability turbidite reservoir in the Delaware Mountain Group of Permian, Guadalupian age. A major challenge in this marginal-quality reservoir is to distinguish oil-productive pay intervals from water-saturated non-pay intervals. Because initial reservoir pressure is only slightly above bubble-point pressure, rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Limited surface access, caused by the proximity of underground potash mining and surface playa lakes, prohibits development with conventional drilling. Reservoir characterization results obtained to date at the NDP show that a proposed pilot injection area appears to be compartmentalized. Because reservoir discontinuities will reduce effectiveness of a pressure maintenance project, the pilot area will be reconsidered in a more continuous part of the reservoir if such areas have sufficient reservoir pressure. Most importantly, the advanced characterization results are being used to design extended reach/horizontal wells to tap into predicted ''sweet spots'' that are inaccessible with conventional vertical wells. The activity at the NDP during the past year has included the completion of the NDP Well No.36 deviated/horizontal well and the completion of additional zones in three wells, the design of the NDP No.33 directional/horizontal well, The planning and regulatory approval for the

  3. ,"Louisiana--North Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... ,"Data 1","Louisiana--North Natural Gas Plant Liquids, Expected Future Production ...

  4. North Dakota Industrial Commission, Oil and Gas Divisioin | Open...

    Open Energy Info (EERE)

    in Bismarck, North Dakota. About The Oil and Gas Division regulates the drilling and production of oil and gas in North Dakota. Our mission is to encourage and promote the...

  5. The Challenge of Estimating Precipitation on Alaskas North Slope

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Author: Peter Gross, peter.gross@eia.doe.gov, (202)586-8822 Disclaimer: Views not necessarily those of the U. S. Energy Information Administration Date: May 15, 2010 Revised: July 16, 2010 The Challenge of Achieving California's Low Carbon Fuel Standard Peter Gross Office of Integrated Analysis and Forecasting U.S. Energy Information Administration This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the author and not

  6. Project Aids Development of Legacy Oilfield on Alaska’s North Slope

    Broader source: Energy.gov [DOE]

    Building on a project sponsored by the U.S. Department of Energy, Linc Energy is exploring the potential for accessing significant amounts of oil in the Umiat oilfield, a shallow, low-temperature, light-oil reservoir within Alaska’s National Petroleum Reserve. In the process, they’re shedding light on how this and similar reservoirs could be successfully developed to increase supplies of domestic oil and natural gas.

  7. ARRA additions to the north slope of Alaska. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Authors: Richardson, Scott 1 ; Cherry, Jessica 2 ; Stuefer, Martin 2 ; Zirzow, Jeffrey A. ; Zak, Bernard Daniel ; Ivey, Mark D. ; Verlinde, Johannes 1 + Show Author ...

  8. The application of high volume jet pumps in North Slope water source wells

    SciTech Connect (OSTI)

    Christ, F.C.; Zublin, J.A.

    1983-03-01

    ARCO Alaska's pilot water flooding system for the Kuparuk Field requires 40000 to 50000 B/D (6360 to 7950 cu m/d) of fresh water from a 3000 foot (914 m) deep aquifer. The artificial lift system selected must be of proven technology, reliable in the harsh environment, easy to maintain, and compact for ease of enclosure. The two lift systems considered were electric submersible pump and hydraulic jet pump. Pilot well tests were run using these two types of systems and are discussed. These tests confirmed the formations' producibility, and revealed some problems at high rates. Based on pilot test results, a system of ten specially designed 3 in. (7.62 cm) jet pumps was selected. Background on jet pumping, design features of the system, results of the tests in October 1982, and comparison with predicted performance are presented.

  9. Preliminary microfacies analysis and cyclicity of the Wahoo Limestone, Lisburne Field, North Slope, Alaska

    SciTech Connect (OSTI)

    Morgan, S.K.; Watts, K.F.

