Powered by Deep Web Technologies
Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Coal quality and estimated coal resources in the proposed Colville Mining District, central North Slope, Alaska  

SciTech Connect (OSTI)

The proposed Colville Mining District (CMD) encompasses 27,340 mi{sup 2} (70,800 km{sup 2}) in the central part of the North Slope. Known coal deposits within the proposed district range from Mississippian to Tertiary in age. Available information indicates that neither Mississippian and Tertiary coals in the CMD constitute a significant resource because they are excessively deep, thin, or high in ash content; however, considerable amount of low-sulfur Cretaceous coal is present. The paper briefly describes the geology and quality of these coal reserves. Difficult conditions will restrict mining of these coals in the near future.

Stricker, G.D. [Geological Survey, Denver, CO (United States); Clough, J.G. [Alaska Department of Natural Resources, Fairbanks, AK (United States). Division of Geological and Geophysical Surveys

1994-12-31T23:59:59.000Z

2

DELIVERABLE Central North Sea  

E-Print Network [OSTI]

, as that has the same learning, but for more cost and more scale-up risk. The Central North Sea can produce into a guaranteed network for transportation and storage of captured CO2. Recent studies examining the levelised

Haszeldine, Stuart

3

Coal Severance Tax (North Dakota)  

Broader source: Energy.gov [DOE]

The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

4

Coal Mining Reclamation (North Dakota)  

Broader source: Energy.gov [DOE]

The Reclamation Division of the Public Service Commission is tasked with administering the regulation of surface coal mining and reclamation. Specific regulations can be found in article 69-05.2 of...

5

North America Europe Central &  

E-Print Network [OSTI]

Per capita consumption Population (100 millions) 0 5 10 15 20 25 30 35 North America Western Europe Per capita consumption Population (100 millions) 0 5 10 15 20 25 30 35 #12;2 % of habitat alteration from% of habitat alteration from per capita consumptionper capita consumption #s above bars are m2 per

Johnson, Matthew

6

COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA  

E-Print Network [OSTI]

Chapter WQ COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

7

West Central North East Area of Tucson  

E-Print Network [OSTI]

0 500 1000 1500 2000 2500 3000 West Central North East Area of Tucson #Individuals Anna Broad-billed Costa Rufous Black-chinned 0 500 1000 1500 2000 2500 3000 West Central North East Area of Tucson not be conflicting, and urban areas may actually provide valuable surrogates for degraded habitats. Our knowledge

Hall, Sharon J.

8

Coal Conversion Facility Privilege Tax Exemptions (North Dakota)  

Broader source: Energy.gov [DOE]

Coal Conversion Facility Privilege Tax Exemptions are granted under a variety of conditions through the North Dakota Tax Department. Privilege tax, which is in lieu of property taxes on the...

9

North Central Texas Alternative Fuel and Advanced Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

North Central Texas Alternative Fuel and Advanced Technology Investments North Central Texas Alternative Fuel and Advanced Technology Investments 2011 DOE Hydrogen and Fuel Cells...

10

North Central Texas Alternative Fuel and Advanced Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. tiarravt057reese2010p.pdf More Documents & Publications North Central Texas Alternative Fuel and Advanced Technology Investments North Central Texas Alternative Fuel and...

11

North Central Texas Alternative Fuel and Advanced Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

North Central Texas Alternative Fuel and Advanced Technology Investments North Central Texas Alternative Fuel and Advanced Technology Investments 2012 DOE Hydrogen and Fuel Cells...

12

The relationship between coal quality and coal resource parameters of Powder River and Williston Basin coal, Wyoming, Montana, and North Dakota  

SciTech Connect (OSTI)

Clean, compliant coal from mines in the Northern Rocky Mountain and Great Plains region is utilized as fuel for coal-fired power plants in 26 states. More than 30 percent of the nation`s 1997 production was from Montana, North Dakota, and Wyoming. Production of clean, compliant coal from the region is estimated to increase to 415 million short tons by the year 2015. Studies in this region indicate a relationship between percent sulfur and ash and pounds of SO{sub 2} per million Btu and the resource parameters of coal thickness and overburden. The trends that the authors have observed indicate that both coal quality and the thickness of the coal and associated rocks are controlled by paleoenvironment and depositional setting.

Ellis, M.S.; Stricker, G.D.; Gunther, G.; Ochs, A.M.; Flores, R.M.

1998-12-31T23:59:59.000Z

13

North Central Elec Coop, Inc (North Dakota) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) | OpenIncNobleNorris ElectricNorthP

14

Water Management Plans for Surface Coal Mining Operations (North Dakota)  

Broader source: Energy.gov [DOE]

A water management plan is required for all surface coal mining operations. This plan must be submitted to the State Engineer of the State Water Commission at the same time a surface mining permit...

15

Wind energy resource atlas. Volume 2. The North Central Region  

SciTech Connect (OSTI)

The North Central atlas assimilates six collections of wind resource data: one for the region and one for each of the five states that compose the North Central region (Iowa, Minnesota, Nebraska, North Dakota, and South Dakota). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and that data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and international wind speed and power, and hourly average wind speed for each season. Other graphs present speed direction and duration frequencies of the wind at these locations.

Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-02-01T23:59:59.000Z

16

Geology of north-central Burleson County, Texas  

E-Print Network [OSTI]

the lignitic beus (' ueen Cxty). Kennedy compared the xxieasured sections oi tne Marine bocene xn Robertson County to the marin ~ be:"s at V. oseley's ferry (, "tone City-Crockett) and to Collier' s ferry (, eches forn. ation) six ~x'iles north. Yhree years... clay zones, and contains some thin stringers of brown to gray-black, silty, lignitic shale. At the few small exposures in north-central Burleson County, lignite is practically non-existent. However, considerable deposits were observed at Six Mile...

Kelly, Thomas Eugene

1955-01-01T23:59:59.000Z

17

Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities  

SciTech Connect (OSTI)

The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

Porter, K.; Rogers, J.

2009-12-01T23:59:59.000Z

18

Mining conditions and deposition in the Amburgy (Westphalian B) coal, Breathitt Group, central Appalachian basin  

SciTech Connect (OSTI)

Carbonate concretions called clay balls are rare in the Central Appalachian Basin, but were found in the Amburgy coal overlain by the Kendrick Shale Member. In the study area, the Amburgy coal is 0.7 to 0.9 meters thick, moderate to high in sulfur content, moderate to high in ash yield, and mostly bright clarain, except at the top near the area of coal balls, where durain of limited extent occurs. The coal is co-dominated by lycopod and cordaites; tree spores, with subordinate Calamites. The local durain layer is dominated by Densosporites, produced by the shrubby lycopod Ompbalophloios. Coal balls were encountered where the durain is immediately overlain by a coquinoid hash of broken and whole marine fossils, along a trend of coal thinning. The coal balls contain permineralized cordaites, lycopods, calamites, and ferns. The Amburgy coal accumulated as a succession of planar mires. Local splits in the seam are common, indicating contemporaneous clastic influx. The abundance of Cordaites may indicate brackish mire waters related to a coastal position and initial eustatic rise of the marginal Kendrick seas. Near the end of the Amburgy mires, the high ash-Omphalopbloios association is interpreted as a local area that was being drowned by the Kendrick transgression. Ravinement within this local embayment, rapid inundation by marine waters, and concentration of carbonate-bearing waters within transgressive scours may have contributed to the formation of coal balls and pyritic concretions in the upper part of the coal bed.

Greb, S.F.; Eble, C.F. [Kentucky Geological Survey, Lexington, KY (United States); Hower, J.C. [Center for Applied Research, Lexington, KY (United States); Phillips, T.L. [Univ. of illinois, Urbana, IL (United States)

1996-09-01T23:59:59.000Z

19

North Central Texas Regional Public Transportation Coordination Plan  

E-Print Network [OSTI]

...............................................................................................................................34 APPENDICES Appendix A: Major Themes and Stakeholder Responses Appendix B: Data Collection Appendix C: North Central Texas Coordination Best Practices Appendix D: Task Force Membership Roster Appendix E: Report on Barriers and Constraints...-to-curb demand- responsive service known as DART On-Call. In addition, DART?s Paratransit Services provides curb-to-curb demand-responsive transportation to people with disabilities who are unable to use regular fixed-route buses or trains. Eligible...

North Central Texas Council of Governments

2006-12-21T23:59:59.000Z

20

The Key Coal Producers ONLINE SUPPORTING MATERIALS to  

E-Print Network [OSTI]

The Key Coal Producers ONLINE SUPPORTING MATERIALS to A Global Coal Production Forecast with Multi's most important coal-producing area is North-Central China. The provinces of Inner Mongolia, Ningxia, Shaanxi and Shanxi together accounted for 83 percent of China's proven coal reserves in 2000, and Shanxi

Patzek, Tadeusz W.

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Reactive trace metals in the stratified central North Pacific  

SciTech Connect (OSTI)

Vertical concentration profiles of the dissolved and suspended particulate phases were determined for a suite of reactive trace metals, Al, Fe, Mn, Zn, and Cd, during summertime at a station in the center of the North Pacific gyre. During summer the euphotic zone becomes stratified, forming a shallow (0-25 m), oligotrophic, mixed layer overlying a subsurface (25-140 m), strongly-stratified region. The physical, biological, and chemical structure within the euphotic zone during this period enhanced the effect of atmospheric inputs of Al, Fe, and Mn on mixed layer concentrations. For example, the concentration of dissolved Fe in the surface mixed layer was eighteen times that observed at a depth of 100 m. The observed aeolian signature of these metals matched that predicted from estimates of atmospheric input during the period between the onset of stratification and sampling. The distributions of suspended particulate Al, Fe, and Mn all exhibited minima in the euphotic zone and increased with depth into the main thermocline. Particulate Al and Fe were then uniform with depth below 1000 m before increasing in the near bottom nepheloid layer. Average particulate phase concentrations in intermediate and deep waters of the central North Pacific were 1.0, 0.31, and 0.055 nmol[center dot]kg[sup [minus]1] for Al, Fe, and Mn, respectively. The distribution of particulate Cd exhibited a maximum within the subsurface euphotic zone. Particulate zinc also exhibited a surface maximum, albeit a smaller one. Concentrations of particulate Zn and Cd in intermediate and deep waters were 17 and 0.2 pmol[center dot]kg[sup [minus]1]. Substantial interbasin differences in particulate trace metals occur. Concentrations of suspended particulate Al, Fe, and Mn were three to four times lower in the central North Pacific than recently reported for the central North Atlantic gyre, consistent with differences in atmospheric input to these two regions.

Bruland, K.W. (Univ. of California, Santa Cruz, CA (United States)); Orians, K.J. (Univ. of British Columbia, Vancouver (Canada)); Cowen, J.P. (Univ. of Hawaii, Manoa, HI (United States))

1994-08-01T23:59:59.000Z

22

Characterization of selected Ohio coals to predict their conversion behavior relative to 104 North American Coals. [Factors correlating with liquefaction behavior  

SciTech Connect (OSTI)

Twenty-six coal samples from Ohio were collected as washed and seam samples, and lithobodies within the seams. Characterization of these samples included determination of % maceral, % anti R/sub max/, LTA, chlorine content and proximate/ultimate and qualitative mineral analyses. These data were compared to data from a similar project by Yarzab, R.F., et al., 1980 completed at Pennsylvania State University using tetralin as the hydrogen donor solvent. The characteristics of these coals were correlated with liquefaction conversion and other data accrued on 104 North American coals by statistical analyses. Utilizing percent carbon, sulfur, volatile matter, reflectance, vitrinite and total reactive macerals, Q-mode cluster analysis demonstrated that Ohio coals are more similar to the coals of the Interior province than to those of the Appalachian province. Linear multiple regression analysis for the 104 North American coals provided a prediction equation for conversion (R = .96). The predicted conversion values for the samples range from 58.8 to 79.6%, with the Lower Kittanning (No. 5) and the Middle Kittanning (No. 6) coal seams showing the highest predicted percent conversion (respectively, 73.4 and 72.2%). The moderately low FSI values for the No. 5 and No. 6 coals (respectively, 2.5 and 3) and their moderately high alkaline earth content (respectively, 0.69 and 0.74%) suggest that these coals possess the best overall properties for conversion. Stepwise regression has indicated that the most important coal characteristics affecting conversion are, in decreasing order of importance: % volatile matter, % vitrinite and % total sulfur. Conversion processes can be expected to produce higher yields with Ohio coals due to the presence of such mineral catalysts as pyrite and kaolinite. It is believed that the presence of these disposable catalysts increases the marketability of Ohio coals.

Whitacre, T. P.; Hunt, T. J.; Kneller, W. A.

1982-02-01T23:59:59.000Z

23

New 90,000 PPH Coal Fired Boiler Plant at Liggett & Myers Tobacco Company, Durham North Carolina  

E-Print Network [OSTI]

Liggett & Myers Tobacco Company in Durham, North Carolina is installing a future cogeneration, coal fired boiler system designed and built by Energy Systems (ESI) of Chattanooga, Tennessee. The complete boiler plant is comprised of a 90,000 pph Dorr...

Kaskey, G. T.

1984-01-01T23:59:59.000Z

24

TOXIC SUBSTANCES FROM COAL COMBUSTION--A COMPREHENSIVE ASSESSMENT, PHASE II: ELEMENT MODES OF OCCURRENCE FOR THE OHIO 5/6/7, WYODAK AND NORTH DAKOTA COAL SAMPLES  

SciTech Connect (OSTI)

This study reports on the second phase (Phase II) of USGS research activities in support of DOE contract DE-AC22-95PC95101 ''Toxic Substances From Coal Combustion--A Comprehensive Assessment'', funded under DOE Interagency Agreement DE-AI22-95PC95145. The purpose of the study was to provide a quantitative and semi-quantitative characterization of the modes of occurrence of trace elements in coal samples investigated under Phase II, including (1) Ohio 5/6/7, an Ohio bituminous coal sample blended from the No.5, No.6, and No.7 beds; (2) North Dakota, a lignite sample from the Falkirk Mine, Underwood, ND, and (3) Wyodak, a sub-bituminous coal sample from the Cordero Mine, Gillette, WY. Samples from these coal beds were selected for their range in rank and commercial applicability. Results of this research provide basic information on the distribution of elements in Phase II coal samples, information needed for development of a commercial predictive model for trace-element behavior during coal combustion.

Allan Kolker; Stanley J. Mroczkowski; Curtis A. Palmer; Kristen O. Dennen; Robert B. Finkelman; John H. Bullock Jr.

2002-05-30T23:59:59.000Z

25

Effects of climate, tectonism, and variations in sea level on formation of Cretaceous coals of North America  

SciTech Connect (OSTI)

Extensive deposits of Cretaceous coal-bearing strata are present in western North America, extending from the North Slope of Alaska to northern Mexico. Most of the Cretaceous sediments were derived from the active Cordillera region and were deposited in foreland basins on the western margin of the Western Interior seaway. A multidisciplinary study is in progress to document and attempt to explain the temporal and spatial distribution of the Cretaceous coals. The study examines the effects of variations of paleoclimate, tectonics, and relative sea level on a continentwide scale. In addition, coal quality is related to the regional depositional settings. Many aspects of coal quality (for example, maceral composition, ash content, sulfur content) are determined by the flora and hydrology of the mire in which the original peat accumulated. The existence of Cretaceous coals throughout the length of the Western Cordillera provides a unique opportunity to determine variations in mire type with climate over a range of 50/degrees/ of paleolatitude, and to examine the effects of these variations on coal quality. The relationships between coal beds and associated clastic facies should also be expected to change with varying mire types. Recent developments in their understanding of foreland basin evolution, Cretaceous sea level changes, and peat-forming environments make this an optimal time to begin a regional synthesis of North America's Cretaceous coals. Results of this study should aid the development of better predictive models of coal quality and seam thickness. These models will take into account the effects of major controls on sedimentation (climate, tectonics, sea level changes) rather than just the local depositional environment.

McCabe, P.J.; Brownfield, M.E.; Hansen, D.E.; Hettinger, R.D.; Kirschbaum, M.A.; Sanchez, D.

1988-07-01T23:59:59.000Z

26

Cambrian-Ordovician of north-central Ohio  

SciTech Connect (OSTI)

Recent exploration activity in Richland and Ashland Counties, together with an interest in the correlation problems related to the Trenton-Black River and Black River-Gull River boundaries, prompted this subsurface study. The study area in north-central Ohio includes eastern Morrow, western Knox, Richland, northwestern Ashland, western Medina and Loraine, and eastern Huron Counties. An examination of geophysical logs and completion records at the Ohio Geological Survey reveals that there are nearly as many opinions about the locations of the Trenton-Black River and Black River-Gull River boundaries as there are geologists who correlate them. Additionally, it has been suggested that all of the production in Morrow and adjoining counties is not Trempealeau but may be Gull River or even Black River. This study presents evidence to solve the correlation problems and therefore the source of the production. Outside of Morrow County, in the study area, 338 wells have been drilled into Cambrian sediments. Of these, 11 were drilled to the Precambrian. Two wells are currently being drilled in Richland County. Of the 338 wells, 63 have been producers. The wells were drilled in clusters surrounding early producers, so that regional analysis requires some interpretation. Cross sections, structure contour maps, and isopach maps substantiate the conclusions concerning the correlations and present a valid portrayal of the Cambrian-Ordovician stratigraphy.

Noel, J.A.

1988-08-01T23:59:59.000Z

27

Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations  

E-Print Network [OSTI]

Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey the central section of the North Anatolian Fault (NAF) in Turkey using interferometric synthetic aperture along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications

Fialko, Yuri

28

Petroleum exploration of Winnipegosis Formation in north-central North Dakota (Williston basin)  

SciTech Connect (OSTI)

The Winnipegosis Formation (Middle Devonian) in north-central Dakota has the greatest potential for large oil reserves in the Williston basin. The Winnipegosis carbonate (50 to 325 ft thick) was deposited in the southeast end of the Elk Point restricted sea. During Winnipegosis deposition, the Williston basin could be divided into two distinct environments: (1) a deep starved basin with accompanying pinnacle reefs separated by interreef, laminated limestone and (2) a surrounding carbonate shelf. Within the carbonate shelf are patch reefs, banks, and tidal flats. Overlying the Winnipegosis carbonate is the Prairie Formation, which has a basal anhydrite (0 to 70 ft thick) and an overlying salt (0 to 650 ft thick). These were deposited in a regressive phase of the Elk Point sea and act as seals for Winnipegosis oil entrapment. Currently, oil production from the Winnipegosis in the Williston basin is from stratigraphic traps and from small structures on the carbonate shelf. The most significant accumulation to date is Temple field, in which 11 wells produce from +/- 20 ft of Winnipegosis dolomite. The pinnacle reef environment has potential for significant oil reserves from 250-ft thick reefs covering 160 ac or less. Two pinnacle reefs have had free-oil recoveries from thin pay zones. The Rainbow/Zama fields in northwest Alberta have an ultimate reserve of more than 1 billion bbl of oil from Keg River reefs, which are correlative and similar to the Winnipegosis reefs in North Dakota. The strong seismic reflection that originates from the Winnipegosis-Prairie evaporite interface provides an excellent means of detecting Winnipegosis reefs. Amplitude of the Winnipegosis reflection is reduced dramatically over the reefs. The resulting dim spot is one criteria used in identifying reefs.

Guy, W.J. Jr.; Braden, K.W.

1986-08-01T23:59:59.000Z

29

Dating of coal fires in Xinjiang, north-west China Xiangmin Zhang,1  

E-Print Network [OSTI]

of coal resources and mining safety, coal fires cause considerable environmental problems, such as air pollution and land degradation. Coal fires have a global impact as well; the emission of CO2 might). Active coal fires in China are usu- ally related to mining activity; how- ever, the direct cause

Utrecht, Universiteit

30

Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition  

SciTech Connect (OSTI)

The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

Rogers, J.; Porter, K.

2011-03-01T23:59:59.000Z

31

North Central MO Elec Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) | OpenIncNobleNorris ElectricNorthPMO Elec

32

North Central Power Co Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) | OpenIncNobleNorris ElectricNorthPMO

33

Reduction Assemblage Models in the Interpretation of Lithic Technology at the Tosawihi Quarries, North-Central Nevada  

E-Print Network [OSTI]

Technology at the Tosawihi Quarries, North-Central Nevada Wfrom the Tosawihi Chert Quarries illustrate how rep-data. The Tosawihi quarries are a source of white chert (

Bloomer, William W.

1991-01-01T23:59:59.000Z

34

North Central Public Pwr Dist | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City)Norristown,Braddock isStateCentral Public Pwr Dist

35

Holocene Paleohydrology and Paleoclimate at Treeline, North-Central Russia, Inferred from Oxygen Isotope  

E-Print Network [OSTI]

Holocene Paleohydrology and Paleoclimate at Treeline, North-Central Russia, Inferred from Oxygen Institute for Geography, Russian Academy of Sciences, Staromonetny Pereulok 29, Moscow 109017, Russia, 1998 Lake-water oxygen-isotope histories for three lakes in northern Russia, derived from the cellulose

Edwards, Thomas W.D.

36

Company: American Pool Management Work Location: Edison, NJ Local Pools throughout Central and North Jersey  

E-Print Network [OSTI]

Company: American Pool Management Work Location: Edison, NJ ­ Local Pools throughout Central and North Jersey Pay Rate: $9-$12/hour Type of Business: Swimming Pool Management Job Title: Seasonal Staffing Assistant, Seasonal Area Supervisors, Seasonal Pool Managers, Seasonal Lifeguards Start Date: May

Hanson, Stephen José

37

Hyperpycnal wave-modified turbidites of the Pennsylvanian Minturn Formation, north-central Colorado  

E-Print Network [OSTI]

Hyperpycnal wave-modified turbidites of the Pennsylvanian Minturn Formation, north-central Colorado Paul M. Myrow Department of Geology, The Colorado College, Colorado Springs, Colorado, 80903 USA Lukens The Colorado College, Colorado Springs, Colorado, 80903 USA Karen Houck Department of Geography

38

MARINE PALEOENVIRONMENTS OF MIOCENEPLIOCENE FORMATIONS OF NORTH-CENTRAL FALCO N STATE, VENEZUELA  

E-Print Network [OSTI]

MARINE PALEOENVIRONMENTS OF MIOCENE­PLIOCENE FORMATIONS OF NORTH-CENTRAL FALCO´ N STATE, VENEZUELA Venezuela, were used in determinations of the marine paleoenvironments of the Urumaco, Codore, Caujarao, La sequences of Falco´n are compared to other formations of Venezuela and Colombia with similar

Bermingham, Eldredge

39

The Central American cold surge: an observational analysis of the deep southward penetration of North American cold fronts  

E-Print Network [OSTI]

THE CENTRAL AMERICAN COLD SURGE: AN OBSERVATIONAL ANALYSIS OF THE DEEP SOUTHWARD PENETRATION OF NORTH AMERICAN COLD FRONTS A Thesis by PHILIP JOHN REDING Submitted to the Office of Graduate Studies of Texas A &M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject: Meteorology THE CENTRAL AMERICAN COLD SURGE: AN OBSERVATIONAL ANALYSIS OF THE DEEP SOUTHWARD PENETRATION OF NORTH AMERICAN COLD FRONTS A Thesis by PHILIP...

Reding, Philip John

1992-01-01T23:59:59.000Z

40

Textures and conditions of formation of Middle Pennsylvanian coal balls, central United States  

E-Print Network [OSTI]

ball zones is given in Table 1. TABLE 1.List of Localities Sampled. [Locations shown in Figure 1.] LOCALITY NO. ZONE AND DESCRIPTION 1 Welch Locality 1 (Mineral Coal); NW1/4 SW1/4 sec. 27, R. 20 E., T. 28 N., Craig Co., Okla.; 4.5 mi (6 km) west..., R. 20 E., T. 28 N., Craig Co., Okla.; 5 mi (7 km) northwest of Welch. Active strip pit. 4 Vinita Locality (Iron Post Coal), Peabody Coal Company. Tipple area: sec. 5, R. 18 E., T. 25 N., Craig Co., Okla. Strip pits: sec. 31, R. 18 E., T. 26 N...

Perkins, T. W.

1976-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Intrusion of radioactive industrially polluted water from North Sea into central Baltic Sea  

SciTech Connect (OSTI)

The problem of penetration of radioactive industrially polluted water into the central Baltic Sea was studied. The content of Cs-134 as determined in water near the bottom of deep water trenches along the path traveled by North Sea water entering the Baltic. Samples were taken at 5 locations, with Cs-134 concentrated from samples of several thousands of liters. It was found that radioactive pollution caused by the entry of water from the North Sea extends through the system of deep water depressions into the Baltic as far as the Gotland trench. The greatest degree of contamination is found in the Arkona depression adjacent to the straits. The concentration of Cs-134 in the Gdansk trench is one-half as great and in the Gotland trench one-third as great as in the Arkona depression. Radioactive contamination in the Baltic is attributed to discharge of radioactive wastes by plants at Windscale.

Vakulovskiy, S.M.; Nikitin, A.I.

1985-02-01T23:59:59.000Z

42

Waterfowl utilization characteristics of floodwater retarding structures in north-central Texas  

E-Print Network [OSTI]

structure in the Chambers Creek (C), Richland Creek (R) and Grays Creek (G) watersheds vii 1 5 10 11 12 18 22 22 30 37 48 51 55 65 66 69 TABLE OF CONTENTS (continued) Page APPENDIX B - The total number of ducks, puddle ducks and diving... prevention lakes located in the Chambers Creek, Richland Creek and Grays Creek watersheds in north-central Texas 23 Summary of the limnological characteristics of 55 flood prevention lakes in the Chambers Creek, Richland Creek and Grays Creek watersheds...

Hobaugh, William Carl

1977-01-01T23:59:59.000Z

43

Development and distribution of Rival reservoirs in central Williston basin, western North Dakota  

SciTech Connect (OSTI)

The Mississippian Rival (Nesson) beds in the central Williston basin, North Dakota, are a limestone to evaporite regressive sequence. Progradation of the depositional system produced several distinct shallowing-upward genetic units. Cyclicity in Rival beds was produced by periodic fluctuations in sea level. Rival oil reservoirs are porous and permeable packstones and grainstones. The dominant allochems in these reservoir rocks are peloids and skeletal and algal fragments. These sediments were deposited along carbonate shorelines and within algal banks that developed basinward of shorelines. The trapping mechanism along shorelines is a lithofacies change from limestone to anhydride. Algal banks are locally productive along paleostructural trends where bathymetric shallowing produced shoals dominated by the Codiacean alga Ortonella. Algal banks are flanked by impermeable carbonate mudstones and wackestones deposited in interbank and protected shelf environments. Two distinct Rival bank trends occur in the central basin: a northwest-southeast trend in McKenzie and Williams Counties, North Dakota, parallel with the Cedar Creek anticline, and a northeast-southwest trend along the Nesson anticline and the northeast flank of the basin, parallel with the Weldon-Brockton fault trend.

Hendricks, M.L.

1988-07-01T23:59:59.000Z

44

Pre-Laramide tectonics - possible control on locus of Turonian-Coniacian parallic Coal Basins, west-central New Mexico  

SciTech Connect (OSTI)

Published evidence indicates that Late Cretaceous shorelines trended northwest through west-central New Mexico and adjacent Arizona. Our investigations delineate these shorelines through time and relate them to the prominent northwest-trending monoclinal flexures in the Zuni and southwestern San Juan basins. We related the transgressive (T)-regressive (R) marine cycles (T2-R2, T3-R3, T4-R4) of C.M. Molenaar to deep-rooted monoclinal or asymmetric anticlinal structures. The T2-R2 turn-around is coincident with the Pinon Springs anticline in the northern part of the Zuni basin and appears to be controlled by the Atarque and Gallestina monoclines in the southern part of this basin. Shoreline configurations during the T3 and T4 transgressive maximums coincide with the axis of the Nutria monocline and relate to some subtle pre-Laramide movements along this structure. The R2 regression is unique to New Mexico, suggesting local tectonic control on the configuration of the seaway. The subsequent T3 transgression, which was a major widespread event elsewhere in the Western Interior, was abbreviated in west-central New Mexico near the location of the Nutria monocline. The T2-R2 through T4-R4 shoreline turnarounds produced numerous parallic basins favorable for the accumulation of organic detritus. A turn-around probably represents a period of slow rates of shoreline migration which allowed a thicker, more extensive accumulation of plant material and hence thicker coals. The present and most of the past coal production in the Zuni and southwestern San Juan basins is from coals formed in parallic basins just landward of the turnarounds caused by pre-Laramide tectonics.

