National Library of Energy BETA

Sample records for north dakota coal

  1. North Dakota

    Gasoline and Diesel Fuel Update (EIA)

    Dakota

  2. Barnes County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    County, North Dakota Dazey, North Dakota Fingal, North Dakota Kathryn, North Dakota Leal, North Dakota Litchville, North Dakota Nome, North Dakota Oriska, North Dakota...

  3. Burleigh County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota Lincoln, North Dakota Lincoln-Fort Rice, North Dakota Lyman, North Dakota Phoenix, North Dakota Regan, North Dakota Wilton, North Dakota Wing, North Dakota Retrieved...

  4. Cavalier County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Calvin, North Dakota Hannah, North Dakota Langdon, North Dakota Loma, North Dakota Milton, North Dakota Munich, North Dakota Nekoma, North Dakota Osnabrock, North Dakota...

  5. Cass County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    North Dakota North River, North Dakota Oxbow, North Dakota Page, North Dakota Prairie Rose, North Dakota Reile's Acres, North Dakota Tower City, North Dakota West Fargo, North...

  6. Mountrail County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota New Town, North Dakota Palermo, North Dakota Parshall, North Dakota Plaza, North Dakota Ross, North Dakota Southwest Mountrail, North Dakota Stanley, North...

  7. Rolette County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota North Rolette, North Dakota Rolette, North Dakota Rolla, North Dakota Shell Valley, North Dakota South Rolette, North Dakota St. John, North Dakota Turtle...

  8. Bowman County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    A. Places in Bowman County, North Dakota Bowman, North Dakota Gascoyne, North Dakota Hart, North Dakota Rhame, North Dakota Scranton, North Dakota West Bowman, North Dakota...

  9. Wells County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    North Dakota Cathay, North Dakota Fessenden, North Dakota Hamberg, North Dakota Harvey, North Dakota Hurdsfield, North Dakota Sykeston, North Dakota Retrieved from "http:...

  10. Pembina County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Pembina County, North Dakota Bathgate, North Dakota Canton City, North Dakota Cavalier, North Dakota Crystal, North Dakota Drayton, North Dakota Hamilton, North Dakota...

  11. Dickey County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Subtype A. Places in Dickey County, North Dakota Ellendale, North Dakota Forbes, North Dakota Fullerton, North Dakota Ludden, North Dakota Monango, North Dakota...

  12. LaMoure County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Edgeley, North Dakota Jud, North Dakota Kulm, North Dakota LaMoure, North Dakota Marion, North Dakota Verona, North Dakota Retrieved from "http:en.openei.orgw...

  13. Steele County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    North Dakota M Power LLC Places in Steele County, North Dakota Finley, North Dakota Hope, North Dakota Luverne, North Dakota Sharon, North Dakota Retrieved from "http:...

  14. Ransom County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    North Dakota Enderlin, North Dakota Fort Ransom, North Dakota Lisbon, North Dakota Sheldon, North Dakota Retrieved from "http:en.openei.orgwindex.php?titleRansomCounty,N...

  15. Kidder County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 7 Climate Zone Subtype A. Places in Kidder County, North Dakota Dawson, North Dakota Kickapoo, North Dakota Pettibone, North Dakota Robinson, North Dakota...

  16. Hettinger County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Hettinger County, North Dakota Central Hettinger, North Dakota Mott, North Dakota New England, North Dakota Regent, North Dakota Retrieved from "http:en.openei.orgw...

  17. Dunn County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Dunn County, North Dakota Dodge, North Dakota Dunn Center, North Dakota Halliday, North Dakota Killdeer, North Dakota Retrieved from "http:en.openei.orgw...

  18. Stark County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dakota Gladstone, North Dakota Richardton, North Dakota South Heart, North Dakota Taylor, North Dakota Retrieved from "http:en.openei.orgwindex.php?titleStarkCounty,Nor...

  19. North Dakota Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Dakota Recovery Act State Memo North Dakota Recovery Act State Memo North Dakota has substantial natural resources, including coal, natural gas, oil, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in North Dakota are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to clean coal, wind, and carbon capture

  20. Sioux County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 6 Climate Zone Subtype A. Places in Sioux County, North Dakota Cannon Ball, North Dakota Fort Yates, North Dakota North Sioux, North Dakota Selfridge, North...

  1. McHenry County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    McHenry, North Dakota Towner, North Dakota Upham, North Dakota Velva, North Dakota Voltaire, North Dakota Retrieved from "http:en.openei.orgwindex.php?titleMcHenryCounty,...

  2. North Dakota/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Tax Credit (North Dakota) Corporate Tax Credit Yes Residential Energy Efficiency Rebates (Offered by 5 Utilities) (North Dakota) Utility Rebate Program Yes...

  3. McLean County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Dakota Mercer, North Dakota North Central McLean, North Dakota Riverdale, North Dakota Ruso, North Dakota South McLean, North Dakota Turtle Lake, North Dakota Underwood, North...

  4. JV Task 109 - Risk Assessment and Feasibility of Remedial Alternatives for Coal Seam at Garrison, North Dakota

    SciTech Connect (OSTI)

    Jarda Solc

    2008-01-01

    The Energy & Environmental Research Center (EERC) conducted an evaluation of alternative technologies for remediation of hydrocarbon-contaminated coal seam, including impacted soils and groundwater in Garrison, North Dakota. Geotechnical characteristics of the impacted fractured coal seam provide for rapid off-site contaminant transport, with the currently identified impacted zone covering an area of about 40 acres. Regardless of the exposure mechanism (free, dissolved, or vapor phase), results of laboratory tests confirmed secondary release of gasoline-based compounds from contaminated coal to water reaching concentrations documented from the impacted areas. Coal laboratory tests confirmed low risks associated with spontaneous ignition of gasoline-contaminated coal. High contaminant recovery efficiency for the vacuum-enhanced recovery pilot tests conducted at three selected locations confirmed its feasibility for full-scale remediation. A total of 3500 gallons (13.3 m{sup 3}) of contaminated groundwater and over 430,000 ft{sup 3} (12,200 m{sup 3}) of soil vapor were extracted during vacuum-enhanced recovery testing conducted July 17-24, 2007, resulting in the removal of about 1330 lb (603 kg) of hydrocarbons, an equivalent of about 213 gallons of product. The summary of project activities is as follows: (1) Groundwater and vapor monitoring for existing wells, including domestic wells, conducted on a monthly basis from December 12, 2006, to June 6, 2007. This monitoring activity conducted prior to initiation of the EERC field investigation was requested by NDDH in a letter dated December 1, 2006. (2) Drilling of 20 soil borings, including installation of extraction and monitoring wells conducted April 30-May 4 and May 14-18, 2007. (3) Groundwater sampling and water-table monitoring conducted June 11-13, 2007. (4) Evaluation of the feasibility of using a camera survey for delineation of mining voids conducted May 16 and September 10-11, 2007. (5) Survey of all wells at the site. (6) Laboratory testing of the coal samples conducted from August to October 2007. (7) Vacuum-enhanced pilot tests at three locations: Cenex corner, Tesoro corner, and cavity area, conducted July 17-24, 2007. (8) Verification of plume delineation for a full-scale design and installation of six monitoring wells September 10-13, 2007. (9) Groundwater sampling and monitoring conducted September 11-12, September 26, and October 3, 2007. (10) Feasibility evaluation of alternative technologies/strategies for the subject site.

  5. sorbent-univerisity-north-dakota | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of CO2 Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents (CACHYS(tm)) Project No.: DE-FE0007603 The University of North Dakota (UND) is...

  6. Dr. Brian Kalk - Chairman North Dakota Public Service Commission.

    Broader source: Energy.gov (indexed) [DOE]

    Brian Kalk - Chairman North Dakota Public Service Commission. Responding to Changing Infrastructure Needs. I. Overview of the jurisdiction of the North Dakota Public Service Commission. a. Infrastructure siting b. Regulatory oversight c. States' rights II. Discuss the challenges to jurisdiction infrastructure. a. Electricity Transmission Lines b. Electricity Generation i. Wind ii. Natural Gas iii. Coal iv. Uncertainty c. Telecommunication Expansion d. Pipeline Operation & Safety III.

  7. North Dakota State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dakota State University - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  8. JV Task-130 Technological Synergies for Recovery of Organic Pollutants from a Coal Seam at Garrison, North Dakota

    SciTech Connect (OSTI)

    Jaroslav Solc

    2009-03-15

    The Energy & Environmental Research Center (EERC) initiated remediation of hydrocarbon-contaminated soils and groundwater associated with gasoline release at the Farmers Union Oil station in Garrison, North Dakota. The remedial strategy implemented is based on application of two innovative concepts: (1) simultaneous operation of soil vapor and multiphase extraction systems allowing for water table control in challenging geotechnical conditions and (2) controlled hot-air circulation between injection and extraction wells to accelerated in situ volatilization and stripping of contaminants of concern (COC) alternatively using the same wells as either extraction or injection points. A proactive remedial approach is required to reduce high COC levels in the source and impacted areas and to eliminate long-term health risks associated with contaminant migration to water-bearing zones used as a regional water supply source. This report compiles results of Phase I focused on design, construction, and start-up of remediation systems.

  9. Holden, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    ":"","inlineLabel":"","visitedicon":"" Hide Map Holden is a unorganized territory in Adams County, North Dakota. It falls under North Dakota's At-large congressional district....

  10. City of Hillsboro, North Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Hillsboro, North Dakota (Utility Company) Jump to: navigation, search Name: City of Hillsboro Place: North Dakota Phone Number: 605-338-4042 Website: acupofcoffeeaway.comcity-info...

  11. North Dakota Natural Gas Processed in North Dakota (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    North Dakota (Million Cubic Feet) North Dakota Natural Gas Processed in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 111,925 177,995 231,935 301,661 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed North Dakota-North Dakota

  12. EIS-0072: Great Plains Gasification Project, Mercer County, North Dakota

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy prepared this EIS to evaluate the impacts of a project to construct a 125 million cubic feet per day coal gasification facility located in Mercer County, North Dakota. The Office of Fossil Energy adopted three environmental impact evaluation documents prepared by other Federal agencies to develop this EIS.

  13. North Dakota Energy Workforce Development

    SciTech Connect (OSTI)

    Carter, Drake

    2014-12-29

    Bismarck State College, along with its partners (Williston State College, Minot State University and Dickinson State University), received funding to help address the labor and social impacts of rapid oilfield development in the Williston Basin of western North Dakota. Funding was used to develop and support both credit and non-credit workforce training as well as four major symposia designed to inform and educate the public; enhance communication and sense of partnership among citizens, local community leaders and industry; and identify and plan to ameliorate negative impacts of oil field development.

  14. North Dakota Natural Gas Plant Liquids Production Extracted in North Dakota

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) North Dakota (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 48,504 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent North Dakota-North

  15. North Dakota Refining Capacity Study

    SciTech Connect (OSTI)

    Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

    2011-01-05

    According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

  16. sorbent-univerisity-north-dakota | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of CO2 Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents (CACHYS(tm)) Project No.: DE-FE0007603 The University of North Dakota (UND) is scaling up and demonstrating a solid sorbent technology for carbon dioxide (CO2) capture and separation from coal combustion-derived flue gas. The technology - Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS(tm)) - is a novel solid sorbent process based on the following

  17. Timing of the deposition of uppermost Cretaceous and Paleocene coal-bearing deposits in the Greater Glendive area, Montana and North Dakota

    SciTech Connect (OSTI)

    1996-02-01

    With the aid of a grant from the National Geographic Society, a cooperative agreement with the State University of New York at Stony Brook, and contract with the U.S. Department of Energy, Late Cretaceous and Paleocene geologic and paleontologic field studies were undertaken in Makoshika, State Park and vicinity, Dawson County, Montana. This region was chosen as a study area because of its potential for yielding new fossil localities and extensive exposures both above and below the K/T boundary, as suggested by previous research by David W. Krause and Joseph H. Hartman. Related field studies were also undertaken in areas adjacent to the Cedar Creek Anticline in North Dakota. This work was part of ongoing research to document change in the composition of mammalian and molluscan faunas during the Late Cretaceous and Paleocene and to relate observed patterns to floral and invertebrate changes in composition. This study focuses on the record of mammals and mollusks in the Makoshika stratigraphic section and places old and new observations into a paleomagnetic and palynomorph framework. Of particular interest is the appearance and diversification of archaic ungulate mammals. Simultaneous dinosaur extinction with ungulate radiation has been invoked in gradual, as opposed to catastrophic, models of faunal change at the K/T boundary. However, supposed Cretaceous localities bearing archaic ungulates and other mammals of {open_quotes}Paleocene aspect{close_quotes} may be the product of faunal reworking. Elsewhere in the Williston Basin (e.g., Garfield and McCone Counties, Montana), the molluscan record of uppermost Cretaceous and Paleocene strata indicates the extinction of all of the highly sculptured unionid bivalves just prior to the onset of coal swamps and subsequent coal formation.

  18. Traill County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Dakota. Its FIPS County Code is 097. It is classified as ASHRAE 169-2006 Climate Zone Number 7 Climate Zone Subtype A. Places in Traill County, North Dakota Buxton, North...

  19. City of Hope, North Dakota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Hope, North Dakota (Utility Company) Jump to: navigation, search Name: City of Hope Place: North Dakota Phone Number: 701-945-2772 Website: www.hopend.com Outage Hotline:...

  20. Hope, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Hope is a city in Steele County, North Dakota. It falls under North Dakota's At-large...

  1. Bucyrus, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Bucyrus is a city in Adams County, North Dakota. It falls under North Dakota's At-large congressional...

  2. Hettinger, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Hettinger is a city in Adams County, North Dakota. It falls under North Dakota's At-large congressional...

  3. Reeder, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Reeder is a city in Adams County, North Dakota. It falls under North Dakota's At-large congressional...

  4. Haynes, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Haynes is a city in Adams County, North Dakota. It falls under North Dakota's At-large congressional...

  5. Adams, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Adams is a city in Walsh County, North Dakota. It falls under North Dakota's At-large...

  6. North Dakota Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name North Dakota Wind II Wind Farm Facility North Dakota Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  7. City of Park River, North Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Park River, North Dakota (Utility Company) Jump to: navigation, search Name: City of Park River Place: North Dakota Phone Number: 701.284.6150 Website: www.parkrivernd.govoffice2.c...

  8. West Fargo, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Fargo is a city in Cass County, North Dakota. It falls under North Dakota's At-large...

  9. North Dakota Industrial Commission, Oil and Gas Divisioin | Open...

    Open Energy Info (EERE)

    in Bismarck, North Dakota. About The Oil and Gas Division regulates the drilling and production of oil and gas in North Dakota. Our mission is to encourage and promote the...

  10. Alamo, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Alamo is a city in Williams County, North Dakota. It falls under North Dakota's At-large congressional...

  11. North Dakota Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Shale Production (Billion Cubic Feet) North Dakota Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 3 25 2010's 64 95 203 268 426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production North Dakota Shale Gas Proved Reserves, Reserves Changes,

  12. Alternative Fuels Data Center: North Dakota Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels and Vehicles Dakota Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: North Dakota Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: North Dakota Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: North Dakota Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative

  13. West Morton, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    "alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map West Morton is a unorganized territory in Morton County, North Dakota. It falls under North...

  14. EA-1920: Border Winds 2, North Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of a proposed wind turbine generation facility in Rolette and Towner Counties in North Dakota. If the proposal is implemented, power generated by this facility would interconnect at an existing substation and would be distributed via an existing transmission line owned and operated by Western.

  15. South Dakota Natural Gas Processed in North Dakota (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    in North Dakota (Million Cubic Feet) South Dakota Natural Gas Processed in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 113 86 71 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed South Dakota-North Dakota Natural Gas Plant Processing

  16. ,"North Dakota Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    ies","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  17. Prairie Rose, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rose, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.8174651, -96.8356389 Show Map Loading map... "minzoom":false,"mappingser...

  18. Ramsey County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Ramsey County, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.3076017, -98.7287191 Show Map Loading map......

  19. Gardner, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gardner, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.1471966, -96.9678613 Show Map Loading map... "minzoom":false,"mapping...

  20. Great Bend, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Great Bend, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1538473, -96.8020228 Show Map Loading map... "minzoom":false,"mapp...

  1. North Dakota's At-large congressional district: Energy Resources...

    Open Energy Info (EERE)

    Electric Motorcars Government of North Dakota M Power LLC Nor-son Construction Plains CO2 Reduction Partnership PCOR Tharaldson Ethanol LLC Wanzek Construction Inc Retrieved...

  2. North Dakota/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> North Dakota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  3. Central Adams, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Central Adams, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1382966, -102.6799359 Show Map Loading map......

  4. West Adams, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Adams, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1901728, -102.9074546 Show Map Loading map... "minzoom":false,"mappings...

  5. East Adams, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Adams, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1228923, -102.293303 Show Map Loading map... "minzoom":false,"mappingse...

  6. Billings County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Billings County, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.0560305, -103.3906121 Show Map Loading map......

  7. POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION...

    Office of Scientific and Technical Information (OSTI)

    CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS Citation Details In-Document Search Title: POWDERED ACTIVATED...

  8. ,"North Dakota Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  9. ,"North Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  10. Ward County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ward County, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.2147451, -101.5805256 Show Map Loading map......

  11. ,"North Dakota Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release...

  12. Categorical Exclusion Determinations: North Dakota | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dakota Categorical Exclusion Determinations: North Dakota Location Categorical Exclusion Determinations issued for actions in North Dakota. DOCUMENTS AVAILABLE FOR DOWNLOAD December 10, 2015 CX-100415 Categorical Exclusion Determination RESEARCH AND DEVELOPMENT OF INNOVATIVE TECHNOLOGIES FOR LOW IMPACT HYDROPOWER DEVELOPMENT Award Number: DE-EE0007246 CX(s) Applied: A9, B3.6 Water Power Technologies Office Date: 12/10/2015 Location(s): ND Office(s): Golden Field Office May 8, 2014 CX-012157:

  13. Long term contracts, expansion, innovation and stability: North Dakota's lignite mines thrive

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-08-15

    North Dakota's lignite coal industry is mainly located in three countries in the central part of the state. Its large surface lignite mines are tied through long-term (20-40 years) contracts to power plants. The article talks about operations at three of the most productive mines - the Freedom mine, Falkirk mine and Center Mine. 4 figs.

  14. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect (OSTI)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number was superior to commercial DARCO FGD for mercury capture. The results of the activated carbon market assessment indicate an existing market for water treatment and an emerging application for mercury control. That market will involve both existing and new coal-fired plants. It is expected that 20% of the existing coal-fired plants will implement activated carbon injection by 2015, representing about 200,000 tons of annual demand. The potential annual demand by new plants is even greater. In the mercury control market, two characteristics are going to dominate the customer's buying habit-performance and price. As continued demonstration testing of activated carbon injection at the various coal-fired power plants progresses, the importance of fuel type and plant configuration on the type of activated carbon best suited is being identified.

