National Library of Energy BETA

Sample records for north slope gas

  1. Natural gas hydrates on the North Slope of Alaska

    SciTech Connect (OSTI)

    Collett, T.S.

    1991-01-01

    Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances often have been regarded as a potential (unconventional) source of natural gas. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic including Siberia, the Mackenzie River Delta, and the North Slope of Alaska. On the North Slope, the methane-hydrate stability zone is areally extensive beneath most of the coastal plain province and has thicknesses as great as 1000 meters in the Prudhoe Bay area. Gas hydrates have been identified in 50 exploratory and production wells using well-log responses calibrated to the response of an interval in one well where gas hydrates were recovered in a core by ARCO Alaska and EXXON. Most of these gas hydrates occur in six laterally continuous Upper Cretaceous and lower Tertiary sandstone and conglomerate units; all these gas hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River Oil Field and the western part of the Prudhoe Bay Oil Field. The volume of gas within these gas hydrates is estimated to be about 1.0 {times} 10{sup 12} to 1.2 {times} 10{sup 12} cubic meters (37 to 44 trillion cubic feet), or about twice the volume of conventional gas in the Prudhoe Bay Field. Geochemical analyses of well samples suggest that the identified hydrates probably contain a mixture of deep-source thermogenic gas and shallow microbial gas that was either directly converted to gas hydrate or first concentrated in existing traps and later converted to gas hydrate. The thermogenic gas probably migrated from deeper reservoirs along the same faults thought to be migration pathways for the large volumes of shallow, heavy oil that occur in this area. 51 refs., 11 figs., 3 tabs.

  2. Economics of Alaska North Slope gas utilization options

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

    1996-08-01

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

  3. File:EIA-AK-NorthSlope-gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    applicationpdf) Description Alaskan North Slope By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  4. Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

  5. Conversion economics for Alaska North Slope natural gas

    SciTech Connect (OSTI)

    Thomas, C.P.; Robertson, E.P.

    1995-07-01

    For the Prudhoe Bay field, this preliminary analysis provides an indication that major gas sales using a gas pipeline/LNG plant scenario, such as Trans Alaska Gas System, or a gas-to-liquids process with the cost parameters assumed, are essentially equivalent and would be viable and profitable to industry and beneficial to the state of Alaska and the federal government. The cases are compared for the Reference oil price case. The reserves would be 12.7 BBO for the base case without major gas sales, 12.3 BBO and 20 Tcf gas for the major gas sales case, and 14.3 BBO for the gas-to-liquids conversion cases. Use of different parameters will significantly alter these results; e.g., the low oil price case would result in the base case for Prudhoe Bay field becoming uneconomic in 2002 with the operating costs and investments as currently estimated.

  6. Issues facing the future use of Alaskan NorthSlope natural gas

    SciTech Connect (OSTI)

    Bowsher, C.A.

    1983-05-12

    The North Slope of Alaska contains over 26 trillion cubic feet of natural gas. In 1977, the President and the Congress approved construction of a 4800-mile gas pipeline to bring this gas to US consumers by 1983. However, completion of the project is not now expected until late 1989 at the earliest. This report examines the status and outlook for the Alaskan gas pipeline (the Alaska Natural Gas Transportation System). It also evaluates the pros and cons of (1) alternative systems to deliver this gas to market, including a gas pipeline with Alaska for export of liquefied natural gas; (2) processing the gas in Alaska by converting it to methanol and petrochemicals for export; and (3) using the gas within Alaska.

  7. ARM North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sites on the North Slope of Alaska (NSA), to provide data about cloud and radiative ... More Information North Slope of Alaska Website NSA Fact Sheet Visit the North Slope of ...

  8. Geologic interrelations relative to gas hydrates within the North Slope of Alaska: Task No. 6, Final report

    SciTech Connect (OSTI)

    Collett, T.S.; Bird, K.J.; Kvenvolden, K.A.; Magoon, L.B.

    1988-01-01

    The five primary objectives of the US Geological Survey North Slope Gas Hydrate Project were to: (1) Determine possible geologic controls on the occurrence of gas hydrate; (2) locate and evaluate possible gas-hydrate-bearing reservoirs; (3) estimate the volume of gas within the hydrates; (4) develop a model for gas-hydrate formation; and (5) select a coring site for gas-hydrate sampling and analysis. Our studies of the North Slope of Alaska suggest that the zone in which gas hydrates are stable is controlled primarily by subsurface temperatures and gas chemistry. Other factors, such as pore-pressure variations, pore-fluid salinity, and reservior-rock grain size, appear to have little effect on gas hydrate stability on the North Slope. Data necessary to determine the limits of gas hydrate stability field are difficult to obtain. On the basis of mud-log gas chromatography, core data, and cuttings data, methane is the dominant species of gas in the near-surface (0--1500 m) sediment. Gas hydrates were identified in 34 wells utilizing well-log responses calibrated to the response of an interval in one well where gas hydrates were actually recovered in a core by an oil company. A possible scenario describing the origin of the interred gas hydrates on the North Slope involves the migration of thermogenic solution- and free-gas from deeper reservoirs upward along faults into the overlying sedimentary rocks. We have identified two (dedicated) core-hole sites, the Eileen and the South-End core-holes, at which there is a high probability of recovering a sample of gas hydrate. At the Eileen core-hole site, at least three stratigraphic units may contain gas hydrate. The South-End core-hole site provides an opportunity to study one specific rock unit that appears to contain both gas hydrate and oil. 100 refs., 72 figs., 24 tabs.

  9. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    NPRA Colville River Area ANWR 1002 Area (No 2001 Reserves) North Slope Regional NPRA Barrow Area NPRA ANWR NPRA Wells OIL GAS , INJECTOR 2001 Liquid Reserve Class No 2001...

  10. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    NPRA Colville River Area ANWR 1002 Area (No 2001 Reserves) North Slope Regional NPRA Barrow Area NPRA ANWR NPRA Gas Reserve Class 1,000.1 to 10,000 MMCF 10,000.1 to 100,000 MMCF...

  11. Gas Production From a Cold, Stratigraphically Bounded Hydrate Deposit at the Mount Elbert Site, North Slope, Alaska

    SciTech Connect (OSTI)

    Moridis, G.J.; Silpngarmlert, S.; Reagan, M. T.; Collett, T.S.; Zhang, K.

    2009-09-01

    As part of an effort to identify suitable targets for a planned long-term field test, we investigate by means of numerical simulation the gas production potential from unit D, a stratigraphically bounded (Class 3) permafrost-associated hydrate occurrence penetrated in the ount Elbert well on North Slope, Alaska. This shallow, low-pressure deposit has high porosities, high intrinsic permeabilities and high hydrate saturations. It has a low temperature because of its proximity to the overlying permafrost. The simulation results indicate that vertical ells operating at a constant bottomhole pressure would produce at very low rates for a very long period. Horizontal wells increase gas production by almost two orders of magnitude, but production remains low. Sensitivity analysis indicates that the initial deposit temperature is y the far the most important factor determining production performance (and the most effective criterion for target selection) because it controls the sensible heat available to fuel dissociation.

  12. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    SciTech Connect (OSTI)

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  13. North Slope (Wahluke Slope) expedited response action cleanup plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  14. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    NPRA Colville River Area ANWR 1002 Area (No 2001 Reserves) North Slope Regional NPRA Barrow Area NPRA ANWR NPRA 2001 BOE Reserve Classes 1,000.1 - 10,000 MBOE 10,000.1 - 100,000...

  15. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

  16. Data from Innovative Methane Hydrate Test on Alaska's North Slope...

    Office of Environmental Management (EM)

    Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on NETL Website Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on ...

  17. North Slope Borough Power & Light | Open Energy Information

    Open Energy Info (EERE)

    Borough Power & Light Jump to: navigation, search Name: North Slope Borough Power & Light Place: Alaska Phone Number: (907) 852-0489 Website: www.north-slope.orgdepartment Outage...

  18. Atmospheric Radiation Measurement (ARM) Data from the North Slope...

    Office of Scientific and Technical Information (OSTI)

    North Slope Alaska (NSA) Site Title: Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site You are accessing a document from the Department of ...

  19. Atmospheric Radiation Measurement (ARM) Data from the North Slope...

    Office of Scientific and Technical Information (OSTI)

    North Slope Alaska (NSA) Site Title: Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site The Atmospheric Radiation Measurement (ARM) Program is the ...

  20. ARM - Lesson Plans: North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Slope of Alaska Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: North Slope of Alaska Adapting to Survive (PDF, 12.4K) Arctic Microclimates (PDF, 34.3K) Also available in a PowerPoint Version, (PPT, 80K) Arctic Microclimate Worksheet (PDF, 19.6K) Bringing Climate Change

  1. Evaluation of a deposit in the vicinity of the PBU L-106 Site, North Slope, Alaska, for a potential long-term test of gas production from hydrates

    SciTech Connect (OSTI)

    Moridis, G.J.; Reagan, M.T.; Boyle, K.L.; Zhang, K.

    2010-05-01

    As part of the effort to investigate the technical feasibility of gas production from hydrate deposits, a long-term field test (lasting 18-24 months) is under consideration in a project led by the U.S. Department of Energy. We evaluate a candidate deposit involving the C-Unit in the vicinity of the PBU-L106 site in North Slope, Alaska. This deposit is stratigraphically bounded by impermeable shale top and bottom boundaries (Class 3), and is characterized by high intrinsic permeabilities, high porosity, high hydrate saturation, and a hydrostatic pressure distribution. The C-unit deposit is composed of two hydrate-bearing strata separated by a 30-ft-thick shale interlayer, and its temperatrure across its boundaries ranges between 5 and 6.5 C. We investigate by means of numerical simulation involving very fine grids the production potential of these two deposits using both vertical and horizontal wells. We also explore the sensitivity of production to key parameters such as the hydrate saturation, the formation permeability, and the permeability of the bounding shale layers. Finally, we compare the production performance of the C-Unit at the PBU-L106 site to that of the D-Unit accumulation at the Mount Elbert site, a thinner, single-layer Class 3 deposit on the North Slope of Alaska that is shallower, less-pressurized and colder (2.3-2.6 C). The results indicate that production from horizontal wells may be orders of magnitude larger than that from vertical ones. Additionally, production increases with the formation permeability, and with a decreasing permeability of the boundaries. The effect of the hydrate saturation on production is complex and depends on the time frame of production. Because of higher production, the PBU-L106 deposit appears to have an advantage as a candidate for the long-term test.

  2. DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2003-07-01

    North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we have developed streamline generation and convection subroutines for miscible gas injection. The WAG injection algorithms are being developed. We formulated a four-phase relative permeability model based on two-phase relative permeabilities. The new relative permeability formulations are being incorporated into the simulator. Wettabilities and relative permeabilities are being measured. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, relative permeability studies with cores, incorporation of complex well-architecture.

  3. North Slope Decision Support for Water Resource Planning and Management

    SciTech Connect (OSTI)

    Schnabel, William; Brumbelow, Kelly

    2013-03-31

    The objective of this project was to enhance the water resource decision-making process with respect to oil and gas exploration/production activities on Alaska’s North Slope. To this end, a web-based software tool was developed to allow stakeholders to assemble, evaluate, and communicate relevant information between and amongst themselves. The software, termed North Slope Decision Support System (NSDSS), is a visually-referenced database that provides a platform for running complex natural system, planning, and optimization models. The NSDSS design was based upon community input garnered during a series of stakeholder workshops, and the end product software is freely available to all stakeholders via the project website. The tool now resides on servers hosted by the UAF Water and Environmental Research Center, and will remain accessible and free-of-charge for all interested stakeholders. The development of the tool fostered new advances in the area of data evaluation and decision support technologies, and the finished product is envisioned to enhance water resource planning activities on Alaska’s North Slope.