Stricker, G.D.; Anderson, O.J.

1985-05-01T23:59:59.000Z

45

Adsorption Kinetics of CO2, CH4, and their Equimolar Mixture on Coal from the Black Warrior Basin, West-Central Alabama  

SciTech Connect (OSTI)

Laboratory experiments were conducted to investigate the adsorption kinetic behavior of pure and mixed gases (CO2, CH4, approximately equimolar CO2 + CH4 mixtures, and He) on a coal sample obtained from the Black Warrior Basin at the Littleton Mine (Twin Pine Coal Company), Jefferson County, west-central Alabama. The sample was from the Mary Lee coal zone of the Pottsville Formation (Lower Pennsylvanian). Experiments with three size fractions (45-150 m, 1-2 mm, and 5-10 mm) of crushed coal were performed at 40 C and 35 C over a pressure range of 1.4 6.9 MPa to simulate coalbed methane reservoir conditions in the Black Warrior Basin and provide data relevant for enhanced coalbed methane recovery operations. The following key observations were made: (1) CO2 adsorption on both dry and water-saturated coal is much more rapid than CH4 adsorption; (2) water saturation decreases the rates of CO2 and CH4 adsorption on coal surfaces, but it appears to have minimal effects on the final magnitude of CO2 or CH4 adsorption if the coal is not previously exposed to CO2; (3) retention of adsorbed CO2 on coal surfaces is significant even with extreme pressure cycling; and (4) adsorption is significantly faster for the 45-150 m size fraction compared to the two coarser fractions.

Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Naney, Michael {Mike} T [ORNL; Blencoe, James {Jim} G [ORNL; Cole, David R [ORNL; Pashin, Jack C. [Geological Survey of Alabama; Carroll, Richard E. [Geological Survey of Alabama

2009-01-01T23:59:59.000Z

46

Geology and petroleum resources of north-central and northeast Africa  

SciTech Connect (OSTI)

In north-central and northeast Africa, important petroleum accumulations exist in the Sirte basin of Libya, the western Sahara region of Algeria, the Pelagian platform offshore from eastern Tunisia, and in the Western Desert basin, Suez graben, and Nile delta in Egypt. Approximately 55 major fields (> 100 million BOE), of which 15 are giants (> 1 billion BOE), have been found in these provinces. Total estimated ultimate production from existing fields in 60 billion bbl of oil and 100 tcf of gas; estimated undiscovered petroleum resources are 26 billion bbl of oil and 93 tcf of gas. The post-Precambrian sedimentary basins of north Africa are related to the development of the Sahara platform during at least four main tectonic episodes (the Caledonian, Hercynian, Laramide, and Alpine cycles). The sedimentary cover of the platform, which includes rocks of all geologic systems, ranges from less than 1000 m (3300 ft) in the south to more than 9000 m (30,000 ft) along the Mediterranean coast. Paleozoic rocks are primarily continental and nearshore marine sandstone and shale, which are important reservoir and source rocks for petroleum in the central and western parts of the Sahara platform. Lower Mesozoic rocks were deposited in a continental and restricted marine environment, and contain thick beds of red beds and evaporites, including salt, which are important seals for oil and gas fields. Upper Mesozoic and Tertiary rocks are related to the development of the Mediterranean Tethys geosyncline and are characterized by numerous transgressive-regressive cycles of the Tethyan seaway. Marine carbonate and shale facies are dominant in the Upper Jurassic, Cretaceous, and lower Tertiary section of northern Libya, eastern Tunisia-Pelagian platform, and northern Egypt. Upper Tertiary beds are continental clastics on most of the platform, except near the Mediterranean.

Peterson, J.A.

1986-05-01T23:59:59.000Z

47

Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations  

E-Print Network [OSTI]

Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey Anatolian Fault (NAF) in Turkey using interferometric synthetic aperture radar data from the Advanced Land Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties, J

Sandwell, David T.

48

Alteration of basaltic glasses from north-central British Columbia, Canada  

SciTech Connect (OSTI)

Evidence of palagonitization is seen on all glasses studied from three Pleistocene subglacial volcanoes in north-central British Columbia, Canada. Samples from foreset breccias of Tuya Butte are more highly palagonitized than those from the tephra cones of Ash Mountain and Southern Tuya. Extensive palagonitization is generally associated with authigenic mineralization (clays, zeolites). Palagonite composition varies widely relative to glass composition, and palagonite can be broadly categorized as either high-Al or low-Al, depending on whether Al was retained or lost to aqueous solutions during palagonitization. Loss of Al during palagonitization is related to closed-system alteration, including precipitation of aluminosilicate authigenic cements. Microenvironment appears to be more influential than macroenvironment in determining the composition of palagonite. Palagonite rinds are compositionally zoned, generally becoming progressively higher in Al and Ca, and lower in Fe and Mg, towards the innermost (later-formed) portions of the rinds. Phillipsite is the first zeolite formed, followed by chabazite. Analcime and calcite occur in the most highly palagonitized samples. Mass balance considerations indicate higher mass loss where palagonitization has not proceeded to the point where zeolite solubility limits were attained in the local solution. Zeolites occur in closed-system conditions (low flow rates), where little net system mass loss or gain has occurred. The colloidal nature of palagonite allows the effective adsorption of Rb, Cs, Sr, Ba, and REEs.

Jercinovic, M.J. (Univ. of New Mexico, Albuquerque (USA)); Keil, K. (Univ. of Hawaii at Manoa, Honolulu (USA)); Smith, M.R.; Schmitt, R.A. (Oregon State Univ., Corvallis (USA))

1990-10-01T23:59:59.000Z

49

Stratigraphy, coal occurrence, and depositional history of the Paleocene Fort Union Formation, Sand Wash basin, northwestern Colorado  

SciTech Connect (OSTI)

The Fort Union Formation in the Sand Wash basin is divided into the massive Cretaceous and Tertiary (K/T) sandstone unit, lower coal-bearing unit, gray-green mudstone unit, basin sandy unit, and upper shaly unit. Lithofacies and coal-occurrence maps of the stratigraphic units indicate that sandstone bodies and coal beds occur along south-north oriented, intermontane fluvial systems. Net-sandstone-thickness trends of the massive K/T sandstone unit reveal laterally extensive channel-fill sandstones formed in north-flowing fluvial systems. The massive K/T sandstone unit's dominant source was in the Sawatch Range. Sandstones within the lower coal-bearing unit consist of similar north-flowing fluvial systems, but they are laterally discontinuous and have several tectonically active source areas, including the Uinta and Sierra Madre-Park uplifts, and Sawatch Range. Coal-occurrence maps of the lower coal-bearing unit indicate that maximum coal-bed thicknesses are greatest along the south-north-oriented fluvial axes. Coal beds thin and split to the east and west, confirming a direct relation between the position of thick, fluvial-sandstone bodies, which form a stable platform for peat accumulation, and the location of the thick coal beds. Above the lower coal-bearing unit, the gray-green mudstone unit forms north-trending belts centered R91W and R100W. The gray-green mudstone thins to the north and into the basin center and probably is lacustrine in origin, reflecting tectonic quiescence and cessation of coarse clastic sedimentation. The basin sandy unit is best developed in the central parts of the basin, where its fluvial depositional axis is oriented south-north. The upper shaly unit directly overlies the basin sandy unit and includes a thin Cherokee coal zone. The upper shaly unit has variable thicknesses due to erosion at the base of the Wasatch Formation and lateral facies changes.

Tyler, R. (Univ. of Texas, Austin, TX (United States))

1993-08-01T23:59:59.000Z

50

Coal systems analysis  

SciTech Connect (OSTI)

This collection of papers provides an introduction to the concept of coal systems analysis and contains examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Chapter are: Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons by Peter D. Warwick. Appalachian coal assessment: Defining the coal systems of the Appalachian Basin by Robert C. Milici. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coal Field, USA by Stephen F. Greb, Cortland F. Eble, and J.C. Hower. Palynology in coal systems analysis The key to floras, climate, and stratigraphy of coal-forming environments by Douglas J. Nichols. A comparison of late Paleocene and late Eocene lignite depositional systems using palynology, upper Wilcox and upper Jackson Groups, east-central Texas by Jennifer M.K. O'Keefe, Recep H. Sancay, Anne L. Raymond, and Thomas E. Yancey. New insights on the hydrocarbon system of the Fruitland Formation coal beds, northern San Juan Basin, Colorado and New Mexico, USA by W.C. Riese, William L. Pelzmann, and Glen T. Snyder.

Warwick, P.D. (ed.)

2005-07-01T23:59:59.000Z

51

Fire Clay coal and sandstone washouts  

SciTech Connect (OSTI)

The Fire Clay coal bed has been studied in a portion of southeastern Kentucky. This seam is easily recognizable by a distinctive flint clay parting. Mine maps, field descriptions, and laboratory investigations were used to investigate this coal bed. Several elongate sandstone bodies cut the seam in the study area. These sandstone bodies are subparallel roughly east-west, and are typically 10[sup 1] to 10[sup 2] m wide, and 10[sup 2] m to tens of kilometers long. These sandstone washouts occur in areas overlain by a larger channel sandstone, which usually is found associated with the thickest areas of the coal seam. In south-central Perry County, a cross section of one washout area was well exposed. North of the washout, a 4 to 7 cm thick cannel coal was present at the base of the sequence. The coal on the north side of the cutout gradually thins from 2 m to 1.5 m away from the washout. On the south side of the washout, the coal thins abruptly from over 1.5 m to 1.25 m within 30 m of the channel. An island of slumped and slickensided coal is present within the washout region. Postdepositional differential compaction of the peat is inferred to be the control on placement of the channel system. The areas of thickest peat compacted the most, creating topographic lows through which the stream moved. The regions of thick coal were probably the result of several controlling factors. Predepositional differential compaction and erosion may have produced relief which influenced peat development. Lithologic and geochemical continuity across the channel is good, supporting postdepositional emplacement of the sandstone bodies.

Andrews, W.M. Jr.; Hower, J.C. (Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research)

1992-01-01T23:59:59.000Z

52

North American Central Plains conductivity anomaly within the Trans-Hudson orogen in northern Saskatchewan, Canada  

E-Print Network [OSTI]

Saskatchewan, Canada Alan G. Jones } James A. Craven Geological Survey of Canada, 1 Observatory Crescent Magnetotelluric data acquired across the Paleoproterozoic Trans-Hudson orogen, north- ern Saskatchewan, image one

Jones, Alan G.

53

Hydrogen from Coal Edward Schmetz  

E-Print Network [OSTI]

Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

54

Synoptic Scale Weather Patterns Associated with Annual Snow Accumulation Variability in North-Central Greenland  

E-Print Network [OSTI]

Abstract Previous studies on the synoptic forcing of high elevation areas of central Greenland have mostly relied on ice cores, snow pits, mesoscale models, and climate models. In this study, a radar-measured 118-year annual snow accumulation record...

CHEN, SHU

2013-08-31T23:59:59.000Z

55

Depositional sequence evolution, Paleozoic and early Mesozoic of the central Saharan platform, North Africa  

SciTech Connect (OSTI)

Over 30 depositional sequences have been identified in the Paleozoic and lower Mesozoic of the Ghadames basin of eastern Algeria, southern Tunisia, and western Libya. Well logs and lithologic information from more than 500 wells were used to correlate the 30 sequences throughout the basin (total area more than 1 million km{sup 2}). Based on systematic change in the log response of strata in successively younger sequences, five groups of sequences with distinctive characteristics have been identified: Cambro-Ordivician, Upper Silurian-Middle Devonian, Upper Devonian, Carboniferous, and Middle Triassic-Middle Jurassic. Each sequence group is terminated by a major, tectonically enhanced sequence boundary that is immediately overlain (except for the Carboniferous) by a shale-prone interval deposited in response to basin-wide flooding. The four Paleozoic sequence groups were deposited on the Saharan platform, a north facing, clastic-dominated shelf that covered most of North Africa during the Paleozoic. The sequence boundary at the top of the Carboniferous sequence group is one of several Permian-Carboniferous angular unconformities in North Africa related to the Hercynian orogeny. The youngest sequence group (Middle Triassic to Middle Jurassic) is a clastic-evaporite package that onlaps southward onto the top of Paleozoic sequence boundary. The progressive changes from the Cambrian to the Jurassic, in the nature of the Ghadames basin sequences is a reflection of the interplay between basin morphology and tectonics, vegetation, eustasy, climate, and sediment supply.

Sprague, A.R.G. (Exxon Production Research Co., Houston, TX (United States))

1991-08-01T23:59:59.000Z

56

Characterization of the radon source in North-Central Florida. Final report part 1 -- Final project report; Final report part 2 -- Technical report  

SciTech Connect (OSTI)

This report contains two separate parts: Characterization of the Radon Source in North-Central Florida (final report part 1 -- final project report); and Characterization of the Radon Source in North-Central Florida (technical report). The objectives were to characterize the radon 222 source in a region having a demonstrated elevated indoor radon potential and having geology, lithology, and climate that are different from those in other regions of the U.S. where radon is being studied. Radon availability and transport in this region were described. Approaches for predicting the radon potential of lands in this region were developed.

NONE

1997-12-01T23:59:59.000Z

57

Timing of the deposition of uppermost Cretaceous and Paleocene coal-bearing deposits in the Greater Glendive area, Montana and North Dakota  

SciTech Connect (OSTI)

With the aid of a grant from the National Geographic Society, a cooperative agreement with the State University of New York at Stony Brook, and contract with the U.S. Department of Energy, Late Cretaceous and Paleocene geologic and paleontologic field studies were undertaken in Makoshika, State Park and vicinity, Dawson County, Montana. This region was chosen as a study area because of its potential for yielding new fossil localities and extensive exposures both above and below the K/T boundary, as suggested by previous research by David W. Krause and Joseph H. Hartman. Related field studies were also undertaken in areas adjacent to the Cedar Creek Anticline in North Dakota. This work was part of ongoing research to document change in the composition of mammalian and molluscan faunas during the Late Cretaceous and Paleocene and to relate observed patterns to floral and invertebrate changes in composition. This study focuses on the record of mammals and mollusks in the Makoshika stratigraphic section and places old and new observations into a paleomagnetic and palynomorph framework. Of particular interest is the appearance and diversification of archaic ungulate mammals. Simultaneous dinosaur extinction with ungulate radiation has been invoked in gradual, as opposed to catastrophic, models of faunal change at the K/T boundary. However, supposed Cretaceous localities bearing archaic ungulates and other mammals of {open_quotes}Paleocene aspect{close_quotes} may be the product of faunal reworking. Elsewhere in the Williston Basin (e.g., Garfield and McCone Counties, Montana), the molluscan record of uppermost Cretaceous and Paleocene strata indicates the extinction of all of the highly sculptured unionid bivalves just prior to the onset of coal swamps and subsequent coal formation.

NONE

1996-02-01T23:59:59.000Z

58

The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic  

SciTech Connect (OSTI)

The scientific scope of the project was to exploit the unique location of the Pico Mountain Observatory (PMO) located in the summit caldera of the Pico Volcano in Pico Island in the Azores, for atmospheric studies. The observatory, located at 2225m a.s.l., typically samples free tropospheric aerosols laying above the marine low-level clouds and long-range transported from North America. The broad purpose of this research was to provide the scientific community with a better understanding of fundamental physical processes governing the effects of aerosols on radiative forcing and climate; with the ultimate goal of improving our abilities to understand past climate and to predict future changes through numerical models. The project was 'exploratory' in nature, with the plan to demonstrate the feasibility of deploying for the first time, an extensive aerosol research package at PMO. One of the primary activities was to test the deployment of these instruments at the site, to collect data during the 2012 summer season, and to further develop the infrastructure and the knowledge for performing novel research at PMO in follow-up longer-term aerosol-cloud studies. In the future, PMO could provide an elevated research outpost to support the renewed DOE effort in the Azores that was intensified in 2013 with the opening of the new sea-level ARM-DOE Eastern North Atlantic permanent facility at Graciosa Island. During the project period, extensive new data sets were collected for the planned 2012 season. Thanks to other synergistic activities and opportunities, data collection was then successfully extended to 2013 and 2014. Highlights of the scientific findings during this project include: a) biomass burning contribute significantly to the aerosol loading in the North Atlantic free troposphere; however, long-range transported black carbon concentrations decreased substantially in the last decade. b) Single black carbon particles analyzed off-line at the electron microscope were often very compacted, suggesting cloud processing and exhibiting different optical properties from fresh emissions. In addition, black carbon was found to be sometimes mixed with mineral dust, affecting its optical properties and potential forcing. c) Some aerosols collected at PMO acted as ice nuclei, potentially contributing to cirrus cloud formation during their transport in the upper free troposphere. Identified good ice nuclei were often mineral dust particles. d) The free tropospheric aerosols studied at PMO have relevance to low level marine clouds due, for example, to synoptic subsidence entraining free tropospheric aerosols into the marine boundary layer. This has potentially large consequences on cloud condensation nuclei concentrations and compositions in the marine boundary layer; therefore, having an effect on the marine stratus clouds, with potentially important repercussions on the radiative forcing. The scientific products of this project currently include contributions to two papers published in the Nature Publishing group (Nature Communications and Scientific Reports), one paper under revision for Atmospheric Chemistry and Physics, one in review in Geophysical Research Letters and one recently submitted to Atmospheric Chemistry and Physics Discussion. In addition, four manuscripts are in advanced state of preparation. Finally, twenty-eight presentations were given at international conferences, workshops and seminars.

Mazzoleni, Claudio [Michigan Technological University; Kumar, Sumit [Michigan Technological University; Wright, Kendra [Michigan Technological University; Kramer, Louisa [Michigan Technological University; Mazzoleni, Lynn [Michigan Technological University; Owen, Robert [Michigan Technological University; Helmig, Detlev [University of Colorado at Boulder

2014-12-09T23:59:59.000Z

59

Idiosyncrasies of Cherokee genetic sequence of strata, north-central Oklahoma  

SciTech Connect (OSTI)

In plan view, the individual genetic increments of strata that comprise the Cherokee genetic sequence of strata are, for the most part, a complex maze of anastomosing fluvial channels generally trending north-south. This picture is further complicated by many isolated pods, splays, and partially preserved minor channels between and outside of the main channels. When viewed in cross section, a few of the individual thick sandstone deposits (50-100 ft) are the result of a single depositional event. Most of these deposits are the result of the stacking of two or three individual channels. An additional complication occurs when downcutting into an underlying interval results in younger sandstones being stacked on older sandstones or occupying an interval that would appear to correlate with the older unit. The rigid use of stereotype principles, such as type electric log signatures (e.g., bell shaped indicating a channel, inverted bell a bar, etc), unimaginative isopach contouring, computer generated data and/or maps, and scout card or other published information will yield erroneous interpretations. Electric logs need to be intelligently examined and interpreted. Numerous cross sections need to be constructed to show proper stratigraphic relationships. Well cuttings need to be examined microscopically. Isopach maps must be constructed with interpretive imagination, not by rote, in order to yield valid oil-finding interpretations.

O'brien, J.E.

1987-08-01T23:59:59.000Z

60

Low-rank coal research  

SciTech Connect (OSTI)

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Weber, G. F.; Laudal, D. L.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

JV Task-130 Technological Synergies for Recovery of Organic Pollutants from a Coal Seam at Garrison, North Dakota  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) initiated remediation of hydrocarbon-contaminated soils and groundwater associated with gasoline release at the Farmers Union Oil station in Garrison, North Dakota. The remedial strategy implemented is based on application of two innovative concepts: (1) simultaneous operation of soil vapor and multiphase extraction systems allowing for water table control in challenging geotechnical conditions and (2) controlled hot-air circulation between injection and extraction wells to accelerated in situ volatilization and stripping of contaminants of concern (COC) alternatively using the same wells as either extraction or injection points. A proactive remedial approach is required to reduce high COC levels in the source and impacted areas and to eliminate long-term health risks associated with contaminant migration to water-bearing zones used as a regional water supply source. This report compiles results of Phase I focused on design, construction, and start-up of remediation systems.

Jaroslav Solc

2009-03-15T23:59:59.000Z

62

Climatology of aerosol optical depth in north?central Oklahoma: 19922008  

SciTech Connect (OSTI)

Aerosol optical depth (AOD) has been measured at the Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most of the data presented are from the multifilter rotating shadowband radiometer, a narrow?band, interference?filter Sun radiometer with five aerosol bands in the visible and near infrared; however, AOD measurements have been made simultaneously and routinely at the site by as many as three different types of instruments, including two pointing Sun radiometers. Scatterplots indicate high correlations and small biases consistent with earlier comparisons. The early part of this 16 year record had a disturbed stratosphere with residual Mt. Pinatubo aerosols, followed by the cleanest stratosphere in decades. As such, the last 13 years of the record reflect changes that have occurred predominantly in the troposphere. The field calibration technique is briefly described and compared to Langley calibrations from Mauna Loa Observatory. A modified cloudscreening technique is introduced that increases the number of daily averaged AODs retrieved annually to about 250 days compared with 175 days when a more conservative method was employed in earlier studies. AODs are calculated when the air mass is less than six; that is, when the Suns elevation is greater than 9.25. The more inclusive cloud screen and the use of most of the daylight hours yield a data set that can be used to more faithfully represent the true aerosol climate for this site. The diurnal aerosol cycle is examined month?by?month to assess the effects of an aerosol climatology on the basis of infrequent sampling such as that from satellites.

Michalsky, Joseph J.; Denn, Frederick; Flynn, Connor J.; Hodges, G. B.; Kiedron, Piotr; Koontz, Annette S.; Schlemmer, James; Schwartz, Stephen E.

2010-04-13T23:59:59.000Z

63

Alaska coal gasification feasibility studies - Healy coal-to-liquids plant  

SciTech Connect (OSTI)

The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

Lawrence Van Bibber; Charles Thomas; Robert Chaney [Research & Development Solutions, LLC (United States)

2007-07-15T23:59:59.000Z

64

Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I  

SciTech Connect (OSTI)

The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

None

1982-01-31T23:59:59.000Z

65

High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures  

E-Print Network [OSTI]

High-resolution modeling of the western North American power system demonstrates low-cost and low energy Carbon emissions a b s t r a c t Decarbonizing electricity production is central to reducing of resource cost scenarios, most coal power plants would be replaced by solar, wind, gas, and/or nuclear

Kammen, Daniel M.

66

A review of "An Intrepid Scott: William Lithgow of Lanark's Travels in the Ottoman Lands, North Africa, and Central Europe, 1609 - 21" by Clifford Edmund Bosworth  

E-Print Network [OSTI]

most appropriately be found in Friends? meeting houses, rather than on the shelves of university libraries. Clifford Edmund Bosworth. An Intrepid Scot: William Lithgow of Lanark?s Travels in the Ottoman Lands, North Africa, and Central Europe, 1609... and often alone, visited continental Europe and the Mediter- ranean rim, and upon returning to Britain, published narratives of their ad- ventures. These travelers were not unusual because they traveled?many En- glish and Scots men did so at the time...

Aune, M. G.

2008-01-01T23:59:59.000Z

67

Evaluation of habitat use by Rocky Mountain elk (Cervus elaphus nelsoni) in north-central New Mexico using global positioning system radio collars  

SciTech Connect (OSTI)

In 1996 the authors initiated a study to identify habitat use in north-central New Mexico by Rocky Mountain elk (Cervus elaphus nelsoni) using global positioning system (GPS) radio collars. They collared six elk in the spring of 1996 with GPS radio collars programmed to obtain locational fixes every 23 h. Between April 1, 1996 and January 7, 1997, they collected >1,200 fixes with an approximately 70% observation rate. They have interfaced GPS locational fixes of elk and detailed vegetation maps using the geographical information system to provide seasonal habitat use within mountainous regions of north-central New Mexico. Based on habitat use and availability analysis, use of grass/shrub and pinon/juniper habitats was generally higher than expected during most seasons and use of forested habitats was lower than expected. Most of the collared elk remained on LANL property year-round. The authors believe the application of GPS collars to elk studies in north-central New Mexico to be a more efficient and effective method than the use of VHF (very-high frequency) radio collars.

Biggs, J.; Bennett, K.; Fresquez, P.R.

1997-04-01T23:59:59.000Z

68

Carbon Dioxide Storage in Coal Seams with Enhanced Coalbed Methane Recovery: Geologic Evaluation, Capacity Assessment and Field Validation of the Central Appalachian Basin.  

E-Print Network [OSTI]

??The mitigation of greenhouse gas emissions and enhanced recovery of coalbed methane are benefits to sequestering carbon dioxide in coal seams. This is possible because (more)

Ripepi, Nino Samuel

2009-01-01T23:59:59.000Z

69

Energy Center Center for Coal Technology Research  

E-Print Network [OSTI]

Energy Center Center for Coal Technology Research http://www.purdue.edu/dp/energy/CCTR/ Consumption Production Gasification Power Plants Coking Liquid Fuels Environment Oxyfuels Byproducts Legislation, 500 Central Drive West Lafayette, IN 47907-2022 #12;INDIANA COAL REPORT 2009 Center for Coal

Fernández-Juricic, Esteban

70

Supersonic coal water slurry fuel atomizer  

DOE Patents [OSTI]

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

1991-01-01T23:59:59.000Z

71

Economic Contributions and Ecosystem Services of Springs in the Lower Suwannee and Santa Fe River Basins of North-Central  

E-Print Network [OSTI]

................................................................................................... 37 Appendix C. Ecosystem Service Valuation Studies Focused on North Florida1 Economic Contributions and Ecosystem Services of Springs in the Lower Suwannee and Santa Fe River: Mark Long) #12;2 Economic Contributions and Ecosystem Services of Springs in the Lower Suwannee

Florida, University of

72

Coal pump  

DOE Patents [OSTI]

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

73

Common Pipeline Carriers (North Dakota)  

Broader source: Energy.gov [DOE]

Any entity that owns, operates, or manages a pipeline for the purpose of transporting crude petroleum, gas, coal, or carbon dioxide within or through the state of North Dakota, or is engaged in the...

74

Compliance testing of Grissom Air Force Base Central Heating Plant coal-fired boilers 3, 4, and 5, Grissom Air Force Base, Indiana. Final technical report, 3-21 Feb 92  

SciTech Connect (OSTI)

A source emission testing for particulate matter and visible emissions was conducted on coal-fired boilers at the Grissom AFB Central Heating Plant during 3-21 February 1992 by the Air Quality Function of Armstrong Laboratory. The survey was conducted to determine compliance with regard to Indiana Administration Code, Title 325 Pollution Control Board, Article 5, Opacity Regulations, and Article 6, Particulate Regulations. All boilers were tested through the bypass stack. Results indicated that boilers 3 and 4 met applicable, visible, and particulate matter emissions standards. Boiler 5 exceeded the particulate standard.

Cintron-Ocasio, R.A.

1992-06-01T23:59:59.000Z

75

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

SciTech Connect (OSTI)

The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Emissions of carbon dioxide (CO{sub 2}) into the atmosphere are an inherent part of electricity generation, transportation, and industrial processes that rely on fossil fuels. These energy-related activities are responsible for more than 80 percent of the U.S. greenhouse gas emissions, and most of these emissions are CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coalbed methane (CBM) provides a value-added stream, potentially reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy Inc., Research & Development (CONSOL), with support from the US DOE, has embarked on a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through two overlying coal seams. Once completed, all of the wells will be used initially to drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and recovered CBM, the program includes additional monitoring wells to further examine horizontal and vertical migration of CO{sub 2}. This is the fifth Technical Progress report for the project. Progress this period was focused on reclamation of the north access road and north well site, and development of revised drilling methods. This report provides a concise overview of project activities this period and plans for future work.