  15. Montana Natural Gas Plant Liquids Production Extracted in North Dakota

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) North Dakota (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 303 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-North Dakota

  16. Montana Natural Gas Processed in North Dakota (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    North Dakota (Million Cubic Feet) Montana Natural Gas Processed in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 176 865 1,460 1,613 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Montana-North Dakota

  17. South Dakota Natural Gas Plant Liquids Production Extracted in North Dakota

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Extracted in North Dakota (Million Cubic Feet) South Dakota Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent South

  18. Grand Forks County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Dakota. Its FIPS County Code is 035. It is classified as ASHRAE 169-2006 Climate Zone Number 7 Climate Zone Subtype A. Registered Energy Companies in Grand Forks County, North...

  19. Logan County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Logan County is a county in North Dakota. Its FIPS County Code is 047. It is classified as...

  20. Adams County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Adams County is a county in North Dakota. Its FIPS County Code is 001. It is classified as...

  1. Williams County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Williams County is a county in North Dakota. Its FIPS County Code is 105. It is classified as...

  2. Nelson County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Nelson County is a county in North Dakota. Its FIPS County Code is 063. It is classified as...

  3. Pierce County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pierce County is a county in North Dakota. Its FIPS County Code is 069. It is classified as...

  4. North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity June 17, 2014 - 2:58pm Addthis Blaise Energy Inc. is using a Renewable Energy Market Development grant, funded by EERE, to demonstrate the commercial viability of its Flare Gas Micro-turbine. The microturbine pilot project places generators at oil production well sites to transform wellhead flare gas into high-quality,

  5. EIS-0025: Miles City-New Underwood 230-kV Electrical Transmission Line, Montana, North Dakota, and South Dakota

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the environmental and socioeconomic implications of its proposed action to construct a 3.28-mile, 230-kV transmission line between Miles City and Baker, Montana, Hettinger, North Dakota, and New Underwood, South Dakota, in Custer and Fallon Counties in Montana, Adams, Bowman, and Slope Counties in North Dakota and Meade, Pennington, and Perkins Counties in South Dakota.

  6. Adams County, North Dakota ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Adams County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, North Dakota ASHRAE Standard ASHRAE 169-2006 Climate...

  7. Lower Yellowstone R E A, Inc (North Dakota) | Open Energy Information

    Open Energy Info (EERE)

    Inc (North Dakota) Jump to: navigation, search Name: Lower Yellowstone R E A, Inc Place: North Dakota Phone Number: (406) 488-1602 Website: www.lyrec.com Facebook: https:...

  8. North Dakota Natural Gas Plant Liquids Production Extracted in Illinois

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Illinois (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production Extracted in Illinois (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,086 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent North Dakota-Illinois

  9. North Dakota Natural Gas Processed in Illinois (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Illinois (Million Cubic Feet) North Dakota Natural Gas Processed in Illinois (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 15,727 30,603 38,066 35,829 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed North Dakota-Illinois

  10. North Dakota Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 9 5 42 6 22 22 40 43 26 1 2010's 136 169 206 384 322 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions North Dakota Dry

  11. North Dakota Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 7 8 46 1 11 1 53 39 25 2 2010's 47 113 237 13 557 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales North Dakota Dry Natural Gas Proved Reserves

  12. North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved Reserves, Reserves

  13. North Dakota Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) North Dakota Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 21 24 368 2010's 1,185 1,649 3,147 5,059 6,442 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 North Dakota Shale Gas

  14. COFIRING OF BIOMASS AT THE UNIVERSITY OF NORTH DAKOTA

    SciTech Connect (OSTI)

    Phillip N. Hutton

    2002-01-01

    A project funded by the U.S. Department of Energy's National Energy Technology Laboratory was completed by the Energy & Environmental Research Center to explore the potential for cofiring biomass at the University of North Dakota (UND). The results demonstrate how 25% sunflower hulls can be cofired with subbituminous coal and provide a 20% return on investment or 5-year payback for the modifications required to enable firing biomass. Significant outcomes of the study are as follows. A complete resource assessment presented all biomass options to UND within a 100-mile radius. Among the most promising options in order of preference were sunflower hulls, wood residues, and turkey manure. The firing of up to 28% sunflower hulls by weight was completed at the university's steam plant to identify plant modifications that would be necessary to enable cofiring sunflower hulls. The results indicated investments in a new equipment could be less than $408,711. Data collected from test burns, which were not optimized for biomass firing, resulted in a 15% reduction in sulfur and NO{sub x} emissions, no increase in opacity, and slightly better boiler efficiency. Fouling and clinkering potential were not evaluated; however, no noticeable detrimental effects occurred during testing. As a result of this study, UND has the potential to achieve a cost savings of approximately $100,000 per year from a $1,500,000 annual fossil fuel budget by implementing the cofiring of 25% sunflower hulls.

  15. Recovery Act State Memos North Dakota

    Broader source: Energy.gov (indexed) [DOE]

    Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    4,239,993 MWh Coal Power 29,812,959 MWh Gas Power 757 MWh Petroleum Power 48,076 MWh Nuclear Power 0 MWh Other 838 MWh Total Energy Production 34,102,623 MWh Percent of Total...

  17. Ron Ness will provide comments on the workforce needs of Bakken and North Dakota

    Broader source: Energy.gov (indexed) [DOE]

    Ron Ness will provide comments on the workforce needs of Bakken and North Dakota's energy industry and the tremendous growth in jobs over the past few years. He will focus on the Empower North Dakota initiatives on workforce and related infrastructure issues that are critical not only to the longevity of the energy production that helps attract capital and workers, but also to the infrastructure issues that are essential in attracting and maintaining a workforce to rural areas like North Dakota.

  18. EIS-0469: Wilton IV Wind Energy Center; Burleigh County, North Dakota |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: Wilton IV Wind Energy Center; Burleigh County, North Dakota EIS-0469: Wilton IV Wind Energy Center; Burleigh County, North Dakota Summary Western Area Power Administration is evaluating the potential environmental impacts of interconnecting NextEra Energy Resources proposed Wilton IV Wind Energy Center Project, near Bismarck, North Dakota, to Western's existing Wilton/Baldwin substation and allowing NextEra's existing wind projects in this area to operate above 50

  19. North Dakota Company Wins Praise for Wind Projects | Department of Energy

    Energy Savers [EERE]

    North Dakota Company Wins Praise for Wind Projects North Dakota Company Wins Praise for Wind Projects March 12, 2010 - 4:48pm Addthis Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Construction teams set up a turbine foundation in Minot, N.D. | Photo courtesy of Basin Electric Power Cooperative Stephen Graff Former Writer & editor for Energy Empowers, EERE Wind energy is taking off in the Dakotas, contributing hundreds of

  20. North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vehicle Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 1 3 8 8 12 15 41 40 49 2000's 54 67 68 83 93 3 1 1 1 2010's 1 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered

  1. EA-1966: Sunflower Wind Project, Hebron, North Dakota

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) prepared an EA to evaluate potential environmental impacts of interconnecting a proposed 80 MW generating facility south of Hebron in Morton and Stark Counties, North Dakota. The proposed wind generating facility of 30-50 wind turbines encompassed approximately 9,000 acres. Ancillary facilities included an underground collection line system, a project substation, one mile of new transmission line, a new switchyard facility on the existing Dickinson-Mandan 230 kV line owned and operated by Western, one permanent meteorological tower, new access roads, and an operations and maintenance building.

  2. North Dakota Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production North Dakota Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  3. North Dakota Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Reserves Based Production (Million Barrels) North Dakota Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 1 1 1 1 1 1 0 0 1990's 1 1 1 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 1 0 2010's 1 0 1 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  4. North Dakota Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) North Dakota Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 47 1980's 61 68 71 69 73 74 69 67 52 59 1990's 60 56 64 55 55 53 48 47 48 53 2000's 54 57 47 45 43 49 55 58 55 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  5. North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 4 4 5 6 6 5 6 5 5 1990's 5 5 5 5 4 4 4 4 4 4 2000's 5 5 5 4 5 5 6 6 6 8 2010's 9 11 19 26 36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  6. North Dakota Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 16 -23 1980's -7 31 -1 -9 21 -31 6 -3 6 29 1990's 56 -93 44 49 -47 -2 22 -2 -31 -13 2000's 21 17 18 25 -29 -10 18 12 -7 47 2010's -2 -3 -56 -208 -31 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  7. North Dakota Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 25 28 30 1980's 37 44 51 58 58 59 55 57 73 55 1990's 58 49 43 52 47 43 45 46 46 39 2000's 42 41 53 50 51 53 52 53 65 82 2010's 94 133 230 302 406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  8. North Dakota Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 5 37 1980's 31 69 60 23 28 17 10 5 51 8 1990's 16 11 17 21 7 2 5 25 25 1 2000's 3 3 8 5 7 49 30 59 102 401 2010's 442 572 834 1,523 1,161 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  9. North Dakota Dry Natural Gas Reserves Revision Decreases (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decreases (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 18 14 1980's 18 85 56 113 96 46 51 64 78 52 1990's 50 33 57 27 24 29 22 17 27 31 2000's 15 32 20 44 57 27 31 62 75 81 2010's 722 375 292 640 777 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  10. North Dakota Dry Natural Gas Reserves Revision Increases (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Increases (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5 21 29 1980's 50 36 47 119 61 118 57 83 125 77 1990's 59 50 61 37 74 24 36 57 47 50 2000's 43 48 79 36 86 49 70 69 63 243 2010's 848 570 924 1,096 861 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  11. North Dakota Natural Gas Exports (Price) All Countries (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) (Price) All Countries (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Exports (Price) All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -- 2000's -- -- -- 5.15 -- -- -- -- -- -- 2010's -- -- -- -- 14.71 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  12. North Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138 148 151 1990's 165 170 171 174 186 189 206 216 404 226 2000's 192 203 223 234 241 239 241 253 271 279 2010's 307 259 260 266 269 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  13. North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 1 3 8 8 12 15 41 40 49 2000's 54 67 68 83 93 3 1 1 1 2010's 1 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered

  14. North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels) North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,058 2010's 1,887 2,658 3,773 5,683 6,045 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves,

  15. North Dakota Crude Oil Reserves in Nonproducing Reservoirs (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Reserves in Nonproducing Reservoirs (Million Barrels) North Dakota Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 17 22 2000's 29 91 62 47 52 56 53 107 148 463 2010's 969 1,421 2,207 3,278 3,456 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  16. North Dakota Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Expected Future Production (Billion Cubic Feet) North Dakota Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 361 374 439 1980's 537 581 629 600 566 569 541 508 541 561 1990's 586 472 496 525 507 463 462 479 447 416 2000's 433 443 471 448 417 453 479 511 541 1,079 2010's 1,667 2,381 3,569 5,420 6,034 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 19 16 18 15 16 15 16 14 12 11 1990's 10 9 10 9 9 9 8 7 7 7 2000's 7 7 6 5 4 4 4 4 4 12 2010's 73 9 12 6 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  18. North Dakota Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 33 1980's 42 52 53 54 57 59 53 53 40 48 1990's 50 47 54 46 46 44 40 40 41 46 2000's 47 50 41 40 39 45 51 54 51 104 2010's 157 193 297 466 540 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  19. North Dakota Natural Gas, Wet After Lease Separation Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) North Dakota Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 485 1980's 594 654 696 673 643 650 610 578 593 625 1990's 650 533 567 585 568 518 512 531 501 475 2000's 487 495 524 497 465 508 539 572 603 1,213 2010's 1,869 2,652 3,974 6,081 6,787 - = No Data Reported; -- = Not Applicable; NA =

  20. North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 284 1980's 355 401 448 416 376 319 317 302 327 312 1990's 316 290 301 311 293 255 257 274 240 225 2000's 223 225 209 181 145 165 182 155 119 143 2010's 152 141 105 91 45 - = No Data

  1. North Dakota Natural Gas Imports (No intransit Receipts) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Imports (No intransit Receipts) (Million Cubic Feet) North Dakota Natural Gas Imports (No intransit Receipts) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 1990's 1,617 4,559 6,110 7,672 9,268 3,416 2000's 60,718 495,568 453,645 435,453 460,237 491,867 514,052 465,973 490,045 480,013 2010's 476,864 448,977 433,721 432,509 433,256 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. North Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) North Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 196 417 102 0 8,335 40,370 49,847 51,543 49,014 54,408 1990's 53,144 52,557 58,496 57,680 57,127 57,393 55,867 53,179 54,672 53,185 2000's 49,190 51,004 53,184 53,192 47,362 51,329 54,361 51,103 50,536 53,495 2010's 54,813 51,303 52,541 45,736 48,394 - = No

  3. North Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,014 2,398 2,494 2,017 2,457 1,902 1,383 1990's 2,104 6,806 3,709 3,522 6,247 6,800 7,320 4,152 3,838 4,153 2000's 4,724 4,528 4,786 4,889 3,237 2,488 2,644 2,699 3,472 2,986 2010's 3,753 3,200 4,595 6,486 8,683 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  4. North Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,905 12,104 12,454 1990's 12,742 12,082 12,353 12,650 12,944 13,399 13,789 14,099 14,422 15,050 2000's 15,531 15,740 16,093 16,202 16,443 16,518 16,848 17,013 17,284 17,632 2010's 17,823 18,421 19,089 19,855 20,687 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  5. North Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 83,517 84,059 84,643 1990's 85,646 87,880 89,522 91,237 93,398 95,818 97,761 98,326 101,930 104,051 2000's 105,660 106,758 108,716 110,048 112,206 114,152 116,615 118,100 120,056 122,065 2010's 123,585 125,392 130,044 133,975 137,972 - = No Data Reported; -- = Not Applicable; NA =

  6. North Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,086 2,165 2,216 1,957 2,737 2,112 2,005 1990's 4,835 4,777 4,753 4,734 5,059 4,542 4,283 4,420 4,471 4,553 2000's 4,738 3,874 5,141 4,548 4,602 4,816 4,364 4,323 4,283 4,521 2010's 4,294 5,473 5,887 6,707 5,736 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  7. North Dakota Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) North Dakota Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 69,319 60,111 62,371 58,593 51,671 21,240 12,290 1990's 11,537 5,138 3,994 4,420 0 0 0 52,401 53,185 52,862 2000's 48,714 57,949 57,015 57,808 59,513 57,972 53,675 54,745 52,469 59,369 2010's 81,837 - = No Data

  8. North Dakota Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) North Dakota Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 56,179 49,541 56,418 2000's 56,528 60,819 66,726 60,907 59,986 53,050 53,336 59,453 63,097 54,564 2010's 66,395 72,463 72,740 81,593 83,330 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  9. Small Wind Electric Systems: A North Dakota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A North Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  10. EA-1896: Williston to Stateline Transmission Line Project, Mountrail Williams Electric Cooperative, Williston, North Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed Stateline I transmission line, in Williston, North Dakota, to Western’s transmission system.

  11. North Dakota, et al. v. EPA, Memorandum Opinion and Order Granting...

    Open Energy Info (EERE)

    North Dakota, et al. v. EPA, Memorandum Opinion and Order Granting Plaintiffs' Motion for Preliminary Injunction Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  12. Website Provides Data for Key Oil Play in North Dakota, Eastern...

    Broader source: Energy.gov (indexed) [DOE]

    A new web-based geographic information system designed to improve oil production in North Dakota and eastern Montana has been launched with support from the U.S. Department of ...

  13. North Dakota Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  14. Analysis of Potential Benefits and Costs of Updating the Commercial Building Energy Code in North Dakota

    SciTech Connect (OSTI)

    Cort, Katherine A.; Belzer, David B.; Winiarski, David W.; Richman, Eric E.

    2004-04-30

    The state of North Dakota is considering updating its commercial building energy code. This report evaluates the potential costs and benefits to North Dakota residents from updating and requiring compliance with ASHRAE Standard 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in the analysis. Energy and economic impacts are estimated using the Building Loads Analysis and System Thermodynamics (BLAST simulation combined with a Life-cycle Cost (LCC) approach to assess correspodning economic costs and benefits.

  15. EERE Success Story-North Dakota: EERE-Funded Project Recycles Energy,

    Office of Environmental Management (EM)

    Generates Electricity | Department of Energy North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity EERE Success Story-North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity June 17, 2014 - 2:58pm Addthis Blaise Energy Inc. is using a Renewable Energy Market Development grant, funded by EERE, to demonstrate the commercial viability of its Flare Gas Micro-turbine. The microturbine pilot project places generators at oil production well sites to transform

  16. Dakota :

    SciTech Connect (OSTI)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S; Jakeman, John Davis; Swiler, Laura Painton; Stephens, John Adam; Vigil, Dena M.; Wildey, Timothy Michael; Bohnhoff, William J.; Eddy, John P.; Hu, Kenneth T.; Dalbey, Keith R.; Bauman, Lara E; Hough, Patricia Diane

    2014-05-01

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quanti cation, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.

  17. Environmental assessment of no remedial action at the inactive uraniferous lignite ashing sites at Belfield and Bowman, North Dakota

    SciTech Connect (OSTI)

    1997-06-01

    The Belfield and Bowman sites were not included on the original congressional list of processing sites to be designated by the Secretary of Energy. Instead, the sites were nominated for designation by the Dakota Resource Council in a letter to the DOE (September 7, 1979). In a letter to the DOE (September 12, 1979), the state of North Dakota said that it did not believe the sites would qualify as processing sites under the Uranium Mill Tailings Radiation Control Act (UMTRCA) because the activities at the sites involved only the ashing of uraniferous lignite coal and the ash was shipped out of state for actual processing. Nevertheless, on October 11, 1979, the state of North Dakota agreed to the designation of the sites because they met the spirit of the law (reduce public exposure to radiation resulting from past uranium operations). Therefore, these sites were designated by the Secretary of Energy for remedial action. Because of the relatively low health impacts determined for these sites, they were ranked as low priority and scheduled to be included in the final group of sites to be remediated.