    1995-05-01

    A well from the Lisburne field near Prudhoe Bay was examined in core, thin section, and on well logs for comparison with Wahoo Limestone in the Arctic National Wildlife Refuge (ANWR). Carbonate cycles (parasequences) are well developed in both areas but the greater abundance of terrigenous sediment and associated carbonate facies indicate that the study well is located in a more landward position on the Wahoo carbonate ramp, closer to a source of terrigenous sediment. This report presents the preliminary results of microfacies analyses that have been conducted on 424 of a total 1,115 thin sections from the study well. The stratigraphic nomenclature extended from ANWR (the type locality of the Wahoo Limestone) is different that the terminology previously used for the subsurface Lisburne Group near Prudhoe Bay. We distinguish informal lower and upper members within the Mississippian to Pennsylvanian Wahoo Limestone which overlies the Mississippian Alapah Limestone. Our upper Alapah corresponds to the middle Alapah of previous workers. Our lower Wahoo Limestone member corresponds to the upper Alapah of previous workers. Our upper Wahoo Limestone member corresponds to the previous Wahoo Limestone and is the major hydrocarbon reservoir at the Lisburne field, which is characterized by well-developed carbonate cycles (parasequences).

  10. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  11. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope...

    Office of Scientific and Technical Information (OSTI)

    ... Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  12. A Year of Radiation Measurements at the North Slope of Alaska...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2009-04-15 OSTI Identifier: 952496 Report Number(s): DOESC-ARMP-09-010 R&D Project: 15990; TRN: US201002%%1470 DOE Contract Number: DE-AC0576RL01830 Resource ...

  13. File:EIA-AK-NorthSlope-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  14. File:EIA-AK-NorthSlope-liquids.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  15. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope...

    Office of Scientific and Technical Information (OSTI)

    ... AAF ABoVE ACME ARM ATQ BRW CARVE CCSP DOE ESRL FT GCM GHG IVO JPL LGR LSM LTER m NACP NASA ... Reservoirs Vulnerability Experiment, a NASA project U.S. Carbon Cycle Science Plan ...

  16. ARM Quick-looks Database for North Slope Alaska (NSA) sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stamnes, Knut [NSA Site Scientist

    From these pages one can monitor parts of the data acquisition process and access daily data visualizations from the different instruments. These data visualizations are produced in near real time automatically and are called Quick-Looks (QLs). The quick-looks contains unofficial data of unknown quality. Once data is released one can obtain the full data-set from any instrument available, and along with that, a statement about the data quality from the ARM archive. The database provides Quick-looks for the Barrow ACRF site (NSA C1), the Atqasuk ACRF site (NSA C2), or the SHEBA ice campaign of 1997 and 1998. As of 12-17-08, the database had more than 528,000 quick-looks available as data figures and data plots. No password is required for Quick-look access. (Specialized Interface)

  17. Cass County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    North Dakota North River, North Dakota Oxbow, North Dakota Page, North Dakota Prairie Rose, North Dakota Reile's Acres, North Dakota Tower City, North Dakota West Fargo, North...

  18. Study of biological processes on the US South Atlantic slope and rise. Phase 1: Benthic characterization. Volume 1. Executive Summary

    SciTech Connect (OSTI)

    Blake, J.A.; Hecker, B.; Grassle, J.F.; Maciolek-Blake, N.; Brown, B.

    1985-06-01

    Concerns about the potential effects of oil and gas exploration on the U.S. Continental Slope and Rise led to the initiation of a deep-sea characterization study off North Carolina. The program included a seasonal characterization of biological and surficial geological properties at a limited number of slope and rise sites, with special emphasis on areas of high oil industry interest. A five-station transect was established off Cape Lookout in depths of 600 m, 1000 m, 1500 m, 2000 m and 3000 m. A rich and highly diverse benthic infauna was discovered, with a large percentage of the 877 species being new to science. Faunal density was highest on the upper slope (600 m) and lowest on the continental rise (3000 m). Species diversity values were all higher than 6.0, indicating a very diverse fauna, with the highest values at 3000 m. Foraminiferan tests comprised most of the sand fraction. Hydrographic data indicated some intrusion of colder water on the upper slope benthos from deeper water.

