National Library of Energy BETA

Sample records for north american shale

  1. Honda: North American Manufacturing Facilities | Department of...

    Office of Environmental Management (EM)

    Honda: North American Manufacturing Facilities Honda: North American Manufacturing Facilities From October, 2008 Honda: North American Manufacturing Facilities More Documents &...

  2. ,"North Dakota Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North...

  3. CONSIDERING SHALE GAS EXTRACTION IN NORTH CAROLINA: LESSONS FROM OTHER

    E-Print Network [OSTI]

    Jackson, Robert B.

    257 CONSIDERING SHALE GAS EXTRACTION IN NORTH CAROLINA: LESSONS FROM OTHER STATES SARAH K. ADAIR Carolina Geological Survey (NCGS) announced the existence of shale gas underlying the Deep and Dan River and the state legislature began to consider policy changes that would be necessary to develop the shale gas

  4. NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL: Preliminary Disturbance...

    Energy Savers [EERE]

    Report More Documents & Publications North American Electric Reliability Council Power Outage Update North American Electric Reliability Council Outage Announcement Electric System...

  5. North Dakota Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4Barrels)(Dollars per ThousandShale

  6. North American Leaders Summit: Energy Deliverables | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    discussions at the North American Leaders Summit, to be held in Guadalajara, Mexico, on August 9-10, 2009. Building on the work of the North American Energy Working...

  7. Comments of North American Electric Reliability Corporation ...

    Office of Environmental Management (EM)

    RFI. North American Electric Reliability Corporation (NERC) More Documents & Publications City Utilities of Springfield Missouri Comments on Smart Grid RFI: Addressing Policy and...

  8. North American Renewables Registry (Multiple States)

    Broader source: Energy.gov [DOE]

    The North American Renewables Registry (NAR) provides a Web-based platform trusted to create, track, and manage renewable energy certificate (REC) origination for clean generation facilities and...

  9. North American Natural Gas Markets

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  10. North American SynchroPhasor Initiative (NASPI) Technical Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phasor Tools Visualization North American SynchroPhasor Initiative (NASPI) Technical Report - Phasor Tools Visualization This technical report was developed by the North American...

  11. Energy Secretary Moniz Will Host North American Energy Ministers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    highlight three key areas, including: 1) North American data collaboration, 2) Mexico's energy reform and its implications for the North American energy sector, and 3) creating a...

  12. North American Energy Ministers Take Further Action on Energy...

    Office of Environmental Management (EM)

    North American Energy Ministers Take Further Action on Energy Security and the Environment North American Energy Ministers Take Further Action on Energy Security and the...

  13. Energy Secretary Moniz Will Host North American Energy Ministers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    three key areas, including: 1) North American data collaboration, 2) Mexico's energy reform and its implications for the North American energy sector, and 3) creating a resilient...

  14. Ethanol Pathways in the 2050 North American Transportation Futures Study

    SciTech Connect (OSTI)

    2009-01-18

    A paper discussing the various ethanol pathways in the 2050 North American Transportation Futures Study

  15. The North American Free Trade Agreement: A Legal Analysis of Effects and Opportunities

    E-Print Network [OSTI]

    Steinberg, Richard

    1994-01-01

    Proposed North American Free Trade Agreement,' August 12,Proposed North American Free Trade Agreement," August 12,THE NORTH AMERICAN FREE TRADE AGREEMENT: A LEGAL ANALYSIS OF

  16. North American Market Challenges for Diesel Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Market Challenges for Diesel Engines North American Market Challenges for Diesel Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Gale Banks...

  17. Louisiana--North Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number(Million Barrels)Shale Production

  18. Louisiana--North Shale Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number(Million Barrels)Shale

  19. North American Free Trade and U.S. Agriculture 

    E-Print Network [OSTI]

    Rosson, C. Parr; Benson, Geoffrey A.; Moulton, Kirby S.; Sanders, Larry D.

    1999-06-23

    -term view of U.S.-Mexico trade and the implications of the North American Free Trade Agreement (NAFTA)....

  20. North American LNG Project Sourcebook

    SciTech Connect (OSTI)

    2007-06-15

    The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.

  1. North American Cross-Border

    E-Print Network [OSTI]

    Consumption in USA and Canada 21 Figure 8: Electricity Export as a Fraction of Domestic Consumption in USANorth American Cross-Border Electricity Trade Ian M. Loomis Virginia Center for Coal and Energy ii List of Tables ii List of Figures 1 EXECUTIVE SUMMARY 2 INTRODUCTION 5 ELECTRICITY GENERATION

  2. Fourth North American Symposium on Assessing the Environmental

    E-Print Network [OSTI]

    American Free Trade Agreement (NAFTA) addresses crossborder trade in services such as commercial truckingFourth North American Symposium on Assessing the Environmental Effects of Trade Phoenix / 23 April 08 R E S E A R C H P A P E R Environmental Implications of Trade Liberalization on North American

  3. Bootstrapping a Sustainable North American PEM Fuel Cell Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry: Could a Federal Acquisition Program Make a Difference? The North American Proton Exchange Membrane (PEM) fuel cell industry may be at a critical juncture. A...

  4. North American Standard Level VI Inspection Program Update: Ensuring...

    Office of Environmental Management (EM)

    Ensuring Safe Transportation of Radioactive Material Presentation made by Carlisle Smith for the NTSF annual meeting held from May 14-16, 2013 in Buffalo, NY North American...

  5. North American Energy Ministers Take Further Action on Energy...

    Energy Savers [EERE]

    23, 2007 - 2:55pm Addthis Joint Communiqu VICTORIA - Energy ministers for Canada, Mexico and the United States took another step toward enhancing North American energy...

  6. Frequency Control Concerns in the North American Electric Power...

    Office of Scientific and Technical Information (OSTI)

    Control Concerns in the North American Electric Power System Kirby, B.J. 24 POWER TRANSMISSION AND DISTRIBUTION; EFFICIENCY; FREQUENCY CONTROL; MARKET; PERFORMANCE; POWER...

  7. Competition and Reliability in North American Energy Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in North American Energy Markets: Issue Paper Synopses More Documents & Publications Blackout 2003: Summary of Comments from Forum and Email The Relationship between Competitive...

  8. A Partial Mechanistic Understanding of the North American Monsoon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North American monsoon (NAM) supplies about 60% to 80%, 45%, and 35% of the annual precipitation for northwestern Mexico, New Mexico, and Arizona, respectively. An understanding...

  9. North American Industry Classification System (NAICS) Search Tool

    Broader source: Energy.gov [DOE]

    The North American Industry Classification System (NAICS) is the standard used by Federal statistical agencies in classifying business establishments for the purpose of collecting, analyzing, and...

  10. North American Natural Gas Markets. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  11. Density-dependent diversification in North American wood warblers

    E-Print Network [OSTI]

    Rabosky, Daniel L.

    Density-dependent diversification in North American wood warblers Daniel L. Rabosky1,2,* and Irby J Cornell Laboratory of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA Evidence from both diversification, and we demonstrate this approach using a new phylogeny of North American Dendroica wood warblers

  12. Precise inversion of logged slownesses for elastic parameters in a gas shale formation

    E-Print Network [OSTI]

    Miller, Douglas E.

    Dipole sonic log data recorded in a vertical pilot well and the associated production well are analyzed over a 200×1100-ft section of a North American gas shale formation. The combination of these two wells enables angular ...

  13. 2005 the North American Solar Challenge

    SciTech Connect (OSTI)

    Dan Eberle

    2008-12-22

    In July 2005 the North American Solar Challenge (NASC) featured university built solar powered cars ran across the United States into Canada. The competition began in Austin, Texas with stops in Weatherford, Texas; Broken Arrow, Oklahoma; Topeka, Kansas; Omaha, Nebraska; Sioux Falls, South Dakota, Fargo, North Dakota; Winnipeg, Manitoba; Brandon, Manitoba; Regina, Saskatchewan; Medicine Hat, Alberta; mainly following U.S. Highway 75 and Canadian Highway 1 to the finish line in Calgary, Alberta, Canada, for a total distance of 2,500 miles. NASC major sponsors include the U.S. Department of Energy (DOE), Natural Resources Canada and DOEs National Renewable Energy Laboratory. The event is designed to inspire young people to pursue careers in science and engineering. NASCs predecessors, the American Solar Challenge and Sunrayce, generally have been held every two years since 1990. With each race, the solar cars travel faster and further with greater reliability. The NASC promotes: -Renewable energy technologies (specifically photovoltaic or solar cells) -Educational excellence in science, engineering and mathematics -Creative integration of technical and scientific expertise across a wide-range of disciplines -Hands-on experience for students and engineers to develop and demonstrate their technical and creative abilities. Safety is the first priority for the NASC. Each team put its car through grueling qualifying and technical inspections. Teams that failed to meet the requirements were not allowed participate. During the race, each team was escorted by lead and chase vehicles sporting rooftop hazard flashers. An official observer accompanied each solar car team to keep it alert to any safety issues.

  14. Weather, construction inflation could squeeze North American pipelines

    SciTech Connect (OSTI)

    True, W.R.

    1998-08-31

    Major North American interstate and interprovincial pipeline companies appear headed for a squeeze near-term: 1997 earnings from operations were down for the second straight year even as the companies expected new construction to begin this year or later to cost more. The effects of warmer-than-normal weather during 1997 in North America made a showing in annual reports filed by US regulated interstate oil and gas pipeline companies with the US Federal Energy Regulatory Commission (FERC). This paper contains data on the following: pipeline revenues, incomes--1997; North American pipeline costs; North American pipeline costs (estimated vs. actual); North American compressor construction costs; US compressor costs (estimated vs. actual); US interstate mileage; investment in liquids pipelines; 10 years of land construction costs; top 10 interstate liquids lines; top 10 interstate gas lines; liquids pipeline companies; and gas pipeline companies.

  15. Sixth North American Offshore Wind Development and Finance Summit

    Broader source: Energy.gov [DOE]

    Join leading offshore wind developers, Federal and State policy-makers, U.S. and European banks and investors and other key stakeholders at the 6th North American Offshore Wind Development &...

  16. North American Energy Ministers Establish a Working Group on...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Establish a Working Group on Climate Change and Energy North American Energy Ministers Establish a Working Group on Climate Change and Energy May 25, 2015 - 2:25pm Addthis NEWS...

  17. High-Energy, Low-Frequency Risk to the North American Bulk Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Energy, Low-Frequency Risk to the North American Bulk Power System (June 2010) High-Energy, Low-Frequency Risk to the North American Bulk Power System (June 2010) A...

  18. Sexual size dimorphism and phylogeny in North American minnows

    E-Print Network [OSTI]

    Pyron, Mark

    often sexually size dimorphic than birds with nonlekking mating systems (Oakes, 1992). In snakes (ShineSexual size dimorphism and phylogeny in North American minnows MARK PYRON University of Oklahoma 1995 Sexual size dimorphism (SSD) is predicted to vary across mating systems. A previous study examined

  19. Bibliography of the paleontology and paleoecology of the Devonian-Mississippian black-shale sequence in North America

    SciTech Connect (OSTI)

    Barron, L.S.; Ettensohn, F.R.

