National Library of Energy BETA

Sample records for north central coal

  1. Coal recovery from mine wastes of the historic longwall mining district of north-central illinois. Illinois mineral notes

    SciTech Connect (OSTI)

    Khan, L.A.; Berggren, D.J.; Camp, L.R.

    1986-01-01

    Recovery of coal from mine wastes produced by historic longwall mines in northeastern Illinois was studied as part of a project undertaken in 1982 for the Illinois Abandoned Mined Lands Reclamation Council. About 100 of these mines operated in the Wilmington and La Salle Districts of the Illinois Coal Field between about 1870 and 1940; all worked the Colchester (No. 2) Coal Seam, using a manual high-extraction mining method. Large samples of the three major kinds of mine waste - gray mining gob, preparation gob, and preparation slurry - were collected from deposits at nine of the larger mine sites and analyzed to determine their general ranges of sulfur, ash, and heating values. Preparation gob and slurry from six of the sites had significant combustible contents, and were evaluated by a simple procedure in which ash analyses and wet-screening tests were used to determine the washability and yield of combustibles to recovery processes.

  2. North Central","West North Central","South Atlantic","East South...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...heast",,"Midwest",,"South",,,"West" ,,"New England","Middle Atlantic","East North Central","West North Central","South Atlantic","East South Central","West South ...

  3. PP-67 North Central Electric Cooperative, Inc. | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 North Central Electric Cooperative, Inc. PP-67 North Central Electric Cooperative, Inc. Presidential Permit authorizing North Central Electric Cooperative, Inc. to construct, ...

  4. TEE-0067 - In the Matter of North Side Coal & Oil Co., Inc. ...

    Energy Savers [EERE]

    7 - In the Matter of North Side Coal & Oil Co., Inc. TEE-0067 - In the Matter of North Side Coal & Oil Co., Inc. On December 2, 2009, North Side Coal & Oil Co., Inc. (North Side) ...

  5. Workplace Charging Challenge Partner: North Central College ...

    Energy Savers [EERE]

    North Central College has two plug-in electric vehicle (PEV) charging stations. Both stations may be used free of charge by students, faculty, staff and campus visitors. Serious in ...

  6. Reactivity of North Bohemian coals in coprocessing of coal/oil mixtures

    SciTech Connect (OSTI)

    Sebor, G.; Cerny, J.; Maxa, D.; Blazek, J.; Sykorova, I.

    1995-12-01

    Autoclave experiments with North Bohemian coal were done in order to evaluate their reactivity in coprocessing with petroleum vacuum residue, Selected coals were comprehensively characterized by using a number of analytical methods. While the coals were of similar geological origin, some of their characteristics differed largely from one coal to another. Despite the differences in physical and chemical structure, the coals provided very similar yields of desired reaction products. The yields of a heavy non- distillable fraction and/or an insoluble solid residue were, under experimental conditions, largely affected by retrogressive reactions (coking). The insoluble solid fractions were examined microscopically under polarized light.

  7. North Central Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Central Elec Coop, Inc Place: Ohio Website: www.ncelec.org Twitter: @NorthCentralEC Facebook: https:www.facebook.comNorthCentralElectric Outage Hotline: 419-426-3072 ...

  8. Central Adams, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Central Adams, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1382966, -102.6799359 Show Map Loading map......

  9. First oilfields of the Central and Northern North Sea

    SciTech Connect (OSTI)

    Swarbrick, R.E. ); Martin, J.A. )

    1991-03-01

    Only 25 years ago the areas now termed the Central and Northern North Sea were the true frontier exploration basins. Stratigraphy and structure were essentially unknown, except inferences drawn from the Mesozoic outcrops of Britain and Denmark. At that time the majority of small British onshore oil fields were reservoired in Paleozoic strata. In the Central North Sea, oil was first discovered in Paleocene deep-water sandstone and Upper Cretaceous chalk reservoirs. The first commercial reserves were proven with the discovery of the Ekofisk field (Upper Cretaceous) in 1969 and Forties field (Paleocene) in 1970, both now classed as giants. Subsequently stratigraphically deeper reservoirs were established, including Jurassic sandstones (Piper field) and Permian carbonates and sandstones (Auk and Argyll fields). Diversity of trap type and reservoir age is now a hallmark of the Central North Sea basin. In the Northern North Sea, the first exploration well in 1971 on the Brent field structure, a true wildcat whose nearest UK well control was 320 mi to the south, found oil in Middle Jurassic deltaic sandstones. A spate of discoveries on similar tilted fault blocks with Middle Jurassic and underlying Triassic alluvial-fluvial sandstone targets followed. Later, Upper Jurassic deep-water sandstones became established as a further significant reservoir with the Brae field and Magnus field discoveries. Original seismic data, well prognoses, and structure maps tell the story of these early discoveries. Public response in Norway and the UK to the emergence of the North Sea oil province on their doorstep will be reviewed.

  10. Wind energy resource atlas. Volume 2. The North Central Region

    SciTech Connect (OSTI)

    Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01

    The North Central atlas assimilates six collections of wind resource data: one for the region and one for each of the five states that compose the North Central region (Iowa, Minnesota, Nebraska, North Dakota, and South Dakota). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and that data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and international wind speed and power, and hourly average wind speed for each season. Other graphs present speed direction and duration frequencies of the wind at these locations.

  11. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  12. North Central","West North Central","South Atlantic","East South Central","West South Central","Mountain","Pacific"

    U.S. Energy Information Administration (EIA) Indexed Site

    A4. Census Region and Division, Floorspace for All Buildings (Including Malls), 2003" ,"Total Floorspace (million square feet)" ,"All Buildings","Northeast",,"Midwest",,"South",,,"West" ,,"New England","Middle Atlantic","East North Central","West North Central","South Atlantic","East South Central","West South Central","Mountain","Pacific"

  13. NO{sub x} controls for coal-fired utility boilers in East Central Europe

    SciTech Connect (OSTI)

    Eskinazi, D.; Tavoulareas, E.S.

    1995-12-01

    Increasing environmental pressures worldwide, including East Central Europe are placing greater emphasis on NO{sub x} emission controls in utility power plants. Western Europe, Japan and the U.S. have significant experience in applying NO{sub x} controls, especially in boilers firing hard coal. Some countries in Europe (i.e., Germany and Austria), have gained experience in applying NO{sub x} controls in boilers firing low-rank coal. This experience can be applied to East Central European countries in providing the basis for planning NO{sub x} control projects, suggesting cost-effective solutions, and providing lessons learned. However, while the experience is generally applicable to East Central European countries, differences in boiler design, operation and coal characteristics also need to be considered. This paper begins with a comparison of the NO{sub x} regulations, identifies the key NO{sub x} control technologies and the worldwide experience with them, and discusses the achievable NO{sub x} reduction, O&M impacts, and retrofit costs for each technology. Emphasis is placed on retrofit applications for existing boilers, because new coal-fired power plants are not expected to be built for the next 5-10 years. This paper also focuses on technologies with relatively low cost and operational simplicity: combustion system tuning/optimization. low-NO{sub x} burners (LNB), overfire air (OFA), selective non-catalytic reduction (SNCR), and reburning.

  14. British coal privatization procedures

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The form in which British Coal is to be privatized has finally been announced. Offers are to be invited for the operating underground and opencast mines which will be grouped into five regionally based companies. Additionally, offers will be invited for a number of collieries which are currently under care and maintenance. The five Regional Coal Companies to be formed are Central North, which will comprise the assets in the Yorkshire and Durham coalfields, including the five collieries in the Selby Complex; Central South, which will contain the assets located in the Nottinghamshire, Leicestershire, Derbyshire, and Warwickshire coalfields; North East, which has four opencast sites, Scotland, which has nine operating open-cast sites and a single underground mine, Longannet; and South Wales with its nine operating opencast sites. Tower colliery, the last underground mine in South Wales, was finally put on care and maintenance on April 20, 1994. Details of the five Regional Coal Companies are given. A new public sector body, the Coal Authority will be set up to which all British Coal's title to unworked coal and coal mines will be transferred. All the relevant property rights and liabilities of British Coal will be transferred into the Regional Coal Companies prior to their sun.

  15. North Central Florida Regional Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) North Central Florida Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals North Central Florida Regional

  16. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2011-03-01

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  17. Coal

    Broader source: Energy.gov [DOE]

    Coal is the largest domestically produced source of energy in America and is used to generate a significant amount of our nation’s electricity.

  18. Keystone coal industry manual

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  19. JV Task 106 - Feasibility of CO2 Capture Technologies for Existing North Dakota Lignite-Fired Pulverized Coal Boilers

    SciTech Connect (OSTI)

    Michael L. Jones; Brandon M. Pavlish; Melanie D. Jensen

    2007-05-01

    The goal of this project is to provide a technical review and evaluation of various carbon dioxide (CO{sub 2}) capture technologies, with a focus on the applicability to lignite-fired facilities within North Dakota. The motivation for the project came from the Lignite Energy Council's (LEC's) need to identify the feasibility of CO{sub 2} capture technologies for existing North Dakota lignite-fired, pulverized coal (pc) power plants. A literature review was completed to determine the commercially available technologies as well as to identify emerging CO{sub 2} capture technologies that are currently in the research or demonstration phase. The literature review revealed few commercially available technologies for a coal-fired power plant. CO{sub 2} separation and capture using amine scrubbing have been performed for several years in industry and could be applied to an existing pc-fired power plant. Other promising technologies do exist, but many are still in the research and demonstration phases. Oxyfuel combustion, a technology that has been used in industry for several years to increase boiler efficiency, is in the process of being tailored for CO{sub 2} separation and capture. These two technologies were chosen for evaluation for CO{sub 2} separation and capture from coal-fired power plants. Although oxyfuel combustion is still in the pilot-scale demonstration phase, it was chosen to be evaluated at LEC's request because it is one of the most promising emerging technologies. As part of the evaluation of the two chosen technologies, a conceptual design, a mass and energy balance, and an economic evaluation were completed.

  20. JV Task 109 - Risk Assessment and Feasibility of Remedial Alternatives for Coal Seam at Garrison, North Dakota

    SciTech Connect (OSTI)

    Jarda Solc

    2008-01-01

    The Energy & Environmental Research Center (EERC) conducted an evaluation of alternative technologies for remediation of hydrocarbon-contaminated coal seam, including impacted soils and groundwater in Garrison, North Dakota. Geotechnical characteristics of the impacted fractured coal seam provide for rapid off-site contaminant transport, with the currently identified impacted zone covering an area of about 40 acres. Regardless of the exposure mechanism (free, dissolved, or vapor phase), results of laboratory tests confirmed secondary release of gasoline-based compounds from contaminated coal to water reaching concentrations documented from the impacted areas. Coal laboratory tests confirmed low risks associated with spontaneous ignition of gasoline-contaminated coal. High contaminant recovery efficiency for the vacuum-enhanced recovery pilot tests conducted at three selected locations confirmed its feasibility for full-scale remediation. A total of 3500 gallons (13.3 m{sup 3}) of contaminated groundwater and over 430,000 ft{sup 3} (12,200 m{sup 3}) of soil vapor were extracted during vacuum-enhanced recovery testing conducted July 17-24, 2007, resulting in the removal of about 1330 lb (603 kg) of hydrocarbons, an equivalent of about 213 gallons of product. The summary of project activities is as follows: (1) Groundwater and vapor monitoring for existing wells, including domestic wells, conducted on a monthly basis from December 12, 2006, to June 6, 2007. This monitoring activity conducted prior to initiation of the EERC field investigation was requested by NDDH in a letter dated December 1, 2006. (2) Drilling of 20 soil borings, including installation of extraction and monitoring wells conducted April 30-May 4 and May 14-18, 2007. (3) Groundwater sampling and water-table monitoring conducted June 11-13, 2007. (4) Evaluation of the feasibility of using a camera survey for delineation of mining voids conducted May 16 and September 10-11, 2007. (5) Survey of all wells

  1. Coal Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Markets | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly coal commodity spot prices dollars per short ton Week ending Week ago change Central Appalachia 12,500 Btu, 1.2 SO2 Northern Appalachia 13,000 Btu, < 3.0 SO2 Illinois Basin 11,800 Btu, 5.0 SO2 Powder River Basin 8,800 Btu, 0.8 SO2 Uinta Basin 11,700 Btu, 0.8 SO2 Source: With permission, SNL Energy Note: Coal prices shown reflect those of relatively high-Btu coal selected in each region

  2. Table 38. Coal Stocks at Coke Plants by Census Division

    Gasoline and Diesel Fuel Update (EIA)

    Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 38. Coal Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Census Division June 30, 2014 March 31, 2014 June 30, 2013 Percent Change (June 30) 2014 versus 2013 Middle Atlantic 547 544 857 -36.2 East North Central 1,130 963 1,313 -13.9 South

  3. Benthic fluxes and pore water studies from sediments of the central equatorial north Pacific: Nutrient diagenesis

    SciTech Connect (OSTI)

    Berelson, W.M.; Hammond, D.E.; Xu, X. ); O'Neill, D. Dames and Moore, Los Angeles, CA ); Chin, C. Moss Landing Marine Lab., CA ); Zukin, J. Dames and Moore, Goleta, CA )

    1990-11-01

    Benthic exchange rates of radon-222, oxygen, nitrate, ammonia, and silica were determined using an in situ benthic flux chamber and by modeling pore water profiles at three sites in the central equatorial north Pacific. A comparison of these results reveals several artifacts of pore water collection and processing. Whole-core squeezer (WCS) silica profiles are influenced by adsorption during squeezing and yield calculated fluxes that are too large. Pore water ammonia profiles show near-surface maxima that appear to be an artifact of core recovery. Near-surface nitrate measurements may also be suspect due to oxidation of the ammonia released, causing anomalously large nitrate gradients that yield over-estimates of benthic exchange rates. Fluxes of radon, oxygen, and nitrate calculated from WCS profiles agree with chamber fluxes to better than 40% at all sites. Fluxes of silica and nitrate calculated from pore water data collected at coarser scales (> 1 cm intervals) agree within 50% with chamber measurements. previous flux estimates from pore water and solid phase models established at two of these sites using data collected 6 years prior to this work differ from these chamber measurements, in some cases by up to a factor of 5 due to modeling uncertainties and temporal variabilities in the delivery of organic matter to a site. The benthic oxygen consumption rates measured at these sites are similar (they average 0.36 {plus minus} 0.03 mmol m{sup {minus}2} day{sup {minus}1}) and are consistent with a trend of oxygen uptake vs. water depth previously established by others on a transect through the oligotrophic north Pacific gyre.

  4. Morphology and sexual dimorphism of the many-lined skink in north central New Mexico

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hathcock, Charles D.; Wright, Marjorie Alys; Gonzales, Gilbert J.; Sias, Donald S.

    2015-08-01

    In 2001 and 2002, a study of many-lined skinks (Plestiodon multivirgatus) was conducted by Los Alamos National Laboratory biologists in north-central New Mexico to determine means and ranges for several morphological characters and to test for sexual dimorphism. Over both years, there were 539 new captures of many-lined skinks, which included 131 hatchlings. The earliest hatchling capture was on 19 June and the latest capture was on 31 August. Hatchling captures peaked on 1 August in 2001 and 6 August in 2002. The age class, sex, snout–vent length (SVL), tail length (TL), mass, head length (HL), and head width (HW)more » were recorded and individuals were released at the point of capture. Our results indicate that the SVL, mass, HL, and HW did not exhibit sexual dimorphism. The sex ratio was skewed toward females in this study. It is not known whether the many-lined skink has sexual determination based on environmental factors, but the data here suggest that more research is needed. From these observations, we supplement the limited existing knowledge on the morphology of this species.« less

  5. Morphology and sexual dimorphism of the many-lined skink in north central New Mexico

    SciTech Connect (OSTI)

    Hathcock, Charles D.; Wright, Marjorie Alys; Gonzales, Gilbert J.; Sias, Donald S.

    2015-08-01

    In 2001 and 2002, a study of many-lined skinks (Plestiodon multivirgatus) was conducted by Los Alamos National Laboratory biologists in north-central New Mexico to determine means and ranges for several morphological characters and to test for sexual dimorphism. Over both years, there were 539 new captures of many-lined skinks, which included 131 hatchlings. The earliest hatchling capture was on 19 June and the latest capture was on 31 August. Hatchling captures peaked on 1 August in 2001 and 6 August in 2002. The age class, sex, snout–vent length (SVL), tail length (TL), mass, head length (HL), and head width (HW) were recorded and individuals were released at the point of capture. Our results indicate that the SVL, mass, HL, and HW did not exhibit sexual dimorphism. The sex ratio was skewed toward females in this study. It is not known whether the many-lined skink has sexual determination based on environmental factors, but the data here suggest that more research is needed. From these observations, we supplement the limited existing knowledge on the morphology of this species.

  6. Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada

    SciTech Connect (OSTI)

    Young, H.W.; Lewis, R.E.

    1982-01-01

    Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium carbonate or bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/ Celsius. Concentration of tritium in the thermal water is near zero. Depletion of stable isotopes in the hot waters relative to present-day meteoric waters indicates recharge to the system probably occurred when the climate averaged 3/sup 0/ to 5/sup 0/ Celsius colder than at present. Temperatures about 3.5/sup 0/ Celsius colder than at present occurred during periods of recorded Holocene glacial advances and indicate a residence time of water in the system of at least several thousand years. Residence time calculated on the basis of reservoir volume and thermal-water discharge is 3400 to 6800 years for an effective reservoir porosity of 0.05 and 0.10, respectively. Preliminary analyses of carbon-14 determinations indicate an age of the hot waters of about 18,000 to 25,000 years. The proposed conceptual model for the area is one of an old system, where water has circulated for thousands, even tens of thousands, of years. Within constraints imposed by the model described, reservoir thermal energy for the geothermal system in southwestern Idaho and north-central Nevada is about 130 x 10/sup 18/ calories.

  7. Seismicity in Central North Africa at low magnitudes: A first look at the TAM event detected data base

    SciTech Connect (OSTI)

    Harben, P.E.,

    1997-01-01

    Teleseismic observations of seismicity in the central North Africa region show that the region is aseismic. This is true for earthquakes with a body wave magnitude greater than about 4 or so. For earthquakes with body wave magnitudes substantially below about 4, the teleseismic observations of seismicity in the central Sahara are incomplete since smaller earthquakes would probably not be detected and located by the current teleseismic monitoring networks. Only one known open seismic station has been operating in the central Sahara. This is the Tamanrasset (TAM) seismic station in southern Algeria. A simple analysis of data records from this station can be used to determine if the central Sahara is also relatively aseismic at magnitudes substantially below 4. That is the primary purpose of this study.

  8. Glacial-eustatic sea-level fluctuation curve for Carboniferous-Permian boundary strata based on outcrops in the North American Midcontinent and North-Central Texas

    SciTech Connect (OSTI)

    Boardman, D.R. . School of Geology)

    1993-02-01

    Based on lithologic and faunal analysis of uppermost Carboniferous through Lower Permian strata (Wabaunsee through lower Chase groups) exposed from southeastern Nebraska through north-central Oklahoma, a preliminary glacial-eustatic sea-level fluctuation curve is presented herein. In addition to the sea-level curve presented for the Midcontinent region, one for coeval outcropping strata (middle and upper Cisco Group) of the Eastern Shelf of the Midland Basin is also presented based on similar criteria. This sea-level curve is derived from new field studies as well as a refinement of earlier curves presented by Harrison (1973), and Boardman and Malinky (1985). The conclusion on the nature of the Carboniferous-Permian boundary strata cyclothems in the Midcontinent is mirrored by the results of that from North-Central Texas. Each of the primary biostratigraphically-based picks for the Carboniferous-Permian boundary coincide with either intermediate of major cycles in both study areas. Utilization of a glacial-eustatic maximum transgressive event for the Carboniferous-Permian boundary should result in a more correlatable level for intercontinental correlation.

  9. Compliance testing of Grissom AFB Central Heating Plant coal-fired boilers 3 and 5, Grissom AFB, Indiana. Final report, 4-14 March 1988

    SciTech Connect (OSTI)

    Garrison, J.A.

    1988-06-01

    At the request of HQ SAC/SGPB, compliance testing (particulate emissions) of coal-fired boilers 3 and 5 in the Grissom AFB Central Heating Plant was performed on 4-14 Mar 1988. The survey was conducted to determine compliance with Indiana Administrative Code, Title 325--Air Pollution Control Board, Articles 5 and 6. Results indicate that boilers 3 and 5 to met particulate standards while exhausting through the bypass stack.

  10. COAL & POWER SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... stitutions * InternationalCoal Technology Export C&PS ... * Systems Integration * Plant Designs Central Power ... Boiler System - Indirect Fired Cycles - Pressurized ...

  11. Isotopes of uranium and thorium, lead-210, and polonium-210 in the lungs of coal miners of Appalachia and the lungs and livers of residents of central Ohio

    SciTech Connect (OSTI)

    Gilbert, G.E.; Casella, V.R.; Bishop, C.T.; Aguirre, A.G.

    1985-10-21

    The lungs of twelve and the livers of three residents of central Ohio and the lungs of four coal miners of Appalachia were analyzed for uranium-238, uranium-234, thorium-230, lead-210, polonium-210, and thorium-232. Mean and median lung concentrations of uranium-238 and of uranium-234 in the lungs of central Ohioans were essentially the same and were equal to 4 fCi/g dry. Mean concentrations of these isotopes in the lungs of Appalachian coal miners were also essentially the same and were equal to 9 fCi/g. Little uranium was found in the liver. The median concentration of thorium-230 in the lungs of central Ohioans was also 4 fCi/g dry; however, the mean concentration was 8 fCi/g due to the relatively high concentration values in a few persons. The mean concentrations of this isotope in the lungs of central Ohioans and Appalachian coal miners were essentially the same; i.e. 8 fCi/g. The mean and median concentrations of thorium-232 in the lungs of central Ohioans were assentially the same and equal to 4 fCi/g. The mean concentration of this isotope in the lungs of Appalachian coal miners was 9 fCi/g. Little thorium was found in the liver. The mean concentrations of lead-210 in the lungs of the two populations were nearly equal and about 23 fCi/g dry. The mean liver/lung ratio of this isotope was essentially two, and the concentrations appeared to be positively correlated with smoking. Polonium-210 concentrations in the lungs were distributed into three sets of values which are described here as low (2-4 fCi/g), medium (20-30 fCi/g), and high (>100 fCi/g), and also appeared to be correlated with smoking. Mean liver concentrations of this irotope were nearly equal to the mean liver concentrations of lead-210 (50 as opposed to 47 fCi/g). 18 refs., 6 tabs.

  12. Regional depositional systems tracts, paleogeography, and sequence stratigraphy, upper Pennsylvanian and lower Permian strata, North-and-West-Central Texas

    SciTech Connect (OSTI)

    Brown, L.F.; Solis-Iriarte, R.F.; Johns, D.A.

    1990-01-01

    This book provides a regional stratigraphic and depositional framework of the Virgilian and Wolfcampian Series of North-Central Texas. The authors have identified 16 major and several minor depositional sequences, commonly called cyclothems, deposited during Late Pennsylvanian and Early Permian regressive-transgressive episodes. These cyclothems were mapped from outcrop across the Eastern Shelf and into the Midland Basin. Seventeen maps and 23 cross-sections were constructed to show regional net-sandstone distribution within siliciclastic systems, to document sequential depositional history and paleogeography, to analyze depositional response to paleobathymetry and tectonics, and to offer a regional sequence-stratigraphic framework for evaluating controls on relative sea level. Regional perspective provided by the map series will stimulate new ideas about inadequately tested sandstone trends and unrealized stratigraphic-trap potential in this large, mature petroleum province.

  13. Central-

    U.S. Energy Information Administration (EIA) Indexed Site

    Central- ized system Distrib- uted system Both central- ized and distrib- uted systems Central- ized system Distrib- uted system Both central- ized and distrib- uted systems All buildings 5,557 4,423 3,348 690 385 87,093 79,015 47,534 12,688 18,793 Building floorspace (square feet) 1,001 to 5,000 2,777 2,032 1,653 322 57 8,041 6,102 4,906 1,011 185 5,001 to 10,000 1,229 992 789 120 82 8,900 7,236 5,731 890 615 10,001 to 25,000 884 775 538 143 93 14,105 12,401 8,549 2,318 1,534 25,001 to 50,000

  14. Lg excitation, attenuation, and source spectral scaling in central and eastern North America

    SciTech Connect (OSTI)

    Mitchell, B.J.; Xie, J.; Baqer, S.