  18. North Dakota Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,150 5,428 4,707 1970's 4,490 3,592 3,199 2,969 2,571 2,404 2,421 2,257 2,394 2,986 1980's 3,677 5,008 5,602 7,171 7,860 8,420 6,956 7,859 6,945 6,133 1990's 6,444 6,342 6,055 5,924 5,671 5,327 4,937 5,076 5,481 5,804 2000's 6,021 6,168 5,996 5,818 6,233 6,858 7,254 7,438 7,878 10,140 2010's 11,381

  19. North Dakota Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) North Dakota Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 42,828 41,318 37,818 1970's 36,830 33,252 32,131 0 0 0 0 0 0 1980's 50,900 57,608 71,745 77,524 81,008 72,678 86,329 67,867 59,841 1990's 62,042 59,228 50,462 51,713 55,150 49,861 47,942 51,657 52,777 52,191 2000's 54,738 58,536 59,894 58,479 60,261 63,240 65,575 69,653 76,762 87,977 2010's 91,539 112,206 208,598 270,001

  20. North Dakota Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Dakota Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2015 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: Email Us High School Regionals North Dakota Regions Print Text

  1. North Dakota and Texas help boost U.S. oil reserves to highest level since 1975

    Gasoline and Diesel Fuel Update (EIA)

    North Dakota and Texas help boost U.S. oil reserves to highest level since 1975 U.S. proved oil reserves have topped 36 billion barrels for the first time in nearly four decades...with North Dakota and Texas accounting for 90% of the increase according to the U.S. Energy Information Administration. In a new report, EIA says U.S. proved reserves of crude oil and lease condensate increased for the fifth year in a row in 2013 and exceed 36 billion barrels for the first time since 1975. Proved

  2. North Dakota Natural Gas Exports to All Countries (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to All Countries (Million Cubic Feet) North Dakota Natural Gas Exports to All Countries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 0 0 66 0 0 0 0 0 0 2010's 0 0 0 0 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Natural Gas Exports North Dakota U.S. Natural Gas

  3. Hired and Helping with Heating in North Dakota | Department of Energy

    Office of Environmental Management (EM)

    Hired and Helping with Heating in North Dakota Hired and Helping with Heating in North Dakota July 20, 2010 - 2:00pm Addthis Father of two, Corey Pladson is one of the newest hires at Red River Valley Community Action, a nonprofit that provides weatherization services in Grand Forks, N.D. Pladson is one of six new weatherization technicians - three of whom were previously unemployed - hired to help RRVCA's Recovery Act production goals. After receiving $2.8 million through the Recovery Act,

  4. Buffalo County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Number 6 Climate Zone Subtype A. Places in Buffalo County, South Dakota Fort Thompson, South Dakota North Buffalo, South Dakota Southeast Buffalo, South Dakota Retrieved...

  5. EIS-0134: Charlie Creek-Belfield Transmission Line Project, North Dakota

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration developed this EIS to assess the environmental impact of constructing a high voltage transmission line between Charlie Creek and Belfield, North Dakota, and a new substation near Belfield to as a means of adding transmission capacity to the area.

  6. Long-Term Demonstration of Hydrogen Production from Coal at Elevated...

    Office of Scientific and Technical Information (OSTI)

    Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to ...

  7. DOE Regional Partnership Initiates CO2 Injection in Lignite Coal...

    Broader source: Energy.gov (indexed) [DOE]

    begun injecting CO2 into a deep lignite coal seam in Burke County, North Dakota, to ... indicated that the region's low-rank coal seams have the capacity to store up to 8 ...

  8. Evaluation of hydrothermal resources of North Dakota. Phase III final technical report

    SciTech Connect (OSTI)

    Harris, K.L.; Howell, F.L.; Wartman, B.L.; Anderson, S.B.

    1982-08-01

    The hydrothermal resources of North Dakota were evaluated. This evaluation was based on existing data on file with the North Dakota Geological Survey (NDGS) and other state and federal agencies, and field and laboratory studies conducted. The principal sources of data used during the study were WELLFILE, the computer library of oil and gas well data developed during the Phase I study, and WATERCAT, a computer library system of water well data assembled during the Phase II study. A field survey of the shallow geothermal gradients present in selected groundwater observation holes was conducted. Laboratory determinations of the thermal conductivity of core samples were done to facilitate heat-flow calculations on those holes-of-convenience cased.

  9. EIS-0469: Wilton IV Wind Energy Center; Burleigh County, North Dakota

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is evaluating the potential environmental impacts of interconnecting NextEra Energy Resources proposed Wilton IV Wind Energy Center Project, near Bismarck, North Dakota, to Western’s existing Wilton/Baldwin substation and allowing NextEra’s existing wind projects in this area to operate above 50 annual MW. Western is preparing a Supplemental Draft EIS to address substantial changes to the proposal, including 30 turbine locations and 5 alternate turbine locations in Crofte Township.

  10. ,"North Dakota Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North...

  11. ,"North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. ,"North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  13. ,"North Dakota Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  14. ,"North Dakota Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  15. ,"North Dakota Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  16. ,"North Dakota Natural Gas Gross Withdrawals from Gas Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from Gas Wells (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  17. ,"North Dakota Natural Gas Gross Withdrawals from Oil Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from Oil Wells (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  19. ,"North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  20. ,"North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  1. ,"North Dakota Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Total Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","na1490_snd_2a.xls"

  2. ,"North Dakota Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  3. ,"North Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"North Dakota Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  5. North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 201 1980's 239 253 248 257 267 331 293 276 266 313 1990's 334 243 266 274 275 263 255 257 261 250 2000's 264 270 315 316 320 343 357 417 484 1,070 2010's 1,717

  6. JV Task 99-Integrated Risk Analysis and Contaminant Reduction, Watford City, North Dakota

    SciTech Connect (OSTI)

    Jaroslav Solc; Barry W. Botnen

    2007-05-31

    The Energy & Environmental Research Center (EERC) conducted a limited site investigation and risk analyses for hydrocarbon-contaminated soils and groundwater at a Construction Services, Inc., site in Watford City, North Dakota. Site investigation confirmed the presence of free product and high concentrations of residual gasoline-based contaminants in several wells, the presence of 1,2-dichloroethane, and extremely high levels of electrical conductivity indicative of brine residuals in the tank area south of the facility. The risk analysis was based on compilation of information from the site-specific geotechnical investigation, including multiphase extraction pilot test, laser induced fluorescence probing, evaluation of contaminant properties, receptor survey, capture zone analysis and evaluation of well head protection area for municipal well field. The project results indicate that the risks associated with contaminant occurrence at the Construction Services, Inc. site are low and, under current conditions, there is no direct or indirect exposure pathway between the contaminated groundwater and soils and potential receptors.

  7. North Dakota Natural Gas Delivered to Commercial Consumers for the Account

    Gasoline and Diesel Fuel Update (EIA)

    of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) North Dakota Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 103 716 2,082 1990's 2,585 3,223 3,035 2,908 2,199 2,224 1,454 1,207 1,631 1,178 2000's 1,157 1,031 977 617 773 704 653 693 732 776 2010's 764 795 837 981 968 - = No Data Reported; -- = Not

  8. North Dakota Dry Natural Gas New Reservoir Discoveries in Old Fields

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) North Dakota Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 9 19 1980's 59 3 5 4 6 3 3 1 2 12 1990's 2 0 2 1 19 1 0 0 0 1 2000's 5 18 0 0 2 2 3 3 5 5 2010's 2 17 23 10 37 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  9. North Dakota Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 25 8 47 1980's 20 34 44 5 4 1 2 2 0 1 1990's 0 0 0 0 0 3 3 0 0 0 2000's 0 0 0 0 0 5 1 0 6 6 2010's 25 10 16 1 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  10. North Dakota Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.55 0.97 1.26 1.67 1.71 1.88 2000's 6.10 4.10 3.04 5.31 5.82 8.23 6.71 6.75 8.72 3.92 2010's 4.41 4.04 2.72 3.59 5.00 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  11. North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 17,133 16,163 14,691 1970's 14,067 13,990 12,773 12,462 11,483 12,008 15,998 13,697 12,218 3,950 1980's 1,017 13,759 3,514 4,100 4,563 4,710 3,974 5,194 4,014 3,388 1990's 6,939 11,583 8,462 8,256 11,306 11,342 11,603 8,572 8,309 - = No Data Reported; -- = Not Applicable; NA =

  12. North Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) North Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,744 413 9,506 2000's 10,567 13,563 14,230 14,109 14,035 13,306 13,023 13,317 11,484 8,870 2010's 13,745 13,575 15,619 14,931 14,604 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  13. North Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Vehicle Fuel Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.31 3.34 4.25 4.61 4.19 2.71 1.54 3.92 4.01 4.50 2000's 5.51 6.32 3.88 6.84 8.61 10.21 11.11 8.25 11.32 8.69 2010's 8.84 8.08 6.17 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  14. Economic Impact of Harvesting Corn Stover under Time Constraint: The Case of North Dakota

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maung, Thein A.; Gustafson, Cole R.

    2013-01-01

    This study examines the impact of stochastic harvest field time on profit maximizing potential of corn cob/stover collection in North Dakota. Three harvest options are analyzed using mathematical programming models. Our findings show that under the first corn grain only harvest option, farmers are able to complete harvesting corn grain and achieve maximum net income in a fairly short amount of time with existing combine technology. However, under the second simultaneous corn grain and cob (one-pass) harvest option, farmers generate lower net income compared to the net income of the first option. This is due to the slowdown in combinemore » harvest capacity as a consequence of harvesting corn cobs. Under the third option of separate corn grain and stover (two-pass) harvest option, time allocation is the main challenge and our evidence shows that with limited harvest field time available, farmers find it optimal to allocate most of their time harvesting grain and then proceed to harvest and bale stover if time permits at the end of harvest season. The overall findings suggest is that it would be more economically efficient to allow a firm that is specialized in collecting biomass feedstock to participate in cob/stover harvest business.« less

  15. North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.27 0.17 0.17 1970's 0.20 0.20 0.25 0.29 0.31 0.51 0.57 0.75 0.95 1.55 1980's 1.81 2.34 4.11 3.80 3.42 2.77 2.56 2.40 2.49 2.03 1990's 1.61 1.35 1.28 1.84 1.34 1.01 1.70 2.07 1.77 2.12 2000's 3.62 2.14 NA -- -- -- - = No Data Reported; -- = Not

  16. North Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.16 0.17 0.16 1970's 0.16 0.17 0.17 0.20 0.20 0.23 0.34 0.35 0.46 1.28 1980's 1.19 1.94 2.30 2.27 2.26 1.90 1.35 1.30 2.00 1.78 1990's 1.79 1.67 1.97 1.84 2.16 2.14 2.32 2000's 3.94 3.53 2.73 3.53 5.73 8.40 6.52 6.67 8.55 3.74 2010's 3.92 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Environmental Assessment and Finding of No Significant Impact: Wind Energy Center Edgeley/Kulm Project, North Dakota

    SciTech Connect (OSTI)

    N /A

    2003-04-15

    The proposed Edgeley/Kulm Project is a 21-megawatt (MW) wind generation project proposed by Florida Power and Light (FPL) Energy North Dakota Wind LLC (Dakota Wind) and Basin Electric Power Cooperative (Basin). The proposed windfarm would be located in La Moure County, south central North Dakota, near the rural farming communities of Kulm and Edgeley. The proposed windfarm is scheduled to be operational by the end of 2003. Dakota Wind and other project proponents are seeking to develop the proposed Edgeley/Kulm Project to provide utilities and, ultimately, electric energy consumers with electricity from a renewable energy source at the lowest possible cost. A new 115-kilovolt (kV) transmission line would be built to transmit power generated by the proposed windfarm to an existing US Department of Energy Western Area Power Administration (Western) substation located near Edgeley. The proposed interconnection would require modifying Western's Edgeley Substation. Modifying the Edgeley Substation is a Federal proposed action that requires Western to review the substation modification and the proposed windfarm project for compliance with Section 102(2) of the National Environmental Policy Act (NEPA) of 1969, 42 U.S.C. 4332, and Department of Energy NEPA Implementing Procedures (10 CFR Part 1021). Western is the lead Federal agency for preparation of this Environmental Assessment (EA). The US Fish and Wildlife Service (USFWS) is a cooperating agency with Western in preparing the EA. This document follows regulation issued by the Council on Environmental Quality (CEQ) for implementing procedural provisions of NEPA (40 CFR 1500-1508), and is intended to disclose potential impacts on the quality of the human environment resulting from the proposed project. If potential impacts are determined to be significant, preparation of an Environmental Impact Statement would be required. If impacts are determined to be insignificant, Western would complete a Finding of No Significant Impact (FONSI). Environmental protection measures that would be included in the design of the proposed project are included.

  18. ,"North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  19. ,"North Dakota Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  20. ,"North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  1. EIS-0478: Antelope Valley Station to Neset Transmission Project, Mercer, Dunn, Billings, Williams, McKenzie, and Mountrail Counties, North Dakota

    Broader source: Energy.gov [DOE]

    USDA Rural Utilities Service prepared an EIS that evaluates the potential environmental impacts of constructing, operating, and maintaining a proposed transmission line and associated facilities in western North Dakota. DOE’s Western Area Power Administration, a cooperating agency, would modify its existing Williston Substation to allow a connection of the proposed new transmission line to Western’s transmission system.

  2. SUBTASK 1.7 EVALUATION OF KEY FACTORS AFFECTING SUCCESSFUL OIL PRODUCTION IN THE BAKKEN FORMATION, NORTH DAKOTA PHASE II

    SciTech Connect (OSTI)

    Darren D. Schmidt; Steven A. Smith; James A. Sorensen; Damion J. Knudsen; John A. Harju; Edward N. Steadman

    2011-10-31

    Production from the Bakken and Three Forks Formations continues to trend upward as forecasts predict significant production of oil from unconventional resources nationwide. As the U.S. Geological Survey reevaluates the 3.65 billion bbl technically recoverable estimate of 2008, technological advancements continue to unlock greater unconventional oil resources, and new discoveries continue within North Dakota. It is expected that the play will continue to expand to the southwest, newly develop in the northeastern and northwestern corners of the basin in North Dakota, and fully develop in between. Although not all wells are economical, the economic success rate has been near 75% with more than 90% of wells finding oil. Currently, only about 15% of the play has been drilled, and recovery rates are less than 5%, providing a significant future of wells to be drilled and untouched hydrocarbons to be pursued through improved stimulation practices or enhanced oil recovery. This study provides the technical characterizations that are necessary to improve knowledge, provide characterization, validate generalizations, and provide insight relative to hydrocarbon recovery in the Bakken and Three Forks Formations. Oil-saturated rock charged from the Bakken shales and prospective Three Forks can be produced given appropriate stimulation treatments. Highly concentrated fracture stimulations with ceramic- and sand-based proppants appear to be providing the best success for areas outside the Parshall and Sanish Fields. Targeting of specific lithologies can influence production from both natural and induced fracture conductivity. Porosity and permeability are low, but various lithofacies units within the formation are highly saturated and, when targeted with appropriate technology, release highly economical quantities of hydrocarbons.

  3. VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 1 - In the Matter of North Side Coal & Oil Co., Inc. VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc. On February 25, 2002, North Side Coal & Oil Co., Inc. (North Side) of Milwaukee, Wisconsin filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, North Side requests that it be excused from filing the Energy Information Administration's (EIA) form entitled "Resellers'/

  4. TEE-0067 - In the Matter of North Side Coal & Oil Co., Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 7 - In the Matter of North Side Coal & Oil Co., Inc. TEE-0067 - In the Matter of North Side Coal & Oil Co., Inc. On December 2, 2009, North Side Coal & Oil Co., Inc. (North Side) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). The firm requests that it be permanently relieved of the requirement to prepare and file the Energy Information Administration (EIA) Form EIA-782B, entitled

  5. Low-rank coal research

    SciTech Connect (OSTI)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  6. Low-rank coal research semiannual report, January 1992--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This semiannual report is a compilation of seventeen reports on ongoing coal research at the University of North Dakota. The following research areas are covered: control technology and coal preparation; advanced research and technology development; combustion; liquefaction and gasification. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  7. Advanced Hydrogen Transport Membrane for Coal Gasification

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Transport Membrane for Coal Gasification DE-FE0004908 Praxair, Inc. Advanced Hydrogen Transport Membrane for Coal Gasification Final Report October 2010 - September 2015 Joseph Schwartz and David Makuch Praxair, Inc. J. Douglas Way, Jason Porter, Neil Patki, and Madison Kelley Colorado School of Mines Josh Stanislowski and Scott Tolbert University of North Dakota - Energy and Environmental Research Center December 23, 2015 PREPARED FOR THE UNITED STATES DEPARTMENT OF ENERGY Under

  8. QER- Comment of Dakota Resource Council

    Broader source: Energy.gov [DOE]

    Attached are comments from the Dakota Resource Council, a membership-based organization of North Dakotans. Thank you for the opportunity to comment on the Infrastructure Constraints.

  9. High-pressure gasification of Montana subbituminous coal

    SciTech Connect (OSTI)

    Goyal, A.; Bryan, B.; Rehmat, A.

    1991-01-01

    A data base for the fluidized-bed gasification of different coals at elevated pressures has been developed at the Institute of Gas Technology (IGT) with different ranks of coal at pressures up to 450 psig and at temperatures dictated by the individual coals. Adequate data have been obtained to characterize the effect of pressure on the gasification of Montana Rosebud subbituminous coal and North Dakota lignite. The results obtained with Montana Rosebud subbituminous coal are presented here. This program was funded by the Gas Research Institute. 9 refs., 10 figs., 3 tabs.

  10. Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Year to Date NAICS Code April - June 2014 January - March 2014

  11. Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 NAICS Code June 30, 2014 March 31, 2014 June 30, 2013 Percent Change (June

  12. DAKOTA 5.0

    Energy Science and Technology Software Center (OSTI)

    001217MLTPL02 DAKOTA Design Analysis Kit for Optimization and Terascale  https://www.cs.sandia.gov/dakota/documentation.html 

  13. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  14. Turner County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Davis, South Dakota Dolton, South Dakota Hurley, South Dakota Irene, South Dakota Marion, South Dakota Monroe, South Dakota Parker, South Dakota Viborg, South Dakota Retrieved...

  15. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  16. Slide 1 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    North Dakota

  17. Beadle County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    A. Places in Beadle County, South Dakota Broadland, South Dakota Cavour, South Dakota Hitchcock, South Dakota Huron, South Dakota Iroquois, South Dakota Virgil, South Dakota...

  18. Walworth County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    A. Places in Walworth County, South Dakota Akaska, South Dakota Glenham, South Dakota Java, South Dakota Lowry, South Dakota Mobridge, South Dakota Selby, South Dakota Retrieved...

  19. Day County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Day County, South Dakota Andover, South Dakota Bristol, South Dakota Butler, South Dakota Grenville, South Dakota Lily, South Dakota Pierpont, South Dakota...

  20. Faulk County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Onaka, South Dakota Orient, South Dakota Pulaski, South Dakota Rockham, South Dakota Seneca, South Dakota Southwest Faulk, South Dakota Retrieved from "http:en.openei.orgw...

  1. Douglas County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    County, South Dakota Armour, South Dakota Corsica, South Dakota Delmont, South Dakota Harrison, South Dakota New Holland, South Dakota Retrieved from "http:en.openei.orgw...

  2. Codington County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Glacial Lakes Energy Places in Codington County, South Dakota Florence, South Dakota Henry, South Dakota Kranzburg, South Dakota South Shore, South Dakota Wallace, South Dakota...

  3. Charles Mix County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Subtype A. Places in Charles Mix County, South Dakota Castalia, South Dakota Dante, South Dakota Geddes, South Dakota Lake Andes, South Dakota Marty, South Dakota...

  4. Lincoln County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    South Dakota Hudson, South Dakota Lennox, South Dakota Sioux Falls, South Dakota Tea, South Dakota Worthing, South Dakota Retrieved from "http:en.openei.orgw...

  5. Bon Homme County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Homme County, South Dakota Broin Enterprises Places in Bon Homme County, South Dakota Avon, South Dakota Scotland, South Dakota Springfield, South Dakota Tabor, South Dakota...