    1980-06-01

    The Devonian-Mississippian black-shale sequence is one of the most prominent and well-known stratigraphic horizons in the Paleozoic of the United States, yet the paleontology and its paleoecologic and paleoenvironmental implications are poorly known. This is in larger part related to the scarcity of fossils preserved in the shale - in terms of both diversity and abundance. Nonetheless, that biota which is preserved is well-known and much described, but there is little synthesis of this data. The first step in such a synthesis is the compilation of an inclusive bibliography such as this one. This bibliography contains 1193 entries covering all the major works dealing with Devonian-Mississippian black-shale paleontology and paleoecology in North America. Articles dealing with areas of peripheral interest, such as paleogeography, paleoclimatology, ocean circulation and chemistry, and modern analogues, are also cited. In the index, the various genera, taxonomic groups, and other general topics are cross-referenced to the cited articles. It is hoped that this compilation will aid in the synthesis of paleontologic and paleoecologic data toward a better understanding of these unique rocks and their role as a source of energy.

  20. The North American Forest Sector Outlook Study

    E-Print Network [OSTI]

    to consumption patterns for wood products and bioenergy. Markets for wood products, which mainly are destined in the forest sector of North America 21 3.1 Forest inventory 21 3.2 Aggregate production, consumption, Canada, carbon sequestration, climate change, consumption, demand, econometric, EFSOS, export, fellings

  1. Annabella: a North American coasting vessel 

    E-Print Network [OSTI]

    Claesson, Stefan Hans

    1998-01-01

    schooner in 1841. 53 26 Map of southern New Jersey. 60 27 28 Section lines of the preserved remains of Annabella. . . . . Lines of a Milford, Delaware vessel. . . . . . . . . . . . . . . . . . . 66 FIGURE Page 29 A billet head of a 19th... enrolment records. . 54 Measurements of Milford, Delaware-built sloops in comparison to Annabella, 69 Timber dimensions required for construction of 100 ton vessel by American Shipmaster's Association in 1882 compared to timber dimensions of Annabella...

  2. 2012 by the American Academy of Arts & Sciences Is Shale Gas Good for Climate Change?

    E-Print Network [OSTI]

    Schrag, Daniel

    - ography, energy technology, and energy policy. Over the last ten years, technological innovation has transformed U.S. energy resources. Geologists have long known that organic-rich shales contain large fracturing ("fracking") techniques that greatly increase the permeability of the shale, vast reserves

  3. The Central American cold surge: an observational analysis of the deep southward penetration of North American cold fronts 

    E-Print Network [OSTI]

    Reding, Philip John

    1992-01-01

    THE CENTRAL AMERICAN COLD SURGE: AN OBSERVATIONAL ANALYSIS OF THE DEEP SOUTHWARD PENETRATION OF NORTH AMERICAN COLD FRONTS A Thesis by PHILIP JOHN REDING Submitted to the Office of Graduate Studies of Texas A &M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject: Meteorology THE CENTRAL AMERICAN COLD SURGE: AN OBSERVATIONAL ANALYSIS OF THE DEEP SOUTHWARD PENETRATION OF NORTH AMERICAN COLD FRONTS A Thesis by PHILIP...

  4. North American Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: EnergyNongqishi Electric PowerHandelsPowerNorth

  5. The North American Market For Renewable Energy Certificates, 6. edition

    SciTech Connect (OSTI)

    2007-10-15

    The report provides a study of the Renewable Energy Certificate (REC) market and takes a comprehensive look at what RECs are, how they work, the role they can play in spurring renewable energy development, the different models for implementing RECs, current offerings of REC suppliers, and customer purchases of RECs. Topics covered include: an overview of green power; definition of what RECs are and how they work; discussion of the history of RECs and their uses; explanation of the benefits of RECs and the challenges they face; discussion of how RECs interact with Renewable Portfolio Standards; discussion of the REC certification process; overview of the current market for RECs in the U.S.; profiles of major North American REC tracking systems; and, profiles of 40 key North American REC market participants.

  6. Antidotes To Regionalism: Responses to Trade Diversion Effects of the North American Free Trade Agreement

    E-Print Network [OSTI]

    Steinberg, Richard H.

    1993-01-01

    clients. Nonh American Free Trade Agreement. Dec 17. 1992.tlie Noith Aineikan Free Trade Agreement until line UnitedOF THi NORTH AMERICAN* FREE-TRADE AGREEMENT. U S I T C

  7. Relationship between the structure of root systems and resource use for 11 North American grassland plants

    E-Print Network [OSTI]

    Thomas, David D.

    Abstract Eleven Midwest North American grassland plant species differed in their construction, production and vegetation types (Waterman 1919). Severe droughts during the 1930's in North America led Weaver to initiate

  8. Vehicle Technologies Office Merit Review 2014: North American Power Electronics Supply Chain Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American power...

  9. Joint DOE/NRCan Study of North American Transportation Energy Futures: Phase 2 Results

    SciTech Connect (OSTI)

    None

    2009-01-18

    Joint DOE/NRCan Study of North American Transportation Energy Futures: Discussion of the Study, Presentation of Phase 2 Results - April 30, 2003

  10. ,"North Dakota Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheetShale

  11. Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas q

    E-Print Network [OSTI]

    Jackson, Robert B.

    Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale of unconventional natural gas reservoirs such as impermeable shale basins through the use of horizontal drilling effects; the possible degradation of water quality in shallow aquifers over- lying producing shale

  12. Spread of North American wind-dispersed trees in future environments

    E-Print Network [OSTI]

    He, Yanping

    LETTER Spread of North American wind-dispersed trees in future environments Ran Nathan,1 * Nir a formidable challenge to be confronted. We modelled the spread of North American wind- dispersed trees species, predicted wind-driven spread will match future climate changes, conditioned on seed abscission

  13. The 2003 North American electrical blackout: An accidental experiment in atmospheric chemistry

    E-Print Network [OSTI]

    Stehr, Jeffrey

    The 2003 North American electrical blackout: An accidental experiment in atmospheric chemistry 2004; published 15 July 2004. [1] The August 2003 North American electrical blackout provided a unique observations over central Pennsylvania on August 15, 2003, $24 h into the blackout, revealed large reductions

  14. ESTIMATING TEXAS-MEXICO NORTH AMERICAN FREE TRADE AGREEMENT TRUCK VOLUMES

    E-Print Network [OSTI]

    ESTIMATING TEXAS-MEXICO NORTH AMERICAN FREE TRADE AGREEMENT TRUCK VOLUMES Paper Number: 01 San Antonio, Texas 78249 Tel (210) 458-5384 FAX (210) 458-5783 ABSTRACT North American Free Trade Free Trade Agreement (NAFTA) truck traffic along that corridor segment. Yet the accurate measurement

  15. Scale dependence of native and alien species richness in North American floras

    E-Print Network [OSTI]

    Palmer, Michael W.

    Scale dependence of native and alien species richness in North American floras Vliv mítka studia na of native and alien species richness in North American flo- ras. ­ Preslia 78: 427­436. I analyzed data from and alien diversity vary as a function of spatial grain. Moving window multi- ple regression revealed

  16. North American Natural Gas Markets: Selected technical studies

    SciTech Connect (OSTI)

    Huntington, H.G.; Schuler, G.E.

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  17. North American Natural Gas Markets: Selected technical studies. Volume 3

    SciTech Connect (OSTI)

    Huntington, H.G.; Schuler, G.E.

    1989-04-01

    The Energy Modeling Forum (EMF) was established in 1976 at Stanford University to provide a structural framework within which energy experts, analysts, and policymakers could meet to improve their understanding of critical energy problems. The ninth EMF study, North American Natural Gas Markets, was conducted by a working group comprised of leading natural gas analysts and decision-makers from government, private companies, universities, and research and consulting organizations. The EMF 9 working group met five times from October 1986 through June 1988 to discuss key issues and analyze natural gas markets. This third volume includes technical papers that support many of the conclusions discussed in the EMF 9 summary report (Volume 1) and full working group report (Volume 2). These papers discuss the results from the individual models as well as some nonmodeling analysis related to US natural gas imports and industrial natural gas demand. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  18. The Geology of North America as Illustrated by Native American Stories by Robert G. McWilliams 1 The Geology of North America as

    E-Print Network [OSTI]

    Lee Jr., Richard E.

    The Geology of North America as Illustrated by Native American Stories by Robert G. McWilliams 1 The Geology of North America as Illustrated by Native American Stories Robert G. McWilliams Professor Emeritus Department of Geology Miami University Oxford, Ohio 45056 mcwillrg@muohio.edu #12;The Geology of North

  19. Eos, Vol. 88, No. 24, 12 June 2007 The U.S. North American Carbon Program

    E-Print Network [OSTI]

    Michalak, Anna M.

    to support modeling and analysis; identification of study regions that are critical for reducing uncertainties in the North American carbon balance; and integrating biophysical science with the human studies have spanned terres- trial, atmospheric, and ocean reservoirs and disciplinary boundaries

  20. Distribution and drivers of ectomycorrhizal fungal communities across the North American Arctic

    E-Print Network [OSTI]

    Taylor, Lee

    of the North American Arctic. We collected roots from two principal arctic ectomycorrhizal host plants, Salix, and Pyronemataceae. Both host plants showed similar species richness, with 176 OTUs on Salix arctica and 154 OTUs

  1. State of Play: How National and International Renewable Energy Policies are Impacting North American Biomass Inventories

    Broader source: Energy.gov [DOE]

    Breakout Session 1A: Biomass Feedstocks for the Bioeconomy State of Play: How National and International Renewable Energy Policies are Impacting North American Biomass Inventories Tim Portz, Executive Editor, Biomass Magazine

  2. Wilson cycles, tectonic inheritance, and rifting of the North American Gulf of Mexico continental margin

    E-Print Network [OSTI]

    Huerta, Audrey D.

    Wilson cycles, tectonic inheritance, and rifting of the North American Gulf of Mexico continental, Fort Collins, Colorado 80523, USA ABSTRACT The tectonic evolution of the North Amer- ican Gulf of Mexico margin, including the Interior Salt Basin, outboard unextended Wiggins arch, and an unusually

  3. Comment submitted by the North American Association of Food Equipment Manufacturers (NAFEM) regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by the North American Association of Food Equipment Manufacturers (NAFEM) regarding the Energy Star Verification Testing Program

  4. Vehicle Technologies Office Merit Review 2015: North American Electric Traction Drive Supply Chain Analysis: Focus on Motors

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Synthesis Partners at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American electric...

  5. North American Shale Gas | OSTI, US Dept of Energy, Office of Scientific

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFromJune 2013TECNGEE299Nevada- Thein

  6. Macrurous Decapods from the Bearpaw Shale (Cretaceous: Campanian) of Northeastern Montana

    E-Print Network [OSTI]

    Kammer, Thomas

    Macrurous Decapods from the Bearpaw Shale (Cretaceous: Campanian) of Northeastern Montana Rodney M THE BEARPAW SHALE (CRETACEOUS: CAMPANIAN) OF NORTHEASTERN MONTANA RODNEY M. FELDMANN, GALE A. BISHOP Shale of north- eastern Montana were studied to characterize the occurrence, preservation

  7. Production of Shale Oil 

    E-Print Network [OSTI]

    Loper, R. D.