  19. Modified Newmark model for seismic displacements of compliant slopes

    SciTech Connect (OSTI)

    Kramer, S.L.; Smith, M.W.

    1997-07-01

    Newmark sliding block analyses are widely used for estimation of permanent displacements of slopes in earthquakes. The conventional Newmark model, however, neglects the dynamic response of the material above a potential failure surface. Decoupled procedures have been developed to account for that response, but they neglect the effects of permanent displacements on the response. A modified Newmark analysis that considers the dynamic response, including the effects of permanent displacements, of the material above the failure surface is presented. The modified Newmark analysis shows that the decoupled approach produces somewhat conservative estimates of permanent displacements for stiff and/or shallow failure masses, but that it may produce unconservative estimates for failure masses that are soft and/or deep. Many slopes of large, lined landfills may fall into this latter category. The notion of a slope spectrum, which illustrates the effect of the natural period of a potential failure mass on permanent slope displacement, is also introduced.

  20. West Slope, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Slope is a census-designated place in Washington County, Oregon.1 References US...

  1. NorthStar Medical Technologies LLC

    National Nuclear Security Administration (NNSA)

    Environmental Assessment for NorthStar Medical Technologies LLC Commercial Domestic Production of the Medical Isotope Molybdenum-99 (DOE/EA-1929) Prepared for U.S. Department of Energy National Nuclear Security Administration Defense Nuclear Nonproliferation/ Global Threat Reduction Initiative August 2012 EA for NorthStar Medical Technologies LLC Commercial Domestic Production of the Medical Isotope Mo-99 i COVER SHEET ENVIRONMENTAL ASSESSMENT FOR NORTHSTAR MEDICAL TECHNOLOGIES LLC COMMERCIAL

  2. Validation of Global Weather Forecast and Climate Models Over the North

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slope of Alaska Validation of Global Weather Forecast and Climate Models Over the North Slope of Alaska Xie, Shaocheng Lawrence Livermore National Laboratory Klein, Stephen Lawrence Livermore National Laboratory Boyle, Jim Lawrence Livermore National Laboratory Fiorino, Michael DOE/Lawrence Livermore National Laboratory Hnilo, Justin DOE/Lawrence Livermore National Laboratory Phillips, Thomas PCMDI/LLNL Potter, Gerald Lawrence Livermore National Laboratory Beljaars, Anton ECMWF Category:

  3. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill

    SciTech Connect (OSTI)

    Yu, L.; Batlle, F.

    2011-12-15

    Highlights: > A quasi-three-dimensional slope stability analysis method was proposed. > The proposed method is a good engineering tool for 3D slope stability analysis. > Factor of safety from 3D analysis is higher than from 2D analysis. > 3D analysis results are more sensitive to cohesion than 2D analysis. - Abstract: Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The 'equivalent' three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that Fo

  4. Shenneng North Energy Holding Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Product: Beijing-based renewable power developer, Shenzhen Energy's renewable arm that aims renewable projects in northern China. References: Shenneng North Energy...

  5. North China Electric Power University Beijing | Open Energy Informatio...

    Open Energy Info (EERE)

    Electric Power University Beijing Jump to: navigation, search Name: North China Electric Power University (Beijing) Place: Beijing, Beijing Municipality, China Zip: 102206 Product:...

  6. POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION...

    Office of Scientific and Technical Information (OSTI)

    CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS Citation Details In-Document Search Title: POWDERED ACTIVATED...

  7. Advanced Vehicle Research Center of North Carolina | Open Energy...

    Open Energy Info (EERE)

    Carolina Place: Raleigh, North Carolina Zip: 27614-7636 Product: Provide a modern automotive testing facility Coordinates: 37.760748, -81.161183 Show Map Loading map......