  6. Roberts County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Country Ethanol LLC Places in Roberts County, South Dakota Claire City, South Dakota Corona, South Dakota New Effington, South Dakota Ortley, South Dakota Peever, South Dakota...

  7. DAKOTA 6.0

    Energy Science and Technology Software Center (OSTI)

    001217MLTPL03 Design Analysis Kit for Optimization and Terascale Applications 6.0  http://dakota.sandia.gov 

  8. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  9. North Dakota-North Dakota Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    11,925 177,995 231,935 301,661 2011-2014 Total Liquids Extracted (Thousand Barrels) 17,895 24,546 34,872 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 48,504

  10. ,"North Dakota Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","3312016" ,"Excel File Name:","ngprisumdcusndm.xls" ,"Available from Web Page:","http:www.eia.govdnavngngprisumdcusndm.htm" ,"Source:","Energy ...

  11. North Dakota Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    3.56 4.32 5.00 4.58 4.16 3.94 1989-2015 Residential 21.07 NA NA 9.60 6.57 5.61 1989-2015 Commercial 8.73 8.86 7.91 NA 5.68 5.23 1989-2015 Industrial 3.12 2.96 2.81 2.76 2.58 2.88 2001-2015 Electric Power 2.87 3.03 3.09 2.67 2.08 2.07 2002-2015 Production (Million Cubic Feet) Gross Withdrawals 51,167 50,537 47,895 50,958 49,559 51,065 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells

  12. North Dakota Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    2 1967-2010 Imports Price 4.41 4.04 2.72 3.59 5.00 1994-2014 Exports Price -- -- -- -- 14.71 1999-2014 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.50 5.06 4.43 4.99 6.37 NA 1984-2015 Residential Price 8.08 8.10 7.43 7.43 8.86 NA 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 7.03 7.00 6.04 6.32 7.74 NA 1967-2015 Percentage of Total Commercial Deliveries included in Prices 92.6 92.8 91.9

  13. North Dakota Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    63 969 1,421 2,207 3,278 3,456 1996-2014 Lease Condensate (million bbls) 8 42 6 6 0 1 1998-2014 Total Gas (billion cu ft) 510 920 1,324 2,360 3,619 3,559 1996-2014 Nonassociated Gas (billion cu ft) 23 20 18 9 2 3 1996-2014 Associated Gas (billion cu ft) 487 900 1,306 2,351 3,617 3,55

  14. North Dakota Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    3.56 4.32 5.00 4.58 4.16 3.94 1989-2015 Residential Price 21.07 NA NA 9.60 6.57 5.61 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 8.73 8.86 7.91 NA 5.68 5.23 1989-2015 Percentage of Total Commercial Deliveries included in Prices 85.7 82.9 87.0 NA 93.2 94.3 1989-2015 Industrial Price 3.12 2.96 2.81 2.76 2.58 2.88 2001-2015 Percentage of Total Industrial Deliveries included in Prices 23.9 34.8 41.6 44.0 44.9

  15. North Dakota Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    2 1967-2010 Imports 4.41 4.04 2.72 3.59 5.00 1994-2014 Exports -- -- -- -- 14.71 1999-2014 Pipeline and Distribution Use 1967-2005 Citygate 5.50 5.06 4.43 4.99 6.37 NA 1984-2015 Residential 8.08 8.10 7.43 7.43 8.86 NA 1967-2015 Commercial 7.03 7.00 6.04 6.32 7.74 NA 1967-2015 Industrial 5.22 5.10 4.48 4.14 5.61 3.14 1997-2015 Vehicle Fuel 8.84 8.08 6.17 1990-2012 Electric Power 6.51 8.66 6.44 -- 4.08 2.89 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 1,667 2,381

  16. Davison County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    LLC Places in Davison County, South Dakota Ethan, South Dakota Loomis, South Dakota Mitchell, South Dakota Mount Vernon, South Dakota Retrieved from "http:en.openei.orgw...

  17. Hanson County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Biodiesel Producers LLC Places in Hanson County, South Dakota Alexandria, South Dakota Emery, South Dakota Farmer, South Dakota Fulton, South Dakota Retrieved from "http:...

  18. Clark County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Clark County, South Dakota Bradley, South Dakota Clark, South Dakota Garden City, South Dakota Naples, South Dakota...

  19. Moody County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Colman, South Dakota Egan, South Dakota Flandreau, South Dakota Trent, South Dakota Ward, South Dakota Retrieved from "http:en.openei.orgwindex.php?titleMoodyCounty,Sout...

  20. Dakota Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Dakota Ethanol Place: Wentworth, South Dakota Zip: 57075 Product: Farmer Coop owner of a 189m litres per year ethanol plant Coordinates:...

  1. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Palo, Daniel; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-01

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, an Environmental Health and Safety (EH&S) Assessment was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment addressed air and particulate emissions as well as solid and liquid waste streams. The magnitude of the emissions and waste streams was estimated for evaluation purposes. EH&S characteristics of materials used in the system are also described. This document contains data based on the mass balances from both the 40 kJ/mol CO2 and 80 kJ/mol CO2 desorption energy cases evaluated in the Final Technical and Economic Feasibility study also conducted by Barr Engineering.

  2. North Country Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Country Ethanol LLC Jump to: navigation, search Name: North Country Ethanol LLC Place: Rosholt, South Dakota Zip: 57260 Product: 20mmgy (75.7m litresy) ethanol producer....

  3. Keystone coal industry manual

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  4. PRELIMINARY CARBON DIOXIDE CAPTURE TECHNICAL AND ECONOMIC FEASIBILITY STUDY EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Envergex, Srivats; Browers, Bruce; Thumbi, Charles

    2013-01-01

    Barr Engineering Co. was retained by the Institute for Energy Studies (IES) at University of North Dakota (UND) to conduct a technical and economic feasibility analysis of an innovative hybrid sorbent technology (CACHYS™) for carbon dioxide (CO2) capture and separation from coal combustion–derived flue gas. The project team for this effort consists of the University of North Dakota, Envergex LLC, Barr Engineering Co., and Solex Thermal Science, along with industrial support from Allete, BNI Coal, SaskPower, and the North Dakota Lignite Energy Council. An initial economic and feasibility study of the CACHYS™ concept, including definition of the process, development of process flow diagrams (PFDs), material and energy balances, equipment selection, sizing and costing, and estimation of overall capital and operating costs, is performed by Barr with information provided by UND and Envergex. The technology—Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS™)—is a novel solid sorbent technology based on the following ideas: reduction of energy for sorbent regeneration, utilization of novel process chemistry, contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and a low-cost method of heat management. The technology’s other key component is the use of a low-cost sorbent.

  5. McPherson County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Subtype A. Places in McPherson County, South Dakota Central McPherson, South Dakota Eureka, South Dakota Hillsview, South Dakota Leola, South Dakota Long Lake, South Dakota West...

  6. Hand County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Hand County, South Dakota Miller, South Dakota Northwest Hand, South Dakota Ree Heights, South Dakota St. Lawrence,...

  7. Note: 2005 Changes in Coal Distribution Table Format and Data...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Mississippi",3603,"- ",3603 "Missouri",596,"- ",596 "Montana",39612,653,40265 "New Mexico",26262,"- ",26262 "North Dakota",30055,"- ",30055 "Ohio",21155,635,21790...

  8. South Dakota-North Dakota Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 113 86 71 2012-2014 Total Liquids Extracted (Thousand Barrels) 23 19 16 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 21 2014

  9. Lyman County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Lyman County, South Dakota Black Dog, South Dakota East Lyman, South Dakota Kennebec, South Dakota Lower Brule, South Dakota...

  10. McCook County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in McCook County, South Dakota Bridgewater, South Dakota Canistota, South Dakota Montrose, South Dakota Salem, South Dakota...

  11. Dakota Valley Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Dakota Valley Wind Project Facility Dakota Valley Sector Wind energy Facility Type Community Wind Location SD Coordinates 42.548355, -96.524841...

  12. Low-rank coal study : national needs for resource development. Volume 2. Resource characterization

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources by depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.

  13. South Dakota geothermal handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  14. History of transcontinental railroads and coal mining on the Northern Plains to 1920

    SciTech Connect (OSTI)

    Bryans, W.S.

    1987-01-01

    This history examines the symbiotic relationship between three transcontinental railroads-the Union Pacific, Northern Pacific, and Great Northern-and coal mining in Montana, North Dakota, and Wyoming through 1920. Throughout their dual existence, American railroads and the coal industry enjoyed a mutually beneficial association. On the Northern Plains, however, this partnership assumed new dimensions. There, the coal and rails exerted unique influences upon one another. The location of deposits determined many of the transcontinentals' early decisions, especially route selection. The native fuel also was used to promote settlement on railroad lands. Two of the roads, the Union Pacific and Northern Pacific, held land grants containing valuable deposits. The Great Northern, having no such subsidy, acquired coal lands in northern Montana. On these properties, the three railroads pioneered the region's commercial coal mining industry. Eventually, each formed subsidiaries to direct their coal operations. While much of their production supplied steam locomotives, some was sold to the public. Furthermore, the policies of the Northern Pacific and Great Northern especially enabled their coal to stimulate non-railroad enterprises. In addition, all three provided the transportation which made exploitation by others economically feasible.

  15. Domestic and Foreign Distribution of U.S. Coal by State of Origin...

    U.S. Energy Information Administration (EIA) Indexed Site

    ",2906,"-",2906," " "Missouri ",203,"-",203," " "Montana ",37050,180,37230," " "New Mexico ",27555,"-",27555," " "North Dakota ",31011,"-",31011," " "Ohio ",20919,68,20987,"...

  16. Spink County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    6 Climate Zone Subtype A. Registered Energy Companies in Spink County, South Dakota Redfield Energy LLC Places in Spink County, South Dakota Ashton, South Dakota Brentford, South...

  17. Edgemont, South Dakota, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Edgemont, South Dakota, Disposal Site This fact sheet provides information about the Edgemont, South Dakota, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under Title II of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the Edgemont, South Dakota, Disposal Site Site Description and History The former Edgemont uranium mill is located in Edgemont, South Dakota, in Fall River County near the southwest corner of South Dakota.

  18. North Dakota Natural Gas Liquids Proved Reserves

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    45 43 49 55 58 55 1979-2008 Adjustments 3 -1 2 6 1 -8 1979-2008 Revision Increases 4 8 5 8 8 6 1979-2008 Revision Decreases 6 6 3 3 7 7 1979-2008 Sales 0 1 0 6 4 2 2000-2008 Acquisitions 1 2 2 4 5 3 2000-2008 Extensions 0 1 5 3 6 10 1979-2008 New Field Discoveries 0 0 0 0 0 1 1979-2008 New Reservoir Discoveries in Old Fields 0 0 0 0 0 1 1979-2008 Estimated Production 4 5 5 6 6 7

  19. North Dakota Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 87,977 91,539 112,206 208,598 270,001 337,490 1967-2014 Total Liquids Extracted (Thousand Barrels) 7,852 8,842 10,199 19,186 26,000 36,276 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 10,140 11,381 14,182 26,114 36,840 50,590 1967

  20. North Dakota Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    22,065 123,585 125,392 130,044 133,975 137,972 1987-2014 Sales 123,585 125,392 130,044 133,975 137,972 1997-2014 Transported 0 0 0 0 0 2004-2014 Commercial Number of Consumers 17,632 17,823 18,421 19,089 19,855 20,687 1987-2014 Sales 17,745 18,347 19,021 19,788 20,623 1998-2014 Transported 78 74 68 67 64 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 623 578 596 543 667 677 1967-2014 Industrial Number of Consumers 279 307 259 260 266 269 1987-2014 Sales 255 204 206 211 210

  1. North Dakota Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    53,495 54,813 51,303 52,541 45,736 48,394 1967-2014 Synthetic 53,495 54,813 51,303 52,541 45,736 48,394 1980-2014 Propane-Air 0 0 1980

  2. ,"North Dakota Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    39187,835 39217,350 39248,208 39278,190 39309,163 39340,258 39370,575 39401,1193 39431,1917 39462,2034 39493,1839 39522,1382 39553,821 39583,474 39614,345 39644,192 39675,169...

  3. Clean Cities: North Dakota Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities. Moffitt is the communications director for the Clean Fuel & Vehicle Technology program of the American Lung Association of the Upper Midwest. He joined the...

  4. North Dakota Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    ,079 1,667 2,381 3,569 5,420 6,034 1977-2014 Adjustments 47 -2 -3 -56 -208 -31 1977-2014 Revision Increases 243 848 570 924 1,096 861 1977-2014 Revision Decreases 81 722 375 292 640 777 1977-2014 Sales 2 47 113 237 13 557 2000-2014 Acquisitions 1 136 169 206 384 322 2000-2014 Extensions 401 442 572 834 1,523 1,161 1977-2014 New Field Discoveries 6 25 10 16 1 4 1977-2014 New Reservoir Discoveries in Old Fields 5 2 17 23 10 37 1977-2014 Estimated Production 82 94 133 230 302 406

  5. Government of North Dakota | Open Energy Information

    Open Energy Info (EERE)

    ,"searchmarkers":"","locations":"text":"","title":"","link":null,"lat":46.805371,"lon":-100.779319,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""...

  6. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  7. Coal recovery from mine wastes of the historic longwall mining district of north-central illinois. Illinois mineral notes

    SciTech Connect (OSTI)

    Khan, L.A.; Berggren, D.J.; Camp, L.R.

    1986-01-01

    Recovery of coal from mine wastes produced by historic longwall mines in northeastern Illinois was studied as part of a project undertaken in 1982 for the Illinois Abandoned Mined Lands Reclamation Council. About 100 of these mines operated in the Wilmington and La Salle Districts of the Illinois Coal Field between about 1870 and 1940; all worked the Colchester (No. 2) Coal Seam, using a manual high-extraction mining method. Large samples of the three major kinds of mine waste - gray mining gob, preparation gob, and preparation slurry - were collected from deposits at nine of the larger mine sites and analyzed to determine their general ranges of sulfur, ash, and heating values. Preparation gob and slurry from six of the sites had significant combustible contents, and were evaluated by a simple procedure in which ash analyses and wet-screening tests were used to determine the washability and yield of combustibles to recovery processes.

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric...

  9. Minn-Dakota Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    Minn-Dakota Wind Farm I Jump to: navigation, search Name Minn-Dakota Wind Farm I Facility Minn-Dakota Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  10. Haakon County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    6 Climate Zone Subtype A. Places in Haakon County, South Dakota Midland, South Dakota Philip, South Dakota Retrieved from "http:en.openei.orgwindex.php?titleHaakonCounty,So...

  11. Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009

    SciTech Connect (OSTI)

    Dooley, James J.

    2009-07-09

    Google Earth Pro has been employed to create an interactive flyover of the world’s largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

  12. Montana-Dakota Utilities Co (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    Montana-Dakota Utilities Co (Wyoming) (Redirected from MDU Resources Group Inc (Wyoming)) Jump to: navigation, search Name: Montana-Dakota Utilities Co Place: Wyoming Phone Number:...

  13. South Dakota Department of Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    development in South Dakota related to the exploration and development of oil and gas resources. References "South Dakota Department of Natural Resources" Retrieved...

  14. City of Miller, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Miller, South Dakota (Utility Company) Jump to: navigation, search Name: City of Miller Place: South Dakota Phone Number: (605) 853-2705 Website: millersd.orgmillercity-of-mi...

  15. City of Groton, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Groton, South Dakota (Utility Company) Jump to: navigation, search Name: City of Groton Place: South Dakota Phone Number: (605) 397-8422 Website: www.grotonsd.govcityelectric...

  16. City of Howard, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Howard, South Dakota (Utility Company) Jump to: navigation, search Name: City of Howard Place: South Dakota Phone Number: (605) 772-4391 Website: www.cityofhoward.comindex.asp...

  17. Rapid City, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    under South Dakota's At-large congressional district.12 Contents 1 US Recovery Act Smart Grid Projects in Rapid City, South Dakota 2 Registered Energy Companies in Rapid...

  18. South Dakota State UniversitySGI/DOE Regional Biomass Feedstock Partnership Competitive Grants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    South Dakota State University SGI/DOE Regional Biomass Feedstock Partnership Competitive Grants (Award # GO88073; WBS 7.6.2.6) 23-27 March 2015 Technology Area Review: Feedstock Supply and Logistics Vance N. Owens, Director North Central Sun Grant Center South Dakota State University This presentation does not contain any proprietary, confidential, or otherwise restricted information (Award # GO88073; WBS 7.6.2.6) (Award # GO88073; WBS 7.6.2.6) SGI/DOE Regional Biomass Feedstock Partnership

  19. South Dakota/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Type Active Black Hills Power - Commercial Energy Efficiency Programs (South Dakota) Utility Rebate Program Yes Black Hills Power - Residential Customer Rebate Program (South...

  20. North Carolina State Historic Preservation Programmatic Agreement |

    Energy Savers [EERE]

    Department of Energy North Carolina State Historic Preservation Programmatic Agreement North Carolina State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. PDF icon state_historic_preservation_programmatic_agreement_nc.pdf More Documents & Publications Indiana State Historic Preservation Programmatic Agreement South Dakota State Historic Preservation Programmatic Agreement

  1. South Dakota State Historic Preservation Programmatic Agreement |

    Energy Savers [EERE]

    Department of Energy Dakota State Historic Preservation Programmatic Agreement South Dakota State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. PDF icon state_historic_preservation_programmatic_agreement_sd.pdf More Documents & Publications Washington State Historic Preservation Programmatic Agreement Indiana State Historic Preservation Programmatic Agreement New Hampshire

  2. British coal privatization procedures

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The form in which British Coal is to be privatized has finally been announced. Offers are to be invited for the operating underground and opencast mines which will be grouped into five regionally based companies. Additionally, offers will be invited for a number of collieries which are currently under care and maintenance. The five Regional Coal Companies to be formed are Central North, which will comprise the assets in the Yorkshire and Durham coalfields, including the five collieries in the Selby Complex; Central South, which will contain the assets located in the Nottinghamshire, Leicestershire, Derbyshire, and Warwickshire coalfields; North East, which has four opencast sites, Scotland, which has nine operating open-cast sites and a single underground mine, Longannet; and South Wales with its nine operating opencast sites. Tower colliery, the last underground mine in South Wales, was finally put on care and maintenance on April 20, 1994. Details of the five Regional Coal Companies are given. A new public sector body, the Coal Authority will be set up to which all British Coal's title to unworked coal and coal mines will be transferred. All the relevant property rights and liabilities of British Coal will be transferred into the Regional Coal Companies prior to their sun.

  3. Flash hydropyrolysis of coal. Quarterly report No. 11, October 1-December 31, 1979

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.; Bhatt, B.L.