    1982-01-01

    part of 40% share up to a maximum of $1.1 billion. North of these two projects are the two prot Federal lease projects in Colorado -- the we most operated by the Rio Blanco Shale Oil Co a limited partnership between Amoco and Gulf Their early...

  8. Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the southern Great Plains

    E-Print Network [OSTI]

    Robock, Alan

    in downward solar radiation and a low bias in downward longwave radiation exist in the retrospective forcingValidation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over is a critical component of the North American Land Data Assimilation System (NLDAS) and its quality crucially

  9. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Evaluation of Waterless Human Waste Management Systems at North American Public Remote Sites

    E-Print Network [OSTI]

    of Waterless Human Waste Management Systems at North American Public Remote Sites GEOG 699 September 16, 2013; An Evaluation of Waterless Human Waste Management Systems at North American Public Remote Sites by GEOFFREY

  10. Research paper Full field reservoir modeling of shale assets using advanced

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    . The success in pro- duction of shale oil and shale gas dates back to 1981 when multiple combinations-water" frac that made production from Barnett Shale economical and changed the future of the US natural gas and pad drilling are the norm in developing shale oil and shale gas assets in North America and expanding

  11. Snow process modeling in the North American Land Data Assimilation System (NLDAS)

    E-Print Network [OSTI]

    Robock, Alan

    Snow process modeling in the North American Land Data Assimilation System (NLDAS): 1. Evaluation of model-simulated snow cover extent Justin Sheffield,1 Ming Pan,1 Eric F. Wood,1 Kenneth E. Mitchell,2) and consists of two parts: (1) assessment of land surface model simulations of snow cover extent and (2

  12. Reddish Egret Extends its Breeding Range along the North American Atlantic Coast into South Carolina

    E-Print Network [OSTI]

    Jodice, Patrick

    525 Reddish Egret Extends its Breeding Range along the North American Atlantic Coast into South Carolina LISA M. FERGUSON 1 , PATRICK G.R. JODICE 2 , WILLIAM POST 3 AND FELICIA I. SANDERS 4 1 Department USGS-South Carolina Cooperative Fish & Wildlife Research Unit, Clemson University, Clemson, SC 29634

  13. Quaternary Science Reviews 25 (2006) 659688 A calibrated deglacial drainage chronology for the North American

    E-Print Network [OSTI]

    Peltier, W. Richard

    2006-01-01

    for the North American continent: evidence of an Arctic trigger for the Younger Dryas Lev TarasovÃ, W.R. Peltier@atmosp.physics.utoronto.ca (L. Tarasov), peltier@atmosp.physics.utoronto.ca (W.R. Peltier). #12;(THC) (Keigwin et al., 1991

  14. Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from

    E-Print Network [OSTI]

    Palmer, Paul

    by formaldehyde column measurements from space Dorian S. Abbot,1 Paul I. Palmer,1 Randall V. Martin,2 Kelly V June 2003; published 5 September 2003. [1] Formaldehyde (HCHO) columns measured from space by solar UV of North American isoprene emissions as determined by formaldehyde column measurements from space, Geophys

  15. North American Electricity Infrastructure: System Security, Quality, Reliability, Availability, and Efficiency

    E-Print Network [OSTI]

    Amin, S. Massoud

    1 North American Electricity Infrastructure: System Security, Quality, Reliability, Availability for reliable and disturbance-free electricity. The massive power outages in the United States, Canada, UK and Italy in 2003 underscored electricity infrastructure's vulnerabilities [1-11]. This vital yet complex

  16. Proceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference

    E-Print Network [OSTI]

    Columbia University

    , wood, glass, metals and food waste. During combustion, nearly all of the chlorine content1 Proceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference May 19-21, 2008 of commercial tubing in Waste-to-Energy (WTE) boilers, a corrosion test was made by altering the HCl

  17. Paleogene landscape evolution of the central North American Cordillera: Developing topography and hydrology in the Laramide foreland

    E-Print Network [OSTI]

    Davis, SJ; Mulch, A; Carroll, AR; Horton, TW; Chamberlain, CP

    2009-01-01

    Microfossils of the Oil Shale of the Green River Formationded limestone, marl, oil shale (kerogen-rich and ? ssiledelineated by the rich oil shales of the Mahogany Zone (

  18. The sensitivity of CO and aerosol transport to the temporal and vertical distribution of North American boreal fire emissions

    E-Print Network [OSTI]

    2009-01-01

    of smoke from Cana- dian forest fires to the surface nearchange on Canadian forest fires, Geophys. Res. Lett. , 31,to North American boreal forest fires during summer 2004, J.

  19. Abstract--Policy surrounding the North American transmission grid, particularly in the wake of electric-industry

    E-Print Network [OSTI]

    Blumsack, Seth

    1 Abstract--Policy surrounding the North American transmission grid, particularly in the wake of electric-industry restructuring and following the blackout of August, 2003, has treated network congestion, Wheatstone network, merchant transmission, available transfer capability, reliability, congestion

  20. The North American SynchroPhasor Initiative (NASPI) is a collaboration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState of Pennsylvania U.S.The6, 2015Need forNorth American

  1. Academic Genealogy of Malgorzata Peszynska The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society

    E-Print Network [OSTI]

    Peszynska, Malgorzata

    Academic Genealogy of Malgorzata Peszynska The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society http://www.genealogy

  2. Kokes Awards for the 23rd North American Catalysis Society Meeting

    SciTech Connect (OSTI)

    Jacobs, Gary

    2014-01-31

    The Tri-State Catalysis Society awarded 107 Kokes Travel Awards. The program was very successful and to date this was the most Kokes Travel Awards ever awarded at a North American Catalysis Society Meeting. It provided students who merited an award the opportunity to attend the meeting, present a paper in the form of either an oral presentation or a poster presentation, and to serve the North American Catalysis Society by participating in the organization of the meeting. Students worked very hard during the week of the meeting to make it a success. Financial support for the Kokes awards was provided by DOE, NSF, NACS, as well as the Tri-State Catalysis Society, the latter through fund raising activities, and other donations. AT the meeting, each student received over $1050 in kind to offset the costs of registration fees ($260), hotel accommodations ($295.7), transportation ($400 travel allowance), as well as T-shirts ($20), and banquet tickets ($95 provided by donations from society members). In addition, for the first time, students received certificates that were signed by the President of NACS, Professor Enrique Iglesia, and by the Kokes Awards Chair, Gary Jacobs (see last page). A list of meeting co-chairs (i.e., Uschi M. Graham, Umit S. Ozkan, and Madan Bhassin) and the honorary chair (Burtron H. Davis) was also included on the certificate, along with the name of the recipient. The awardees were chosen on a merit-based guideline which also included the requirements of having a presentation accepted at the meeting and being a student at a North American University. The Richard J. Kokes Student Travel Award Committee (Gary Jacobs, Rodney Andrews, and Peter Smirniotis) with help from the Organizing Committee were able to secure money from four sources as detailed in Table 1. As detailed by our Treasurer, Dr. Helge Toufar of Clariant, the total amount spent was $105,000.

  3. The North American Operations Research Societies Each of the operations research societies that exist in North America has similar goals. The

    E-Print Network [OSTI]

    Hoffman, Karla

    The North American Operations Research Societies Each of the operations research societies of knowledge, interest and education in operations research by providing mechanisms for the exchange as the International Federation of Operations Research (IFORS) (see http://www.ifors.org). IFORS is divided

  4. Retrospective North American CFL Experience Curve Analysis and Correlation to Deployment Programs

    Broader source: Energy.gov [DOE]

    This work documents our development of an analysis approach for deriving retrospective experience curves with a variable learning rate, and its application to develop an experience curve for compact fluorescent lamps for the global and North American markets over the years 1990-2007. Uncertainties and assumptions involved in interpreting data for our experience curve development are discussed, including the processing and transformation of empirical data, the selection of system boundaries, and the identification of historical changes in the learning rate over the course of 15 years.

  5. The Effects of Fracture Orientation and Anisotropy on Hydraulic Fracture Conductivity in the Marcellus Shale 

    E-Print Network [OSTI]

    McGinley, Mark John

    2015-05-12

    horizontal and vertical orientations. The Marcellus shale, located primarily in Pennsylvania, Ohio, West Virginia, New York, and Maryland, is the largest gas-bearing shale formation in North America, and its development has significant implications...

  6. Reply to comment by D. A. Hansen et al. on ``The 2003 North American electrical blackout: An accidental experiment in atmospheric

    E-Print Network [OSTI]

    Stehr, Jeffrey

    Reply to comment by D. A. Hansen et al. on ``The 2003 North American electrical blackout), Reply to comment by D. A. Hansen et al. on ``The 2003 North American electrical blackout: An accidental blackout: An accidental experiment in atmospheric chemistry'' and ap- preciate the opportunity to expand

  7. Lake and Reservoir Management 24:381-391, 2008 Copyright by the North American Lake Management Society 2008

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    carbon (DOC) in drinking-water reservoirs is an important manage- ment issue because DOC may form, dissolved organic carbon, fluorescence, multivariate analysis, sediment flux, Sweetwater Reservoir, water381 Lake and Reservoir Management 24:381-391, 2008 © Copyright by the North American Lake

  8. Lake and Reservoir Management 21(1):24-29, 2005 Copyright by the North American Lake Management Society 2005

    E-Print Network [OSTI]

    24 Lake and Reservoir Management 21(1):24-29, 2005 © Copyright by the North American Lake Management Society 2005 Influences of Lake Level Changes on Reservoir Water Clarity in Allatoona Lake of lake level changes on reservoir water clarity in Allatoona Lake, Georgia. Lake and Reserv. Manage. Vol

  9. Copyright 2009 by ASME Proceedings of the 17th Annual North American Waste-to-Energy Conference

    E-Print Network [OSTI]

    Columbia University

    , New York, NY 10027 ABSTRACT The dominant waste-to-energy technology is combustion of "asCopyright © 2009 by ASME Proceedings of the 17th Annual North American Waste-to-Energy Conference and environmentally benign disposal of MSW, with energy recovery being a secondary consideration. There have been

  10. North American influence on tropospheric ozone and the effects of recent emission reductions: Constraints from ICARTT observations

    E-Print Network [OSTI]

    Goldstein, Allen

    s, possibly reflecting the decrease in the NOx/CO emission ratio as well as an increase in the ozone production efficiency per unit NOx. North American NOx emissions during summer 2004 as constrained organic compounds (NMVOCs) in the presence of nitrogen oxides (NOx = NO + NO2). Anthropogenic emissions

  11. J. N. Am. Benthol. Soc., 2005, 24(4):769783 2005 by The North American Benthological Society

    E-Print Network [OSTI]

    Lewis Jr., William M.