  8. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new

  9. Robeson County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Carolina Prospect, North Carolina Raemon, North Carolina Raynham, North Carolina Red Springs, North Carolina Rennert, North Carolina Rex, North Carolina Rowland, North...

  10. Cavalier County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Calvin, North Dakota Hannah, North Dakota Langdon, North Dakota Loma, North Dakota Milton, North Dakota Munich, North Dakota Nekoma, North Dakota Osnabrock, North Dakota...

  11. Barnes County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    County, North Dakota Dazey, North Dakota Fingal, North Dakota Kathryn, North Dakota Leal, North Dakota Litchville, North Dakota Nome, North Dakota Oriska, North Dakota...

  12. Rolette County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota North Rolette, North Dakota Rolette, North Dakota Rolla, North Dakota Shell Valley, North Dakota South Rolette, North Dakota St. John, North Dakota Turtle...

  13. Northampton County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Carolina Conway, North Carolina Garysburg, North Carolina Gaston, North Carolina Jackson, North Carolina Lasker, North Carolina Rich Square, North Carolina Seaboard, North...

  14. Mountrail County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota New Town, North Dakota Palermo, North Dakota Parshall, North Dakota Plaza, North Dakota Ross, North Dakota Southwest Mountrail, North Dakota Stanley, North...

  15. Burleigh County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota Lincoln, North Dakota Lincoln-Fort Rice, North Dakota Lyman, North Dakota Phoenix, North Dakota Regan, North Dakota Wilton, North Dakota Wing, North Dakota Retrieved...

  16. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect (OSTI)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  17. Structural Damage Detection Using Slopes of Longitudinal Vibration Shapes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, W.; Zhu, W. D.; Smith, S. A.; Cao, M. S.

    2016-03-18

    While structural damage detection based on flexural vibration shapes, such as mode shapes and steady-state response shapes under harmonic excitation, has been well developed, little attention is paid to that based on longitudinal vibration shapes that also contain damage information. This study originally formulates a slope vibration shape for damage detection in bars using longitudinal vibration shapes. To enhance noise robustness of the method, a slope vibration shape is transformed to a multiscale slope vibration shape in a multiscale domain using wavelet transform, which has explicit physical implication, high damage sensitivity, and noise robustness. These advantages are demonstrated in numericalmore » cases of damaged bars, and results show that multiscale slope vibration shapes can be used for identifying and locating damage in a noisy environment. A three-dimensional (3D) scanning laser vibrometer is used to measure the longitudinal steady-state response shape of an aluminum bar with damage due to reduced cross-sectional dimensions under harmonic excitation, and results show that the method can successfully identify and locate the damage. Slopes of longitudinal vibration shapes are shown to be suitable for damage detection in bars and have potential for applications in noisy environments.« less

  18. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  19. Potential Oil Production from the Coastal Plain of the Arctic National

    U.S. Energy Information Administration (EIA) Indexed Site

    Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 1. Overview of the Arctic National Wildlife Refuge Background The Arctic National Wildlife Refuge (ANWR) 1002 Area of the Alaska North Slope represents an area of 1.5 million acres. The ANWR Coastal Plain Area includes the 1002 Area, State of Alaska lands to the 3-mile limit from the coast line, and approximately 92,000 acres of Native Inupiat lands.

  20. Instrumentation for slope stability -- Experience from an urban area

    SciTech Connect (OSTI)

    Flentje, P.; Chowdhury, R.