William A. Williams

2004-03-01T23:59:59.000Z

76

Yields of ten and eleven year-old hybrid poplars in the north central United States. Final report  

SciTech Connect (OSTI)

The objective of this research is to determine commercially attainable biomass yields given the best site tending possible under the constraints of this extensive network. Biomass yields are reported from the best clones planted in one acre blocks on 8 sites over the four states. Biomass yields are presented of short rotation intensively cultured poplar plantations established in Wisconsin, Minnesota, North and South Dakota during 1987--88. It was reported at that time that the mean annual increment had not peaked in the plantations. Growth measurements were continued through the 1997 growing season when the plantations had completed their 10th and 11th growing season.

Netzer, D.; Tolsted, D.

1998-12-31T23:59:59.000Z

77

A SUMMARY OF COAL IN THE COALMONT FORMATION (TERTIARY),  

E-Print Network [OSTI]

Chapter SN A SUMMARY OF COAL IN THE COALMONT FORMATION (TERTIARY), NORTH PARK BASIN, COLORADO By S assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

78

Solid bitumen at Atigun Gorge, central Brooks Range front: Implications for oil exploration in the North Slope fold and thrust belt  

SciTech Connect (OSTI)

The Atigun Gorge area of the north-central Brooks range is a structurally complex region in which a sequence of north-verging duplex structures involving Paleozoic and Mesozoic Ellesmerian continental margin deposits are structurally overlain by a south-verging thrust of Brookian foreland basin deposits of Albian age. The resulting structural triangle zone is marked by numerous small-scale thrusts involving Permian and Triassic strata in which solid bitumen, occupying fissures up to 10 cm wide and several meters in length, has been found. The presence of aromatics in the odorless, black material was confirmed by ultraviolet fluorescence following extraction in dichloromethane. The occurrence of solid bitumen at Atigun Gorge adds to a growing inventory of hydrocarbon-filled fractures found mostly in Cretaceous rocks in the Brooks Range foothills. These occurrences are consistent with a model of hydrocarbon generation beneath the northern margin of the Brooks Range. The regional distribution of vitrinite reflectance isograds suggests that the northern margin of the Brooks Range and the adjoining foreland basin deposits of the North Slope have experienced similar thermal histories. The 0.6% vitrinite reflectance isograd intersects the land surface along the southern margin of the foreland and the 2.0% isograd lies within the northern part of the range. Although these relations suggest the possibility of petroleum resources at shallow depths beneath the Brooks Range foothills, they also indicate that a considerable amount of differential uplift has occurred, probably resulting in redistribution and some leakage of any oil and gas accumulations.

Howell, D.G.; Johnsson, M.J.; Bird, K.J. (U.S. Geological Survey, Menlo Park, CA (United States))

1991-03-01T23:59:59.000Z

79

RENFORCEMENT ET CONTROLE DE PAREMENTS DANS UNE MINE A CffiL OUVERT DE CHARBON REINFORCEMENT AND CONTROL OF FOOTWALL SLOPES IN AN OPEN PIT COAL MINE  

E-Print Network [OSTI]

AND CONTROL OF FOOTWALL SLOPES IN AN OPEN PIT COAL MINE VERSTRKUNG UND KONTROLLE VON STOSSER IM KOHLETAGEBAU to exploit the stephanian coal.TheNorth West area ofthis open pit is composed of an overthrust fold. The coal

Paris-Sud XI, Universit de

80

Coal extraction  

SciTech Connect (OSTI)

Coal is extracted using a mixed solvent which includes a substantially aromatic component and a substantially naphthenic component, at a temperature of 400/sup 0/ to 500/sup 0/C. Although neither component is an especially good solvent for coal by itself, the use of mixed solvent gives greater flexibility to the process and offers efficiency gains.

Clarke, J.W.; Kimber, G.M.; Rantell, T.D.; Snape, C.E.

1985-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

COAL SLAGGING AND REACTIVITY TESTING  

SciTech Connect (OSTI)

Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion conditions, resulting in unburned carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

2003-10-01T23:59:59.000Z

82

Outlook and Challenges for Chinese Coal  

SciTech Connect (OSTI)

China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is inextricably entwined with China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate change mitigation. The possibility of a large coal gap suggests that Chinese and international policy makers should maximize institutional and financial support

Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

2008-06-20T23:59:59.000Z

83

SRP4760R List of Lots By Purchaser As at :-13-feb-2013:08:07 CENTRAL ENGLAND (Wharncliffe Plank Gate)  

E-Print Network [OSTI]

ENGLAND (Wharncliffe Plank Gate) CENTRAL ENGLAND (Coach Road) NORTH ENGLAND (Guns Crag (Redesdale)) NORTH

84

Coal industry annual 1994  

SciTech Connect (OSTI)

This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

NONE

1995-10-01T23:59:59.000Z

85

Erroneous coal maturity assessment caused by low temperature oxidation  

E-Print Network [OSTI]

Erroneous coal maturity assessment caused by low temperature oxidation Y. Copard J. R. Disnar, J. F on different outcrop coals from the French Massif Central revealed abnormally high Tmax values, which initially observed for medium to low volatile bituminous coals (Rr1.5%), was accompanied by a very clear exponential

Paris-Sud XI, Universit de

86

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

87

Geologic and climatic controls on the formation of the Permian coal measures in the Sohagpur coal field, Madhya Pradesh, India  

SciTech Connect (OSTI)

The U.S. Geological Survey (USGS) and the Geological Survey of India (GSI) are concluding a cooperative study of the coking coal deposits in the Sohagpur coal field in central India. Because of the importance of coal in India's economy, the Coal Wing of the Geological Survey of India has studied the area intensely since the early 1980's. This report summarizes the overall stratigraphic, tectonic, and sedimentologic framework of the Sohagpur coal field area, and the interpretations of the geologic and climatic environments required for the accumulation of the thick Gondwana coal deposits, both coking and non-coking.

Milici, R.C.; Warwick, P.D.; Mukhopadhyah, A.; Adhikari, S.; Roy, S.P.; Bhattacharyya, S.

1999-07-01T23:59:59.000Z

88

High-pressure gasification of Montana subbituminous coal  

SciTech Connect (OSTI)

A data base for the fluidized-bed gasification of different coals at elevated pressures has been developed at the Institute of Gas Technology (IGT) with different ranks of coal at pressures up to 450 psig and at temperatures dictated by the individual coals. Adequate data have been obtained to characterize the effect of pressure on the gasification of Montana Rosebud subbituminous coal and North Dakota lignite. The results obtained with Montana Rosebud subbituminous coal are presented here. This program was funded by the Gas Research Institute. 9 refs., 10 figs., 3 tabs.

Goyal, A.; Bryan, B.; Rehmat, A.

1991-01-01T23:59:59.000Z

89

Alaska coal geology, resources, and coalbed methane potential  

SciTech Connect (OSTI)

Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces, Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines. Alaskan coals have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States and are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. Another untapped potential resource is coalbed methane estimated to total 1,000 trillion cubic feet (28 trillion cubic meters).

Romeo M. Flores; Gary D. Stricker; Scott A. Kinney

2005-11-15T23:59:59.000Z

90

4th Annual Clean Coal  

E-Print Network [OSTI]

Proceedings he emphasis of the Fourth Clean Coal Technology Conference wm the marketability of clean coal projects both domestically and abroad. The success rate of clean coal projects in the U.S. for coalfired electricity generation is a beacon to foreign governments that are working toward effectively using advanced NO, and SO2 technology to substantially reduce flue-gas emissions for a cleaner environment. There is a continuing dialogue between U.S. Government, North American private industry, and the electricity producing governmental ministries and the private sector abroad. The international community was well represented at this conference. The Administration is determined to move promising, near-term technologies from the public to the private sector a ~ well a8 into the international marketplace.

Ferriter John P

91

PP-67 North Central Elect  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactorBatteries for Advanced P - . . - -IMPERIAL IRRIGATION234

92

Compliance testing of Grissom AFB, Central Heating Plant coal-fired boilers 3, 4 and 5, Grissom AFB, Indiana. Final report, 3-13 Dec 90  

SciTech Connect (OSTI)

Source compliance testing (particulates and visible emissions) of boiler 3, 4 and 5 in the Grissom AFB Central Heating Plant was accomplished 3-13 Dec 90. The boilers were all tested through the bypass stack. Visible emissions from the three boilers met applicable opacity regulations. However, particulate emissions from the three boilers were above their applicable emission standards.

Vaughn, R.W.

1991-03-01T23:59:59.000Z

93

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Pollutants Associated With Coal Combustion. E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

94

Carbon Dioxide Sequestration in Geologic Coal Formations  

SciTech Connect (OSTI)

BP Corporation North America, Inc. (BP) currently operates a nitrogen enhanced recovery project for coal bed methane at the Tiffany Field in the San Juan Basin, Colorado. The project is the largest and most significant of its kind wherein gas is injected into a coal seam to recover methane by competitive adsorption and stripping. The Idaho National Engineering and Environmental Laboratory (INEEL) and BP both recognize that this process also holds significant promise for the sequestration of carbon dioxide, a greenhouse gas, while economically enhancing the recovery of methane from coal. BP proposes to conduct a CO2 injection pilot at the tiffany Field to assess CO2 sequestration potential in coal. For its part the INEEL will analyze information from this pilot with the intent to define the Co2 sequestration capacity of coal and its ultimate role in ameliorating the adverse effects of global warming on the nation and the world.

None

2001-09-30T23:59:59.000Z

95

Coal preparation: The essential clean coal technology  

SciTech Connect (OSTI)

This chapter is a brief introduction to a broad topic which has many highly specialized areas. The aim is to summarize the essential elements of coal preparation and illustrate its important role in facilitating the clean use of coal. Conventional coal preparation is the essential first step in ensuring the economic and environmentally acceptable use of coal. The aim of coal preparation is to produce saleable products of consistent, specified quality which satisfy customer requirements while optimizing the utilization of the coal resource. Coal preparation covers all aspects of preparing coal for the market. It includes size reduction, blending and homogenization and, most importantly, the process of physical beneficiation or washing, which involves separation of undesirable mineral matter from the coal substance itself. Coal preparation can be performed at different levels of sophistication and cost. The degree of coal preparation required is decided by considering the quality of the raw coal, transport costs and, in particular, the coal quality specified by the consumer. However, the cost of coal beneficiation rises rapidly with the complexity of the process and some coal is lost with the waste matter because of process inefficiencies, therefore each situation requires individual study to determine the optimum coal preparation strategy. The necessary expertise is available within APEC countries such as Australia. Coals destined for iron making are almost always highly beneficiated. Physical beneficiation is mostly confined to the higher rank, hard coals, but all other aspects of coal preparation can be applied to subbituminous and lignitic coals to improve their utilization. Also, there are some interesting developments aimed specifically at reducing the water content of lower rank coals.

Cain, D.

1993-12-31T23:59:59.000Z

96

Moving North Texas Forward by Addressing Alternative Fuel Barriers...  

Broader source: Energy.gov (indexed) [DOE]

MOVING NORTH TEXAS FORWARD BY ADDRESSING ALTERANATIVE FUEL BARRIERS Presenter: Pamela Burns North Central Texas Council of Governments June 20, 2014 P.I. Mindy Mize Project ID...

97

Short Communication Catalytic coal gasification: use of calcium versus potassium*  

E-Print Network [OSTI]

Short Communication Catalytic coal gasification: use of calcium versus potassium* Ljubisa R on the gasification in air and 3.1 kPa steam of North Dakota lignitic chars prepared under slow and rapid pyrolysis of calcium is related to its sintering via crystallite growth. (Keywords: coal; gasification; catalysis

98

Compliance testing of Grissom AFB Central Heating Plant coal-fired boilers 3, 4, and 5, Grissom AFB, Indiana. Final report, 29 January-15 February 1989  

SciTech Connect (OSTI)

At the request of HQ, SAC/SGPB source compliance testing (particulate and visible emissions) of boilers 3, 4, and 5 in the Grissom AFB Central Heating Plant was accomplished 29 Jan-15 Feb 89. The survey was conducted to determine compliance with regards to Indiana Administrative Code, Title 325 - Air Pollution Control Board, Article 5, Opacity Regulations, and Article 6, Particulate Regulations. Boiler 3 was tested through scrubber B, Boiler 4 through scrubber A, and Boiler 5 through scrubber B and the bypass stack. Results indicate that each boiler met applicable visible and particulate emission standards.

Garrison, J.A.

1989-06-01T23:59:59.000Z

99

Coal industry annual 1997  

SciTech Connect (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

100

Coal Industry Annual 1995  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Coal industry annual 1996  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

102

Influence of penecontemporaneous tectonism on development of Breathitt Formation coals, eastern Kentucky  

SciTech Connect (OSTI)

The Middle Pennsylvanian Breathitt Formation coals beds in the central portion of the Eastern Kentucky coal field exhibit changes in lithology, petrology, and chemistry that can be attributed to temporal continuity in the depositional systems. The study interval within northern Perry and Knott Counties includes coals from the Taylor coal bed at the base of the Magoffin marine member upward through the Hazard No. 8 (Francis) coal bed.

Hower, J.C.; Trinkle, E.J.; Pollock, J.D.

1988-08-01T23:59:59.000Z

103

Microbial solubilization of coal  

DOE Patents [OSTI]

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

104

Clean coal  

SciTech Connect (OSTI)

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

105

Coal industry annual 1993  

SciTech Connect (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

106

Coal liquefaction and hydrogenation  

DOE Patents [OSTI]

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

107

TOXIC SUBSTANCES FROM COAL COMBUSTION  

SciTech Connect (OSTI)

The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mssbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was carried out during August at the Advanced Photon Source (APS), the new synchrotron facility at Argonne National Laboratory, Chicago, IL. Further analysis of small-scale combustion experiments conducted at PSI in Phase I was completed this quarter. The results of these experiments for the first time suggest almost complete vaporization of certain trace elements (Se, Zn) from coal combustion in the flame zone, in accordance with theoretical equilibrium predictions. Other elements (As, Sb, Cr) appeared considerably less volatile and may react with constituents in the bulk ash at combustion temperatures. The combustion section of the University of Arizona's Downflow Combustor was completely rebuilt. The University of Utah worked on setting up EPA Method 26A to give the capability to measure chlorine in flue gas. The chlorine kinetic calculations performed as part of the Phase I program were found to have an error in the initial conditions. Therefore, the calculations were re-done this quarter with the correct starting conditions. Development of a quasi-empirical emissions model based on reported emissions of particulate matter from field measurements was continued this quarter. As a first step in developing the ToPEM, we developed a sub-model that calculates the evaporation of major elements (Na, K, Fe, Si, Al, Ca and Mg) from both inherent and extraneous minerals of coal. During this quarter, this sub-model was included into EMAF, which formed the ToPEM. Experimental data from the Phase I program were used to test and modify the sub-model and the ToPEM.

A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

1998-12-08T23:59:59.000Z

108

Coal combustion science  

SciTech Connect (OSTI)

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

1990-11-01T23:59:59.000Z

109

Regional trends in the take-up of clean coal technologies  

SciTech Connect (OSTI)

Using surveys of the electricity industry taken in major OECD coal producing/coal consuming regions of North America, Europe, Southern Africa, and Asia/Pacific, this paper reports on the attitudes of power plant operators and developers toward clean coal technologies, the barriers to their use and the policies and measures that might be implemented, if a country or region desired to encourage greater use of clean coal technologies.

Wootten, J.M. [Peabody Holding Co., Inc., St. Louis, MO (United States)

1997-12-31T23:59:59.000Z

110

Coal Mining (Iowa)  

Broader source: Energy.gov [DOE]

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

111

Underground Coal Thermal Treatment Task 6 Topical Report, Utah Clean Coal Program  

SciTech Connect (OSTI)

The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coals carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325C showed less or similar capacity to the untreated coals.

Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

2014-08-15T23:59:59.000Z

112

Coal rank trends in eastern Kentucky  

SciTech Connect (OSTI)

Examination of coal rank (by vitrinite maximum reflectance) for eastern Kentucky coals has revealed several regional trends. Coal rank varies from high volatile C (0.5% R/sub max/) to medium volatile bituminous (1.1% R/sub max/), and generally increases to the southeast. One east-west-trending rank high and at least four north-south-trending rank highs interrupt the regional increase. The east-west-trending rank high is associated with the Kentucky River faults in northeastern Kentucky. It is the only rank high clearly associated with a fault zone. The four north-south-trending rank highs are parallel with portions of major tectonic features such as the Eastern Kentucky syncline. Overall, though, the association of north-south-trending rank highs with tectonic expression is not as marked as that with the anomaly associated with the Kentucky River faults. It is possible that the rank trends are related to basement features with subdued surface expression. Rank generally increases with depth, and regional trends observed in one coal are also seen in overlying and underlying coals. The cause of the regional southeastward increase in rank is likely to be the combined influence of greater depth of burial and proximity to late Paleozoic orogenic activity. The anomalous trends could be due to increased depth of burial, but are more likely to have resulted from tectonic activity along faults and basement discontinuities. The thermal disturbances necessary to increase the coal rank need not have been great, perhaps on the order of 10-20/sup 0/C (18-36/sup 0/F) above the metamorphic temperatures of the lower rank coals.

Hower, J.C.; Trinkle, E.J.

1984-12-01T23:59:59.000Z

113

Energy Conservation in China North Industries Corporation  

E-Print Network [OSTI]

ENERGY CONSERVATION IN CHINA NORTH INDUSTRIES CORPORATION Wang Tian You, Chen Hua De, Jing Xing Chu, Ling Rui Fu, China North Industries Corporation Beijing, People's Republic of China ABSTRACT This paper describes an overview of the energy... conservation in China North Industries Corporation. It shows how the corporation improves energy effi ciencies and how it changes constitution of fuel-- converting oil consumption to coal. Energy management organization, energy balance in plants...

You, W. T.; De, C. H.; Chu, J. X.; Fu, L. R.

114

Natural mercury isotope variation in coal deposits and organic soils  

SciTech Connect (OSTI)

There is a need to distinguish among sources of Hg to the atmosphere in order to more fully understand global Hg pollution. In this study we investigate whether coal deposits within the United States, China, and Russia-Kazakhstan, which are three of the five greatest coal-producing regions, have diagnostic Hg isotopic fingerprints that can be used to discriminate among Hg sources. We also investigate the Hg isotopic composition of modern organic soil horizons developed in areas distant from point sources of Hg in North America. Mercury stored in coal deposits displays a wide range of both mass dependent fractionation and mass independent fractionation. {delta}{sup 202}Hg varies in coals by 3{per_thousand} and {Delta}{sup 201}Hg varies by 0.9{per_thousand}. Combining these two Hg isotope signals results in what may be a unique isotopic 'fingerprint' for many coal deposits. Mass independent fractionation of mercury has been demonstrated to occur during photochemical reactions of mercury. This suggests that Hg found in most coal deposits was subjected to photochemical reduction near the Earth's surface prior to deposition. The similarity in MDF and MIF of modern organic soils and coals from North America suggests that Hg deposition from coal may have imprinted an isotopic signature on soils. This research offers a new tool for characterizing mercury inputs from natural and anthropogenic sources to the atmosphere and provides new insights into the geochemistry of mercury in coal and soils. 35 refs., 2 figs., 1 tab.

Abir, Biswas; Joel D. Blum; Bridget A. Bergquist; Gerald J. Keeler; Zhouqing Xie [University of Michigan, Ann Arbor, MI (United States). Department of Geological Sciences

2008-11-15T23:59:59.000Z

115

COFIRING BIOMASS WITH LIGNITE COAL  

SciTech Connect (OSTI)

The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

Darren D. Schmidt

2002-01-01T23:59:59.000Z

116

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

transportation component of coal price should also increase;investment. Coal costs and prices are functions of a numberto forecast coal demand, supply, and prices from now to

McCollum, David L

2007-01-01T23:59:59.000Z

117

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network [OSTI]

90e COAL DESULFURIZATION PRIOR TO COMBUSTION J. Wrathall, T.of coal during combustion. The process involves the additionCOAL DESULFURIZATION PRIOR TO COMBUSTION Lawrence Berkeley

Wrathall, J.

2013-01-01T23:59:59.000Z

118

Coal data: A reference  

SciTech Connect (OSTI)

This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

Not Available

1995-02-01T23:59:59.000Z

119

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

120

sorbent-univerisity-north-dakota | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of CO2 Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents (CACHYS(tm)) Project No.: DE-FE0007603 The University of North Dakota (UND) is...

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mining and Gas and Oil Production (North Dakota)  

Broader source: Energy.gov [DOE]

This chapter of the North Dakota Code contains provisions for oil, gas, and coal mining and the development of geothermal resources. This chapter addresses claims to mines, licensing and control of...

122

Optimal(Estimation(of(North(American(Methane( Emissions(using(GOSAT(data:(  

E-Print Network [OSTI]

Optimal(Estimation(of(North(American(Methane( Emissions(using(GOSAT(data:( A&Sciences&Division,&Lawrence&Berkeley&National&Laboratory,&Berkeley,&CA,&USA.! *aturner@fas.harvard.edu& Harvard(University( #12;Prior Methane Emissions from EDGARv4.2/Kaplan Major/Gas Waste Coal 0 5 10 15 20 Wetlands Livestock Oil/Gas Landfills Coal North America Global #12;Satellites

Jacob, Daniel J.

123

A stratigraphic study of the Georgetown Formation (Washita Division, Lower Cretaceous) on the north flank of the San Marcos Platform, south-central Texas  

E-Print Network [OSTI]

shale. The majority of the thinning of the Georgetown Formation can be attributed to the southward thinning of these shale beds. This thinning suggests a northern source area with occasional periods of erosion. Subsurface work by Tucker ( 1962... renam1ng by Vaughan. Adkins and Lozo (1951) used the Brazos River as the arbitrary line between the Grayson shale to the north and the Del Rio clay to the south. The Grayson shale is a brownish-gray shale to marl with many limestone beds in the upper...

Dowling, Sharron Lea

1981-01-01T23:59:59.000Z

124

Upgraded Coal Interest Group  

SciTech Connect (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

125

Coal Combustion Science  

SciTech Connect (OSTI)

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

126

Utilization ROLE OF COAL COMBUSTION  

E-Print Network [OSTI]

, materials left after combustion of coal in conventional and/ or advanced clean-coal technology combustors and advanced clean-coal technology combustors. This paper describes various coal combustion products produced (FGD) products from pulverized coal and advanced clean-coal technology combustors. Over 70% of the CCPs

Wisconsin-Milwaukee, University of

127

Microbial solubilization of coal  

DOE Patents [OSTI]

This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

1990-01-01T23:59:59.000Z

128

Coal gasification apparatus  

DOE Patents [OSTI]

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

129

Autothermal coal gasification  

SciTech Connect (OSTI)

Test data from the Ruhrchemie/Ruhrkohle Texaco coal gasification demonstration plant at Oberhausen are reported. (5 refs.)

Konkol. W.; Ruprecht, P.; Cornils, B.; Duerrfeld, R.; Langhoff, J.

1982-03-01T23:59:59.000Z

130

Thirteenth biennial lignite symposium: technology and utilization of low-rank coals proceedings. Volume 2  

SciTech Connect (OSTI)

These proceedings are the collected manuscripts from the 1985 Lignite Symposium held at Bismarck, North Dakota on May 21-23, 1985. Sponsorship of the thirteenth biennial meeting was by the United States Department of Energy, the University of North Dakota Energy Research Center, and the Texas University Coal Research Consortium. Seven technical sessions plus two luncheons and a banquet were held during the two and a half day meeting. The final half day included tours of the Great Plains Gasification Plant; Basin Electric's Antelope Valley Power Station; and the Freedom Mine. Sessions covered diverse topics related to the technology and use of low-rank coals including coal development and public policy, combustion, gasification, environmental systems for low-rank coal utilization, liquefaction, beneficiation and coal mining and coal inorganics. All the papers have been entered individually into EDB and ERA.

Jones, M.L. (ed.)

1986-02-01T23:59:59.000Z

131

Thirteenth biennial lignite symposium: technology and utilization of low-rank coals proceedings. Volume 1  

SciTech Connect (OSTI)

These proceedings are the collected manuscripts from the 1985 Lignite Symposium held at Bismarck, North Dakota on May 21-23. Sponsorship of the thirteenth biennial meeting was by the United States Department of Energy, the University of North Dakota Energy Research Center, and the Texas University Coal Research Consortium. Seven technical sessions were held during the two and a half day meeting. The final half day included tours of the Great Plains Gasification Plant; Basin Electric's Antelope Valley Power Station; and the Freedom Mine. Sessions covered diverse topics related to the technology and use of low-rank coals including coal development and public policy, combustion, gasification, environmental systems for low-rank coal utilization, liquefaction, beneficiation and coal mining and coal inorganics. Twenty-four papers have been entered individually into EDB and ERA.

Jones, M.L. (ed.)

1986-02-01T23:59:59.000Z

132

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

Coal Prices..AEO 2007 forecast for coal prices for PRB coal. Transmissionregimes. Sensitivity to Coal Prices Figure 9 is similar to

Phadke, Amol

2008-01-01T23:59:59.000Z

133

Coal recovery process  

DOE Patents [OSTI]

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

134

Bio-coal briquette  

SciTech Connect (OSTI)

Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

Honda, Hiroshi

1993-12-31T23:59:59.000Z

135

Coal: the new black  

SciTech Connect (OSTI)

Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

Tullo, A.H.; Tremblay, J.-F.

2008-03-15T23:59:59.000Z

136

Chemical comminution of coal  

SciTech Connect (OSTI)

The objective of the present research is to study the chemical reactivity of a mixture of methyl alcohol and aqueous sodium hydroxide solution in the temperature range 298 to 363 K, and a caustic concentration of 0 to 10 wt. %, on an Iowa bituminous coal. The sample studied was collected from coal zone 4, equivalent to most historical references to Laddsdale coal. The coals in this zone are typical high-sulfur, high-ash middle Pennsylvania Cherokee group coals. The apparent rank is high-volatile C bituminous coal. The relatively high content of sulfur and 23 other elements in these coals is related to near neutral (6-8) pH conditions in the depositional and early diagenetic environments, and to postdepositional sphalerite/calcite/pyrite/kaolinite/barite mineralization.

Mamaghani, A.H.; Beddow, J.K.; Vetter, A.F.