  4. ARM Airborne Carbon Measurement on the North Slope

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Airborne Carbon Measurement on the North Slope During the summer of 2015, a research campaign gave scientists insight into trends and variability of trace gases in the atmosphere ...

  5. ARM Climate Research Facilities on the North Slope of Alaska...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Research Facilities on the North Slope of Alaska: Field Campaigns in 2007, New Facilities, and the International Polar Year Radiative Heating in Underexplored Bands...

  6. FACT SHEET U.S. Department of Energy North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Slope of Alaska Because the environment in the Arctic is changing rapidly, the North Slope of Alaska has become a focal point for atmospheric and ecological research. Aerosols and clouds have strong impacts on the Arctic surface energy balance through absorption and reflection of shortwave and longwave radiation, and in turn, changes in the surface conditions, such as melting of sea ice, snow, or permafrost, can feed back to atmospheric structure and circulation, water vapor, gas and

  7. ,"North Carolina Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Carolina Natural Gas Prices",8,"Monthly","... 10:49:13 AM" "Back to Contents","Data 1: North Carolina Natural Gas Prices" ...

  8. ,"North Dakota Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Prices",8,"Monthly","4... 10:49:14 AM" "Back to Contents","Data 1: North Dakota Natural Gas Prices" ...

  9. March 13, 1968: Oil discovered on Alaska's North Slope | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968 The Atlantic Richfield Company and Humble Oil and Refining Company announce the discovery of oil on the North Slope of Alaska at Prudhoe Bay

  10. north-slope-resources | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Slope Resources photo of TAPS Alaska North Slope Resources Additional oil production from known resources as well as new discoveries are essential for keeping the Trans Alaska Pipeline System (TAPS) operating both technically and economically. The lower limit of effective operation for TAPS is in the range of 200,000 barrels per day. Current production rates are about 700,000 barrels per day down from a maximum of over 2 million barrels per day in 1988. The economic limit of TAPS will

  11. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Reserve Class ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , ! ! ! ! ! £ , £ , £ , £ , £ , COLVILLE RIVER COLVILLE RIVER 150°50'0"W 150°50'0"W 150°55'0"W 150°55'0"W 151°0'0"W 151°0'0"W 151°5'0"W 151°5'0"W 151°10'0"W 151°10'0"W

  12. Benthic study of the continental slope off Cape Hatteras, North Carolina. Volume 2. Final report

    SciTech Connect (OSTI)

    Diaz, R.J.; Blake, J.A.; Lohse, D.P.

    1993-03-01

    A number of blocks off Cape Hatteras have been leased by Mobil Oil, which has requested permission to drill an exploratory well, at 820-m depth, in a block identified as Manteo 467. The proposed well location is 39 miles from the coast of North Carolina. The possibility of extracting gas from the continental slope off the coast of North Carolina, particularly at slope depths, has raised a number of environmental concerns that cannot be addressed from existing data. The present study was developed by the Minerals Management Service to better define the nature of the continental slope benthic communities off Cape Hatteras and to delineate their areal extent. Emphasis was placed on the area around the proposed drill site in the Manteo 467 lease block.

  13. ,"North Carolina Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"N3035NC3","N3045NC3" "Date","Natural Gas Citygate Price in North Carolina (Dollars per Thousand Cubic Feet)","North Carolina Price of Natural Gas Delivered to Residential ...

  14. Regional long-term production modeling from a single well test, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    SciTech Connect (OSTI)

    Anderson, Brian J.; Kurihara, Masanori; White, Mark D.; Moridis, George J.; Wilson, Scott J.; Pooladi-Darvish, Mehran; Gaddipati, Manohar; Masuda, Yoshihiro; Collett, Timothy S.; Hunter, Robert B.; Narita, Hideo; Rose, Kelly; Boswell, Ray

    2011-02-01

    Following the results from the open-hole formation pressure response test in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) using Schlumberger's Modular Dynamics Formation Tester (MDT) wireline tool, the International Methane Hydrate Reservoir Simulator Code Comparison project performed long-term reservoir simulations on three different model reservoirs. These descriptions were based on 1) the Mount Elbert gas hydrate accumulation as delineated by an extensive history-matching exercise, 2) an estimation of the hydrate accumulation near the Prudhoe Bay L-pad, and 3) a reservoir that would be down-dip of the Prudhoe Bay L-pad and therefore warmer and deeper. All of these simulations were based, in part, on the results of the MDT results from the Mount Elbert Well. The comparison group's consensus value for the initial permeability of the hydrate-filled reservoir (k = 0.12 mD) and the permeability model based on the MDT history match were used as the basis for subsequent simulations on the three regional scenarios. The simulation results of the five different simulation codes, CMG STARS, HydrateResSim, MH-21 HYDRES, STOMP-HYD, and TOUGH+HYDRATE exhibit good qualitative agreement and the variability of potential methane production rates from gas hydrate reservoirs is illustrated. As expected, the predicted methane production rate increased with increasing in situ reservoir temperature; however, a significant delay in the onset of rapid hydrate dissociation is observed for a cold, homogeneous reservoir and it is found to be repeatable. The inclusion of reservoir heterogeneity in the description of this cold reservoir is shown to eliminate this delayed production. Overall, simulations utilized detailed information collected across the Mount Elbert reservoir either obtained or determined from geophysical well logs, including thickness (37 ft), porosity (35%), hydrate saturation (65%), intrinsic permeability (1000 mD), pore water

  15. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    SciTech Connect (OSTI)

    Kneafsey, T.J.; Liu, T.J. H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-06-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  16. TRANSPORTATION ISSUES IN THE DELIVERY OF GTL PRODUCTS FROM ALASKAN NORTH SLOPE TO MARKET

    SciTech Connect (OSTI)

    Godwin Chukwu

    2004-01-01

    The Alaskan North Slope (ANS) is one of the largest hydrocarbon reserves in the United States where Gas-to-Liquids (GTL) technology can be successfully implemented. The proven and recoverable reserves of conventional natural gas in the developed and undeveloped fields in the Alaskan North Slope (ANS) are estimated to be 38 trillion standard cubic feet (TCF) and estimates of additional undiscovered gas reserves in the Arctic field range from 64 TCF to 142 TCF. Because the domestic gas market in the continental United States is located thousands of miles from the ANS, transportation of the natural gas from the remote ANS to the market is the key issue in effective utilization of this valuable and abundant resource. The focus of this project is to study the operational challenges involved in transporting the gas in converted liquid (GTL) form through the existing Trans Alaska Pipeline System (TAPS). A three-year, comprehensive research program was undertaken by the Petroleum Development Laboratory, University of Alaska Fairbanks, under cooperative agreement No. DE-FC26-98FT40016 to study the feasibility of transporting GTL products through TAPS. Cold restart of TAPS following an extended winter shutdown and solids deposition in the pipeline were identified as the main transportation issues in moving GTL products through the pipeline. The scope of work in the current project (Cooperative Agreement No. DE-FC26-01NT41248) included preparation of fluid samples for the experiments to be conducted to augment the comprehensive research program.

  17. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    SciTech Connect (OSTI)

    Duncan, Kathleen E.; Gieg, Lisa M.; Parisi, Victoria A.; Tanner, Ralph S.; Green Tringe, Susannah; Bristow, Jim; Suflita, Joseph M.

    2009-09-16

    Corrosion of metallic oilfield pipelines by microorganisms is a costly but poorly understood phenomenon, with standard treatment methods targeting mesophilic sulfatereducing bacteria. In assessing biocorrosion potential at an Alaskan North Slope oil field, we identified thermophilic hydrogen-using methanogens, syntrophic bacteria, peptideand amino acid-fermenting bacteria, iron reducers, sulfur/thiosulfate-reducing bacteria and sulfate-reducing archaea. These microbes can stimulate metal corrosion through production of organic acids, CO2, sulfur species, and via hydrogen oxidation and iron reduction, implicating many more types of organisms than are currently targeted. Micromolar quantities of putative anaerobic metabolites of C1-C4 n-alkanes in pipeline fluids were detected, implying that these low molecular weight hydrocarbons, routinely injected into reservoirs for oil recovery purposes, are biodegraded and provide biocorrosive microbial communities with an important source of nutrients.

  18. STUDY OF TRANSPORTATION OF GTL PRODUCTS FROM ALASKAN NORTH SLOPE (ANS) TO MARKETS

    SciTech Connect (OSTI)

    Godwin A. Chukwu, Ph.D., P.E.

    2002-09-01

    The Alaskan North Slope is one of the largest hydrocarbon reserves in the US where Gas-to-Liquids (GTL) technology can be successfully implemented. The proven and recoverable reserves of conventional natural gas in the developed and undeveloped fields in the Alaskan North Slope (ANS) are estimated to be 38 trillion standard cubic feet (TCF) and estimates of additional undiscovered gas reserves in the Arctic field range from 64 TCF to 142 TCF. Transportation of the natural gas from the remote ANS is the key issue in effective utilization of this valuable and abundance resource. The throughput of oil through the Trans Alaska Pipeline System (TAPS) has been on decline and is expected to continue to decline in future. It is projected that by the year 2015, ANS crude oil production will decline to such a level that there will be a critical need for pumping additional liquid from GTL process to provide an adequate volume for economic operation of TAPS. The pumping of GTL products through TAPS will significantly increase its economic life. Transporting GTL products from the North Slope of Alaska down to the Marine terminal at Valdez is no doubt the great challenge facing the Gas to Liquids options of utilizing the abundant natural gas resource of the North Slope. The primary purpose of this study was to evaluate and assess the economic feasibility of transporting GTL products through the TAPS. Material testing program for GTL and GTL/Crude oil blends was designed and implemented for measurement of physical properties of GTL products. The measurement and evaluation of the properties of these materials were necessary so as to access the feasibility of transporting such materials through TAPS under cold arctic conditions. Results of the tests indicated a trend of increasing yield strength with increasing wax content. GTL samples exhibited high gel strengths at temperatures as high as 20 F, which makes it difficult for cold restart following winter shutdowns. Simplified

  19. ARMs Climate Change Educational Outreach on the North Slope...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the North Slope of Alaska (NSA), we focus on developing culturally responsive ... ARM's work on the NSA also includes curriculum development, teacher enrichment, teacher ...

  20. ,"North Dakota Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Total Consumption ... 9:10:34 AM" "Back to Contents","Data 1: North Dakota Natural Gas Total Consumption ...

  1. ,"North Carolina Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Carolina Natural Gas Total Consumption ... 9:10:33 AM" "Back to Contents","Data 1: North Carolina Natural Gas Total Consumption ...