    769 J. N. Am. Benthol. Soc., 2005, 24(4):769­783 2005 by The North American Benthological Society@cires.colorado.edu 5 fns@sas.upenn.edu ing rapid growth of herbivores throughout the year could increase the influence

  12. 16th North American Waste to Energy Conference-May 2008 CO2 Enhanced Steam Gasification of Biomass Fuels

    E-Print Network [OSTI]

    Columbia University

    16th North American Waste to Energy Conference-May 2008 CO2 Enhanced Steam Gasification of Biomass of the decomposition of various biomass feedstocks and their conversion to gaseous fuels such as hydrogen. The steam temperatures: above 500o C for the herbaceous and non-wood samples and above 650o C for the wood biomass fuels

  13. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Turner, A. J.; Jacob, D. J.; Wecht, K. J.; Maasakkers, J. D.; Lundgren, E.; Andrews, A. E.; Biraud, S. C.; Boesch, H.; Bowman, K. W.; Deutscher, N. M.; et al

    2015-06-30

    We use 2009–2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to estimate global and North American methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. GEOS-Chem and GOSAT data are first evaluated with atmospheric methane observations from surface and tower networks (NOAA/ESRL, TCCON) and aircraft (NOAA/ESRL, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. Our global adjoint-based inversion yields a totalmore »methane source of 539 Tg a?1 with some important regional corrections to the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide error characterization. We infer a US anthropogenic methane source of 40.2–42.7 Tg a-1, as compared to 24.9–27.0 Tg a-1 in the EDGAR and EPA bottom-up inventories, and 30.0–44.5 Tg a-1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the southern–central US, the Central Valley of California, and Florida wetlands; large isolated point sources such as the US Four Corners also contribute. Using prior information on source locations, we attribute 29–44 % of US anthropogenic methane emissions to livestock, 22–31 % to oil/gas, 20 % to landfills/wastewater, and 11–15 % to coal. Wetlands contribute an additional 9.0–10.1 Tg a-1.« less

  14. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Turner, A. J.; Jacob, D. J.; Wecht, K. J.; Maasakkers, J. D.; Lundgren, E.; Andrews, A. E.; Biraud, S. C.; Boesch, H.; Bowman, K. W.; Deutscher, N. M.; et al

    2015-06-30

    We use 2009–2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to estimate global and North American methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. GEOS-Chem and GOSAT data are first evaluated with atmospheric methane observations from surface and tower networks (NOAA/ESRL, TCCON) and aircraft (NOAA/ESRL, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. Our global adjoint-based inversion yields a totalmore »methane source of 539 Tg a?1 with some important regional corrections to the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide error characterization. We infer a US anthropogenic methane source of 40.2–42.7 Tg a?1, as compared to 24.9–27.0 Tg a?1 in the EDGAR and EPA bottom-up inventories, and 30.0–44.5 Tg a?1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the southern–central US, the Central Valley of California, and Florida wetlands; large isolated point sources such as the US Four Corners also contribute. Using prior information on source locations, we attribute 29–44 % of US anthropogenic methane emissions to livestock, 22–31 % to oil/gas, 20 % to landfills/wastewater, and 11–15 % to coal. Wetlands contribute an additional 9.0–10.1 Tg a?1.« less

  15. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Turner, A. J.; Jacob, D. J.; Wecht, K. J.; Maasakkers, J. D.; Biraud, S. C.; Boesch, H.; Bowman, K. W.; Deutscher, N. M.; Dubey, M. K.; Griffith, D. W. T.; et al

    2015-02-18

    We use 2009–2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to constrain global and North American inversions of methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. The GOSAT data are first evaluated with atmospheric methane observations from surface networks (NOAA, TCCON) and aircraft (NOAA/DOE, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. The surface and aircraft data are subsequently usedmore »for independent evaluation of the methane source inversions. Our global adjoint-based inversion yields a total methane source of 539 Tg a?1 and points to a large East Asian overestimate in the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide full error characterization. We infer a US anthropogenic methane source of 40.2–42.7 Tg a?1, as compared to 24.9–27.0 Tg a?1 in the EDGAR and EPA bottom-up inventories, and 30.0–44.5 Tg a?1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the South-Central US, the Central Valley of California, and Florida wetlands, large isolated point sources such as the US Four Corners also contribute. We attribute 29–44% of US anthropogenic methane emissions to livestock, 22–31% to oil/gas, 20% to landfills/waste water, and 11–15% to coal with an additional 9.0–10.1 Tg a?1 source from wetlands.« less

  16. Kokes Awards for the 22nd North American Catalysis Society Meeting, June 5-10, 2011

    SciTech Connect (OSTI)

    Fabio H. Ribeiro

    2011-06-05

    The biennial North American Catalysis Society (NACS) Meetings are the premiere conferences in the area of catalysis, surface science, and reaction engineering. The 22nd meeting will be held the week of June 5-10, 2011 in Detroit, Michigan. The objective of the Meetings is to bring together leading researchers for intensive scientific exchange and interactions. Financial support that offsets some of the associated costs (specifically, registration fee, airline tickets, and hotel accommodations) would encourage graduate students, and for the first time undergraduate students, to attend and participate meaningfully in this conference. The funds sought in this proposal will help support the Richard J. Kokes Travel Award program. Graduate students eligible for these merit-based Awards are those who study at a North American university and who will present at the Meeting. We have currently 209 applications and we expect to be able to fund about half of them. The NACS has traditionally sought to encourage graduate student, and this year for the first time undergraduate studies, participation at the National Meetings and providing financial support is the most effective means to do so. Their attendance would contribute significantly to their scientific training and communication and presentation skills. They would be exposed to the leading researchers from the US and abroad; they would meet their peers from other universities; they would learn about cutting-edge results that could benefit their research projects; and they may become interested in becoming active participants in the catalysis community. These young investigators represent the next generation of scientists and engineers, and their proper training will lead to future scientific breakthroughs and technological innovations that benefit the US economy. Advances in catalysis can come in the form of more energy-efficient and environmentally-friendly chemical processes, improved fuel cell performance, efficient hydrogen production, and a cleaner environment.

  17. PTF10nvg: AN OUTBURSTING CLASS I PROTOSTAR IN THE PELICAN/NORTH AMERICAN NEBULA

    SciTech Connect (OSTI)

    Covey, Kevin R.; Hillenbrand, Lynne A.; Kasliwal, Mansi M.; Ofek, Eran O.; Miller, Adam A.; Poznanski, Dovi; Cenko, S. Bradley; Silverman, Jeffrey M.; Bloom, Joshua S.; Butler, Nathaniel R.; Filippenko, Alexei V.; Fischer, William; Rayner, John; Rebull, Luisa M.; Law, Nicholas M.; Agueeros, Marcel; Dekany, Richard G.; Rahmer, Gustavo; Hale, David; Smith, Roger

    2011-02-15

    During a synoptic survey of the North American Nebula region, the Palomar Transient Factory (PTF) detected an optical outburst (dubbed PTF10nvg) associated with the previously unstudied flat or rising spectrum infrared source IRAS 20496+4354. The PTF R-band light curve reveals that PTF10nvg brightened by more than 5 mag during the current outburst, rising to a peak magnitude of R{sub PTF} {approx} 13.5 in 2010 September. Follow-up observations indicate that PTF10nvg has undergone a similar {approx}5 mag brightening in the K band and possesses a rich emission-line spectrum, including numerous lines commonly assumed to trace mass accretion and outflows. Many of these lines are blueshifted by {approx}175 km s{sup -1} from the North American Nebula's rest velocity, suggesting that PTF10nvg is driving an outflow. Optical spectra of PTF10nvg show several TiO/VO band heads fully in emission, indicating the presence of an unusual amount of dense (>10{sup 10} cm{sup -3}), warm (1500-4000 K) circumstellar material. Near-infrared spectra of PTF10nvg appear quite similar to a spectrum of McNeil's Nebula/V1647 Ori, a young star which has undergone several brightenings in recent decades, and 06297+1021W, a Class I protostar with a similarly reached near-infrared emission line spectrum. While further monitoring is required to fully understand this event, we conclude that the brightening of PTF10nvg is indicative of enhanced accretion and outflow in this Class-I-type protostellar object, similar to the behavior of V1647 Ori in 2004-2005.

  18. North American Carbon Program (NACP) Regional Interim Synthesis: Terrestrial Biospheric Model Intercomparision

    SciTech Connect (OSTI)

    Huntzinger, Deborah [University of Michigan; Post, Wilfred M [ORNL; Michalak, Anna [University of Michigan; West, Tristram O. [Joint Global Change Research Institute, PNNL; Jacobson, Andrew [NOAA ESRL and CIRES; Baker, Ian [Colorado State University, Fort Collins; Chen, Jing M. [University of Toronto; Davis, Kenneth [Pennsylvania State University; Hayes, Daniel J [ORNL; Hoffman, Forrest M [ORNL; Jain, Atul [University of Illinois, Urbana-Champaign; Liu, Shuguang [United States Geological Survey, Center for Earth Resources Observation and Science (USGS EROS); Mcguire, David [University of Alaska; Neilson, Ronald [Oregon State University, Corvallis; Poulter, Ben [Potsdam Institute for Climate Impact Research, Potsdam, Germany; Tian, Hanqin [Auburn University, Auburn, Alabama; Thornton, Peter E [ORNL; Tomelleri, Enrico [Max Planck Institute for Biogeochemistry; Viovy, Nicolas [National Center for Scientific Research, Gif-sur-Yvette, France; Xiao, Jingfeng [Purdue University; Cook, Robert B [ORNL

    2012-01-01

    Understanding of carbon exchange between terrestrial ecosystems and the atmosphere can be improved through direct observations and experiments, as well as through modeling activities. Terrestrial biosphere models (TBMs) have become an integral tool for extrapolating local observations and understanding to much larger terrestrial regions. Although models vary in their specific goals and approaches, their central role within carbon cycle science is to provide a better understanding of the mechanisms currently controlling carbon exchange. Recently, the North American Carbon Program (NACP) organized several interim-synthesis activities to evaluate and inter-compare models and observations at local to continental scales for the years 2000-2005. Here, we compare the results from the TBMs collected as part of the regional and continental interim-synthesis (RCIS) activities. The primary objective of this work is to synthesize and compare the 19 participating TBMs to assess current understanding of the terrestrial carbon cycle in North America. Thus, the RCIS focuses on model simulations available from analyses that have been completed by ongoing NACP projects and other recently published studies. The TBM flux estimates are compared and evaluated over different spatial (1{sup o} x 1{sup o} and spatially aggregated to different regions) and temporal (monthly and annually) scales. The range in model estimates of net ecosystem productivity (NEP) for North America is much narrower than estimates of productivity or respiration, with estimates of NEP varying between -0.7 and 2.2 PgC yr{sup -1}, while gross primary productivity and heterotrophic respiration vary between 12.2 and 32.9 PgC yr{sup -1} and 5.6 and 13.2 PgC yr{sup -1}, respectively. The range in estimates from the models appears to be driven by a combination of factors, including the representation of photosynthesis, the source and of environmental driver data and the temporal variability of those data, as well as whether nutrient limitation is considered in soil carbon decomposition. The disagreement in current estimates of carbon flux across North America, including whether North America is a net biospheric carbon source or sink, highlights the need for further analysis through the use of model runs following a common simulation protocol, in order to isolate the influences of model formulation, structure, and assumptions on flux estimates.