    1997-10-01

    Seismic moments and corner frequencies were obtained for many earthquakes in the central and eastern United States, and for a few events in the western United States, using the Lg phase and a recently developed inversion algorithm. Additionally, Q values for the Lg phase along paths to individual stations were obtained simultaneously with the source parameters. Both corner frequencies and magnitudes were found to vary systematically with moment. For moments between 0.15 and 400 x 10{sup 15} N-m corner frequencies vary between about 4 and 0.2 Hz while body-wave magnitude varies between about 3.5 and 5.8. A map of Lg Q values displays a systematic decrease from east and west. Maximum and minimum values are 989 and 160, respectively. Lg coda Q values were obtained for the entire United States with excellent coverage in the eastern and western portions of the country and somewhat poorer coverage in the central portion. Lg coda Q is highest (700-750) in a region of the northeastern United States that includes portions of New York and Pennsylvania and lowest (>200) in California. Lg coda Q is lower (250-450) everywhere west of Rocky Mountains than in the rest of the country (450-750). Q determinations for both the direct Lg phase and Lg coda indicate that, for an earthquake of a given magnitude, Lg and its coda will propagate much more efficiently, and cause damage over a wider area, in the eastern and central United States than it will in the United States.

  15. Characterization of the radon source in North-Central Florida. Final report part 1 -- Final project report; Final report part 2 -- Technical report

    SciTech Connect (OSTI)

    1997-12-01

    This report contains two separate parts: Characterization of the Radon Source in North-Central Florida (final report part 1 -- final project report); and Characterization of the Radon Source in North-Central Florida (technical report). The objectives were to characterize the radon 222 source in a region having a demonstrated elevated indoor radon potential and having geology, lithology, and climate that are different from those in other regions of the U.S. where radon is being studied. Radon availability and transport in this region were described. Approaches for predicting the radon potential of lands in this region were developed.

  16. The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic

    SciTech Connect (OSTI)

    Mazzoleni, Claudio; Kumar, Sumit; Wright, Kendra; Kramer, Louisa; Mazzoleni, Lynn; Owen, Robert; Helmig, Detlev

    2014-12-09

    The scientific scope of the project was to exploit the unique location of the Pico Mountain Observatory (PMO) located in the summit caldera of the Pico Volcano in Pico Island in the Azores, for atmospheric studies. The observatory, located at 2225m a.s.l., typically samples free tropospheric aerosols laying above the marine low-level clouds and long-range transported from North America. The broad purpose of this research was to provide the scientific community with a better understanding of fundamental physical processes governing the effects of aerosols on radiative forcing and climate; with the ultimate goal of improving our abilities to understand past climate and to predict future changes through numerical models. The project was 'exploratory' in nature, with the plan to demonstrate the feasibility of deploying for the first time, an extensive aerosol research package at PMO. One of the primary activities was to test the deployment of these instruments at the site, to collect data during the 2012 summer season, and to further develop the infrastructure and the knowledge for performing novel research at PMO in follow-up longer-term aerosol-cloud studies. In the future, PMO could provide an elevated research outpost to support the renewed DOE effort in the Azores that was intensified in 2013 with the opening of the new sea-level ARM-DOE Eastern North Atlantic permanent facility at Graciosa Island. During the project period, extensive new data sets were collected for the planned 2012 season. Thanks to other synergistic activities and opportunities, data collection was then successfully extended to 2013 and 2014. Highlights of the scientific findings during this project include: a) biomass burning contribute significantly to the aerosol loading in the North Atlantic free troposphere; however, long-range transported black carbon concentrations decreased substantially in the last decade. b) Single black carbon particles – analyzed off-line at the electron

  17. Compliance testing of Grissom AFB central-heating-plant coal-fired boilers 3 and 4, Grissom AFB Indiana. Final report, 18-23 November 1987

    SciTech Connect (OSTI)

    Garrison, J.A.

    1988-03-01

    At the request of HQ SAC/SGPB, compliance testing (particulate emissions) of coal-fired boilers 3 and 4 in the Grissom AFB central heating plant was performed on 18-23 Nov 1987. The survey was conducted to determine compliance with Indiana Administrative Code, Title 325--Air Pollution Control Board, Articles 5 and 6. Results indicate Boiler 3 met particulate standards while exhausting through the bypass stack, but failed to meet standards when exhausting through the scrubber stack. Boiler 4 met particulate standards when exhausting through both the bypass the scrubber stacks.

  18. Validation of attenuation models for ground motion applications in central and eastern North America

    SciTech Connect (OSTI)

    Pasyanos, Michael E.

    2015-11-01

    Recently developed attenuation models are incorporated into standard one-dimensional (1-D) ground motion prediction equations (GMPEs), effectively making them two-dimensional (2-D) and eliminating the need to create different GMPEs for an increasing number of sub-regions. The model is tested against a data set of over 10,000 recordings from 81 earthquakes in North America. The use of attenuation models in GMPEs improves our ability to fit observed ground motions and should be incorporated into future national hazard maps. The improvement is most significant at higher frequencies and longer distances which have a greater number of wave cycles. This has implications for the rare high-magnitude earthquakes, which produce potentially damaging ground motions over wide areas, and drive the seismic hazards. Furthermore, the attenuation models can be created using weak ground motions, they could be developed for regions of low seismicity where empirical recordings of ground motions are uncommon and do not span the full range of magnitudes and distances.

  19. Validation of attenuation models for ground motion applications in central and eastern North America

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pasyanos, Michael E.

    2015-11-01

    Recently developed attenuation models are incorporated into standard one-dimensional (1-D) ground motion prediction equations (GMPEs), effectively making them two-dimensional (2-D) and eliminating the need to create different GMPEs for an increasing number of sub-regions. The model is tested against a data set of over 10,000 recordings from 81 earthquakes in North America. The use of attenuation models in GMPEs improves our ability to fit observed ground motions and should be incorporated into future national hazard maps. The improvement is most significant at higher frequencies and longer distances which have a greater number of wave cycles. This has implications for themore » rare high-magnitude earthquakes, which produce potentially damaging ground motions over wide areas, and drive the seismic hazards. Furthermore, the attenuation models can be created using weak ground motions, they could be developed for regions of low seismicity where empirical recordings of ground motions are uncommon and do not span the full range of magnitudes and distances.« less

  20. Habitat of oil in the Lindsborg field, Salina basin, north-central Kansas

    SciTech Connect (OSTI)

    Newell, K.D. )

    1991-03-01

    The Lindsborg field was discovered in 1938, and is now 14 mi in length and 1-2 mi in width. It has a projected ultimate recovery of 16 MMBO. Three pay zones (5-20 ft thick) produce in the field. The Simpson pay zone (Middle Ordovician) is a well-rounded, quartzitic sandstone that is interpreted to be a paralic, high-energy shelf deposit. The Viola pay (Middle Ordovician) appears to be a dolomitic, lime grainstone but no cores are available to confirm this. The uppermost pay zone, the Upper Ordovician Maquoketa, is a finely laminated, vuggy, cherry dolomite interpreted to have been deposited as a subtidal lime mudstone in a restricted lagoon. The Simpson and Viola pays are structurally trapped in culminations along the crest of the Lindsborg anticline. Although the Maquoketa pay is structurally trapped with the other pay zones in the southern half of the field, its locus of production in the north half of the fields extends 100 ft vertically down the western flank of the anticline. The trapping mechanism is unclear due to lack of core control and modern logging suites, but it may be subtle updip diagenetic change from vuggy to nonvuggy dolomite. The Simpson and Maquoketa oils are geochemically distinct. Both may reflect efficient local source-to-reservoir migration from originally rich but marginally mature Ordovician and Devonian shales that contact each pay zone. If oil in the Lindsborg field is locally generated, the prospectivity of the relatively unproductive and underexplored Salina basin may be enhanced.

  1. Hettinger County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Hettinger County, North Dakota Central Hettinger, North Dakota Mott, North Dakota New England, North Dakota Regent, North Dakota Retrieved from "http:en.openei.orgw...

  2. Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99

  3. Timing of the deposition of uppermost Cretaceous and Paleocene coal-bearing deposits in the Greater Glendive area, Montana and North Dakota

    SciTech Connect (OSTI)

    1996-02-01

    With the aid of a grant from the National Geographic Society, a cooperative agreement with the State University of New York at Stony Brook, and contract with the U.S. Department of Energy, Late Cretaceous and Paleocene geologic and paleontologic field studies were undertaken in Makoshika, State Park and vicinity, Dawson County, Montana. This region was chosen as a study area because of its potential for yielding new fossil localities and extensive exposures both above and below the K/T boundary, as suggested by previous research by David W. Krause and Joseph H. Hartman. Related field studies were also undertaken in areas adjacent to the Cedar Creek Anticline in North Dakota. This work was part of ongoing research to document change in the composition of mammalian and molluscan faunas during the Late Cretaceous and Paleocene and to relate observed patterns to floral and invertebrate changes in composition. This study focuses on the record of mammals and mollusks in the Makoshika stratigraphic section and places old and new observations into a paleomagnetic and palynomorph framework. Of particular interest is the appearance and diversification of archaic ungulate mammals. Simultaneous dinosaur extinction with ungulate radiation has been invoked in gradual, as opposed to catastrophic, models of faunal change at the K/T boundary. However, supposed Cretaceous localities bearing archaic ungulates and other mammals of {open_quotes}Paleocene aspect{close_quotes} may be the product of faunal reworking. Elsewhere in the Williston Basin (e.g., Garfield and McCone Counties, Montana), the molluscan record of uppermost Cretaceous and Paleocene strata indicates the extinction of all of the highly sculptured unionid bivalves just prior to the onset of coal swamps and subsequent coal formation.

  4. Hydrogeologic subdivision of the Wolfcamp series and Pennsylvanian system of eastern Texas Panhandle, north-central Texas, and southwestern Oklahoma

    SciTech Connect (OSTI)

    Kayal, R.R.; Kistner, D.J.; Kranes, R.; Verock, F.P.

    1987-03-01

    The Pennsylvanian-Wolfcamp section in the Palo Duro Basin includes brine aquifers that are considered to be the most important ground-water flow paths in the deep-basin system. This report is the fifth in a series providing summary documentation of studies that subdivide the section into hydrogeologic units based on their judged relative capacities for transmitting water. This report extends the hydrogeologic study area to the eastern Texas Panhandle, north-central Texas, and southwestern Oklahoma. It includes 37 counties in Texas and Oklahoma. Underground patterns of rock distribution are delineated from a hydrologic perspective and at a level of detail appropriate for numerical modeling of regional ground-water flow. Hydrogeologic units are defined and characterized so that appropriate porosity and permeability values can be assigned to each unit during construction of the numerical models (not part of this study), and so that modelers can combine units where necessary. In this study, hydrogeologic units have been defined as mappable, physically continuous rock bodies that function in bulk as water-transmitting or water-retarding units relative to adjacent rocks. Interpretations are made primarily from geophysical logs. Hydrologic characteristics are assessed on the basis of properties typically associated with certain lithologies (e.g., sandstones are more pervious than shales) and on the basis of gross variations in effective porosity (particularly in carbonate sequences). 44 refs., 32 figs., 1 tab.

  5. JV Task-130 Technological Synergies for Recovery of Organic Pollutants from a Coal Seam at Garrison, North Dakota

    SciTech Connect (OSTI)

    Jaroslav Solc

    2009-03-15

    The Energy & Environmental Research Center (EERC) initiated remediation of hydrocarbon-contaminated soils and groundwater associated with gasoline release at the Farmers Union Oil station in Garrison, North Dakota. The remedial strategy implemented is based on application of two innovative concepts: (1) simultaneous operation of soil vapor and multiphase extraction systems allowing for water table control in challenging geotechnical conditions and (2) controlled hot-air circulation between injection and extraction wells to accelerated in situ volatilization and stripping of contaminants of concern (COC) alternatively using the same wells as either extraction or injection points. A proactive remedial approach is required to reduce high COC levels in the source and impacted areas and to eliminate long-term health risks associated with contaminant migration to water-bearing zones used as a regional water supply source. This report compiles results of Phase I focused on design, construction, and start-up of remediation systems.

  6. Long term contracts, expansion, innovation and stability: North Dakota's lignite mines thrive

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-08-15

    North Dakota's lignite coal industry is mainly located in three countries in the central part of the state. Its large surface lignite mines are tied through long-term (20-40 years) contracts to power plants. The article talks about operations at three of the most productive mines - the Freedom mine, Falkirk mine and Center Mine. 4 figs.

  7. Low-rank coal research

    SciTech Connect (OSTI)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  8. McLean County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Dakota Mercer, North Dakota North Central McLean, North Dakota Riverdale, North Dakota Ruso, North Dakota South McLean, North Dakota Turtle Lake, North Dakota Underwood, North...

  9. Land reclamation beautifies coal mines

    SciTech Connect (OSTI)

    Coblentz, B.

    2009-07-15

    The article explains how the Mississippi Agricultural and Forestry Experiments station, MAFES, has helped prepare land exploited by strip mining at North American Coal Corporation's Red Hills Mine. The 5,800 acre lignite mine is over 200 ft deep and uncovers six layers of coal. About 100 acres of land a year is mined and reclaimed, mostly as pine plantations. 5 photos.

  10. Alaska coal gasification feasibility studies - Healy coal-to-liquids plant

    SciTech Connect (OSTI)

    Lawrence Van Bibber; Charles Thomas; Robert Chaney

    2007-07-15

    The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

  11. Coal resources of Kyrgyzstan

    SciTech Connect (OSTI)

    Landis, E.R.; Bostick, N.H.; Gluskoter, H.J.; Johnson, E.A.; Harrison, C.D.; Huber, D.W.

    1995-12-31

    The rugged, mountainous country of Kyrgyzstan contains about one-half of the known coal resources of central Asia (a geographic and economic region that also includes Uzbekistan, Tadjikistan and Turkmenistan). Coal of Jurassic age is present in eight regions in Kyrgyzstan in at least 64 different named localities. Significant coal occurrences of about the same age are present in the central Asian countries of Kazakhstan, China, and Russia. Separation of the coal-bearing rocks into individual deposits results more than earth movements before and during formation of the present-day mountains and basins of the country than from deposition in separate basins.Separation was further abetted by deep erosion and removal of the coal-bearing rocks from many areas, followed by covering of the remaining coal-bearing rocks by sands and gravels of Cenozoic age. The total resources of coal in Kyrgyzstan have been reported as about 30 billion tons. In some of the reported localities, the coal resources are known and adequately explored. In other parts of the republic, the coal resources are inadequately understood or largely unexplored. The resource and reserve inventory of Kyrgyzstan is at best incomplete; for some purposes, such as short-term local and long-range national planning, it may be inadequate. Less than 8% of the total estimated resources are categorized as recoverable reserves, and the amount that is economically recoverable is unknown. The coal is largely of subbituminous and high-volatile C bituminous rank, most has low and medium ash and sulfur contents, and coals of higher rank (some with coking qualities) are present in one region. It is recommended that appropriate analyses and tests be made during planning for utilization.

  12. Geology of north-central Delaware basin, Eddy and Lea Counties, New Mexico: its hydrocarbon potential, focusing on 12 townships centered on WIPP site

    SciTech Connect (OSTI)

    Cheeseman, R.J.

    1986-03-01

    The Waste Isolation Pilot Plant (WIPP) site is located within the Carlsbad potash mining area, southeastern New Mexico, about 20 mi east of Carlsbad. Structurally, the WIPP site is located in the north-central part of the Delaware basin, which yields hydrocarbon production from the following: the Ordovician Ellenburger; the Pennsylvanian Morrow (gas), Atoka (oil and gas), and Strawn (reef oil) intervals; the Wolfcamp (gas) and Bone Spring (oil) formations of lowermost Permian; the Permian Yates (800-3500 ft deep), Queen, and Seven Rivers Formations; and the Delaware Mountain Group (4700-5200 ft deep). Structure contour maps demonstrate favorable Bone Spring conditions north of the WIPP site and the centrally located Delaware targets, as well as important Morrow development in the southern part. Five prospects are explored, and two are especially promising. Five anticlinal trends in this 12-township area bear field names as a result of production: Big Eddy, South Salt Lake, Cabin Lake, Los Medanos, and Sand Dunes. The Department of Energy's WIPP project is a planned repository for nuclear waste; despite centering on a deep dry hole, it occurs just northeast of productive Morrow formation. Whereas the successful tests seem concentrated on the structural highs, significant wells produce offtrend; the WIPP site lies in a syncline.

  13. U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014

    Gasoline and Diesel Fuel Update (EIA)

    Coke and Breeze Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 41. Coke and Breeze Stocks at Coke Plants by Census Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Census Division June 30, 2014 March 31, 2014 June 30, 2013 Percent Change (June 30) 2014 versus 2013 Middle Atlantic 215 126 54 296.0 East North Central 627 635 724

  14. Coal Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Glossary FAQS Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports ...

  15. Supersonic coal water slurry fuel atomizer

    DOE Patents [OSTI]

    Becker, Frederick E.; Smolensky, Leo A.; Balsavich, John

    1991-01-01

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  16. Depositional sequences and fluvial architecture in the Cameros extension basin, north-central Spain, upper Jurassic-lower cretaceous

    SciTech Connect (OSTI)

    Clemente, P. )

    1993-09-01

    In the Tithonian-Berriasian and Aptian, basin fill of the Cameros basin is formed by a depositional megasequence of fluvial and lacustrine sediments. Basin evolution is related the second state of rifting in the North Atlantic. In the first stages of extension, the basin is compartmentalized due to differential subsidence. As the extension continues, the subbasins merge to form one large basin. The megasequence is subdivided into five unconformity-bounded depositional sequences (SD1-SD5). Each sequence has a duration of 2.5-10 m.y. and a thickness of 400-1200 m. the internal sequence architecture is formed by a thick fluvial depositional system, which toward the top is overlapped by an expanding lacustrine facies. The architecture of the fluvial systems in depositional sequences SD1-SD3 consists of small, isolated sandstone bodies in a mudstone matrix, and results from the evolution of distal, high-sinuosity fluvio-lacustrine coastal plains. Depositional mixed (conglomeratic sandstone) and sandstone bodies. They originate from wider and nonconfined fluvial systems (conglomeratic and sandy braid plains). In SD5 this facies interfingers with a second fluvial system dominated by ephemeral streams. The evolution of fluvial architecture is controlled by the balance between subsidence, sediment supply, and relative sea level change. In a reservoir-equivalent setting, the understanding of this evolutionary process and its resultant architecture provides a better insight in reservoir distribution and interconnectedness.

  17. Coal pump

    DOE Patents [OSTI]

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  18. Coal repository. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-11-01

    The Coal Repository Project was initiated in 1980 by the Department of Energy/Pittsburgh Energy Technology Center to provide a centralized system for the collection of well characterized coal samples, and distribution to organizations involved in the chemical beneficiation of coal and related research. TRW Energy Development Group, together with its subcontractor Commercial Testing and Engineering Company, established the Coal Repository at the TRW Capistrano Chemical Facility, which is the location of the DOE-owned Multi-Use Fuel and Energy Processes Test Plant (MEP). Twenty tons each of three coals (Illinois No. 6, Kentucky No. 11 (West), and Pittsburgh No. 8 (from an Ohio mine)) were collected, characterized, and stored under a nitrogen atmosphere. Ten tons of each coal are 3/8-inch x 0, five tons of each are 14-mesh x 0, and five tons of each are 100-mesh x 0. Although TRW was within budget and on schedule, Department of Energy funding priorities in this area were altered such that the project was terminated prior to completion of the original scope of work. 9 figures, 3 tables.

  19. EIA - Coal Distribution

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal ...

  20. American coal imports 2015

    SciTech Connect (OSTI)

    Frank Kolojeski

    2007-09-15

    As 2007 ends, the US coal industry passes two major milestones - the ending of the Synfuel tax break, affecting over 100M st annually, and the imposition of tighter and much more expensive safety measures, particularly in deep mines. Both of these issues, arriving at a time of wretched steam coal price levels, promise to result in a major shake up in the Central Appalachian mining sector. The report utilizes a microeconomic regional approach to determine whether either of these two schools of thought have any validity. Transport, infrastructure, competing fuels and regional issues are examined in detail and this forecasts estimates coal demand and imports on a region by region basis for the years 2010 and 2015. Some of the major highlights of the forecast are: Import growth will be driven by steam coal demand in the eastern and southern US; Transport will continue to be the key driver - we believe that inland rail rates will deter imports from being railed far inland and that the great majority of imports will be delivered directly by vessel, barge or truck to end users; Colombian coal will be the overwhelmingly dominant supply source and possesses a costs structure to enable it to compete with US-produced coal in any market conditions; Most of the growth will come from existing power plants - increasing capacity utilization at existing import facilities and other plants making investments to add imports to the supply portfolio - the growth is not dependent upon a lot of new coal fired capacity being built. Contents of the report are: Key US market dynamics; International supply dynamics; Structure of the US coal import market; and Geographic analysis.

  1. A way of work and a way of life: Coal mining and coal miners in Thurber, Texas, 1888-1926

    SciTech Connect (OSTI)

    Rhinehart, M.D.

    1988-01-01

    Founded in the late 1800s on the western edge of North Central Texas, Thurber Village thrived for almost 35 years as a coal-mining company town dependent on the railroads' need for fuel. By the turn of the century a largely immigrant population dominated by Italians and Poles lived and toiled in the camp, but despite ethnic and racial differences, a sense of community based on occupational ties shaped life there. Shared traditions, grievances, fears, and expectations of autonomy at the work place facilitated protest and influenced social activities in the miners' after-work lives. A way of work thus expanded into a way of life. Poor employer/employee relations plagued Hunter from the first days of Thurber's existence. Workers resented perennial company interference in their lives and used traditional forms of protest to resist it. By the end of the 1910s Thurber's fortunes waned as the railroad turned to petroleum for fuel and labor demands taxed the coal operators' patience. The Texas Pacific Coal Company added oil to its name and focused attention on its petroleum prospects. After a series of labor difficulties in the 1920s, coal production halted in 1926.

  2. Longwall mining thrives in Colorado's North Fork Valley

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2006-08-15

    With mining units poised for record-setting capacity and rail service restored, these mines in Colorado's North Fork valley are ready to cut coal. 4 photos.

  3. PP-67 North Central Elect

    Office of Environmental Management (EM)

  4. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal In response to concerns of climate change, the United States is contemplating a complete and rapid transformation of the way it both produces and consumes energy to significantly reduce its carbon emissions. The integrated Coal Program focuses on retaining the benefits of continuing to use coal to produce electric power. This strategy can help us depend less on foreign sources of energy, respond to the world's growing climate concerns, and compete economically. It also will ensure that our

  5. U.S. Energy Information Administration | Annual Coal Report 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Major U.S. Coal Mines, 2014 Rank Mine Name / Operating Company Mine Type State Production (short tons) 1 North Antelope Rochelle Mine / Peabody Powder River Mining LLC Surface Wyoming 117,965,515 2 Black Thunder / Thunder Basin Coal Company LLC Surface Wyoming 101,016,860 3 Cordero Mine / Cordero Mining LLC Surface Wyoming 34,809,101 4 Antelope Coal Mine / Antelope Coal LLC Surface Wyoming 33,646,960 5 Eagle Butte Mine / Alpha Coal West, Inc. Surface Wyoming 20,690,237 6 Spring Creek Coal

  6. COAL & POWER SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COAL & POWER SYSTEMS STRATEGIC & MULTI-YEAR PROGRAM PLANS U.S. DEPARTMENT OF ENERGY * OFFICE OF FOSSIL ENERGY GREENER, SOONER... THROUGH TECHNOLOGY INTRODUCTION .......... i-1 STRATEGIC PLAN ........ 1-1 PROGRAM PLANS Vision 21 .......................... 2-1 Central Power Systems ...... 3-1 Distributed Generation ..... 4-1 Fuels ................................ 5-1 Carbon Sequestration ....... 6-1 Advanced Research ........... 7-1 TABLE OF CONTENTS STRATEGIC & MULTI-YEAR PROGRAM

  7. Outlook and Challenges for Chinese Coal

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

    2008-06-20

    China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is inextricably entwined with

  8. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    Processing Coal Plants and Commercial and Institutional Coal Users" and Form EIA-7A, "Coal Production and Preparation Report." Appendix A Assigning Missing Data to EIA-923...