1987-02-01T23:59:59.000Z

137

Low-rank coal research semiannual report, January 1992--June 1992  

SciTech Connect (OSTI)

This semiannual report is a compilation of seventeen reports on ongoing coal research at the University of North Dakota. The following research areas are covered: control technology and coal preparation; advanced research and technology development; combustion; liquefaction and gasification. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1992-12-31T23:59:59.000Z

138

GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA  

SciTech Connect (OSTI)

Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

2004-01-01T23:59:59.000Z

139

Impact of mine closure and access facilities on gas emissions from old mine workings to surface: examples of French iron and coal  

E-Print Network [OSTI]

: examples of French iron and coal Lorraine basins C. Lagny, R. Salmon, Z. Pokryszka and S. Lafortune (INERIS of mine shafts located in the iron Lorraine basin, in the Lorraine and in North-East coal basins are quite in mine workings but gas entrance and exit are allowed. Coal shafts are secured and can be equipped

Boyer, Edmond

140

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

Council (NCC), 2006, Coal: Americas Energy Future, VolumeAssessments to Inform Energy Policy, Coal: Research andOF RAIL TRANSPORTATION OF COAL The Federal Energy Regulatory

McCollum, David L

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

OF RAIL TRANSPORTATION OF COAL The Federal Energy RegulatoryPlants Due to Coal Shortages, Federal Energy RegulatoryCouncil (NCC), 2006, Coal: Americas Energy Future, Volume

McCollum, David L

2007-01-01T23:59:59.000Z

142

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

of total electricity generation is because coal plants haveplants come to play an important role in the electricity generationplants will be built in the years around 2020, thereby increasing coals share of electricity generation

McCollum, David L

2007-01-01T23:59:59.000Z

143

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

144

Abundance and ecological implications of microplastic debris in the North Pacific Subtropical Gyre  

E-Print Network [OSTI]

of the central North Pacific ocean. Nature 241:271271. doi:waste distributions in Pacific Ocean. Nature 247:3032. doi:of the central North Pacific ocean. Nature 241:271271. doi:

Goldstein, Miriam Chanita

2012-01-01T23:59:59.000Z

145

Pulverized coal fuel injector  

DOE Patents [OSTI]

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

146

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

McCollum, David L

2007-01-01T23:59:59.000Z

147

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Credit Extra Fuel Oil Coal to gasifier Na cost Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

148

Coal Mining Tax Credit (Arkansas)  

Broader source: Energy.gov [DOE]

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

149

Illinois Coal Revival Program (Illinois)  

Broader source: Energy.gov [DOE]

The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

150

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network [OSTI]

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

151

US coal market softens  

SciTech Connect (OSTI)

The operators table some near term expansion plans, meanwhile long-term fundamentals look strong. This is one of the findings of the Coal Age Forecast 2007 survey of readers predictions on production and consumption of coal and attitudes in the coal industry. 50% of respondents expected product levels in 2007 to be higher than in 2006 and 50% described the attitude in the coal industry to be more optimistic in 2007 than in 2006. Most expenditure is anticipated on going on new equipment but levels of expenditure will be less than in 2006. 7 figs.

Fiscor, S.

2007-01-15T23:59:59.000Z

152

Coal Gasification Systems Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Cost Coal Conversion to High Hydrogen Syngas; FE0023577 Alstom's Limestone Chemical Looping Gasification Process for High Hydrogen Syngas Generation; FE0023497 OTM-Enhanced...

153

Coal extraction process  

SciTech Connect (OSTI)

Sub-divided coal is extracted under non-thermally destructive conditions with a solvent liquid containing a compound having the general formula:

Hammack, R. W.; Sears, J. T.; Stiller, A. H.

1981-06-09T23:59:59.000Z

154

Clean Coal Projects (Virginia)  

Broader source: Energy.gov [DOE]

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

155

Coal Mining Regulations (Kentucky)  

Broader source: Energy.gov [DOE]

Kentucky Administrative Regulation Title 405 chapters 1, 2, 3, 5, 7, 8, 10, 12, 16, 18 and 20 establish the laws governing coal mining in the state.

156

Coal Development (Nebraska)  

Broader source: Energy.gov [DOE]

This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

157

Clean coal technology applications  

SciTech Connect (OSTI)

{open_quotes}Coal is a stratified rock formed of the more or less altered remains of plants (together with associated mineral matter) which flourished in past ages{hor_ellipsis} The problem of the origin and maturing of coal is complicated by the fact that every coal contains, in addition to carbon, hydrogen and oxygen, variable proportions of nitrogen and sulfur which are combined in unknown ways in the organic molecules...{close_quotes}. The challenge with coal has always been the management of its mineral matter, sulfur and nitrogen contents during use. The carbon content of fuels, including coal, is a more recent concern. With clean coal technologies, there are opportunities for ensuring the sustained use of coal for a very long time. The clean coal technologies of today are already capable of reducing, if not eliminating, harmful emissions. The technologies of the future will allow coal to be burned with greatly reduced emissions, thus eliminating the necessity to treat them after they occur.

Bharucha, N.

1993-12-31T23:59:59.000Z

158

Cooperative research program in coal liquefaction  

SciTech Connect (OSTI)

This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1991-01-01T23:59:59.000Z

159

Cooperative research program in coal liquefaction  

SciTech Connect (OSTI)

Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1992-01-01T23:59:59.000Z

160

Cross flow cyclonic flotation column for coal and minerals beneficiation  

DOE Patents [OSTI]

An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.

Lai, Ralph W. (Upper St. Clair, PA); Patton, Robert A. (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Illinois Coal Development Program (Illinois)  

Broader source: Energy.gov [DOE]

The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

162

Clean coal technologies market potential  

SciTech Connect (OSTI)

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

163

Coal-bench architecture as a means of understanding regional changes in coal thickness and quality  

SciTech Connect (OSTI)

Analysis of the Fire Creek (Westphalian B), Pond Creek (lower Westphalian B), and Stockton (Westphalian B) coals, three of the most heavily mined coals in the Central Appalachian Basin, shows that all have a similar multiple-bench architecture of at least two benches split by a regional clastic parting or durain. Coal benches beneath regionally extensive partings are generally less continuous, thinner, more palynologically variable, higher in ash yield, and higher in sulfur content than coal benches above regional partings in all three coals. Where thick, benches above regional partings tend to exhibit temporal palynological changes from lycopod- to fern-dominant. Where inertinite-rich/fern-dominant benches are overlain by additional benches, the upper benches are limited in extent, variable in thickness, high in sulfur content and ash yield, and split away from the coal. The multiple-bench architecture exhibited by these coals is interpreted to represent a cyclic mire succession that was common in the Middle Pennsylvanian. Peats began as planar mires infilling an irregular topography during rising base level. When the topography was infilled, unconfined flooding was possible and resulted in widespread partings. Ponding above these clay-rich flood deposits led to re-establishment of new planar mires with greater continuity than the underlying mires. The extent of these mires provided buffers to clastic influx and, in many cases, allowed domed conditions to develop. Doming resulted in thick, high-quality coal benches. In some cases, a third stage of planar peats, with similar characteristics to the planar peats at the base of the beds, developed on the unevenly distributed clastics that buried underlying mires during continued base-level rise.

Greb, S.F.; Eble, C.F. [Kentucy Geological Survey, Lexington, KY (United States); Hower, J.C. [Center for Applied Research, Lexington, KY (United States)

1996-09-01T23:59:59.000Z

164

Method for coal liquefaction  

DOE Patents [OSTI]

A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

Wiser, Wendell H. (Kaysville, UT); Oblad, Alex G. (Salt Lake City, UT); Shabtai, Joseph S. (Salt Lake City, UT)

1994-01-01T23:59:59.000Z

165

Annotated bibliography of coal in the Caribbean region. [Lignite  

SciTech Connect (OSTI)

The purpose of preparing this annotated bibliography was to compile information on coal localities for the Caribbean region used for preparation of a coal map of the region. Also, it serves as a brief reference list of publications for future coal studies in the Caribbean region. It is in no way an exhaustive study or complete listing of coal literature for the Caribbean. All the material was gathered from published literature with the exception of information from Cuba which was supplied from a study by Gordon Wood of the US Geological Survey, Branch of Coal Resources. Following the classification system of the US Geological Survey (Wood and others, 1983), the term coal resources has been used in this report for reference to general estimates of coal quantities even though authors of the material being annotated may have used the term coal reserves in a similar denotation. The literature ranges from 1857 to 1981. The countries listed include Colombia, Mexico, Venezuela, Cuba, the Dominican Republic, Haiti, Jamaica, Puerto Rico, and the countries of Central America.

Orndorff, R.C.

1985-01-01T23:59:59.000Z

166

State coal profiles, January 1994  

SciTech Connect (OSTI)

The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

Not Available

1994-02-02T23:59:59.000Z

167

analysis north america: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2002 Environmental Sciences and Ecology Websites Summary: quality as they vary with climate in grass- land ecosystems throughout central North America including tall-grass...

168

Geophysical Setting of the Blue Mountain Geothermal Area, North...  

Open Energy Info (EERE)

Geothermal Area, North-Central Nevada and Its Relationship to a Crustal-Scale Fracture Associated with the Inception of the Yellowstone Hotspot Jump to: navigation, search...

169

Coal in China  

SciTech Connect (OSTI)

The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

Minchener, A.J. [IEA Clean Coal Centre, London (United Kingdom)

2005-07-01T23:59:59.000Z

170

Oxidative derivatization and solubilization of coal. Final report. Period: October 1, 1986 - April 30, 1988  

SciTech Connect (OSTI)

We investigated the solubilization of coal by oxidative means to produce motor fuels. Nitric acid was used in the first of two approaches taken to cleave aliphatic linkages in coal and reduce the size of its macrostructure. Mild conditions, with temperatures up to a maximum of 75 C, and nitric acid concentrations below 20% by weight, characterize this process. The solid product, obtained in high yields, is soluble in polar organic solvents. Lower alcohols, methanol in particular, are of interest as carrier solvents in diesel fuel applications. Coals investigated were New York State peat, Wyodak subbituminous coal, North Dakota lignite, and Illinois No. 6 bituminous coal. The lower tank coals were easily converted and appear well suited to the process, while the bituminous Illinois No. 6 and Pitt Seam coals were unreactive. We concentrated our efforts on Wyodak coal and North Dakota lignite. Reaction conditions with regards to temperature, acid concentration, and time were optimized to obtain high product selectivity at maximum conversion. A continuous process scheme was developed for single pass coal conversions of about 50% to methanol-soluble product.

Schulz, J.G.; Porowski, E.N.; Straub, A.M.

1988-05-01T23:59:59.000Z

171

Coal market momentum converts skeptics  

SciTech Connect (OSTI)

Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

Fiscor, S.

2006-01-15T23:59:59.000Z

172

Conditioner for flotation of coal  

SciTech Connect (OSTI)

A method for recovering coal is described which comprises the steps of floating coal in an aqueous frothing medium containing an amount of a condensation product of an alkanolamine and naphthenic acid sufficient to increase the recovery of coal as compared to the recovery of coal in an identical process using none of the condensation product.

Nimerick, K.H.

1988-03-22T23:59:59.000Z

173

PressurePressure Indiana Coal Characteristics  

E-Print Network [OSTI]

TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · Coal Indiana Total Consumption Electricity 59,664 Coke 4,716 Industrial 3,493 Major Coal- red power plantsTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL

Fernández-Juricic, Esteban

174

North Central Texas Water Quality Final Report  

E-Print Network [OSTI]

source pollution sources in the watershed. The District has already initiated efforts to address the water quality issues, developing a water quality monitoring program to collect data for these reservoirs and their associated watersheds. The District... has collected water quality data for nearly 40 parameters since 1989. Effluent discharges from the wastewater treatment plans and nonpoint source pollution from urban and agricultural runoff are reported as the major causes for water quality...

Berthold, T. Allen

175

Recreational boating in North Central Texas  

E-Print Network [OSTI]

. . . . . . . . . ~ . . ~ . . ~ ~ ~ ~ ~ ~ 90 23. Concession Number One ? Marina 24. Concession Number One ? Cafe . 93 93 25. General Condition of Picnic Facilities at Concession Number One, Lake Tyler 94 26. View of Concession Number One From the Picnic Area G-1. Access Points Most... for Second Wave C. Recreational Boating Survey Questionnaire D. Informational Sketch for Each Ma)or Lake E. Distance Tables Which Give Road Di. stance From Each Smith County Community to Each of the Major Lakes F. Questionnaire Response Tables G. Field...

Cowart, Michael Ray

1971-01-01T23:59:59.000Z

176

Coal liquefaction process  

DOE Patents [OSTI]

A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

Wright, Charles H. (Overland Park, KS)

1986-01-01T23:59:59.000Z

177

Coal liquefaction process  

DOE Patents [OSTI]

A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

Wright, C.H.

1986-02-11T23:59:59.000Z

178

Coal in National Petroleum Reserve in Alaska (NPRA): framework geology and resources  

SciTech Connect (OSTI)

The North Slope of Alaska contains huge resources of coal, much of which lies within NPRA. The main coal-bearing units, the Corwin and Chandler Formations of the Nanushuk Group (Lower and Upper Cretaceous), underlie about 20,000 mi/sup 2/ (51,800 km/sup 2/) of NPRA. They contain low-sulfur, low-ash, and probable coking-quality coal in gently dipping beds as thick as 20 ft (6.1 m) within stratigraphic intervals as thick as 4500 ft (1370 m). Lesser coal potential occurs in other Upper Cretaceous units and in Lower Mississippian and Tertiary strata. The river-dominated Corwin and Umiat deltas controlled the distribution of Nanushuk Group coal-forming environments. Most organic deposits formed on delta plains; fewer formed in alluvial plain or delta-front environments. Most NPRA coal beds are expected to be lenticular and irregular, as they probably accumulated in interdistributary basins, infilled bays, or inland flood basins, whereas some blanket beds may have formed on broad, slowly sinking, delta lobes. The major controls of coal rank and degree of deformation were depth of burial and subsequent tectonism. Nanushuk Group coal resources in NPRA are estimated to be as much as 2.75 trillion short tons. This value is the sum of 1.42 trillion short tons of near-surface (< 500 ft or 150 m of overburden) bituminous coal, 1.25 trillion short tons of near-surface subbituminous coal, and 0.08 trillion shorts tons of more deeply buried subbituminous coal. These estimates indicate that the North Slope may contain as much as one-third of the United States coal potential.

Sable, E.G.; Stricker, G.D.

1985-04-01T23:59:59.000Z

179

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

generation systems. Coal energy density could be increasedfuel reserves were coal by energy content; 19% were oil, andConsumption, 2007 coal/primary energy consumption Source: BP

Aden, Nathaniel

2010-01-01T23:59:59.000Z

180

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

19 3.4. Coking coal for iron & steels FOB export value for coking coal was relatively stables FOB export value for coking coal significantly increased

Aden, Nathaniel

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

12 2.6. International coal prices and18 International coal prices and trade In parallel with the2001, domestic Chinese coal prices moved from stable levels

Aden, Nathaniel

2010-01-01T23:59:59.000Z

182

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

farms with advanced coal generation facilities and operatingfarms with advanced coal generation facilities and operatingin the stand-alone coal generation option (IGCC+CCS plant)

Phadke, Amol

2008-01-01T23:59:59.000Z

183

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

services. Power generation Coal increasingly dominates28 Thermal coal electricity generation efficiency alsostudy examines four coal-thermal generation technology types

Aden, Nathaniel

2010-01-01T23:59:59.000Z

184

Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

185

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

186

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

of deploying advanced coal power in the Chinese context,12 2.6. International coal prices and12 III. Chinese Coal

Aden, Nathaniel

2010-01-01T23:59:59.000Z

187

Coal desulfurization in a rotary kiln combustor  

SciTech Connect (OSTI)

The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

Cobb, J.T. Jr.

1992-09-11T23:59:59.000Z

188

Aqueous coal slurry  

DOE Patents [OSTI]

An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

Berggren, Mark H.; Smit, Francis J.; Swanson, Wilbur W.

1993-04-06T23:59:59.000Z

189

Coal markets squeeze producers  

SciTech Connect (OSTI)

Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

Ryan, M.

2005-12-01T23:59:59.000Z

190

Clean Coal Research  

Broader source: Energy.gov [DOE]

DOE's clean coal R&D isfocused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

191

Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

192

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

these provisions are assumed to result in 1 gigawatt of advanced coal-fired capacity with carbon capture and sequestration by 2017. Subtitle B which extends the phaseout of...

193

Coal Market Module This  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

together, are assumed to result in about 1 gigawatt of advanced coal-fired capacity with carbon capture and sequestration by 2017. EIEA was passed in October 2008 as part of the...

194

Quarterly coal report  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

Young, P.

1996-05-01T23:59:59.000Z

195

Aqueous coal slurry  

DOE Patents [OSTI]

An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

1993-01-01T23:59:59.000Z

196

Geology of the Hanna Formation, Hanna Underground Coal Gasification Site, Hanna, Wyoming  

SciTech Connect (OSTI)

The Hanna Underground Coal Gasification (UCG) study area consists of the SW1/4 of Section 29 and the E1/2SE1/4 of Section 30 in Township 22 North, Range 81 West, Wyoming. Regionally, this is located in the coal-bearing Hanna Syncline of the Hanna Basin in southeast Wyoming. The structure of the site is characterized by beds dipping gently to the northeast. An east-west fault graben complex interrupts this basic trend in the center of the area. The target coal bed of the UCG experiments was the Hanna No. 1 coal in the Hanna Formation. Sedimentary rocks comprising the Hanna Formation consist of a sequence of nonmarine shales, sandstones, coals and conglomerates. The overburden of the Hanna No. 1 coal bed at the Hanna UCG site was divided into four broad local stratigraphic units. Analytical studies were made on overburden and coal samples taken from cores to determine their mineralogical composition. Textural and mineralogical characteristics of sandstones from local stratigraphic units A, B, and C were analyzed and compared. Petrographic analyses were done on the coal including oxides, forms of sulfur, pyrite types, maceral composition, and coal rank. Semi-quantitative spectrographic and analytic geochemical analyses were done on the overburden and coal and relative element concentrations were compared. Trends within each stratigraphic unit were also presented and related to depositional environments. The spectrographic analysis was also done by lithotype. 34 references, 60 figures, 18 tables.

Oliver, R.L.; Youngberg, A.D.

1984-01-01T23:59:59.000Z

197

A portfolio approach to energy governance : state management of China's coal and electric power supply industries  

E-Print Network [OSTI]

This study addresses the extent to which China's central state devolved ownership and investment levels in its energy sector to other actors during the modern reform period (1978- 2008). The project focused on China's coal ...

Cunningham, Edward A., IV (Edward Albert)

2009-01-01T23:59:59.000Z

198

Fort Union coals of the northern Rockies and Great Plains: A linchpin toward a new approach to national coal resource assessment  

SciTech Connect (OSTI)

The U.S. Geological Survey recently initiated a 5-year program to assess the Nation`s coal resources, which emphasizes a new approach relating coal quantity and quality. One assessment region includes the northern Rocky Mountains and Great Plains of Wyoming, Montana, and North Dakota, which contains a vast expanse of Paleocene Fort Union coal-bearing rocks that yielded about 30% (>299 million short tons) of the total coal produced (1.03 billion short tons) in the U.S. for 1994. Production is from 14 coal beds/zones (Wyodak-Anderson, Anderson-Dietz, Rosebud, Beulah-Zap, Hagel, Harmon, Ferris Nos. 23, 24, 25, 31, 38, 39, Hanna No. 80, and Deadman seams) mined in the Hanna, Green River, Powder River, and Williston Basins. About 254 million short tons produced from 25 mines are from the Wyodak-Anderson, Anderson-Dietz, and Rosebud coal beds/zones in the Powder River Basin (PRB). These coals are considered as clean and low contaminant compliance coals containing less sulfur and ash (arithmetic mean for sulfur is 0.58% and ash is 7%, as-received basis) than coals produced from other regions in the conterminous U.S. Preliminary elemental analysis of coal samples from the PRB for those hazardous air pollutants (HAPs) named in the Amendments to the 1990 Clean Air Act (including Sb, As, Be, Cd, Cr, Co, Pb, Mn, Hg, Ni, Se, and U), indicates that PRB coals are lower in HAPs contents than other coals from within the region and also other regions in the U.S. Arithmetic means of HAPs contents of these coals are: Sb=0.35, As=3.4, Be=0.6, Cd=0.08, Cr=6.1, Co=1.6, Pb=3.6, Mn=23.5, Hg=0.09, Ni=4.6, Se=0.9, and U=1.1 (in ppm, as-received, and on a whole-coal basis). These coal-quality parameters will be used to delineate coal quantity of the 14 Fort Union coal beds/zones defined in the resource assessment for expanded utilization of coals into the next several decades as controlled by present and future environmental constraints.

Flores, R.M.; Stricker, G.D. [Geological Survey, Denver, CO (United States)

1996-06-01T23:59:59.000Z

199

Coal liquefaction process  

DOE Patents [OSTI]

This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

1985-01-01T23:59:59.000Z

200

Coal Liquefaction desulfurization process  

DOE Patents [OSTI]

In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

Givens, Edwin N. (Bethlehem, PA)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Method for coal liquefaction  

DOE Patents [OSTI]

A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400 C at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1. 1 figures.

Wiser, W.H.; Oblad, A.G.; Shabtai, J.S.

1994-05-03T23:59:59.000Z

202

Wood-Coal Fired "Small" Boiler Case Study  

E-Print Network [OSTI]

extremely attrac t:i.ve to today's capital investment market. 7. Several states, including North Carolina, have enacted 15% State Tax Credits to further the use of wood fuel boilers. Specific examples of the utilization of wood as a boiler fuel include... on the fact that Galaxy would be purchasing all of its waste wood fuel, as well as supplemental coal if needed. Efficiency guarantees of 80% on wood waste with less than 10% moisture content were given, as well as 78.5% on coal. These efficiencies were...

Pincelli, R. D.

1980-01-01T23:59:59.000Z

203

Coal science for the clean use of coal  

SciTech Connect (OSTI)

Coal will need to be retained as a major source of energy in the next century. It will need to be used more effectively and more cleanly. In order to achieve this, it is necessary to introduce new technology supported by a local community of science and technology. Only in this way can the full benefits of international advances in coal utilization be fully achieved. It is important that full advantage be taken of the advances that have been achieved in laboratory techniques and in the better understanding of fundamental coal science. This paper reviews available technologies in power generation, industrial process heat, coal combustion, coal gasification, and coal analytical procedures.

Harrison, J.S. [Univ. of Leeds (United Kingdom)

1994-12-31T23:59:59.000Z

204

Coal rank trends in western Kentucky coal field and relationship to hydrocarbon occurrence  

SciTech Connect (OSTI)

Extensive oil and gas development has occurred in the high volatile C bituminous region north of the Rough Creek fault zone, but few pools are known within the Webster syncline south of the fault zone. The rank of the Middle Pennsylvanian coals can be used to estimate the level of maturation of the Devonian New Albany Shale, a likely source rock for much of the oil and gas in the coal field. Based on relatively few data points, previous studies on the maturation of the New Albany Shale, which lies about 1 km below the Springfield coal, indicate an equivalent medium volatile bituminous (1.0-1.2% R{sub max}) rank in the Fluorspar district. New Albany rank decreases to an equivalent high volatile B/C (0.6% R{sub max}) north of the Rough Creek fault zone. Whereas the shale in the latter region is situated within the oil generation window, the higher rank region is past the peak of the level of maturation of the New Albany Shale. The significance of the New Albany reflectancy is dependent on the suppression of vitrinite reflectance in organic-rich shales. The possibility of reflectance suppression would imply that the shales could be more mature than studies have indicated.

Hower, J.C.; Rimmer, S.M.; Williams, D.A.; Beard, J.G. (Univ. of Kentucky, Lexington (USA))

1989-09-01T23:59:59.000Z

205

COAL LOGISTICS. Tracking U.S. Coal Exports  

SciTech Connect (OSTI)

COAL LOGISTICS has the capability to track coal from a U. S. mine or mining area to a foreign consumer`s receiving dock. The system contains substantial quantities of information about the types of coal available in different U. S. coalfields, present and potential inland transportation routes to tidewater piers, and shipping routes to and port capabilities in Italy, Japan, South Korea, Taiwan, and Thailand. It is designed to facilitate comparisons of coal quality and price at several stages of the export process, including delivered prices at a wide range of destinations. COAL LOGISTICS can be used to examine coal quality within or between any of 18 U. S. coalfields, including three in Alaska, or to compare alternative routes and associated service prices between coal-producing regions and ports-of-exit. It may be used to explore the possibilities of different ship sizes, marine routes, and foreign receiving terminals for coal exports. The system contains three types of information: records of coal quality, domestic coal transportation options, and descriptions of marine shipment routes. COAL LOGISTICS contains over 3100 proximate analyses of U. S. steam coals, usually supplemented by data for ash softening temperature and Hardgrove grindability; over 1100 proximate analyses for coals with metallurgical potential, usually including free swelling index values; 87 domestic coal transportation options: rail, barge, truck, and multi-mode routes that connect 18 coal regions with 15 U. S. ports and two Canadian terminals; and data on 22 Italian receiving ports for thermal and metallurgical coal and 24 coal receiving ports along the Asian Pacific Rim. An auxiliary program, CLINDEX, is included which is used to index the database files.

Sall, G.W. [US Department of Energy, Office of Fossil Energy, Washington, DC (United States)

1988-06-28T23:59:59.000Z

206

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/this operational mode, the gasifiers and other parts of the

Phadke, Amol

2008-01-01T23:59:59.000Z

207

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

application of new clean coal technologies with near zeroapplication of new clean coal technologies with near zero

Phadke, Amol

2008-01-01T23:59:59.000Z

208

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" CEP Aug. 78. Feed

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

209

Method of extracting coal from a coal refuse pile  

DOE Patents [OSTI]

A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

Yavorsky, Paul M. (Monongahela, PA)

1991-01-01T23:59:59.000Z

210

Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989  

SciTech Connect (OSTI)

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Not Available

1989-12-31T23:59:59.000Z

211

Composition and properties of coals from the Yurty coal occurrence  

SciTech Connect (OSTI)

Coals from the Yurty coal occurrence were studied. It was found that the samples were brown non-coking coals with low sulfur contents (to 1%) and high yields of volatile substances. The high heat value of coals was 20.6-27.7 MJ/kg. The humic acid content varied from 5.45 to 77.62%. The mineral matter mainly consisted of kaolinite, a-quartz, and microcline. The concentration of toxic elements did not reach hazardous values.

N.G. Vyazova; L.N. Belonogova; V.P. Latyshev; E.A. Pisar'kova [Irkutsk State University, Irkutsk (Russia). Research Institute of Oil and Coal Chemistry and Synthesis

2008-10-15T23:59:59.000Z

212

Coal combustion system  

DOE Patents [OSTI]

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

213

The Caterpillar Coal Gasification Facility  

E-Print Network [OSTI]

This paper is a review of one of America's premier coal gasification installations. The caterpillar coal gasification facility located in York, Pennsylvania is an award winning facility. The plant was recognized as the 'pace setter plant of the year...

Welsh, J.; Coffeen, W. G., III

1983-01-01T23:59:59.000Z

214

The world price of coal  

E-Print Network [OSTI]

A significant increase in the seaborne trade for coal over the past twenty years has unified formerly separate coal markets into a world market in which prices move in tandem. Due to its large domestic market, the United ...

Ellerman, A. Denny

1994-01-01T23:59:59.000Z

215

Surface Coal Mining Regulations (Mississippi)  

Broader source: Energy.gov [DOE]

The Surface Coal Mining Regulations are a combination of permitting requirements and environmental regulations that limit how, where and when coal can be mined. It protects lands that are under...

216

Montana Coal Mining Code (Montana)  

Broader source: Energy.gov [DOE]

The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

217

2009 Coal Age Buyers Guide  

SciTech Connect (OSTI)

The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

NONE

2009-07-15T23:59:59.000Z

218

The Asia-Pacific coal technology conference  

SciTech Connect (OSTI)

The Asia-Pacific coal technology conference was held in Honolulu, Hawaii, November 14--16, 1989. Topics discussed included the following: Expanded Horizons for US Coal Technology and Coal Trade; Future Coal-Fired Generation and Capacity Requirements of the Philippines; Taiwan Presentation; Korean Presentation; Hong Kong Future Coal Requirements; Indonesian Presentation; Electric Power System in Thailand; Coal in Malaysia -- A Position Paper; The US and Asia: Pacific Partners in Coal and Coal Technology; US Coal Production and Export; US Clean Coal Technologies; Developments in Coal Transport and Utilization; Alternative/Innovative Transport; Electricity Generation in Asia and the Pacific: Power Sector Demand for Coal, Oil and Natural Gas; Role of Clean Coal Technology in the Energy Future of the World; Global Climate Change: A Fossil Energy Perspective; Speaker: The Role of Coal in Meeting Hawaii's Power Needs; and Workshops on Critical Issues Associated with Coal Usage. Individual topics are processed separately for the data bases.