  19. Liquid Propane Injection Technology Conductive to Today's North...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Conductive to Today's North American Specification Liquid Propane Injection Technology Conductive to Today's North American Specification Liquid propane injection...

  20. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  1. Sequence analysis of a zinc-finger gene for the examination of paternal lineages and introgressive hybridization in North American deer 

    E-Print Network [OSTI]

    Cathey, James Cleveland

    1993-01-01

    By direct sequence analysis of the mammalian zinc-finger Y (Zfy) gene, interspecific and intraspecific variations were documented in a Y-chromosomal locus in North American deer. The evolutionary history of paternal lineages was distinctly different...

  2. Academic Genealogy of Peh Hoon Ng The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society

    E-Print Network [OSTI]

    Ng, Peh H.

    Academic Genealogy of Peh Hoon Ng The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society http://www.genealogy.math.ndsu.nodak.edu Peh Hoon

  3. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data

    SciTech Connect (OSTI)

    Turner, A. J. [Harvard Univ., Cambridge, MA (United States); Jacob, D. J. [Harvard Univ., Cambridge, MA (United States); Wecht, K. J. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Maasakkers, J. D. [Harvard Univ., Cambridge, MA (United States); Lundgren, E. [Harvard Univ., Cambridge, MA (United States); Andrews, A. E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Biraud, S. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)] (ORCID:000000017697933X); Boesch, H. [Univ. of Leicester (United Kingdom); Bowman, K. W. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Lab.; Deutscher, N. M. [Univ. of Wollongong, NSW (Australia); Dubey, M. K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Griffith, D. W. T. [Univ. of Wollongong, NSW (Australia); Hase, F. [Karlsruhe Inst. of Technology (KIT) (Germany). IMK-ASF; Kuze, A. [Japan Aerospace Exploration Agency, Tsukuba (Japan)] (ORCID:0000000154153377); Notholt, J. [Univ. of Bremen (Germany); Ohyama, H. [Japan Aerospace Exploration Agency, Tsukuba (Japan); Parker, R. [Univ. of Leicester (United Kingdom); Payne, V. H. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Lab.; Sussmann, R. [Karlsruhe Inst. of Technology (KIT) Garmisch-Partenkirchen (Germany). IMK-IFU; Sweeney, C. [Karlsruhe Inst. of Technology (KIT) Garmisch-Partenkirchen (Germany). IMK-IFU; Velazco, V. A. [Univ. of Wollongong, NSW (Australia)] (ORCID:000000021376438X); Warneke, T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wennberg, P. O. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Lab.; Wunch, D. [Pasadena, CA (United States). Jet Propulsion Lab.

    2015-01-01

    We use 2009–2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to estimate global and North American methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. GEOS-Chem and GOSAT data are first evaluated with atmospheric methane observations from surface and tower networks (NOAA/ESRL, TCCON) and aircraft (NOAA/ESRL, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. Our global adjoint-based inversion yields a total methane source of 539 Tg a?1 with some important regional corrections to the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide error characterization. We infer a US anthropogenic methane source of 40.2–42.7 Tg a-1, as compared to 24.9–27.0 Tg a-1 in the EDGAR and EPA bottom-up inventories, and 30.0–44.5 Tg a-1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the southern–central US, the Central Valley of California, and Florida wetlands; large isolated point sources such as the US Four Corners also contribute. Using prior information on source locations, we attribute 29–44 % of US anthropogenic methane emissions to livestock, 22–31 % to oil/gas, 20 % to landfills/wastewater, and 11–15 % to coal. Wetlands contribute an additional 9.0–10.1 Tg a-1.

  4. Cenozoic tectonic and sedimentary development of the North American-Caribbean transform boundary

    SciTech Connect (OSTI)

    Mann, P.; Debalko, D.; Grote, D.; Tyburski, S. (Univ. of Texas, Austin (USA))

    1990-05-01

    The North American-Caribbean plate boundary consists of strike-slip deformation extending 3,200 km from the Middle American volcanic arc in western Guatemala to the northern Lesser Antilles. The authors have reconstructed the complex sedimentary and tectonic evolution of this zone over the past 65 m.y. by integration of onshore geologic data and offshore geophysical data. Onshore geologic data consists mainly of detailed structural maps and biostratigraphic studies from uplifted sedimentary basins in Hispaniola and Jamaica. Offshore data consists of single and multichannel seismic profiles and side-scan sonar maps. Both onshore and offshore data have been synthesized into a set of computer-based, paleogeographic maps for the following Cenozoic periods: late Paleocene, middle Eocene, late Oligocene, early Miocene, late Miocene, Pliocene, and Holocene. These data allow them to generalize the tectonic evolution of the boundary into three stages. Stage 1: Paleocene to early Eocene rifting and bimodal volcanism associated with formation of the Cayman Trough pullapart basin. Nonmarine to shallow marine sedimentation was controlled by northwest-northeast-striking normal faults formed at a high angle to the direction of plate motion. Stage 2: middle Eocene to early Miocene strike-slip faulting across a broad, California Borderlands-type margin. Shallow marine to marine sedimentation was controlled by strike-slip faults parallel or at a low angle to the direction of plate motion. Stage 3: middle Miocene to present strike-slip faulting along a single major fault. Deep-marine sedimentation was controlled by a major strike-slip fault scarp formed approximately parallel to the direction of plate motion over most of the length of the boundary. Eustatic sea level effects are recognizable in all three stages.

  5. Shale gas - what happened? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shale gas - what happened? Shale gas - what happened? It seems like shale gas came out of nowhere - what happened? More Documents & Publications Natural Gas from Shale: Questions...

  6. Shale Gas Glossary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glossary Shale Gas Glossary Shale Gas Glossary More Documents & Publications Natural Gas from Shale: Questions and Answers Modern Shale Gas Development in the United States: A...

  7. Arguments for a "U.S. Kamioka": SNOLab and its Implications for North American Underground Science Planning

    E-Print Network [OSTI]

    W. C. Haxton; K. A. Philpott; Robert Holtz; Philip Long; J. F. Wilkerson

    2006-10-06

    We argue for a cost-effective, long-term North American underground science strategy based on partnership with Canada and initial construction of a modest U.S. Stage I laboratory designed to complement SNOLab. We show, by reviewing the requirements of detectors now in the R&D phase, that SNOLab and a properly designed U.S. Stage I facility would be capable of meeting the needs of North America's next wave of underground experiments. We discuss one opportunity for creating a Stage I laboratory, the Pioneer tunnel in Washington State, a site that could be developed to provide dedicated, clean, horizontal access. This unused tunnel, part of the deepest (1040 m) tunnel system in the U.S., would allow the U.S. to establish, at low risk and low cost, a laboratory at a depth (2.12 km.w.e., or kilometers of water equivalent) quite similar to that of the Japanese laboratory Kamioka (2.04 km.w.e.). We describe studies of cosmic ray attenuation important to properly locating such a laboratory, and the tunnel improvements that would be required to produce an optimal Stage I facility. We also discuss possibilities for far-future Stage II (3.62 km.w.e.) and Stage III (5.00 km.w.e.) developments at the Pioneer tunnel, should future North American needs for deep space exceed that available at SNOLab.

  8. Phylogeny and Niche Conservatism in North and Central American Triatomine Bugs (Hemiptera: Reduviidae: Triatominae), Vectors of Chagas' Disease

    E-Print Network [OSTI]

    Ibarra-Cerdeñ a, Carlos N.; Zaldivar-Riveron, Alejandro; Peterson, A. Townsend; Sá nchez-Cordero, Ví ctor; Ramsey, Janine M.

    2014-10-30

    ´nchez- Cordero2, Janine M. Ramsey4* 1 Departamento de Ecolog?´a Humana, Centro de Investigacio´n y de Estudios Avanzados del IPN (Cinvestav), Unidad Me´rida, Me´rida, Yucata´n, Me´xico, 2 Departamento de Zoolog?´a, Instituto de Biolog?´a, UNAM, Me´xico DF, Me... movements, expansion of transportation networks and climate change scenarios. Citation: Ibarra-Cerden˜a CN, Zald?´var-Rivero´n A, Peterson AT, Sa´nchez-Cordero V, Ramsey JM (2014) Phylogeny and Niche Conservatism in North and Central American Triatomine Bugs...

  9. Radiogenic isotope composition of Carboniferous seawater from North American epicontinental seas

    E-Print Network [OSTI]

    Grossman, Ethan L.

    Keywords: Nd isotopes Conodonts Carboniferous North America Epicontinental seas Rheic Ocean Abundant marine sedimentary deposits accumulated in the epeiric seas of North America during the Carboniferous Period (359, widespread and thick tropical/ sub-tropical coal deposits indicating fundamental changes in carbon cy- cling

  10. What is shale gas? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What is shale gas? What is shale gas? What is shale gas? More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary Natural Gas Study Guide -...

  11. World Shale Resource Assessments

    Reports and Publications (EIA)

    2015-01-01

    Four countries: Chad, Kazakhstan, Oman and the United Arab Emirates (UAE) have been added to report “Technically Recoverable Shale Oil and Shale Gas Resources.” The report provides an estimate of shale resources in selected basins around the world. The new chapters cover shale basins from the Sub-Saharan Africa region, represented by Chad; the Caspian region, represented by Kazakhstan; and the Middle East region, represented by Oman and the United Arab Emirates (UAE) and are available as supplemental chapters to the 2013 report.

  12. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  13. Distribution of Energy Use and Biomass Among Species of North American Terrestrial Birds Author(s): Brian A. Maurer and James H. Brown

    E-Print Network [OSTI]

    Brown, James H.

    Distribution of Energy Use and Biomass Among Species of North American Terrestrial Birds Author, 69(6), 1988, pp. 1923-1932 ? 1988 by the Ecological Society of America DISTRIBUTION OF ENERGY USE. The distribution of biomass and energy use among species with different body sizes provides an empirical basis

  14. A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program Site Synthesis

    SciTech Connect (OSTI)

    Schwalm, C.R.; Williams, C.A.; Schaefer, K.; Anderson, R.; Arain, M.A.; Baker, I.; Black, T.A.; Chen, G.; Ciais, P.; Davis, K. J.; Desai, A. R.; Dietze, M.; Dragoni, D.; Fischer, M.L.; Flanagan, L.B.; Grant, R.F.; Gu, L.; Hollinger, D.; Izaurralde, R.C.; Kucharik, C.; Lafleur, P.M.; Law, B.E.; Li, L.; Li, Z.; Liu, S.; Lokupitiya, E.; Luo, Y.; Ma, S.; Margolis, H.; Matamala, R.; McCaughey, H.; Monson, R. K.; Oechel, W. C.; Peng, C.; Poulter, B.; Price, D.T.; Riciutto, D.M.; Riley, W.J.; Sahoo, A.K.; Sprintsin, M.; Sun, J.; Tian, H.; Tonitto, C.; Verbeeck, H.; Verma, S.B.