  2. Exporting Alaskan North Slope crude oil: Benefits and costs

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Department of Energy study examines the effects of lifting the current prohibitions against the export of Alaskan North Slope (ANS) crude. The study concludes that permitting exports would benefit the US economy. First, lifting the ban would expand the markets in which ANS oil can be sold, thereby increasing its value. ANS oil producers, the States of California and Alaska, and some of their local governments all would benefit from increased revenues. Permitting exports also would generate new economic activity and employment in California and Alaska. The study concludes that these economic benefits would be achieved without increasing gasoline prices (either in California or in the nation as a whole). Lifting the export ban could have important implications for US maritime interests. The Merchant Marine Act of 1970 (known as the Jones Act) requires all inter-coastal shipments to be carried on vessels that are US-owned, US-crewed, and US-built. By limiting the shipment of ANS crude to US ports only, the export ban creates jobs for the seafarers and the builders of Jones Act vessels. Because the Jones Act does not apply to exports, however, lifting the ban without also changing US maritime law would jeopardize the jobs associated with the current fleet of Jones Act tankers. Therefore the report analyzes selected economic impacts of several maritime policy alternatives, including: Maintaining current law, which allows foreign tankers to carry oil where export is allowed; requiring exports of ANS crude to be carried on Jones Act vessels; and requiring exports of ANS crude to be carried on vessels that are US-owned and US-crewed, but not necessarily US-built. Under each of these options, lifting the export ban would generate economic benefits.

  3. North American Natural Gas Markets

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  4. North American Natural Gas Markets

    SciTech Connect (OSTI)

    Not Available

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  5. ARM-ACME V: ARM Airborne Carbon Measurements V on the North Slope of Alaska Science and Implementation Plan

    SciTech Connect (OSTI)

    Biraud, S

    2015-05-01

    Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO₂ and/or CH₄) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols, and cloud properties at the North Slope of Alaska are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections.

  6. Session Papers North Slope of Alaska and Adjacent Arctic Ocean Cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Session Papers North Slope of Alaska and Adjacent Arctic Ocean Cloud and Radiation Testbed: Science and Siting Strategies B. D. Zak Sandia National Laboratories Albuquerque, New Mexico K. Stamnes University of Alaska Fairbanks, Alaska Introduction This paper serves as a summary of the current thinking regarding the development of the Atmospheric Radiation Measurement (ARM) Program's North Slope of Alaska and adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) site. Ellingson et

  7. Alaska North Slope Tundra Travel Model and Validation Study

    SciTech Connect (OSTI)

    Harry R. Bader; Jacynthe Guimond

    2006-03-01

    The Alaska Department of Natural Resources (DNR), Division of Mining, Land, and Water manages cross-country travel, typically associated with hydrocarbon exploration and development, on Alaska's arctic North Slope. This project is intended to provide natural resource managers with objective, quantitative data to assist decision making regarding opening of the tundra to cross-country travel. DNR designed standardized, controlled field trials, with baseline data, to investigate the relationships present between winter exploration vehicle treatments and the independent variables of ground hardness, snow depth, and snow slab thickness, as they relate to the dependent variables of active layer depth, soil moisture, and photosynthetically active radiation (a proxy for plant disturbance). Changes in the dependent variables were used as indicators of tundra disturbance. Two main tundra community types were studied: Coastal Plain (wet graminoid/moist sedge shrub) and Foothills (tussock). DNR constructed four models to address physical soil properties: two models for each main community type, one predicting change in depth of active layer and a second predicting change in soil moisture. DNR also investigated the limited potential management utility in using soil temperature, the amount of photosynthetically active radiation (PAR) absorbed by plants, and changes in microphotography as tools for the identification of disturbance in the field. DNR operated under the assumption that changes in the abiotic factors of active layer depth and soil moisture drive alteration in tundra vegetation structure and composition. Statistically significant differences in depth of active layer, soil moisture at a 15 cm depth, soil temperature at a 15 cm depth, and the absorption of photosynthetically active radiation were found among treatment cells and among treatment types. The models were unable to thoroughly investigate the interacting role between snow depth and disturbance due to a lack

  8. ,"North Dakota Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...2016 9:51:58 AM" "Back to Contents","Data 1: North Dakota Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010ND2" "Date","North Dakota Natural Gas Gross Withdrawals (MMcf)" ...

  9. ,"North Dakota Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:54:32 AM" "Back to Contents","Data 1: North Dakota Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010ND2" "Date","North Dakota Natural Gas Residential Consumption ...

  10. ,"North Carolina Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:56:45 AM" "Back to Contents","Data 1: North Carolina Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NC2" "Date","North Carolina Natural Gas Industrial Consumption ...

  11. ,"North Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:56:47 AM" "Back to Contents","Data 1: North Dakota Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035ND2" "Date","North Dakota Natural Gas Industrial Consumption ...

  12. ,"North Dakota Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9:53:45 AM" "Back to Contents","Data 1: North Dakota Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050ND2" "Date","North Dakota Natural Gas Marketed Production ...

  13. ,"North Dakota Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9:53:46 AM" "Back to Contents","Data 1: North Dakota Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050ND2" "Date","North Dakota Natural Gas Marketed Production ...

  14. ,"North Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:56:46 AM" "Back to Contents","Data 1: North Dakota Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035ND2" "Date","North Dakota Natural Gas Industrial Consumption ...

  15. ,"North Carolina Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:54:31 AM" "Back to Contents","Data 1: North Carolina Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NC2" "Date","North Carolina Natural Gas Residential ...

  16. Newly Installed Alaska North Slope Well Will Test Innovative...

    Broader source: Energy.gov (indexed) [DOE]

    A fully instrumented well that will test innovative technologies for producing methane gas ... Energy Technology Laboratory, will test a technology that involves injecting ...

  17. Alaska North Slope National Energy Strategy initiative: Analysis of five undeveloped fields

    SciTech Connect (OSTI)

    Thomas, C.P.; Allaire, R.B.; Doughty, T.C.; Faulder, D.D.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1993-05-01

    The US Department of Energy was directed in the National Energy Strategy to establish a federal interagency task force to identify specific technical and regulatory barriers to the development of five undeveloped North Slope Alaska fields and make recommendations for their resolution. The five fields are West Sak, Point Thomson, Gwydyr Bay, Seal Island/Northstar, and Sandpiper Island. Analysis of environmental, regulatory, technical, and economic information, and data relating to the development potential of the five fields leads to the following conclusions: Development of the five fields would result in an estimated total of 1,055 million barrels of oil and 4.4 trillion cubic feet of natural gas and total investment of $9.4 billion in 1992 dollars. It appears that all five of the fields will remain economically marginal developments unless there is significant improvement in world oil prices. Costs of regulatory compliance and mitigation, and costs to reduce or maintain environmental impacts at acceptable levels influence project investments and operating costs and must be considered in the development decision making process. The development of three of the fields (West Sak, Point Thomson, and Gwydyr Bay) that are marginally feasible would have an impact on North Slope production over the period from about 2000 to 2014 but cannot replace the decline in Prudhoe Bay Unit production or maintain the operation of the Trans-Alaska Pipeline System (TAPS) beyond about 2014 with the assumption that the TAPS will shut down when production declines to the range of 400 to 200 thousand barrels of oil/day. Recoverable reserves left in the ground in the currently producing fields and soon to be developed fields, Niakuk and Point McIntyre, would range from 1 billion to 500 million barrels of oil corresponding to the time period of 2008 to 2014 based on the TAPS shutdown assumption.

  18. North Dakota Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) North Dakota Natural ...

  19. ,"North Dakota Natural Gas Gross Withdrawals from Gas Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from ... 9:52:18 AM" "Back to Contents","Data 1: North Dakota Natural Gas Gross Withdrawals from ...

  20. ,"North Dakota Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from ... 9:55:03 AM" "Back to Contents","Data 1: North Dakota Natural Gas Gross Withdrawals from ...

  1. North Dakota Natural Gas Wellhead Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Wellhead Price ... Referring Pages: Natural Gas Wellhead Price North Dakota Natural Gas Prices Natural Gas ...

  2. Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}

    SciTech Connect (OSTI)

    Umekwe, Pascal; Mongrain, Joanna; Ahmadi, Mohabbat; Hanks, Catherine

    2013-03-15

    The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

  3. ,"North Carolina Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release...

  4. North Dakota Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) North Dakota Dry Natural Gas Expected ... Dry Natural Gas Proved Reserves as of Dec. 31 North Dakota Dry Natural Gas Proved Reserves ...

  5. North Dakota Dry Natural Gas Reserves Extensions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Extensions (Billion ... Referring Pages: Dry Natural Gas Reserves Extensions North Dakota Dry Natural Gas Proved ...

  6. North Dakota Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use North Dakota Natural Gas Prices Price ...

  7. Louisiana - North Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - North Dry ... Dry Natural Gas Proved Reserves as of Dec. 31 North Louisiana Dry Natural Gas Proved ...

  8. North Dakota Natural Gas Lease Fuel Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease Fuel Consumption ... Referring Pages: Natural Gas Lease Fuel Consumption North Dakota Natural Gas Consumption ...

  9. North Carolina Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) North Carolina Natural Gas Pipeline and ... Price for Natural Gas Pipeline and Distribution Use North Carolina Natural Gas Prices ...

  10. North Carolina Natural Gas Total Consumption (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) North Carolina Natural Gas Total Consumption ... Referring Pages: Natural Gas Consumption North Carolina Natural Gas Consumption by End Use ...

  11. North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Vehicle Fuel ... Natural Gas Delivered to Vehicle Fuel Consumers North Dakota Natural Gas Consumption by ...

  12. North Dakota Dry Natural Gas Reserves Sales (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Sales (Billion Cubic ... Referring Pages: Dry Natural Gas Reserves Sales North Dakota Dry Natural Gas Proved ...

  13. North Dakota Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) North Dakota Natural Gas Processed (Million Cubic Feet) ... Referring Pages: Natural Gas Processed North Dakota Natural Gas Plant Processing Natural ...

  14. North Dakota Natural Gas Imports (No intransit Receipts) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports (No intransit Receipts) (Million Cubic Feet) North Dakota Natural Gas Imports (No ... Referring Pages: Natural Gas Imports (Summary) North Dakota U.S. Natural Gas Imports & ...

  15. North Dakota Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production North Dakota Dry Natural Gas Proved Reserves ...

  16. North Dakota Dry Natural Gas Reserves Acquisitions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Acquisitions ... Referring Pages: Dry Natural Gas Reserves Acquisitions North Dakota Dry Natural Gas Proved ...

  17. North Dakota Natural Gas Exports (Price) All Countries (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Natural Gas Exports (Price) All Countries (Dollars per Thousand Cubic Feet) ... Referring Pages: Natural Gas Exports Price North Dakota U.S. Natural Gas Imports & Exports ...

  18. North Carolina Natural Gas Pipeline and Distribution Use (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) North Carolina Natural Gas Pipeline and Distribution Use (Million ... Referring Pages: Natural Gas Pipeline & Distribution Use North Carolina Natural Gas ...

  19. North Carolina Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) North Carolina Natural Gas Vehicle ... Referring Pages: Natural Gas Vehicle Fuel Price North Carolina Natural Gas Prices Natural ...

  20. North Dakota Natural Gas Exports to All Countries (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to All Countries (Million Cubic Feet) North Dakota Natural Gas Exports to All ... Referring Pages: Natural Gas Exports (Summary) North Dakota U.S. Natural Gas Imports & ...

  1. North Dakota Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Revision Increases ... Dry Natural Gas Reserves Revision Increases North Dakota Dry Natural Gas Proved Reserves ...

  2. North Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Vehicle Fuel ... Referring Pages: Natural Gas Vehicle Fuel Price North Dakota Natural Gas Prices Natural ...