    1980-02-01

    The following conclusions can be drawn from this work: (1) when the caking bituminous coals are used with diluents, only 20% Pittsburgh No. 8 coal can be added to the diluent swhile 40% Illinois No. 6 could be added due to the higher free swelling index of the Pittsburgh No. 8; (2) When limestone is used as a diluent, considerably more sulfur is retained in the char than when using sand; (3) when the char from an experiment using limestone is recycled as the diluent for another experiment, the char continually retains additional sulfur through at least three recycles; (4) decomposition of the limestone and reduction is indicated by the high concentrations of CO observed at 900/sup 0/C; (5) increasing the coal feed rate by a factor of 4 from 2.4 to 10.7 lb/hr at low H/sub 2//Coal ratios (approx. = 0.6) results in no appreciable change in gaseous HC yields (approx. = 27%) or concentration (approx. = 45%) but higher BTX yields (1.1% vs. 5.4%); (6) although only one experiment was conducted, it appears that hydrogasification of untreated New Mexico sub-bituminous coal at 950/sup 0/C does not give an increase in yield over hydrogasification at 900/sup 0/C; (7) the hydrogasification of Wyodak lignite gives approximately the same gaseous HC yields as that obtained from North Dakota lignite but higher BTX yields particularly at 900/sup 0/C and 1000 psi (9% vs. 2%); (8) treating New Mexico sub-bituminous coal with NaCO/sub 3/ does not increase its hydrogasification qualities between 600/sup 0/C and 900/sup 0/C at 1000 psi but does decrease the BTX yield.

  4. EA-351 DC Energy Dakota, LLC | Department of Energy

    Energy Savers [EERE]

    1 DC Energy Dakota, LLC EA-351 DC Energy Dakota, LLC Order authorizing DC Energy Dakota, LLC to export electric energy to Canada PDF icon EA-351 DC Energy Dakota, LLC More Documents & Publications Application to Export Electric Energy OE Docket No. EA-351 DC Energy Dakota, LLC EA-344 Twin Cities Power-Canada, LLC EA-354 Endure Energy, L.L.C.

  5. Domestic and Foreign Distribution of U.S. Coal by State of Origin...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Mississippi ",3739,"-",3739 "Missouri ",345,"-",345 "Montana ",36181,541,36721 "New Mexico ",27138,"-",27138 "North Dakota ",31077,"-",31077 "Ohio ",21770,176,21945 "Oklahoma...

  6. U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Coal Consumers in the Manufacturing and Coke Sectors, 2013 U.S. Energy Information Administration | Annual Coal Report 2013 Table 25. Coal Consumers in the Manufacturing and Coke Sectors, 2013 U.S. Energy Information Administration | Annual Coal Report 2013 Company Name Plant Location Top Ten Manufacturers American Crystal Sugar Co MN, ND Archer Daniels Midland IA, IL, MN, NE Carmeuse Lime Stone Inc AL, IN, KY, MI, OH, PA, TN, WI Cemex Inc AL, CA, CO, FL, GA, KY, OH, TN, TX Dakota Gasification

  7. TOXIC SUBSTANCES FROM COAL COMBUSTION-A COMPREHENSIVE ASSESSMENT

    SciTech Connect (OSTI)

    C.L. Senior; F. Huggins; G.P. Huffman; N. Shah; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F. Sarofim; S. Swenson; J.S. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowski; J.J. Helble; R. Mamani-Paco; R. Sterling; G. Dunham; S. Miller

    2001-06-30

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the National Energy Technology Laboratory (NETL), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). The work discussed in this report covers the Phase II program. Five coals were studied (three in Phase I and two new ones in Phase II). In this work UK has used XAFS and Moessbauer spectroscopies to characterize elements in project coals. For coals, the principal use was to supply direct information about certain hazardous and other key elements (iron) to complement the more complete indirect investigation of elemental modes of occurrence being carried out by colleagues at USGS. Iterative selective leaching using ammonium acetate, HCl, HF, and HNO3, used in conjunction with mineral identification/quantification, and microanalysis of individual mineral grains, has allowed USGS to delineate modes of occurrence for 44 elements. The Phase II coals show rank-dependent systematic differences in trace-element modes of occurrence. The work at UU focused on the behavior of trace metals in the combustion zone by studying vaporization from single coal particles. The coals were burned at 1700 K under a series of fuel-rich and oxygen-rich conditions. The data collected in this study will be applied to a model that accounts for the full equilibrium between carbon monoxide and carbon dioxide. The model also considers many other reactions taking place in the combustion zone, and involves the diffusion of gases into the particle and combustion products away from the particle. A comprehensive study has been conducted at UA to investigate the post-combustion partitioning of trace elements during large-scale combustion of pulverized coal combustion. For many coals, there are three distinct particle regions developed by three separate mechanisms: (1) a submicron fume, (2) a micron-sized fragmentation region, and (3) a bulk (>3 {micro}m) fly ash region. The controlling partitioning mechanisms for trace elements may be different in each of the three particle regions. A substantial majority of semi-volatile trace elements (e.g., As, Se, Sb, Cd, Zn, Pb) volatilize during combustion. The most common partitioning mechanism for semi-volatile elements is reaction with active fly ash surface sites. Experiments conducted under this program at UC focused on measuring mercury oxidation under cooling rates representative of the convective section of a coal-fired boiler to determine the extent of homogeneous mercury oxidation under these conditions. In fixed bed studies at EERC, five different test series were planned to evaluate the effects of temperature, mercury concentration, mercury species, stoichiometric ratio of combustion air, and ash source. Ash samples generated at UA and collected from full-scale power plants were evaluated. Extensive work was carried out at UK during this program to develop new methods for identification of mercury species in fly ash and sorbents. We demonstrated the usefulness of XAFS spectroscopy for the speciation of mercury captured on low-temperature sorbents from combustion flue gases and dev

  8. Land reclamation beautifies coal mines

    SciTech Connect (OSTI)

    Coblentz, B.

    2009-07-15

    The article explains how the Mississippi Agricultural and Forestry Experiments station, MAFES, has helped prepare land exploited by strip mining at North American Coal Corporation's Red Hills Mine. The 5,800 acre lignite mine is over 200 ft deep and uncovers six layers of coal. About 100 acres of land a year is mined and reclaimed, mostly as pine plantations. 5 photos.

  9. City of White, South Dakota (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    White, South Dakota (Utility Company) Jump to: navigation, search Name: City of White Place: South Dakota Phone Number: 605-629-2601 Website: www.white.govoffice2.comindex Outage...

  10. Aberdeen, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Aberdeen is a city in Brown County, South Dakota. It falls under South Dakota's At-large congressional...

  11. Minn-Dakota Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Minn-Dakota Wind Farm II Facility Minn-Dakota Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  12. City of Big Stone City, South Dakota (Utility Company) | Open...

    Open Energy Info (EERE)

    City, South Dakota (Utility Company) Jump to: navigation, search Name: City of Big Stone City Place: South Dakota Phone Number: (605) 862-8121 Website: www.bigstonecitysd.govoffice...

  13. West Central Electric Coop Inc (South Dakota) | Open Energy Informatio...

    Open Energy Info (EERE)

    West Central Electric Coop Inc (South Dakota) Jump to: navigation, search Name: West Central Electric Coop Inc Place: South Dakota Phone Number: 605-669-8100 Website: www.wce.coop...

  14. Dakota Electric Association- Commercial and Industrial Custom Energy Grant Program

    Broader source: Energy.gov [DOE]

    Dakota Electric will conduct an inspection of the project site prior to approval, and grant applications must earn pre-approval from Dakota Electric before any work begins. To qualify for rebates...

  15. South Dakota Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Dakota Recovery Act State Memo South Dakota Recovery Act State Memo South Dakota has substantial natural resources, including biomass, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in South Dakota are supporting a broad range of clean energy projects, from energy efficiency to smart grid and geothermal power. Through these investments,

  16. Categorical Exclusion Determinations: South Dakota | Department of Energy

    Office of Environmental Management (EM)

    Dakota Categorical Exclusion Determinations: South Dakota Location Categorical Exclusion Determinations issued for actions in South Dakota. DOCUMENTS AVAILABLE FOR DOWNLOAD September 18, 2015 CX-100376 Categorical Exclusion Determination Optimize Multifunctional Catalysts For Efficiently Converting Lignocellulosic Biomass to Advanced Biofuels Award Number: DE-FC36-08GO88073 CX(s) Applied: A9, B3.6 Bioenergy Technologies Office Date: 09/18/2015 Location(s): South Dakota Office(s): Golden Field

  17. Alternative Fuels Data Center: South Dakota Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels and Vehicles Dakota Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: South Dakota Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: South Dakota Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: South Dakota Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative

  18. Coal Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Markets Release date: February 8, 2016 | Next release date: February 16, 2016 | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly...

  19. Chemical and physical characterization of western low-rank-coal waste materials

    SciTech Connect (OSTI)

    Thompson, Carol May

    1981-03-01

    Evaluations of disposal requirements for solid wastes from power stations burning low-rank western coals is the primary objective of this program. Solid wastes to be characterized include: fly ashes, sludges from wet scrubbers, solids from fluidized bed combustion (FBC) processes and solids from dry scrubbing systems. Fly ashes and sludges to be studied will be obtained primarily from systems using alkaline fly ashes as significant sources of alkalinity for sulfur dioxide removal. Fluidized bed combustion wastes will include those produced by burning North Dakota lignite and Texas lignite. Dry scrubbing wastes will include those from spray drying systems and dry injection systems. Spray dryer wastes will be from a system using sodium carbonate as the scrubbing reagent. Dry injection wastes will come from systems using nahcolite and trona as sorbents. Spray dryer wastes, dry injection wastes, and FBC wastes will be supplied by the Grand Forks Energy Technology Center. Sludges and other samples will be collected at power stations using fly ash to supply alkalinity to wet scrubbers for sulfur dioxide removal. Sludges will be subjected to commercial fixation processes. Coal, fly ashes, treated and untreated sludges, scrubber liquor, FBC wastes, and dry scrubbing wastes will be subjected to a variety of chemical and physical tests. Results of these tests will be used to evaluate disposal requirements for wastes frm the systems studied.

  20. North Dakota Coalbed Methane Proved Reserves, Reserves Changes...

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 0 0 0 2005-2013 Adjustments 0 0 0 0 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

  1. ,"North Dakota Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  2. ,"North Dakota Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  3. Montana-North Dakota Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    76 865 1,460 1,613 2011-2014 Total Liquids Extracted (Thousand Barrels) 114 187 234 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 303

  4. North Dakota Coalbed Methane Proved Reserves, Reserves Changes, and

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Production 0 0 0 0 0 0 2005-2014 Adjustments 0 0 0 0 0 0 2009-2014 Revision Increases 0 0 0 0 0 0 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 0 0 0 0 0

  5. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 3,771 3,299 3,804 3,813 3,983 3,930 4,094 4,171 4,246 4,415 4,230 4,263 2007 4,435 4,028 4,338 4,314 4,459 4,436 4,653 4,833 4,576 4,609 4,543 3,593 2008 3,423 3,225 3,449 3,499 3,819 4,025 4,087 4,155 4,245 4,154 4,001 2,486 2009 3,345 3,148 3,575 3,684 3,908 3,912 4,295 4,439 4,340 4,525 4,628 5,432 2010 5,032 4,753 5,480 5,497 5,995 5,315 6,372 5,999 6,498 6,650 6,497 6,368 2011 6,124 5,393 6,212 5,812 6,025 6,145 7,170 7,580 7,341

  6. North Dakota Natural Gas Delivered for the Account of Others

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 0 0 0 0 0 2004-2014 Commercial Deliveries 776 764 795 837 981 968 1987-2014 % of All Comm. Deliveries for the Acct. of Others 7.1 7.4 7.2 8.1 7.4 6.9 1989-2014 Industrial Deliveries 10,224 16,699 17,721 17,433 17,278 18,128 1982-2014 % of All Ind. Deliveries for the Acct. of Others 65.2 70.3 62.6 65.3 62.1 65.3

  7. North Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  8. North Dakota Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 8,684 113 2,358 1990's 2,386 2,128 2,391 2,231 2,577 2,813 2,727 196 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  9. North Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 25,795 22,050 22,955 1970's 19,862 2,686 20,786 22,533 17,860 2,155 2,737 1,116 6,788 26,932 1980's 7,975 698 1 996 2,018 2,984 6,853 2,771 2,771 2,050 1990's 3,642 2,603 2,197 2,337 2,492 4,300 2,957 3,534 4,371 2,693 2000's 3,290 3,166 2,791 2,070 2,198 3,260 7,460 10,500 25,700 26,876 2010's 24,582 49,652 79,564 102,855 129,384

  10. North Dakota Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,238 6,656 9,004 6,708 5,800 5,102 1990's 5,393 4,447 508 532 358 93 358 161 57 78 2000's 73 89 139 123 126 87 53 42 9,044 6,244 2010's 7,448 10,271 6,762 7,221 7,008

  11. North Dakota U.S. Natural Gas Imports & Exports

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    480,013 476,864 448,977 433,721 432,509 433,256 1982-2014 Import Price 3.92 4.41 4.04 2.72 3.59 5.00 1994-2014 Export Volume 0 0 0 0 0 11 1999-2014 Export Price -- -- -- -- -- 14.71 199

  12. North Dakota-Illinois Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5,727 30,603 38,066 35,829 2011-2014 Total Liquids Extracted (Thousand Barrels) 1,291 1,454 1,404 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 2,086

  13. Secretary Moniz Announces Travel to Chicago, North Dakota, New...

    Broader source: Energy.gov (indexed) [DOE]

    Bismarck State College National Energy Center of Excellence Bavendick Stateroom (No. 415) 1200 Shafer St. Bismarck, ND 58506 WHEN 1:00 PM CT QER Meeting Begins 2:30 PM CT Press ...

  14. Energy Incentive Programs, North Dakota | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What load managementdemand response options are available to me? Xcel Energy offers two demand response programs that may be of interest to federal customers: The Electric Rate ...

  15. Otter Tail Power Co (North Dakota) | Open Energy Information

    Open Energy Info (EERE)

    ) TOT SALES (MWH) TOT CONS 2009-03 4,536 69,096 44,206 6,635 104,771 12,634 326 5,568 2 11,497 179,435 56,842 2009-02 4,919 69,170 44,146 6,370 97,635 12,601 334 6,444 2...

  16. New North Dakota Factory to Produce Wind Towers, Jobs

    Broader source: Energy.gov [DOE]

    Wind tower factory could bring back some of the jobs lost when a machine manufacturing plant closed.

  17. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 48,216 62,148 62,636 64,213 48,142 54,399 50,802 45,041 1990's 45,725 47,137 48,828 53,927 52,134 44,141 44,737 47,325 47,704 47,058 2000's 46,405 48,564 51,052 49,875 48,776 45,699 48,019 52,817 44,566 49,229 2010's 70,456 82,920 146,128 198,871 275,94

  18. North Dakota Natural Gas Deliveries to Electric Power Consumers (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 0 0 0 0 1 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 1 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 1 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 1 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 -- -- -- 0 0 0 0 0 0 0 -- 0 2012 0 -- 0 -- 0 0 0 0 -- -- 0 -- 2013 -- -- -- -- -- -- -- -- 66 34 95 142 2014 -- -- -- -- -- 0 1 0 16 6

  19. North Dakota Natural Gas Marketed Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 40,462 41,023 33,587 1970's 34,889 33,864 32,472 27,703 31,206 24,786 31,470 29,173 30,499 18,468 1980's 42,346 42,573 53,818 69,319 70,496 72,633 55,098 62,258 57,747 51,174 1990's 52,169 53,479 54,883 59,851 57,805 49,468 49,674 52,401 53,185 52,862 2000's 52,426 54,732 57,048 55,693 55,009 52,557 55,273 60,255 52,444 59,369 2010's 81,837 97,102 172,242 235,711 326,537 460,168

  20. North Dakota Price of Natural Gas Delivered to Residential Consumers

    Gasoline and Diesel Fuel Update (EIA)

    (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4.47 4.46 4.44 4.59 5.09 5.51 6.08 6.64 5.98 5.22 4.65 4.34 1990 4.38 4.39 4.50 4.54 4.85 5.45 6.48 6.82 6.19 5.23 4.65 4.57 1991 4.46 4.50 4.49 4.65 4.84 5.85 6.97 6.99 6.50 5.59 4.88 4.75 1992 4.67 4.62 4.69 4.78 5.21 6.04 6.33 6.75 6.26 5.64 4.98 4.85 1993 4.71 4.82 4.84 5.06 5.60 6.38 6.83 7.38 6.92 6.04 5.40 5.13 1994 5.02 4.98 5.12 5.31 5.37 6.62 7.02 7.52 6.91 5.99 4.86 4.48 1995 4.30 4.27 4.29

  1. ,"North Dakota Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    5,"Monthly","12/2015","1/15/1989" ,"Data 2","Production",10,"Monthly","12/2015","1/15/1989" ,"Data 3","Consumption",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","ng_sum_lsum_dcu_snd_m.xls" ,"Available from Web

  2. City of Cavalier, North Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Twitter: @BESnews Facebook: https:www.facebook.combrightenergysolutions?refhl Outage Hotline: 605338-4042 References: EIA Form EIA-861 Final Data File for 2010 -...

  3. North Dakota: EERE-Funded Project Recycles Energy, Generates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the commercial viability of its Flare Gas Micro-turbine. The microturbine pilot project places generators at oil production well sites to transform wellhead flare gas into ...

  4. North Dakota Natural Gas Gross Withdrawals (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,413 4,886 5,408 5,186 5,231 5,259 5,595 5,337 4,737 4,987 5,214 5,404 1992 5,278 4,889 5,203 4,783 4,881 4,865 5,024 ...

  5. North Dakota - Seds - U.S. Energy Information Administration...

    U.S. Energy Information Administration (EIA) Indexed Site

    solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy Comprehensive data summaries, comparisons,...

  6. ,"North Dakota Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    10,"Annual",2015,"6/30/1967" ,"Data 2","Dry Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Data 3","Production",13,"Annual",2015,"6/30/1967" ,"Data 4","Imports and Exports",2,"Annual",2014,"6/30/1982" ,"Data 5","Consumption",11,"Annual",2015,"6/30/1967" ,"Release Date:","2/29/2016" ,"Next

  7. North Dakota Shale Gas Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    24 368 1,185 1,649 3,147 5,059 2007-2013 Adjustments 101 235 20 253 -72 2009-2013 Revision Increases 119 528 439 901 1,056 2009-2013 Revision Decreases 17 343 290 199 554 2009-2013...