    2011-06-01

    Our current understanding of terrestrial carbon processes is represented in various models used to integrate and scale measurements of CO{sub 2} exchange from remote sensing and other spatiotemporal data. Yet assessments are rarely conducted to determine how well models simulate carbon processes across vegetation types and environmental conditions. Using standardized data from the North American Carbon Program we compare observed and simulated monthly CO{sub 2} exchange from 44 eddy covariance flux towers in North America and 22 terrestrial biosphere models. The analysis period spans {approx}220 site-years, 10 biomes, and includes two large-scale drought events, providing a natural experiment to evaluate model skill as a function of drought and seasonality. We evaluate models' ability to simulate the seasonal cycle of CO{sub 2} exchange using multiple model skill metrics and analyze links between model characteristics, site history, and model skill. Overall model performance was poor; the difference between observations and simulations was {approx}10 times observational uncertainty, with forested ecosystems better predicted than nonforested. Model-data agreement was highest in summer and in temperate evergreen forests. In contrast, model performance declined in spring and fall, especially in ecosystems with large deciduous components, and in dry periods during the growing season. Models used across multiple biomes and sites, the mean model ensemble, and a model using assimilated parameter values showed high consistency with observations. Models with the highest skill across all biomes all used prescribed canopy phenology, calculated NEE as the difference between GPP and ecosystem respiration, and did not use a daily time step.

  15. Distribution of Y Chromosomes Among Native North Americans: A Study of Athapaskan Population History

    E-Print Network [OSTI]

    Kemp, Brian M.

    -Champaign, IL 2 Departmento de Biologia, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Mexico 3; mitochondrial DNA; founder effect; european contact; native American; migration; diffusion ABSTRACT and to test the Southern Athapaskan migration hypothesis. The results suggest that European admixture has

  16. Survivable Systems Analysis of the North American Power Grid Communications Infrastructure 1,2

    E-Print Network [OSTI]

    Krings, Axel W.

    {patrickm, krings, oman} @cs.uidaho.edu Abstract The modern electric power grid is a complex interconnected American electric power grid and propose appropriate means to mediate them. The analytic technique Systems Analysis 1. Introduction An electric power grid is a complex interconnected network of power

  17. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01

    H. H. Peters, Shale Oil Waste Water Recovery by Evaporation,treatment of oil shale waste products. Consequently, bothmost difficult and costly oil shale waste stream requiring

  18. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01

    during oil shale retorting: retort water and gas condensate.commercial oil shale plant, retort water and gas condensateunique to an oil shale retort water, gas condensate, and

  19. Oil shale research in China

    SciTech Connect (OSTI)

    Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

    1989-01-01

    There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

  20. North American Overview - Heat Pumps Role in Buildings Energy Efficiency Improvement

    SciTech Connect (OSTI)

    Baxter, Van D [ORNL; Bouza, Antonio [U.S. Department of Energy; Giguère, Daniel [Natural Resources Canada; Hosatte, Sophie [Natural Resources Canada

    2011-01-01

    A brief overview of the situation in North America regarding buildings energy use and the current and projected heat pump market is presented. R&D and deployment strategies for heat pumps, and the impacts of the housing market and efficiency regulations on the heating and cooling equipment market are summarized as well.

  1. Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick, P.E., M.ASCE and Lynn E. Brown2

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    Page 1 Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick, P.E., M: Railway transportation is playing a key role in the development of many new shale oil and gas reserves in North America. In the rush to develop new shale oil and gas plays, sites for railway transload terminals

  2. Microporomechanical modeling of shale

    E-Print Network [OSTI]

    Ortega, J. Alberto (Jose Alberta Ortega Andrade)

    2010-01-01

    Shale, a common type of sedimentary rock of significance to petroleum and reservoir engineering, has recently emerged as a crucial component in the design of sustainable carbon and nuclear waste storage solutions and as a ...

  3. DOE-Funded Project Shows Promise for Tapping Vast U.S. Oil Shale Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    A technology as simple as an advanced heater cable may hold the secret for tapping into the nation's largest source of oil, which is contained in vast amounts of shale in the American West.

  4. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01

    products, percent: Oil Gas Spent Shale TOTAL Average tracecontent of the gases for the lean shale exceeded that for

  5. World pipeline construction patterns shifting away from big North American gas lines

    SciTech Connect (OSTI)

    Koen, A.D.; True, W.R.

    1992-02-10

    The pattern of world pipeline construction has begun to shift away from large diameter gas lines in North America. Total miles of gas pipelines planned this year and beyond have registered big increases in Europe and Asia- Pacific regions, more than offsetting decreased mileage of planned U.S. and Canadian gas projects. World products pipeline construction planned in 1992 and beyond shows the largest year to year gain, paced by projects in Latin America. Those are among highlights of this article. Many projects only under study or unlikely to be built are excluded from final mileage tallies.

  6. Copyright 2004 IEEE. Published in the Proceedings of the 36th Annual North American Power Symposium, August 9-10 2004, University of Idaho, Moscow, Idaho Abstract--This paper explores a mathematical method for

    E-Print Network [OSTI]

    Copyright 2004 IEEE. Published in the Proceedings of the 36th Annual North American Power Symposium, August 9-10 2004, University of Idaho, Moscow, Idaho Abstract-- This paper explores a mathematical method

  7. Climate Change Projections of the North American Regional Climate Change Assessment Program (NARCCAP)

    SciTech Connect (OSTI)

    Mearns, L. O.; Sain, Steve; Leung, Lai-Yung R.; Bukovsky, M. S.; McGinnis, Seth; Biner, S.; Caya, Daniel; Arritt, R.; Gutowski, William; Takle, Eugene S.; Snyder, Mark A.; Jones, Richard; Nunes, A M B.; Tucker, S.; Herzmann, D.; McDaniel, Larry; Sloan, Lisa

    2013-10-01

    We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs.

  8. Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column

    E-Print Network [OSTI]

    2006-01-01

    Satellite observations of formaldehyde over North Americasatellites: Application to formaldehyde retrievals from theNorth America using formaldehyde column observations from

  9. Process for oil shale retorting

    DOE Patents [OSTI]

    Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  10. Nineteenth oil shale symposium proceedings

    SciTech Connect (OSTI)

    Gary, J.H.

    1986-01-01

    This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

  11. Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts

    E-Print Network [OSTI]

    Fox, J.P.; Persoff, P.

    1980-01-01

    Mineral Reactions in Colorado Oil Shale," Lawrence Livermoreof Colorado Oil Shale: II. Livermore Laboratory Report No.Effects Lawrence of Steam on Oil Shale Retorting: Livermore

  12. POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01

    study of retorted oil shale," Lawrence Livermore Laboratoryb) using columns of spent shale. REFERENCES Burnham, Alankinetics between and oil-shale residual carbon. 1. co Effect

  13. Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts

    E-Print Network [OSTI]

    Fox, J.P.; Persoff, P.

    1980-01-01

    Mineral Reactions in Colorado Oil Shale," Lawrence Livermore1978. of Decomposition of Colorado Oil Shale: II. LivermoreEffects Lawrence of Steam on Oil Shale Retorting: Livermore

  14. POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01

    situ oil shale combustion experiment con- A gas chro- Thisspent shales were waters were studied, retort water and gasof retort waters and gas condensate. Spent shale reduces the

  15. Oil shale: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

  16. Natural Gas from Shale: Questions and Answers | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas from Shale: Questions and Answers Natural Gas from Shale: Questions and Answers Natural Gas from Shale: Questions and Answers More Documents & Publications Shale Gas...

  17. Oil shale retort apparatus

    DOE Patents [OSTI]

    Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

    1990-01-01

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  18. Biology and management of insect pests in North American intensively managed hardwood forest systems.

    SciTech Connect (OSTI)

    Coyle, David R.; Nebeker, T., E.; Hart, E., R.; Mattson, W., J.

    2005-01-01

    Annu. Rev. Entomol. 50:1-29. Abstract Increasing demand for wood and wood products is putting stress on traditional forest production areas, leading to long-term economic and environmental concerns. Intensively managed hardwood forest systems (IMHFS), grown using conventional agricultural as well as forestry methods, can help alleviate potential problems in natural forest production areas. Although IMHFS can produce more biomass per hectare per year than natural forests, the ecologically simplified, monocultural systems may greatly increase the crops susceptibility to pests. Species in the genera Populus and Salix comprise the greatest acreage in IMHFS in North America, but other species, including Liquidambar styracifua and Platanus occidentalis, are also important. We discuss life histories, realized and potential damage, and management options for the most economically infuential pests that affect these hardwood species. The substantial inherent challenges associated with pest management in the monocultural environments created by IMHFS are reviewed. Finally, we discuss ways to design IMHFS that may reduce their susceptibility to pests, increase their growth and productivity potential, and create a more sustainable environment.

  19. New basins invigorate U.S. gas shales play

    SciTech Connect (OSTI)

    Reeves, S.R.; Kuuskraa, V.A.; Hill, D.G.

    1996-01-22

    While actually the first and oldest of unconventional gas plays, gas shales have lagged the other main unconventional gas resources--tight gas and coalbed methane--in production and proved reserves. Recently, however, with active drilling of the Antrim shales in Michigan and promising results from the Barnett shales of North Texas, this gas play is growing in importance. While once thought of as only an Appalachian basin Devonian-age Ohio shales play and the exclusive domain of regional independents, development of gas shales has expanded to new basins and has began to attract larger E and P firms. Companies such as Amoco, Chevron, and Shell in the Michigan basin and Mitchell Energy and Development and Anadarko Petroleum Corporation in the Fort Worth basin are aggressively pursuing this gas resource. This report, the third of a four part series assessing unconventional gas development in the US, examines the state of the gas shales industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. The main questions being addressed are first, to what extent are these gas sources viable without the tax credit, and second, what advances in understanding of these reservoirs and what progress in extraction technologies have changed the outlook for this large but complex gas resource?

  20. Driving it home: choosing the right path for fueling North America's transportation future

    SciTech Connect (OSTI)

    Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas; Elizabeth Martin-Perera; Melanie Nakagawa; Bob Randall; Dan Woynillowicz

    2007-06-15

    North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Table of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.

  1. Solar retorting of oil shale

    DOE Patents [OSTI]

    Gregg, David W. (Morago, CA)

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  2. Combustion heater for oil shale

    DOE Patents [OSTI]

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  3. Combustion heater for oil shale

    DOE Patents [OSTI]

    Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  4. Air-Quality Data from NARSTO (North American Research Strategy for Tropospheric Ozone)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NARSTO is a public/private partnership dedicated to improving management of air quality in North America. It was established on February 13, 1995 when representatives of Canada, the United States, and Mexico signed the NARSTO Charter in a ceremony at the White House. The Department of Energy is one of the charter members providing funding. The central programmatic goal of NARSTO is to provide data and information for use in the determination of workable, efficient, and effective strategies for local and regional ozone and fine particle management. Since its founding, NARSTO has completed three major scientific Assessments of critical air quality management issues. NARSTO maintains the Quality Systems Science Center and the NARSTO Data Archive for storing data from NARSTO Affiliated Research Activities and making these data available to the scientific community. NARSTO also facilitates activities, such as the Reactivity Research Working Group, which provide critical reviews of the state of the science in areas of interest to air quality policy makers. In January 1997, the U.S. Department of Energy's Environmental Sciences Division announced their sponsorship of the NARSTO Quality Systems Science Center (QSSC). The QSSC is located at the Oak Ridge National Laboratory within the Carbon Dioxide Information Analysis Center (CDIAC). Quality Assurance and Data Management assistance and guidelines are provided by the QSCC, along with access to data files. The permanent data archive is maintained by the NASA EOSDIS Distributed Active Archive Center at the Langley Research Center. The archived data can be reached by a link from the QSSC.(Specialized Interface) See also the NARSTO web site at http://www.narsto.org/

  5. The North American Carbon Program Multi-scale synthesis and Terrestrial Model Intercomparison Project Part 1: Overview and experimental design

    SciTech Connect (OSTI)

    Huntzinger, D.N.; Schwalm, C.; Michalak, A.M; Schaefer, K.; King, A.W.; Wei, Y.; Jacobson, A.; Liu, S.; Cook, R.; Post, W.M.; Berthier, G.; Hayes, D.; Huang, M.; Ito, A.; Lei, H.; Lu, C.; Mao, J.; Peng, C.H.; Peng, S.; Poulter, B.; Riccuito, D.; Shi, X.; Tian, H.; Wang, W.; Zeng, N.; Zhao, F.; Zhu, Q.