  3. North Dakota Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) North Dakota Dry Natural Gas ... Dry Natural Gas New Reservoir Discoveries in Old Fields North Dakota Dry Natural Gas ...

  4. North Dakota Natural Gas Total Consumption (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) North Dakota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption North Dakota Natural Gas Consumption by End Use ...

  5. North Dakota Dry Natural Gas Reserves New Field Discoveries ...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves New Field ... New Field Discoveries of Dry Natural Gas Reserves North Dakota Dry Natural Gas Proved ...

  6. North Dakota Natural Gas Pipeline and Distribution Use (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) North Dakota Natural Gas Pipeline and Distribution Use (Million ... Referring Pages: Natural Gas Pipeline & Distribution Use North Dakota Natural Gas ...

  7. North Dakota Dry Natural Gas Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Revision Decreases ... Dry Natural Gas Reserves Revision Decreases North Dakota Dry Natural Gas Proved Reserves ...

  8. North Dakota Natural Gas Imports Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Imports Price (Dollars ... Referring Pages: Natural Gas Imports Price North Dakota U.S. Natural Gas Imports & Exports ...

  9. North Dakota Dry Natural Gas Reserves Adjustments (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Adjustments ... Referring Pages: Dry Natural Gas Reserves Adjustments North Dakota Dry Natural Gas Proved ...

  10. North Shore Gas- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    The North Shore Gas Natural Gas Savings Program offers incentives to encourage customers to make energy-efficient improvements to their homes and apartment buildings. Rebates are available on...

  11. ,"North Dakota Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North...

  12. Expansion of Facilities on the North Slope of Alaska in Time for the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Polar Year Expansion of Facilities on the North Slope of Alaska in Time for the International Polar Year Zak, Bernard Sandia National Laboratories Ivey, Mark Sandia National Laboratories Zirzow, Jeffrey Sandia National Laboratories Brower, Walter UIC Science Division ARM/NSA Ivanoff, James NSA Whiteman, Doug NSA/AAO Sassen, Kenneth University of Alaska Fairbanks Truffer-Moudra, Dana University of Alaska Fairbanks Category: Infrastructure & Outreach The International Polar

  13. Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002 J. A. Shaw and B. Thurairajah Department of Electrical and Computer Engineering Montana State University Bozeman, Montana E. Edqvist National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado K. Mizutani Communications Research Laboratory Koganei, Tokyo, Japan Introduction Starting in February 2002, we deployed a new cloud-radiation sensor called the infrared cloud imager

  14. Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils

    SciTech Connect (OSTI)

    Tao Zhu; Jack A. Walker; J. Liang

    2008-12-31

    Due to increasing oil demand, oil companies are moving into arctic environments and deep-water areas for oil production. In these regions of lower temperatures, wax deposits begin to form when the temperature in the wellbore falls below wax appearance temperature (WAT). This condition leads to reduced production rates and larger pressure drops. Wax problems in production wells are very costly due to production down time for removal of wax. Therefore, it is necessary to develop a solution to wax deposition. In order to develop a solution to wax deposition, it is essential to characterize the crude oil and study phase behavior properties. The main objective of this project was to characterize Alaskan North Slope crude oil and study the phase behavior, which was further used to develop a dynamic wax deposition model. This report summarizes the results of the various experimental studies. The subtasks completed during this study include measurement of density, molecular weight, viscosity, pour point, wax appearance temperature, wax content, rate of wax deposition using cold finger, compositional characterization of crude oil and wax obtained from wax content, gas-oil ratio, and phase behavior experiments including constant composition expansion and differential liberation. Also, included in this report is the development of a thermodynamic model to predict wax precipitation. From the experimental study of wax appearance temperature, it was found that wax can start to precipitate at temperatures as high as 40.6 C. The WAT obtained from cross-polar microscopy and viscometry was compared, and it was discovered that WAT from viscometry is overestimated. From the pour point experiment it was found that crude oil can cease to flow at a temperature of 12 C. From the experimental results of wax content, it is evident that the wax content in Alaskan North Slope crude oil can be as high as 28.57%. The highest gas-oil ratio for a live oil sample was observed to be 619.26 SCF

  15. North Carolina Natural Gas Input Supplemental Fuels (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) North Carolina Natural Gas Input ... Referring Pages: Total Supplemental Supply of Natural Gas North Carolina Supplemental ...

  16. Louisiana - North Nonassociated Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - North Nonassociated Natural Gas, Wet After Lease Separation, Proved ...

  17. ,"North Dakota Nonassociated Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Nonassociated Natural Gas, Wet ... 9:32:06 AM" "Back to Contents","Data 1: North Dakota Nonassociated Natural Gas, Wet ...

  18. ,"Louisiana--North Natural Gas Liquids Lease Condensate, Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--North Natural Gas Liquids Lease Condensate, ... "Back to Contents","Data 1: Louisiana--North Natural Gas Liquids Lease Condensate, ...

  19. North Dakota Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers North Dakota Number of Natural ...

  20. North Carolina Natural Gas Underground Storage Net Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals All Operators (Million Cubic Feet) North Carolina Natural Gas Underground ... Net Withdrawals of Natural Gas from Underground Storage - All Operators North Carolina ...

  1. Louisiana - North Associated-Dissolved Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Louisiana - North Associated-Dissolved Natural Gas, Wet ... Wet After Lease Separation, as of Dec. 31 North Louisiana Associated-Dissolved Natural Gas ...

  2. ,"North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Liquids Lease ... 9:28:11 AM" "Back to Contents","Data 1: North Dakota Natural Gas Liquids Lease ...

  3. ,"Louisiana - North Nonassociated Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana - North Nonassociated Natural Gas, Wet After Lease ... "Back to Contents","Data 1: Louisiana - North Nonassociated Natural Gas, Wet After Lease ...

  4. North Dakota Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production ... Referring Pages: NGPL Production, Gaseous Equivalent North Dakota Natural Gas Plant ...

  5. North Dakota Nonassociated Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves ... Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 North ...

  6. ,"Louisiana - North Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana - North Dry Natural Gas Expected Future Production ... "Back to Contents","Data 1: Louisiana - North Dry Natural Gas Expected Future Production ...

  7. ,"North Carolina Natural Gas Vehicle Fuel Consumption (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Carolina Natural Gas Vehicle Fuel ... 9:14:30 AM" "Back to Contents","Data 1: North Carolina Natural Gas Vehicle Fuel ...

  8. ,"Louisiana - North Natural Gas, Wet After Lease Separation Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana - North Natural Gas, Wet After Lease Separation ... "Back to Contents","Data 1: Louisiana - North Natural Gas, Wet After Lease Separation ...

  9. North Dakota Natural Gas, Wet After Lease Separation Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) North Dakota Natural ... Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 North Dakota ...

  10. North Dakota Natural Gas Input Supplemental Fuels (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) North Dakota Natural Gas Input Supplemental ... Referring Pages: Total Supplemental Supply of Natural Gas North Dakota Supplemental ...

  11. ,"Louisiana - North Associated-Dissolved Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana - North Associated-Dissolved Natural Gas, Wet ... "Back to Contents","Data 1: Louisiana - North Associated-Dissolved Natural Gas, Wet ...

  12. ,"North Dakota Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Vehicle Fuel ... 9:14:31 AM" "Back to Contents","Data 1: North Dakota Natural Gas Vehicle Fuel ...

  13. North Dakota Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves ... Wet After Lease Separation, as of Dec. 31 North Dakota Associated-Dissolved Natural Gas ...

  14. Louisiana - North Natural Gas, Wet After Lease Separation Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Louisiana - North Natural Gas, Wet After Lease Separation ... Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 North Louisiana ...

  15. North Carolina Natural Gas Underground Storage Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) North Carolina Natural Gas Underground Storage ... Withdrawals of Natural Gas from Underground Storage - All Operators North Carolina ...

  16. Unconventional gas hydrate seals may trap gas off southeast US. [North Carolina, South Carolina

    SciTech Connect (OSTI)

    Dillion, W.P.; Grow, J.A.; Paull, C.K.

    1980-01-07

    Seismic profiles have indicated to the US Geological Survey that an unconventional seal, created by gas hydrates that form in near-bottom sediments, may provide gas traps in continental slopes and rises offshore North and South Carolina. The most frequently cited evidence for the presence of gas hydrate in ocean sediments is the observation of a seismic reflection event that occurs about 1/2 s below and parallel with the seafloor. If gas-hydrate traps do exist, they will occur at very shallow sub-bottom depths of about 1600 ft (500m). Exploration of such traps will probably take place in the federally controlled Blake Ridge area off the coast of South Carolina where seismic data suggest a high incidence of gas hydrates. However, drilling through the gas-hydrate-cemented layer may require new engineering techniques for sealing the casing.

  17. Benthic study of the continental slope off Cape Hatteras, North Carolina. Volume 3. Appendices

    SciTech Connect (OSTI)

    Diaz, R.J.; Blake, J.A.; Lohse, D.P.

    1993-03-01

    The Point is an area that supports a most productive pelagic fishery, including tuna, swordfish, marlin, and more. The objective of the study is to analyze video tapes from near the Point, in order to provide data on epibenthic, megafaunal invertebrates including species composition, relative abundances, and large scale (1 km) distribution. The Point is not a defined spot on a chart. Although fishermen do use the steep shelf break for location, they generally look for the west wall of the Gulf Stream. The Point and the oil lease site coincidentally occur where the Gulf Stream parts the continental slope, just north of the eastern-most tip of Cape Hatteras.

  18. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  19. North American Natural Gas Markets. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  20. North American Natural Gas Markets. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  1. North Carolina Natural Gas Underground Storage Injections All...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (Million Cubic Feet) North Carolina Natural ... Injections of Natural Gas into Underground Storage - All Operators North Carolina ...

  2. North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels) North Dakota Natural Gas ... Lease Condensate Proved Reserves as of Dec. 31 North Dakota Lease Condensate Proved ...

  3. Louisiana--North Natural Gas Liquids Lease Condensate, Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels) Louisiana--North Natural Gas ... Lease Condensate Proved Reserves as of Dec. 31 North Louisiana Lease Condensate Proved ...

  4. ComEd, Nicor Gas, Peoples Gas & North Shore Gas- Small Business Energy Savings Program

    Broader source: Energy.gov [DOE]

    ComEd, Nicor Gas, Peoples Gas, and North Shore Gas fund the Small Business Energy Savings program in which an energy advisor conducts a free on-site energy assessment and provides free installati...

  5. Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska

    SciTech Connect (OSTI)

    Hinzman, Larry D.; Lilly, Michael R.; Kane, Douglas L.; Miller, D. Dan; Galloway, Braden K.; Hilton, Kristie M.; White, Daniel M.

    2005-09-30

    Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

  6. Role of slope stability in cumulative impact assessment of hydropower development: North Cascades, Washington

    SciTech Connect (OSTI)

    Lee, R.R.; Staub, W.P.