  9. Coal industry annual 1994

    SciTech Connect (OSTI)

    1995-10-01

    This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

  10. Coal Market Module

    Gasoline and Diesel Fuel Update (EIA)

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  11. FE Clean Coal News | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    near Panama City. Solid oxide fuel cell technology being developed by the Office of Fossil Energy for coal-fueled central power generation is being adapted to power UUVs....

  12. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  13. Coal and Coal-Biomass to Liquids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Coal-Biomass to Liquids Turning coal into liquid fuels like gasoline, diesel and jet fuel, with biomass to reduce carbon dioxide emissions, is the main goal of the Coal and ...

  14. Compliance testing of Grissom AFB Central Heating Plant coal-fired boilers 3, 4, and 5, Grissom AFB, Indiana. Final report, 29 January-15 February 1989

    SciTech Connect (OSTI)

    Garrison, J.A.

    1989-06-01

    At the request of HQ, SAC/SGPB source compliance testing (particulate and visible emissions) of boilers 3, 4, and 5 in the Grissom AFB Central Heating Plant was accomplished 29 Jan-15 Feb 89. The survey was conducted to determine compliance with regards to Indiana Administrative Code, Title 325 - Air Pollution Control Board, Article 5, Opacity Regulations, and Article 6, Particulate Regulations. Boiler 3 was tested through scrubber B, Boiler 4 through scrubber A, and Boiler 5 through scrubber B and the bypass stack. Results indicate that each boiler met applicable visible and particulate emission standards.

  15. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ...

  16. High-pressure gasification of Montana subbituminous coal

    SciTech Connect (OSTI)

    Goyal, A.; Bryan, B.; Rehmat, A.

    1991-01-01

    A data base for the fluidized-bed gasification of different coals at elevated pressures has been developed at the Institute of Gas Technology (IGT) with different ranks of coal at pressures up to 450 psig and at temperatures dictated by the individual coals. Adequate data have been obtained to characterize the effect of pressure on the gasification of Montana Rosebud subbituminous coal and North Dakota lignite. The results obtained with Montana Rosebud subbituminous coal are presented here. This program was funded by the Gas Research Institute. 9 refs., 10 figs., 3 tabs.

  17. NAFTA opportunities: Bituminous coal and lignite mining

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The North American Free Trade Agreement (NAFTA) secures and improves market access in Mexico and Canada for the United States bituminous coal and lignite mining sector. Canada is one of the United States' largest export markets for bituminous coal and lignite, with exports of $486.7 million in 1992. Conversely, the Mexican market is one of the smallest export markets for U.S. producers with exports of $1.8 million in 1992. Together, however, Canada and Mexico represent approximately 15 percent of total U.S. coal exports. The report presents a sectoral analysis.

  18. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    SciTech Connect (OSTI)

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

  19. EIA -Quarterly Coal Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    - Coal Distribution Quarterly Coal Distribution Archives Release Date: August 17, 2016 Next Release Date: December 22, 2016 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009

  20. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  1. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  2. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  3. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  4. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  5. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal

  6. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal

  7. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  8. Coal liquefaction and hydrogenation

    DOE Patents [OSTI]

    Schindler, Harvey D.; Chen, James M.

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  9. Regional trends in the take-up of clean coal technologies

    SciTech Connect (OSTI)

    Wootten, J.M.

    1997-12-31

    Using surveys of the electricity industry taken in major OECD coal producing/coal consuming regions of North America, Europe, Southern Africa, and Asia/Pacific, this paper reports on the attitudes of power plant operators and developers toward clean coal technologies, the barriers to their use and the policies and measures that might be implemented, if a country or region desired to encourage greater use of clean coal technologies.

  10. Annual Coal Distribution Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Coal Distribution Report Release Date: April 16, 2015 | Next Release Date: March 2016 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report ...

  11. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  12. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  13. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  14. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  15. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  16. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  17. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  18. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  19. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  20. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  1. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  2. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables...

  3. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  4. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  5. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  6. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  7. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  8. NETL: Coal Gasification Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gasification Systems Coal Gasification is a process that can turn coal into clean power, chemicals, hydrogen and transportation fuels, and can be used to capture the carbon from ...

  9. Coal liquefaction

    DOE Patents [OSTI]

    Schindler, Harvey D.

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  10. Natural mercury isotope variation in coal deposits and organic soils

    SciTech Connect (OSTI)

    Abir, Biswas; Joel D. Blum; Bridget A. Bergquist; Gerald J. Keeler; Zhouqing Xie

    2008-11-15

    There is a need to distinguish among sources of Hg to the atmosphere in order to more fully understand global Hg pollution. In this study we investigate whether coal deposits within the United States, China, and Russia-Kazakhstan, which are three of the five greatest coal-producing regions, have diagnostic Hg isotopic fingerprints that can be used to discriminate among Hg sources. We also investigate the Hg isotopic composition of modern organic soil horizons developed in areas distant from point sources of Hg in North America. Mercury stored in coal deposits displays a wide range of both mass dependent fractionation and mass independent fractionation. {delta}{sup 202}Hg varies in coals by 3{per_thousand} and {Delta}{sup 201}Hg varies by 0.9{per_thousand}. Combining these two Hg isotope signals results in what may be a unique isotopic 'fingerprint' for many coal deposits. Mass independent fractionation of mercury has been demonstrated to occur during photochemical reactions of mercury. This suggests that Hg found in most coal deposits was subjected to photochemical reduction near the Earth's surface prior to deposition. The similarity in MDF and MIF of modern organic soils and coals from North America suggests that Hg deposition from coal may have imprinted an isotopic signature on soils. This research offers a new tool for characterizing mercury inputs from natural and anthropogenic sources to the atmosphere and provides new insights into the geochemistry of mercury in coal and soils. 35 refs., 2 figs., 1 tab.

  11. sorbent-univerisity-north-dakota | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The University of North Dakota (UND) is scaling up and demonstrating a solid sorbent technology for carbon dioxide (CO2) capture and separation from coal combustion-derived flue ...

  12. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  13. Annual Coal Distribution

    Reports and Publications (EIA)

    2016-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  14. Coal production 1988

    SciTech Connect (OSTI)

    Not Available

    1989-11-22

    Coal Production 1988 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1989. 5 figs., 45 tabs.

  15. Annual Coal Distribution

    Reports and Publications (EIA)

    2015-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  16. Coal data: A reference

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  17. Development of an advanced process for drying fine coal in an inclined fluidized bed: Technical progress report for the second quarter, January 19--March 31, 1989

    SciTech Connect (OSTI)

    Boysen, J.E.; Cha, C.Y.; Berggren, M.H.; Jha, M.C.

    1989-05-01

    This research project is for the development of a technically and economically feasible process for drying and stabilizing of fine particles of high-moisture subbituminous coal. Research activities were initiated with efforts concentrating on characterization of the two feed coals: Eagle Butte coal from AMAX Coal Company's mine located in the Powder River Basin of Wyoming; and coal from Usibelli Coal Mine, Inc.'s mine located in central Alaska. Both of the feed coals are high-moisture subbituminous coals with ''as received'' moisture contents of 29% and 22% for the Eagle Butte and Usibelli coals, respectively. However, physical analyses of the crushed coal samples (--28-mesh particle size range) indicate many differences. The minimum fluidization velocity (MFV) of the feed coals were experimentally determined. The MFV for --28-mesh Eagle Butte coal is approximately 1 ft/min, and the MFV for --28-mesh Usibelli coal is approximately 3 ft/min. 2 refs., 16 figs., 3 tabs.

  18. Coal production 1985

    SciTech Connect (OSTI)

    Not Available

    1986-11-07

    Coal Production 1985 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. All data presented in this report, except the total production table presented in the Highlights section, and the demonstrated reserve base data presented in Appendix A, were obtained from form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1985. The data cover 4105 of the 5477 US coal mining operations active in 1985. These mining operations accounted for 99.4% of total US coal production and represented 74.9% of all US coal mining operations in 1985. This report also includes data for the demonstrated reserve vase of coal in the US on January 1, 1985.

  19. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    SciTech Connect (OSTI)

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  20. North Carolina - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina North Carolina

  1. North Carolina - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina North Carolina

  2. North Carolina - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina North Carolina

  3. Coal feed lock

    DOE Patents [OSTI]

    Pinkel, I. Irving

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  4. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  5. Pelletization of fine coals

    SciTech Connect (OSTI)

    Sastry, K.V.S.

    1991-09-01

    The present research project attempts to provide a basis to determine the pelletizability of fine coals, to ascertain the role of additives and binders and to establish a basis for binder selection. Currently, there are no established techniques for determining the quality of coal pellets. Our research is intended to develop a series of tests on coal pellets to measure their storage characteristics, transportability, ease of gasification and rate of combustion. Information developed from this research should be valuable for making knowledgeable decisions for on-time plant design, occasional binder selection and frequent process control during the pelletization of coal fines. During the last quarter, we continued the batch pelletization studies on Upper Freeport coal. The results as presented in that last quarterly report (April 1991) indicated that the surface conditions on the coal particle influenced the pelletizing growth rates. For example, a fresh (run of mine) sample of coal will display different pelletizing growth kinetics than a weathered sample of the same coal. Since coal is a heterogeneous material, the oxidized product of coal is equally variable. We found it to be logistically difficult to consistently produce large quantities of artificially oxidized coal for experimental purposes and as such we have used a naturally weathered coal. We have plans to oxidize coals under controlled oxidizing conditions and be able to establish their pelletizing behavior. The next phase of experiments were directed to study the effect of surface modification, introduced during the coal cleaning steps, on pelletizing kinetics. Accordingly, we initiated studies with two additives commonly used during the flotation of coal: dextrin (coal depressant) and dodecane (coal collector).

  6. International perspectives on coal preparation

    SciTech Connect (OSTI)

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  7. Indonesian coal mining

    SciTech Connect (OSTI)

    2008-11-15

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  8. Chemicals from coal

    SciTech Connect (OSTI)

    Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

    2004-12-01

    This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

  9. Coal Production 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  10. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, Gerald W.; Lewis, Susan N.

    1990-01-01

    This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

  11. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  12. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  13. "Annual Coal Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Coal Report Data Released: January 20, 2015 Data for: 2013 Re-Release Date: April 23, 2015 (CORRECTION) Annual Coal Report 2013 CorrectionUpdate April 23, 2015 The Annual ...

  14. Coal gasification apparatus

    DOE Patents [OSTI]

    Nagy, Charles K.

    1982-01-01

    Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

  15. Coal Fleet Aging Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2016 MEMORANDUM TO: Dr. Ian Mead Assistant Administrator for Energy Analysis Jim Diefenderfer Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis FROM: Coal and Uranium Analysis Team SUBJECT: Notes from the Coal Fleet Aging Meeting held on June 14, 2016 Attendees (36) *Indicates attendance via WebEx. 2 Framing the question This adjunct meeting of the AEO Coal Working Group (CWG) was held as a follow up to the previous Future Operating and Maintenance Considerations for the

  16. Method for fluorinating coal

    DOE Patents [OSTI]

    Huston, John L.; Scott, Robert G.; Studier, Martin H.

    1978-01-01

    Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

  17. Coal production 1989

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  18. Flash hydrogenation of coal

    DOE Patents [OSTI]

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  19. Coal Combustion Products

    Office of Energy Efficiency and Renewable Energy (EERE)

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge.

  20. Coal Study Guide for Elementary School

    Office of Energy Efficiency and Renewable Energy (EERE)

    Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate change concerns.

  1. Coal Data: A reference

    SciTech Connect (OSTI)

    Not Available

    1991-11-26

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  2. Coal recovery process

    DOE Patents [OSTI]

    Good, Robert J.; Badgujar, Mohan

    1992-01-01

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  3. Structural change in the coal industry: Coal industry concentration trends, 1970--1994. Final report

    SciTech Connect (OSTI)

    Schwartz, S.; Glover, W.

    1995-05-01

    This report evaluates the historical and current concentration of the US coal industry, with special consideration given to its potential impact on competitiveness and coal Prices. Four time periods are studied: 1970, 1980, 1990, and 1994. The report Presents data at various levels: nationwide, eastern US, western US, and subregions -- Powder River Basin, Rockies, Northern Appalachia, Central Appalachia, Southern Appalachia, Illinois Basin, and several smaller areas. The report presents data on mine size, number of mines, coal Prices, Production, and ownership. Herfindahl Hirschman indices (the surn of squares Of companies` market shares) were calculated on the coal Production and ownership data to represent concentration. Through these periods, the coal industry has been relatively unconcentrated aid highly competitive. However, in most parts of the country, concentration has increased dramatically since 1990, surpassing historical levels. Concentration is also expected to continue increasing. The effects of such concentration are felt unevenly, depending of factors unique to each coal buyer and each coal company merger, acquisition, or divestment. Generally, the population of potential suppliers for each buyer is limited quality constraints. Those buyers who are greatly limited by such factors can experience dramatic changes in the concentration of their supplier populations by mergers that may have little impact on other buyers.

  4. Low-rank coal research semiannual report, January 1992--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This semiannual report is a compilation of seventeen reports on ongoing coal research at the University of North Dakota. The following research areas are covered: control technology and coal preparation; advanced research and technology development; combustion; liquefaction and gasification. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  5. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in

  6. Process for hydrogenating coal and coal solvents

    DOE Patents [OSTI]

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  7. Microbial solubilization of coals

    SciTech Connect (OSTI)

    Campbell, J.A.; Fredrickson, J.K.; Stewart, D.L.; Thomas, B.L.; McCulloch, M.; Wilson, B.W.; Bean, R.M.

    1988-11-01

    Microbial solubilization of coal may serve as a first step in a process to convert low-rank coals or coal-derived products to other fuels or products. For solubilization of coal to be an economically viable technology, a mechanistic understanding of the process is essential. Leonardite, a highly oxidized, low-rank coal, has been solubilized by the intact microorganism, cell-free filtrate, and cell-free enzyme of /ital Coriolus versicolor/. A spectrophotometric conversion assay was developed to quantify the amount of biosolubilized coal. In addition, a bituminous coal, Illinois No. 6, was solubilized by a species of /ital Penicillium/, but only after the coal had been preoxidized in air. Model compounds containing coal-related functionalities have been incubated with the leonardite-degrading fungus, its cell-free filtrate, and purified enzyme. The amount of degradation was determined by gas chromatography and the degradation products were identified by gas chromatography/mass spectrometry. We have also separated the cell-free filtrate of /ital C. versicolor/ into a <10,000 MW and >10,000 MW fraction by ultrafiltration techniques. Most of the coal biosolubilization activity is contained in the <10,000 MW fraction while the model compound degradation occurs in the >10,000 MW fraction. The >10,000 MW fraction appears to contain an enzyme with laccase-like activity. 10 refs., 8 figs., 5 tabs.

  8. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  9. Coal gasification plant

    SciTech Connect (OSTI)

    Anderson, J.A.

    1980-04-01

    A coal slagging gasifier and method of operating such gasifier are improved by providing an improved slag removal orifice. The orifice is located centrally within the hearth of a gasifier of the type in which hot burner gases are directed up through the orifice to retain the slag in molten condition on the hearth and in which the slag is periodically discharged through the slag removal orifice. The slag removal orifice is formed as a substantially vertical passageway through the removable slag tap member which comprises a solid cast mass of high thermal conductivity metal having an integrally formed metal tube for circulating liquid coolant through the cast mass. The upper tundish surface of the slag tap member slopes downwardly and inwardly and merges with the slag removal orifice. The coolant tube is capable of retaining its shape without any appreciable distortion during the casting of the surrounding metal mass, extends through the cast mass, and forms a coolant conduit adjacent to the tundish surface and to the surface of the orifice passageway and spaced from these surfaces a distance of 0.25 to 5 inches. The ends of the tube project out from the mass provide a coolant inlet and outlet. In operation, coolant is circulated through the tube such that the surfaces of the cast mass in direct contact with slag and burner gases are maintained at a temperature of from 50/sup 0/C to 400/sup 0/C.

  10. Coal combustion products (CCPs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an

  11. Pulverized coal fuel injector

    DOE Patents [OSTI]

    Rini, Michael J.; Towle, David P.

    1992-01-01

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  12. Integrated coal liquefaction process

    DOE Patents [OSTI]

    Effron, Edward

    1978-01-01

    In a process for the liquefaction of coal in which coal liquids containing phenols and other oxygenated compounds are produced during the liquefaction step and later hydrogenated, oxygenated compounds are removed from at least part of the coal liquids in the naphtha and gas oil boiling range prior to the hydrogenation step and employed as a feed stream for the manufacture of a synthesis gas or for other purposes.

  13. Weekly Coal Production Estimation Methodology

    Gasoline and Diesel Fuel Update (EIA)

    Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio ...

  14. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Recurring Reserves Stocks All reports Browse by Tag Alphabetical Frequency Tag Cloud Data For: 2001 Next Release Date: October 2003 U. S. Coal-Producing Districts...

  15. Coal | Open Energy Information

    Open Energy Info (EERE)

    Assuming no additional constraints on CO2 emissions, coal remains the largest source of electricity generation in the AEO2011 Reference case because of continued reliance on...

  16. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    TF RailroadVesselShip Fuel It is also noted that Destination State code of "X Export" indicates movements to foreign destinations. 1 68 Domestic Coal Distribution...

  17. Coal Market Module

    Gasoline and Diesel Fuel Update (EIA)

    The use of coals with sub- optimal characteristics carries with it penalties in operating efficiency, maintenance cost, and system reliability. Such penalties range from the...

  18. By Coal Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total...

  19. Balancing coal pipes

    SciTech Connect (OSTI)

    Earley, D.; Kirkenir, B.

    2009-11-15

    Balancing coal flow to the burners to optimise combustion by using real-time measurement systems (such as microwave mass measurement) is discussed. 3 figs.

  20. Annual Coal Distribution Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2001 (Thousand Short Tons) DESTINATION: Alabama State of Origin by...

  1. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is...

  2. Coal liquefaction quenching process

    DOE Patents [OSTI]

    Thorogood, Robert M.; Yeh, Chung-Liang; Donath, Ernest E.

    1983-01-01

    There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

  3. WCI Case for Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... technology: It has been calculated that if the thermal efficiency of existing coal-fired power plant worldwide were brought up to current German levels of efficiency, the ...

  4. Cooperative research program in coal liquefaction

    SciTech Connect (OSTI)

    Huffman, G.P.

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  5. Cross flow cyclonic flotation column for coal and minerals beneficiation

    DOE Patents [OSTI]

    Lai, Ralph W.; Patton, Robert A.

    2000-01-01

    An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.

  6. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  7. Coal production, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-12-05

    Coal Production 1987 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. The data presented in this report were collected and published by the Energy Information Administration (EIA), to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (P.L. 93-275) as amended. The 1987 coal production and related data presented in this report were obtained from Form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1987. This survey originated at the Bureau of Mines, US Department of the Interior. In 1977, the responsibility for taking the survey was transferred to the EIA under the Department of Energy Organization Act (P.L. 95-91). The data cover 3667 of the 4770 US coal mining operations active in 1987. These mining operations accounted for over 99 percent of total US coal production and represented 77 percent of all US coal mining operations in 1987. This issue is the 12th annual report published by EIA and continues the series formerly included as a chapter in the Minerals Yearbook published by the Bureau of Mines. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1988. This is the eighth annual summary on minable coal, pursuant to Section 801 of Public Law 95-620. 18 figs., 105 tabs.

  8. Mechanochemical hydrogenation of coal

    DOE Patents [OSTI]

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  9. Coal. [Great Plains Project

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The status of various research projects related to coal is considered: gasification (approximately 30 processes) and in-situ gasification. Methanol production, retrofitting internal combustion engines to stratified charge engines, methanation (Conoco), direct reduction of iron ores, water resources, etc. Approximately 200 specific projects related to coal are considered with respect to present status. (LTN)

  10. Dry piston coal feeder

    DOE Patents [OSTI]

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  11. Method for coal liquefaction

    DOE Patents [OSTI]

    Wiser, Wendell H.; Oblad, Alex G.; Shabtai, Joseph S.

    1994-01-01

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

  12. Coal liquefaction process

    DOE Patents [OSTI]

    Carr, Norman L.; Moon, William G.; Prudich, Michael E.

    1983-01-01

    A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

  13. Sustainable Coal Use

    Office of Energy Efficiency and Renewable Energy (EERE)

    Coal is a vital energy resource, not only for the United States, but also for many developed and developing economies around the world. Finding ways to use coal cleanly and more efficiently at lower costs is a major R&D challenge, and an ongoing focus of activities by the DOE's Office of Fossil Energy.

  14. Annotated bibliography of coal in the Caribbean region. [Lignite

    SciTech Connect (OSTI)

    Orndorff, R.C.

    1985-01-01

    The purpose of preparing this annotated bibliography was to compile information on coal localities for the Caribbean region used for preparation of a coal map of the region. Also, it serves as a brief reference list of publications for future coal studies in the Caribbean region. It is in no way an exhaustive study or complete listing of coal literature for the Caribbean. All the material was gathered from published literature with the exception of information from Cuba which was supplied from a study by Gordon Wood of the US Geological Survey, Branch of Coal Resources. Following the classification system of the US Geological Survey (Wood and others, 1983), the term coal resources has been used in this report for reference to general estimates of coal quantities even though authors of the material being annotated may have used the term coal reserves in a similar denotation. The literature ranges from 1857 to 1981. The countries listed include Colombia, Mexico, Venezuela, Cuba, the Dominican Republic, Haiti, Jamaica, Puerto Rico, and the countries of Central America.

  15. State coal profiles, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  16. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  17. Coal in China

    SciTech Connect (OSTI)

    Minchener, A.J.

    2005-07-01

    The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

  18. Enzymatic desulfurization of coal

    SciTech Connect (OSTI)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  19. sorbent-univerisity-north-dakota | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of CO2 Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents (CACHYS(tm)) Project No.: DE-FE0007603 The University of North Dakota (UND) is scaling up and demonstrating a solid sorbent technology for carbon dioxide (CO2) capture and separation from coal combustion-derived flue gas. The technology - Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS(tm)) - is a novel solid sorbent process based on the following

  20. Apparatus and method for feeding coal into a coal gasifier

    DOE Patents [OSTI]

    Bissett, Larry A.; Friggens, Gary R.; McGee, James P.

    1979-01-01

    This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.

  1. Executive roundtable on coal-fired generation

    SciTech Connect (OSTI)

    2009-09-15

    Power Engineering magazine invited six industry executives from the coal-fired sector to discuss issues affecting current and future prospects of coal-fired generation. The executives are Tim Curran, head of Alstom Power for the USA and Senior Vice President and General Manager of Boilers North America; Ray Kowalik, President and General Manager of Burns and McDonnell Energy Group; Jeff Holmstead, head of Environmental Strategies for the Bracewell Giuliani law firm; Jim Mackey, Vice President, Fluor Power Group's Solid Fuel business line; Tom Shelby, President Kiewit Power Inc., and David Wilks, President of Energy Supply for Excel Energy Group. Steve Blankinship, the magazine's Associate Editor, was the moderator. 6 photos.

  2. Coal in a changing climate

    SciTech Connect (OSTI)

    Lashof, D.A.; Delano, D.; Devine, J.

    2007-02-15

    The NRDC analysis examines the changing climate for coal production and use in the United States and China, the world's two largest producers and consumers of coal. The authors say that the current coal fuel cycle is among the most destructive activities on earth, placing an unacceptable burden on public health and the environment. There is no such thing as 'clean coal.' Our highest priorities must be to avoid increased reliance on coal and to accelerate the transition to an energy future based on efficient use of renewable resources. Energy efficiency and renewable energy resources are technically capable of meeting the demands for energy services in countries that rely on coal. However, more than 500 conventional coal-fired power plants are expected in China in the next eight years alone, and more than 100 are under development in the United States. Because it is very likely that significant coal use will continue during the transition to renewables, it is important that we also take the necessary steps to minimize the destructive effects of coal use. That requires the U.S. and China to take steps now to end destructive mining practices and to apply state of the art pollution controls, including CO{sub 2} control systems, to sources that use coal. Contents of the report are: Introduction; Background (Coal Production; Coal Use); The Toll from Coal (Environmental Effects of Coal Production; Environmental Effects of Coal Transportation); Environmental Effects of Coal Use (Air Pollutants; Other Pollutants; Environmental Effects of Coal Use in China); What Is the Future for Coal? (Reducing Fossil Fuel Dependence; Reducing the Impacts of Coal Production; Reducing Damage From Coal Use; Global Warming and Coal); and Conclusion. 2 tabs.