    2013-01-01

    Terrestrial biosphere models (TBMs) have become an integral tool for extrapolating local observations and understanding of land-atmosphere carbon exchange to larger regions. The North American Carbon Program (NACP) Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal model intercomparison and evaluation effort focused on improving the diagnosis and attribution of carbon exchange at regional and global scales. MsTMIP builds upon current and past synthesis activities, and has a unique framework designed to isolate, interpret, and inform understanding of how model structural differences impact estimates of carbon uptake and release. Here we provide an overview of the MsTMIP effort and describe how the MsTMIP experimental design enables the assessment and quantification of TBM structural uncertainty. Model structure refers to the types of processes considered (e.g. nutrient cycling, disturbance, lateral transport of carbon), and how these processes are represented (e.g. photosynthetic formulation, temperature sensitivity, respiration) in the models. By prescribing a common experimental protocol with standard spin-up procedures and driver data sets, we isolate any biases and variability in TBM estimates of regional and global carbon budgets resulting from differences in the models themselves (i.e. model structure) and model-specific parameter values. An initial intercomparison of model structural differences is represented using hierarchical cluster diagrams (a.k.a. dendrograms), which highlight similarities and differences in how models account for carbon cycle, vegetation, energy, and nitrogen cycle dynamics. We show that, despite the standardized protocol used to derive initial conditions, models show a high degree of variation for GPP, total living biomass, and total soil carbon, underscoring the influence of differences in model structure and parameterization on model estimates.

  6. Validation of Noah-simulated Soil Temperature in the North American Land Data Assimilation System Phase 2

    SciTech Connect (OSTI)

    Xia, Youlong; Ek, Michael; Sheffield, Justin; Livneh, Ben; Huang, Maoyi; Wei, Helin; Song, Feng; Luo, Lifeng; Meng, Jesse; Wood, Eric

    2013-02-25

    Soil temperature can exhibit considerable memory from weather and climate signals and is among the most important initial conditions in numerical weather and climate models. Consequently, a more accurate long-term land surface soil temperature dataset is needed to improve weather and climate simulation and prediction, and is also important for the simulation of agricultural crop yield and ecological processes. The North-American Land Data Assimilation (NLDAS) Phase 2 (NLDAS-2) has generated 31-years (1979-2009) of simulated hourly soil temperature data with a spatial resolution of 1/8o. This dataset has not been comprehensively evaluated to date. Thus, the ultimate purpose of the present work is to assess Noah-simulated soil temperature for different soil depths and timescales. We used long-term (1979-2001) observed monthly mean soil temperatures from 137 cooperative stations over the United States to evaluate simulated soil temperature for three soil layers (0-10 cm, 10-40 cm, 40-100 cm) for annual and monthly timescales. We used short-term (1997-1999) observed soil temperature from 72 Oklahoma Mesonet stations to validate simulated soil temperatures for three soil layers and for daily and hourly timescales. The results showed that the Noah land surface model (Noah LSM) generally matches observed soil temperature well for different soil layers and timescales. At greater depths, the simulation skill (anomaly correlation) decreased for all time scales. The monthly mean diurnal cycle difference between simulated and observed soil temperature revealed large midnight biases in the cold season due to small downward longwave radiation and issues related to model parameters.

  7. The twentieth oil shale symposium proceedings

    SciTech Connect (OSTI)

    Gary, J.H.

    1987-01-01

    This book contains 20 selections. Some of the titles are: The technical contributions of John Ward Smith in oil shale research; Oil shale rubble fires: ignition and extinguishment; Fragmentation of eastern oil shale for in situ recovery; A study of thermal properties of Chinese oil shale; and Natural invasion of native plants on retorted oil shale.

  8. Petrographic observations suggestive of microbial mats from Rampur Shale and Bijaigarh Shale,

    E-Print Network [OSTI]

    Schieber, Juergen

    Petrographic observations suggestive of microbial mats from Rampur Shale and Bijaigarh Shale observations of two Vindhyan black shales (Rampur Shale of the Semri Group and Bijaigarh Shale of the Kaimur an attempt has been made to highlight possible microbial mat features from two black shale horizons (Rampur

  9. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01

    cement from spent oil shale," Vol. 10, No. 4, p. 54S,Colorado's primary oil shale resource for vertical modifiedSimulated effects of oil-shale development on the hydrology

  10. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01

    III, "Method of Breaking Shale Oil-Water Emulsion," U. S.Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedings

  11. Generic Argillite/Shale Disposal Reference Case

    E-Print Network [OSTI]

    Zheng, Liange

    2014-01-01

    S. and K.S. Johnson, (1984). Shale and other argillaceousand R. T. Cygan, (2010). Shale Disposal of U.S. High-LevelDC. Generic Argillite/Shale Disposal Reference Case August

  12. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01

    CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Corrosion of Oil Shale Retort Component Materials," LBL-

  13. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01

    CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Elevated Temperature Corrosion of Oil Shale Retort Component

  14. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01

    Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedingsin the Treatment of Oil Shale Retort Waters," in Proceedings

  15. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01

    hydraulic cement from spent oil shale," Vol. 10, No. 4, p.J. W. , "Colorado's primary oil shale resource for verticalSimulated effects of oil-shale development on the hydrology

  16. Shale oil recovery process

    DOE Patents [OSTI]

    Zerga, Daniel P. (Concord, CA)

    1980-01-01

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  17. Apparatus for oil shale retorting

    DOE Patents [OSTI]

    Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA); Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA)

    1986-01-01

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  18. African Americans and the Spanish-American War and Philippine Insurrection: Military Participation, Recognition, and Memory, 1898-1904

    E-Print Network [OSTI]

    Russell, Timothy Dale

    2013-01-01

    and the Spanish American War. ” Indiana Magazine of History,the Spanish American War, The Sixth Virginia Volunteers. ”African Americans and the War Against Spain. ” The North

  19. Oil shale: The environmental challenges III

    SciTech Connect (OSTI)

    Petersen, K.K.

    1983-01-01

    This book presents the papers of a symposium whose purpose was to discuss the environmental and socio-economic aspects of oil shale development. Topics considered include oil shale solid waste disposal, modeling spent shale disposal, water management, assessing the effects of oil shale facilities on water quality, wastewater treatment and use at oil shale facilities, potential air emissions from oil shale retorting, the control of air pollutant emissions from oil shale facilities, oil shale air emission control, socioeconomic research, a framework for mitigation agreements, the Garfield County approach to impact mitigation, the relationship of applied industrial hygiene programs and experimental toxicology programs, and industrial hygiene programs.

  20. SciTech Connect: "oil shale"

    Office of Scientific and Technical Information (OSTI)

    oil shale" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "oil shale" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  1. Atmospheric Stability Impacts on Power Curves of Tall Wind Turbines - An Analysis of a West Coast North American Wind Farm

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K

    2010-02-22

    Tall wind turbines, with hub heights at 80 m or above, can extract large amounts of energy from the atmosphere because they are likely to encounter higher wind speeds, but they face challenges given the complex nature of wind flow and turbulence at these heights in the boundary layer. Depending on whether the boundary layer is stable, neutral, or convective, the mean wind speed, direction, and turbulence properties may vary greatly across the tall turbine swept area (40 to 120 m AGL). This variability can cause tall turbines to produce difference amounts of power during time periods with identical hub height wind speeds. Using meteorological and power generation data from a West Coast North American wind farm over a one-year period, our study synthesizes standard wind park observations, such as wind speed from turbine nacelles and sparse meteorological tower observations, with high-resolution profiles of wind speed and turbulence from a remote sensing platform, to quantify the impact of atmospheric stability on power output. We first compare approaches to defining atmospheric stability. The standard, limited, wind farm operations enable the calculation only of a wind shear exponent ({alpha}) or turbulence intensity (I{sub U}) from cup anemometers, while the presence at this wind farm of a SODAR enables the direct observation of turbulent kinetic energy (TKE) throughout the turbine rotor disk. Additionally, a nearby research meteorological station provided observations of the Obukhov length, L, a direct measure of atmospheric stability. In general, the stability parameters {alpha}, I{sub U}, and TKE are in high agreement with the more physically-robust L, with TKE exhibiting the best agreement with L. Using these metrics, data periods are segregated by stability class to investigate power performance dependencies. Power output at this wind farm is highly correlated with atmospheric stability during the spring and summer months, while atmospheric stability exerts little impact on power output during the winter and autumn periods. During the spring and summer seasons, power output for a given wind speed was significantly higher during stable conditions and significantly lower during strongly convective conditions: power output differences approached 20% between stable and convective regimes. The dependency of stability on power output was apparent only when both turbulence and the shape of the wind speed profile were considered. Turbulence is one of the mechanisms by which atmospheric stability affects a turbine's power curve at this particular site, and measurements of turbulence can yield actionable insights into wind turbine behavior.

  2. North American Energy Markets

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets16 (next20, 200820087 DOE/NASEONA NAof

  3. Sedimentological, mineralogical and geochemical definition of oil-shale facies in the lower Parachute Creek Member of Green River Formation, Colorado

    SciTech Connect (OSTI)

    Cole, R.D.

    1984-04-01

    Sedimentological, mineralogical and geochemical studies of two drill cores penetrating the lower Saline zone of the Parachute Creek Member (middle L-4 oil-shale zone through upper R-2 zone) of the Green River Formation in north-central Piceance Creek basin, Colorado, indicate the presence of two distinct oil-shale facies. The most abundant facies has laminated stratification and frequently occurs in the L-4, L-3 and L-2 oil-shale zones. The second, and subordinate facies, has ''streaked and blebby'' stratification and is most abundant in the R-4, R-3 and R-2 zones. Laminated oil shale originated by slow, regular sedimentation during meromictic phases of ancient Lake Uinta, whereas streaked and blebby oil shale was deposited by episodic, non-channelized turbidity currents. Laminated oil shale has higher contents of nahcolite, dawsonite, quartz, K-feldspar and calcite, but less dolomite/ankerite and albite than streaked and blebby oil shale. Ca-Mg-Fe carbonate minerals in laminated oil shale have more variable compositions than those in streaked and blebby shales. Streaked and blebby oil shale has more kerogen and a greater diversity of kerogen particles than laminated oil shale. Such variations may produce different pyrolysis reactions when each shale type is retorted.