  8. North Dakota Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    ,058 1,887 2,658 3,773 5,683 6,045 2009-2014 Adjustments 12 -8 9 33 -44 -68 2009-2014 Revision Increases 211 709 679 744 994 683 2009-2014 Revision Decreases 69 486 560 370 655 869 2009-2014 Sales 4 63 124 236 44 567 2009-2014 Acquisitions 2 226 224 218 353 310 2009-2014 Extensions 396 533 665 941 1,603 1,234 2009-2014 New Field Discoveries 12 29 14 9 4 3 2009-2014 New Reservoir Discoveries in Old Fields 5 3 16 27 13 30 2009-2014 Estimated Production 84 114 152 251 314 394

  9. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 48,216 62,148 62,636 64,213 48,142 54,399 50,802 45,041 1990's 45,725 47,137 48,828 53,927 52,134 44,141 44,737 47,325 47,704 47,058 2000's 46,405 48,564 51,052 49,875 48,776 45,699 48,019 52,817 44,566 49,229 2010's 70,456 82,920 146,128 198,871 275,94

  10. North Dakota Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    55 1,073 1,065 1,082 1,064 1,05

  11. North Dakota Lease Condensate Proved Reserves, Reserve Changes, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production 12 73 9 12 6 2 1979-2014 Adjustments 0 0 0 0 5 1 2009-2014 Revision Increases 9 37 2 4 3 0 2009-2014 Revision Decreases 1 12 66 1 13 5 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 36 0 0 0 0 2009-2014 Extensions 0 1 0 1 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 0 1 0 1 1

  12. North Dakota Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.0 100.0 2000's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010's

  13. North Dakota Natural Gas % of Total Residential - Sales (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

  14. North Dakota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    66,395 72,463 72,740 81,593 83,330 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 3,753 3,200 4,595 6,486 8,683 1983-2014 Plant Fuel 4,294 5,473 5,887 6,707 5,736 1983-2014 Pipeline & Distribution Use 13,745 13,575 15,619 14,931 14,604 1997-2014 Volumes Delivered to Consumers 44,603 50,214 46,639 53,469 54,307 55,321 1997-2015 Residential 10,536 10,937 9,594 12,085 12,505 10,606 1967-2015 Commercial 10,302 10,973 10,364 13,236 13,999 12,334 1967-2015 Industrial 23,762 28,303 26,680

  15. North Dakota Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    113,867 157,025 258,568 345,787 462,929 581,461 1967-2015 From Gas Wells 10,501 14,287 22,261 24,313 22,354 1967-2014 From Oil Wells 38,306 27,739 17,434 12,854 9,098 1967-2014 From Shale Gas Wells 65,060 114,998 218,873 308,620 431,477 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 0 0 0 0 0 1981-2014 Vented and Flared 24,582 49,652 79,564 102,855 129,384 1967-2014 Nonhydrocarbon Gases Removed 7,448 10,271 6,762 7,221 7,008 1984-2014 Marketed Production 81,837 97,102 172,242

  16. North Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  17. North Dakota Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 8,684 113 2,358 1990's 2,386 2,128 2,391 2,231 2,577 2,813 2,727 196 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  18. North Dakota Natural Gas Reserves Summary as of Dec. 31

    U.S. Energy Information Administration (EIA) Indexed Site

    ,213 1,869 2,652 3,974 6,081 6,787 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 143 152 141 105 91 45 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 1,070 1,717 2,511 3,869 5,990 6,742 1979-2014 Dry Natural Gas 1,079 1,667 2,381 3,569 5,420 6,034

  19. North Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 25,795 22,050 22,955 1970's 19,862 2,686 20,786 22,533 17,860 2,155 2,737 1,116 6,788 26,932 1980's 7,975 698 1 996 2,018 2,984 6,853 2,771 2,771 2,050 1990's 3,642 2,603 2,197 2,337 2,492 4,300 2,957 3,534 4,371 2,693 2000's 3,290 3,166 2,791 2,070 2,198 3,260 7,460 10,500 25,700 26,876 2010's 24,582 49,652 79,564 102,855 129,384

  20. North Dakota Nonassociated Natural Gas Proved Reserves, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation 143 152 141 105 91 45 1979-2014 Adjustments 11 -5 3 -24 0 32 1979-2014 Revision Increases 28 245 26 1 1 8 1979-2014 Revision Decreases 8 264 32 15 8 81 1979-2014 Sales 0 2 1 0 0 0 2000-2014 Acquisitions 0 24 2 1 0 0 2000-2014 Extensions 6 21 0 0 0 0 1979-2014 New Field Discoveries 0 0 0 9 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 Estimated Production 13 10 9 8 7

  1. North Dakota Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,238 6,656 9,004 6,708 5,800 5,102 1990's 5,393 4,447 508 532 358 93 358 161 57 78 2000's 73 89 139 123 126 87 53 42 9,044 6,244 2010's 7,448 10,271 6,762 7,221 7,008

  2. North Dakota Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    8 1,185 1,649 3,147 5,059 6,442 2007-2014 Adjustments 101 235 20 253 -72 719 2009-2014 Revision Increases 119 528 439 901 1,056 933 2009-2014 Revision Decreases 17 343 290 199 554 823 2009-2014 Sales 1 28 115 181 1 593 2009-2014 Acquisitions 1 87 161 142 273 304 2009-2014 Extensions 159 393 340 770 1,475 1,255 2009-2014 New Field Discoveries 6 8 2 1 0 4 2009-2014 New Reservoir Discoveries in Old Fields 1 1 2 14 3 10 2009-2014 Estimated Production 25 64 95 203 268 426

  3. West Fargo, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    (Redirected from West Fargo, ND) Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.87285, -96.897044 Show Map Loading map... "minzoom":false,"mappingservice":"...

  4. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 3,771 3,299 3,804 3,813 3,983 3,930 4,094 4,171 4,246 4,415 4,230 4,263 2007 4,435 4,028 4,338 4,314 4,459 4,436 4,653 4,833 4,576 4,609 4,543 3,593 2008 3,423 3,225 3,449 3,499 3,819 4,025 4,087 4,155 4,245 4,154 4,001 2,486 2009 3,345 3,148 3,575 3,684 3,908 3,912 4,295 4,439 4,340 4,525 4,628 5,432 2010 5,032 4,753 5,480 5,497 5,995 5,315 6,372 5,999 6,498 6,650 6,497 6,368 2011 6,124 5,393 6,212 5,812 6,025 6,145 7,170 7,580 7,341

  5. North Dakota Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    117 1,095 1,078 1,093 1,097 1,112

  6. North Dakota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    2,929 3,396 3,600 4,063 5,168 5,845 2001-2015 Residential 170 147 200 513 1,069 1,713 1989-2015 Commercial 308 294 321 667 1,214 1,808 1989-2015 Industrial 1,954 2,463 2,646 2,883 2,885 2,324 2001-2015 Vehicle Fuel 0 0 0 0 0 0 2010-2015 Electric Power 497 492 433 W W W

  7. North Dakota Natural Gas Deliveries to Electric Power Consumers (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1 0 0 2000's 0 3 1 0 3 1 2 2 1 1 2010's 2 0 1 337 40 3,671

  8. North Dakota Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 66,257 63,073 56,542 1970's 54,751 36,550 53,258 50,236 49,066 26,941 34,207 30,289 37,287 45,400 1980's 50,321 51,955 53,819 70,428 78,752 84,631 70,955 71,737 66,318 58,326 1990's 63,590 62,657 59,979 64,951 63,232 56,674 55,716 56,292 57,614 55,633 2000's 55,789 57,987 59,978 57,886 57,333 55,904 62,786 70,797 87,188 92,489 2010's 113,867 157,025 258,568 345,787 462,929 581,461

  9. North Dakota Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    51,167 50,537 47,895 50,958 49,559 51,065 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1996-2015 Vented and Flared NA NA NA NA NA NA 1996-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2015 Marketed Production 40,494 39,995 37,904 40,328 39,221 40,413

  10. North Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 NA NA NA NA NA NA NA NA NA NA NA NA 2015 NA NA NA NA NA NA NA NA NA NA NA

  11. North Dakota Natural Gas Industrial Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,580 20,606 17,561 2000's 14,423 17,759 19,101 14,449 16,409 11,841 14,302 18,117 21,255 15,680 2010's 23,762 28,303 26,680 27,812 27,762 30,958

  12. North Dakota Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 40,462 41,023 33,587 1970's 34,889 33,864 32,472 27,703 31,206 24,786 31,470 29,173 30,499 18,468 1980's 42,346 42,573 53,818 69,319 70,496 72,633 55,098 62,258 57,747 51,174 1990's 52,169 53,479 54,883 59,851 57,805 49,468 49,674 52,401 53,185 52,862 2000's 52,426 54,732 57,048 55,693 55,009 52,557 55,273 60,255 52,444 59,369 2010's 81,837 97,102 172,242 235,711 326,537 460,168

  13. North Dakota Natural Gas Residential Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,467 7,169 7,661 1970's 8,186 8,502 10,346 8,204 9,556 10,200 10,182 10,164 12,417 11,588 1980's 9,644 8,958 10,932 9,685 9,974 10,353 9,351 8,063 9,147 9,825 1990's 9,183 10,338 9,693 10,717 10,661 11,209 12,591 11,370 10,092 10,573 2000's 10,963 10,570 11,725 11,876 11,132 10,692 9,644 10,698 11,500 11,518 2010's 10,536 10,937 9,594 12,085 12,505 10,606

  14. North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered to Vehicle

  15. North Dakota Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 232 193 232 176 230 258 269 324 298 334 213 199 1997 229 264 293 280 303 313 258 301 327 330 321 315 1998 308 301 334 380 418 459 435 425 310 328 345 330 1999 231 194 245 204 202 206 231 307 232 227 202 212 2000 225 218 226 237 257 271 292 327 293 333 311 300 2001 269 246 276 255 245 263 289 283 250 260 281 249 2002 231 221 210 235 250 238 258 245 257 222 210 214 2003 196 167 193 174 167 161 158 171 164 181 168 170 2004 197 157 166 150

  16. North Dakota Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 18 12 17 15 21 64 67 60 36 32 9 8 1997 6 6 8 6 5 5 10 24 47 13 28 5 1998 5 4 5 3 5 5 5 5 5 6 5 5 1999 5 6 7 7 7 8 6 8 6 6 5 5 2000 5 5 5 5 5 5 5 5 8 8 8 9 2001 9 7 7 6 7 6 9 8 8 8 7 7 2002 9 10 15 14 12 13 14 13 9 10 10 10 2003 11 10 10 10 11 11 11 12 9 10 9 9 2004 10 10 12 12 18 13 14 11 7 8 5 6 2005 6 6 7 6 7 8 9 8 8 8 7 7 2006 8 5 5 5 3 4 4 4 5 4 3 3 2007 6 4 4 4 2 3 3 3 4 3 2 2 2008 567 495 642 623 697 761 801 818 853 935

  17. North Dakota Price of Natural Gas Delivered to Residential Consumers

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.94 0.93 0.95 1970's 1.02 1.10 1.13 1.14 1.19 1.51 1.79 2.11 2.33 2.88 1980's 3.85 4.28 4.61 5.56 6.38 5.59 5.29 5.47 5.15 4.68 1990's 4.70 4.82 5.00 5.23 5.19 4.66 4.54 4.99 5.16 5.32 2000's 6.37 7.68 5.14 7.25 9.03 11.40 10.80 9.13 10.34 8.46 2010's 8.08 8.10 7.43 7.43 8.86 NA

  18. ,"North Dakota Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1160snd2m.xls" ,"Available from ...

  19. ,"North Dakota Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusndm.xls" ...

  20. North Dakota Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 223 222 230 228 233 230 239 233 222 207 220 242 1997 110 87 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0...

  1. Abercrombie, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    lse,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations":"text":"","title":"","link":null,"lat":46.4477384,"lon":-96.7303557,"alt":0,"address":"","i...

  2. North Dakota Natural Gas Industrial Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,307 1,550 1,228 2,195 1,852 2,011 814 1,795 1,359 1,460 1,068 1,119 2002 2,070 1,625 1,612 1,563 1,672 2,104 1,499 1,376...

  3. North Dakota Natural Gas Residential Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,660 1,590 1,476 1,040 506 309 213 166 240 398 816 1,411 1990 1,661 1,440 1,175 949 581 337 191 167 220 398 828 1,235...

  4. North Dakota Natural Gas Marketed Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,534 3,874 4,309 4,252 4,417 4,136 4,468 3,771 3,935 4,566 4,418 4,494 1990 4,423 4,060 4,451 4,438 4,580 4,272 4,291...

  5. Phoenix, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    "searchmarkers":"","locations":"text":"","title":"","link":null,"lat":47.2113165,"lon":-100.1907029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""...

  6. Lyman, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    "searchmarkers":"","locations":"text":"","title":"","link":null,"lat":47.0413471,"lon":-100.3287733,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""...

  7. East Morton, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    ,"searchmarkers":"","locations":"text":"","title":"","link":null,"lat":46.536712,"lon":-100.911022,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""...

  8. North Dakota Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.22 0.22 0.23 0.24 0.23 0.22 0.22 2000's 0.22 0.22 0.24 0.23 0.23 0.22 0.22 0.23 0.24 0.24...

  9. DAKOTA JAGUAR 3.0 user's manual.

    SciTech Connect (OSTI)

    Adams, Brian M.; Bauman, Lara E; Chan, Ethan; Lefantzi, Sophia; Ruthruff, Joseph R.

    2013-05-01

    JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary to use JAGUAR.

  10. DAKOTA JAGUAR 2.1 user's Manual.

    SciTech Connect (OSTI)

    Adams, Brian M.; Lefantzi, Sophia; Chan, Ethan; Ruthruff, Joseph R.

    2011-06-01

    JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary for a user to use JAGUAR.

  11. Proposed coal product valuation rules. Hearing before the Subcommittee on Mineral Resources Development and Production of the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, First Session, November 16, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The hearing was called to discuss the proposed rules issued by the Department of the Interior relating to the valuation of coal production from Federal and Indian leases for royalty purposes. The rules would base the value of coal on the gross proceeds obtained under a contract. The rules would exclude Federal black lung excise tax payments and abandoned mine payments from value, but would include state severance taxes. Considerable controversy arose such that Congress imposed a moratorium on implementation to allow further public comment. An alternative proposal from a joint industry group would base value on the depletable income provisions of the Internal Revenue Code. However, several western governors have voiced concerns over this alternative which analysis shows would result in significantly lower revenues to the Federal government, the states, and to the Tribes. Testimony was heard from eight witnesses, representing the DOI Land and Minerals Management, electric power associations, Western Organization of Resource Councils, the Navajo nation, National Coal Association, and Montana. Additional materials were submitted by the Energy Information Administration, the Western Coal Traffic League, the Western Fuels Association, and the States of Wyoming, North Dakota, Colorado, and New Mexico.

  12. JV 38-APPLICATION OF COFIRING AND COGENERATION FOR SOUTH DAKOTA SOYBEAN PROCESSORS

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-11-01

    Cogeneration of heat and electricity is being considered by the South Dakota Soybean Processors for its facility in Volga, South Dakota, and a new facility to be located in Brewster, Minnesota. The Energy & Environmental Research Center has completed a feasibility study, with 40% funding provided from the U.S. Department of Energy's Jointly Sponsored Research Program to determine the potential application of firing biomass fuels combined with coal and comparative economics of natural gas-fired turbines. Various biomass fuels are available at each location. The most promising options based on availability are as follows. The economic impact of firing 25% biomass with coal can increase return on investment by 0.5 to 1.5 years when compared to firing natural gas. The results of the comparative economics suggest that a fluidized-bed cogeneration system will have the best economic performance. Installation for the Brewster site is recommended based on natural gas prices not dropping below a $4.00/MMBtu annual average delivered cost. Installation at the Volga site is only recommended if natural gas prices substantially increase to $5.00/MMBtu on average. A 1- to 2-year time frame will be needed for permitting and equipment procurement.

  13. Coal pump

    DOE Patents [OSTI]

    Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  14. Irene, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Irene, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0830474, -97.1606081 Show Map Loading map... "minzoom":false,"mappingse...

  15. Clay County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8829344, -97.0068393 Show Map Loading map... "minzoom":false,"mappingservice":...

  16. Vermillion, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Vermillion, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7794417, -96.9292104 Show Map Loading map... "minzoom":false,"mapp...

  17. Wakonda, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wakonda, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0083269, -97.1067167 Show Map Loading map... "minzoom":false,"mapping...

  18. ,"South Dakota Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  19. ,"South Dakota Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Additions (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota...

  20. Dakota County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Landfill Biomass Facility Pine Bend Biomass Facility Places in Dakota County, Minnesota Apple Valley, Minnesota Burnsville, Minnesota Coates, Minnesota Eagan, Minnesota Farmington,...

  1. Redfield, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Redfield, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8758095, -98.5187062 Show Map Loading map... "minzoom":false,"mappin...

  2. South Dakota/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> South Dakota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  3. EA-1955: Campbell County Wind Farm; Campbell County, South Dakota...

    Broader source: Energy.gov (indexed) [DOE]

    an EA that analyzes the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm...

  4. South Dakota Wind Application Center | Open Energy Information

    Open Energy Info (EERE)

    Dakota. Its stated mission is to "Promote wind energy through project development and education."2 References "SDWAC's "Contact" Page" "SDWAC Homepage" External links...

  5. Dakota County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nebraska Dakota City, Nebraska Emerson, Nebraska Homer, Nebraska Hubbard, Nebraska Jackson, Nebraska South Sioux City, Nebraska Retrieved from "http:en.openei.orgw...

  6. City of Brookings, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search Name: Brookings City of Place: South Dakota Phone Number: (605) 692-6325 Website: www.brookingsutilities.com Outage Hotline: (605) 692-6325 References:...

  7. South Dakota's At-large congressional district: Energy Resources...

    Open Energy Info (EERE)

    At-large congressional district Black Hills Corporation Broin Associates Broin Enterprises Capitaline Advisors LLC Dakota Ethanol Deadwood Biofuels LLC Kramer Energy Group...

  8. ,"South Dakota Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  9. ,"South Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  10. Colman, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Inc. Smart Grid Project Utility Companies in Colman, South Dakota Sioux Valley SW Elec Coop References US Census Bureau Incorporated place and minor civil division...

  11. EIS-0401: NextGen Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes WAPA's proposed action for the construction and operation of the proposed NextGen Energy Facility (Project) in South Dakota.

  12. Montana-Dakota Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient equipment for natural gas and electric customers. Natural gas customers are eligible for rebates on furnaces...

  13. Montana-Dakota Utilities- Commercial Energy Efficiency Incentive Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers a variety of rebates to commercial customers for the purchase and installation of energy efficient lighting measures, air conditioning equipment, variable...

  14. Recovery Act State Memos South Dakota

    Broader source: Energy.gov (indexed) [DOE]

    Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. South Dakota Wind Resource Assessment Network (WRAN)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    WRAN is a network of instrument stations sited throughout South Dakota. As of 2010, there are eleven stations, and some have been collecting data since 2001. The purpose of the WRAN:

    There are several reasons why the WRAN was built. One of the most obvious is that it will allow verification of the existing resource assessments of our state. South Dakota has tremendous potential as an exporter of wind-generated electricity. There has recently been a great deal of publicity over a Pacific Northwest National Laboratories study conducted in the early 1990s that ranked the contiguous 48 states in terms of their potential to produce windpower. (Click here for the results of this study as given by the American Wind Energy Association.) South Dakota ranked fourth in that study. Also, more recently, detailed maps of the wind resource in South Dakota were produced by the National Renewable Energy Laboratory (NREL). Unfortunately, both of these studies had to rely heavily on computer-generated models and very sparse measured data, because very little appropriate measured data exists. The WRAN will provide valuable data that we anticipate will validate the NREL maps, and perhaps suggest minor adjustments.