Not Available

1990-02-01T23:59:59.000Z

219

Sustainable development with clean coal  

SciTech Connect (OSTI)

This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

NONE

1997-08-01T23:59:59.000Z

220

Ashing properties of coal blends  

SciTech Connect (OSTI)

The fusion properties of sulfur materials present in coals were investigated. The treatment of the samples of eleven different coals is described. Thermal treatment of low temperature ashing (LTA) concentrates of eight of the coals was performed, and raw and wash ashing curves were examined to determine what quantitative correlations, if any, exist between ashing parameters and rank of coal. The actual form of the function which describes the ashing curve is derived.

Biggs, D.L.

1982-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Encoal mild coal gasification project: Commercial plant feasibility study  

SciTech Connect (OSTI)

In order to determine the viability of any Liquids from Coal (LFC) commercial venture, TEK-KOL and its partner, Mitsubishi Heavy Industries (MHI), have put together a technical and economic feasibility study for a commercial-size LFC Plant located at Zeigler Coal Holding Company`s North Rochelle Mine site. This resulting document, the ENCOAL Mild Coal Gasification Plant: Commercial Plant Feasibility Study, includes basic plant design, capital estimates, market assessment for coproducts, operating cost assessments, and overall financial evaluation for a generic Powder River Basin based plant. This document and format closely resembles a typical Phase II study as assembled by the TEK-KOL Partnership to evaluate potential sites for LFC commercial facilities around the world.

NONE

1997-07-01T23:59:59.000Z

222

Examining Management Issues for Incidentally Caught Species in Highly Migratory Species Fisheries in the Western and Central Pacific Ocean  

E-Print Network [OSTI]

dynamics in the central Pacific Ocean, 1952- 1998. II. Afishing for tunas in the Pacific Ocean. Ecology and Societywestern and central north Pacific Ocean. ISC. 2013a. Stock

Chan, Valerie Ann

2014-01-01T23:59:59.000Z

223

Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993  

SciTech Connect (OSTI)

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

Crelling, J.C.

1993-12-31T23:59:59.000Z

224

Pyrolysis of coal  

DOE Patents [OSTI]

A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

Babu, Suresh P. (Willow Springs, IL); Bair, Wilford G. (Morton Grove, IL)

1992-01-01T23:59:59.000Z

225

Healy Clean Coal Project  

SciTech Connect (OSTI)

The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

None

1997-12-31T23:59:59.000Z

226

CONSORTIUM FOR CLEAN COAL UTILIZATION  

E-Print Network [OSTI]

CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

Subramanian, Venkat

227

PNNL Coal Gasification Research  

SciTech Connect (OSTI)

This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

2010-07-28T23:59:59.000Z

228

Clean Coal Power Initiative  

SciTech Connect (OSTI)

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31T23:59:59.000Z

229

Fluorine in coal and coal by-products  

SciTech Connect (OSTI)

Fluorine occurs in awe amounts in most coals. It is typically associated with minerals of the apatite group, principally fluorapatite and clays, and with fluorite, tourmaline, topaz, amphiboles and micas. The average fluorine content of US coal is, according to the tabulation of Swanson, 74 {mu}g/g. In the United States, the lowest average fluorine concentration of 30 {mu}g/g is found in coals from Eastern Kentucky and the highest average value of 160 {mu}g/g is found in coals from Wyoming and New Mexico. The concentration range of fluorine in European coals is similar to that found in the US while the average fluorine content of Australian coals ranges from 15 to 500 {mu}g/g. We have determined the fluorine content in coal and fly ash standards by proton-induced gamma ray emission analysis (PIGE).

Robertson, J.D.; Wong, A.S.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States)

1994-12-31T23:59:59.000Z

230

FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN  

E-Print Network [OSTI]

Chapter WF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN By R.M. Flores,1 C.W. Keighin,1 A.M. Ochs,2 P.D. Warwick,1 L.R. Bader,1 and E.C. Murphy3 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 3 North

231

Low-rank coal study : national needs for resource development. Volume 2. Resource characterization  

SciTech Connect (OSTI)

Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources by depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.

Not Available

1980-11-01T23:59:59.000Z

232

apec coal flow: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

233

alkaline coal ash: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

234

EIS-0072: Great Plains Gasification Project, Mercer County, North Dakota  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy prepared this EIS to evaluate the impacts of a project to construct a 125 million cubic feet per day coal gasification facility located in Mercer County, North Dakota. The Office of Fossil Energy adopted three environmental impact evaluation documents prepared by other Federal agencies to develop this EIS.

235

Field study of disposed solid wastes from advanced coal processes  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

Not Available

1992-01-01T23:59:59.000Z

236

Catalytic coal liquefaction process  

DOE Patents [OSTI]

An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

Garg, D.; Sunder, S.

1986-12-02T23:59:59.000Z

237

Biochemical transformation of coals  

DOE Patents [OSTI]

A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

Lin, M.S.; Premuzic, E.T.

1999-03-23T23:59:59.000Z

238

Catalytic coal liquefaction process  

DOE Patents [OSTI]

An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

Garg, Diwakar (Macungie, PA); Sunder, Swaminathan (Allentown, PA)

1986-01-01T23:59:59.000Z

239

Catalytic coal hydroliquefaction process  

DOE Patents [OSTI]

A process is described for the liquefaction of coal in a hydrogen donor solvent in the presence of hydrogen and a co-catalyst combination of iron and a Group VI or Group VIII non-ferrous metal or compounds of the catalysts.

Garg, Diwakar (Macungie, PA)

1984-01-01T23:59:59.000Z

240

National Coal Quality Inventory (NACQI)  

SciTech Connect (OSTI)

The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

Robert Finkelman

2005-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Coal-oil slurry preparation  

DOE Patents [OSTI]

A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

Tao, John C. (Perkiomenville, PA)

1983-01-01T23:59:59.000Z

242

Coal mine methane global review  

SciTech Connect (OSTI)

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

243

Underground Coal Thermal Treatment  

SciTech Connect (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: ? Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). ? Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). ? Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). ? Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

244

Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program  

Broader source: Energy.gov [DOE]

DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems.

245

Report to the United States Congress clean coal technology export markets and financing mechanisms  

SciTech Connect (OSTI)

This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country`s coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently.

Not Available

1994-05-01T23:59:59.000Z

246

Moist caustic leaching of coal  

DOE Patents [OSTI]

A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

Nowak, Michael A. (Elizabeth, PA)

1994-01-01T23:59:59.000Z

247

A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio  

E-Print Network [OSTI]

5] H2A. H2A central hydrogen production model users guide,Strategies for Future Hydrogen Production and Use. Nationalpaper, coal-based hydrogen production with CCS can signi?

Johnson, Nils; Yang, Christopher; Ogden, J

2009-01-01T23:59:59.000Z

248

Investigation of the carbon dioxide sorption capacity and structural deformation of coal  

SciTech Connect (OSTI)

Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organic matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.

Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav; Harbert, William

2010-01-01T23:59:59.000Z

249

Western Coal/Great Lakes Alternative export-coal conference  

SciTech Connect (OSTI)

This conference dealt with using the Great Lakes/St. Lawrence Seaway as an alternative to the East and Gulf Coasts for the exporting of coal to Europe and the potential for a piece of the European market for the subbituminous coals of Montana and Wyoming. The topics discussed included: government policies on coal exports; the coal reserves of Montana; cost of rail transport from Western mines to Lake Superior; the planning, design, and operation of the Superior Midwest Energy Terminal at Superior, Wisconsin; direct transfer of coal from self-unloading lakers to large ocean vessels; concept of total transportation from mines to users; disadvantage of a nine month season on the Great Lakes; costs of maritime transport of coal through the Great Lakes to Europe; facilities at the ice-free, deep water port at Sept Iles; the use of Western coals from an environmental and economic viewpoint; the properties of Western coal and factors affecting its use; the feasibility of a slurry pipeline from the Powder River Basin to Lake Superior; a systems analysis of the complete hydraulic transport of coal from the mine to users in Europe; the performance of the COJA mill-burner for the combustion of superfine coal; demand for steam coal in Western Europe; and the effect the New Source Performance Standards will have on the production and use of Western coal. A separate abstract was prepared for each of the 19 papers for the Energy Data Base (EDB); 17 will appear in Energy Research Abstracts (ERA) and 11 in Energy Abstracts for Policy Analysis (EAPA). (CKK)

Not Available

1981-01-01T23:59:59.000Z

250

High-sulfur coals in the eastern Kentucky coal field  

SciTech Connect (OSTI)

The Eastern Kentucky coal field is notable for relatively low-sulfur, [open quotes]compliance[close quotes] coals. Virtually all of the major coals in this area do have regions in which higher sulfur lithotypes are common, if not dominant, within the lithologic profile. Three Middle Pennsylvanian coals, each representing a major resource, exemplify this. The Clintwood coal bed is the stratigraphically lowest coal bed mined throughout the coal field. In Whitley County, the sulfur content increase from 0.6% at the base to nearly 12% in the top lithotype. Pyrite in the high-sulfur lithotype is a complex mixture of sub- to few-micron syngenetic forms and massive epigenetic growths. The stratigraphically higher Pond Creek coal bed is extensively mined in portions of the coal field. Although generally low in sulfur, in northern Pike and southern Martin counties the top one-third can have up to 6% sulfur. Uniformly low-sulfur profiles can occur within a few hundred meters of high-sulfur coal. Pyrite occurs as 10-50 [mu]m euhedra and coarser massive forms. In this case, sulfur distribution may have been controlled by sandstone channels in the overlying sediments. High-sulfur zones in the lower bench of the Fire Clay coal bed, the stratigraphically highest coal bed considered here, are more problematical. The lower bench, which is of highly variable thickness and quality, generally is overlain by a kaolinitic flint clay, the consequence of a volcanic ash fall into the peat swamp. In southern Perry and Letcher counties, a black, illite-chlorite clay directly overlies the lower bench. General lack of lateral continuity of lithotypes in the lower bench suggests that the precursor swamp consisted of discontinuous peat-forming environments that were spatially variable and regularly inundated by sediments. Some of the peat-forming areas may have been marshlike in character.

Hower, J.C.; Graham, U.M. (Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington, KY (United States))

1993-08-01T23:59:59.000Z

252

Autothermal coal gasification  

SciTech Connect (OSTI)

This paper presents test results of a pilot plant study of coal gasification system based on the process developed by Texaco. This process has been improved by the project partners Ruhrchenie A.G. and Ruhrkohle A.C. in West Germany and tested in a demonstration plant that operated for more than 10,000 hours, converting over 50,000 tons of coal into gas. The aim was to develop a process that would be sufficiently flexible when used at the commercial level to incorporate all of the advantages inherent in the diverse processes of the 'first generation' - fixed bed, fluidized bed and entrained bed processes - but would be free of the disadvantages of these processes. Extensive test results are tabulated and evaluated. Forecast for future development is included. 5 refs.

Konkol, W.; Ruprecht, P.; Cornils, B.; Duerrfeld, R.; Langhoff, J.

1982-03-01T23:59:59.000Z

253

Coal Bed Methane Primer  

SciTech Connect (OSTI)

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

254

Coal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address:Climatic SolarInformationCoal

255

Zero emission coal  

SciTech Connect (OSTI)

We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

Ziock, H.; Lackner, K.

2000-08-01T23:59:59.000Z

256

Liquid chromatographic analysis of coal surface properties  

SciTech Connect (OSTI)

The main objectives of this proposed research are to refine further the inverse liquid chromatography technique for the study of surface properties of raw coals, treated coals and coal minerals in water, to evaluate relatively surface properties of raw coals, treated coals and coal minerals by inverse liquid chromatography, and to evaluate floatability of various treated coals in conjunction with surface properties of coals. Alcohols such as methanol, ethanol, isopropanol, isobutanol, tert-butanol, heptanol, 1-hexadecanol, 2-methyl-pentanol, 4-methyl-2-penthanol (methylisobutyl carbinol), n-octanol, s-octanol, and cyclohexanol as probe compounds are utilized to evaluate hydrophilicity of coals and coal minerals. N-alkanes such as hexane, heptane and octane, and stearic acid are employed as probe compounds to evaluate hydrophobicity of coals and coal minerals. Aromatic compounds such as benzene and toluene as probe compounds are used to examine aromaticity of coal surface. Aromatic acids such as o-cresol, m-cresol, p-cresol, phenol and B-naphthol are used to detect aromatic acidic sites of coal surface. Hydrophilicity, hydrophobicity and aromaticity of surfaces for either raw coals or treated coals in water are relatively determined by evaluating both equilibrium physical/chemical adsorption and dynamic adsorption of probe compounds on various raw coals and treated coals to compare affinities of coals for water.

Kwon, K.C.

1991-01-01T23:59:59.000Z

257

Transporting export coal from Appalachia  

SciTech Connect (OSTI)

This publication is part of a series titled Market Guide for Steam Coal Exports from Appalachia. It focuses on the transportation link in the steam-coal supply chain, enabling producers to further assess their transportation options and their ability to compete in the export-coal marketplace. Transportation alternatives and handling procedures are discussed, and information is provided on the costs associated with each element in the transportation network.

Not Available

1982-11-01T23:59:59.000Z

258

Volatile coal prices reflect supply, demand uncertainties  

SciTech Connect (OSTI)

Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

Ryan, M.

2004-12-15T23:59:59.000Z

259

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

of natural gas, along with the coal reserve base of 326s Fossil Fuel Reserve Base, 2007 Oil Natural Gas Coal 233ensured reserves) of coal, oil and natural gas published in

Aden, Nathaniel

2010-01-01T23:59:59.000Z

260

Low-rank coal oil agglomeration  

DOE Patents [OSTI]

A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

coal electricity generation efficiency also varies by plantplants. The unit water requirement of coal-fired electricity generationelectricity generation is comparatively low in China due to the prevalence of small, outdated coal-fired power plants.

Aden, Nathaniel

2010-01-01T23:59:59.000Z

262

Carbon Dioxide Emission Factors for Coal  

Reports and Publications (EIA)

The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

1994-01-01T23:59:59.000Z

263

Commercialization of Coal-to-Liquids Technology  

SciTech Connect (OSTI)

The report provides an overview of the current status of coal-to-liquids (CTL) commercialization efforts, including an analysis of efforts to develop and implement large-scale, commercial coal-to-liquids projects to create transportation fuels. Topics covered include: an overview of the history of coal usage and the current market for coal; a detailed description of what coal-to-liquids technology is; the history of coal-to-liquids development and commercial application; an analysis of the key business factors that are driving the increased interest in coal-to-liquids; an analysis of the issues and challenges that are hindering the commercialization of coal-to-liquids technology; a review of available coal-to-liquids technology; a discussion of the economic drivers of coal-to-liquids project success; profiles of key coal-to-liquids developers; and profiles of key coal-to-liquids projects under development.

NONE

2007-08-15T23:59:59.000Z

264

Commercializing the H-Coal Process  

E-Print Network [OSTI]

, Hydrocarbon Research, Inc. (HRI) has observed a decided swing in interest in commercial coal liquefaction. Project owners can select one of two paths for commercial coal liquefaction using H-Coal technology. The quantum strategy involves the construction of a...

DeVaux, G. R.; Dutkiewicz, B.

1982-01-01T23:59:59.000Z

265

Coal Bed Methane Protection Act (Montana)  

Broader source: Energy.gov [DOE]

The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and...

266

Process for electrochemically gasifying coal  

DOE Patents [OSTI]

A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

Botts, T.E.; Powell, J.R.

1985-10-25T23:59:59.000Z

267

Coal Mine Safety Act (Virginia)  

Broader source: Energy.gov [DOE]

This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

268

MS_Coal_Studyguide.indd  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

what about costs? Th e mining, transportation, electricity generation, and pollution-control costs associated with using coal are increasing, but both natural gas and oil are...

269

CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objective for this reporting period was to perform pressure transient testing to determine permeability of deep Wilcox coal to use as additional, necessary data for modeling performance of CO{sub 2} sequestration and enhanced coalbed methane recovery. To perform permeability testing of the Wilcox coal, we worked with Anadarko Petroleum Corporation in selecting the well and intervals to test and in designing the pressure transient test. Anadarko agreed to allow us to perform permeability tests in coal beds in an existing shut-in well (Well APCT2). This well is located in the region of the Sam K. Seymour power station, a site that we earlier identified as a major point source of CO{sub 2} emissions. A service company, Pinnacle Technologies Inc. (Pinnacle) was contracted to conduct the tests in the field. Intervals tested were 2 coal beds with thicknesses of 3 and 7 feet, respectively, at approximately 4,100 ft depth in the Lower Calvert Bluff Formation of the Wilcox Group in east-central Texas. Analyses of pressure transient test data indicate that average values for coalbed methane reservoir permeability in the tested coals are between 1.9 and 4.2 mD. These values are in the lower end of the range of permeability used in the preliminary simulation modeling. These new coal fracture permeability data from the APCT2 well, along with the acquired gas compositional analyses and sorption capacities of CO{sub 2}, CH{sub 4}, and N{sub 2}, complete the reservoir description phase of the project. During this quarter we also continued work on reservoir and economic modeling to evaluate performance of CO{sub 2} sequestration and enhanced coalbed methane recovery.

Duane A. McVay; Walter B. Ayers Jr.; Jerry L. Jensen

2005-05-01T23:59:59.000Z

270

Coal and nuclear power: Illinois' energy future  

SciTech Connect (OSTI)

This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

Not Available

1982-01-01T23:59:59.000Z

271

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

Renewable Energy and Energy Efficiency, DOE. LBNL 275-E Advanced Coal Wind Hybrid:Renewable Energy Laboratory), and Ryan Wiser ( LBNL). i Advanced Coal Wind Hybrid:

Phadke, Amol

2008-01-01T23:59:59.000Z

272

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

s 2006 total primary energy consumption, compared to 24Coal Dependence of Primary Energy Consumption, 2007coal/primary energy consumption Source: BP Statistical

Aden, Nathaniel

2010-01-01T23:59:59.000Z

273

Arkansas Surface Coal Mining Reclamation Act (Arkansas)  

Broader source: Energy.gov [DOE]

The Arkansas Surface Coal Mining Reclamation Act authorizes the state to develop, adopt, issue and amend rules and regulations pertaining to surface coal mining and reclamation operations. These...

274

Utility Generation and Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal...

275

The recovery of purified coal from solution.  

E-Print Network [OSTI]

??A new process is being developed to produce graphite from prime coking coal. Coal is dissolved in dimethylformamide (DMF), on addition of sodium hydroxide. The (more)

Botha, Mary Alliles

2008-01-01T23:59:59.000Z

276

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

Aden, Nathaniel

2010-01-01T23:59:59.000Z

277

The analysis of the factors effect on coalbed methane pool concentration and high-production -- The North China coalbed methane districts as an example  

SciTech Connect (OSTI)

The factors which affect coalbed methane (CBM) pool concentration and high-production based upon the exploration and research of the North China CBM districts are coal facies, coal rank and metamorphic types, structural features, the surrounding rocks and their thickness, and hydrogeological conditions. Coal facies, coal rank and their metamorphic types mainly affect the CBM forming characteristic, while the other factors effect the trap of CBM pool. The interaction of the above factors determines the petrophysics of coal reservoirs and extractability of CBM. The high-production areas where CBM pools develop well in North China CBM districts are sites which have a favorable coordination of the five factors. The poor-production areas where CBM pools are undeveloped in North China are caused by action of one or more unfavorable factors. Therefore the favorable factors coordination is the prerequisite in selecting sites for coalbed methane recovery.

Wang Shengwei; Zhang Ming; Zhuang Xiaoli

1997-12-31T23:59:59.000Z

278

Coal-fired furnace for testing of thermionic converters. Topical report  

SciTech Connect (OSTI)

The development of thermionic converter technology has progressed to make near-term applications interesting. One of these applications is the thermionic topping of a pulverized coal-fired central station powerplant. Up to now, thermionic converters have been flame tested using natural gas as fuel. A new test furnace is required for evaluation of thermionic converters in a coal-fired environment. The design and costs of a facility which adapts a coal-fired furnace built by Foster Wheeler Development Corporation (FWDC) for thermionic converter testing are discussed. Such a facility would be exempt from air pollution regulations because of its low firing rate.

Not Available

1980-10-01T23:59:59.000Z

279

Coal: Energy for the future  

SciTech Connect (OSTI)

This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

NONE

1995-05-01T23:59:59.000Z

280

Consensus Coal Production Forecast for  

E-Print Network [OSTI]

in the consensus forecast produced in 2006, primarily from the decreased demand as a result of the current nationalConsensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks

Mohaghegh, Shahab

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Commercialization of clean coal technologies  

SciTech Connect (OSTI)

The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

1994-12-31T23:59:59.000Z

282

EIA -Quarterly Coal Distribution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri NuclearTennesseeWashington- Coal

283

Coal | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristinaCliffPublication Revision PolicyCoal

284

Coal combustion products (CCPs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicyClean, EEREClosureHighforCoal

285

Annual Coal Distribution Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan FebForeign Distribution of U.S. Coal

286

Annual Coal Report 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural Gas AEO2015EnergyAnnual Coal

287

Annual Coal Distribution Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYear Jan Feb MarAlternative0of

288

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22, 20131Detailed0

289

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,

290

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S. Energy

291

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S. Energy0

292

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S. Energy01

293

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.

294

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.1 U.S.

295

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.1 U.S.1

296

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.1 U.S.12

297

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.1 U.S.120

298

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.1

299

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.10 U.S.

300

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.10 U.S.0

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.10 U.S.01

302

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.10

303

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.101 U.S.

304

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.101 U.S.1

305

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.101

306

Coal Distribution Database, 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil3Q 2009

307

Coal Distribution Database, 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil3Q 20093Q 2009

308

Coal Distribution Database, 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil3Q 20093Q

309

Coal Distribution Database, 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil3Q 20093Q4Q

310

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper8,170Thousand2.442 3.028 3.803 3.971Feet)06Coal

311

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousand Cubic Feet) OmanThousand36,610.05 KeroseneCoal Glossary

312

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousand Cubic Feet) OmanThousand36,610.05 KeroseneCoal

313

Coal Supply Region  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil3Qc. Real12

314

EIA - Coal Distribution  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data03. U.S. uraniumFormsAnnual

315

By Coal Destination State  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1 2 22008662 564CubicAnnual Coal

316

Strategic Center for Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'!Stores Catalogof SVO ResearchCoal

317

Trace-element geochemistry of coal resource development related to environmental quality and health  

SciTech Connect (OSTI)

This report assesses for decision makers and those involved in coal resource development the environmental and health impacts of trace-element effects arising from significant increases in the use of coal, unless unusual precautions are invoked. Increasing demands for energy and the pressing need for decreased dependence of the United States on imported oil require greater use of coal to meet the nation's energy needs during the next decade. If coal production and consumption are increased at a greatly accelerated rate, concern arises over the release, mobilization, transportation, distribution, and assimilation of certain trace elements, with possible adverse effects on the environment and human health. It is, therefore, important to understand their geochemical pathways from coal and rocks via air, water, and soil to plants, animals, and ultimately humans, and their relation to health and disease. To address this problem, the Panel on Trace Element Geochemistry of Coal Resource Development Related to Health (PECH) was established. Certain assumptions were made by the Panel to highlight the central issues of trace elements and health and to avoid unwarranted duplication of other studies. Based on the charge to the Panel and these assumptions, this report describes the amounts and distribution of trace elements related to the coal source; the various methods of coal extraction, preparation, transportation, and use; and the disposal or recycling of the remaining residues or wastes. The known or projected health effects are discussed at the end of each section.

Not Available

1980-01-01T23:59:59.000Z

318

The Pelagian Block (central Mediterranean): Exploration and new opportunities  

SciTech Connect (OSTI)

The Pelagian Block, extending from eastern Tunisia to offshore western Libya and northward to Malta and Sicily, is a complex foreland area structurally active since the Carboniferous, that separates western North Africa from southern Italy. The north (Sicily) and central parts of the Pelagian Block contain Triassic-Lower Jurassic peritidal carbonates with rare evaporites; Middle Jurassic-Eocene pelagic carbonates, and paralic to marine clastics of Oligocene to Pleistocene age, with Messinian evaporites. The Middle Jurassic/Eocene platform to pelagic carbonates of Sicily are gradually replaced southward by basin margin, marine to paralic carbonates and clastics. In eastern Tunisia, these rocks overlie Triassic-Lower Jurasic evaporites. Principal petroleum resources occur offshore SE Sicily, offshore Tunisia and in adjacent Libyan waters. The largest oil fields are Bouri (800 MMB recoverable reserves) and Ashtart (recoverable reserves of 250 MMB). The largest gas field is Miskar (recoverable reserves of 800 BCF). Smaller accumulations are distributed throughout the region. New oil discoveries, ranging in size from 8 MMB to 50 MMB, have recently been made onshore and in the shallow offshore. Proven and potential source beds for hydrocarbons occur in various paleotectonic settings: anoxic lagoons formed in the early continental rifting stages (Triassic/Liassic organic rich units of SE Sicily); subcontinental/paralic coals and shales (Lower Cretaceous of Tunisia); and deeper water anoxic basins (late Mesozoic and Tertiary organic sequences). Additional exploration opportunities are expected in undrilled or sparsely drilled acreage, with traditional plays similar to those tested in the past; or in new plays directed to the exploration of new reservoir objectives.

Zappaterra, E. [Chevron Co., London (United Kingdom)

1995-08-01T23:59:59.000Z

319

North Africa  

SciTech Connect (OSTI)

The total area covered by petroleum rights in the six countries described in this paper increased by more than 17% in 1980 compared to 1979. Joint venture agreements were finalized for 19 blocks over 94,000 km/sup 2/ in the Algerian venture. Although official information is scarce for Algeria and Libya, seismic activity probably increased in 1980 compared to 1979. Exploration drilling activity increased with 121 wildcats drilled compared to 93 during the previous year. This effort led to 40 discoveries, a 34.5% success ratio. Chevron was especially successful in wildcatting, with 6 oil discoveries for 8 wells drilled in the interior basins of Sudan. One Moroccan discovery can be considered as a highlight: the BRPM Meskala 101 well in the Essaouira basin found an apparently large amount of gas in Triassic sandstones. This discovery deserves special attention, since the gas has been found in Triassic pays rather than in the usual Jurassic pays in the Essaouira basin. Oil production in North Africa decreased from about 13.5% in 1980, with about 3,405,000 barrels of oil per day compared to 3,939,500 barrels of oil per day in 1979. When oil output strongly decreased in Algeria (-16.4%) and Libya (-15.6%), Tunisian production peaked at 116,287 barrels of oil per day and Egypt production also peaked at 584,148 barrels of oil per day. Total gas production in 1980 strongly declined from 44%, mostly due to the decline of the Algerian gas production. 8 figures, 40 tables.

Nicod, M.A.

1981-10-01T23:59:59.000Z

320

Compilation of data on strippable Fort Union coals in the northern Rocky Mountains and Great Plains region: A CD-ROM presentation  

SciTech Connect (OSTI)

The Fort Union Formation and equivalent formations of Paleocene age in the northern Rocky Mountains and Great Plains region contain 14 strippable coals that yielded more than 30 percent of the 1.03 billion short tons produced in the United States in 1996. These thick, low contaminant, compliant coals, which are utilized by electric power plants in 28 States, are being assessed by the US Geological Survey. The minable coals occur in the Powder River Basin in Wyoming and Montana, Hanna, Carbon and Greater Green River Basins in Wyoming, and Williston Basin in North Dakota. Production during the past 25 years of thick, high quality Fort Union and equivalent coal beds and zones in the region increased from 40 to more than 340 million short tons. The Powder River Basin is projected to produce 416 million short tons of coal in 2015. Major production in the Powder River Basin is from the Wyodak-Anderson, Anderson-Dietz, and Rosebud coal deposits. Producing Fort Union coals in the Williston Basin include the Beulah-Zap, Hagel, and Harmon coal deposits. Producing Fort Union coals in the Greater Green River Basin are in five beds of the Deadman coal zone. Coal production in the Hanna Basin is from eight beds in the Ferris and Hanna Formations. Coals in the Powder River Basin and Williston Basin contain much less sulfur and ash than coals produced in other regions in the conterminous US. When sulfur values are compared as pounds of SO{sub 2} per million Btu (as received basis), Powder River Basin and Williston Basin coals have the lowest amounts of any coals in the conterminous US.