    1993-08-01

    Two environmental assessments considered the potential cumulative environmental impacts resulting from the development of eight proposed hydropower projects in the Nooksack River Basin and 11 proposed projects in the Skagit River Basin, North Cascades, Washington, respectively. While not identified as a target resource, slope stability and the alteration of sediment supply to creeks and river mainstems significantly affect other resources. The slope stability assessment emphasized the potential for cumulative impacts under disturbed conditions (e.g., road construction and timber harvesting) and a landslide-induced pipeline rupture scenario. In the case of small-scale slides, the sluicing action of ruptured pipeline water on the fresh landslide scarp was found to be capable of eroding significantly more material than the original landslide. For large-scale landslides, sluiced material was found to be a small increment of the original landslide. These results predicted that hypothetical accidental pipeline rupture by small-scale landslides may result in potential cumulative impacts for 12 of the 19 projects with pending license applications in both river basins. 5 refs., 2 tabs.

  7. North Dakota Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    76 3.84 3.65 2.97 2.71 2.83 1989-2016 Residential 5.51 5.62 6.33 6.92 9.55 19.26 1989-2016 Commercial 5.26 5.22 5.27 4.68 5.43 6.77 1989-2016 Industrial 2.43 2.83 2.10 2.09 1.91 2.09 2001-2016 Electric Power 2.45 2.22 1.90 2.09 2.04 2.63 2002-2016 Production (Million Cubic Feet) Gross Withdrawals 50,146 47,912 51,852 47,507 49,979 48,555 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed

  8. North Carolina Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use 1967-2005 Citygate 6.02 5.45 4.00 4.63 5.41 3.81 1984-2015 Residential 12.50 12.55 12.19 11.83 11.88 NA 1967-2015 Commercial 10.18 9.64 8.62 8.81 9.12 NA 1967-2015 Industrial 8.24 7.70 6.37 6.87 7.55 6.03 1997-2015 Vehicle Fuel 9.77 12.13 6.48 1990-2012 Electric Power W W W W 6.05 W 1997-2015 Underground Storage (Million Cubic Feet) Injections 1973-1996 Withdrawals 1974-1996 Net Withdrawals 1973-1996 Liquefied Natural Gas Storage (Million Cubic Feet) Additions 4,410

  9. North Dakota Industrial Commission, Oil and Gas Divisioin | Open...

    Open Energy Info (EERE)

    in Bismarck, North Dakota. About The Oil and Gas Division regulates the drilling and production of oil and gas in North Dakota. Our mission is to encourage and promote the...

  10. ,"North Dakota Natural Gas Gross Withdrawals from Oil Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from ... 9:52:34 AM" "Back to Contents","Data 1: North Dakota Natural Gas Gross Withdrawals from ...

  11. ,"North Dakota Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Dry Natural Gas Production (Million ... 9:54:27 AM" "Back to Contents","Data 1: North Dakota Dry Natural Gas Production (Million ...

  12. ,"North Carolina Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Contents","Data 1: North Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045NC3" "Date","North Carolina Natural Gas ...

  13. ,"North Dakota Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Associated-Dissolved Natural Gas, ... 9:33:41 AM" "Back to Contents","Data 1: North Dakota Associated-Dissolved Natural Gas, ...

  14. ,"North Carolina Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: North Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045NC2" "Date","North Carolina Natural Gas Deliveries to ...

  15. ,"North Dakota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: North Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ND3" "Date","North Dakota Natural Gas Industrial ...

  16. ,"North Dakota Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: North Dakota Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045ND2" "Date","North Dakota Natural Gas Deliveries to ...

  17. ,"North Dakota Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Consumption by End ... 10:31:27 AM" "Back to Contents","Data 1: North Dakota Natural Gas Consumption by End Use" ...

  18. ,"North Dakota Natural Gas, Wet After Lease Separation Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas, Wet After Lease ... 9:30:28 AM" "Back to Contents","Data 1: North Dakota Natural Gas, Wet After Lease ...

  19. ,"North Dakota Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals and ... 10:51:41 AM" "Back to Contents","Data 1: North Dakota Natural Gas Gross Withdrawals and ...

  20. ,"North Carolina Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Carolina Heat Content of Natural Gas ... 10:27:02 AM" "Back to Contents","Data 1: North Carolina Heat Content of Natural Gas ...

  1. ,"North Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: North Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045ND3" "Date","North Dakota Natural Gas ...

  2. ,"North Carolina Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: North Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035NC3" "Date","North Carolina Natural Gas Industrial ...

  3. ,"North Dakota Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Dry Natural Gas Expected Future ... 9:28:52 AM" "Back to Contents","Data 1: North Dakota Dry Natural Gas Expected Future ...

  4. ,"North Dakota Natural Gas Wellhead Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Wellhead Price (Dollars ... 9:04:04 AM" "Back to Contents","Data 1: North Dakota Natural Gas Wellhead Price (Dollars ...

  5. ,"North Dakota Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Heat Content of Natural Gas ... 10:27:03 AM" "Back to Contents","Data 1: North Dakota Heat Content of Natural Gas ...

  6. ,"North Carolina Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Carolina Natural Gas Consumption by End ... 10:31:26 AM" "Back to Contents","Data 1: North Carolina Natural Gas Consumption by End ...

  7. North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Delivered to Vehicle Fuel Consumers North Dakota Natural Gas Consumption by End Use Vehicle Fuel ...

  8. The Wahluke (North) Slope of the Hanford Site: History and present challenges

    SciTech Connect (OSTI)

    Gerber, M.S.

    1996-04-16

    The Hanford Site was founded in early 1943 for the top secret government mission of producing plutonium for the world`s first atomic weapons. A great deal of land was needed, both to separate various Site facilities from each other, and to provide buffer zones for safety and security purposes. In total, 640 square miles were occupied by the original Hanford Site and its buffer zones. Much of this land had been earmarked for inclusion in the Columbia Basin Irrigation Project (CBP). After World War II ended, a series of national decisions led to a long-term mission for the Hanford Site, and area residents learned that the Site lands they had hoped to farm would be withheld from agricultural production for the foreseeable future. A long set of negotiations commenced between the federal management agency responsible for Hanford (the Atomic Energy Commission -- AEC), and the Bureau of Reclamation (BOR), Department of the Interior that managed the CBP. Some lands were turned back to agriculture, and other compromises made, in the Site`s far northern buffer lands known as the Wahluke Slope, during the 1950s. In the mid-1960s, further negotiations were about to allow farming on lands just north of the Columbia River, opposite Hanford`s reactors, when studies conducted by the BOR found drainage barriers to irrigation. As a result of these findings, two wildlife refuges were created on that land in 1971. Today, after the Hanford Site plutonium production mission has ended and as Site cleanup goes forward, the possibility of total release of Wahluke Slope lands from the control of the Department of Energy (DOE -- a successor agency to the AEC) is under discussion. Such discussion encompasses not just objective and clearly visible criteria, but it resurrects historical debates about the roles of farming and government presence in the Columbia Basin.

  9. Benthic study of the continental slope off Cape Hatteras, North Carolina. Volume 1. Executive summary

    SciTech Connect (OSTI)

    Diaz, R.J.; Blake, J.A.; Rhoads, D.C.

    1993-03-01

    Because of the potential impact on the environment associated with development and production activities, the Oil Pollution Act of 1990 mandated that a panel of experts, the North Carolina Environmental Sciences Review Panel (NCESRP), be convened. Their purpose was to consider whether the availability of scientific information was adequate for making decisions about oil and gas leasing, exploration, and development off North Carolina. The present study was developed by the Minerals Management Service because of concern raised by the NCESRP (1992) that not more than 5 percent of the unusual benthic community be covered by drill muds and cuttings. The principal task of the study was to determine if the communities extended over an area of the sea floor that was 20 time larger then the area estimated to be covered by drill muds and cuttings. If more than 5 percent of the unusual benthic community were covered by drill muds and cuttings, the NCESRP recommended that a study be carried out to determine the recovery rate of this community.

  10. ,"North Carolina Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. ,"North Carolina Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  12. ,"North Dakota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  13. ,"North Carolina Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic...

  14. North Carolina Natural Gas Delivered to Commercial Consumers...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) North Carolina Natural Gas Delivered to Commercial Consumers for the Account of Others (Million...

  15. ,"North Carolina Natural Gas LNG Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ... for" ,"Data 1","North Carolina Natural Gas LNG Storage Net Withdrawals ...

  16. ,"Louisiana--North Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... ,"Data 1","Louisiana--North Natural Gas Plant Liquids, Expected Future Production ...

  17. ,"North Dakota Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... for" ,"Data 1","North Dakota Natural Gas Plant Liquids, Expected Future Production ...

  18. ,"North Carolina Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    s","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  19. ,"North Dakota Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    ies","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  20. ,"North Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  1. North Dakota Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids, Expected Future Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  2. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work

  3. North Shore Gas- Commercial & Industrial Prescriptive Rebate Program

    Broader source: Energy.gov [DOE]

    North Shore Gas offers the Chicagoland Natural Gas Savings Program to help non-residential customers purchase energy efficient equipment. Rebates are available on energy efficient furnaces, boilers...

  4. North Carolina Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 3 2 3 3 3 3 3 3 3 3 3 3 2011 3 2 3 2 3 2 3 3 2 3 2 3 2012 3 2 3 2 3 2 3 3 2 3 2 3 2013 6 5 6 6 6 6 6 6 6 6 6 6 2014 7 6 7 7 7 7 7 7 7 7 7 7 2015 3 3 3 3 3 7 7 7 7 7 7 7 2016 8 7 8 8 11 11 Feet)

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) North Carolina Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.56 4.65 5.08 2.60 4.44

  5. North Dakota Natural Gas Processed in North Dakota (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    North Dakota (Million Cubic Feet) North Dakota Natural Gas Processed in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 111,925 177,995 231,935 301,661 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed North Dakota-North Dakota

  6. Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Santanu Khataniar

    2008-12-31

    amount of geographically diverse data, it is not possible to develop a comprehensive predictive model. Based on the comprehensive phase behavior analysis of Alaska North Slope crude oil, a reservoir simulation study was carried out to evaluate the performance of a gas injection enhanced oil recovery technique for the West Sak reservoir. It was found that a definite increase in viscous oil production can be obtained by selecting the proper injectant gas and by optimizing reservoir operating parameters. A comparative analysis is provided, which helps in the decision-making process.

  7. Methane Hydrate Production Technologies to be Tested on Alaska's North

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slope | Department of Energy Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will

  8. North Dakota Natural Gas Plant Liquids Production Extracted in North Dakota

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) North Dakota (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 48,504 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent North Dakota-North

  9. File:EIA-AK-NorthSlope-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  10. File:EIA-AK-NorthSlope-liquids.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  11. North Carolina Natural Gas % of Total Residential Deliveries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) North Carolina Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  12. North Troy, VT Natural Gas Pipeline Imports From Canada (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) North Troy, VT Natural Gas Pipeline Imports From Canada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's ...

  13. North Carolina Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  14. North Carolina Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  15. North Dakota Natural Gas Number of Industrial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  16. North Dakota Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  17. North Troy, VT Natural Gas Pipeline Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) North Troy, VT Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  18. North Carolina Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  19. Montana Natural Gas Processed in North Dakota (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    North Dakota (Million Cubic Feet) Montana Natural Gas Processed in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 176 865 1,460 1,613 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Montana-North Dakota

  20. Project Aids Development of Legacy Oilfield on Alaska’s North Slope

    Broader source: Energy.gov [DOE]

    Building on a project sponsored by the U.S. Department of Energy, Linc Energy is exploring the potential for accessing significant amounts of oil in the Umiat oilfield, a shallow, low-temperature, light-oil reservoir within Alaska’s National Petroleum Reserve. In the process, they’re shedding light on how this and similar reservoirs could be successfully developed to increase supplies of domestic oil and natural gas.