    There are many other benefits the WRAN will provide. The data it will measure will be at heights above ground that are more appropriate for predicting the performance of large modern wind turbines, as opposed to data collected at National Weather Service stations whose anemometers are usually only about 9 m (30 feet) above ground. Also, we will collect some different types of data than most wind measurement networks, which will allow a series of important studies of the potential impact and value of South Dakota's windpower. In addition, all of the WRAN data will be made available to the public via this WWWeb site. This will hopefully enable extensive informed discussion among all South Dakotans on such important topics as rural economic development and transmission system expansion. [Copied from http://sdwind.com/about/

  16. Liquid CO{sub 2}/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    SciTech Connect (OSTI)

    Marasigan, Jose; Goldstein, Harvey; Dooher, John

    2013-09-30

    This study investigates the practicality of using a liquid CO{sub 2}/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO{sub 2} has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO{sub 2} is much lower than water. This means it should take less energy to pump liquid CO{sub 2} through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO{sub 2} is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO{sub 2} is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO{sub 2} slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO{sub 2} has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO{sub 2} over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO{sub 2}/coal slurry properties. This low-rank coal study extends the existing knowledge base to evaluate the liquid CO{sub 2}/coal slurry concept on an E-Gas™-based IGCC plant with full 90% CO{sub 2} capture. The overall objective is to determine if this technology could be used to reduce the cost and improve the efficiency of IGCC plants. The study goes beyond the systems-level analyses and initial lab work that formed the bases of previous studies and includes the following tasks: performing laboratory tests to quantify slurry properties; developing an engineering design of a liquid CO{sub 2} slurry preparation and feed system; conducting a full IGCC plant techno-economic analysis for Powder River Basin (PRB) coal and North Dakota lignite in both water and liquid CO{sub 2} slurries; and identifying a technology development plan to continue the due diligence to conduct a comprehensive evaluation of this technology. The initial task included rheology tests and slurry data analyses that would increase the knowledge and understanding of maximum solids loading capability for both PRB and lignite. Higher coal concentrations have been verified in liquid CO{sub 2} over water slurries, and a coal concentration of 75% by weight in liquid CO{sub 2} has been estimated to be achievable in a commercial application. In addition, lower slurry viscosities have been verified in liquid CO{sub 2} at the same solids loading, where the liquid CO{sub 2}/coal slurry viscosity has been measured to be about a factor of 10 lower than the comparable water slurry and estimated to be less than 100 centipoise in a commercial application. In the following task, an engineering design of a liquid CO{sub 2}/coal slurry preparation and mixing system has been developed for both a batch and continuous system. The capital cost of the design has also been estimated so that it could be used in the economic analysis. An industry search and survey has been conducted to determine if essential components required to construct the feed system are available from commercial sources or if targeted R&D efforts are required. The search and survey concluded that commercial sources are available for selected components that comprise both the batch and continuous type systems. During normal operation, the fuel exits the bottom of the coal silo and is fed to a rod mill for grinding to the desired particle size. From the rod mill, the coal is transported in a dense phase pneumatic transport system to the top of a solids heat exchanger, wherein the ground coal is chilled to a low temperature (in the range of -23.3°C (-10°F)) prior to mixing with liquid CO{sub 2}. This temperature was selected based on evaluating trade-offs between refrigeration work and the cost of the system pressure boundary at various combinations of pressure and temperature that correspond to the gas/liquid phase boundary for CO{sub 2}. Electrical loads to drive the equipment comprising the liquid CO{sub 2} feed system are significantly greater than those for a water slurry system, and this effect has been captured in the technical performance analysis. In the next task, a plant-wide techno-economic analysis has been conducted for PRB coal and lignite in both liquid CO{sub 2} and water slurry feed. The IGCC cases using a liquid CO{sub 2} slurry system show reduced plant output and higher heat rate for PRB coal and for ND lignite at 90% CO{sub 2} capture. Some of these performance differences can be attributed to the higher requirement for steam for the liquid CO{sub 2} slurry cases to drive the water-gas shift reaction, thereby reducing steam turbine power generation. Other factors contributing to the calculated performance differences are the increase in parasitic loads attributable to refrigeration to produce liquid CO{sub 2} and chilled coal and the reduction in enthalpy of the inlet streams to the gasifier associated with the low temperature liquid CO{sub 2} slurry feed. The capital costs for the complete plant are slightly higher for the liquid CO{sub 2} slurry cases for PRB coal but somewhat reduced for ND lignite relative to the corresponding water slurry cases. Differences in dollar/kWe costs are higher for both coals due to the reduction in net output. The cost of electricity computed for the liquid CO{sub 2}/coal slurry cases is greater for both PRB and ND Lignite coals. It does not appear that there is any benefit to using liquid CO{sub 2}/coal slurries for feeding low rank coals to the E-Gas™ gasifier. Any incidental benefits in improved cold gas efficiency are more than compensated for in higher overall plant costs, increased complexity, and reduced power output and efficiency. The results of the study are compared with previous published analyses, and the differences in model assumptions, approach and basis are summarized. It has been concluded that the use of liquid CO{sub 2} may still prove to have a significant advantage in a different type of gasifier, i.e., single-stage entrained flow with radiant quench section, but some key questions remain unanswered that can validate the potential improvement of gasifier performance using liquid CO{sub 2} slurries. In order to provide a path to answering these questions, a technology development roadmap has been developed to resolve fundamental issues and to better define the operation aspects of using liquid CO{sub 2}/coal slurries. The fundamental issues could be resolved by conducting additional laboratory analyses consisting of: • A rheological test program to quantitatively evaluate slurry preparation and handling for liquid CO{sub 2} including experiments to evaluate preparation systems. • An experimental program on CO{sub 2}-assisted gasification in order to obtain the most relevant experimental data from drop tube furnace studies to aid in verifying the potential advantages of direct feed of liquid CO{sub 2}/coal as gasifier feedstocks. Quantifying the operational aspects of liquid CO{sub 2} slurries can best be achieved with: • An experimental program using a flow test loop to evaluate equipment performance and handling properties of liquid CO{sub 2}/coal slurries for gasifier feedstocks on a scale sufficient to predict full scale operating parameters. • Spray atomization studies necessary to evaluate the effect of atomization properties of liquid CO{sub 2}/coal slurries that could be significantly different than those of water/coal slurries.

  17. EA-1955: Campbell County Wind Farm; Campbell County, South Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) prepared an EA that analyzes the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm near Pollock, South Dakota, to Western’s existing transmission line at that location.

  18. Longwall mining thrives in Colorado's North Fork Valley

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2006-08-15

    With mining units poised for record-setting capacity and rail service restored, these mines in Colorado's North Fork valley are ready to cut coal. 4 photos.

  19. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal In response to concerns of climate change, the United States is contemplating a complete and rapid transformation of the way it both produces and consumes energy to significantly reduce its carbon emissions. The integrated Coal Program focuses on retaining the benefits of continuing to use coal to produce electric power. This strategy can help us depend less on foreign sources of energy, respond to the world's growing climate concerns, and compete economically. It also will ensure that our

  20. Coal Markets

    Gasoline and Diesel Fuel Update (EIA)

    Coal Markets Release date: March 14, 2016 | Next release date: March 21, 2016 | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly coal commodity spot prices dollars per short ton Week ending Week ago change Central Appalachia 12,500 Btu, 1.2 SO2 Northern Appalachia 13,000 Btu, < 3.0 SO2 Illinois Basin 11,800 Btu, 5.0 SO2 Powder River Basin 8,800 Btu, 0.8 SO2 Uinta Basin 11,700 Btu, 0.8 SO2 Source: With permission, SNL Energy Note: Coal prices shown

  1. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of ND Grand Forks, ND Barr Engineering: Hibbing, MN FETDICCoalETP Charles Miller Investigation of Rare Earth Element Extraction from North Dakota Coal-Related... This...

  2. Plants Martin, Christopher; Pavlish, John 20 FOSSIL-FUELED POWER...

    Office of Scientific and Technical Information (OSTI)

    was provided by the Wyoming State Legislature under an award made through the Wyoming Clean Coal Technologies Research Program. University Of North Dakota USDOE United States...

  3. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    was provided by the Wyoming State Legislature under an award made through the Wyoming Clean Coal Technologies Research Program University Of North Dakota USDOE United States...

  4. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    More Data & Analysis in North Dakota by Source Petroleum Natural Gas Electricity Coal Renewable & Alternative Fuels Nuclear Environment Total Energy Summary Reports State ...

  5. North Carolina - Seds - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma

  6. Field study of disposed solid wastes from advanced coal processes

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  7. EIA -Quarterly Coal Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: March 9, 2016 Next Release Date: May 2016 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination

  8. Brown County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brown County is a county in South Dakota. Its FIPS County Code is 013. It is classified as...

  9. Perkins County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Perkins County is a county in South Dakota. Its FIPS County Code is 105. It is classified as...

  10. City of Tyndall, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Place: South Dakota Phone Number: (605)-589-3481 Website: tyndallsd.comgovernment.html Outage Hotline: (605)-589-3481 References: EIA Form EIA-861 Final Data File for 2010 -...

  11. South Dakota Wind Energy Association | Open Energy Information

    Open Energy Info (EERE)

    South Dakota Wind Energy Association Address: 300 East Capitol Ave. Place: Pierre, SD Zip: 57501 Phone Number: 605.716.2981 Website: www.sdwind.org Coordinates: 44.364176,...

  12. Douglas Electric Coop, Inc (South Dakota) | Open Energy Information

    Open Energy Info (EERE)

    Coop, Inc Place: South Dakota Phone Number: 541.673.6616 Website: douglaselectric.com Outage Hotline: 1.800.233.2733 Outage Map: ebill.douglaselectric.comwoVi References: EIA...

  13. Campbell County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Campbell County is a county in South Dakota. Its FIPS County Code is 021. It is classified as...

  14. City of Colman, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    index.asp?SEC Facebook: https:www.facebook.compagesColman-South-Dakota341612992034?refhl Outage Hotline: (605) 534-3611 References: EIA Form EIA-861 Final Data File for 2010...

  15. Dakota Electric Association- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rebates are limited to 50% of the project cost up to a maximum of $100,000. Customers who wish to participate in this rebate program should call Dakota Electric Association before the new equipme...

  16. Jackson County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in South Dakota. Its FIPS County Code is 071. It is classified as...

  17. Stanley County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Stanley County is a county in South Dakota. Its FIPS County Code is 117. It is classified as...

  18. Potter County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Potter County is a county in South Dakota. Its FIPS County Code is 107. It is classified as...

  19. Dewey County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Dewey County is a county in South Dakota. Its FIPS County Code is 041. It is classified as...

  20. South Dakota PrairieWinds Project Executive Summary Executive...

    Office of Environmental Management (EM)

    ... Income for 13.2 percent of the population of South Dakota is considered below the poverty level, whereas the percentage of the population below the poverty level ranges between ...

  1. Weekly Coal Production by State

    Gasoline and Diesel Fuel Update (EIA)

    State 2014 Annual Producton 2013 Annual Producton 2012 Annual Producton Alabama 16,377 18,628 19,455 Alaska 1,502 1,632 2,052 Arizona 8,051 7,603 7,493 Arkansas 94 59 98 Colorado 24,007 24,236 28,566 Illinois 58,025 52,256 48,763 Indiana 39,267 39,102 36,720 Kansas 66 22 16 Kentucky 77,468 80,546 90,942 Louisiana 2,605 2,810 3,971 Maryland 1,978 1,925 2,283 Mississippi 3,737 3,575 2,953 Missouri 363 414 422 Montana 44,562 42,231 36,694 New Mexico 21,963 21,969 22,452 North Dakota 29,157 27,639

  2. Wind energy resource atlas. Volume 2. The North Central Region

    SciTech Connect (OSTI)

    Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01

    The North Central atlas assimilates six collections of wind resource data: one for the region and one for each of the five states that compose the North Central region (Iowa, Minnesota, Nebraska, North Dakota, and South Dakota). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and that data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and international wind speed and power, and hourly average wind speed for each season. Other graphs present speed direction and duration frequencies of the wind at these locations.

  3. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    Processing Coal Plants and Commercial and Institutional Coal Users" and Form EIA-7A, "Coal Production and Preparation Report." Appendix A Assigning Missing Data to EIA-923...

  4. Coal industry annual 1994

    SciTech Connect (OSTI)

    1995-10-01

    This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

  5. Coal Market Module

    Gasoline and Diesel Fuel Update (EIA)

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  6. South Dakota Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) South Dakota Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 113 86 71 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed South Dakota Natural Gas Plant Processing Natural Gas Processed

  7. Comments of Dakota Electric Association | Department of Energy

    Office of Environmental Management (EM)

    Dakota Electric Association Comments of Dakota Electric Association DEA has deployed a fully integrated IP network to 26 substation sites. An IP based network transports data information for Supervisory Control and Data Acquisition (SCADA) and Load Management systems. A private Wide Area Network (WAN) was implemented by DEA in 2001 due to lack of comprehensive coverage by major carriers. In addition to the WAN, DEA relies on commercial services to communicate with load management receivers via

  8. Tectonic Setting and Characteristics of Natural Fractures in MesaVerde and Dakota Reservoirs of the San Juan Basin

    SciTech Connect (OSTI)

    LORENZ,JOHN C.; COOPER,SCOTT P.

    2000-12-20

    The Cretaceous strata that fill the San Juan Basin of northwestern New Mexico and southwestern Colorado were shortened in a generally N-S to NN13-SSW direction during the Laramide orogeny. This shortening was the result of compression of the strata between southward indentation of the San Juan Uplift at the north edge of the basin and northward to northeastward indentation of the Zuni Uplift from the south. Right-lateral strike-slip motion was concentrated at the eastern and western basin margins of the basin to form the Hogback Monocline and the Nacimiento Uplift at the same time, and small amounts of shear may have been pervasive within the basin as well. Vertical extension fractures, striking N-S to NNE-SSW with local variations (parallel to the Laramide maximum horizontal compressive stress), formed in both Mesaverde and Dakota sandstones under this system, and are found in outcrops and in the subsurface of the San Juan Basin. The immature Mesaverde sandstones typically contain relatively long, irregular, vertical extension fractures, whereas the quartzitic Dakota sandstones contain more numerous, shorter, sub-parallel, closely spaced, extension fractures. Conjugate shear planes in several orientations are also present locally in the Dakota strata.

  9. DAKOTA Design Analysis Kit for Optimization and Terascale

    Energy Science and Technology Software Center (OSTI)

    2010-02-24

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes (computational models) and iterative analysis methods. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and analysis of computational models on high performance computers.A user provides a set of DAKOTA commands in an input file andmore » launches DAKOTA. DAKOTA invokes instances of the computational models, collects their results, and performs systems analyses. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, polynomial chaos, stochastic collocation, and epistemic methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. Services for parallel computing, simulation interfacing, approximation modeling, fault tolerance, restart, and graphics are also included.« less

  10. file://C:\\Documents%20and%20Settings\\ICR\\My%20Documents\\Coal...

    U.S. Energy Information Administration (EIA) Indexed Site

    413 5,044 Mississippi 2,906 - 2,906 Missouri 203 - 203 Montana 37,050 180 37,230 New Mexico 27,555 - 27,555 North Dakota 31,011 - 31,011 Ohio 20,919 68 20,987 Oklahoma 1,394 -...

  11. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ...

  12. EIA - Coal Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal distribution by origin State, destination State, consumer category, method of transportation; foreign coal distribution by major coal-exporting state and method of transportation; and domestic and foreign coal distribution by origin state. Year Domestic and foreign distribution of U.S. coal by State of origin

  13. City of McLaughlin, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    McLaughlin, South Dakota (Utility Company) Jump to: navigation, search Name: City of McLaughlin Place: South Dakota Phone Number: (605) 823-4428 Outage Hotline: (605) 823-4428...

  14. Energy Department and South Dakota Tribal Leaders Explore Ways to Lower

    Office of Environmental Management (EM)

    Energy Costs | Department of Energy South Dakota Tribal Leaders Explore Ways to Lower Energy Costs Energy Department and South Dakota Tribal Leaders Explore Ways to Lower Energy Costs June 10, 2014 - 3:08pm Addthis The Oahe Dam in South Dakota (pictured here) is one of the federal hydropower resources operated by the Western Area Power Administration. As part of a recent tribal leader dialogue, officials from the Energy Department, the Western Area Power Administration and South Dakota

  15. Table 9. Major U.S. Coal Mines, 2013 U.S. Energy Information Administration | Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    Major U.S. Coal Mines, 2013 U.S. Energy Information Administration | Annual Coal Report 2013 Table 9. Major U.S. Coal Mines, 2013 U.S. Energy Information Administration | Annual Coal Report 2013 Rank Mine Name / Operating Company Mine Type State Production (short tons) 1 North Antelope Rochelle Mine / Peabody Powder River Mining Ll Surface Wyoming 111,005,549 2 Black Thunder / Thunder Basin Coal Company LLC Surface Wyoming 100,687,876 3 Cordero Mine / Cordero Mining LLC Surface Wyoming

  16. South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    4,717,288 MWh Coal Power 3,190,913 MWh Gas Power 122,133 MWh Petroleum Power 10,089 MWh Nuclear Power 0 MWh Other 31,318 MWh Total Energy Production 8,071,741 MWh Percent of...

  17. South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Plant Fuel Consumption South Dakota Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas

  18. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  19. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  20. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  1. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  2. Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton

    SciTech Connect (OSTI)

    David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

    2007-03-31

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury being sorbed onto the CCB when exposed to ambient-temperature air. The environmental performance of the mercury captured on AC used as a sorbent for mercury emission control technologies indicated that current CCB management options will continue to be sufficiently protective of the environment, with the potential exception of exposure to elevated temperatures. The environmental performance of the other ATEs investigated indicated that current management options will be appropriate to the CCBs produced using AC in mercury emission controls.

  3. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  4. Coal liquefaction and hydrogenation

    DOE Patents [OSTI]

    Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  5. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  6. By Coal Destination State

    Gasoline and Diesel Fuel Update (EIA)

    Destination State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal

  7. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    Origin State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal

  8. Coal and Coal-Biomass to Liquids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Coal-Biomass to Liquids Turning coal into liquid fuels like gasoline, diesel and jet fuel, with biomass to reduce carbon dioxide emissions, is the main goal of the Coal and Coal-Biomass to Liquids program. The program also aims to reduce the cost of these low-emission fuels, and will take advantage of carbon capture and sequestration technologies to further reduce greenhouse gas emissions. Other Coal and Coal-Biomass to Liquids (C&CBTL) Program Activities: The C&CBTL Program

  9. EA-1902: Northern Wind Project, Roberts County, South Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EA that evaluates the potential environmental impacts of the proposed Northern Wind Project in Summit, Roberts County, South Dakota. Additional information is available on the project webpage, http://www.wapa.gov/ugp/Environment/NorthernWindFarm.htm.