Flores, R.M.; Bader, L.R.; Cavaroc, V.V. [Geological Survey, Denver, CO (United States)] [and others

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Petrographic investigation of River Gem Coal, Whitley County, eastern Kentucky Coal Field  

SciTech Connect (OSTI)

The River Gem coal of the Breathitt Formation (Middle Pennsylvanian) was studied at three sites in a surface mine in the Holly Hill quadrangle, Whitley County, Kentucky. The River Gem coal is correlative with the Lily and Manchester coals in neighboring Knox, Laurel, and Clay Counties, Kentucky, and the Clintwood coal in Pike County, Kentucky. At the northern site, a 14-cm rider is separated from the 92.5-cm seam by 22 cm of shale. At the two southern sites, the rider is missing. At the latter sites, the 10 cm thick top bench of the seam is separated from the lower 63 cm of the seam by a 14-cm bony lithotype not found at the northern site. The lower 63 cm of the seam in the south and the main seam in the north are characterized by moderate ash and sulfur percentages (4.4-6.8% ash, 1.4-2.3% total sulfur, 0.6-1.1% pyritic sulfur, 74-81% vitrinite, 23-32% Fe/sub 2/O/sub 3/, and 2.3-4.5% CaO). In contrast, the upper bench in the south and the rider have 18.7-27.0% ash, 8.8-11.4% total sulfur, 5.1-6.4% pyritic sulfur, 92.3-93.6% vitrinite, 45.7-57.8% Fe/sub 2/O/sub 3/ and 0.13-0.20% CaO. The bone has over 26% ash, 5.5% total sulfur, 3.2% pyritic sulfur, and 93.1% vitrinite. The overall similarity of the seam and rider characteristics between the north and south suggests that the southern bone is the lateral equivalent of the northern shale. The sulfide in the upper bench or rider and in the bone consists of fine (generally less than 10 ..mu..m), euhedral and framboidal pyrite with common massive pyrite. Massive pyrite appears as an overgrowth of fine pyrite in some places. Massive forms of marcasite, less abundant than pyrite, exhibit some evidence of developing later than the massive pyrite. A variety of < 2-..mu..m pyrite occurs as abundant, but isolated, unidimensional to tabular grains within corpocollinite, some of which is transitional to resinite.

Pollock, J.D.; Hower, J.C.

1987-09-01T23:59:59.000Z

322

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

Costs References . . Coal-Electric Generation Technologyon coal preparation, coal-electric generation and emissionson coal preparation, coal-electric generation and emissions

Ferrell, G.C.

2010-01-01T23:59:59.000Z

323

Coals and coal requirements for the COREX process  

SciTech Connect (OSTI)

The utilization of non met coals for production of liquid hot metal was the motivation for the development of the COREX Process by VAI/DVAI during the 70`s. Like the conventional ironmaking route (coke oven/blast furnace) it is based on coal as source of energy and reduction medium. However, in difference to blast furnace, coal can be used directly without the necessary prestep of cokemaking. Coking ability of coals therefore is no prerequisite of suitability. Meanwhile the COREX Process is on its way to become established in ironmaking industry. COREX Plants at ISCOR, Pretoria/South Africa and POSCO Pohang/Korea, being in operation and those which will be started up during the next years comprise already an annual coal consumption capacity of approx. 5 Mio. tonnes mtr., which is a magnitude attracting the interest of industrial coal suppliers. The increasing importance of COREX as a comparable new technology forms also a demand for information regarding process requirements for raw material, especially coal, which is intended to be met here.

Heckmann, H. [Deutsche Voest-Alpine Industrieanlagenbau GmbH, Duesseldorf (Germany)

1996-12-31T23:59:59.000Z

324

Coal pile leachate treatment  

SciTech Connect (OSTI)

The steam plant located at the Oak Ridge National Laboratory was converted from oil- to coal-fired boilers. In the process, a diked, 1.6-ha coal storage yard was constructed. The purpose of this report is to describe the treatment system designed to neutralize the estimated 18,000 m/sup 3/ of acidic runoff that will be produced each year. A literature review and laboratory treatability study were conducted which identified two treatment systems that will be employed to neutralize the acidic runoff. The first, a manually operated system, will be constructed at a cost of $200,000 and will operate for an interim period of four years. This system will provide for leachate neutralization until a more automated system can be brought on-line. The second, a fully automated system, is described and will be constructed at an estimated cost of $650,000. This automated runoff treatment system will ensure that drainage from the storage yard meets current National Pollutant Discharge Elimination System Standards for pH and total suspended solids, as well as future standards, which are likely to include several metals along with selected trace elements.

Davis, E C; Kimmitt, R R

1982-09-01T23:59:59.000Z

325

Production of jet fuels from coal-derived liquids  

SciTech Connect (OSTI)

The US Air Force is evaluating various feedstock sources of endothermic fuels. The technical feasibility of producing endothermic fuel from the naphtha by-product from Great Plains Gasification Plant in Beulah, North Dakota was evaluated. The capital and operating costs of deriving the fuel from coal naphtha were also estimated. The coal naphtha from Great Plains was successfully processed to remove sulfur, nitrogen and oxygen contaminants (UOP HD Unibon{reg sign} Hydrotreating) and then to saturate aromatic molecules (UOP AH Unibon{reg sign}). The AH Unibon product was fractionated to yield endothermic fuel candidates with less than 5% aromatics. The major cycloparaffins in the AH Unibon product were cyclohexane and methylcyclohexane. The production of endothermic fuel from the naphtha by-product stream was estimated to be cost competitive with existing technology. 17 figs., 23 tabs.

Johnson, R.W.; Zackro, W.C.; Czajkowski, G. (Allied-Signal, Inc., Des Plaines, IL (USA). Engineered Materials Research Center); Shah, P.P.; Kelly, A.P. (UOP, Inc., Des Plaines, IL (USA))

1989-03-01T23:59:59.000Z

326

Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Coal pyrite electrodes  

SciTech Connect (OSTI)

The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville [number sign]2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

Doyle, F.M.

1992-01-01T23:59:59.000Z

327

Coal surface control for advanced fine coal flotation  

SciTech Connect (OSTI)

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

1992-03-01T23:59:59.000Z

328

Low temperature aqueous desulfurization of coal  

DOE Patents [OSTI]

This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

Slegeir, William A. (Hampton Bays, NY); Healy, Francis E. (Massapequa, NY); Sapienza, Richard S. (Shoreham, NY)

1985-01-01T23:59:59.000Z

329

2011 International Pittsburgh Coal Conference Pittsburgh, PA  

E-Print Network [OSTI]

Sequestration in Unmineable Coal with Enhanced Coal Bed Methane Recovery: The Marshall County Project James E conducted in Marshall County, West Virginia, USA, to evaluate enhanced coal bed methane recovery enhanced coal bed methane (CBM) pilot test in Marshall County, West Virginia. This pilot test was developed

Mohaghegh, Shahab

330

Biogeochemistry of Microbial Coal-Bed Methane  

E-Print Network [OSTI]

Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo´c,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

Macalady, Jenn

331

Formation and retention of methane in coal  

SciTech Connect (OSTI)

The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

Hucka, V.J.; Bodily, D.M.; Huang, H.

1992-05-15T23:59:59.000Z

332

Low temperature aqueous desulfurization of coal  

DOE Patents [OSTI]

This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

1985-04-18T23:59:59.000Z

333

Carbon Dioxide Capture from Coal-Fired  

E-Print Network [OSTI]

. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologiesCarbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005 environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

334

Commercialization of coal to liquids technology  

SciTech Connect (OSTI)

After an overview of the coal market, technologies for producing liquids from coal are outlined. Commercialisation of coal-to-liquid fuels, the economics of coal-to-liquids development and the role of the government are discussed. Profiles of 8 key players and the profiles of 14 projects are finally given. 17 figs., 8 tabs.

NONE

2007-07-01T23:59:59.000Z

335

Clean coal technologies: A business report  

SciTech Connect (OSTI)

The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

Not Available

1993-01-01T23:59:59.000Z

336

Coal: the cornerstone of America's energy future  

SciTech Connect (OSTI)

In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

Beck, R.A. [National Coal Council (United Kingdom)

2006-06-15T23:59:59.000Z

337

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect (OSTI)

Injection of CO{sub 2} in coalbeds is a plausible method of reducing atmospheric emissions of CO{sub 2}, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO{sub 2} disposal in high-rank coals. The objective of this research was to determine the technical and economic feasibility of CO{sub 2} sequestration in, and enhanced coalbed methane (ECBM) recovery from, low-rank coals in the Texas Gulf Coast area. Our research included an extensive coal characterization program, including acquisition and analysis of coal core samples and well transient test data. We conducted deterministic and probabilistic reservoir simulation and economic studies to evaluate the effects of injectant fluid composition (pure CO{sub 2} and flue gas), well spacing, injection rate, and dewatering on CO{sub 2} sequestration and ECBM recovery in low-rank coals of the Calvert Bluff formation of the Texas Wilcox Group. Shallow and deep Calvert Bluff coals occur in two, distinct, coalbed gas petroleum systems that are separated by a transition zone. Calvert Bluff coals < 3,500 ft deep are part of a biogenic coalbed gas system. They have low gas content and are part of a freshwater aquifer. In contrast, Wilcox coals deeper than 3,500 ft are part of a thermogenic coalbed gas system. They have high gas content and are part of a saline aquifer. CO{sub 2} sequestration and ECBM projects in Calvert Bluff low-rank coals of East-Central Texas must be located in the deeper, unmineable coals, because shallow Wilcox coals are part of a protected freshwater aquifer. Probabilistic simulation of 100% CO{sub 2} injection into 20 feet of Calvert Bluff coal in an 80-acre 5-spot pattern indicates that these coals can store 1.27 to 2.25 Bcf of CO{sub 2} at depths of 6,200 ft, with an ECBM recovery of 0.48 to 0.85 Bcf. Simulation results of flue gas injection (87% N{sub 2}-13% CO{sub 2}) indicate that these same coals can store 0.34 to 0.59 Bcf of CO{sub 2} with an ECBM recovery of 0.68 to 1.20 Bcf. Economic modeling of CO{sub 2} sequestration and ECBM recovery indicates predominantly negative economic indicators for the reservoir depths (4,000 to 6,200 ft) and well spacings investigated, using natural gas prices ranging from $2 to $12 per Mscf and CO{sub 2} credits based on carbon market prices ranging from $0.05 to $1.58 per Mscf CO{sub 2} ($1.00 to $30.00 per ton CO{sub 2}). Injection of flue gas (87% N{sub 2} - 13% CO{sub 2}) results in better economic performance than injection of 100% CO{sub 2}. CO{sub 2} sequestration potential and methane resources in low-rank coals of the Lower Calvert Bluff formation in East-Central Texas are significant. The potential CO{sub 2} sequestration capacity of the coals ranges between 27.2 and 49.2 Tcf (1.57 and 2.69 billion tons), with a mean value of 38 Tcf (2.2 billion tons), assuming a 72.4% injection efficiency. Estimates of recoverable methane resources range between 6.3 and 13.6 Tcf, with a mean of 9.8 Tcf, assuming a 71.3% recovery factor. Moderate increases in gas prices and/or carbon credits could generate attractive economic conditions that, combined with the close proximity of many CO{sub 2} point sources near unmineable coalbeds, could enable commercial CO{sub 2} sequestration and ECBM projects in Texas low-rank coals. Additional studies are needed to characterize Wilcox regional methane coalbed gas systems and their boundaries, and to assess potential of other low-rank coal beds. Results from this study may be transferable to other low-rank coal formations and regions.

Duane McVay; Walter Ayers, Jr.; Jerry Jensen; Jorge Garduno; Gonzola Hernandez; Rasheed Bello; Rahila Ramazanova

2006-08-31T23:59:59.000Z

338

Coal cutting research slashes dust  

SciTech Connect (OSTI)

US Bureau of Mines' research projects aimed at the reduction of coal dust during coal cutting operations are described. These include an investigation of the effects of conical bit wear on respirable dust generation, energy and cutting forces; the determination of the best conical bit mount condition to increase life by enhancing bit rotation; a comparison between chisel- and conical-type cutters. In order to establish a suitable homogeneous reference material for cutting experiments, a synthetic coal with a plaster base is being developed.

Roepke, W.W.

1983-10-01T23:59:59.000Z

339

Coal Mining on Pitching Seams  

E-Print Network [OSTI]

. 1915* App r ov e d: Department of Mining Engineering* COAL MUTING ON PITCHING SEAMS A THESIS SUBMITTED TO THE FACULTY OP THE SCHOOL OP ENGINEERING OF THE UNIVERSITY OP KANSAS for THE DEGREE OF ENGINEER OF MINES BY GEORGE MACMILLAN BROWN 1915... PREFACE In the following dissertation on the subject of "Coal Mining in Pitching Beams" the writer desires to describe more particularly those methods of mining peculiar to coal mines in Oklahoma, with which he has been more or less familiar during...

Brown, George MacMillan

1915-01-01T23:59:59.000Z

340

TOXIC SUBSTANCES FROM COAL COMBUSTION-A COMPREHENSIVE ASSESSMENT  

SciTech Connect (OSTI)

The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the National Energy Technology Laboratory (NETL), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). The work discussed in this report covers the Phase II program. Five coals were studied (three in Phase I and two new ones in Phase II). In this work UK has used XAFS and Moessbauer spectroscopies to characterize elements in project coals. For coals, the principal use was to supply direct information about certain hazardous and other key elements (iron) to complement the more complete indirect investigation of elemental modes of occurrence being carried out by colleagues at USGS. Iterative selective leaching using ammonium acetate, HCl, HF, and HNO3, used in conjunction with mineral identification/quantification, and microanalysis of individual mineral grains, has allowed USGS to delineate modes of occurrence for 44 elements. The Phase II coals show rank-dependent systematic differences in trace-element modes of occurrence. The work at UU focused on the behavior of trace metals in the combustion zone by studying vaporization from single coal particles. The coals were burned at 1700 K under a series of fuel-rich and oxygen-rich conditions. The data collected in this study will be applied to a model that accounts for the full equilibrium between carbon monoxide and carbon dioxide. The model also considers many other reactions taking place in the combustion zone, and involves the diffusion of gases into the particle and combustion products away from the particle. A comprehensive study has been conducted at UA to investigate the post-combustion partitioning of trace elements during large-scale combustion of pulverized coal combustion. For many coals, there are three distinct particle regions developed by three separate mechanisms: (1) a submicron fume, (2) a micron-sized fragmentation region, and (3) a bulk (>3 {micro}m) fly ash region. The controlling partitioning mechanisms for trace elements may be different in each of the three particle regions. A substantial majority of semi-volatile trace elements (e.g., As, Se, Sb, Cd, Zn, Pb) volatilize during combustion. The most common partitioning mechanism for semi-volatile elements is reaction with active fly ash surface sites. Experiments conducted under this program at UC focused on measuring mercury oxidation under cooling rates representative of the convective section of a coal-fired boiler to determine the extent of homogeneous mercury oxidation under these conditions. In fixed bed studies at EERC, five different test series were planned to evaluate the effects of temperature, mercury concentration, mercury species, stoichiometric ratio of combustion air, and ash source. Ash samples generated at UA and collected from full-scale power plants were evaluated. Extensive work was carried out at UK during this program to develop new methods for identification of mercury species in fly ash and sorbents. We demonstrated the usefulness of XAFS spectroscopy for the speciation of mercury captured on low-temperature sorbents from combustion flue gases and dev

C.L. Senior; F. Huggins; G.P. Huffman; N. Shah; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F. Sarofim; S. Swenson; J.S. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowski; J.J. Helble; R. Mamani-Paco; R. Sterling; G. Dunham; S. Miller

2001-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Coal competition: prospects for the 1980s  

SciTech Connect (OSTI)

This report consists of 10 chapters which present an historical overview of coal and the part it has played as an energy source in the economic growth of the United States from prior to World War II through 1978. Chapter titles are: definition of coals, coal mining; types of coal mines; mining methods; mining work force; development of coal; mine ownership; production; consumption; prices; exports; and imports. (DMC)

Not Available

1981-03-01T23:59:59.000Z

342

Coal conversion siting on coal mined lands: water quality issues  

SciTech Connect (OSTI)

The siting of new technology coal conversion facilities on land disturbed by coal mining results in both environmental benefits and unique water quality issues. Proximity to mining reduces transportation requirements and restores disrupted land to productive use. Uncertainties may exist, however, in both understanding the existing site environment and assessing the impact of the new technology. Oak Ridge National Laboratory is currently assessing the water-related impacts of proposed coal conversion facilities located in areas disturbed by surface and underground coal mining. Past mining practices, leaving highly permeable and unstable fill, may affect the design and quality of data from monitoring programs. Current mining and dewatering, or past underground mining may alter groundwater or surface water flow patterns or affect solid waste disposal stability. Potential acid-forming material influences the siting of waste disposal areas and the design of grading operations. These and other problems are considered in relation to the uncertainties and potentially unique problems inherent in developing new technologies.

Triegel, E.K.

1980-01-01T23:59:59.000Z

343

Clean coal technology. Coal utilisation by-products  

SciTech Connect (OSTI)

The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

NONE

2006-08-15T23:59:59.000Z

344

Coal gasification vessel  

DOE Patents [OSTI]

A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

Loo, Billy W. (Oakland, CA)

1982-01-01T23:59:59.000Z

345

COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER  

E-Print Network [OSTI]

TABLE 1. Pittsburgh seam coal properties, Grosshandler (content of the Pittsburgh seam coal. As the ash layer beginsfrom Pittsburgh seam pulverized coal, screened through a 35

Chin, W.K.

2010-01-01T23:59:59.000Z

346

Recovery Act: Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Clean Coal Power Initiative Recovery Act: Clean Coal Power Initiative A report detailling the Clean Coal Power initiative funded under the American Recovery and...

347

MULTIPHASE REACTOR MODELING FOR ZINC CHLORIDE CATALYZED COAL LIQUEFACTION  

E-Print Network [OSTI]

ix Introduction. A. Coal Liquefaction Overview B.L ZnCl 2-catalyzed Coal Liquefaction . . . . . . . . . ,Results. . . . ZnC1 2/MeOH Coal liquefaction Process

Joyce, Peter James

2011-01-01T23:59:59.000Z

348

Southern Coal finds value in the met market  

SciTech Connect (OSTI)

The Justice family launches a new coal company (Southern Coal Corp.) to serve metallurgical and steam coal markets. 1 tab., 3 photos.

Fiscor, S.

2009-11-15T23:59:59.000Z

349

Liquid CO{sub 2}/Coal Slurry for Feeding Low Rank Coal to Gasifiers  

SciTech Connect (OSTI)

This study investigates the practicality of using a liquid CO{sub 2}/coal slurry preparation and feed system for the E-Gas gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO{sub 2} has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO{sub 2} is much lower than water. This means it should take less energy to pump liquid CO{sub 2} through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO{sub 2} is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO{sub 2} is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO{sub 2} slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO{sub 2} has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO{sub 2} over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO{sub 2}/coal slurry properties. This low-rank coal study extends the existing knowledge base to evaluate the liquid CO{sub 2}/coal slurry concept on an E-Gas-based IGCC plant with full 90% CO{sub 2} capture. The overall objective is to determine if this technology could be used to reduce the cost and improve the efficiency of IGCC plants. The study goes beyond the systems-level analyses and initial lab work that formed the bases of previous studies and includes the following tasks: performing laboratory tests to quantify slurry properties; developing an engineering design of a liquid CO{sub 2} slurry preparation and feed system; conducting a full IGCC plant techno-economic analysis for Powder River Basin (PRB) coal and North Dakota lignite in both water and liquid CO{sub 2} slurries; and identifying a technology development plan to continue the due diligence to conduct a comprehensive evaluation of this technology. The initial task included rheology tests and slurry data analyses that would increase the knowledge and understanding of maximum solids loading capability for both PRB and lignite. Higher coal concentrations have been verified in liquid CO{sub 2} over water slurries, and a coal concentration of 75% by weight in liquid CO{sub 2} has been estimated to be achievable in a commercial application. In addition, lower slurry viscosities have been verified in liquid CO{sub 2} at the same solids loading, where the liquid CO{sub 2}/coal slurry viscosity has been measured to be about a factor of 10 lower than the comparable water slurry and estimated to be less than 100 centipoise in a commercial application. In the following task, an engineering design of a liquid CO{sub 2}/coal slurry preparation and mixing system has been developed for both a batch and continuous system. The capital cost of the design has also been estimated so that it could be used in the economic analysis. An industry search and survey has been conducted to determine if essential components required to construct the feed system are available from commercial sources or if targeted R&D efforts are required. The search and survey concluded that commercial sources are available for selected components that comprise both the batch and continuous type systems. During normal operation, the fuel exits the bottom of the coal silo and is fed to a rod mill fo

Marasigan, Jose; Goldstein, Harvey; Dooher, John

2013-09-30T23:59:59.000Z

350

Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics  

SciTech Connect (OSTI)

During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

Doyle, F.M.

1992-01-01T23:59:59.000Z

351

An Overview of Coal based  

E-Print Network [OSTI]

An Overview of Coal based Integrated Gasification Combined Cycle (IGCC) Technology September 2005. LFEE 2005-002 WP #12;#12;Table of Contents 1 Integrated Gasification Combined Cycle (IGCC.......................................................................... 17 2.1 Gasification

352

Process for low mercury coal  

DOE Patents [OSTI]

A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

1995-01-01T23:59:59.000Z

353

Process for low mercury coal  

DOE Patents [OSTI]

A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

1995-04-04T23:59:59.000Z

354

Clean Coal Diesel Demonstration Project  

SciTech Connect (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

355

Surface Coal Mining Law (Missouri)  

Broader source: Energy.gov [DOE]

This law aims to provide for the regulation of coal mining in order to minimize or prevent its adverse effects, protect the environment to the extent possible, protect landowner rights, and...

356

Coal beneficiation by gas agglomeration  

DOE Patents [OSTI]

Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

Wheelock, Thomas D.; Meiyu, Shen

2003-10-14T23:59:59.000Z

357

New developments in coal briquetting technology  

SciTech Connect (OSTI)

Briquetting of coal has been with us for well over a century. In the earliest applications of coal briquetting, less valuable fine coal was agglomerated into briquettes using a wide variety of binders, including coal tar, pitch and asphalt. Eventually, roll briquetters came into more widespread use, permitting the process to become a continuous one. Coal briquetting went out of favor during the 1950s in most of the industrialized world. The major reason for this decline in use was the discovery that the coal gas distillates used for binders were harmful to human health. Also, the abundance of cheap petroleum made coal briquettes a less attractive alternative as an industrial or domestic fuel. The re-emergence of coal as a primary industrial fuel and also its increased prominence as a fuel for thermal electric power stations led to a large increase in the annual volume of coal being mined worldwide. Coal preparation technology steadily improved over the years with the general exception of fine coal preparation. The processes available for treating this size range were considerably more expensive per unit mass of coal treated than coarse coal processes. Also, costly dewatering equipment was required after cleaning to remove surface moisture. Even with dewatering, the high surface area per unit mass of fine coal versus coarse coal resulted in high moisture contents. Therefore, little incentive existed to improve the performance of fine coal processes since this would only increase the amount of wet coal fines which would have to be dealt with. With such an ever-increasing volume of coal fines being created each year, there emerged an interest in recovering this valuable product. Several schemes were developed to recover coal fines discarded in abandoned tailings impoundments by previous operations.

Tucker, P.V. [Kilborn Inc., Ontario (Canada); Bosworth, G.B. [Kilborn Engineering Pacific Ltd., Vancouver, British Columbia (Canada); Kalb, G.W. [KKS Systems Inc., Wheeling, WV (United States)

1993-12-31T23:59:59.000Z

358

Streamline coal slurry letdown valve  

DOE Patents [OSTI]

A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces. 5 figs.

Platt, R.J.; Shadbolt, E.A.

1983-11-08T23:59:59.000Z

359

Overall requirements for an advanced underground coal extraction system  

SciTech Connect (OSTI)

This report presents overall requirements on underground mining systems suitable for coal seams exploitable in the year 2000, with particular relevance to the resources of Central Appalachia. These requirements may be summarized as follows: (1) Production Cost: demonstrate a return on incremental investment of 1.5 to 2.5 times the value required by a low-risk capital project. (2) Miner Safety: achieve at least a 50% reduction in deaths and disabling injuries per million man-hours. (3) Miner Health: meet the intent of all applicable regulations, with particular attention to coal dust, carcinogens, and mutagens; and with continued emphasis on acceptable levels of noise and vibration, lighting, humidity and temperature, and adequate work space. (4) Environmental Impact: maintain the value of mined and adjacent lands at the pre-mining value following reclamation; mitigation of off-site impacts should not cost more than the procedures used in contemporary mining. (5) Coal Conservation: the recovery of coal from the seam being mined should be at least as good as the best available contemporary technology operating in comparable conditions. No significant trade-offs between production cost and other performance indices were found.

Goldsmith, M.; Lavin, M.L.

1980-10-15T23:59:59.000Z

360

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

SciTech Connect (OSTI)

The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Carbon dioxide (CO{sub 2}) emissions to the atmosphere are an inherent part of energy-related activities, such as electricity generation, transportation, and building systems. These energy-related activities are responsible for roughly 85% of the U.S. greenhouse gas emissions, and 95% of these emissions are dominated by CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Many scientists believe greenhouse gases, particularly CO{sub 2}, trap heat in the earth's atmosphere. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils, and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coal bed methane (CBM) provides a value-added stream, reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy, with support from the U.S. DOE, is conducting a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through overlying coal seams in the subsurface. Once completed, the wells will be used to initially drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and CBM produced, the program includes a plan to monitor horizontal migration of CO{sub 2} within the lower seam. This is the second Technical Progress report for the project. Progress to date has been focused on pre-construction activities; in particular, attaining site approvals and securing property rights for the project. This report provides a concise overview of project activity this period and plans for future work. This is the second semi-annual Technical Progress report under the subject agreement. During this report period, progress was made in completing the environmental assessment report, securing land and coal rights, and evaluating drilling strategies. These aspects of the project are discussed in detail in this report.

Gary L. Cairns

2002-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alaska has 4. 0 trillion tons of low-sulfur coal: Is there a future for this resource  

SciTech Connect (OSTI)

The demand for and use of low-sulfur coal may increase because of concern with acid rain. Alaska's low-sulfur coal resources can only be described as enormous: 4.0 trillion tons of hypothetical onshore coal. Mean total sulfur content is 0.34% (range 0.06-6.6%, n = 262) with a mean apparent rank of subbituminous B. There are 50 coal fields in Alaska; the bulk of the resources are in six major fields or regions: Nenana, Cook Inlet, Matanuska, Chignik-Herendeen Bay, North Slope, and Bering River. For comparison, Carboniferous coals in the Appalachian region and Interior Province have a mean total sulfur content of 2.3% (range 0.1-19.0%, n = 5,497) with a mean apparent rank of high-volatile A bituminous coal, and Rocky Mountain and northern Great Plains Cretaceous and Tertiary coals have a mean total sulfur content of 0.86% (range 0.02-19.0%, n = 2,754) with a mean apparent rank of subbituminous B. Alaskan coal has two-fifths the total sulfur of western US coals and one-sixth that of Carboniferous US coals. Even though Alaska has large resources of low-sulfur coal, these resources have not been developed because of (1) remote locations and little infrastructure, (2) inhospitable climate, and (3) long distances to potential markets. These resources will not be used in the near future unless there are some major, and probably violent, changes in the world energy picture.

Stricker, G.D. (Geological Survey, Denver, CO (USA))

1990-05-01T23:59:59.000Z

362

Geology in coal resource utilization  

SciTech Connect (OSTI)

The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base.