    1999-07-01

    This paper describes the monitoring of several existing landslides in an urban area near Wollongong in the state of New South Wales, Australia. A brief overview of topography and geology is given and reference is made to the types of slope movement, processes and causal factors. Often the slope movements are extremely slow and imperceptible to the eye, and catastrophic failures are quite infrequent. However, cumulative movements at these slower rates do, over time, cause considerable distress to structures and disrupt residential areas and transport routes. Inclinometers and piezometers have been installed at a number of locations and monitoring of these has been very useful. The performance of instrumentation at different sites is discussed in relation to the monitoring of slope movements and pore pressures. Interval rates of inclinometer shear displacement have been compared with various periods of cumulative rainfall to assess the relationships.

  1. Going Global: Tight Oil Production

    Gasoline and Diesel Fuel Update (EIA)

    GOING GLOBAL: TIGHT OIL PRODUCTION Leaping out of North America and onto the World Stage JULY 2014 GOING GLOBAL: TIGHT OIL PRODUCTION Jamie Webster, Senior Director Global Oil ...

  2. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is

  3. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  4. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-06-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  5. Alamance County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Burlington, North Carolina Elon, North Carolina Gibsonville, North Carolina Glen Raven, North Carolina Graham, North Carolina Green Level, North Carolina Haw River, North...

  6. Bowman County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    A. Places in Bowman County, North Dakota Bowman, North Dakota Gascoyne, North Dakota Hart, North Dakota Rhame, North Dakota Scranton, North Dakota West Bowman, North Dakota...

  7. Pembina County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Pembina County, North Dakota Bathgate, North Dakota Canton City, North Dakota Cavalier, North Dakota Crystal, North Dakota Drayton, North Dakota Hamilton, North Dakota...

  8. Bladen County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Dublin, North Carolina East Arcadia, North Carolina Elizabethtown, North Carolina Kelly, North Carolina Tar Heel, North Carolina White Lake, North Carolina White Oak, North...

  9. Duplin County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Kenansville, North Carolina Magnolia, North Carolina Mount Olive, North Carolina Rose Hill, North Carolina Teachey, North Carolina Wallace, North Carolina Warsaw, North...

  10. Wells County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    North Dakota Cathay, North Dakota Fessenden, North Dakota Hamberg, North Dakota Harvey, North Dakota Hurdsfield, North Dakota Sykeston, North Dakota Retrieved from "http:...

  11. Wayne County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Places in Wayne County, North Carolina Brogden, North Carolina Elroy, North Carolina Eureka, North Carolina Fremont, North Carolina Goldsboro, North Carolina Mar-Mac, North...

  12. Case study of slope failures at Spilmans Island

    SciTech Connect (OSTI)

    Kayyal, M.K.; Hasen, M.

    1998-11-01

    This paper presents a case study for a dredge disposal site called Spilmans Island, located along the Houston-Galveston Ship Channel, east of Houston. Initially classified as a sand bar in the San Jacinto River, Spilmans Island evolved in recent years with the construction of perimeter levees to contain the flow of materials produced from dredging operations. These levees were often constructed on soft dredged sediments, and as the levees were raised, occasionally slope failures occurred. The objectives of this paper are to illustrate the importance of reconstructing the history of a site as a basis for geotechnical analyses, and to demonstrate the significance of keeping accurate records of past investigations, construction activities, slope failures and subsequent remedial measures. The results of the geotechnical investigation described in this paper offer a clear example of how such data can be used to provide reliable predictions on the stability conditions of raised levees.

  13. Spectral Slope of MHD Turbulence | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectral Slope of MHD Turbulence PI Name: Andrey Beresnyak PI Email: andrey.at.astro@gmail.com Institution: Los Alamos National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 35 Million Year: 2013 Research Domain: Physics MHD turbulence has attracted attention of astronomers since mid 1960s. As most astrophysical media are ionized, plasmas are coupled to the magnetic fields. A simple one-fluid description known as magnetohydrodynamics (MHD) is broadly applicable to most

  14. Comparison of slope stability in two Brazilian municipal landfills

    SciTech Connect (OSTI)

    Gharabaghi, B. Singh, M.K.; Inkratas, C. Fleming, I.R. McBean, E.