  3. Coal market momentum converts skeptics

    SciTech Connect (OSTI)

    Fiscor, S.

    2006-01-15

    Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

  4. The siting of a prison complex above an abandoned underground coal mine

    SciTech Connect (OSTI)

    Marino, G.G.

    1997-12-31

    This paper discusses in detail the process undertaken to mitigate the effects of any future mine subsidence on prison structures proposed above old abandoned underground workings. The site for a proposed prison complex purchased by the State of Indiana was located in west-central Indiana and was undermined by an old abandoned room and pillar mine. The original plan for construction consisted of one phase. Based on a study of the mine map and subsurface verification of the extent of mining it was determined that all prison buildings and important structures could be placed above solid coal to the north. One masonry building, however, was located within the potential draw zone of mine works which still contained significant mine voids. Based on empirical data the subsidence potential was estimated and the building was accordingly designed to be mine subsidence resistant. It was decided that a phase two prison complex should be constructed adjacent to and just south of the Phase I complex. This complex would be directly above the underground workings. The first stage of design was to minimize subsidence potential by positioning the exposure of significant structures to the subjacent mining assuming the mine map was sufficiently accurate. Subsequently, an extensive subsurface investigation program was then undertaken to: (1) ascertain whether or not mine areas where buildings would be located were already collapsed and thus only nominal, if any, subsidence could occur in the future; and (2) verify the presence of solid coal areas within the mine as indicated on the mine map. Based on all the site information gathered subsidence profiles were developed from an empirical data base of subsidence events in the Illinois Coal Basin. As a result of this work many structures on the site required no or nominal subsidence considerations.

  5. Environmentally conscious coal combustion

    SciTech Connect (OSTI)

    Hickmott, D.D.; Brown, L.F.; Currier, R.P.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) `back of the envelope` calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to heat their homes with low-grade coal.

  6. Aqueous coal slurry

    SciTech Connect (OSTI)

    Berggren, M.H.; Smit, F.J.; Swanson, W.W.

    1989-10-30

    A principal object of the invention is the provision of an aqueous coal slurry containing a dispersant, which is of low-cost and which contains very low or no levels of sodium, potassium, sulfur and other contaminants. In connection with the foregoing object, it is an object of the invention to provide an aqueous slurry containing coal and dextrin as a dispersant and to provide a method of preparing an aqueous coal slurry which includes the step of adding an effective amount of dextrin as a dispersant. The invention consists of certain novel features and a combination of parts hereinafter fully described, and particularly pointed out in the appended claims. 6 tabs.

  7. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, C.H.

    1986-02-11

    A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

  8. Chapter 4 - Coal

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Chapter 4 Coal Overview In the International Energy Outlook 2016 (IEO2016) Reference case, coal remains the second-largest energy source worldwide- behind petroleum and other liquids-until 2030. From 2030 through 2040, it is the third-largest energy source, behind both liquid fuels and natural gas. World coal consumption increases from 2012 to 2040 at an average rate of 0.6%/year, from 153 quadrillion Btu in 2012 to 169

  9. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, Charles H.

    1986-01-01

    A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

  10. Underground gasification of coal

    DOE Patents [OSTI]

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  11. Coal desulfurization in a rotary kiln combustor

    SciTech Connect (OSTI)

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  12. DOE - Fossil Energy: Coal Mining and Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mining Fossil Energy Study Guides Coal Mining and Transportation Coal Miners - One type of mining, called "longwall mining", uses a rotating blade to shear coal away from the ...

  13. Puda Coal Inc | Open Energy Information

    Open Energy Info (EERE)

    Puda Coal Inc Jump to: navigation, search Name: Puda Coal, Inc Place: Taiyuan, Shaanxi Province, China Product: Specializes in coal preparation by applying a water jig washing...

  14. Coal Gasification and Transportation Fuels Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 3 (April 2016) Archived Editions: Coal ...

  15. Solar central receiver systems comparative economics

    SciTech Connect (OSTI)

    Eicker, P J

    1980-04-01

    Several major conceptual design studies of solar central receiver systems and components have been completed in the last year. The results of these studies are used to compare the projected cost of electric power generation using central receiver systems with that of more conventional power generation. The cost estimate for a molten salt central receiver system is given. Levelized busbar energy cost is shown as a function of annual capacity factor indicating the fraction of the cost due to each of the subsystems. The estimated levelized busbar energy cost for a central receiver (70 to 90 mills per kilowatt hour) is compared with the levelized busbar energy cost for a new coal fired Rankine cycle plant. Sensitivities to the initial cost of coal and the delta fuel escalation are shown. (WHK)

  16. Quarterly coal report

    SciTech Connect (OSTI)

    Young, P.

    1996-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  17. Aqueous coal slurry

    DOE Patents [OSTI]

    Berggren, Mark H.; Smit, Francis J.; Swanson, Wilbur W.

    1993-04-06

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  18. Delineating coal market regions

    SciTech Connect (OSTI)

    Solomon, B.D.; Pyrdol, J.J.

    1986-04-01

    This study addresses the delineation of US coal market regions and their evolution since the 1973 Arab oil embargo. Dichotomizing into compliance (low sulfur) and high sulfur coal deliveries, market regions are generated for 1973, 1977, and 1983. Focus is restricted to steam coal shipments to electric utilities, which currently account for over 80% of the total domestic market. A two-stage method is used. First, cluster analyses are performed on the origin-destination shipments data to generate baseline regions. This is followed by multiple regression analyses on CIF delivered price data for 1983. Sensitivity analysis on the configuration of the regions is also conducted, and some thoughts on the behavior of coal markets conclude the paper. 37 references, 6 figures, 2 tables.

  19. Proximate analysis of coal

    SciTech Connect (OSTI)

    Donahue, C.J.; Rais, E.A.

    2009-02-15

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter, fixed carbon, and ash content are determined for each sample and comparisons are made. Proximate analysis is performed on a coal sample from a local electric utility. From the weight percent sulfur found in the coal (determined by a separate procedure the Eschka method) and the ash content, students calculate the quantity of sulfur dioxide emissions and ash produced annually by a large coal-fired electric power plant.

  20. Coal markets squeeze producers

    SciTech Connect (OSTI)

    Ryan, M.

    2005-12-01

    Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

  1. Aqueous coal slurry

    DOE Patents [OSTI]

    Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

    1993-01-01

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  2. Coal Research FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    According to IEA, removing CCS from the list of options ... and storage (CCS) with coal-fired power generation at commercial ... new fossil-fueled power plants by increasing overall ...

  3. Clean Coal Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

  4. Method for coal liquefaction

    DOE Patents [OSTI]

    Wiser, W.H.; Oblad, A.G.; Shabtai, J.S.

    1994-05-03

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400 C at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1. 1 figures.

  5. Coal liquefaction process

    DOE Patents [OSTI]

    Karr, Jr., Clarence

    1977-04-19

    An improved coal liquefaction process is provided which enables conversion of a coal-oil slurry to a synthetic crude refinable to produce larger yields of gasoline and diesel oil. The process is characterized by a two-step operation applied to the slurry prior to catalytic desulfurization and hydrogenation in which the slurry undergoes partial hydrogenation to crack and hydrogenate asphaltenes and the partially hydrogenated slurry is filtered to remove minerals prior to subsequent catalytic hydrogenation.

  6. Coal liquefaction process

    DOE Patents [OSTI]

    Skinner, Ronald W.; Tao, John C.; Znaimer, Samuel

    1985-01-01

    This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

  7. Coal Liquefaction desulfurization process

    DOE Patents [OSTI]

    Givens, Edwin N. (Bethlehem, PA)

    1983-01-01

    In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

  8. Thermolysis of partial coal structures: bibenzyl and naphthols

    SciTech Connect (OSTI)

    Poutsma, M L

    1980-01-01

    All proposed processes for direct conversion of coal to synthetic liquid fuels require heating to greater than or equal to 400/sup 0/C. Exact process conditions (pyrolysis, hydropyrolysis, catalytic hydrogenation, donor solvent refining) are vital in determining the final product state (1). However, underlying all these processes may well be a set of similar thermal reactions which lead to disruption of the organic macromolecular structure of coal. Because of the structural complexity and irregularity of coal, attempts to elucidate this thermal chemistry of coal and of donor process solvents have relied heavily on thermolysis studies of model organic structures (2) and the judicious use of structure-reactivity relationships which are central to the discipline of physical organic chemistry. In this work the reaction products of the pyrolysis of bibenzyl and naphthals were identified.

  9. Economics of coal fines utilization

    SciTech Connect (OSTI)

    Hathi, V.; McHale, E.; Ramezan, M.; Winslow, J.

    1995-12-31

    In the twentieth century, coal has become the major fuel for electric power generation in the U.S. and most of the nonpetroleum-producing countries of the world. In 1998, the world coal-fired capacity for electric power generation was about 815 GW, consuming large quantities of coals of all ranks. Today, coal provides a third of the world`s energy requirements. In fact, coal use for power generation has grown steadily since the oil embargo in 1973 and has seen an even faster rate of growth in recent years. It has been reported that the global demand for new coal will increase by more than 1500 million tons by the year 2000. However, this increased production of coal has its drawbacks, including the concomitant production of coal waste. Reported estimates indicate that billions of tons of coal waste have already been disposed of in waste impoundments throughout the U.S. Further, in the U.S. today, about 20-25 % of each ton of mined coal is discarded by preparation plants as gob and plant tailings. It appears that the most economical near-term approach to coal waste recovery is to utilize the waste coal fines currently discarded with the refuse stream, rather than attempt to recover coal from waste impoundments that require careful prior evaluation and site preparation. A hypothetical circuit was designed to examine the economics of recovery and utilization of waste coal fines. The circuit recovers products from 100 tons per hour (tph) of coal waste feed recovering 70 tph of fine coal that can be used in coal-fired boilers. The present analysis indicates that the coal waste recovery is feasible and economical. In addition, significant environmental benefits can be expected.

  10. EIA projections of coal supply and demand

    SciTech Connect (OSTI)

    Klein, D.E.

    1989-10-23

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

  11. DOE - Fossil Energy: Introduction to Coal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction An Energy Lesson Cleaning Up Coal COAL is our most abundant fossil fuel. The United States has more coal than the rest of the world has oil. There is still enough coal ...

  12. DOE - Fossil Energy: Clean Coal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-Clean Coal Technology An Energy Lesson Cleaning Up Coal The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada ...

  13. STEO November 2012 - coal supplies

    U.S. Energy Information Administration (EIA) Indexed Site

    Despite drop in domestic coal production, U.S. coal exports to reach record high in 2012. While U.S. coal production is down 7 percent this year due in part to utilities switching to low-priced natural gas to generate electricity, American coal is still finding plenty of buyers in overseas markets. U.S. coal exports are expected to hit a record 125 million tons in 2012, the U.S. Energy Information Administration says in its new monthly short-term energy outlook. Coal exports are expected to

  14. EIS-0072: Great Plains Gasification Project, Mercer County, North Dakota

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy prepared this EIS to evaluate the impacts of a project to construct a 125 million cubic feet per day coal gasification facility located in Mercer County, North Dakota. The Office of Fossil Energy adopted three environmental impact evaluation documents prepared by other Federal agencies to develop this EIS.

  15. Underground Coal Gasification Program

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large,more » almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.« less

  16. Method of extracting coal from a coal refuse pile

    DOE Patents [OSTI]

    Yavorsky, Paul M.

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  17. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  18. Coal production, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Coal production in the United States in 1991 declined to a total of 996 million short tons, ending the 6-year upward trend in coal production that began in 1985. The 1991 figure is 33 million short tons below the record level of 1.029 billion short tons produced in 1990 (Table 1). Tables 2 through 33 in this report include data from mining operations that produced, prepared, and processed 10,000 or more short tons during the year. These mines yielded 993 million short tons, or 99.7 percent of the total coal production in 1991, and their summary statistics are discussed below. The majority of US coal (587 million short tons) was produced by surface mining (Table 2). Over half of all US surface mine production occurred in the Western Region, though the 60 surface mines in this area accounted for only 5 percent of the total US surface mines. The high share of production was due to the very large surface mines in Wyoming, Texas and Montana. Nearly three quarters of underground production was in the Appalachian Region, which accounted for 92 percent of underground mines. Continuous mining methods produced the most coal among those underground operations that responded. Of the 406 million short tons, 59 percent (239 million short tons) was produced by continuous mining methods, followed by longwall (29 percent, or 119 million short tons), and conventional methods (11 percent, or 46 million short tons).

  19. Coal combustion system

    DOE Patents [OSTI]

    Wilkes, Colin; Mongia, Hukam C.; Tramm, Peter C.

    1988-01-01

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  20. 2009 Coal Age Buyers Guide

    SciTech Connect (OSTI)

    2009-07-15

    The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

  1. 2008 Coal Age buyers guide

    SciTech Connect (OSTI)

    2008-07-15

    The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

  2. NEMS Modeling of Coal Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquid Fuels Market Module Model inputs for coal plants 3 * Existing coal plants - plant specific ... FF - Cost to convert to natural gas-fired steam plant - Cost to implement heat ...

  3. U.S. Coal Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Glossary › FAQS › Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports & distribution Coal-fired electric power plants Transportation costs to electric power sector International All coal data reports Analysis & Projections Major Topics Most popular Consumption Environment Imports & exports Industry characteristics Prices Production Projections Recurring Reserves Stocks All

  4. NEMS Modeling of Coal Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    NEMS Modeling of Coal Plants Office of Electricity, Coal, Nuclear, and Renewable Analysis Laura Martin June 14, 2016 Washington, DC 2 EMM Structure EFD ECP EFP ELD Laura Martin Washington, DC, June 14, 2016 Electricity Load and Demand Submodule Liquid Fuels Market Module Model inputs for coal plants 3 * Existing coal plants - plant specific inputs - Fixed and variable operating and maintenance costs, annual capital additions - Retrofit costs (capital and O&M) - FGD, DSI, SCR, SNCR, CCS, FF -

  5. Sustainable development with clean coal

    SciTech Connect (OSTI)

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  6. Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993

    SciTech Connect (OSTI)

    Crelling, J.C.

    1993-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

  7. Pyrolysis of coal

    DOE Patents [OSTI]

    Babu, Suresh P.; Bair, Wilford G.

    1992-01-01

    A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

  8. Healy Clean Coal Project

    SciTech Connect (OSTI)

    1997-12-31

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  9. Hydroliquefaction of coal

    DOE Patents [OSTI]

    Sze, Morgan C.; Schindler, Harvey D.

    1982-01-01

    Coal is catalytically hydroliquefied by passing coal dispersed in a liquefaction solvent and hydrogen upwardly through a plurality of parallel expanded catalyst beds, in a single reactor, in separate streams, each having a cross-sectional flow area of no greater than 255 inches square, with each of the streams through each of the catalyst beds having a length and a liquid and gas superficial velocity to maintain an expanded catalyst bed and provide a Peclet Number of at least 3. If recycle is employed, the ratio of recycle to total feed (coal and liquefaction solvent) is no greater than 2:1, based on volume. Such conditions provide for improved selectivity to liquid product to thereby reduce hydrogen consumption. The plurality of beds are formed by partitions in the reactor.

  10. EIA - Natural Gas Pipeline System - Central Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve

  11. Coal Market Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System's (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 2014 (AEO2014). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM's two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS).

  12. Coal and Coal-Biomass to Liquids FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal and Coal-Biomass to Liquids FAQs faq-header-big.jpg BASICS Q: How are gasoline and diesel fuel made from coal? A: Gasoline and diesel fuels can be produced from coal in two distinct processes: Indirect Liquefaction and Direct Liquefaction. In Indirect Liquefaction, coal is first gasified to produce synthesis gas (syngas for short), which is a mixture containing primarily hydrogen (H2) and carbon monoxide (CO) gases. The Fischer-Tropsch (FT) synthesis is a commercial process that can be used

  13. Underground coal gasification. Presentations

    SciTech Connect (OSTI)

    2007-07-01

    The 8 presentations are: underground coal gasification (UCG) and the possibilities for carbon management (J. Friedmann); comparing the economics of UCG with surface gasification technologies (E. Redman); Eskom develops UCG technology project (C. Gross); development and future of UCG in the Asian region (L. Walker); economically developing vast deep Powder River Basin coals with UCG (S. Morzenti); effectively managing UCG environmental issues (E. Burton); demonstrating modelling complexity of environmental risk management; and UCG research at the University of Queensland, Australia (A.Y. Klimenko).

  14. PNNL Coal Gasification Research

    SciTech Connect (OSTI)

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  15. Clean Coal Power Initiative

    SciTech Connect (OSTI)

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  16. DOE Regional Partnership Initiates CO2 Injection in Lignite Coal Seam |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Initiates CO2 Injection in Lignite Coal Seam DOE Regional Partnership Initiates CO2 Injection in Lignite Coal Seam March 10, 2009 - 1:00pm Addthis Washington, DC -- A U.S. Department of Energy/National Energy Technology Laboratory (NETL) team of regional partners has begun injecting CO2 into a deep lignite coal seam in Burke County, North Dakota, to demonstrate the economic and environmental viability of geologic CO2 storage in the U.S. Great Plains region. Ultimately,

  17. Process for coal liquefaction employing selective coal feed

    DOE Patents [OSTI]

    Hoover, David S.; Givens, Edwin N.

    1983-01-01

    An improved coal liquefaction process is provided whereby coal conversion is improved and yields of pentane soluble liquefaction products are increased. In this process, selected feed coal is pulverized and slurried with a process derived solvent, passed through a preheater and one or more dissolvers in the presence of hydrogen-rich gases at elevated temperatures and pressures, following which solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. The selected feed coals comprise washed coals having a substantial amount of mineral matter, preferably from about 25-75%, by weight, based upon run-of-mine coal, removed with at least 1.0% by weight of pyritic sulfur remaining and exhibiting vitrinite reflectance of less than about 0.70%.

  18. Field study of disposed solid wastes from advanced coal processes

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  19. Low-rank coal study : national needs for resource development. Volume 2. Resource characterization

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources by depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.

  20. Pretreatment of coal during transport

    DOE Patents [OSTI]

    Johnson, Glenn E.; Neilson, Harry B.; Forney, Albert J.; Haynes, William P.

    1977-04-19

    Many available coals are "caking coals" which possess the undesirable characteristic of fusing into a solid mass when heated through their plastic temperature range (about 400.degree. C.) which temperature range is involved in many common treatment processes such as gasification, hydrogenation, carbonization and the like. Unless the caking properties are first destroyed, the coal cannot be satisfactorily used in such processes. A process is disclosed herein for decaking finely divided coal during its transport to the treating zone by propelling the coal entrained in an oyxgen-containing gas through a heated transport pipe whereby the separate transport and decaking steps of the prior art are combined into a single step.

  1. Cass County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    North Dakota North River, North Dakota Oxbow, North Dakota Page, North Dakota Prairie Rose, North Dakota Reile's Acres, North Dakota Tower City, North Dakota West Fargo, North...

  2. Coal combustion research

    SciTech Connect (OSTI)

    Daw, C.S.

    1996-06-01

    This section describes research and development related to coal combustion being performed for the Fossil Energy Program under the direction of the Morgantown Energy Technology Center. The key activity involves the application of chaos theory for the diagnosis and control of fossil energy processes.

  3. Catalytic coal hydroliquefaction process

    DOE Patents [OSTI]

    Garg, Diwakar (Macungie, PA)

    1984-01-01

    A process is described for the liquefaction of coal in a hydrogen donor solvent in the presence of hydrogen and a co-catalyst combination of iron and a Group VI or Group VIII non-ferrous metal or compounds of the catalysts.

  4. Catalytic coal liquefaction process

    DOE Patents [OSTI]

    Garg, Diwakar (Macungie, PA); Sunder, Swaminathan (Allentown, PA)

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  5. Coal Preparation Plant Simulation

    Energy Science and Technology Software Center (OSTI)

    1992-02-25

    COALPREP assesses the degree of cleaning obtained with different coal feeds for a given plant configuration and mode of operation. It allows the user to simulate coal preparation plants to determine an optimum plant configuration for a given degree of cleaning. The user can compare the performance of alternative plant configurations as well as determine the impact of various modes of operation for a proposed configuration. The devices that can be modelled include froth flotationmore » devices, washers, dewatering equipment, thermal dryers, rotary breakers, roll crushers, classifiers, screens, blenders and splitters, and gravity thickeners. The user must specify the plant configuration and operating conditions and a description of the coal feed. COALPREP then determines the flowrates within the plant and a description of each flow stream (i.e. the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, BTU content, recoveries, and specific gravity of separation). COALPREP also includes a capability for calculating the cleaning cost per ton of coal. The IBM PC version contains two auxiliary programs, DATAPREP and FORLIST. DATAPREP is an interactive preprocessor for creating and editing COALPREP input data. FORLIST converts carriage-control characters in FORTRAN output data to ASCII line-feed (X''0A'') characters.« less

  6. Coal Preparation Plant Simulation

    Energy Science and Technology Software Center (OSTI)

    1992-02-25

    COALPREP assesses the degree of cleaning obtained with different coal feeds for a given plant configuration and mode of operation. It allows the user to simulate coal preparation plants to determine an optimum plant configuration for a given degree of cleaning. The user can compare the performance of alternative plant configurations as well as determine the impact of various modes of operation for a proposed configuration. The devices that can be modelled include froth flotationmore » devices, washers, dewatering equipment, thermal dryers, rotary breakers, roll crushers, classifiers, screens, blenders and splitters, and gravity thickeners. The user must specify the plant configuration and operating conditions and a description of the coal feed. COALPREP then determines the flowrates within the plant and a description of each flow stream (i.e. the weight distribution, percent ash, pyritic sulfur and total sulfur, moisture, BTU content, recoveries, and specific gravity of separation). COALPREP also includes a capability for calculating the cleaning cost per ton of coal.« less

  7. Kinetics of coal pyrolysis

    SciTech Connect (OSTI)

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. ); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. ); Jenkins, R.; Mallin, J.; Espindola-Merin, B. ); Essenhigh, R.; Misra, M.K. )

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  8. Annual Coal Distribution Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Foreign Distribution of U.S. Coal by State of Origin, 2001 State Region Domestic Foreign Total Alabama 14,828 4,508 19,336 Alaska 825 698 1,524 Arizona 13,143 - 13,143...

  9. Catalytic coal liquefaction process

    DOE Patents [OSTI]

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  10. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  11. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, Mow S. (Rocky Point, NY); Premuzic, Eugene T. (East Moriches, NY)

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  12. Coal liquefaction process

    DOE Patents [OSTI]

    Maa, Peter S.

    1978-01-01

    A process for liquefying a particulate coal feed to produce useful petroleum-like liquid products which comprises contacting; in a series of two or more coal liquefaction zones, or stages, graded with respect to temperature, an admixture of a polar compound; or compounds, a hydrogen donor solvent and particulate coal, the total effluent being passed in each instance from a low temperature zone, or stage to the next succeeding higher temperature zone, or stage, of the series. The temperature within the initial zone, or stage, of the series is maintained about 70.degree. F and 750.degree. F and the temperature within the final zone, or stage, is maintained between about 750.degree. F and 950.degree. F. The residence time within the first zone, or stage, ranges, generally, from about 20 to about 150 minutes and residence time within each of the remaining zones, or stages, of the series ranges, generally, from about 10 minutes to about 70 minutes. Further steps of the process include: separating the product from the liquefaction zone into fractions inclusive of a liquid solvent fraction; hydrotreating said liquid solvent fraction in a hydrogenation zone; and recycling the hydrogenated liquid solvent mixture to said coal liquefaction zones.

  13. National Coal Quality Inventory (NACQI)

    SciTech Connect (OSTI)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  14. Lignin-assisted coal depolymerization

    SciTech Connect (OSTI)

    Lalvani, S.B.