Peters, D.C. (ed.)

1991-01-01T23:59:59.000Z

363

Forestry Policies (North Carolina)  

Broader source: Energy.gov [DOE]

North Carolina features almost 18 million acres of forested land within the state. The North Carolina Forest Service (http://ncforestservice.gov/) manages the State's forest lands, including those...

364

Forestry Policies (North Dakota)  

Broader source: Energy.gov [DOE]

North Dakota forests are managed by the North Dakota State Forest Service. In 2010 the State issued its "Statewide Assessment of Forest Resources and Forest Resource Strategy", which includes...

365

Pond Creek coal seam in eastern Kentucky - new look at an old resource  

SciTech Connect (OSTI)

The Middle Pennsylvania/Westphalian B Pond Creek Coal is an important low-sulfur resource in Pike and Martin Counties, Kentucky. The Breathitt Formation seam, also known as the lower Elkhorn coal, accounted for nearly 40% of Pike County's 1983 production of 22 million tons. Although the coal is nearly mined out through central Pike County, substantial reserves still exist in the northern part of the county. Past studies of the seam by the US Bureau of Mines concentrated on the utility of the seam as a coking blend, with additional consideration of the megascopic and microscopic coal petrology. The authors research has focused on the regional variations in the Pond Creek seam, with emphasis on the petrographic variations.

Hower, J.C.; Pollock, J.D.; Klapheke, J.G.

1986-05-01T23:59:59.000Z

366

Oxy-coal Combustion Studies  

SciTech Connect (OSTI)

The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: ? The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. ? The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. ? The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). ? The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. ? The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. ? The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

2012-01-01T23:59:59.000Z

367

Comparison of high-pressure CO2 sorption isotherms on Eastern and Western US coals  

SciTech Connect (OSTI)

Accurate estimation of carbon dioxide (CO2) sorption capacity of coal is important for planning the CO2 sequestration efforts. In this work, we investigated sorption and swelling behavior of several Eastern and Western US coal samples from the Central Appalachian Basin and from San Juan Basin. The CO2 sorption isotherms have been completed at 55C for as received and dried samples. The role of mineral components in coal, the coal swelling, the effects of temperature and moisture, and the error propagation have been analyzed. Changes in void volume due to dewatering and other factors such as temporary caging of carbon dioxide molecules in coal matrix were identified among the main factors affecting accuracy of the carbon dioxide sorption isotherms. The (helium) void volume in the sample cells was measured before and after the sorption isotherm experiments and was used to build the volume-corrected data plots.

Romanov, V.; Hur, T.-B.; Fazio, J.; Howard, B

2012-10-01T23:59:59.000Z

368

Coal-tire co-liquefaction  

SciTech Connect (OSTI)

Co-liquefaction of ground coal and tire rubber was studied at 400{degrees}C both with and without catalyst. Two different tire samples were used. In the non-catalytic runs, the conversion of coal increased with the addition of tire and the increase was dependent on tire/coal ratio and hydrogen pressure. Using a ferric sulfide-based catalyst, the coal conversion increased with an increase in the catalyst loading. However, the increase was more pronounced at loadings of around 0.5 wt%. The addition of tire to coal in the catalytic runs was not particularly beneficial, especially, when the tire/coal ratio was above 1.

Sharma, R.K.; Dadyburjor, D.B.; Zondlo, J.W.; Liu, Zhenyu; Stiller, A.H. [West Virginia Univ., Morgantown, WV (United States)

1995-12-31T23:59:59.000Z

369

Coal Transportation Issues (released in AEO2007)  

Reports and Publications (EIA)

Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64% of total domestic coal shipments in 2004. Trucks transported approximately 12% of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12%) and water transport on inland waterways, the Great Lakes, and tidewater areas (9%).

2007-01-01T23:59:59.000Z

370

Beluga Coal Gasification - ISER  

SciTech Connect (OSTI)

ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

Steve Colt

2008-12-31T23:59:59.000Z

371

Coal combustion by wet oxidation  

SciTech Connect (OSTI)

The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

1980-11-15T23:59:59.000Z

372

Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia  

SciTech Connect (OSTI)

The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn in the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.

Vukasinovic-Pesic, V.; Rajakovic, L.J. [University of Montenegro, Podgorica (Montenegro)

2009-07-01T23:59:59.000Z

373

Modeling of gas generation from the Cameo coal zone in the Piceance Basin Colorado  

SciTech Connect (OSTI)

The gas generative potential of the Cretaceous Cameo coal in the Piceance Basin, northwestern Colorado, was evaluated quantitatively by sealed gold tube pyrolysis. The H/C and O/C elemental ratios show that pyrolyzed Cameo coal samples follow the Van Krevelen humic coal evolution pathway, reasonably simulating natural coal maturation. Kinetic parameters (activation energy and frequency factor) for gas generation and vitrinite reflectance (R{sub o}) changes were calculated from pyrolysis data. Experimental R{sub o} results from this study are not adequately predicted by published R{sub o} kinetics and indicate the necessity of deriving basin-specific kinetic parameters when building predictive basin models. Using derived kinetics for R{sub o}, evolution and gas generation, basin modeling was completed for 57 wells across the Piceance Basin, which enabled the mapping of coal-rank and coalbed gas potential. Quantities of methane generated at approximately 1.2% R{sub o} are about 300 standard cubic feet per ton (scf/ton) and more than 2500 scf/ton (in-situ dry-ash-free coal) at R{sub o}, values reaching 1.9%. Gases generated in both low- and high-maturity coals are less wet, whereas the wetter gas is expected where R{sub o} is approximately 1.4-1.5%. As controlled by regional coal rank and net coal thickness, the largest in-place coalbed gas resources are located in the central part of the basin, where predicted volumes exceed 150 bcf/mi, excluding gases in tight sands.

Zhang, E.; Hill, R.J.; Katz, B.J.; Tang, Y.C. [Shell Exploration and Production Co., BTC, Houston, TX (United States)

2008-08-15T23:59:59.000Z

374

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. In this reporting period we revised all of the economic calculations, participated in technology transfer of project results, and began working on project closeout tasks in anticipation of the project ending December 31, 2005. In this research, we conducted five separate simulation investigations, or cases. These cases are (1) CO{sub 2} sequestration base case scenarios for 4,000-ft and 6,200-ft depth coal beds in the Lower Calvert Bluff Formation of east-central Texas, (2) sensitivity study of the effects of well spacing on sequestration, (3) sensitivity study of the effects of injection gas composition, (4) sensitivity study of the effects of injection rate, and (5) sensitivity study of the effects of coal dewatering prior to CO{sub 2} injection/sequestration. Results show that, in most cases, revenue from coalbed methane production does not completely offset the costs of CO{sub 2} sequestration in Texas low-rank coals, indicating that CO{sub 2} injection is not economically feasible for the ranges of gas prices and carbon credits investigated. The best economic performance is obtained with flue gas (13% CO{sub 2} - 87% N{sub 2}) injection, as compared to injection of 100% CO{sub 2} and a mixture of 50% CO{sub 2} and 50% N{sub 2}. As part of technology transfer for this project, we presented results at the West Texas Geological Society Fall Symposium in October 2005 and at the COAL-SEQ Forum in November 2005.

Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

2006-03-01T23:59:59.000Z

375

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to (1) determine the effects of permeability anisotropy on performance of CO{sub 2} sequestration and ECBM production in the Lower Calvert Bluff Formation (LCB) of the Wilcox Group coals in east-central Texas, and (2) begin reservoir and economic analyses of CO{sub 2} sequestration and ECBM production using horizontal wells. To evaluate the effects of permeability anisotropy on CO{sub 2} sequestration and ECBM in LCB coal beds, we conducted deterministic reservoir modeling studies of 100% CO{sub 2} gas injection for the 6,200-ft depth base case (Case 1b) using the most likely values of the reservoir parameters. Simulation results show significant differences in the cumulative volumes of CH{sub 4} produced and CO{sub 2} injected due to permeability anisotropy, depending on the orientation of injection patterns relative to the orientation of permeability anisotropy. This indicates that knowledge of the magnitude and orientation of permeability anisotropy will be an important consideration in the design of CO{sub 2} sequestration and ECBM projects. We continued discussions with Anadarko Petroleum regarding plans for additional coal core acquisition and laboratory work to further characterize Wilcox low-rank coals. As part of the technology transfer for this project, we submitted the paper SPE 100584 for presentation at the 2006 SPE Gas Technology Symposium to be held in Calgary, Alberta, Canada on May 15-18, 2006.

Duane A. McVay; Walter B. Ayers, Jr; Jerry L. Jensen

2006-05-01T23:59:59.000Z

376

Appalachian basin coal-bed methane: Elephant or flea  

SciTech Connect (OSTI)

Historically, interest in the Appalachian basin coal-bed methane resource extends at least over the last 50 years. The Northern and Central Appalachian basins are estimated to contain 61 tcf and 5 tcf of coal-bed methane gas, respectively. Development of this resource has not kept pace with that of other basins, such as the Black Warrior basin of Alabama of the San Juan basin of northern New Mexico and Colorado. Without the benefit of modern completion, stimulation, and production technology, some older Appalachian basin coal-bed methane wells were reported to have produced in excess of 150 used here to characterize some past projects and their results. This work is not intended to comprise a comprehensive survey of all Appalachian basin projects, but rather to provide background information from which to proceed for those who may be interested in doing so. Several constraints to the development of this resource have been identified, including conflicting legal rights of ownership of the gas produced from the coal seams when coal and conventional oil and gas rights are controlled by separate parties. In addition, large leaseholds have been difficult to acquire and finding costs have been high. However, the threshold of minimum economic production may be relatively low when compared with other areas, because low-pressures pipelines are available and gas prices are among the highest in the nation. Interest in the commercial development of the resource seems to be on the increase with several projects currently active and more reported to be planned for the near future.

Hunt, A.M. (Dames and Moore, Cincinnati, OH (United States))

1991-08-01T23:59:59.000Z

377

North Carolina Capital Access Program (North Carolina)  

Broader source: Energy.gov [DOE]

The North Carolina Capital Access Program provides matching reserve funds for business loans that are beyond the traditional lending means of a lenders usual standards. The average CAP loan is ...

378

One North Carolina Fund (North Carolina)  

Broader source: Energy.gov [DOE]

The One North Carolina Fund, directed by the Commerce Finance Center, helps recruit and expand jobs in high-value industries deemed vital to the state. State appropriations replenish the Fund and...

379

Repowering with clean coal technologies  

SciTech Connect (OSTI)

Repowering with clean coal technology can offer significant advantages, including lower heat rates and production costs, environmental compliance, incremental capacity increases, and life extension of existing facilities. Significant savings of capital costs can result by refurbishing and reusing existing sites and infrastructure relative to a greenfield siting approach. This paper summarizes some key results of a study performed by Parsons Power Group, Inc., under a contract with DOE/METC, which investigates many of the promising advanced power generation technologies in a repowering application. The purpose of this study was to evaluate the technical and economic results of applying each of a menu of Clean Coal Technologies in a repowering of a hypothetical representative fossil fueled power station. Pittsburgh No. 8 coal is used as the fuel for most of the cases evaluated herein, as well as serving as the fuel for the original unrepowered station. The steam turbine-generator, condenser, and circulating water system are refurbished and reused in this study, as is most of the existing site infrastructure such as transmission lines, railroad, coal yard and coal handling equipment, etc. The technologies evaluated in this study consisted of an atmospheric fluidized bed combustor, several varieties of pressurized fluid bed combustors, several types of gasifiers, a refueling with a process derived fuel, and, for reference, a natural gas fired combustion turbine-combined cycle.

Freier, M.D. [USDOE Morgantown Energy Technology Center, WV (United States); Buchanan, T.L.; DeLallo, M.L.; Goldstein, H.N. [Parsons Power Group, Inc., Reading, PA (United States)

1996-02-01T23:59:59.000Z

380

Clean Coal Program Research Activities  

SciTech Connect (OSTI)

Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

2009-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH  

E-Print Network [OSTI]

Triaxial TestsTests Direct Shear TestsDirect Shear Tests Clean and Coal Dust Fouled Ballast BehaviorClean1 EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH for Laboratory StudyFouling Mechanism / Need for Laboratory Study Mechanical Properties of Coal Dust

Barkan, Christopher P.L.

382

Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production and Regional Economic Growth  

E-Print Network [OSTI]

Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production@nmsu.edu #12;Arrowhead Center: Coal Production and Regional Economic Growth i Disclaimer This report States Government or any agency thereof. #12;Arrowhead Center: Coal Production and Regional Economic

Johnson, Eric E.

383

SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES  

E-Print Network [OSTI]

Chapter PH SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES By M assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

384

Integrated coal cleaning, liquefaction, and gasification process  

DOE Patents [OSTI]

Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

Chervenak, Michael C. (Pennington, NJ)

1980-01-01T23:59:59.000Z

385

Respiratory disease in Utah coal miners  

SciTech Connect (OSTI)

Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

1981-04-01T23:59:59.000Z

386

Respiratory disease in Utah coal miners  

SciTech Connect (OSTI)

Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

1981-04-01T23:59:59.000Z

387

Clean Coal Incentive Tax Credit (Kentucky)  

Broader source: Energy.gov [DOE]

Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity....

388

Integrated Coal Gasification Power Plant Credit (Kansas)  

Broader source: Energy.gov [DOE]

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

389

Ohio Coal Research and Development Program (Ohio)  

Broader source: Energy.gov [DOE]

The Ohio Coal Development Office invests in the development and implementation of technologies that can use Ohio's vast reserves of coal in an economical, environmentally sound manner. Projects are...

390

February 21 -22, 2014 Coast Coal Harbour  

E-Print Network [OSTI]

February 21 - 22, 2014 Coast Coal Harbour 1180 W Hastings St Vancouver, BC Healthy Mothers contact by phone: +1 604-822- 7708 or by e-mail: melissa.ipce@ubc.ca. Location The Coast Coal Harbour

Handy, Todd C.

391

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to (1) estimate the potential for CO{sub 2} sequestration in, and methane production from, low-rank coals of the Lower Calvert Bluff Formation of the Wilcox Group in the east-central Texas region, (2) quantify uncertainty associated with these estimates, (3) conduct reservoir and economic analyses of CO{sub 2} sequestration and ECBM production using horizontal wells, and (4) compare the results with those obtained from previous studies of vertical wells. To estimate the total volumes of CO{sub 2} that may be sequestered in, and total volumes of methane that can be produced from, the Wilcox Group low-rank coals in east-central Texas, we used data provided by Anadarko Petroleum Corporation, data obtained during this research, and results of probabilistic simulation modeling studies we conducted. For the analysis, we applied our base-case coal seam characteristics to a 2,930-mi{sup 2} (1,875,200-ac) area where Calvert Bluff coal seams range between 4,000 and 6,200 ft deep. Results of the probabilistic analysis indicate that potential CO{sub 2} sequestration capacity of the coals ranges between 27.2 and 49.2 Tcf (1.57 and 2.69 billion tons), with a mean value of 38 Tcf (2.2 billion tons), assuming a 72.4% injection efficiency. Estimates of recoverable methane resources, assuming a 71.3% recovery factor, range between 6.3 and 13.6 Tcf, with a mean of 9.8 Tcf. As part of the technology transfer for this project, we presented the paper SPE 100584 at the 2006 SPE Gas Technology Symposium held in Calgary, Alberta, Canada, on May 15-18, 2006. Also, we submitted an abstract to be considered for inclusion in a special volume dedicated to CO{sub 2} sequestration in geologic media, which is planned for publication by the American Association of Petroleum Geologists.

Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

2006-07-01T23:59:59.000Z

392

Estimating coal production peak and trends of coal imports in China  

SciTech Connect (OSTI)

More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

Bo-qiang Lin; Jiang-hua Liu [Xiamen University, Xiamen (China). China Center for Energy Economics Research (CCEER)

2010-01-15T23:59:59.000Z

393

Cokemaking from coals of Kuzbas and Donbas  

SciTech Connect (OSTI)

The paper discusses features of Donetsk and Kuznetsk coals, the export capability of Ukraine coking industry, the selection of coal blends involving coals from different basins, and practical recommendations and techno-economic considerations. It is concluded that by raising the share of low-sulfur Kuznetsk coal in the blend to 50%, coke produced will meet all the requirements of European and American consumers.

Umansky, R.Z. [Resourcecomplect, Donetsk (Ukraine); Kovalev, E.T.; Drozdnik, I.D. [UKHIN, Kharkov (Ukraine)

1997-12-31T23:59:59.000Z

394

National Coal celebrates its fifth anniversary  

SciTech Connect (OSTI)

The growth and activities of the National Coal Corp since its formation in 2003 are described. 5 photos.

Fiscor, S.

2008-06-15T23:59:59.000Z

395

Coal cutting research slashes dust  

SciTech Connect (OSTI)

The Coal-Cutting Technology Group at the Bureau of Mine's Twin Cities Research Center is investigating ways to reduce primary dust generated by coal cutting. The progression of research within the program is from fundamental laboratory research, to fundamental field research, to field concept verification. Then the Bureau recommends warranted changes and/or prototype development to industry. Currently the Cutting Technology Group has several projects in each phase of research. The Bureau's current fundamental studies of bit characteristics are directed to determining the effects of conical bit wear on primary respirable dust generation, energy, and cutting forces; establishing best conical bit mount condition to increase life by enhancing bit rotation; and comparing chisel-type cutters to conical-type cutters. Additionally, to establish a suitable homogeneous reference material for cutting experiments, a synthetic coal with a plaster base is being developed.

Roepke, W.W.

1983-10-01T23:59:59.000Z

396

Coal cutting research slashes dust  

SciTech Connect (OSTI)

The Coal-Cutting Technology Group at the Bureau of Mines Twin Cities (MN) Research Center is investigating ways to reduce primary dust generated by coal cutting. The progression of research within the program is from fundamental laboratory research, to fundamental field research, to field concept verification. Then the Bureau recommends warranted changes and/or prototype development to industry. Currently the group has several projects in each phase of research. The Bureau's current fundamental studies of bit characteristics are directed toward determining the effects of conical bit wear on primary respirable dust generation, energy, and cutting forces; establishing best conical bit mount condition to increase life by enhancing bit rotation; and comparing chisel-type cutters to conical-type cutters. Additionally, to establish a suitable homogeneous reference material for cutting experiments, a synthetic coal with a plaster base is being developed.

Roepke, W.W.

1983-10-01T23:59:59.000Z

397

Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization  

SciTech Connect (OSTI)

Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

Henghu Sun; Yuan Yao

2012-06-29T23:59:59.000Z

398

Firing of pulverized solvent refined coal  

DOE Patents [OSTI]

An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

Derbidge, T. Craig (Sunnyvale, CA); Mulholland, James A. (Chapel Hill, NC); Foster, Edward P. (Macungie, PA)

1986-01-01T23:59:59.000Z

399

Low-rank coal oil agglomeration  

DOE Patents [OSTI]

A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

Knudson, C.L.; Timpe, R.C.

1991-07-16T23:59:59.000Z

400

Energy Systems Engineering 1 Clean Coal Technologies  

E-Print Network [OSTI]

Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types of advanced coal technologies Supercritical Pulverised Combustion Circulating Fluidised Bed Combustion (CFBC

Banerjee, Rangan

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Pelletization of fine coals. Final report  

SciTech Connect (OSTI)

Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

Sastry, K.V.S.

1995-12-31T23:59:59.000Z

402

Coal mine directory: United States and Canada  

SciTech Connect (OSTI)

The directory gives a state-by-state listing of all US and Canadian coal producers. It contains contact information as well as the type of mine, production statistics, coal composition, transportation methods etc. A statistical section provides general information about the US coal industry, preparation plants, and longwall mining operations.

NONE

2004-07-01T23:59:59.000Z

403

Liquid Transportation Fuels from Coal and Biomass  

E-Print Network [OSTI]

Liquid Transportation Fuels from Coal and Biomass Technological Status, Costs, and Environmental Katzer #12;CHARGE TO THE ALTF PANEL · Evaluate technologies for converting biomass and coal to liquid for liquid fuels produced from coal or biomass. · Evaluate environmental, economic, policy, and social

404

Selective flotation of inorganic sulfides from coal  

DOE Patents [OSTI]

Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow. 1 fig., 2 tabs.

Miller, K.J.; Wen, Wu-Wey

1988-05-31T23:59:59.000Z

405

Selective flotation of inorganic sulfides from coal  

DOE Patents [OSTI]

Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow.

Miller, Kenneth J. (Floreffe, PA); Wen, Wu-Wey (Murrysville, PA)

1989-01-01T23:59:59.000Z

406

Conventional coal preparation in the United States  

SciTech Connect (OSTI)

Processing of bituminous and anthracite coal is widely practiced in the United States and, as mentioned earlier, about 80 percent of the production of these coals is processed as clean coal in preparation plants. Subbituminous coal is not widely processed, primarily because these low rank raw coals are low in sulfur (0.5 to 1.0 percent) and relatively low in ash (8 to 15 percent). They are also relatively low in heat content due to their high inherent moisture. Lignite coals, to the best of the authors{close_quote} knowledge, are not presently being processed in Conventional Coal Preparation plants. This is due to their unstable nature and putting them in water in a coal preparation plant is likely to cause severe degradation in particle size and add to their already high inherent moisture content. The following are the benefits of clean coal processing: produces a uniform product which can be utilized more efficiently; produces a higher quality product which results in higher efficiency at the power station or the steel mill; reduces sulfur dioxide and other adverse stack emissions during coal firing which is a very important environmental consideration; reduces ash or slag handling costs by the user; reduces shipping costs; and reduces handling and storage costs. Processing any stable raw coal in a coal preparation plant will always produce a higher grade product which is a more efficient and a more environmentally acceptable fuel for use at power stations, steel mills, home heating or industrial boilers.

Beck, M.K.; Taylor, B.

1993-12-31T23:59:59.000Z

407

Consensus Coal Production And Price Forecast For  

E-Print Network [OSTI]

Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

Mohaghegh, Shahab

408

Steam Plant Conversion Eliminating Campus Coal Use  

E-Print Network [OSTI]

Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12; Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12; UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal Constructed in 1964, provides steam for

Dai, Pengcheng

409

Coal occurrence, quality and resource assessment, National Petroleum Reserve in Alaska  

SciTech Connect (OSTI)

Field studies of the Cretaceous Torok, Kukpowruk, and Corwin Formations in the western portion of the NPRA (National Petroleum Reserve in Alaska) and Cretaceos Torok, Tuktu, Grandstand, and Chandler Formations in the eastern portion of NPRA indicate that two major delta systems are responsible for most of the coal accumulation in this area. The Corwin delta in the western portion was an early Albian to Cenomanian, north and east prograding system, whereas the slightly younger mid-Albian to Cenomanian Umiat delta system prograded north and northeast in the eastern portion. Investigations of the lightologies, fossils, and primary depositional structures of these formations indicate that the Corwin system was deposited as a large, high-constructional, shaped delta on which thick and numerous coals developed on splay and interdistributary bay platforms away from the influence of the Cretaceous epicontinental sea. The Umiat delta started out as a high-constructional system but in time became wave dominated, and its shape changed to lobate.

Stricker, G.D.

1983-01-01T23:59:59.000Z

410

Coal liquefaction with preasphaltene recycle  

DOE Patents [OSTI]

A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

Weimer, Robert F. (Allentown, PA); Miller, Robert N. (Allentown, PA)

1986-01-01T23:59:59.000Z

411

Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000  

SciTech Connect (OSTI)

The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.

NONE

2000-09-01T23:59:59.000Z

412

Muffle furnace evaluation of FGD sludge-coal-clay mixtures as potential synthetic aggregates  

E-Print Network [OSTI]

and fusion, which may make them difficult to handle in commercial production. An actual test using a pilot-sized rotary kiln would be required to evaluate this problem. Small amounts of powdered coal were found not to significantly affect these mixtures... proposed rotary kiln experimental program. ACKNOWLEDBEMENTS The author wishes to thank Twin City Testing and Engineering Laboratories, Inc. of St. Paul, Minnesota and Northe& n States Power Co. for their assistance during this program. A special note...

Pettit, Jesse William

2012-06-07T23:59:59.000Z

413

Renaissance Zones (North Dakota)  

Broader source: Energy.gov [DOE]

Renaissance Zones allow qualifying businesses and individuals to claim one or more tax incentives for purchasing, leasing, or making improvements to real property located in a North Dakota...

414

The changing structure of the US coal industry: An update, July 1993  

SciTech Connect (OSTI)

Section 205(a)(2) of the Department of Energy Organization Act of 1977 requires the Administrator of the Energy Information Administration (EIA) to carry out a central, comprehensive, and unified energy data and information program that will collect, evaluate, assemble, analyze, and disseminate data and information relevant to energy resources, reserves, production, demand, technology, and related economic and statistical information. The purpose of this report is to provide a comprehensive overview of changes in the structure of the US coal industry between 1976 and 1991. The structural elements examined include the number of mines, average mine size, the size distribution of mines, and the size distribution of coal firms. The report measures changes in the market shares of the largest coal producers at the national level and in various regions. The Central Appalachian low-sulfur coal market is given special attention, and the market for coal reserves is examined. A history of mergers in the coal industry is presented, and changes in the proportions of US coal output that are produced by various types of companies, including foreign-controlled firms, are described. Finally, the impact of post-1991 mergers on the structure of the industry is estimated. The legislation that created the EIA vested the organization with an element of statutory independence. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high-quality information and to perform objective, credible analyses in support of deliberations by both public and private decisionmakers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

Not Available

1993-07-29T23:59:59.000Z

415

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

also be affected by higher coal prices. II "Current Factorscoal production capacities and coal prices. Coal Production27, Fig. 1, p. 2). Coal prices have had the characteristic

Ferrell, G.C.

2010-01-01T23:59:59.000Z

416

advanced coal-combustion technology: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

417

advanced coal-combustion technologies: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

418

Potential applications of microscopy for steam coal  

SciTech Connect (OSTI)

Optical microscopy has been an extremely useful tool for many industrial sectors in the past. This paper introduces some of the potential applications of using coal and fly ash carbon microscopy for the combustion process and steam coal industry. Coal and fly ash carbon microscopic classification criteria are described. Plant sample data are presented which demonstrate that these techniques can be useful for coal selection and for problem solving in the coal-fired power plant environment. Practical recommendations for further study are proposed.

DeVanney, K.F.; Clarkson, R.J.

1995-08-01T23:59:59.000Z

419

Quarterly coal report, October--December 1996  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

NONE

1997-05-01T23:59:59.000Z

420

Process for selective grinding of coal  

DOE Patents [OSTI]

A process for preparing coal for use as a fuel. Forming a coal-water slurry having solid coal particles with a particle size not exceeding about 80 microns, transferring the coal-water slurry to a solid bowl centrifuge, and operating same to classify the ground coal-water slurry to provide a centrate containing solid particles with a particle size distribution of from about 5 microns to about 20 microns and a centrifuge cake of solids having a particle size distribution of from about 10 microns to about 80 microns. The classifer cake is reground and mixed with fresh feed to the solid bowl centrifuge for additional classification.

Venkatachari, Mukund K. (San Francisco, CA); Benz, August D. (Hillsborough, CA); Huettenhain, Horst (Benicia, CA)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Pulverized coal burner  

DOE Patents [OSTI]

A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

1998-11-03T23:59:59.000Z

422

Pulverized coal burner  

DOE Patents [OSTI]

A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.

Sivy, Jennifer L. (Alliance, OH); Rodgers, Larry W. (Canton, OH); Koslosy, John V. (Akron, OH); LaRue, Albert D. (Uniontown, OH); Kaufman, Keith C. (Canton, OH); Sarv, Hamid (Canton, OH)

1998-01-01T23:59:59.000Z

423

Catalysts for coal liquefaction processes  

DOE Patents [OSTI]

Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

Garg, D.