  1. The North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) cart site begins operation: Collaboration with SHEBA and FIRE

    SciTech Connect (OSTI)

    Zak, D. B.; Church, H.; Ivey, M.; Yellowhorse, L.; Zirzow, J.; Widener, K. B.; Rhodes, P.; Turney, C.; Koontz, A.; Stamnes, K.; Storvold, R.; Eide, H. A.; Utley, P.; Eagan, R.; Cook, D.; Hart, D.; Wesely, M.

    2000-04-04

    Since the 1997 Atmospheric Radiation Measurement (ARM) Science Team Meeting, the North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) site has come into being. Much has happened even since the 1998 Science Team Meeting at which this paper was presented. To maximize its usefulness, this paper has been updated to include developments through July 1998.

  2. Montana Natural Gas Plant Liquids Production Extracted in North Dakota

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) North Dakota (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 303 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-North Dakota

  3. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    SciTech Connect (OSTI)

    2012-09-30

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska�s North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska�s interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009

  4. Price convergence in North America natural gas spot markets

    SciTech Connect (OSTI)

    King, M.; Cuc, M.

    1996-12-01

    Government policy changes and subsequent regulatory actions in Canada and the United States (US) in the mid-1980s led to effective deregulation of the commodity market for natural gas. This was done by price deregulation, unbundling of pipeline services, and the fostering of a competitive market through equal and open access to pipeline transportation capacity by all suppliers and users. This paper attempts to measure the degree of price convergence in the North American natural gas spot markets. 38 refs.

  5. A comparison of cloud properties at a coastal and inland site at the North Slope of Alaska

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doran, J. C.; Zhong, S.; Liljegren, J. C.; Jakob, C.

    2002-06-11

    In this study, we have examined differences in cloud liquid water paths (LWPs) at a coastal (Barrow) and an inland (Atqasuk) location on the North Slope of Alaska using microwave radiometer (MWR) data collected by the U.S. Department of Energy's Atmospheric Radiation Measurement program for the period June-September 1999. Revised retrieval procedures and a filtering algorithm to eliminate data contaminated by wet windows on the MWRs were employed to extract high-quality data suitable for this study. For clouds with low base heights (<350 m), the LWPs at the coastal site were significantly higher than those at the inland site, butmore » for clouds with higher base heights the differences were small. Air-surface interactions may account for some of the differences. Comparisons were also made between observed LWPs and those simulated with the European Centre for Medium-Range Weather Forecasts (ECMWF) model. The model usually successfully captured the occurrence of cloudy periods but it underpredicted the LWPs by approximately a factor of two. It was also unsuccessful in reproducing the observed differences in LWPs between Barrow and Atqasuk. Some suggestions on possible improvements in the model are presented.« less

  6. Oil and gas developments in North Africa in 1986

    SciTech Connect (OSTI)

    Michel, R.C.

    1987-10-01

    Licensed oil acreage in the 6 North Africa countries (Algeria, Egypt, Libya, Morocco, Sudan and Tunisia) totaled 1,500,000 km/sup 2/ at the end of 1986, down 290,000 km/sup 2/ from 1985. About 50% of the relinquishments were in Libya. Most oil and gas discoveries were made in Egypt (16 oil and 2 gas). Several oil finds were reported in onshore Libya, and 1 was reported in Algeria in the southeastern Sahara. According to available statistics, development drilling decreased from 1985 levels, except in Tunisia. A 6.3% decline in oil production took place in 1986, falling below the 3 million bbl level (2,912,000 b/d). Only sparse data are released on the gas output in North Africa. 6 figures, 27 tables.

  7. North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management and Budget / Office of Civil Rights No Fear Act The NNSA Office of Civil Rights is committed to upholding anti-discrimination and civil rights laws. This is the NNSA reporting page for the Notification and Federal Employee Anti-discrimination and Retaliation Act of 2002 (No Fear Act), Public Law 207-174. Signed by President George W. Bush on May 15, 2002, the Act increases accountability of Federal Departments and agencies for acts of discrimination or reprisal against employees

  8. North American Natural Gas Markets: Selected technical studies. Volume 3

    SciTech Connect (OSTI)

    Huntington, H.G.; Schuler, G.E.

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  9. North American Natural Gas Markets: Selected technical studies

    SciTech Connect (OSTI)

    Huntington, H.G.; Schuler, G.E.

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  10. Horizontal well replaces hydraulic fracturing in North Sea gas well

    SciTech Connect (OSTI)

    Reynolds, D.A.; Seymour, K.P. )

    1991-11-25

    This paper reports on excessive water production from hydraulically fractured wells in a poor quality reservoir in the North SEa which prompted the drilling of a horizontal well. Gas production from the horizontal well reached six times that of the offset vertical wells, and no water production occurred. This horizontal well proved commercial the western section of the Anglia field. Horizontal drilling in the North SEa is as an effective technology to enhance hydrocarbon recovery from reservoirs that previously had proven uncommercial with other standard techniques. It is viable for the development of marginal reservoirs, particularly where conditions preclude stimulation from hydraulic fracturing.

  11. Using a Neural Network to Determine the Hatch Status of the AERI at the ARM North Slope of Alaska Site

    SciTech Connect (OSTI)

    Zwink, AB; Turner, DD

    2012-03-19

    The fore-optics of the Atmospheric Emitted Radiance Interferometer (AERI) are protected by an automated hatch to prevent precipitation from fouling the instrument's scene mirror (Knuteson et al. 2004). Limit switches connected with the hatch controller provide a signal of the hatch state: open, closed, undetermined (typically associated with the hatch being between fully open or fully closed during the instrument's sky view period), or an error condition. The instrument then records the state of the hatch with the radiance data so that samples taken when the hatch is not open can be removed from any subsequent analysis. However, the hatch controller suffered a multi-year failure for the AERI located at the ARM North Slope of Alaska (NSA) Central Facility in Barrow, Alaska, from July 2006-February 2008. The failure resulted in misreporting the state of the hatch in the 'hatchOpen' field within the AERI data files. With this error there is no simple solution to translate what was reported back to the correct hatch status, thereby making it difficult for an analysis to determine when the AERI was actually viewing the sky. As only the data collected when the hatch is fully open are scientifically useful, an algorithm was developed to determine whether the hatch was open or closed based on spectral radiance data from the AERI. Determining if the hatch is open or closed in a scene with low clouds is non-trivial, as low opaque clouds may look very similar spectrally as the closed hatch. This algorithm used a backpropagation neural network; these types of neural networks have been used with increasing frequency in atmospheric science applications.

  12. C-N-P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska

    SciTech Connect (OSTI)

    Jiang, Yueyang; Rocha, Adrian; Rastetter, Edward; Shaver, Gaius; Mishra, U.; Zhuang, Qianlai; Kwiatkowski, Bonnie

    2016-01-01

    As climate warms, changes in the carbon (C) balance of arctic tundra will play an important role in the global C balance. The C balance of tundra is tightly coupled to the nitrogen (N) and phosphorus (P) cycles because soil organic matter is the principal source of plant-available nutrients and determines the spatial variation of vegetation biomass across the North Slope of Alaska. Warming will accelerate these nutrient cycles, which should stimulate plant growth.

  13. Oil and gas developments in North Africa in 1985

    SciTech Connect (OSTI)

    Michel, R.C.

    1986-10-01

    Petroleum rights in the 6 North African countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered in this paper were 1,839,817 km/sup 2/ at the end of 1985, a decrease of 3% from the 1,896,446 km/sup 2/ held at the end of 1984. This decrease mainly is due to significant relinquishments made in Algeria, Egypt, and Tunisia. Morocco, however, had an increase of 18,087 km/sup 2/. Oil discoveries were reported in Algeria (possibly 5), Libya (at least 2), and Egypt (16). Only 1 gas find was made (in Morocco). According to sparse information, development drilling may have decreased markedly during 1985. Oil and condensate production increased by 3.1% to approximately 3,054,000 b/d compared to about 2,963,400 b/d in 1984. No statistics are currently available on gas production in North Africa. 8 figures, 27 tables.

  14. Louisiana--North Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 59 63 59 50 38 47 39 33 39 40 1990's 38 38 41 38 48 55 61 50 34 36 2000's 35 35 30 48 53 57 60 69 68 98 2010's 79 54 35 52 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  15. Louisiana--North Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 59 63 59 50 38 47 39 33 39 40 1990's 38 38 41 38 48 55 61 50 34 36 2000's 35 35 30 48 53 57 60 69 68 98 2010's 79 54 35 52 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  16. North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 4 4 5 6 6 5 6 5 5 1990's 5 5 5 5 4 4 4 4 4 4 2000's 5 5 5 4 5 5 6 6 6 8 2010's 9 11 19 26 36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  17. Assessment of primary production and optical variability in shelf and slope waters near Cape Hatteras, North Carolina. Final project report

    SciTech Connect (OSTI)

    Redalje, Donald G.; Lohrenz, Stevern E.

    2001-02-12

    In this project we determined primary production and optical variability in the shelf and slope waters off of Cape Hatteras, N.C. These processes were addressed in conjunction with other Ocean Margins Program investigators, during the Spring Transition period and during Summer. We found that there were significant differences in measured parameters between Spring and Summer, enabling us to develop seasonally specific carbon production and ecosystem models as well as seasonal and regional algorithm improvements for use in remote sensing applications.

  18. Oil and gas developments in North Africa in 1984

    SciTech Connect (OSTI)

    Michel, R.Ch.

    1985-10-01

    Petroleum rights in the 6 North African countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered in this paper were 1,906,065 km/sup 2/ at the end of 1984, an increase of 4.6% from the 1,821,966 km/sup 2/ in force at the end of 1983. This increase is due to large awards in the Sudan despite significant relinquishments elsewhere. Seismic surveys conducted during 1984 decreased to about 510.5 crew-months onshore and 29.5 crew-months offshore. However, exploration in and off Egypt was higher compared to 1983. Exploratory drilling was lower, with only 125 wells drilled compared to 179 tests completed in 1983. The main decrease was in Egypt and Sudan, but drilling in Libya resulted in 20 more completions. A significant oil discovery was made in the offshore part of the Sirte basin, off southwest Cyrenaica. The success rate in North Africa ranged from 19% to 50% (Libya). Development drilling increased during 1984, as higher activity appears to have taken place in 3 countries. Oil production, with an estimated daily rate of 2,952,570 bbl, was up 2.8% from 1983 (2,871,460 BOPD). In Egypt, 7 fields located in the Gulf of Suez area went on stream during the year. Political unrest, which prevailed in southern Sudan during most of 1984, will likely delay the start-up of production in several fields. No statistics are available on gas production in North African countries.

  19. Oil and gas developments in North Africa in 1984

    SciTech Connect (OSTI)

    Michel, R.C.