    2008-07-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use 'generic' published shear strength envelopes for municipal waste. Application of the slope stability

  15. North Dome decision expected soon

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    Decisions soon will be made which will set in motion the development of Qatar's huge North Dome gas field. The government and state company, Qatar General Petroleum Corp. (QGPC) is studying the results of 2 feasibility studies on the economics of LNG export, although initially North Dome exploitation will be aimed at the domestic market. Decisions on the nature and timing of the North Dome development are the most important that have had to be faced in the short 10-yr history of the small Gulf state. The country's oil production is currently running at approximately 500,000 bpd, with 270,000 bpd originating from 3 offshore fields. Output is expected to decline through 1990, and it generally is accepted that there is little likelihood of further major crude discoveries. Therefore, Qatar has to begin an adjustment from an economy based on oil to one based on gas, while adhering to the underlying tenets of long-term conservation and industrial diversification.

  16. Los Alamos Lab to perform slope-side cleanup near Smith's Marketplace

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Lab to perform slope-side cleanup near Smith's Marketplace Los Alamos National Laboratory to perform slope-side cleanup near Smith's Marketplace The Lab is performing a ...

  17. ,"North Carolina Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Carolina Natural Gas Prices",8,"Monthly","... 10:49:13 AM" "Back to Contents","Data 1: North Carolina Natural Gas Prices" ...

  18. ,"North Dakota Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Prices",8,"Monthly","4... 10:49:14 AM" "Back to Contents","Data 1: North Dakota Natural Gas Prices" ...

  19. Forsyth County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Carolina King, North Carolina Lewisville, North Carolina Midway, North Carolina Rural Hall, North Carolina Tobaccoville, North Carolina Walkertown, North Carolina Winston-Salem,...

  20. Richmond County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    East Rockingham, North Carolina Ellerbe, North Carolina Hamlet, North Carolina Hoffman, North Carolina Norman, North Carolina Rockingham, North Carolina Retrieved from...

  1. Brunswick County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Island, North Carolina Belville, North Carolina Boiling Spring Lakes, North Carolina Bolivia, North Carolina Calabash, North Carolina Carolina Shores, North Carolina Caswell...

  2. Hoke County, North Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Carolina Dundarrach, North Carolina Five Points, North Carolina Raeford, North Carolina Red Springs, North Carolina Rockfish, North Carolina Silver City, North Carolina Retrieved...

  3. Nash County, North Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Carolina Middlesex, North Carolina Momeyer, North Carolina Nashville, North Carolina Red Oak, North Carolina Rocky Mount, North Carolina Sharpsburg, North Carolina Spring Hope,...

  4. Stanly County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Carolina New London, North Carolina Norwood, North Carolina Oakboro, North Carolina Red Cross, North Carolina Richfield, North Carolina Stanfield, North Carolina Retrieved...

  5. LaMoure County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Edgeley, North Dakota Jud, North Dakota Kulm, North Dakota LaMoure, North Dakota Marion, North Dakota Verona, North Dakota Retrieved from "http:en.openei.orgw...

  6. Dickey County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Subtype A. Places in Dickey County, North Dakota Ellendale, North Dakota Forbes, North Dakota Fullerton, North Dakota Ludden, North Dakota Monango, North Dakota...

  7. Iredell County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Iredell County, North Carolina Davidson, North Carolina Harmony, North Carolina Love Valley, North Carolina Mooresville, North Carolina Statesville, North Carolina Stony...

  8. Steele County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    North Dakota M Power LLC Places in Steele County, North Dakota Finley, North Dakota Hope, North Dakota Luverne, North Dakota Sharon, North Dakota Retrieved from "http:...

  9. Cumberland County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Carolina Fayetteville, North Carolina Fort Bragg, North Carolina Godwin, North Carolina Hope Mills, North Carolina Linden, North Carolina Pope AFB, North Carolina Spring Lake,...