1986-10-14T23:59:59.000Z

424

Coke from coal and petroleum  

DOE Patents [OSTI]

A carbonaceous coke is manufactured by the delayed coking of a slurry mixture of from about 10 to about 30 weight percent of caking or non-caking coal and the remainder a petroleum resid blended at below 50.degree. C.

Wynne, Jr., Francis E. (Allison Park, PA); Lopez, Jaime (Pittsburgh, PA); Zaborowsky, Edward J. (Harwick, PA)

1981-01-01T23:59:59.000Z

425

Catalysts for coal liquefaction processes  

DOE Patents [OSTI]

Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

Garg, Diwakar (Macungie, PA)

1986-01-01T23:59:59.000Z

426

Coal-fired diesel generator  

SciTech Connect (OSTI)

The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

NONE

1997-05-01T23:59:59.000Z

427

Assessment of coal bed gas prospects  

SciTech Connect (OSTI)

Coal bed gas is an often overlooked source of clean, methane-rich, H{sub 2}S-free natural gas. The economic development of coal bed gas requires a knowledge of coal gas reservoir characteristics and certain necessary departures from conventional evaluation, drilling, completion, and production practices. In many ways coal seam reservoirs are truly unconventional. Most coals sufficient rank have generated large volumes of gas that may be retained depth in varying amounts through adsorption. Coal gas production can take place only when the reservoir pressure is reduced sufficiently to allow the gas to desorb. Gas flow to the well bore takes place through a hierarchy of natural fractures, not the relatively impermeable coal matrix. Economic production is dependent upon critical factors intrinsic to the reservoir, including coal petrology, gas content, internal formation stratigraphy, fracture distribution, hydrogeology, in situ stress conditions, initial reservoir pressure and pressure regime, and the presence or absence of a {open_quote}free{close_quotes} gas saturation. Further, the coal bed reservoir is readily subject to formation damage through improper drilling, completion, or production techniques. This presentation will review the data types critical to the assessment of any coal seam gas prospect, suggest an outline method for screening such prospects, and point out some possible pitfalls to be considered in any coal bed gas development project.

Moore, T.R. [Phillips Petroleum Co., Bartlesville, OK (United States)

1996-12-31T23:59:59.000Z

428

Coal: America's energy future. Volume I  

SciTech Connect (OSTI)

Secretary of Energy Samuel W. Bodman requested the National Coal Council in April 2005 a report identifying the challenges and opportunities of more fully exploring the USA's domestic coal resources to meet the nations' future energy needs. This resultant report addresses the Secretary's request in the context of the President's focus, with eight findings and recommendations that would use technology to leverage the USA's extensive coal assets and reduce dependence on imported energy. Volume I outlines these findings and recommendations. Volume II provides technical data and case histories to support the findings and recommendations. Chapter headings of Volume I are: Coal-to-Liquids to Produce 2.6 MMbbl/d; Coal-to-Natural Gas to Produce 4.0 Tcf Per Year; Coal-to-Clean Electricity; Coal to Produce Ethanol; Coal-to-Hydrogen; Enhanced Oil and Gas (Coalbed Methane); Recovery as Carbon Management Strategies; Delineate U.S. Coal Reserves and Transportation Constraints as Part of an Effort to Maximize U.S. Coal Production; and Penn State Study, 'Economic Benefits of Coal Conversion Investments'.

NONE

2006-03-15T23:59:59.000Z

429

Quarterly Coal Report, July--September 1994  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1994 and aggregated quarterly historical data for 1986 through the second quarter of 1994. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the United States, historical information has been integrated in this report. Additional historical data can also be found in the following EIA publications : Annual Energy Review 1993 (DOE/EIA-0384(93)), Monthly Energy Review (DOE/EIA-0035), and Coal Data: A Reference (DOE/EIA-0064(90)). The historical data in this report are collected by the EIA in three quarterly coal surveys (coal consumption at manufacturing plants, coal distribution, and coal consumption at coke plants), one annual coal production survey, and two monthly surveys of electric utilities. All data shown for 1993 and previous years are final. Data for 1994 are preliminary.

Not Available

1995-02-01T23:59:59.000Z

430

Role of coal in the world and Asia  

SciTech Connect (OSTI)

This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning.

Johnson, C.J.; Li, B.

1994-10-01T23:59:59.000Z

431

Directory of coal production ownership, 1979  

SciTech Connect (OSTI)

Ownership patterns in the coal industry are highly complex. Many producers are diversified into other lines of activity. The pattern and extent of this diversification has varied through time. In the past, steel and nonferrous metals companies had major coal industry involvement. This is still true today. However, other types of enterprises have entered the industry de novo or through merger. Those of greatest significance in recent times have involved petroleum and particularly public utility companies. This report attempts to identify, as accurately as possible, production ownership patterns in the coal industry. The audience for this Directory is anyone who is interested in accurately tracing the ownership of coal companies to parent companies, or who is concerned about the structure of ownership in the US coal industry. This audience includes coal industry specialists, coal industry policy analysts, economists, financial analysts, and members of the investment community.

Thompson, B.

1981-10-01T23:59:59.000Z

432

North American Electric Reliability Corporation Interconnections...  

Office of Environmental Management (EM)

North American Electric Reliability Corporation Interconnections North American Electric Reliability Corporation Interconnections Map of the North American Electric Reliability...

433

Multisolvent successive extractive refining of coal  

SciTech Connect (OSTI)

A selected group of commercial solvents, namely, anthracene oil (AO), ethylenediamine (EDA), and liquid paraffin (LP), were used for successive extraction of Assam coal. Hot AO provided a wide range of mixed solvents that dissociate chemically and interact favorably with dissociated and undissociated coal macromolecules (like dissolves like). This resulted in the enhancement of the EDA extractability of the AO-pretreated residual coal. EDA is a good swelling solvent and results in physical dissociation of coal molecules. The residual coal obtained after EDA extraction was subjected to extraction with LP, an H-donor, high-boiling (330--360 C) solvent. LP thermally dissociates coal macromolecules and interacts with the coal at its plastic stage at the free radical pockets. The mechanism and molecular dynamics of the multisolvent successive extraction of Assam coal using AO-EDA-LP solvents are discussed. In early attempts, successive extractions did not modify the extraction yield in the single solvent showing the maximum extraction. However, the AO-EDA-LP extraction resulted in the extraction of 70% coal, more than for any of the individual solvents used. Therefore, AO-EDA-LP extraction of coal affords a process yielding a superclean, high-heating value fuel from coal under milder conditions. Several uses of superclean coal have been recommended. Present studies have revealed a new concept concerning the structure of coal having 30% polyaromatic condensed entangled rings and 70% triaromatic-heterocyclic-naphthenic-aliphatic structure. The insolubility of coal is due to the polyfunctional-heterocyclic-condensed structure having a polyaromatic core with intermacromolecular entanglements.

Sharma, D.K.; Singh, S.K. [Indian Inst. of Tech., New Delhi (India)

1996-01-01T23:59:59.000Z

434

Hydrothermally treated coals for pulverized coal injection. Technical progress report, April 1995--June 1995  

SciTech Connect (OSTI)

This project is investigating the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coal field and Usibelli Coal Mine, Alaska, are being used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times ranging from 10 to 120 minutes. Products have been characterized to determine their suitability for pulverized coal injection. Characterization includes proximate and ultimate analyses, vitrinite reflectance, TGA reactivity and thermochemical modeling. A literature survey has been conducted.

Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

1995-07-01T23:59:59.000Z

435

Energy Policy Commission (North Dakota)  

Broader source: Energy.gov [DOE]

Created in 2007 by the North Dakota Legislative Assembly, the EmPower North Dakota Commission designed a comprehensive energy policy for the state of North Dakota. Since 2007 the Commission has...

436

Environmental data energy technology characterizations: coal  

SciTech Connect (OSTI)

This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

Not Available

1980-04-01T23:59:59.000Z

437

Upgrading low-rank coals using the liquids from coal (LFC) process  

SciTech Connect (OSTI)

Three unmistakable trends characterize national and international coal markets today that help to explain coal`s continuing and, in some cases, increasing share of the world`s energy mix: the downward trend in coal prices is primarily influenced by an excess of increasing supply relative to increasing demand. Associated with this trend are the availability of capital to expand coal supplies when prices become firm and the role of coal exports in international trade, especially for developing nations; the global trend toward reducing the transportation cost component relative to the market, preserves or enhances the producer`s profit margins in the face of lower prices. The strong influence of transportation costs is due to the geographic relationships between coal producers and coal users. The trend toward upgrading low grade coals, including subbituminous and lignite coals, that have favorable environmental characteristics, such as low sulfur, compensates in some measure for decreasing coal prices and helps to reduce transportation costs. The upgrading of low grade coal includes a variety of precombustion clean coal technologies, such as deep coal cleaning. Also included in this grouping are the coal drying and mild pyrolysis (or mild gasification) technologies that remove most of the moisture and a substantial portion of the volatile matter, including organic sulfur, while producing two or more saleable coproducts with considerable added value. SGI International`s Liquids From Coal (LFC) process falls into this category. In the following sections, the LFC process is described and the coproducts of the mild pyrolysis are characterized. Since the process can be applied widely to low rank coals all around the world, the characteristics of coproducts from three different regions around the Pacific Rim-the Powder River Basin of Wyoming, the Beluga Field in Alaska near the Cook Inlet, and the Bukit Asam region in south Sumatra, Indonesia - are compared.

Nickell, R.E.; Hoften, S.A. van

1993-12-31T23:59:59.000Z

438

Chemical comminution and deashing of low-rank coals  

DOE Patents [OSTI]

A method of chemically comminuting a low-rank coal while at the same time increasing the heating value of the coal. A strong alkali solution is added to a low-rank coal to solubilize the carbonaceous portion of the coal, leaving behind the noncarbonaceous mineral matter portion. The solubilized coal is precipitated from solution by a multivalent cation, preferably calcium.

Quigley, David R. (Idaho Falls, ID)

1992-01-01T23:59:59.000Z

439

Chemical comminution and deashing of low-rank coals  

DOE Patents [OSTI]

A method of chemically comminuting a low-rank coal while at the same time increasing the heating value of the coal. A strong alkali solution is added to a low-rank coal to solubilize the carbonaceous portion of the coal, leaving behind the noncarbonaceous mineral matter portion. The solubilized coal is precipitated from solution by a multivalent cation, preferably calcium.

Quigley, David R.

1992-12-01T23:59:59.000Z

440

SECA Coal-Based Systems - LGFCS  

SciTech Connect (OSTI)

LGFCS is developing an integrated planar (IP) SOFC technology for mega-watt scale power generation including the potential for use in highly efficient, economically competitive central generation power plant facilities fuel by coal synthesis gas. This Department of Energy Solid-State Energy Conversion Alliance (SECA) program has been aimed at achieving further cell and stack technical advancements and assessing the readiness of the LGFCS SOFC stack technology to be scaled to larger-scale demonstrations as a path to commercialization. Significant progress was achieved in reducing to practice a higher performance and lower cost cell technology, identifying and overcoming degradation mechanisms, confirming the structural capability of the porous substrate for reliability, maturing the strip design for improved flow to allow high fuel utilization operation while minimizing degradation mechanisms and obtaining full scale block testing at 19 kW under representative conditions for eventual product and meeting SECA degradation metrics. The SECA program has played a key role within the overall LGFCS development program in setting the foundation of the technology to justify the progression of the technology to the next level of technology readiness testing.

Goettler, Richard

2014-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Rheological properties of water-coal slurries based on brown coal in the presence of sodium lignosulfonates and alkali  

SciTech Connect (OSTI)

The effect of the oxidized surface of brown coal on the structural and rheological properties of water-coal slurries was found. The kinetics of structure formation processes in water-coal slurries based on as-received and oxidized brown coal was studied. The effect of lignosulfonate and alkali additives on the samples of brown coal was considered.

D.P. Savitskii; A.S. Makarov; V.A. Zavgorodnii [National Academy of Sciences of Ukraine, Kiev (Ukraine). Dumanskii Institute of Colloid and Water Chemistry

2009-07-01T23:59:59.000Z

442

Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Creek  

E-Print Network [OSTI]

1 Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Control and Reclamation ActSurface Mining Control and Reclamation Act of 1977of 1977 Coal Creek Watershed Foundation (2000)Coal Creek Watershed Foundation (2000) BackgroundBackground Fish populations in Coal Creek

Gray, Matthew

443

Coal liquefaction co-processing  

SciTech Connect (OSTI)

The UOP Co-Processing scheme is a single-stage slurry catalyzed process in which petroleum vacuum resid and coal are simultaneously upgraded to a high quality synthetic oil. A highly active dispersed V{sub 2}O{sub 5} catalyst is used to enhance operations at moderate reaction conditions. A three-year research program has been completed to study the feasibility of this technology. Results are discussed. 7 refs., 14 figs., 21 tabs.

Nafis, D.A.; Humbach, M.J. (UOP, Inc., Des Plaines, IL (USA)); Gatsis, J.G. (Allied-Signal, Inc., Des Plaines, IL (USA). Engineered Materials Research Center)

1988-09-19T23:59:59.000Z

444

HINDERED DIFFUSION OF COAL LIQUIDS  

SciTech Connect (OSTI)

It was the purpose of the project described here to carry out careful and detailed investigations of petroleum and coal asphaltene transport through model porous systems under a broad range of temperature conditions. The experimental studies were to be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms and a more accurate concept of the asphaltene structure. The following discussion describes some of our accomplishments.

Theodore T. Tsotsis; Muhammad Sahimi; Ian A. Webster

1996-01-01T23:59:59.000Z

445

Catalyst for coal liquefaction process  

DOE Patents [OSTI]

An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.

Huibers, Derk T. A. (Pennington, NJ); Kang, Chia-Chen C. (Princeton, NJ)

1984-01-01T23:59:59.000Z

446

PNNL Coal Gasifier Transportation Logistics  

SciTech Connect (OSTI)

This report provides Pacific Northwest National laboratory (PNNL) craftspeople with the necessary information and suggested configurations to transport PNNLs coal gasifier from its current location at the InEnTec facility in Richland, Washington, to PNNLs Laboratory Support Warehouse (LSW) for short-term storage. A method of securing the gasifier equipment is provided that complies with the tie-down requirements of the Federal Motor Carrier Safety Administrations Cargo Securement Rules.

Reid, Douglas J.; Guzman, Anthony D.

2011-04-13T23:59:59.000Z

447

Novel Fuel Cells for Coal Based Systems  

SciTech Connect (OSTI)

The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

Thomas Tao

2011-12-31T23:59:59.000Z

448

Clean coal technology programs: program update 2006  

SciTech Connect (OSTI)

The purpose of the Clean Coal Technology Programs: Program Update 2006 is to provide an updated status of the DOE commercial-scale demonstrations of clean coal technologies (CCTs). These demonstrations are performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII) and the Clean Coal Power Initiative (CCPI). Program Update 2006 provides 1) a discussion of the role of clean coal technology demonstrations in improving the nation's energy security and reliability, while protecting the environment using the nation's most abundant energy resource - coal; 2) a summary of the funding and costs of the demonstrations; and 3) an overview of the technologies being demonstrated, with fact sheets for demonstration projects that are active, recently completed, withdrawn or ended, including status as of June 30 2006. 4 apps.

NONE

2006-09-15T23:59:59.000Z

449

Clean Coal Technology Programs: Program Update 2009  

SciTech Connect (OSTI)

The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nations energy security and reliability, while protecting the environment using the nations most abundant energy resourcecoal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

None

2009-10-01T23:59:59.000Z

450

Coal distribution, January--June 1991  

SciTech Connect (OSTI)

The Coal Distribution report provides information on coal production, distribution, and stocks in the United States to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. The data in this report are collected and published by the Energy Information Administration (EIA) to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275, Sections 5 and 13, as amended). This issue presents information for January through June 1991. Coal distribution data are shown (in Tables 1--34) by coal-producing Sate of origin, consumer use, method of transportation, and State of destination. All data in this report were collected by the EIA on Form EIA-6, Coal Distribution Report.'' A copy of the form and the instructions for filing appear in Appendix B. All data in this report for 1991 are preliminary. Data for previous years are final. 6 figs., 34 tabs.

Not Available

1991-10-21T23:59:59.000Z

451

North Central Texas Alternative Fuel and Advanced Technology...  

Broader source: Energy.gov (indexed) [DOE]

Sites: Natural Gas, Electric, Ethanol, and Biodiesel Project Benefits* 67.7 Tons Nitrogen Oxides (NO x ) Reduced 4.5 Tons Volatile Organic Compounds (VOC) Reduced 0.8 Tons...

452

North Central Texas Alternative Fuel and Advanced Technology...  

Broader source: Energy.gov (indexed) [DOE]

Gas, Electric, Ethanol, and Biodiesel Project Benefits* Pollutant Annual Reductions Nitrogen Oxides (NO x ) 63.7 Tons Volatile Organic Compounds (VOC) 1.6 Tons Particulate...

453

North Central Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City)Norristown,Braddock isState

454

PP-67 North Central Electric Cooperative, Inc. | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6 Frontera Generation Limited15 Trico3 Puget223-44127

455

Workplace Charging Challenge Partner: North Central College | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof EnergyEnergyHertz HertzNRG EnergyEnergy

456

AEP (Central and North) - Residential Energy Efficiency Programs (Texas) |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionofDepartment of Energyutmaan~ mrm NO.

457

AEP (Central, North and SWEPCO) - Commercial Solutions Program | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionofDepartment of Energyutmaan~ mrmof

458

2011 Municipal Consortium North Central Region Workshop Materials |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( SampleEnergy back_cover.pdf MoreReview Report:2 Fuel

459

2011 Municipal Consortium North Central Region Workshop Materials |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( SampleEnergy back_cover.pdf MoreReview Report:2 FuelDepartment

460

Central Adams, North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV EconomicsOregon:Centereach,

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

North Central Texas Alternative Fuel and Advanced Technology Investments |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership ProgramDepartment ofCatalystsCarolinaDepartment of

462

North Central Texas Alternative Fuel and Advanced Technology Investments |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership ProgramDepartment ofCatalystsCarolinaDepartment

463

North Central Texas Alternative Fuel and Advanced Technology Investments |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership ProgramDepartment

464

Method for desulfurization of coal  

DOE Patents [OSTI]

A process and apparatus for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS.sub.2 to a troilite FeS form or a pyrrhotite form Fe.sub.1-x S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H.sub.2 S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents.

Kelland, David R. (Lexington, MA)

1987-01-01T23:59:59.000Z

465

Method for desulfurization of coal  

DOE Patents [OSTI]

A process and apparatus are disclosed for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS[sub 2] to a troilite FeS form or a pyrrhotite form Fe[sub 1[minus]x]S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H[sub 2]S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents. 2 figs.

Kelland, D.R.

1987-07-07T23:59:59.000Z

466

Apparatus for solar coal gasification  

DOE Patents [OSTI]

Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats through a window onto the surface of a moving bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam in one embodiment at the rear surface of a secondary mirror used to redirect the focused sunlight. Another novel feature of the invention is the location and arrangement of the array of mirrors on an inclined surface (e.g., a hillside) to provide for direct optical communication of said mirrors and the carbonaceous feed without a secondary redirecting mirror.

Gregg, D.W.

1980-08-04T23:59:59.000Z

467

Coal royalty valuation: The federal perspective  

SciTech Connect (OSTI)

The MMS has embarked upon an aggressive coal royalty valuation odyssey, for which there is no common law mandated statutory basis. Accordingly, any form of deference to MMS interpretations, policy pronouncements and even regulatory rulemaking is tantamount to feeding steroids to King Kong. The coal industry must be vigilant first and pro-active second. The stark issue is {open_quotes}what we will yet permit the Federal Coal Valuation Program to become?{close_quotes}

McGee, B.E. [Parcel, Mauro, Hultin & Spaanstra, Denver, CO (United States)

1995-11-01T23:59:59.000Z

468

Process for treating moisture laden coal fines  

DOE Patents [OSTI]

A process is provided for making a free flowing granular product from moisture laden caked coal fines, such as wet cake, by mixing a water immiscible substance, such as oil, with the caked coal, preferably under low shear forces for a period of time sufficient to produce a plurality of free flowing granules. Each granule is preferably comprised of a dry appearing admixture of one or more coal particle, 2-50% by weight water and the water immiscible substance.

Davis, Burl E. (New Kensington, PA); Henry, Raymond M. (Gibsonia, PA); Trivett, Gordon S. (South Surrey, CA); Albaugh, Edgar W. (Birmingham, AL)

1993-01-01T23:59:59.000Z

469

Quarterly coal report, July--September 1997  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks. Coke production consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1997 and aggregated quarterly historical data for 1991 through the second quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. 72 tabs.

NONE

1998-02-01T23:59:59.000Z

470

Quarterly coal report, July--September 1998  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1998 and aggregated quarterly historical data for 1992 through the second quarter of 1998. 58 tabs.

NONE

1999-02-01T23:59:59.000Z

471

Asian anthropogenic lead contamination in the North Pacific Ocean as evidenced by stable lead isotopic compositions  

E-Print Network [OSTI]

and North Central Pacific Ocean. Deep Sea Res. Part II Top.Lead Within the Northwest Pacific Ocean Evidenced by Leadventilation flux of the Pacific Ocean. J. Geophys. Res. 106(

Zurbrick, Cheryl Marie

2014-01-01T23:59:59.000Z

472

Vehicle Technologies Office Merit Review 2014: Moving North Texas Forward by Addressing Alternative Fuel Barriers  

Broader source: Energy.gov [DOE]

Presentation given by North Central Texas Council of Governments at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

473

Stimulating Investment in Renewable Resources and Clean Coal Technology through a Carbon Tax:  

E-Print Network [OSTI]

three tax rates. The substitution of clean coal technology for standard coal, which seems promising for

Nellie Zhao; Servia Rindfleish; Jay Foley; Jelena Pesic

474

Comparison of large central and small decentralized power generation in India  

SciTech Connect (OSTI)

This reports evaluates two options for providing reliable power to rural areas in India. The benefits and costs are compared for biomass based distributed generation (DG) systems versus a 1200-MW central grid coal-fired power plant. The biomass based DG systems are examined both as alternatives to grid extension and as supplements to central grid power. The benefits are divided into three categories: those associated with providing reliable power from any source, those associated specifically with biomass based DG technology, and benefits of a central grid coal plant. The report compares the estimated delivered costs of electricity from the DG systems to those of the central plant. The analysis includes estimates for a central grid coal plant and four potential DG system technologies: Stirling engines, direct-fired combustion turbines, fuel cells, and biomass integrated gasification combined cycles. The report also discusses issues affecting India`s rural electricity demand, including economic development, power reliability, and environmental concerns. The results of the costs of electricity comparison between the biomass DG systems and the coal-fired central grid station demonstrated that the DG technologies may be able to produce very competitively priced electricity by the start of the next century. The use of DG technology may provide a practical means of addressing many rural electricity issues that India will face in the future. Biomass DG technologies in particular offer unique advantages for the environment and for economic development that will make them especially attractive. 58 refs., 31 figs.

none,

1997-05-01T23:59:59.000Z

475

A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation  

SciTech Connect (OSTI)

Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.

Jiang, C.

1993-12-31T23:59:59.000Z

476

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network [OSTI]

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16.............................................................................................21 Coal and Methane Production

Maxwell, Bruce D.

477

advanced coal conversion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the coal plant is transmitted over the transmission lines, Phadke, Amol 2008-01-01 7 Clean Coal Technology Program Advanced Coal Conversion Process Demonstration CiteSeer Summary:...

478

Separation of solids from coal liquefaction products using sonic waves  

SciTech Connect (OSTI)

Product streams containing solids are generated in both direct and indirect coal liquefaction processes. This project seeks to improve the effectiveness of coal liquefaction by novel application of sonic and ultrasonic energy to separation of solids from coal liquefaction streams.

Slomka, B.J.

1994-10-01T23:59:59.000Z

479

COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER  

E-Print Network [OSTI]

November 1976. Wilson, P.J. and Wells, J.H. , Coal, Cokeand Coal Chemicals, 108, (1950). This report was done withliThe F1uidised Combustion of Coal," Sixteenth S m osium {

Chin, W.K.

2010-01-01T23:59:59.000Z

480

Nature Preserves (North Dakota)  

Broader source: Energy.gov [DOE]

The Parks and Recreation Department is responsible for managing and acquiring designated nature areas in the state of North Dakota. New construction and development is severely restricted on these...

Note: This page contains sample records for the topic "north central coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Dam Safety (North Carolina)  

Broader source: Energy.gov [DOE]

North Carolina Administrative Code Title 15A, Subchapter 2K lays out further regulations for the design, approval, construction, maintenance, and inspection of dams to ensure public safety and...

482

Today's high coal prices: correction or crisis?  

SciTech Connect (OSTI)

Eastern spot prices for coal have risen 25% since the start of 2004, reaching their highest levels in more than 25 years. This spike represents the second time in four years that coal prices have risen to more than double their pre-2000 price levels. Years of famine (from a coal producer's point of view) have been replaced by periods of plenty, with increasing consequences for coal's customers. How long will this spike last? This article, based on studies carried out by EPRI, attempts to answer this question. 3 figs., 1 tab.

Platt, J. [EPRI (US)

2005-06-01T23:59:59.000Z

483

Integrated two-stage coal liquefaction process  

DOE Patents [OSTI]

This invention relates to an improved two-stage process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal.

Bronfenbrenner, James C. (Allentown, PA); Skinner, Ronald W. (Allentown, PA); Znaimer, Samuel (Vancouver, CA)

1985-01-01T23:59:59.000Z

484

Production of Hydrogen from Underground Coal Gasification  

DOE Patents [OSTI]

A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

Upadhye, Ravindra S. (Pleasanton, CA)

2008-10-07T23:59:59.000Z

485

Coal production expansion: a selected bibliography  

SciTech Connect (OSTI)

The expeditious and economic transport of coal from producing regions to consuming regions is essential to any policy designed to increase the use of coal as an energy source. Obtaining an optimal coal transportation system, including terminal facilities, is significant in providing US coal to its users in the United States and abroad. Rail, barge, truck, slurry pipeline, and ship are the modes used to move coal from the producer to the user. Transportation costs represent a large percentage of the delivered price. This bibliography includes 138 selected citations on coal export, transport, and production. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators. These citations and hundreds of additional citations on this subject are available for on-line searching and retrieval from the Technical Information Center's Energy Data Base using the DOE/RECON interactive system. Approximately 50,000 citations on coal and coal products are a part of this data base. Current additions to data base on this subject are announced monthly in Fossil Energy Update. DOE-sponsored work is also announced in Energy Research Abstracts. The citations in this publication are arranged in broad subject categories as shown in the table of contents. Five indexes are provided: Corporate, Author, Subject, Contract Number, and Report Number. Included as an appendix are some tables and figures from Energy Information Administration reports covering coal production and disposition.

Grissom, M.C. (ed.)

1980-07-01T23:59:59.000Z

486

Apparatus for fixed bed coal gasification  

DOE Patents [OSTI]

An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01T23:59:59.000Z

487

The Political Economy of Clean Coal .  

E-Print Network [OSTI]

??This dissertation investigates the nature of the political economy of Clean Coal. It begins by reviewing the literature of global warming and the current usage (more)

Wu, Hao Howard

2010-01-01T23:59:59.000Z

488

Process for electrochemically gasifying coal using electromagnetism  

DOE Patents [OSTI]

A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

Botts, Thomas E. (Markham, VA); Powell, James R. (Shoreham, NY)

1987-01-01T23:59:59.000Z

489

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

delivered heating (district heating) (6%), and chemicalscoal growth. As district heating expands with urbanizationzone, coal use for district heating will depend on the

Aden, Nathaniel

2010-01-01T23:59:59.000Z

490

Quarterly coal report, January--March 1996  

SciTech Connect (OSTI)

This report presents detailed quarterly data for March 1996 and historical data for 1988 through 1995 on coal production, distribution, imports and exports, prices, consumption, and stocks.

NONE

1996-08-01T23:59:59.000Z