    1985-10-01

    Petroleum rights in the 6 North African countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered in this paper were 1,906,065 km/sup 2/ at the end of 1984. An increase of 4.6% from the 1,821,966 km/sup 2/ in force at the end of 1983. This increase is due to large awards in the Sudan despite significant relinquishments elsewhere. Seismic surveys conducted during 1984 decreased to about 510.5 crew-months onshore and 29.5 crew-months offshore. However, exploration in and off Egypt was higher compared to 1983. Exploratory drilling was lower, with only 125 wells drilled compared to 179 tests completed in 1983. The main decrease was in Egypt and Sudan, but drilling in Libya resulted in 20 more completions. A significant oil discovery was made in the offshore part of the Sirte basin, off southwest Cyrenaica. The success rate in North America ranged from 19% to 50% (Libya). Development drilling increased during 1984, as higher activity appears to have taken place in 3 countries. Oil production, with an estimated daily rate of 2,952,570 bbl, was 2.8% from 1983 (2,871,460 BOPD). In Egypt, 7 fields located in the Gulf of Suez area went on stream during the year. Political unrest, which prevailed in southern Sudan during most of 1984, will likely delay the start-up of production in several fields. No statistics are available on gas production in North African countries. 9 figures, 27 tables.

  20. North Carolina Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) North Carolina Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 597 1,497 1,372 1,145 1,511 1,164 1,663 1,609 2,151 1,597 1990's 2,023 1,219 1,030 1,681 2,118 1,572 2,708 2,016 1,286 4,086 2000's 4,168 5,477 4,026 8,122 5,039 6,445 2,639 5,744 4,493 6,838 2010's 4,410 5,500 3,504 7,765 10,765 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. North Carolina Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) North Carolina Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 1,591 1,483 1,427 1,063 1,397 977 1,571 1,890 2,803 1990's 578 1,232 1,122 1,823 1,802 1,710 2,490 1,686 1,083 2,089 2000's 4,891 3,680 4,860 7,779 5,773 5,762 2,952 5,522 4,490 6,027 2010's 7,052 3,305 3,762 7,315 10,303 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. North Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,086 2,165 2,216 1,957 2,737 2,112 2,005 1990's 4,835 4,777 4,753 4,734 5,059 4,542 4,283 4,420 4,471 4,553 2000's 4,738 3,874 5,141 4,548 4,602 4,816 4,364 4,323 4,283 4,521 2010's 4,294 5,473 5,887 6,707 5,736 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  3. North Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1 0 0 2000's 0 3 1 0 3 1 2 2 1 1 2010's 2 0 1 337 40 3,671 Thousand Cubic Feet)

    (Price) All Countries (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Exports (Price) All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -- 2000's -- -- -- 5.15 -- -- -- -- -- -- 2010's -- -- -- -- 14.71 - = No Data

  4. North Dakota Natural Gas Plant Liquids Production Extracted in Illinois

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,905 12,104 12,454 1990's 12,742 12,082 12,353 12,650 12,944 13,399 13,789 14,099 14,422 15,050 2000's 15,531 15,740 16,093 16,202 16,443 16,518 16,848 17,013 17,284 17,632 2010's 17,823 18,421 19,089 19,855 20,687 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  5. United States, Canada and Mexico Release the "North American Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision" | Department of Energy and Mexico Release the "North American Natural Gas Vision" United States, Canada and Mexico Release the "North American Natural Gas Vision" February 25, 2005 - 10:29am Addthis WASHINGTON, DC -- The North American Energy Working Group (NAEWG), a group of senior energy officials from Canada, Mexico and the United States, today released the "North American Natural Gas Vision," a trilateral report by the three governments that

  6. North Dakota Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,082 1,093 1,096 1,091 1,068 1,131 1,140 1,077 1,013 1,099 1,112 1,089 2014 1,087 1,084 1,074 1,077 1,083 1,079 1,078 1,106 1,123 1,100 1,105 1,096 2015 1,036 1,078 1,072 1,084 1,084 1,089 1,117 1,095 1,078 1,093 1,097 1,112 2016 1,095 1,095 1,099 1,108 1,091 1,070

    % of Total Residential Deliveries (Percent) North Dakota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  7. NorthWestern Energy (Gas)- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    NorthWestern Energy offers multiple rebate programs for commercial and industrial customers to make energy efficient improvements to their businesses. Incentives are available for heating,...

  8. NorthWestern Energy (Gas)- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    NorthWestern Energy offers a variety of rebates for residential customers to make energy efficiency improvements in their existing homes. Incentives are available for heating equipment, insulation,...

  9. Statement by Secretary Bodman Regarding Alaskan Natural Gas Contract |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Regarding Alaskan Natural Gas Contract Statement by Secretary Bodman Regarding Alaskan Natural Gas Contract February 22, 2006 - 12:08pm Addthis DECATUR , IL - U.S. Department of Energy Secretary Samuel W. Bodman made the following statement this morning in response to reports that Alaska Gov. Frank Murkowski and Alaska North Slope natural gas producers have reached agreement on key provisions of a contract that will allow production of Alaska North Slope natural gas to

  10. Louisiana--North Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 1 7 9 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Louisiana Coalbed Methane Proved

  11. North Dakota Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    ,213 1,869 2,652 3,974 6,081 6,787 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 143 152 141 105 91 45 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 1,070 1,717 2,511 3,869 5,990 6,742 1979-2014 Dry Natural Gas 1,079 1,667 2,381 3,569 5,420 6,034

  12. North Louisiana Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    17,273 26,136 27,411 18,467 17,112 19,837 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 17,220 26,063 27,313 18,385 16,933 19,645 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 53 73 98 82 179 192 1979-2014 Dry Natural Gas 17,143 26,030 27,337 18,418 17,044 19,722

  13. South Dakota-North Dakota Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 113 86 71 2012-2014 Total Liquids Extracted (Thousand Barrels) 23 19 16 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 21 2014

  14. North Troy, VT Natural Gas Imports by Pipeline from Canada

    Gasoline and Diesel Fuel Update (EIA)

    17,273 26,136 27,411 18,467 17,112 19,837 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 17,220 26,063 27,313 18,385 16,933 19,645 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 53 73 98 82 179 192 1979-2014 Dry Natural Gas 17,143 26,030 27,337 18,418 17,044 19,722 Separation

    17,220 26,063 27,313 18,385 16,933 19,645 1979-2014 Adjustments 154 -484 144 124 224 177 1979-2014 Revision Increases 1,168 2,594 3,093 2,913 2,527 2,378 1979-2014 Revision

  15. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved Reserves, Reserves Changes, and Production

    + Lease Condensate Proved

  16. North Dakota Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    113,867 157,025 258,568 345,787 462,929 581,761 1967-2015 From Gas Wells 10,501 14,287 22,261 24,313 22,354 1967-2014 From Oil Wells 38,306 27,739 17,434 12,854 9,098 1967-2014 From Shale Gas Wells 65,060 114,998 218,873 308,620 431,477 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 0 0 0 0 0 1981-2014 Vented and Flared 24,582 49,652 79,564 102,855 129,384 1967-2014 Nonhydrocarbon Gases Removed 7,448 10,271 6,762 7,221 7,008 1984-2014 Marketed Production 81,837 97,102 172,242

  17. North Dakota Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    50,146 47,912 51,852 47,507 49,979 48,555 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1996-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production 39,686 37,918 41,036 37,597 39,553 38,42

  18. Gas-metering test and research facility to meet North Sea needs

    SciTech Connect (OSTI)

    Bosio, J.; Wilcox, P.; Sembsmoen, O. )

    1988-12-12

    A joint-venture, high-pressure, large-flow-rate facility to test, qualify, and research new natural-gas metering systems has been built by Den Norske Stats Oljeselskap A.S. (Statoil) and Total Marine Norsk A.S. Located near Haugesund in the Stavanger area, the lab, designated the Karsto Metering and Technology Laboratory, or K-Lab, is adjacent to Norway's first natural-gas-processing plant. It receives natural gas from across the Norwegian Trench from the Statfjord complex and after processing it sends it on to Emden, West Germany. The gas, which is produced in the North Sea, is transported to United Kingdom and the European continent through a high-pressure pipeline network. The importance of gas-metering technology has been emphasized by oil and gas companies as well as by national regulatory authorities.

  19. Louisiana - North Natural Gas Plant Liquids, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 858 9,307 2010's 20,070 21,950 13,523 11,483 12,792 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31

  20. ,"North Carolina Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    7,"Annual",2015,"6/30/1967" ,"Data 2","Underground Storage",3,"Annual",1996,"6/30/1973" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2014,"6/30/1980" ,"Data 4","Consumption",8,"Annual",2015,"6/30/1967" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  1. Sequestration of Carbon Dioxide with Enhanced Gas Recovery-CaseStudy Altmark, North German Basin

    SciTech Connect (OSTI)

    Rebscher, Dorothee; Oldenburg, Curtis M.

    2005-10-12

    Geologic carbon dioxide storage is one strategy for reducingCO2 emissions into the atmosphere. Depleted natural gas reservoirs are anobvious target for CO2 storage due to their proven record of gascontainment. Germany has both large industrial sources of CO2 anddepleting gas reservoirs. The purpose of this report is to describe theanalysis and modeling performed to investigate the feasibility ofinjecting CO2 into nearly depleted gas reservoirs in the Altmark area inNorth Germany for geologic CO2 storage with enhanced gasrecovery.

  2. World pipeline construction patterns shifting away from big North American gas lines

    SciTech Connect (OSTI)

    Koen, A.D.; True, W.R.

    1992-02-10

    The pattern of world pipeline construction has begun to shift away from large diameter gas lines in North America. Total miles of gas pipelines planned this year and beyond have registered big increases in Europe and Asia- Pacific regions, more than offsetting decreased mileage of planned U.S. and Canadian gas projects. World products pipeline construction planned in 1992 and beyond shows the largest year to year gain, paced by projects in Latin America. Those are among highlights of this article. Many projects only under study or unlikely to be built are excluded from final mileage tallies.

  3. North Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas

  4. Natural gas trade in North America: Building up to the NAFTA

    SciTech Connect (OSTI)

    Plourde, A.

    1993-12-31

    This paper traces the evolution of natural gas trade among Canada, Mexico, and the United States in the 1967-1992 period. In addition, the provisions of the North American Free Trade Agreement (NAFTA) that relate to natural gas trade are examined in the light of the corresponding aspects of the Canada-United States Free Trade Agreement (FTA). One of the main conclusions to emerge is that exports from Canada to the United States would likely continue to dominate North American natural gas trade patterns under the NAFTA. Past experience suggests that regulatory policies play a crucial role in determining trade patterns. In the case of Canada and the United States, the policies of deregulation implemented by the two countries prior to 1989 have proven to be much more important than has the FTA in encouraging cross-border trade in natural gas. Since the NAFTA allows Mexico to maintain a highly interventionist approach to energy policy, an internally-driven process of policy change will be required to liberalize natural gas trade between Mexico and the other parties to the Agreement. A few specific developments relating to natural gas trade among the NAFTA parties are also examined in the light of the Agreement. 15 refs., 4 figs.