  10. EIS-0418: PrairieWinds Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve the interconnection request from PrairieWinds for their South Dakota PrairieWinds Project, a 151.5-megawatt (MW) nameplate capacity wind powered generation facility, including 101 General Electric 1.5-MW wind turbine generators, electrical collector lines, collector substation, transmission line, communications system, and wind turbine service access roads.

  11. Coal Research FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Research FAQs faq-header-big.jpg COAL RESEARCH Q: Why is coal research needed? A: The energy resources that currently fuel the Nation's economy are approximately 82 percent fossil-based, with coal playing a significant role. All segments of U.S. society rely on America's existing multibillion-dollar investment in its highly reliable and affordable coal-based energy infrastructure. In the power-generation industry, coal is affordably producing approximately 40 percent of U.S. electricity.

  12. Regional trends in the take-up of clean coal technologies

    SciTech Connect (OSTI)

    Wootten, J.M.

    1997-12-31

    Using surveys of the electricity industry taken in major OECD coal producing/coal consuming regions of North America, Europe, Southern Africa, and Asia/Pacific, this paper reports on the attitudes of power plant operators and developers toward clean coal technologies, the barriers to their use and the policies and measures that might be implemented, if a country or region desired to encourage greater use of clean coal technologies.

  13. NETL: Coal Gasification Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gasification Systems Coal Gasification is a process that can turn coal into clean power, chemicals, hydrogen and transportation fuels, and can be used to capture the carbon from ...

  14. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  15. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  16. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  17. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  18. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  19. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  20. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  1. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  2. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  3. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  4. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  5. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables...

  6. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  7. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  8. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  9. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  10. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  11. Table 38. Coal Stocks at Coke Plants by Census Division

    Gasoline and Diesel Fuel Update (EIA)

    Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 38. Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Census Division June 30, 2014 March 31, 2014 June 30, 2013 Percent Change (June 30) 2014 versus 2013 Middle Atlantic 547 544 857 -36.2 East North Central 1,130 963 1,313 -13.9 South Atlantic

  12. Coal liquefaction

    DOE Patents [OSTI]

    Schindler, Harvey D.

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  13. Natural mercury isotope variation in coal deposits and organic soils

    SciTech Connect (OSTI)

    Abir, Biswas; Joel D. Blum; Bridget A. Bergquist; Gerald J. Keeler; Zhouqing Xie

    2008-11-15

    There is a need to distinguish among sources of Hg to the atmosphere in order to more fully understand global Hg pollution. In this study we investigate whether coal deposits within the United States, China, and Russia-Kazakhstan, which are three of the five greatest coal-producing regions, have diagnostic Hg isotopic fingerprints that can be used to discriminate among Hg sources. We also investigate the Hg isotopic composition of modern organic soil horizons developed in areas distant from point sources of Hg in North America. Mercury stored in coal deposits displays a wide range of both mass dependent fractionation and mass independent fractionation. {delta}{sup 202}Hg varies in coals by 3{per_thousand} and {Delta}{sup 201}Hg varies by 0.9{per_thousand}. Combining these two Hg isotope signals results in what may be a unique isotopic 'fingerprint' for many coal deposits. Mass independent fractionation of mercury has been demonstrated to occur during photochemical reactions of mercury. This suggests that Hg found in most coal deposits was subjected to photochemical reduction near the Earth's surface prior to deposition. The similarity in MDF and MIF of modern organic soils and coals from North America suggests that Hg deposition from coal may have imprinted an isotopic signature on soils. This research offers a new tool for characterizing mercury inputs from natural and anthropogenic sources to the atmosphere and provides new insights into the geochemistry of mercury in coal and soils. 35 refs., 2 figs., 1 tab.

  14. EECBG Success Story: Hybrid Solar-Wind Generates Savings for South Dakota

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City | Department of Energy Hybrid Solar-Wind Generates Savings for South Dakota City EECBG Success Story: Hybrid Solar-Wind Generates Savings for South Dakota City July 19, 2010 - 4:05pm Addthis The small town of Colton, South Dakota is using an Energy Efficiency and Conservation Block Grant (EECBG) to implement a comprehensive Energy Independence Community (EIC) Initiative that will reduce the town's natural gas and electric bills by an estimated $2,700. Learn more. Addthis Related

  15. Microsoft PowerPoint - DAKOTA_Overview_Aug2010.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DAKOTA Capability Overview p y CASL/VRI Workshop, August 26, 2010 Brian Adams, DAKOTA Project Lead Optimization and Uncertainty Quantification Optimization and Uncertainty Quantification * DAKOTA capabilities enabling V&V / UQ * Overview, key capabilities * Four categories of methods: SA, UQ, optimization, calibration Four categories of methods: SA, UQ, optimization, calibration * Advanced capabilities * Usability vision: JAGUAR GUI, library interface Sandia is a multiprogram laboratory

  16. EA-1979: Summit Wind Farm; Summit, South Dakota | Department of Energy

    Office of Environmental Management (EM)

    9: Summit Wind Farm; Summit, South Dakota EA-1979: Summit Wind Farm; Summit, South Dakota Summary Western Area Power Administration (Western) prepared an EA that analyzes the potential environmental impacts of the proposed Summit Wind Farm, a proposed 99-MW wind farm south of Summit, South Dakota. The proposed wind farm would interconnect to Western's existing transmission line within the footprint of the wind farm. Additional information is available at

  17. Coal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy

  18. Coal data: A reference

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  19. DAKOTA reliability methods applied to RAVEN/RELAP-7.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Mandelli, Diego; Rabiti, Cristian; Alfonsi, Andrea

    2013-09-01

    This report summarizes the result of a NEAMS project focused on the use of reliability methods within the RAVEN and RELAP-7 software framework for assessing failure probabilities as part of probabilistic risk assessment for nuclear power plants. RAVEN is a software tool under development at the Idaho National Laboratory that acts as the control logic driver and post-processing tool for the newly developed Thermal-Hydraulic code RELAP-7. Dakota is a software tool developed at Sandia National Laboratories containing optimization, sensitivity analysis, and uncertainty quantification algorithms. Reliability methods are algorithms which transform the uncertainty problem to an optimization problem to solve for the failure probability, given uncertainty on problem inputs and a failure threshold on an output response. The goal of this work is to demonstrate the use of reliability methods in Dakota with RAVEN/RELAP-7. These capabilities are demonstrated on a demonstration of a Station Blackout analysis of a simplified Pressurized Water Reactor (PWR).

  20. Experiences using DAKOTA stochastic expansion methods in computational simulations.

    SciTech Connect (OSTI)

    Templeton, Jeremy Alan; Ruthruff, Joseph R.

    2012-01-01

    Uncertainty quantification (UQ) methods bring rigorous statistical connections to the analysis of computational and experiment data, and provide a basis for probabilistically assessing margins associated with safety and reliability. The DAKOTA toolkit developed at Sandia National Laboratories implements a number of UQ methods, which are being increasingly adopted by modeling and simulation teams to facilitate these analyses. This report disseminates results as to the performance of DAKOTA's stochastic expansion methods for UQ on a representative application. Our results provide a number of insights that may be of interest to future users of these methods, including the behavior of the methods in estimating responses at varying probability levels, and the expansion levels for the methodologies that may be needed to achieve convergence.

  1. North Carolina - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina North Carolina

  2. North Carolina - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina North Carolina

  3. North Carolina - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina North Carolina

  4. Underground Coal Thermal Treatment Task 6 Topical Report, Utah Clean Coal Program

    SciTech Connect (OSTI)

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: • Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. • Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. • CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  5. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  6. Coal feed lock

    DOE Patents [OSTI]

    Pinkel, I. Irving (Fairview Park, OH)

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  7. EIS-0461: Hyde County Wind Energy Center Project, Hyde and Buffalo Counties, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS will evaluate the environmental impacts of interconnecting the proposed 150 megawatt Hyde County Wind Energy Center Project, in Hyde County, South Dakota, with DOE’s Western Area Power Administration’s existing Fort Thompson Substation in Buffalo County, South Dakota.

  8. Pelletization of fine coals

    SciTech Connect (OSTI)

    Sastry, K.V.S.

    1991-09-01

    The present research project attempts to provide a basis to determine the pelletizability of fine coals, to ascertain the role of additives and binders and to establish a basis for binder selection. Currently, there are no established techniques for determining the quality of coal pellets. Our research is intended to develop a series of tests on coal pellets to measure their storage characteristics, transportability, ease of gasification and rate of combustion. Information developed from this research should be valuable for making knowledgeable decisions for on-time plant design, occasional binder selection and frequent process control during the pelletization of coal fines. During the last quarter, we continued the batch pelletization studies on Upper Freeport coal. The results as presented in that last quarterly report (April 1991) indicated that the surface conditions on the coal particle influenced the pelletizing growth rates. For example, a fresh (run of mine) sample of coal will display different pelletizing growth kinetics than a weathered sample of the same coal. Since coal is a heterogeneous material, the oxidized product of coal is equally variable. We found it to be logistically difficult to consistently produce large quantities of artificially oxidized coal for experimental purposes and as such we have used a naturally weathered coal. We have plans to oxidize coals under controlled oxidizing conditions and be able to establish their pelletizing behavior. The next phase of experiments were directed to study the effect of surface modification, introduced during the coal cleaning steps, on pelletizing kinetics. Accordingly, we initiated studies with two additives commonly used during the flotation of coal: dextrin (coal depressant) and dodecane (coal collector).

  9. International perspectives on coal preparation

    SciTech Connect (OSTI)

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  10. User guidelines and best practices for CASL VUQ analysis using Dakota.

    SciTech Connect (OSTI)

    Adams, Brian M.; Swiler, Laura Painton; Hooper, Russell; Lewis, Allison; McMahan, Jerry A.,; Smith, Ralph C.; Williams, Brian J.

    2014-03-01

    Sandia's Dakota software (available at http://dakota.sandia.gov) supports science and engineering transformation through advanced exploration of simulations. Specifically it manages and analyzes ensembles of simulations to provide broader and deeper perspective for analysts and decision makers. This enables them to enhance understanding of risk, improve products, and assess simulation credibility. This manual offers Consortium for Advanced Simulation of Light Water Reactors (LWRs) (CASL) partners a guide to conducting Dakota-based VUQ studies for CASL problems. It motivates various classes of Dakota methods and includes examples of their use on representative application problems. On reading, a CASL analyst should understand why and how to apply Dakota to a simulation problem. This SAND report constitutes the product of CASL milestone L3:VUQ.V&V.P8.01 and is also being released as a CASL unlimited release report with number CASL-U-2014-0038-000.

  11. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

    1990-01-01

    This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

  12. Indonesian coal mining

    SciTech Connect (OSTI)

    2008-11-15

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  13. Coal Production 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  14. Hydrogen Production: Coal Gasification

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically through the process of coal gasification with carbon capture, utilization, and storage.

  15. Annual Coal Report

    Reports and Publications (EIA)

    2016-01-01

    Provides information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience, including Congress, federal and state agencies, the coal industry, and the general public.

  16. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  17. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  18. Coal gasification apparatus

    DOE Patents [OSTI]

    Nagy, Charles K. (Monaca, PA)

    1982-01-01

    Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

  19. Method for fluorinating coal

    DOE Patents [OSTI]

    Huston, John L. (Skokie, IL); Scott, Robert G. (Westmont, IL); Studier, Martin H. (Downers Grove, IL)

    1978-01-01

    Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

  20. Field study of disposed solid wastes from advanced coal processes. Annual technical progress report, October 1991--September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute`s fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison`s limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United`s mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  1. RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

    SciTech Connect (OSTI)

    Gregory J. McCarthy; Dean G. Grier

    2001-01-01

    Prior to the initiation of this study, understanding of the long-term behavior of environmentally-exposed Coal Combustion By-Products (CCBs) was lacking in (among others) two primary areas addressed in this work. First, no method had been successfully applied to achieve full quantitative analysis of the partitioning of chemical constituents into reactive or passive crystalline or noncrystalline compounds. Rather, only semi-quantitative methods were available, with large associated errors. Second, our understanding of the long-term behavior of various CCBs in contact with the natural environment was based on a relatively limited set of study materials. This study addressed these areas with two objectives, producing (1) a set of protocols for fully quantitative phase analysis using the Rietveld Quantitative X-ray Diffraction (RQXRD) method and (2) greater understanding of the hydrologic and geochemical nature of the long-term behavior of disposed and utilized CCBs. The RQXRD technique was initially tested using (1) mixtures of National Institute of Standards and Technology (NIST) crystalline standards, and (2) mixtures of synthetic reagents simulating various CCBs, to determine accuracy and precision of the method, and to determine the most favorable protocols to follow in order to efficiently quantify multi-phase mixtures. Four sets of borehole samples of disposed or utilized CCBs were retrieved and analyzed by RQXRD according to the protocols developed under the first objective. The first set of samples, from a Class F ash settling pond in Kentucky disposed for up to 20 years, showed little mineralogical alteration, as expected. The second set of samples, from an embankment in Indiana containing a mixture of chain-grate (stoker) furnace ash and fluidized bed combustion (FBC) residues, showed formation of the mineral thaumasite, as observed in previously studied exposed FBC materials. Two high-calcium CCBs studied, including a dry-process flue gas desulfurization (FGD) by-product disposed in the Midwest, and a mixture of Class C fly ash and wet process FGD by-product codisposed in North Dakota, appeared relatively unchanged mineralogically over the up to 5 and 17 years of emplacement, respectively. Each of these two materials contained mineralogies consistent with short-term hydration products of their respective starting (dry) materials. The hydration product ettringite persisted throughout the duration of emplacement at each site, and the diagenetic ash alteration product thaumasite did not form at either site. Explanations for the absence of thaumasite in these two sites include a lack of significant carbonate, sulfate, and alkalinity sources in the case of the North Dakota site, and a lack of sulfate, alkalinity, and sufficient moisture in the Midwest site. Potential for future thaumasite formation in these materials may exist if placed in contact with cold, wet materials containing the missing components listed above. In the presence of the sulfite scrubber mineral hannebachite, the ettringites formed had crystallographic unit cell dimensions smaller than those of pure sulfate ettringite, suggesting either incorporation of sulfite ions into the ettringite structure, or incorporation of silicon and carbonate ions, forming a solid solution towards thaumasite.

  2. Coal production 1989

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  3. Annual Coal Distribution Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Coal Distribution Report Release Date: April 16, 2015 | Next Release Date: March 2016 | full report | Revision/Correction Revision to the Annual Coal Distribution Report 2013 data The 2013 Annual Coal Distribution Report has been republished to include final 2013 electric power sector data as well as domestic and foreign distribution data. Contact:

  4. Coal Combustion Products

    Broader source: Energy.gov [DOE]

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge.

  5. Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois Basin Forest City Basin Northern Appalachian Basin Powder River Basin Uinta Basin Cherokee Platform San Juan Basin C e n t r a l A p p a l a c h i a n B a s i n Michigan Basin Greater Green River Basin Black Warrior Basin North Central Coal Region Arkoma Basin Denver Basin Southwestern Coal Region Piceance Basin Big Horn Basin Wind River Basin Raton Basin Black Mesa Basin Terlingua Field Kaiparowits Basin Deep River Basin SW Colorado

  6. South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vehicle Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 2 5 7 5 4 4 10 8 10 2000's 10 13 13 16 18 0 W 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered

  7. South Dakota Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) South Dakota Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 1990's 0 0 24 0 0 0 0 0 44 83 2000's 70 89 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Additions of Liquefied Natural Gas

  8. South Dakota Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) South Dakota Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 1990's 0 15 13 0 0 0 143 0 53 74 2000's 66 85 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Withdrawals of Liquefied

  9. South Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 61 76 93 70 125 123 112 1990's 158 393 451 452 437 404 424 911 848 864 2000's 1,003 538 495 553 562 545 508 573 545 568 2010's 562 594 866 916 827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  10. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  11. South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 86 4 0 1980's 0 0 0 0 1990's 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 30 25 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous

  12. South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 2 5 7 5 4 4 10 8 10 2000's 10 13 13 16 18 0 W 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered

  13. Coal recovery process

    DOE Patents [OSTI]

    Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

    1992-01-01

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  14. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.55,1.49,1.34,1.26,1.14,1.1,0.98,0.88,0.82,0.77,0.74,0.74,0.74,0.72,0.73,0.76,0.78,0.74,0.73,0.7,0.71,0.72,0.71,0.69 "Average heat value (Btu per

  15. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2,2.19,2.09,1.95,1.76,1.74,1.56,1.51,1.42,1.39,1.34,1.3,1.03,0.99,0.94,0.93,0.92,0.94,1.03,1.08,1.1,1.13,1.13,1.15 "Average heat value (Btu per

  16. Flexible Coal: Evolution from Baseload to Peaking Plant (Brochure), 21st Century Power Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating the transformation of power systems Flexible Coal Evolution from Baseload to Peaking Plant The experience cited in this paper is from a generating station with multiple units located in North America referred to here as the CGS plant. For commercial reasons, the station has not been identified. Jaquelin Cochran, a Debra Lew, a Nikhil Kumar b a National Renewable Energy Laboratory, b Intertek Summary for Policymakers: Key Findings from a North American Coal Generating Station (CGS)

  17. Dakota uncertainty quantification methods applied to the NEK-5000 SAHEX model.

    SciTech Connect (OSTI)

    Weirs, V. Gregory

    2014-03-01

    This report summarizes the results of a NEAMS project focused on the use of uncertainty and sensitivity analysis methods within the NEK-5000 and Dakota software framework for assessing failure probabilities as part of probabilistic risk assessment. NEK-5000 is a software tool under development at Argonne National Laboratory to perform computational fluid dynamics calculations for applications such as thermohydraulics of nuclear reactor cores. Dakota is a software tool developed at Sandia National Laboratories containing optimization, sensitivity analysis, and uncertainty quantification algorithms. The goal of this work is to demonstrate the use of uncertainty quantification methods in Dakota with NEK-5000.

  18. Hybrid Solar-Wind Generates Savings for South Dakota City | Department of

    Energy Savers [EERE]

    Energy Hybrid Solar-Wind Generates Savings for South Dakota City Hybrid Solar-Wind Generates Savings for South Dakota City July 19, 2010 - 4:05pm Addthis What does this project do? The projects will reduce the city's natural gas and electric bills by an estimated $2,700. An array of six solar panels, similar to the ones shown, will be installed at Colton, S.D.'s city hall. | Photo courtesy of Colton. The city of Colton, South Dakota. is a small, agriculturally-based community. So small that

  19. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  20. EA-1206: Remedial Action on the Belfield and Bowman Sites, North Dakota

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal that U.S. Department of Energy's Belfield and Bowman sites would be left as they are, with the contaminated soils and other contaminated...