    1991-01-01

    Previous research has shown that addition of lignin-derived liquids to coal stirred in tetralin under mild reaction conditions (375{degree}C and 300--500 psig) results in a marked enhancement in the rate of coal depolymerization. A mathematical model was developed to study the kinetics of coal depolymerization in the presence of liquid-derived liquids. In the present study, a reaction pathway was formulated to explain the enhancement in coal depolymerization due to lignin (solid) addition. The model postulated assumes that the products of lignin obtained during thermolysis interact with the reactive moieties present in coal while simultaneous depolymerization of coal occurs. A good fit between the experimental data and the kinetic model was found. The results show that in addition to the enhancement in the rate of coal depolymerization, lignin also reacts (and enhances the extent of depolymerization of coal) with those reaction sites in coal that are not susceptible to depolymerization when coal alone is reacted in tetralin under identical reaction conditions. Additional work is being carried out to determine a thorough materials balance on the lignin-assisted coal depolymerization process. A number of liquid samples have been obtained which are being studied for their stability in various environments. 5 refs., 4 figs., 1 tab.

  15. Coal mine methane global review

    SciTech Connect (OSTI)

    2008-07-01

    This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

  16. The shell coal gasification process

    SciTech Connect (OSTI)

    Koenders, L.O.M.; Zuideveld, P.O.

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  17. Coal-oil slurry preparation

    DOE Patents [OSTI]

    Tao, John C.

    1983-01-01

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  18. Appalachian recapitalization: United Coal comes full circle

    SciTech Connect (OSTI)

    Fiscor, S.

    2006-05-15

    The article recounts the recent history of the United Coal Co. which exited from the coal business between 1992 and 1997 and has recently returned. More coal reserves have been added by its four companies Sapphire Coal, Carter Roag Coal, Pocahontas Coal and Wellmore, bringing the grand total to 222.6 Mtons. United Coal's developments and investment strategy are discussed. The company headquarters are in Bristol, Va., USA. 1 tab., 7 photos.

  19. Stable lead isotope compositions in selected coals from around the world and implications for present day aerosol source tracing

    SciTech Connect (OSTI)

    M. Diaz-Somoano; M.E. Kylander; M.A. Lopez-Anton; I. Suarez-Ruiz; M.R. Martinez-Tarazona; M. Ferrat; B. Kober; D.J. Weiss

    2009-02-15

    The phasing out of leaded gasoline in many countries around the world at the end of the last millennium has resulted in a complex mixture of lead sources in the atmosphere. Recent studies suggest that coal combustion has become an important source of Pb in aerosols in urban and remote areas. Lead concentration and isotopic composition is reported for 59 coal samples representing major coal deposits worldwide in an attempt to characterize this potential source. The average concentration in these coals is 35 {mu}g Pb g{sup -1}, with the highest values in coals from Spain and Peru and the lowest in coals from Australia and North America. The {sup 206}Pb/{sup 207}Pb isotope ratios range between 1.15 and 1.24, with less radiogenic Pb in coals from Europe and Asia compared to South and North America. Comparing the Pb isotopic signatures of coals from this and previous studies with those published for Northern and Southern Hemisphere aerosols, we hypothesize that coal combustion might now be an important Pb source in China, the eastern U.S., and to some extent, in Europe but not as yet in other regions including South Africa, South America, and western U.S. This supports the notion that 'old Pb pollution' from leaded gasoline reemitted into the atmosphere or long-range transport (i.e., from China to the western U.S.) is important. Comparing the isotope ratios of the coals, the age of the deposits, and Pb isotope evolution models for the major geochemical reservoirs suggests that the lead isotope ratios (PbIC) in coals is strongly influenced by the depositional coal forming environment. 47 refs., 3 figs., 1 tab.

  20. Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program

    Broader source: Energy.gov [DOE]

    DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems.

  1. Report to the United States Congress clean coal technology export markets and financing mechanisms

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country`s coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently.

  2. Summary of coal export project

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    Through the international coal project and related activities, SSEB has called attention to the problems and potential of the US coal industry. The program has provided an excellent format for frank discussions on the problems facing US coal exports. Every effort must be made to promote coal and its role in the southern economy. Coal is enjoying its best years in the domestic market. While the export market is holding its own, there is increased competition in the world market from Australia, Columbia, China and, to a lesser extent, Russia. This is coming at a time when the US has enacted legislation and plans are underway to deepen ports. In addition there is concern that increased US coal and electricity imports are having a negative impact on coal production. These limiting factors suggest the US will remain the swing supplier of coal on the world market in the near future. This presents a challenge to the US coal and related industry to maintain the present market and seek new markets as well as devote research to new ways to use coal more cleanly and efficiently.

  3. Moist caustic leaching of coal

    DOE Patents [OSTI]

    Nowak, Michael A.

    1994-01-01

    A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

  4. High pressure rotary piston coal feeder for coal gasification applications

    DOE Patents [OSTI]

    Gencsoy, Hasan T.

    1977-05-24

    The subject development is directed to an apparatus for feeding pulverized coal into a coal gasifier operating at relatively high pressures and elevated temperatures. This apparatus is a rotary piston feeder which comprises a circular casing having a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable discoid rotor having a cylinder in which a reciprocateable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam arrangement whereby the pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder cavity and then discharged therefrom into the high-pressure gasifier without the loss of high pressure gases from within the latter.

  5. Investigation of the carbon dioxide sorption capacity and structural deformation of coal

    SciTech Connect (OSTI)

    Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav; Harbert, William

    2010-01-01

    Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organic matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.

  6. Process for changing caking coals to noncaking coals

    DOE Patents [OSTI]

    Beeson, Justin L. (Woodridge, IL)

    1980-01-01

    Caking coals are treated in a slurry including alkaline earth metal hydroxides at moderate pressures and temperatures in air to form noncaking carbonaceous material. Hydroxides such as calcium hydroxide, magnesium hydroxide or barium hydroxide are contemplated for slurrying with the coal to interact with the agglomerating constituents. The slurry is subsequently dewatered and dried in air at atmospheric pressure to produce a nonagglomerating carbonaceous material that can be conveniently handled in various coal conversion and combustion processes.

  7. Coal combustion under conditions of blast furnace injection. Technical report, 1 December 1992--28 February 1993

    SciTech Connect (OSTI)

    Crelling, J.C.; Case, E.R.

    1993-05-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposed study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. The Amanda furnace of Armco is the only one in North America currently using coal injection and is, therefore, the only full scale testing facility available. During this quarter complete petrographic analyses of all of the samples so far collected were completed.

  8. Flotation and flocculation chemistry of coal and oxidized coals

    SciTech Connect (OSTI)

    Somasundaran, P.

    1990-01-01

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniques capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.

  9. Coal-Producing Region

    U.S. Energy Information Administration (EIA) Indexed Site

    . Coal Production by State (thousand short tons) Year to Date Coal-Producing Region and State January - March 2016 October - December 2015 January - March 2015 2016 2015 Percent Change Alabama 2,446 2,298 4,022 2,446 4,022 -39.2 Alaska 310 328 265 310 265 16.7 Arizona 1,335 1,376 1,755 1,335 1,755 -23.9 Arkansas 11 18 21 11 21 -48.0 Colorado 2,482 3,258 5,263 2,482 5,263 -52.8 Illinois 11,312 11,886 16,779 11,312 16,779 -32.6 Indiana 7,224 7,264 9,463 7,224 9,463 -23.7 Kansas 27 55 53 27 53

  10. Coal mine subsidence

    SciTech Connect (OSTI)

    Rahall, N.J.

    1991-05-01

    This paper examines the efficacy of the Department of the Interior's Office of Surface Mining Reclamation and Enforcement's (OSMRE) efforts to implement the federally assisted coal mine subsidence insurance program. Coal mine subsidence, a gradual settling of the earth's surface above an underground mine, can damage nearby land and property. To help protect property owners from subsidence-related damage, the Congress passed legislation in 1984 authorizing OSMRE to make grants of up to $3 million to each state to help the states establish self-sustaining, state-administered insurance programs. Of the 21 eligible states, six Colorado, Indiana, Kentucky, Ohio, West Virginia, and Wyoming applied for grants. This paper reviews the efforts of these six states to develop self-sustaining insurance programs and assessed OSMRE's oversight of those efforts.

  11. Assessment of underground coal gasification in bituminous coals: catalog of bituminous coals and site selection. Appendix A. National coal resource data system: Ecoal, Wcoal, and Bmalyt. Final report, Phase I. [Bituminous coal; by state; coal seam depth and thickness; identification

    SciTech Connect (OSTI)

    1982-01-31

    Appendix A is a catalog of the bituminous coal in 29 states of the contiguous United States which contain identified bituminous coal resources.

  12. Coal Bed Methane Primer

    SciTech Connect (OSTI)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  13. Coal liquefaction and hydrogenation

    DOE Patents [OSTI]

    Schindler, Harvey D.

    1985-01-01

    The coal liquefaction process disclosed uses three stages. The first stage is a liquefaction. The second and third stages are hydrogenation stages at different temperatures and in parallel or in series. One stage is within 650.degree.-795.degree. F. and optimizes solvent production. The other stage is within 800.degree.-840.degree. F. and optimizes the C.sub.5 -850.degree. F. product.

  14. Exploration for deep coal

    SciTech Connect (OSTI)

    2008-12-15

    The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

  15. Pulmonary retention of coal dusts

    SciTech Connect (OSTI)

    Morrow, P.E.; Gibb, F.R.; Beiter, H.; Amato, F.; Yuile, C.; Kilpper, R.W.

    1980-01-01

    The principal objectives of this study were: to determine, quantitatively, coal dust retention times in the dog lung; to test the appropriateness of a pulmonary retention model which incorporates first order rate coefficients obtained from in vitro and in vivo experiments on neutron-activated coal; to acquire a temporal description of the pulmonary disposition of the retained coal dust, and to compare the behavior of two different Pennsylvania coals in the foregoing regards. The principal findings include: retention half-times for both coals of approximately 2 years following single, hour-long exposures; a vivid association of the retained coal dust with the pulmonic lymphatics; and a general validation of the retention model.

  16. Environmental development plan: coal liquefaction

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    This Environmental Development plan (EDP) examines environmental concerns that are being evaluated for the technologies in DOE's Coal Liquefaction Program. It identifies the actions that are planned or underway to resolve these concerns while the technologies are being developed. Research is scheduled on the evaluation and mitigation of potential environmental impacts. This EDP updates the FY 1977 Coal Liquefaction Program EDP. Chapter II describes the DOE Coal Liquefaction Program and focuses on the Solvent Refined Coal (SRC), H-Coal, and Exxon donor solvent (EDS) processes because of their relatively advanced R and D stages. The major unresolved environmental concerns associated with the coal liquefaction subactivities and projects are summarized. The concerns were identified in the 1977 EDP's and research was scheduled to lead to the resolution of the concerns. Much of this research is currently underway. The status of ongoing and planned research is shown in Table 4-1.

  17. Iron catalyzed coal liquefaction process

    DOE Patents [OSTI]

    Garg, Diwakar; Givens, Edwin N.

    1983-01-01

    A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

  18. Zero emission coal

    SciTech Connect (OSTI)

    Ziock, H.; Lackner, K.

    2000-08-01

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

  19. Table 18. U.S. Coal Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    8. U.S. Coal Imports (short tons) Year to Date Continent and Country of Origin January - March 2016 October - December 2015 January - March 2015 2016 2015 Percent Change North America Total 240,168 341,205 171,698 240,168 171,698 39.9 Canada 239,440 341,189 171,631 239,440 171,631 39.5 Mexico 728 16 67 728 67 NM South America Total 2,196,295 2,163,485 2,347,074 2,196,295 2,347,074 -6.4 Colombia 2,190,869 2,133,033 2,299,716 2,190,869 2,299,716 -4.7 Peru 5,426 30,452 11,661 5,426 11,661 -53.5

  20. Table 7. U.S. Coal Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    7. U.S. Coal Exports (short tons) Year to Date Continent and Country of Destination January - March 2016 October - December 2015 January - March 2015 2016 2015 Percent Change North America Total 1,373,100 2,359,203 1,865,247 1,373,100 1,865,247 -26.4 Canada* 608,869 1,671,121 715,703 608,869 715,703 -14.9 Dominican Republic 19 - 1,745 19 1,745 -98.9 Guatemala - 39,683 59 - 59 - Honduras 35,825 34,337 34,651 35,825 34,651 3.4 Jamaica 36,375 36,410 36,101 36,375 36,101 0.8 Mexico 691,800 576,651

  1. Clean Coal Technologies | Open Energy Information

    Open Energy Info (EERE)

    of harmful pollutants from coal, including mercury, sulfur and coal tars. References: Clean Coal Technologies1 This article is a stub. You can help OpenEI by expanding it....

  2. Low-rank coal oil agglomeration

    DOE Patents [OSTI]

    Knudson, Curtis L.; Timpe, Ronald C.

    1991-01-01

    A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

  3. Carbon Dioxide Emission Factors for Coal

    Reports and Publications (EIA)

    1994-01-01

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  4. Volatile coal prices reflect supply, demand uncertainties

    SciTech Connect (OSTI)

    Ryan, M.

    2004-12-15

    Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

  5. Clean Coal Research | Department of Energy

    Office of Environmental Management (EM)

    plant efficiencies and reduce both the energy and capital costs of CO2 capture and storage from new, advanced coal ... NETL Clean Coal Research Tracking New Coal-fired Power ...

  6. Coal Production 1990. [CONTAINS GLOSSARY

    SciTech Connect (OSTI)

    Not Available

    1991-09-12

    This report provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, and reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1991. This is the 11th annual summary on minable coal, pursuant to Section 801 of Public Law 95-620, the Powerplant and Industrial Fuel Use Act of 1978. 9 figs., 32 tabs.

  7. Coal production 1984. [USA; 1984

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Coal Production 1984 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. The data were collected and published by the Energy Information Administration (EIA), to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (PL 93-275) as amended. All data presented in this report, except the total production table presented in the Highlights section, the demonstrated reserve base data presented in Appendix A, and the 1983 coal preparation and shipments data presented in Appendix C, were obtained from Form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1984. These mining operations accounted for 99.4% of total US coal production and represented 76.3% of all US coal mining operations in 1984. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1984.

  8. Process for electrochemically gasifying coal

    DOE Patents [OSTI]

    Botts, T.E.; Powell, J.R.

    1985-10-25

    A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

  9. On-Site Coal Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Research Advanced Energy Systems Advanced Energy Systems research conceives, analyzes, and develops energy technologies that can minimize the environmental impact of fossil ...

  10. Weekly Coal Production by State

    U.S. Energy Information Administration (EIA) Indexed Site

    Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... Stocks Imports, exports & distribution Coal-fired electric power plants Transportation ...

  11. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  12. Hydrogen Production: Coal Gasification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal Gasification Hydrogen Production: Coal Gasification The U.S. Department of Energy (DOE) Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically through the process of coal gasification with carbon capture, utilization, and storage. DOE anticipates that coal gasification for hydrogen production with carbon capture, utilization, and storage could be deployed in the mid-term time frame. How Does It Work? Chemically, coal is a complex and highly

  13. Quarterly Coal Distribution Report - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Quarterly Coal Distribution Report Release Date: August 17, 2016 | Next Release Date: December 22, 2016 | full report The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of transportation, and consuming sector. All quarterly data are preliminary and will be superseded by the release of the corresponding "Annual Coal Distribution Report." Highlights for the fourth quarter 2015: Total

  14. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    SciTech Connect (OSTI)

    Duane A. McVay; Walter B. Ayers Jr.; Jerry L. Jensen

    2005-05-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objective for this reporting period was to perform pressure transient testing to determine permeability of deep Wilcox coal to use as additional, necessary data for modeling performance of CO{sub 2} sequestration and enhanced coalbed methane recovery. To perform permeability testing of the Wilcox coal, we worked with Anadarko Petroleum Corporation in selecting the well and intervals to test and in designing the pressure transient test. Anadarko agreed to allow us to perform permeability tests in coal beds in an existing shut-in well (Well APCT2). This well is located in the region of the Sam K. Seymour power station, a site that we earlier identified as a major point source of CO{sub 2} emissions. A service company, Pinnacle Technologies Inc. (Pinnacle) was contracted to conduct the tests in the field. Intervals tested were 2 coal beds with thicknesses of 3 and 7 feet, respectively, at approximately 4,100 ft depth in the Lower Calvert Bluff Formation of the Wilcox Group in east-central Texas. Analyses of pressure transient test data indicate that average values for coalbed methane reservoir permeability in the tested coals are between 1.9 and 4.2 mD. These values are in the lower end of the range of permeability used in the preliminary simulation modeling. These new coal fracture permeability data from the APCT2 well, along with the acquired gas compositional analyses and sorption capacities of CO{sub 2}, CH{sub 4}, and N{sub 2}, complete the reservoir description phase of the project. During this quarter we also continued work on reservoir and economic modeling to evaluate performance of CO{sub 2} sequestration and enhanced coalbed methane recovery.

  15. Barnes County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    County, North Dakota Dazey, North Dakota Fingal, North Dakota Kathryn, North Dakota Leal, North Dakota Litchville, North Dakota Nome, North Dakota Oriska, North Dakota...

  16. Rolette County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota North Rolette, North Dakota Rolette, North Dakota Rolla, North Dakota Shell Valley, North Dakota South Rolette, North Dakota St. John, North Dakota Turtle...

  17. Northampton County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Carolina Conway, North Carolina Garysburg, North Carolina Gaston, North Carolina Jackson, North Carolina Lasker, North Carolina Rich Square, North Carolina Seaboard, North...

  18. Robeson County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Carolina Prospect, North Carolina Raemon, North Carolina Raynham, North Carolina Red Springs, North Carolina Rennert, North Carolina Rex, North Carolina Rowland, North...

  19. Cavalier County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Calvin, North Dakota Hannah, North Dakota Langdon, North Dakota Loma, North Dakota Milton, North Dakota Munich, North Dakota Nekoma, North Dakota Osnabrock, North Dakota...

  20. Burleigh County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota Lincoln, North Dakota Lincoln-Fort Rice, North Dakota Lyman, North Dakota Phoenix, North Dakota Regan, North Dakota Wilton, North Dakota Wing, North Dakota Retrieved...

  1. Mountrail County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota New Town, North Dakota Palermo, North Dakota Parshall, North Dakota Plaza, North Dakota Ross, North Dakota Southwest Mountrail, North Dakota Stanley, North...

  2. American Clean Coal Fuels | Open Energy Information

    Open Energy Info (EERE)

    American Clean Coal Fuels Retrieved from "http:en.openei.orgwindex.php?titleAmericanCleanCoalFuels&oldid768408" Categories: Organizations Energy Generation Organizations...

  3. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. ... organic base catalysts for arene hydrogenation and the hydrotreating of the coal liquids. ...

  4. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. ... organic base catalysts for arene hydrogenation and the hydrotreating of the coal liquids. ...

  5. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. ... Task 2, organic base-catalyzed arene hydrogenation and hydrotreating of the coal liquids. ...

  6. Jamestown Oxy Coal Alliance | Open Energy Information

    Open Energy Info (EERE)

    Oxy Coal Alliance Jump to: navigation, search Name: Jamestown Oxy-Coal Alliance Place: New York Product: The Jamestown Alliance has been formed to develop a CCS demonstration...

  7. FMI NewCoal | Open Energy Information

    Open Energy Info (EERE)

    developer focused on upgrading low rank coals to improve combustion efficiency and reduce production of greenhouse emissions for coal fired utility and industrial power generation...

  8. FE Clean Coal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity from Innovative DOE-Supported Clean Coal Project An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned...

  9. SciTech Connect: "clean coal"

    Office of Scientific and Technical Information (OSTI)

    clean coal" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "clean coal" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  10. EIA - Weekly U.S. Coal Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rounding. Bituminous and Lignite Total includes bituminous coal, subbituminous coal, and lignite, and Anthracite Total includes Pennsylvania anthracite. The States in...

  11. EIA - Weekly U.S. Coal Production

    Gasoline and Diesel Fuel Update (EIA)

    Stocks Imports, exports & distribution Coal-fired electric power plants Transportation costs to electric power sector International All coal data reports Analysis & Projections ...

  12. Annual Coal Distribution Report - Energy Information Administration

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Stocks Imports, exports & distribution Coal-fired electric power plants Transportation costs to electric power sector International All coal data reports Analysis & Projections ...

  13. Liquid Transportation Fuels from Coal and Biomass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liquid Tr anspor tation Fuels from Coal and Biomass Technological Status, Costs, and ... technologies for converting biomass and coal to liquid fuels that are deployable by ...

  14. Clean Coal Technology Programs: Program Update 2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean ... Control on Three 90-MW Coal-Fired Boilers CCPI-1 Wisconsin ...

  15. 1,"Walter Scott Jr Energy Center","Coal","MidAmerican Energy Co",1635.5

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Walter Scott Jr Energy Center","Coal","MidAmerican Energy Co",1635.5 2,"George Neal North","Coal","MidAmerican Energy Co",918.7 3,"Ottumwa","Coal","Interstate Power and Light Co",746.3 4,"Louisa","Coal","MidAmerican Energy Co",746.2

  16. International energy outlook. Volume 3. North and South America

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Petroleum, coal, and hydropower resources are found, in varying degrees, throughout the Americas. Struggling to maintain or achieve energy self-sufficiency, many North and South American countries are undertaking major projects to develop these, and other, energy sources. This volume, Volume 3 is a compilation of official US government intelligence reports examining the development projects and energy trends in 12 countries of North and South America: Argentina, Bolivia, Brazil, Canada, Colombia, Guatemala, Mexico, Panama, Paraguay, Peru, the United States and Venezuela. The range and detail of country coverage varies, due to availability of reports. Although the book details current energy situations and provides some historical background, its main emphasis is on estimates of future consumption and production, and descriptions of energy programs and plans. Plans in the Americas call for exploiting oil and gas where possible, and making major efforts to develop sources such as coal and hydropower that can be alternatives to imported petroleum. 33 references, 1 figure, 73 tables.

  17. Preliminary evaluation of resinite recovery from Illinois coal. [Quarterly] technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Crelling, J.C.

    1994-12-31

    Resinite is a naturally occurring substance found in coal and derived from original plant resins. It is ubiquitous in North American coals. It makes up one to four percent by volume of most Illinois coals. It has been commercially exploited in the western USA for use in adhesives, varnishes and thermal setting inks. The overall objective of this project is to compare the properties of the resinite contained in Illinois Basin coals to resinite being commercially exploited in the western United States, and to recover the resinite from Illinois coals by microbubble column floatation techniques. The significance of this study is that it has the potential to show the way to recover a valuable chemical, resinite, from coal using only physical processing techniques. The value of the resinite at $1.00/kg or $0.50/lb makes it about fifty times more valuable than steam coal. The removal of resinite from coal does not decrease the value of the remaining coal in any way. The unique aspects are that: (1) it is the first examination of the resinite recovery potential of Illinois coal, (2) it integrates the latest characterization techniques such as density Gradient centrifugation, microspectrofluorometry, and gas chromatography- mass spectrometry, and (3) it uses microbubble column flotation to determine the resinite recovery potential. During this quarter samples were obtained, information from both the databases of both the Illinois State Geological Survey (ISGS) and the Pennsylvania State University (PSU) was obtained and evaluated, and EBCSP samples from the Herrin No. 6, the Springfield No. 5 and the Colchester No. 2 seams were analyzed petrographically and the resinites in these samples were characterized by fluorescence spectral analysis.

  18. Preliminary evaluation of resinite recovery from Illinois coal. Technical report, December 1, 1994--February 28, 1995

    SciTech Connect (OSTI)

    Crelling, J.C.