  10. Granville County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Granville County, North Carolina Butner, North Carolina Creedmoor, North Carolina Oxford, North Carolina Stem, North Carolina Stovall, North Carolina Retrieved from "http:...

  11. Carteret County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Bogue, North Carolina Cape Carteret, North Carolina Cedar Point, North Carolina Emerald Isle, North Carolina Harkers Island, North Carolina Indian Beach, North Carolina...

  12. Henderson County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    East Flat Rock, North Carolina Etowah, North Carolina Flat Rock, North Carolina Fletcher, North Carolina Hendersonville, North Carolina Laurel Park, North Carolina Mills...

  13. Craven County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Dover, North Carolina Fairfield Harbour, North Carolina Havelock, North Carolina James City, North Carolina Neuse Forest, North Carolina New Bern, North Carolina River Bend,...

  14. Sioux County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 6 Climate Zone Subtype A. Places in Sioux County, North Dakota Cannon Ball, North Dakota Fort Yates, North Dakota North Sioux, North Dakota Selfridge, North...

  15. EIS-0025: Miles City-New Underwood 230-kV Electrical Transmission Line, Montana, North Dakota, and South Dakota

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the environmental and socioeconomic implications of its proposed action to construct a 3.28-mile, 230-kV transmission line between Miles City and Baker, Montana, Hettinger, North Dakota, and New Underwood, South Dakota, in Custer and Fallon Counties in Montana, Adams, Bowman, and Slope Counties in North Dakota and Meade, Pennington, and Perkins Counties in South Dakota.

  16. Agri Ethanol Products LLC AEPNC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Products LLC AEPNC Jump to: navigation, search Name: Agri-Ethanol Products LLC (AEPNC) Place: Raleigh, North Carolina Zip: 27615 Product: Ethanol producer and project...

  17. Michael North | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North collaborates with colleagues in the Global Security Sciences division. From right to left: Mike North, Pam Sydelko, Ignacio Martinez-Moyano, and Jessica Trail. Click image to enlarge. North collaborates with colleagues in the Global Security Sciences division. From right to left: Mike North, Pam Sydelko, Ignacio Martinez-Moyano, and Jessica Trail. Click image to enlarge. North maintains a healthy work-life balance by working out regularly at the Argonne Fitness Center. The gym is free,

  18. Study of biological processes on the US South Atlantic slope and rise. Phase 2. Volume 1. Executive summary. Report for November 1985-March 1987

    SciTech Connect (OSTI)

    Blake, J.A.; Hecker, B.; Grassle, J.F.; Brown, B.; Wade, M.

    1987-03-30

    A total of 16 stations were sampled during a 2-year field program designed to characterize the biological, chemical, and sedimentary processes on the slope and rise off North and South Carolina. Box cores were taken along 4 transects at depths of 600-3500 m. The infauna yielded a total of 1202 species, 520 of which were new to science. Annelids were the dominant taxa in terms of density and numbers of species. Species diversity was highest at an 800 m site off Charleston. Higher than normal lead and hydrocarbon inventories suggest enhanced scavenging processes in the area.

  19. Draft Environmental Assessment for NorthStar | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Draft Environmental Assessment for NorthStar ENVIRONMENTAL ASSESSMENT FOR NORTHSTAR MEDICAL TECHNOLOGIES LLC COMMERCIAL DOMESTIC PRODUCTION OF THE MEDICAL ISOTOPE MOLYBDENUM-99 Proposed Action: The Department of Energy (DOE) National Nuclear Security Administration (NNSA) proposes to provide funding to NorthStar to accelerate the establishment of the commercial production of the medical isotope molybdenum-99 using accelerator technology. Report Designation: Draft

  20. Carbonate gravity-flow processes on the Lower Permian slope, northwest Delaware basin

    SciTech Connect (OSTI)

    Loucks, R.G.; Brown, A.A.; Achauer, C.W. )