  5. Structural and sedimentological controls and diagenesis in the Ravenspurn north gas reservoir United Kingdom southern North Sea

    SciTech Connect (OSTI)

    Turner, P. ); Jones, M. ); Prosser, J. ); Williams, G. )

    1993-09-01

    The Ravenspurn area is divided into two main northwest-southeast-trending fault blocks which are markedly different in terms of their diagenetic evolution and reservoir performance. The northeasterly B structure contained gas earlier and was unaffected by Middle to Late Jurassic illitization. The southwesterly A structure was uplifted later and received accumulated gas after reservoir quality was reduced by pervasive illitization. The deposition of allogenic clay and the formation of early quartz, nonferroan dolomite, and anhydrite reduced the reservoir quality of fluvial sheetflood. Burial diagenesis resulted initially in ferroan dolomite, kaolinite, and later quartz precipitation in available primary and secondary porosity. Stable-isotope and fluid-inclusion studies indicate that Ferroan dolomite and later quartz precipitated at about 100[degrees]C in the Triassic-Early Jurassic from reduced fluids derived partly from the Carboniferous basement. Gas accumulation took place first in the northeasterly B structure, which had early closure. Elsewhere diagenetic fluids evolved to a more alkaline state, and widespread illitization took place which particularly affected more permeable eolian facies. The illitization reduced the reservoir quality of the lower Leman Sandstone and contributed to diagenetic sealing (to the northwest) of the field. K-Ar dating indicates that peak illitization took place between 150 and 170 Ma (Middle-Late Jurassic). Subsequent periods of uplift in the late Cimmerian and particularly during the early Tertiary-Miocene produced the final structure of Ravenspurn North and the spillage of gas into this structure. The combination of structural and diagenetic events explains the differences in reservoir quality and well performance of the two structural blocks in the field.

  6. ,"North Carolina Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Residential Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  7. ,"North Dakota Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  8. ,"North Dakota Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Residential Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  9. North Carolina Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (Million Cubic Feet) North Carolina Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 597 -94 -111 -282 448 -233 686 39 261 -1,205 1990's 1,445 -13 -92 -142 316 -138 218 330 203 1,997 2000's -722 1,797 -834 -343 734 -684 313 222 3 811 2010's -2,643 2,194 -258 449 462 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  10. North Dakota Natural Gas Delivered to Commercial Consumers for the Account

    Gasoline and Diesel Fuel Update (EIA)

    of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) North Dakota Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 103 716 2,082 1990's 2,585 3,223 3,035 2,908 2,199 2,224 1,454 1,207 1,631 1,178 2000's 1,157 1,031 977 617 773 704 653 693 732 776 2010's 764 795 837 981 968 - = No Data Reported; -- = Not

  11. North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 17,133 16,163 14,691 1970's 14,067 13,990 12,773 12,462 11,483 12,008 15,998 13,697 12,218 3,950 1980's 1,017 13,759 3,514 4,100 4,563 4,710 3,974 5,194 4,014 3,388 1990's 6,939 11,583 8,462 8,256 11,306 11,342 11,603 8,572 8,309 - = No Data Reported; -- = Not Applicable; NA =

  12. Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

    2013-09-11

    Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

  13. Study of biological processes on the US South Atlantic slope and rise. Phase 1: Benthic characterization. Volume 2. Final report

    SciTech Connect (OSTI)

    Blake, J.A.; Hecker, B.; Grassle, J.F.; Maciolek-Blake, N.; Brown, B.

    1985-06-01

    Concerns about the potential effects of oil and gas exploration on the U.S. Continental Slope and Rise led to the initiation of a deep-sea characterization study off North Carolina. The biological communities off North Carolina were poorly known, and prior to any drilling activities, a limited regional data base was required. The program included a seasonal characterization of biological and surficial geological properties at a limited number of slope and rise sites, with special emphasis on areas of high oil industry interest. A rich and highly diverse benthic infauna was discovered, with a large percentage of the 877 species being new to science. Annelids were the dominant taxa both in terms of density, numbers of species, and biomass. Foraminiferan tests comprised most of the sand fraction. Hydrographic data indicated some intrusion of colder water on the upper slope benthos from deeper water.

  14. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    BOE Reserve Class ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , ! ! ! ! ! £ , £ , £ , £ , £ , COLVILLE RIVER COLVILLE RIVER 150°50'0"W 150°50'0"W 150°55'0"W 150°55'0"W 151°0'0"W 151°0'0"W 151°5'0"W 151°5'0"W 151°10'0"W 151°10'0"W

  15. North Slope Co. Northwest Arctic Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Reserve Class ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , £ , ! ! ! ! ! £ , £ , £ , £ , £ , COLVILLE RIVER COLVILLE RIVER 150°50'0"W 150°50'0"W 150°55'0"W 150°55'0"W 151°0'0"W 151°0'0"W 151°5'0"W 151°5'0"W 151°10'0"W 151°10'0"W

  16. Rock slope stability

    SciTech Connect (OSTI)

    Kliche, C.A.

    1999-07-01

    Whether you're involved in surface mine design, surface mine production, construction, education, or regulation, this is an important new book for your library. It describes the basic rock slope failure modes and methods of analysis--both kinematic and kinetic techniques. Chapters include geotechnical and geomechanical analysis techniques, hydrology, rock slope stabilization techniques, and geotechnical instrumentation and monitoring. Numerous examples, drawings and photos enhance the text.

  17. North American Shale Gas | OSTI, US Dept of Energy, Office of...

    Office of Scientific and Technical Information (OSTI)

    and why is it important? (EIA) Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays (EIA) Shale Gas: Applying Technology to Solve America's Energy Challenges (NETL ...

  18. How might North American oil and gas markets have performed with a Free Trade Agreement in 1970?

    SciTech Connect (OSTI)

    Watkins, G.C.; Waverman, L.

    1993-12-31

    Deregulation on both sides of the U.S.-Canadian border has made certain aspects of trade agreements largely superfluous in the near term. It is over the longer term that the impact of the NAFTA will become apparent. To grapple with this issue, simulations are attempted of oil and gas trade between the United States and Canada as if the NAFTA had been in place before the first oil price shock of 1973. The simulations suggest substantial additional exports of Canadian oil and gas would have enabled the United States to back out volumes of OPEC oil during the critical years of the late 1970s and early 1980s. This would have served to dampen world oil markets during the years of OPEC ascendancy-not dramatically, but not negligibly either. By promoting closer integration of energy markets, the NAFTA should lead to more cohesive North American responses to any future world oil shocks. 13 refs., 8 tabs.

  19. CONTENTS Concentrated Gas Hydrate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Schoderbek, D., Martin, K., Howard, J., Silpngarmlert, S., and Hester, K., 2012. North Slope hydrate field trial: CO 2 -CH 4 exchange. Paper OTC-23725, presented at Offshore ...

  20. Study of biological processes on the US South Atlantic slope and rise. Phase 1: Benthic characterization. Volume 1. Executive Summary

    SciTech Connect (OSTI)

    Blake, J.A.; Hecker, B.; Grassle, J.F.; Maciolek-Blake, N.; Brown, B.

    1985-06-01

    Concerns about the potential effects of oil and gas exploration on the U.S. Continental Slope and Rise led to the initiation of a deep-sea characterization study off North Carolina. The program included a seasonal characterization of biological and surficial geological properties at a limited number of slope and rise sites, with special emphasis on areas of high oil industry interest. A five-station transect was established off Cape Lookout in depths of 600 m, 1000 m, 1500 m, 2000 m and 3000 m. A rich and highly diverse benthic infauna was discovered, with a large percentage of the 877 species being new to science. Faunal density was highest on the upper slope (600 m) and lowest on the continental rise (3000 m). Species diversity values were all higher than 6.0, indicating a very diverse fauna, with the highest values at 3000 m. Foraminiferan tests comprised most of the sand fraction. Hydrographic data indicated some intrusion of colder water on the upper slope benthos from deeper water.

  1. North Dakota Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) North Dakota Shale Proved Reserves (Billion ... Shale Natural Gas Proved Reserves as of Dec. 31 North Dakota Shale Gas Proved Reserves, ...

  2. Louisiana--North Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Louisiana--North Shale Proved Reserves (Billion ... Shale Natural Gas Proved Reserves as of Dec. 31 North Louisiana Shale Gas Proved Reserves, ...

  3. Sandia Energy - Alaskan North Slope Climate: Hard Data from a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the automated release of a weather balloon ... which measures the Arctic atmosphere's temperature, humidity, and wind speeds at a rapid succession of altitudes as it rises. The...

  4. Clouds and snowmelt on the north slope of Alaska

    SciTech Connect (OSTI)

    Zhang, T.; Stamnes, K.; Bowling, S.A.

    1996-04-01

    Clouds have a large effect on the radiation field. Consequently, possible changes in cloud properties may have a very substantial impact on climate. Of all natural surfaces, seasonal snow cover has the highest surface albedo, which is one of the most important components of the climatic system. Interactions between clouds and seasonal snow cover are expected to have a significant effect on climate and its change at high latitudes. The purpose of this paper is to investigate the sensitivity of the surface cloud-radiative forcing during the period of snowmelt at high latitudes. The primary variables investigated are cloud liquid path (LWP) and droplet equivalent radius (r{sub e}). We will also examine the sensitivity of the surface radiative fluxes to cloud base height and cloud base temperature.

  5. The 2004 North Slope of Alaska Arctic Winter Radiometric Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CETEMPS Universita' dell'Aquila L'Aquila, Italy V. Mattioli Dipartimento di Ingegneria Elettronica e dell'Informazione Perugia, Italy B. L. Weber and S. Dowlatshahi Science ...

  6. Site Scientist for the North Slope of Alaska Site (Technical...

    Office of Scientific and Technical Information (OSTI)

    ... Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  7. North Slope of Alaska ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation steps are listed for each situation at the highest or major level. NSAerpRev3.doc 1 ACRFNSAAAO Revision 3 Emergency Response Plan June 2010 Power Outages Hazard: ...

  8. Alternative Fuels Data Center: North Carolina's Henderson County Focuses on

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas North Carolina's Henderson County Focuses on Natural Gas to someone by E-mail Share Alternative Fuels Data Center: North Carolina's Henderson County Focuses on Natural Gas on Facebook Tweet about Alternative Fuels Data Center: North Carolina's Henderson County Focuses on Natural Gas on Twitter Bookmark Alternative Fuels Data Center: North Carolina's Henderson County Focuses on Natural Gas on Google Bookmark Alternative Fuels Data Center: North Carolina's Henderson County Focuses

  9. Analysis of Oil and Gas Production in the Arctic National Wildlife Refuge

    Reports and Publications (EIA)

    2004-01-01

    This study analyzed the impact on future oil imports and expenditures of opening the Arctic National Wildlife Refuge (ANWR) to petroleum development. High, low, and mean ANWR oil resource case projections were compared to the Annual Energy Outlook 2004 reference case. The study also examined whether potential synergies exist in opening ANWR to petroleum development and the construction of an Alaska gas pipeline from the North Slope to the lower 48 states.

  10. Predictive and preventive maintenance of oil and gas production pipelines in the area North Monagas-Venezuela

    SciTech Connect (OSTI)

    Perez, M.A.L.

    1996-12-31

    Predictive maintenance of oil and gas production pipelines has allowed the prediction of operational failures. Specially due to the thermodynamic behavior of the produced fluids, contaminants present in the oil and gas such as sand, water, H{sub 2}S and CO{sub 2}, asphaltene deposition, high temperatures and pressures, physicochemical characteristics of the soil, etc. lead to risks of the installations. In order to minimize risks of failures, the author has established a control and monitoring preventive program of the variables that influence these conditions, such as: nondestructive testing, wall thickness measurements and two dimensional B Scan measurements to detect impurities, laminations and inclusions in the pipeline material, corrosion evaluation of pipelines, characterization of the soil corrosive potential of flow stations and compressing plants. Additionally, he has implemented predictive control through the application of external corrosion prevention techniques such as cathodic protection and coatings. For internal corrosion, the use of corrosion inhibitors, asphaltene dispersants and material selection are used. Increasing the protection through preventive and predictive maintenance can reduce the operational risks involved for the oil and gas production.