    1995-12-31

    Resinite is a naturally occurring substance found in coal and derived from original plant resins. It is ubiquitous in North American coals. It makes up one to four percent by volume of most Illinois coals. It has been commercially exploited in the western USA for use in adhesives, varnishes and thermal setting inks. The overall objective of this project is to compare the properties of the resinite contained in Illinois Basin coals to resinite being commercially exploited in the western United States, and to recover the resinite from Illinois coals by microbubble column floatation techniques. This project is relevant to priority 1.4A identified in ICCI/RFP93-1. The significance of this study is that it has the potential to show the way to recover a valuable chemical, resinite, from coal using only physical processing techniques. The value of the resinite at $1.00/kg or $0.50/lb makes it about fifty times more valuable than steam coal. The removal of resinite from coal does not decrease the value of the remaining coal in any way. The unique aspects are that: (1) it is the first examination of the resinite recovery potential of Illinois coal, (2) it integrates the latest characterization techniques such as density gradient centrifugation, microspectrofluorometry, and gas chromatography-mass spectrometry, and (3) it uses microbubble column flotation to determine the resinite recovery potential. During this quarter samples were obtained, information from both the databases of both the Illinois State Geological Survey (ISGS) and the Pennsylvania State University (PSU) was obtained and evaluated, and IBCSP samples from the Herrin No. 6, the Springfield No. 5 and the Colchester No. 2 seams were analyzed petrographically and the resinites in these samples were characterized by fluorescence spectral analysis.

  19. Centrifuge treatment of coal tar

    SciTech Connect (OSTI)

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov

    2009-07-15

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  20. Coal: Energy for the future

    SciTech Connect (OSTI)

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  1. Coal Age buyers guide 2007

    SciTech Connect (OSTI)

    2007-07-15

    The buyers guide provides a comprehensive list of more than 1,200 suppliers that provide equipment and services to US coal mine and coal preparation plants, mainly based in the USA. Telephone numbers of companies are provided for each product category.

  2. Coal Age buyers guide 2005

    SciTech Connect (OSTI)

    2005-07-01

    The Buyers Guide provides a comprehensive list of more than 1,200 suppliers that provide equipment and services to US coal mine and coal preparation plants, mainly based in the USA. Telephone numbers of companies are provided for each product category.

  3. Coal Age buyers guide 2006

    SciTech Connect (OSTI)

    2006-07-15

    The Buyers Guide provides a comprehensive list of more than 1,200 suppliers that provide equipment and services to US coal mine and coal preparation plants, mainly based in the USA. Telephone numbers of companies are provided for each product category.

  4. 2009 coal preparation buyer's guide

    SciTech Connect (OSTI)

    2009-04-15

    The guide contains brief descriptions and contact details of 926 US companies supplying coal preparation equipment who exhibited at the 26th annual Coal Prep exhibition and conference, 28-30 April - May 2009, in Lexington, KY, USA. An index of categories of equipment available from the manufacturers is included.

  5. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N.

    1994-12-31

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  6. Liquid CO{sub 2}/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    SciTech Connect (OSTI)

    Marasigan, Jose; Goldstein, Harvey; Dooher, John

    2013-09-30

    technology could be used to reduce the cost and improve the efficiency of IGCC plants. The study goes beyond the systems-level analyses and initial lab work that formed the bases of previous studies and includes the following tasks: performing laboratory tests to quantify slurry properties; developing an engineering design of a liquid CO{sub 2} slurry preparation and feed system; conducting a full IGCC plant techno-economic analysis for Powder River Basin (PRB) coal and North Dakota lignite in both water and liquid CO{sub 2} slurries; and identifying a technology development plan to continue the due diligence to conduct a comprehensive evaluation of this technology. The initial task included rheology tests and slurry data analyses that would increase the knowledge and understanding of maximum solids loading capability for both PRB and lignite. Higher coal concentrations have been verified in liquid CO{sub 2} over water slurries, and a coal concentration of 75% by weight in liquid CO{sub 2} has been estimated to be achievable in a commercial application. In addition, lower slurry viscosities have been verified in liquid CO{sub 2} at the same solids loading, where the liquid CO{sub 2}/coal slurry viscosity has been measured to be about a factor of 10 lower than the comparable water slurry and estimated to be less than 100 centipoise in a commercial application. In the following task, an engineering design of a liquid CO{sub 2}/coal slurry preparation and mixing system has been developed for both a batch and continuous system. The capital cost of the design has also been estimated so that it could be used in the economic analysis. An industry search and survey has been conducted to determine if essential components required to construct the feed system are available from commercial sources or if targeted R&D efforts are required. The search and survey concluded that commercial sources are available for selected components that comprise both the batch and continuous type systems

  7. Trace-element geochemistry of coal resource development related to environmental quality and health

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This report assesses for decision makers and those involved in coal resource development the environmental and health impacts of trace-element effects arising from significant increases in the use of coal, unless unusual precautions are invoked. Increasing demands for energy and the pressing need for decreased dependence of the United States on imported oil require greater use of coal to meet the nation's energy needs during the next decade. If coal production and consumption are increased at a greatly accelerated rate, concern arises over the release, mobilization, transportation, distribution, and assimilation of certain trace elements, with possible adverse effects on the environment and human health. It is, therefore, important to understand their geochemical pathways from coal and rocks via air, water, and soil to plants, animals, and ultimately humans, and their relation to health and disease. To address this problem, the Panel on Trace Element Geochemistry of Coal Resource Development Related to Health (PECH) was established. Certain assumptions were made by the Panel to highlight the central issues of trace elements and health and to avoid unwarranted duplication of other studies. Based on the charge to the Panel and these assumptions, this report describes the amounts and distribution of trace elements related to the coal source; the various methods of coal extraction, preparation, transportation, and use; and the disposal or recycling of the remaining residues or wastes. The known or projected health effects are discussed at the end of each section.

  8. Coal Reserves Data Base report

    SciTech Connect (OSTI)

    Jones, R.W.; Glass, G.B.

    1991-12-05

    The Coal Reserves Data Base (CRDB) Program is a cooperative data base development program sponsored by the Energy Information Administration (EIA). The objective of the CRDB Program is to involve knowledgeable coal resource authorities from the major coal-bearing regions in EIA's effort to update the Nation's coal reserves data. This report describes one of two prototype studies to update State-level reserve estimates. The CRDB data are intended for use in coal supply analyses and to support analyses of policy and legislative issues. They will be available to both Government and non-Government analysts. The data also will be part of the information used to supply United States energy data for international data bases and for inquiries from private industry and the public. (VC)

  9. History of transcontinental railroads and coal mining on the Northern Plains to 1920

    SciTech Connect (OSTI)

    Bryans, W.S.

    1987-01-01

    This history examines the symbiotic relationship between three transcontinental railroads-the Union Pacific, Northern Pacific, and Great Northern-and coal mining in Montana, North Dakota, and Wyoming through 1920. Throughout their dual existence, American railroads and the coal industry enjoyed a mutually beneficial association. On the Northern Plains, however, this partnership assumed new dimensions. There, the coal and rails exerted unique influences upon one another. The location of deposits determined many of the transcontinentals' early decisions, especially route selection. The native fuel also was used to promote settlement on railroad lands. Two of the roads, the Union Pacific and Northern Pacific, held land grants containing valuable deposits. The Great Northern, having no such subsidy, acquired coal lands in northern Montana. On these properties, the three railroads pioneered the region's commercial coal mining industry. Eventually, each formed subsidiaries to direct their coal operations. While much of their production supplied steam locomotives, some was sold to the public. Furthermore, the policies of the Northern Pacific and Great Northern especially enabled their coal to stimulate non-railroad enterprises. In addition, all three provided the transportation which made exploitation by others economically feasible.

  10. 1,"Gerald Gentleman","Coal","Nebraska Public Power District",1365

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Gerald Gentleman","Coal","Nebraska Public Power District",1365 2,"Nebraska City","Coal","Omaha Public Power District",1343.5 3,"Cooper Nuclear Station","Nuclear","Nebraska Public Power District",764 4,"North Omaha","Coal","Omaha Public Power

  11. Reflection seismic mapping of an abandoned coal mine, Belleville, Illinois

    SciTech Connect (OSTI)

    Anderson, N.; Hinds, R.; Roark, M.

    1997-10-01

    Old mine location maps (1958 vintage) indicate that the northwestern part of an undeveloped property near the town of Belleville, St. Clair County, Illinois, is situated above an abandoned and now water-filled, room-and-pillar type coal mine. The central and southeast parts of the Belleville property are shown as overlying intact (non-mined) coal. The coal unit mined at the Belleville site, the Herrin No. 6 is Pennsylvanian in age and about 2.5 m thick at a depth of around 40 m. The current owners of the Belleville property want to construct a large building on the central and southeast parts of the site, but have been concerned about the accuracy of the old mine location maps because of recent mine-related surface subsidence in areas designated on the maps as not mined. To ensure that the proposed new development is located on structurally stable ground, a grid of ten high-resolution reflection seismic lines was acquired on-site. On these reflection seismic data, mined-out areas can be visually identified and differentiated from non-mined areas. The interpretation of the reflection seismic data was constrained and validated by 15 test boreholes. These seismic and borehole data confirm that the central and southeast parts of the property have not been mined extensively. Development of the Belleville site has proceeded with confidence.

  12. Coals and coal requirements for the COREX process

    SciTech Connect (OSTI)

    Heckmann, H.

    1996-12-31

    The utilization of non met coals for production of liquid hot metal was the motivation for the development of the COREX Process by VAI/DVAI during the 70`s. Like the conventional ironmaking route (coke oven/blast furnace) it is based on coal as source of energy and reduction medium. However, in difference to blast furnace, coal can be used directly without the necessary prestep of cokemaking. Coking ability of coals therefore is no prerequisite of suitability. Meanwhile the COREX Process is on its way to become established in ironmaking industry. COREX Plants at ISCOR, Pretoria/South Africa and POSCO Pohang/Korea, being in operation and those which will be started up during the next years comprise already an annual coal consumption capacity of approx. 5 Mio. tonnes mtr., which is a magnitude attracting the interest of industrial coal suppliers. The increasing importance of COREX as a comparable new technology forms also a demand for information regarding process requirements for raw material, especially coal, which is intended to be met here.

  13. Coal Technology '80. Volume 5. Synthetic fuels from coal. Volume 6. Industrial/utility applications for coal

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The 3rd international coal utilization exhibition and conference Coal Technology '80 was held at the Astrohall, Houston, Texas, November 18-20, 1980. Volume 5 deals with coal gasification and coal liquefaction. Volume 6 deals with fluidized-bed combustion of coal, cogeneration and combined-cycle power plants, coal-fuel oil mixtures (COM), chemical feedstocks via coal gasification and Fischer-Tropsch synthesis. Thirty-six papers have been entered individually into EDB and seven also into ERA; three had been entered previously from other sources. (LTN)

  14. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Coal pyrite electrodes

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-01-01

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville [number sign]2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

  15. Formation and retention of methane in coal

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  16. Low temperature aqueous desulfurization of coal

    DOE Patents [OSTI]

    Slegeir, William A.; Healy, Francis E.; Sapienza, Richard S.

    1985-01-01

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  17. Low temperature aqueous desulfurization of coal

    DOE Patents [OSTI]

    Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

    1985-04-18

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  18. Mechanism of instantaneous coal outbursts

    SciTech Connect (OSTI)

    Guan, P.; Wang, H.Y.; Zhang, Y.X.

    2009-10-15

    Thousands of mine workers die every year from mining accidents, and instantaneous coal outbursts in underground coal mines are one of the major killers. Various models for these outbursts have been proposed, but the precise mechanism is still unknown. We hypothesize that the mechanism of coal outbursts is similar to magma fragmentation during explosive volcanic eruptions; i.e., it is caused by high gas pressure inside coal but low ambient pressure on it, breaking coal into pieces and releasing the high-pressure gas in a shock wave. Hence, coal outbursts may be regarded as another type of gas-driven eruption, in addition to explosive volcanic, lake, and possible ocean eruptions. We verify the hypothesis by experiments using a shock-tube apparatus. Knowing the mechanism of coal outbursts is the first step in developing prediction and mitigation measures. The new concept of gas-driven solid eruption is also important to a better understanding of salt-gas outbursts, rock-gas outbursts, and mud volcano eruptions.

  19. Coal production, 1986. [Contains Glossary

    SciTech Connect (OSTI)

    Not Available

    1988-01-28

    Coal Production 1986 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. The data presented in this report were collected and published by the Energy Information Administration (EIA), to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Aministration Act of 1974 (P.L. 93-275) as amended. The 1986 coal production and related data presented in this report were obtained from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1986. This survey originated at the Bureau of Mines, US Department of the Interior. This report also includes updated data for the demonstrated reserve base of coal in the United States on both January 1, 1986 and January 1, 1987. This is the seventh annual summry on minable coal, pursuant to Sec. 801 of Public Law 95-620. 18 figs., 105 tabs.

  20. Bioprocessing of lignite coals using reductive microorganisms

    SciTech Connect (OSTI)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  1. Clean coal technologies: A business report

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

  2. Mild coal pretreatment to improve liquefaction reactivity

    SciTech Connect (OSTI)

    Miller, R.L.

    1991-01-01

    This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

  3. CO2 Sequestration Potential of Texas Low-Rank Coals

    SciTech Connect (OSTI)

    Duane McVay; Walter Ayers, Jr.; Jerry Jensen; Jorge Garduno; Gonzola Hernandez; Rasheed Bello; Rahila Ramazanova

    2006-08-31

    Injection of CO{sub 2} in coalbeds is a plausible method of reducing atmospheric emissions of CO{sub 2}, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO{sub 2} disposal in high-rank coals. The objective of this research was to determine the technical and economic feasibility of CO{sub 2} sequestration in, and enhanced coalbed methane (ECBM) recovery from, low-rank coals in the Texas Gulf Coast area. Our research included an extensive coal characterization program, including acquisition and analysis of coal core samples and well transient test data. We conducted deterministic and probabilistic reservoir simulation and economic studies to evaluate the effects of injectant fluid composition (pure CO{sub 2} and flue gas), well spacing, injection rate, and dewatering on CO{sub 2} sequestration and ECBM recovery in low-rank coals of the Calvert Bluff formation of the Texas Wilcox Group. Shallow and deep Calvert Bluff coals occur in two, distinct, coalbed gas petroleum systems that are separated by a transition zone. Calvert Bluff coals < 3,500 ft deep are part of a biogenic coalbed gas system. They have low gas content and are part of a freshwater aquifer. In contrast, Wilcox coals deeper than 3,500 ft are part of a thermogenic coalbed gas system. They have high gas content and are part of a saline aquifer. CO{sub 2} sequestration and ECBM projects in Calvert Bluff low-rank coals of East-Central Texas must be located in the deeper, unmineable coals, because shallow Wilcox coals are part of a protected freshwater aquifer. Probabilistic simulation of 100% CO{sub 2} injection into 20 feet of Calvert Bluff coal in an 80-acre 5-spot pattern indicates that these coals can store 1.27 to 2.25 Bcf of CO{sub 2} at depths of 6,200 ft, with an ECBM recovery of 0.48 to 0.85 Bcf. Simulation results of flue gas injection (87% N{sub 2}-13% CO{sub 2}) indicate that these same coals can store 0.34 to 0

  4. Assessing Coal Unit Retirement Risk

    U.S. Energy Information Administration (EIA) Indexed Site

    Ventures Analysis 1901 N. Moore St. Arlington, VA 22209 (703) 276 8900 A S S E S S I N G C O A L U N I T R E T I R E M E N T R I S K Tom Hewson Principal June 14, 2016 Presentation for the US Energy Information Administration Workshop Coal Fleet Aging 1 COAL CAPACITY CHALLENGES E N E R G Y V E N T U R E S A N A L Y S I S , I N C .  Environmental Regulatory Risk-- Compliance often requires coal units to make large capital investment in additional retrofit control measures and/or increase their

  5. STEO December 2012 - coal demand

    U.S. Energy Information Administration (EIA) Indexed Site

    coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in 2012 for the fourth year in a row. Domestic coal consumption is on track to total 829 million tons this year. That's the lowest level since 1992, according to the U.S. Energy Information Administration's new monthly energy forecast. Utilities and power plant operators are choosing to burn more lower-priced natural gas

  6. Interest in coal chemistry intensifies

    SciTech Connect (OSTI)

    Haggin, J.

    1982-08-09

    Research on coal structure has increased greatly in recent years as the future role of coal as a source of gaseous and liquid fuels, as well as chemicals, becomes more apparent. This paper reviews in some detail work being carried out in the US, particularly in the laboratories of Mobil and Exxon, and in the universities. New ideas on the chemical and physical structure of coal are put forward, and a proposal for a new classification system based on the fundamental properties of the vitrinite macerals is introduced.

  7. Clean coal technology. Coal utilisation by-products

    SciTech Connect (OSTI)

    2006-08-15

    The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

  8. Coal competition: prospects for the 1980s

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    This report consists of 10 chapters which present an historical overview of coal and the part it has played as an energy source in the economic growth of the United States from prior to World War II through 1978. Chapter titles are: definition of coals, coal mining; types of coal mines; mining methods; mining work force; development of coal; mine ownership; production; consumption; prices; exports; and imports. (DMC)

  9. Coal gasification vessel

    DOE Patents [OSTI]

    Loo, Billy W.

    1982-01-01

    A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

  10. Bowman County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    A. Places in Bowman County, North Dakota Bowman, North Dakota Gascoyne, North Dakota Hart, North Dakota Rhame, North Dakota Scranton, North Dakota West Bowman, North Dakota...

  11. Pembina County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Pembina County, North Dakota Bathgate, North Dakota Canton City, North Dakota Cavalier, North Dakota Crystal, North Dakota Drayton, North Dakota Hamilton, North Dakota...

  12. Bladen County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Dublin, North Carolina East Arcadia, North Carolina Elizabethtown, North Carolina Kelly, North Carolina Tar Heel, North Carolina White Lake, North Carolina White Oak, North...

  13. Duplin County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Kenansville, North Carolina Magnolia, North Carolina Mount Olive, North Carolina Rose Hill, North Carolina Teachey, North Carolina Wallace, North Carolina Warsaw, North...

  14. Alamance County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Burlington, North Carolina Elon, North Carolina Gibsonville, North Carolina Glen Raven, North Carolina Graham, North Carolina Green Level, North Carolina Haw River, North...

  15. Wayne County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Places in Wayne County, North Carolina Brogden, North Carolina Elroy, North Carolina Eureka, North Carolina Fremont, North Carolina Goldsboro, North Carolina Mar-Mac, North...

  16. Wells County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    North Dakota Cathay, North Dakota Fessenden, North Dakota Hamberg, North Dakota Harvey, North Dakota Hurdsfield, North Dakota Sykeston, North Dakota Retrieved from "http:...

  17. U.S. coal outlook in Asia

    SciTech Connect (OSTI)

    Johnson, C.J.

    1997-02-01

    Coal exports from the US to Asia are declining over time as a result of (1) increased competition from coal suppliers within the Asia-Pacific region, (2) changing steel making technologies, (3) decreased emphasis on security of coal supplies, and (4) deregulation of the energy industry--particularly electric utilities. There are no major changes on the horizon that are likely to alter the role of the US as a modest coal supplier to the Asia-Pacific region. The downward trend in US coal exports to Asia is expected to continue over the 1997--2010 period. But economic and policy changes underway in Asia are likely to result in periodic coal shortages, lasting a few months to a year, and short term increased export opportunities for US coal. US coal exports to Asia are projected to fluctuate within the following ranges over the 2000--2010 period: 10--17 million tons in total exports, 6--12 million tons in thermal coal exports, and 4--9 million tons in coking coal exports. The most important role for US coal, from the perspective of Asian coal importing countries, is to ensure a major alternative source of coal supplies that can be turned to in the event of unforeseen disruptions in coal supplies from the Asia-Pacific region or South Africa. However, the willingness of consumers to pay a premium to ensure US export capacity is declining, with increased emphasis on obtaining the lowest cost coal supplies.

  18. U.S. Energy Information Administration | Annual Coal Distribution...

    Gasoline and Diesel Fuel Update (EIA)

    and Institutional: Form EIA-3, "Quarterly Coal Consumption and Quality Report, Manufacturing and TransformationProcessing Coal Plants and Commercial and Institutional Coal...

  19. Domestic Distribution of U.S. Coal by Origin State,

    U.S. Energy Information Administration (EIA) Indexed Site

    of transportation. Also provided is a summary of foreign coal distribution by coal-exporting State. This Final 2008 Coal Distribution Report - Annual, supersedes the Preliminary...

  20. Domestic Distribution of U.S. Coal by Destination State,

    U.S. Energy Information Administration (EIA) Indexed Site

    of transportation. Also provided is a summary of foreign coal distribution by coal-exporting State. This Final 2008 Coal Distribution Report - Annual, supersedes the Preliminary...

  1. Optimized Pump Systems Save Coal Preparation Plant Money and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peabody Holding Company completed a project to improve the performance of a coal slurry pumping system at its Randolph Coal Preparation plant. Changes to the coal washing process ...

  2. Southern Coal finds value in the met market

    SciTech Connect (OSTI)

    Fiscor, S.

    2009-11-15

    The Justice family launches a new coal company (Southern Coal Corp.) to serve metallurgical and steam coal markets. 1 tab., 3 photos.

  3. DOE/EIA-M060(2007) Coal Market Module

    Gasoline and Diesel Fuel Update (EIA)

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  4. Coal Market Module of the Energy Modeling System Model Documentation...

    Gasoline and Diesel Fuel Update (EIA)

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  5. Coal Market Module of the National Energy Modeling System Model...

    Gasoline and Diesel Fuel Update (EIA)

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  6. Effectiveness factors for hydroprocessing of coal and coal liquids

    SciTech Connect (OSTI)

    Massoth, F.E.; Seader, J.D.

    1990-03-29

    The aim of this project is to develop a methodology to predict, from a knowledge of feed and catalyst properties, effectiveness factors for catalytic hydroprocessing of coal and coal liquids. To achieve this aim, it is necessary to account for restrictive diffusion, which has not hitherto been done from a fundamental approach under reaction conditions. The research entails a study of hydrodenitrogenation of model compounds and coal-derived liquids using three NiMo/alumina catalysts of different pore size to develop, for restrictive diffusion, a relationship that can be used for estimating reliable effectiveness factors. The research program includes: Task A - measurement of pertinent properties of the catalysts and of several coal liquids; Task B - determination of effective diffusivities and turtuosities of the catalysts; Task C - development of restrictive diffusion correlations from data on model N-compound reactions; Task D - testing of correlations with coal-liquid cuts and whole coal-liquid feed. Results are presented and discussed from Tasks B and D. 9 refs., 6 figs., 4 tabs.

  7. Effectiveness factors for hydroprocessing of coal and coal liquids

    SciTech Connect (OSTI)

    Massoth, F.E.; Seader, J.D.

    1990-01-01

    The aim of this research project is to develop a methodology to predict, from a knowledge of feed and catalyst properties, effectiveness factors for catalytic hydroprocessing of coal and coal liquids. To achieve this aim, it is necessary to account for restrictive diffusion, which has not hitherto been done from a fundamental approach under reaction conditions. The research proposed here entails a study of hydrodenitrogenation of model compounds and coal-derived liquids using three NiMo/alumina catalysts of different pore size to develop, for restrictive diffusion, a relationship that can be used for estimating reliable effectiveness factors. The program is divided into four parts: measurements of pertinent properties of the catalysts and of a coal liquid and its derived boiling-point cuts; determination of effective diffusivities and tortuosities of the catalysts; development of restrictive diffusion correlations from data on model N-compounds at reaction conditions; and testing of correlations with coal-liquid cuts and whole coal-liquid feed, modifying correlations as necessary.

  8. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  9. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-01-01

    During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

  10. Two stage liquefaction of coal

    DOE Patents [OSTI]

    Neuworth, Martin B.

    1981-01-01

    A two stage coal liquefaction process and apparatus comprising hydrogen donor solvent extracting, solvent deashing, and catalytic hydrocracking. Preferrably, the catalytic hydrocracking is performed in an ebullating bed hydrocracker.

  11. Coal Data Publication Revision Policy

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    impact: WHAT happens next to the database and in our coal reports: Respondent provides data that are clearly incorrect or revised data for any period in the current reporting year. ...

  12. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  13. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

    1995-04-04

    A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

  14. Which route to coal liquefaction

    SciTech Connect (OSTI)

    Nene, R.G.