    1991-03-01

    Wolfcampian carbonate gravity-flow deposits accumulated on a low-angle slope in front of a platform of relatively low relief ({approximately}220 m). A 25 m core, located approximately 15 km basinward of the self margin, was examined to determine processes of carbonate deposition in the middle to distal slope environments. The majority of the deposits are cohesive debris-flows composed of clast-supported conglomerates with a calcareous siliciclastic mudstone matrix. Other deposits include high- and low-density turbidites of lime packstones (sand- to boulder-size range), lime grainstones, and siliclastic muddy silstones and suspension deposits of calcareous siliciclastic mudstones. Cohesive debris flows are generally massive and structureless, although several flows show an inverse-graded zone at their base indicating dispersive pressure forces that developed in a traction carpet. Other flows display coarse-tail fining-upward sequences indicating deposition by suspension settling from liquefied flow. At the base of each high-density, gravelly turbidite is one to several inversely graded zones of carbonated clasts indicating a traction carpet zone. These traction carpets are overlain by normal-graded units of shell and clast material. The upper units appear to be deposited directly out of suspension. The low-density turbidites are interpreted to be the residual products of more shelfward-deposited debris flows and high-density turbidity currents. Many of the depositional features described here for carbonate gravity-flow deposits are identical to those in siliclastic deposits, therefore the depositional processes controlling these features are probably similar.

  1. Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler

    SciTech Connect (OSTI)

    Yashchuk, Valeriy V; Barber, Samuel; Domning, Edward E.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Smith, Brian V; Siewert, Frank; Zeschke, Thomas; Geckeler, Ralf; Just, Andreas

    2009-09-11

    A new low budget slope measuring instrument, the Developmental Long Trace Profiler (DLTP), was recently brought to operation at the ALS Optical Metrology Laboratory. The design, instrumental control and data acquisition system, initial alignment and calibration procedures, as well as the developed experimental precautions and procedures are described in detail. The capability of the DLTP to achieve sub-microradian surface slope metrology is verified via cross-comparison measurements with other high performance slope measuring instruments when measuring the same high quality test optics. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.

  2. ,"North Carolina Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"N3035NC3","N3045NC3" "Date","Natural Gas Citygate Price in North Carolina (Dollars per Thousand Cubic Feet)","North Carolina Price of Natural Gas Delivered to Residential ...

  3. Pitt County, North Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Carolina Greenville, North Carolina Grifton, North Carolina Grimesland, North Carolina Simpson, North Carolina Winterville, North Carolina Retrieved from "http:en.openei.orgw...

  4. Pender County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Pender County, North Carolina Atkinson, North Carolina Burgaw, North Carolina St. Helena, North Carolina Surf City, North...

  5. Hettinger County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Hettinger County, North Dakota Central Hettinger, North Dakota Mott, North Dakota New England, North Dakota Regent, North Dakota Retrieved from "http:en.openei.orgw...

  6. Dunn County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Dunn County, North Dakota Dodge, North Dakota Dunn Center, North Dakota Halliday, North Dakota Killdeer, North Dakota Retrieved from "http:en.openei.orgw...

  7. Ransom County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    North Dakota Enderlin, North Dakota Fort Ransom, North Dakota Lisbon, North Dakota Sheldon, North Dakota Retrieved from "http:en.openei.orgwindex.php?titleRansomCounty,N...

  8. Stokes County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Subtype A. Places in Stokes County, North Carolina Danbury, North Carolina King, North Carolina Tobaccoville, North Carolina Walnut Cove, North Carolina Retrieved from...

  9. Columbus County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Number 3 Climate Zone Subtype A. Places in Columbus County, North Carolina Boardman, North Carolina Bolton, North Carolina Brunswick, North Carolina Cerro Gordo, North...

  10. Kidder County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 7 Climate Zone Subtype A. Places in Kidder County, North Dakota Dawson, North Dakota Kickapoo, North Dakota Pettibone, North Dakota Robinson, North Dakota...