    1981-11-01

    Two main methods for producing liquid fuels from coal are currently undergoing intensive evaluation. One, direct liquefaction (e.g., SRC-II, Exxon Donor Solvent (EDS), and H-Coal) produces liquid fuels directly from coal; the other, indirect liquefaction (e.g., Lurgi gasifier followed by Fischer-Tropsch, and Shell-Koppers gasifier followed by methanol synthesis and Mobil's MTG process) first gasifies coal and then converts the gaseous material into liquid products. This paper compares both routes basing its assessment on yields, thermal efficiencies, elemental balances, investment, complexity, and state of development. It is shown that direct liquefaction is more efficient and produces more product per investment dollar. Higher efficiency for direct liquefaction is verified bY stoichiometric and thermodynamic analysis. All approaches require about the same capital investment per unit of feed. Indirect liquefaction can be either more or less complex than direct liquefaction, depending upon the process. Direct liquefaction is least developed. 8 refs.

  15. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications (EIA)

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  16. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  17. Coal beneficiation by gas agglomeration

    DOE Patents [OSTI]

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  18. Apparatus for solar coal gasification

    DOE Patents [OSTI]

    Gregg, D.W.

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  19. Coal Beneficiation by Gas Agglomeration

    SciTech Connect (OSTI)

    Thomas D. Wheelock; Meiyu Shen

    2000-03-15

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  20. Upgrading coal plant damper drives

    SciTech Connect (OSTI)

    Hood, N.R.; Simmons, K.

    2009-11-15

    The replacement of damper drives on two coal-fired units at the James H. Miller Jr. electric generating plant by Intelligent Contrac electric rotary actuators is discussed. 2 figs.

  1. Oxy-coal Combustion Studies

    SciTech Connect (OSTI)

    Wendt, J.; Eddings, E.; Lighty, J.; Ring, T.; Smith, P.; Thornock, J.; Y Jia, W. Morris; Pedel, J.; Rezeai, D.; Wang, L.; Zhang, J.; Kelly, K.

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  2. Streamline coal slurry letdown valve

    DOE Patents [OSTI]

    Platt, R.J.; Shadbolt, E.A.

    1983-11-08

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces. 5 figs.

  3. Apparatus for entrained coal pyrolysis

    DOE Patents [OSTI]

    Durai-Swamy, Kandaswamy

    1982-11-16

    This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

  4. Fundamental studies of coal liquefaction

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The authors have examined the pyrolysis of Argonne samples of Wyodak and Illinois No. 6 coal in argon, undecane, Tetralin, and water. The effects of the pyrolysis on individual particles of coal were monitored visually in a cell with diamond windows capable of operation to temperature and pressures in excess of 500{degrees}C and 3000 psi. The changes in the particles from ambient to 460{degrees}C were recorded in real time on video tape, and images were then taken from the tape record and analyzed. The study showed that in argon both coals developed tars at 350{degrees}-370{degrees}C. The tars then quickly evaporated, leaving core particles remarkably similar in size and shape to the initial particles. These observations suggest that coal does not melt nor become fully liquid when heated. Nor does the softened coal undergo crosslinking to generate coke. Rather the simple loss of volatiles leaves behind the core residue as coke. Contrary to the common view, there appears to be no link between the bond-breaking processes yielding tar and the interaction of the coal with H-donors leading to liquefaction. Water as a medium was surprising in its effect. Both coals began to shrink at 300{degrees}-350{degrees}C, with the effect appearing to be more of an erosion rather than a uniform loss of substance as seen in Tetralin. The Wyodak continued to shrink to 460{degrees}C to about half its initial size. With the Illinois No. 6 coal, however, the process reversed at around 420{degrees}C, and the particles appeared to grow with the evolution of a tar, continuing to 460{degrees}C. The authors submit that this final observation is evidence for hydrothermal synthesis of hydrocarbons at these conditions.

  5. Coal liquefaction and gasification technologies

    SciTech Connect (OSTI)

    Mangold, E.C.; Muradaz, M.A.; Ouellette, R.P.; Farah, O.G.; Cheremisinoff, P.N.

    1982-01-01

    The state-of-the-art of selected coal liquefaction and gasification processes developed with support from the United States are reviewed. The Exxon Donor Solvent, H-Coal, SRC-I, SRC-II, Mobile Gasoline Synthesis, Fischer-Tropsch Synthesis, and Zinc Halide Hydrocracking liquefaction processes and the Slagging Lurgi, Texaco, Combustion Engineering, COGAS, and Shell-Koppers gasification processes are covered. Separate abstracts were prepared for 5 chapters.

  6. Streamline coal slurry letdown valve

    DOE Patents [OSTI]

    Platt, Robert J.; Shadbolt, Edward A.

    1983-01-01

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces.

  7. Overall requirements for an advanced underground coal extraction system

    SciTech Connect (OSTI)

    Goldsmith, M.; Lavin, M.L.

    1980-10-15

    This report presents overall requirements on underground mining systems suitable for coal seams exploitable in the year 2000, with particular relevance to the resources of Central Appalachia. These requirements may be summarized as follows: (1) Production Cost: demonstrate a return on incremental investment of 1.5 to 2.5 times the value required by a low-risk capital project. (2) Miner Safety: achieve at least a 50% reduction in deaths and disabling injuries per million man-hours. (3) Miner Health: meet the intent of all applicable regulations, with particular attention to coal dust, carcinogens, and mutagens; and with continued emphasis on acceptable levels of noise and vibration, lighting, humidity and temperature, and adequate work space. (4) Environmental Impact: maintain the value of mined and adjacent lands at the pre-mining value following reclamation; mitigation of off-site impacts should not cost more than the procedures used in contemporary mining. (5) Coal Conservation: the recovery of coal from the seam being mined should be at least as good as the best available contemporary technology operating in comparable conditions. No significant trade-offs between production cost and other performance indices were found.

  8. A case study of PFBC for low rank coals

    SciTech Connect (OSTI)

    Jansson, S.A.

    1995-12-01

    Pressurized Fluidized Combined-Cycle (PFBC) technology allows the efficient and environmentally friendly utilization of solid fuels for power and combined heat and power generation. With current PFBC technology, thermal efficiencies near 46%, on an LHV basis and with low condenser pressures, can be reached in condensing power plants. Further efficiency improvements to 50% or more are possible. PFBC plants are characterized by high thermal efficiency, compactness, and extremely good environmental performance. The PFBC plants which are now in operation in Sweden, the U.S. and Japan burn medium-ash, bituminous coal with sulfur contents ranging from 0.7 to 4%. A sub- bituminous {open_quotes}black lignite{close_quotes} with high levels of sulfur, ash and humidity, is used as fuel in a demonstration PFBC plant in Spain. Project discussions are underway, among others in Central and Eastern Europe, for the construction of PFBC plants which will burn lignite, oil-shale and also mixtures of coal and biomass with high efficiency and extremely low emissions. This paper will provide information about the performance data for PFBC plants when operating on a range of low grade coals and other solid fuels, and will summarize other advantages of this leading new clean coal technology.

  9. Coal desulfurization by chlorinolysis: production and combustion-test evaluation of product coals. Final report

    SciTech Connect (OSTI)

    Kalvinskas, J.; Daly, D.

    1982-04-30

    Laboratory-scale screening tests were carried out on PSOC 276, Pittsburgh Coal from Harrison County, Ohio to establish chlorination and hydrodesulfurization conditions for the batch reactor production of chlorinolysis and chlorinolysis-hydrodesulfurized coals. In addition, three bituminous coals, Pittsburgh No. 8 from Greene County, PA, Illinois No. 6 from Jackson County, Illinois and Eagle No. 5 from Moffat County, Colorado were treated on the lab scale by the chlorinolysis process to provide 39 to 62% desulfurization. Two bituminous coals (PSOC 276, Pittsburgh Coal from Harrison County, Ohio and 282, Illinois No. 6 Coal from Jefferson County, Illinois) and one subbituminous coal (PSOC 230, Rosebud Coal fom Rosebud County, Montana) were then produced in 11 to 15 pound lots as chlorinolysis and hydrodesulfurized coals. The chlorinolysis coals had a desulfurization of 29 to 69%, reductions in volatiles (12 to 37%) and hydrogen (6 to 31%). Hydrodesulfurization provided a much greater desulfurization (56 to 86%), reductions in volatiles (77 to 84%) and hydrogen (56 to 64%). The three coals were combustion tested in the Penn State plane flame furance to determine ignition and burning characteristics. All three coals burned well to completion as: raw coals, chlorinolysis processed coals and hydrodesulfurized coals. The hydrodesulfurized coals experienced greater ignition delays and reduced burning rates than the other coals because of the reduced volatile content. It is thought that the increased open pore volume in the desulfurized-devolatilized coals compensates in part for the decreased volatiles effect on ignition and burning. 4 figures, 2 tables.

  10. Installation of a stoker-coal preparation plant in Krakow, Poland. Quarterly technical progress report No. 4, January--March, 1995

    SciTech Connect (OSTI)

    Rozelle, P.

    1996-01-01

    This report describes the progress made during this reporting period of a two year project to demonstrate that the air pollution from a traveling-grate stoker being used to heat water at a central heating plant in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost-effective and hence will be adopted by the other central heating plants in Krakow and ideally, throughout Eastern European cities where coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators-for the execution of this effort. Five potential candidate sources have been located and contracts for coal deliveries should be executed early next quarter. TInitial delays in formalizing the EFH/Polish Partners agreement delayed finalizing the coal supply contracts and hence, precluded collecting the Polish coal samples for characterization and combustion performance studies. Work on this Task will be initialed next quarter after the raw coal supply contracts are executed. A conceptual design for a plant to wash 25mm x 0 raw coal fines at a need rate of 300 mtph was completed. This plant will receive raw coals ranging in ash content from 20 to 30 percent and produce a compliance coal containing about 1 percent ash, 0.8 percent sulfur and 27, 840 KJ/kg (12,000 Btu/lb). A heavy-media cyclone will be used to wash the 20mm x 1mm stoker coal. Discussions with financial institutions regarding the cost of producing a quality stoker coal in Poland and A for identifying sources of private capital to help cost share the project continued.

  11. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    T.D. Wheelock

    1999-03-01

    The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.

  12. AEP (Central, SWEPCO and North)- SCORE Program for Schools

    Broader source: Energy.gov [DOE]

    The SCORE Program is designed to help K-12 public schools identify energy efficiency opportunities in existing and newly planned facilities and to provide monetary incentives to help implement the...

  13. AEP (Central and North)- CitySmart Program

    Broader source: Energy.gov [DOE]

    The CitySmart Program is designed to help participants identify energy efficiency opportunities in existing and newly planned city facilities. Monetary incentives are also available to help...

  14. AEP (Central and North)- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    The Residential Standard Offer Program and Hard to Reach Standard Offer Program provide incentives to Project Sponsor contractors for installing energy efficiency measures at the homes of...

  15. AEP (Central, SWEPCO and North)- Commercial Solutions Program

    Broader source: Energy.gov [DOE]

    The no-cost Commercial Solutions Program is designed to help businesses, cities and counties address rising energy costs through energy efficiency improvements. The program offers objective, third...

  16. North Central Texas Alternative Fuel and Advanced Technology Investments

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  17. North Central Texas Alternative Fuel and Advanced Technology Investments

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. North Central Texas Alternative Fuel and Advanced Technology Investments

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  19. " East North Central",1296,1220,977,1185,1225,1577

    U.S. Energy Information Administration (EIA) Indexed Site

    More Persons",1790,1711,1422,1500,1700,2202 "Household Composition" " Households With Children","NA","NA",1198,1395,1453,1903 " Age of Oldest Child" " Under 7 Years","NA","NA",1057...

  20. " East North Central",198,216,263,296,335,385

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle-Miles Traveled, Selected Survey Years (Billions) " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",1215,1353,1511,1602,1793,2287 "Household Characteristics" "Census...

  1. North Central Power Co Inc | Open Energy Information

    Open Energy Info (EERE)

    4,255 86.057 606.35 434 13.615 118.444 3 335.064 2,249.094 4,692 2008-05 246.881 1,607.125 4,327 83.36 588.356 431 14.456 130.773 3 344.697 2,326.254 4,761 2008-04 250.096...

  2. " East North Central",1082,1025,996,1008,1102,1164

    U.S. Energy Information Administration (EIA) Indexed Site

    98,1060,995,947,1029,1054 " Rural ",1153,1141,1081,1085,1196,1469 "Household Size" " 1 Person ",669,628,586,556,566,550 " 2 Persons ",964,960,928,916,1016,1091 " 3 Persons...

  3. EIS-0370: Windy Gap Firming Project; North Central Colorado

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Department of the Interior (Bureau of Reclamation, Great Plains Region), with DOE's Western Area Power Administration as a cooperating agency, evaluates the environmental impacts of a proposal to construct new water storage reservoir capacity southwest of Loveland, Colorado. Western has jurisdiction over the transmission line that would be relocated if the proposed action is implemented and would market additional power that may be generated as a result of the project.

  4. North Central Public Pwr Dist | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 13698 Utility Location Yes Ownership P NERC Location MRO NERC MRO Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  5. North Central Texas Alternative Fuel and Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt057reese2010...

  6. 2011 Municipal Consortium North Central Region Workshop Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Kansas City, MO, March 8-9, 2011. The following documents are available as Adobe Acrobat PDFs. Presentations Calculating Light Loss Factors for LED Street Lighting Systems Rick Kauffman, IES Roadway Committee/Kauffman Consulting LLC SSL Not as Simple as It Seems: Things to Know and Things to Consider David Baum, Philips Roadway Lighting Mark McClear, Cree Kansas City, Missouri: US DOE SSL GATEWAY Demonstration Project Mahmoud Hadjian, City of Kansas City, MO Adaptive

  7. 2011 Municipal Consortium North Central Region Workshop Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Detroit, June 16-17, 2011. Presentations Intelligent Lighting for Exterior Spaces John Selander, Acuity Brands LED System Reliability Chris Wilson, GE Lighting Solutions DTE Energy and Oakland University Emerging Lighting Technologies Demonstration Project Ed Henderson, DTE Energy, and James Leidel, Oakland University City of Ann Arbor LED Street Lighting Program Andrew Brix, City of Ann Arbor, Michigan LM-79-Understanding and Evaluating Becky Rainer, Cooper Lighting

  8. North Central Texas Dairy Waste Control Pilot Project

    SciTech Connect (OSTI)

    2006-08-01

    One of the major goals of this project is to remove 80% of the phosphorus from the liquid waste stream. Also important is that it be economically beneficial to the farm.

  9. North Central Texas Alternative Fuel and Advanced Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt057tireese2011p

  10. North Central Texas Alternative Fuel and Advanced Technology...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt057ticlark2012o

  11. Comparison of high-pressure CO2 sorption isotherms on Eastern and Western US coals

    SciTech Connect (OSTI)

    Romanov, V; Hur, T -B; Fazio, J; Howard, B

    2013-10-01

    Accurate estimation of carbon dioxide (CO2) sorption capacity of coal is important for planning the CO2 sequestration efforts. In this work, we investigated sorption and swelling behavior of several Eastern and Western US coal samples from the Central Appalachian Basin and from San Juan Basin. The CO2 sorption isotherms have been completed at 55°C for as received and dried samples. The role of mineral components in coal, the coal swelling, the effects of temperature and moisture, and the error propagation have been analyzed. Changes in void volume due to dewatering and other factors such as temporary caging of carbon dioxide molecules in coal matrix were identified among the main factors affecting accuracy of the carbon dioxide sorption isotherms. The (helium) void volume in the sample cells was measured before and after the sorption isotherm experiments and was used to build the volume-corrected data plots.

  12. Coal Study Guide - High School | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High School Coal Study Guide - High School Coal Study Guide - High School (658.82 KB) More Documents & Publications Coal Study Guide - Middle School Coal Study Guide for Elementary School Fossil Energy Today - First Quarter, 2011

  13. DOE - Fossil Energy: The Cleanest Coal Technology - A Real Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-Cleanest Coal Technology An Energy Lesson Cleaning Up Coal The Cleanest Coal Technology - a Real Gas Don't think of coal as a solid black rock. Think of it as a mass of atoms. ...

  14. Records Dispostion-Coal Distribution Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Records Dispostion-Coal Distribution Data Records Dispostion-Coal Distribution Data This file contains data on the distribution of U.S. coal by coal-producing district of origin, ...

  15. Coal Transportation Issues (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64% of total domestic coal shipments in 2004. Trucks transported approximately 12% of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12%) and water transport on inland waterways, the Great Lakes, and tidewater areas (9%).

  16. Enhancement of surface properties for coal beneficiation

    SciTech Connect (OSTI)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  17. Beluga Coal Gasification - ISER

    SciTech Connect (OSTI)

    Steve Colt

    2008-12-31

    ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

  18. Coal combustion by wet oxidation

    SciTech Connect (OSTI)

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  19. ARM North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sites on the North Slope of Alaska (NSA), to provide data about cloud and radiative ... More Information North Slope of Alaska Website NSA Fact Sheet Visit the North Slope of ...

  20. First North American longwall in pitching seams proven feasible. [Colorado

    SciTech Connect (OSTI)

    Reynolds, J.F.

    1983-12-01

    There are 1.4 Gt (1.5 billion st) of recoverable coal under less than 914 m (3,000 ft) of cover in Colorado in pitching seams. Snowmass Coal Co., in cooperation with the US Department of Energy, introduced the longwall mining method in pitching seams to North America. This venture is a coal mining research program directed toward the profitable production of coal under difficult mining conditions as found in pitching seams of the western US. Snowmass Coal classifies pitching seams into the following categories for longwall on the strike in seams 3 m (10 ft) or less thick: Flat = 0 to 10/sup 0/: Normal continuous mines and shuttle cars work efficiently. Slight = 10/sup 0/ to 22/sup 0/: The maximum pitch that rubber tired equipment will function. Moderate = 22/sup 0/ to 40/sup 0/: The angle of repose of mined coal. Steep = 40/sup 0/ to 60/sup 0/: The limit of safe use of this roof support. Vertical = over 60/sup 0/. The longwall roof support covered here will work in all pitches except vertical. The shearer and conveyor will work in flat through moderate conditions. Longwalling across strike with this equipment in seam pitch over 60/sup 0/ could be accomplished with an inclined face. Development of the first longwall panel began in 1979 and was completed in 1981. The longwall equipment was installed and mining began on Aug. 11, 1981. Snowmass' performance shows that the capacity of a longwall operating on moderate pitch, up to 45/sup 0/, should be the same as a flat seam longwall. With equipment now available, pitching seam longwall is not only feasible, but cost competitive. The actual roof support method of troika concept has excellent maneuverability, good support, and low maintenance. The shearer has proven power to operate on moderate pitching seams.

  1. Proceedings, twenty-fourth annual international Pittsburgh coal conference

    SciTech Connect (OSTI)

    2007-07-01

    Topics covered include: gasification technologies; coal production and preparation; combustion technologies; environmental control technologies; synthesis of liquid fuels, chemicals, materials and other non-fuel uses of coal; hydrogen from coal; advanced synthesis gas cleanup; coal chemistry, geosciences and resources; Fischer-Tropsch technology; coal and sustainability; global climate change; gasification (including underground gasification); materials, instrumentation and controls; and coal utilisation byproducts.

  2. Clean Coal Program Research Activities

    SciTech Connect (OSTI)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  3. Pulverized coal injection at Hoogovens

    SciTech Connect (OSTI)

    Paramanathan, B.K.; Toxopeus, H.L

    1994-12-31

    The Armco/Babcock and Wilcox-type Pulverized Coal Injection (PCI) System, installed at Hoogovens Ijmuiden in 1982/83, consists of two pulverizing lines, each of 30 t/h capacity. Due to the increased demand for pulverized fuel to the Blast Furnaces (Nos. 6 and 7), the PCI system has been revised extensively such that the grinding capacity has been increased, thereby achieving a higher average injection rate to both Blast Furnaces of some 140 kg/THM. The use of soft and dry coals, coupled to modifications to the System, has resulted in an annual consumption of pulverized coal of more than 750,000 tons, some 80% more than that envisaged initially. The installation operates very successfully, downtime having been minimal over the years. Several trials, at high rates of coal injection, have been carried out in the past. The most recent trials, performed over a period of nine months in 1992, showed that smooth and stable Blast Furnace operation was possible even with very high rates of pulverized coal injection (more than 200 kg/THM).

  4. Blast Furnace Granulated Coal Injection

    SciTech Connect (OSTI)

    1998-09-30

    Production levels on each furnace exceeded 7000 NTHM/day during July. The combined production of 14,326 was a result of lower coke rates and below average delay rates on both furnaces, The combined production was at its highest level since September 1997. In August, the combined productivity declined to less than 13,500 NTHM/day. Although D furnace maintained a production rate in excess of 7000 NTHM/day, C furnace was lower because of a castfloor breakout and subsequent five day repair from August 26-30. Despite the lower productivity in August, injected coal and furnace coke rates were very good during the month. During September, the operation was difficult as a result of higher delays on both furnaces. The combined average monthly delay rate was considerably above the twenty-month average of 113 minutes per day and the combined average monthly production was less than 14,000 NTHM/day. Higher furnace coke rates at lower coal injection levels also contributed to the decrease. Additionally, the coke rate on both furnaces was increased substantially and the injected coal rate was decreased in preparation for the high volatile Colorado coal trial that started on September 28. The furnace process results for this quarter are shown in Tables 1A and 1B. In addition, the last twelve months of injected coal and coke rates for each furnace are shown in Figures 1 and 2.

  5. Repowering with clean coal technologies

    SciTech Connect (OSTI)

    Freier, M.D.; Buchanan, T.L.; DeLallo, M.L.; Goldstein, H.N.

    1996-02-01

    Repowering with clean coal technology can offer significant advantages, including lower heat rates and production costs, environmental compliance, incremental capacity increases, and life extension of existing facilities. Significant savings of capital costs can result by refurbishing and reusing existing sites and infrastructure relative to a greenfield siting approach. This paper summarizes some key results of a study performed by Parsons Power Group, Inc., under a contract with DOE/METC, which investigates many of the promising advanced power generation technologies in a repowering application. The purpose of this study was to evaluate the technical and economic results of applying each of a menu of Clean Coal Technologies in a repowering of a hypothetical representative fossil fueled power station. Pittsburgh No. 8 coal is used as the fuel for most of the cases evaluated herein, as well as serving as the fuel for the original unrepowered station. The steam turbine-generator, condenser, and circulating water system are refurbished and reused in this study, as is most of the existing site infrastructure such as transmission lines, railroad, coal yard and coal handling equipment, etc. The technologies evaluated in this study consisted of an atmospheric fluidized bed combustor, several varieties of pressurized fluid bed combustors, several types of gasifiers, a refueling with a process derived fuel, and, for reference, a natural gas fired combustion turbine-combined cycle.

  6. ,"North Carolina Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Carolina Natural Gas Prices",8,"Monthly","... 10:49:13 AM" "Back to Contents","Data 1: North Carolina Natural Gas Prices" ...

  7. ,"North Dakota Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Prices",8,"Monthly","4... 10:49:14 AM" "Back to Contents","Data 1: North Dakota Natural Gas Prices" ...

  8. National Coal Council Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    But let me return specifically to the issue of coal, where I think it is important to discuss the term, "clean coal." It is a term that is used often in the lexicon of the industry ...

  9. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  10. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  11. Clean Coal Ltd | Open Energy Information

    Open Energy Info (EERE)

    Clean Coal Ltd Place: London, England, United Kingdom Zip: W1F 8QE Product: London-based company which specialises in underground coal gasification project management and project...

  12. Integrated coal cleaning, liquefaction, and gasification process

    DOE Patents [OSTI]

    Chervenak, Michael C.

    1980-01-01

    Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

  13. Solar at the cost of coal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cost of coal 1 Domestic shale gas 2 US shale gas enables solar g SunShot: towards 1 Watt SunShot: towards 1 Watt Silicon PV can reach coal parity p y *LCOE calculated ...

  14. U.S. monthly coal production increases

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    monthly coal production increases U.S. coal production in July totaled 88.9 million short tons, the highest level since August 2012, according to preliminary data from the U.S. ...

  15. Tracking New Coal-Fired Power Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracking New Coal-Fired Power Plants (data update 12132010) January 14, 2011 b National ... generation additions in the U.S. and coal-fired power plant activity in China. ...

  16. Natural gas beats coal in power generation

    U.S. Energy Information Administration (EIA) Indexed Site

    is expected to exceed the output from coal-fired power plants this year and in 2017. In ... have made coal a less competitive generating fuel for many U.S. power plant operators.

  17. Coal Ash Contaminants in Wetlands | SREL Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal-fired facilities have been in operation on the SRS since the early 1950s. After ... The D-Area coal plant operated until early 2012, when it was replaced by a biofuels ...

  18. Pilot plant testing of Illinois coal for blast furnace injection. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect (OSTI)

    Crelling, J.C.

    1995-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1993--94 period. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900{degrees}C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter there were two major accomplishments.

  19. Quarterly Coal Report - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Glossary › FAQS › Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports & distribution Coal-fired electric power plants Transportation costs to electric power sector International All coal data reports Analysis & Projections Major Topics Most popular Consumption Environment Imports & exports Industry characteristics Prices Production Projections Recurring Reserves Stocks All

  20. Annual Coal Report - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Coal Report Release Date: March 23, 2016 | Next Release Date: December 18, 2016 | full report Previous Reports (pdf) Data year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 see all Go The Annual Coal Report (ACR) provides annual data on U.S. coal production, number of mines, productive capacity, recoverable reserves, employment, productivity, consumption, stocks, and prices. All data for 2014 and prior years are final. Highlights for 2014: In 2014, U.S. coal production

  1. National Coal celebrates its fifth anniversary

    SciTech Connect (OSTI)

    Fiscor, S.

    2008-06-15

    The growth and activities of the National Coal Corp since its formation in 2003 are described. 5 photos.

  2. Cokemaking from coals of Kuzbas and Donbas

    SciTech Connect (OSTI)

    Umansky, R.Z.; Kovalev, E.T.; Drozdnik, I.D.

    1997-12-31

    The paper discusses features of Donetsk and Kuznetsk coals, the export capability of Ukraine coking industry, the selection of coal blends involving coals from different basins, and practical recommendations and techno-economic considerations. It is concluded that by raising the share of low-sulfur Kuznetsk coal in the blend to 50%, coke produced will meet all the requirements of European and American consumers.

  3. Estimating coal production peak and trends of coal imports in China

    SciTech Connect (OSTI)

    Bo-qiang Lin; Jiang-hua Liu

    2010-01-15

    More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

  4. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  5. Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization

    SciTech Connect (OSTI)

    Henghu Sun; Yuan Yao

    2012-06-29

    Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

  6. Low-rank coal oil agglomeration

    DOE Patents [OSTI]

    Knudson, C.L.; Timpe, R.C.

    1991-07-16

    A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

  7. Pelletization of fine coals. Final report

    SciTech Connect (OSTI)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  8. Coal reserves are plentiful but unevenly distributed

    SciTech Connect (OSTI)

    Jeremic, M.L.

    1981-07-01

    There is plenty of coal in Canada. The estimated coal resources are more than 360,000,000,000 tons with most of this coal located in the western provinces. The estimated minable coal reserves are more than 16,000,000,000 tons and the recoverable coal is more than 6,000,000,000 tons. The latter figure reflects the lack of current development in many coalfields. Very recent and current exploration for coal as well as for oil and gas has indicated coal resources in addition to those already estimated. Incremental additions to coal resources can be expected in northern and eastern Canada. In the latter region, more than 85 percent of the total coal resources are beneath the ocean. The main coal deposits in western Canada are very far from the large industrial markets of Ontario and Quebec. They are closer, yet still quite distant, from export ports on the Pacific Ocean. Current efforts to improve coal transportation are expected to decrease the disadvantages of the unfavorable location of the western coalfields. This will increase the coal reserves in the region as further exploration will surely follow.

  9. Coal mine directory: United States and Canada

    SciTech Connect (OSTI)

    2004-07-01

    The directory gives a state-by-state listing of all US and Canadian coal producers. It contains contact information as well as the type of mine, production statistics, coal composition, transportation methods etc. A statistical section provides general information about the US coal industry, preparation plants, and longwall mining operations.

  10. Selective flotation of inorganic sulfides from coal

    DOE Patents [OSTI]

    Miller, K.J.; Wen, Wu-Wey

    1988-05-31

    Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow. 1 fig., 2 tabs.

  11. Review of a Proposed Quarterly Coal Publication

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  12. Selective flotation of inorganic sulfides from coal

    DOE Patents [OSTI]

    Miller, Kenneth J.; Wen, Wu-Wey

    1989-01-01

    Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow.

  13. Firing of pulverized solvent refined coal

    DOE Patents [OSTI]

    Derbidge, T. Craig; Mulholland, James A.; Foster, Edward P.

    1986-01-01

    An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

  14. TOXIC SUBSTANCES FROM COAL COMBUSTION: A COMPREHENSIVE ASSESSMENT

    SciTech Connect (OSTI)

    C.L. Senior; T. Panagiotou; J.O.L. Wendt; W. Seames; F.E. Huggins; G.P Huffman; N. Yap; M.R. Ames; I.Olmez; T. Zeng; A.F. Sarofim; A. Kolker; R. Finkelman; J.J. Helble

    1998-07-16

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, the Massachusetts Institute of Technology (MIT), the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (W) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO{sub x} combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from the submission of the draft Phase 1 Final Report through the end of June, 1998. During this period two of the three Phase 2 coals were procured and pulverized samples were distributed to team members. Analysis of Phase 1 X-Ray Absorption Fine Structure (XAFS) data, particularly of mercury in sorbent samples, continued. An improved method for identifying mercury compounds on sorbents was developed, leading to a clearer understanding of forms of mercury in char and sorbents exposed to flue gas. Additional analysis of Phase 1 large scale combustion data was performed to investigate mechanistic information related to the fate of the radionuclides Cs, Th, and Co. Modeling work for this period was focused on building and testing a sub-model for vaporization

  15. Toxic substances from coal combustion -- A comprehensive assessment

    SciTech Connect (OSTI)

    Senior, C.L.; Panagiotou, T.; Huggins, F.E.; Huffman, G.P.; Yap, N.; Wendt, J.O.L.; Seames, W.; Ames, M.R.; Sarofim, A.F.; Lighty, J.; Kolker, A.; Finkelman, R.; Palmer, C.A.; Mroczkowsky, S.J.; Helble, J.J.; Mamani-Paco, R.

    1999-07-30

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the period from 1 April 1999 to 30 June 1999. During this quarter low temperature ashing and elemental analysis of the three Phase II coals were completed. Results from MIT and USGS are comparable. Plans were made for measurements of loss of trace elements during devolatilization and for single particle combustion studies at the University of Utah. The iodated charcoal trap was tested on coal combustion flue gas and was shown to collect both Hg and Se in from the vapor phase with 100% efficiency. Data from the University of Arizona self-sustained combustor were analyzed from the combustion of three coals: Ohio, Wyodak and Illinois No. 6. Ash size distributions and enrichment factors for selected trace elements were calculated. The correlation between the concentration of the more volatile trace elements in the ash and the

  16. Coal liquefaction with preasphaltene recycle

    DOE Patents [OSTI]

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  17. Iredell County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Iredell County, North Carolina Davidson, North Carolina Harmony, North Carolina Love Valley, North Carolina Mooresville, North Carolina Statesville, North Carolina Stony...

  18. Steele County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    North Dakota M Power LLC Places in Steele County, North Dakota Finley, North Dakota Hope, North Dakota Luverne, North Dakota Sharon, North Dakota Retrieved from "http:...

  19. Cumberland County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Carolina Fayetteville, North Carolina Fort Bragg, North Carolina Godwin, North Carolina Hope Mills, North Carolina Linden, North Carolina Pope AFB, North Carolina Spring Lake,...

  20. Granville County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Granville County, North Carolina Butner, North Carolina Creedmoor, North Carolina Oxford, North Carolina Stem, North Carolina Stovall, North Carolina Retrieved from "http:...

  1. Hoke County, North Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Carolina Dundarrach, North Carolina Five Points, North Carolina Raeford, North Carolina Red Springs, North Carolina Rockfish, North Carolina Silver City, North Carolina Retrieved...

  2. Nash County, North Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Carolina Middlesex, North Carolina Momeyer, North Carolina Nashville, North Carolina Red Oak, North Carolina Rocky Mount, North Carolina Sharpsburg, North Carolina Spring Hope,...

  3. Stanly County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Carolina New London, North Carolina Norwood, North Carolina Oakboro, North Carolina Red Cross, North Carolina Richfield, North Carolina Stanfield, North Carolina Retrieved...

  4. LaMoure County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Edgeley, North Dakota Jud, North Dakota Kulm, North Dakota LaMoure, North Dakota Marion, North Dakota Verona, North Dakota Retrieved from "http:en.openei.orgw...

  5. Dickey County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Subtype A. Places in Dickey County, North Dakota Ellendale, North Dakota Forbes, North Dakota Fullerton, North Dakota Ludden, North Dakota Monango, North Dakota...

  6. Sioux County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 6 Climate Zone Subtype A. Places in Sioux County, North Dakota Cannon Ball, North Dakota Fort Yates, North Dakota North Sioux, North Dakota Selfridge, North...

  7. Henderson County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    East Flat Rock, North Carolina Etowah, North Carolina Flat Rock, North Carolina Fletcher, North Carolina Hendersonville, North Carolina Laurel Park, North Carolina Mills...

  8. Craven County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Dover, North Carolina Fairfield Harbour, North Carolina Havelock, North Carolina James City, North Carolina Neuse Forest, North Carolina New Bern, North Carolina River Bend,...

  9. Forsyth County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Carolina King, North Carolina Lewisville, North Carolina Midway, North Carolina Rural Hall, North Carolina Tobaccoville, North Carolina Walkertown, North Carolina Winston-Salem,...

  10. Richmond County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    East Rockingham, North Carolina Ellerbe, North Carolina Hamlet, North Carolina Hoffman, North Carolina Norman, North Carolina Rockingham, North Carolina Retrieved from...

  11. Carteret County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Bogue, North Carolina Cape Carteret, North Carolina Cedar Point, North Carolina Emerald Isle, North Carolina Harkers Island, North Carolina Indian Beach, North Carolina...

  12. Brunswick County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Island, North Carolina Belville, North Carolina Boiling Spring Lakes, North Carolina Bolivia, North Carolina Calabash, North Carolina Carolina Shores, North Carolina Caswell...

  13. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    SciTech Connect (OSTI)

    2000-09-01

    its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.

  14. Pilot Testing of WRI'S Novel Mercury Control Technology by Pre-Combustion Thermal Treatment of Coal

    SciTech Connect (OSTI)

    Alan Bland; Jesse Newcomer; Kumar Sellakumar

    2008-08-17

    The challenges to the coal-fired power industry continue to focus on the emission control technologies, such as mercury, and plant efficiency improvements. An alternate approach to post-combustion control of mercury, while improving plant efficiency deals with Western Research Institute's (WRI)'s patented pre-combustion mercury removal and coal upgrading technology. WRI was awarded under the DOE's Phase III Mercury program, to evaluate the effectiveness of WRI's novel thermal pretreatment process to achieve >50% mercury removal, and at costs of <$30,000/lb of Hg removed. WRI has teamed with Etaa Energy, Energy and Environmental Research Center (EERC), Foster Wheeler North America Corp. (FWNA), and Washington Division of URS (WD-URS), and with project co-sponsors including Electric Power Research Institute (EPRI), Southern Company, Basin Electric Power Cooperative (BEPC), Montana-Dakota Utilities (MDU), North Dakota Industrial Commission (NDIC), Detroit Edison (DTE), and SaskPower to undertake this evaluation. The technical objectives of the project were structured in two phases: Phase I--coal selection and characterization, and bench-and PDU-scale WRI process testing and; and Phase II--pilot-scale pc combustion testing, design of an integrated boiler commercial configuration, its impacts on the boiler performance and the economics of the technology related to market applications. This report covers the results of the Phase I testing. The conclusion of the Phase I testing was that the WRI process is a technically viable technology for (1) removing essentially all of the moisture from low rank coals, thereby raising the heating value of the coal by about 30% for subbituminous coals and up to 40% for lignite coals, and (2) for removing volatile trace mercury species (up to 89%) from the coal prior to combustion. The results established that the process meets the goals of DOE of removing <50% of the mercury from the coals by pre-combustion methods. As such, further

  15. Radionuclides in Western coal. Final report

    SciTech Connect (OSTI)

    Abbott, D.T.; Styron, C.E.; Casella, V.R.

    1983-09-23

    The increase in domestic energy production coupled with the switch from oil and natural gas to coal as a boiler-fuel source have prompted various federal agencies to assess the potential environmental and health risks associated with coal-fired power plants. Because it has been suggested that Western coals contain more uranium than Eastern coals, particular concern has been expressed about radioactive emissions from the increasing number of power plants that burn low-sulfur Western coal. As a result, the radionuclides in coal program was established to analyze low-sulfur coal reserves in Western coal fields for radioactivity. Samples from seams of obvious commercial value were taken from 19 operating mines that represented 65% of Western coal production. Although the present study did not delve deeply into underlying causative factors, the following general conclusions were reached. Commercially exploited Western coals do not show any alarming pattern of radionuclide content and probably have lower radioactivity levels than Eastern coals. The materials that were present appeared to be in secular equilibrium in coal, and a detailed dose assessment failed to show a significant hazard associated with the combustion of Western coal. Flue gas desulfurization technology apparently has no significant impact on radionuclide availability, nor does it pose any significant radiologic health risks. This study has also shown that Western coals are not more radioactive than most soils and that most solid combustion products have emanation powers <1%, which greatly reduce dose estimates from this pathway. In summary, the current use of mined, Western coals in fossil-fueled power plants does not present any significant radiological hazard.

  16. The changing structure of the US coal industry: An update, July 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-29

    Section 205(a)(2) of the Department of Energy Organization Act of 1977 requires the Administrator of the Energy Information Administration (EIA) to carry out a central, comprehensive, and unified energy data and information program that will collect, evaluate, assemble, analyze, and disseminate data and information relevant to energy resources, reserves, production, demand, technology, and related economic and statistical information. The purpose of this report is to provide a comprehensive overview of changes in the structure of the US coal industry between 1976 and 1991. The structural elements examined include the number of mines, average mine size, the size distribution of mines, and the size distribution of coal firms. The report measures changes in the market shares of the largest coal producers at the national level and in various regions. The Central Appalachian low-sulfur coal market is given special attention, and the market for coal reserves is examined. A history of mergers in the coal industry is presented, and changes in the proportions of US coal output that are produced by various types of companies, including foreign-controlled firms, are described. Finally, the impact of post-1991 mergers on the structure of the industry is estimated. The legislation that created the EIA vested the organization with an element of statutory independence. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high-quality information and to perform objective, credible analyses in support of deliberations by both public and private decisionmakers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

  17. Quarterly coal report, October--December 1996

    SciTech Connect (OSTI)

    1997-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

  18. Quarterly coal report, January--March 1998

    SciTech Connect (OSTI)

    Young, P.

    1998-08-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for January through March 1998 and aggregated quarterly historical data for 1992 through the fourth quarter of 1997. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the United States, historical information has been integrated in this report. 58 tabs.

  19. Coal Data: A reference. [Contains Glossary

    SciTech Connect (OSTI)

    Not Available

    1991-11-26

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section Coal Terminology and Related Information'' provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  20. Process for selective grinding of coal

    DOE Patents [OSTI]

    Venkatachari, Mukund K.; Benz, August D.; Huettenhain, Horst

    1991-01-01

    A process for preparing coal for use as a fuel. Forming a coal-water slurry having solid coal particles with a particle size not exceeding about 80 microns, transferring the coal-water slurry to a solid bowl centrifuge, and operating same to classify the ground coal-water slurry to provide a centrate containing solid particles with a particle size distribution of from about 5 microns to about 20 microns and a centrifuge cake of solids having a particle size distribution of from about 10 microns to about 80 microns. The classifer cake is reground and mixed with fresh feed to the solid bowl centrifuge for additional classification.

  1. Coal storage hopper with vibrating screen agitator

    DOE Patents [OSTI]

    Daw, Charles S.; Lackey, Mack E.; Sy, Ronald L.

    1984-01-01

    The present invention is directed to a vibrating screen agitator in a coal storage hopper for assuring the uniform feed of coal having sufficient moisture content to effect agglomeration and bridging thereof in the coal hopper from the latter onto a conveyor mechanism. The vibrating screen agitator is provided by a plurality of transversely oriented and vertically spaced apart screens in the storage hopper with a plurality of vertically oriented rods attached to the screens. The rods are vibrated to effect the vibration of the screens and the breaking up of agglomerates in the coal which might impede the uniform flow of the coal from the hopper onto a conveyer.

  2. Pulverized coal burner

    SciTech Connect (OSTI)

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  3. Pulverized coal burner

    DOE Patents [OSTI]

    Sivy, Jennifer L.; Rodgers, Larry W.; Koslosy, John V.; LaRue, Albert D.; Kaufman, Keith C.; Sarv, Hamid

    1998-01-01

    A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.

  4. Catalysts for coal liquefaction processes

    DOE Patents [OSTI]

    Garg, Diwakar (Macungie, PA)

    1986-01-01

    Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

  5. Cooperative research in coal liquefaction

    SciTech Connect (OSTI)

    Huffman, G.P.; Sendlein, L.V.A. (eds.)

    1991-05-28

    Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

  6. Catalysts for coal liquefaction processes

    DOE Patents [OSTI]

    Garg, D.

    1986-10-14

    Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

  7. Coal conversion. 1979 technical report

    SciTech Connect (OSTI)

    1980-09-01

    Individual reports are made on research programs which are being conducted by various organizations and institutions for the commercial development of processes for converting coal into products that substitute for these derived from oil and natural gas. Gasification, liquefaction, and demonstration processes and plants are covered. (DLC)

  8. Coke from coal and petroleum

    DOE Patents [OSTI]

    Wynne, Jr., Francis E.; Lopez, Jaime; Zaborowsky, Edward J.

    1981-01-01

    A carbonaceous coke is manufactured by the delayed coking of a slurry mixture of from about 10 to about 30 weight percent of caking or non-caking coal and the remainder a petroleum resid blended at below 50.degree. C.

  9. Two-stage coal liquefaction

    SciTech Connect (OSTI)

    Farcasiu, M.; Mitchell, T.O.; Whitehurst, D.D.

    1982-08-31

    Two-stage coal liquefaction is improved by separating a light fraction from the first (dissolving) stage effluent, hydrogenating that fraction and reblending the hydrogenated light fraction with the material passed from the first stage to the second stage reactor operating at higher temperature than the first stage.

  10. Clean Coal Technology Demonstration Program

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy’s Clean Coal Technology Demonstration Program (1986-1993) laid the foundation for effective technologies now in use that have helped significantly lower emissions of sulfur dioxide (SO2), nitrogen oxides (NOx) and airborne particulates (PM10).

  11. Vehicle Technologies Office Merit Review 2014: Moving North Texas Forward by Addressing Alternative Fuel Barriers

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by North Central Texas Council of Governments at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  12. Coal: America's energy future. Volume I

    SciTech Connect (OSTI)

    2006-03-15

    Secretary of Energy Samuel W. Bodman requested the National Coal Council in April 2005 a report identifying the challenges and opportunities of more fully exploring the USA's domestic coal resources to meet the nations' future energy needs. This resultant report addresses the Secretary's request in the context of the President's focus, with eight findings and recommendations that would use technology to leverage the USA's extensive coal assets and reduce dependence on imported energy. Volume I outlines these findings and recommendations. Volume II provides technical data and case histories to support the findings and recommendations. Chapter headings of Volume I are: Coal-to-Liquids to Produce 2.6 MMbbl/d; Coal-to-Natural Gas to Produce 4.0 Tcf Per Year; Coal-to-Clean Electricity; Coal to Produce Ethanol; Coal-to-Hydrogen; Enhanced Oil and Gas (Coalbed Methane); Recovery as Carbon Management Strategies; Delineate U.S. Coal Reserves and Transportation Constraints as Part of an Effort to Maximize U.S. Coal Production; and Penn State Study, 'Economic Benefits of Coal Conversion Investments'.

  13. Mechanical properties of reconstituted Australian black coal

    SciTech Connect (OSTI)

    Jasinge, D.; Ranjith, P.G.; Choi, S.K.; Kodikara, J.; Arthur, M.; Li, H.

    2009-07-15

    Coal is usually highly heterogeneous. Great variation in properties can exist among samples obtained even at close proximity within the same seam or within the same core sample. This makes it difficult to establish a correlation between uniaxial compressive strength (UCS) and point load index for coal. To overcome this problem, a method for making reconstituted samples for laboratory tests was developed. Samples were made by compacting particles of crushed coal mixed with cement and water. These samples were allowed to cure for four days. UCS and point load tests were performed to measure the geomechanical properties of the reconstituted coal. After four days curing, the average UCS was found to be approximately 4 MPa. This technical note outlines some experimental results and correlations that were developed to predict the mechanical properties of the reconstituted black coal samples. By reconstituting the samples from crushed coal, it is hoped that the samples will retain the important mechanical and physicochemical properties of coal, including the swelling, fluid transport, and gas sorption properties of coal. The aim is to be able to produce samples that are homogeneous with properties that are highly reproducible, and the reconstituted coal samples can be used for a number of research areas related to coal, including the long-term safe storage of CO{sub 2} in coal seams.

  14. Characterization and supply of coal based fuels

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  15. central | OpenEI Community

    Open Energy Info (EERE)

    central Home OpenEI Community Central Description: The central OpenEI community for students, scientists, researchers, enthusiasts, analysts and developers. central OpenEI town...

  16. Michael North | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North collaborates with colleagues in the Global Security Sciences division. From right to left: Mike North, Pam Sydelko, Ignacio Martinez-Moyano, and Jessica Trail. Click image to enlarge. North collaborates with colleagues in the Global Security Sciences division. From right to left: Mike North, Pam Sydelko, Ignacio Martinez-Moyano, and Jessica Trail. Click image to enlarge. North maintains a healthy work-life balance by working out regularly at the Argonne Fitness Center. The gym is free,

  17. Comparison of large central and small decentralized power generation in India

    SciTech Connect (OSTI)

    1997-05-01

    This reports evaluates two options for providing reliable power to rural areas in India. The benefits and costs are compared for biomass based distributed generation (DG) systems versus a 1200-MW central grid coal-fired power plant. The biomass based DG systems are examined both as alternatives to grid extension and as supplements to central grid power. The benefits are divided into three categories: those associated with providing reliable power from any source, those associated specifically with biomass based DG technology, and benefits of a central grid coal plant. The report compares the estimated delivered costs of electricity from the DG systems to those of the central plant. The analysis includes estimates for a central grid coal plant and four potential DG system technologies: Stirling engines, direct-fired combustion turbines, fuel cells, and biomass integrated gasification combined cycles. The report also discusses issues affecting India`s rural electricity demand, including economic development, power reliability, and environmental concerns. The results of the costs of electricity comparison between the biomass DG systems and the coal-fired central grid station demonstrated that the DG technologies may be able to produce very competitively priced electricity by the start of the next century. The use of DG technology may provide a practical means of addressing many rural electricity issues that India will face in the future. Biomass DG technologies in particular offer unique advantages for the environment and for economic development that will make them especially attractive. 58 refs., 31 figs.

  18. Coal Gasification for Power Generation, 3. edition

    SciTech Connect (OSTI)

    2007-11-15

    The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

  19. Directory of coal production ownership, 1979

    SciTech Connect (OSTI)

    Thompson, B.

    1981-10-01

    Ownership patterns in the coal industry are highly complex. Many producers are diversified into other lines of activity. The pattern and extent of this diversification has varied through time. In the past, steel and nonferrous metals companies had major coal industry involvement. This is still true today. However, other types of enterprises have entered the industry de novo or through merger. Those of greatest significance in recent times have involved petroleum and particularly public utility companies. This report attempts to identify, as accurately as possible, production ownership patterns in the coal industry. The audience for this Directory is anyone who is interested in accurately tracing the ownership of coal companies to parent companies, or who is concerned about the structure of ownership in the US coal industry. This audience includes coal industry specialists, coal industry policy analysts, economists, financial analysts, and members of the investment community.

  20. Materials challenges in advanced coal conversion technologies

    SciTech Connect (OSTI)

    Powem, C.A.; Morreale, B.D.

    2008-04-15

    Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.