  4. Oil shale, tar sands, and related materials

    SciTech Connect (OSTI)

    Stauffer, H.C.

    1981-01-01

    This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

  5. Bureau of Land Management Oil Shale Development

    E-Print Network [OSTI]

    Utah, University of

    Bureau of Land Management Oil Shale Development Unconventional Fuels Conference University of Utah May 17, 2011 #12;#12;Domestic Oil Shale Resources Primary oil shale resources in the U.S. are in the Green River Formation in Wyoming, Utah, and Colorado. 72 % of this oil shale resource is on Federal

  6. Fire and explosion hazards of oil shale

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  7. Favorable conditions noted for Australia shale oil

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    After brief descriptions of the Rundle, Condor, and Stuart/Kerosene Creek oil shale projects in Queensland, the competitive advantages of oil shale development and the state and federal governments' attitudes towards an oil shale industry in Australia are discussed. It is concluded that Australia is the ideal country in which to start an oil shale industry.

  8. Generic Argillite/Shale Disposal Reference Case

    E-Print Network [OSTI]

    Zheng, Liange

    2014-01-01

    Shale Disposal Reference Case August 2014 Borehole activity: Oil and gas drilling targets for hydrocarbon resource

  9. Fire history of a prairie/forest boundary: more than 250 years of frequent fire in a North American tallgrass

    E-Print Network [OSTI]

    Palmer, Michael W.

    can be large for biological systems, and may result in a loss of biodiversity, alteration of ecosystem, primarily from being traditionally used by Native Americans to being managed for cattle production

  10. Oil shale retorting method and apparatus

    SciTech Connect (OSTI)

    York, E.D.

    1983-03-22

    Disclosed is an improved method and apparatus for the retorting of oil shale and the formation of spent oil shale having improved cementation properties. The improved method comprises passing feed comprising oil shale to a contacting zone wherein the feed oil shale is contacted with heat transfer medium to heat said shale to retorting temperature. The feed oil shale is substantially retorted to form fluid material having heating value and forming partially spent oil shale containing carbonaceous material. At least a portion of the partially spent oil shale is passed to a combustion zone wherein the partially spent oil shale is contacted with oxidizing gas comprising oxygen and steam to substantially combust carbonaceous material forming spent oil shale having improved cementation properties.

  11. CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS

    E-Print Network [OSTI]

    Persoff, P.

    2011-01-01

    and Utilization of Oil Shale Resources, Tillinn, Estonia (and Utilization of Oil Shale Resources, Tallinn, Estonia (Colorado's Primary Oil-Shale Resource for Vertical Modified

  12. Shale Gas Development Challenges: Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Challenges: Water Shale Gas Development Challenges: Water Shale Gas Development Challenges: Water More Documents & Publications Natural Gas from Shale: Questions and...

  13. Carbon sequestration in depleted oil shale deposits

    SciTech Connect (OSTI)

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  14. POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01

    pore-volume study of retorted oil shale," Lawrence Livermorekinetics between and oil-shale residual carbon. 1. co Effectkinetics between and oil-shale residual carbon. 2. co 2

  15. Angermeier, P.L. and J.R. Karr. 1986. Applying an index of biotic integrity based on stream-fish communities: Considerations in sampling and interpretation. North American Journal of Fisheries

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    on stream-fish communities: Considerations in sampling and interpretation. North American Journal of Fisheries Bramblett, R.G. and K.D. Fausch. 1991. Variable fish communities and the index of biotic integrity.R. Johnson, A.V. Zale and D.G. Heggem. 2005. Development and evaluation of a fish assemblage index of biotic

  16. Shale Play Industry Transportation Challenges,

    E-Print Network [OSTI]

    Minnesota, University of

    Demand and Supply Factors ­Gas and Oil Commodity Pricing ­Finite Demand ­Rapid · It is three related, but yet independent industries: ­Fracture Sand Industry ­Oil ­ High volume commodi-es flows in and out of shale plays · Sand In....Oil

  17. CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS

    E-Print Network [OSTI]

    Persoff, P.

    2011-01-01

    the carbon, oil, and gas from the shale are combusted; andceases •t II Burner gas and shale heat shale ll>" ~Air AirFigure 2. Oil recovery Vent gas '\\Raw shale oil Recycled gas

  18. Light-Duty Diesel Market Potential in North America | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for the US Market Diesel Technology - Challenges & Opportunities for North America Diesel Engine Strategy & North American Market Challenges, Technology and Growth...

  19. An observation-based formulation of snow cover fraction and its evaluation over large North American river basins

    E-Print Network [OSTI]

    Yang, Zong-Liang

    An observation-based formulation of snow cover fraction and its evaluation over large North; accepted 23 July 2007; published 1 November 2007. [1] Snow cover strongly interacts with climate through snow albedo feedbacks. However, global climate models still are not adequate in representing snow cover

  20. Subscriber access provided by UNIV NORTH CAROLINA WILMINGTON Journal of Natural Products is published by the American Chemical Society. 1155

    E-Print Network [OSTI]

    Pawlik, Joseph

    Subscriber access provided by UNIV NORTH CAROLINA WILMINGTON Journal of Natural Products bifasciatum, in aquarium assays. When the pure compounds were assayed at eight times the natural concentration the reef community. In a survey of Caribbean sponge chemical defenses, crude extracts obtained from

  1. Gas Shale Plays? The Global Transition

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    in TOC, thermally mature in the gas to oil windows, and among the most prospective in Europe for shale development. Figure VIII-5 exhibits organic-rich shales that are typically...

  2. Production Trends of Shale Gas Wells 

    E-Print Network [OSTI]

    Khan, Waqar A.

    2010-01-14

    To obtain better well performance and improved production from shale gas reservoirs, it is important to understand the behavior of shale gas wells and to identify different flow regions in them over a period of time. It is also important...

  3. LLNL oil shale project review

    SciTech Connect (OSTI)

    Cena, R.J. (ed.)

    1990-04-01

    Livermore's oil shale project is funded by two budget authorities, two thirds from base technology development and one third from environmental science. Our base technology development combines fundamental chemistry research with operation of pilot retorts and mathematical modeling. We've studied mechanisms for oil coking and cracking and have developed a detailed model of this chemistry. We combine the detailed chemistry and physics into oil shale process models (OSP) to study scale-up of generic second generation Hot-Recycled-Solid (HRS) retorting systems and compare with results from our 4 tonne-per-day continuous-loop HRS pilot retorting facility. Our environmental science program focuses on identification of gas, solid and liquid effluents from oil shale processes and development of abatement strategies where necessary. We've developed on-line instruments to quantitatively measure trace sulfur and nitrogen compounds released during shale pyrolysis and combustion. We've studied shale mineralogy, inorganic and organic reactions which generate and consume environmentally sensitive species. Figures, references, and tables are included with each discussion.

  4. Western oil shale development: a technology assessment. Volume 8. Health effects of oil shale development

    SciTech Connect (OSTI)

    Rotariu, G.J.

    1982-02-01

    Information on the potential health effects of a developing oil shale industry can be derived from two major sources: (1) the historical experience in foreign countries that have had major industries; and (2) the health effects research that has been conducted in the US in recent years. The information presented here is divided into two major sections: one dealing with the experience in foreign countries and the second dealing with the more recent work associated with current oil shale development in the US. As a result of the study, several observations can be made: (1) most of the current and historical data from foreign countries relate to occupational hazards rather than to impacts on regional populations; (2) neither the historical evidence from other countries nor the results of current research have shown pulmonary neoplasia to be a major concern, however, certain types of exposure, particularly such mixed source exposures as dust/diesel or dust/organic-vapor have not been adequately studied and the lung cancer question is not closed; (3) the industry should be alert to the incidence of skin disease in the industrial setting, however, automated techniques, modern industrial hygiene practices and realistic personal hygiene should greatly reduce the hazards associated with skin contact; and (4) the entire question of regional water contamination and any resultant health hazard has not been adequately addressed. The industrial practice of hydrotreating the crude shale oil will diminish the carcinogenic hazard of the product, however, the quantitative reduction of biological activity is dependent on the degree of hydrotreatment. Both Soviet and American experimentalists have demonstrated a correlation betweed carcinogenicity/toxicity and retorting temperature; the higher temperatures producing the more carcinogenic or toxic products.

  5. Australian developments in oil shale processing

    SciTech Connect (OSTI)

    Baker, G.L.

    1981-01-01

    This study gives some background on Australian oil shale deposits, briefly records some history of oil shale processing in the country and looks at the current status of the various proposals being considered to produce syncrudes from Australian oil shales. 5 refs.

  6. Oil shale technology and evironmental aspects

    SciTech Connect (OSTI)

    Scinta, J.

    1982-01-01

    Oil shale processes are a combination of mining, retorting, and upgrading facilities. This work outlines the processing steps and some design considerations required in an oil shale facility. A brief overview of above ground and in situ retorts is presented; 6 retorts are described. The development aspects which the oil shale industry is addressing to protect the environment are presented.

  7. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    of its prolific shale gas resources. GIS data were obtainedestimated recoverable shale gas resources of 20 trillionrecoverable shale gas and shale oil resources are in

  8. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    International Coalbed and Shale Gas Symposium, Paper 808.Shale RVSP, New Albany Shale Gas Project, RVSP SeismicWave Analysis from Antrim Shale Gas Play, Michigan Basin,

  9. Oil shale technology. Final report

    SciTech Connect (OSTI)

    NONE

    1995-03-01

    This collaborative project with industrial participants studied oil shale retorting through an integrated program of fundamental research, mathematical model development and operation of a 4-tonne-per-day solid recirculation oil shale test unit. Quarterly, project personnel presented progress and findings to a Project Guidance Committee consisting of company representatives and DOE program management. We successfully operated the test unit, developed the oil shale process (OSP) mathematical model, evaluated technical plans for process scale up and determined economics for a successful small scale commercial deployment, producing premium motor fuel, specility chemicals along with electricity co-production. In budget negotiations, DOE funding for this three year CRADA was terminated, 17 months prematurely, as of October 1993. Funds to restore the project and continue the partnership have not been secured.

  10. Maquoketa Shale Caprock Integrity Evaluation

    SciTech Connect (OSTI)

    Leetaru, Hannes

    2014-09-30

    The Knox Project objective is to evaluate the potential of formations within the Cambrian-Ordovician strata above the Mt. Simon Sandstone (St. Peter Sandstone and Potosi Dolomite) as potential targets for carbon dioxide (CO2) sequestration in the Illinois and Michigan Basins. The suitability of the St. Peter Sandstone and Potosi Dolomite to serve as reservoirs for CO2 sequestration is discussed in separate reports. In this report the data gathered from the Knox project, the Illinois Basin – Decatur Project (IBDP) and Illinois Industrial Carbon Capture and Sequestration project (IL-ICCS) are used to make some conclusions about the suitability of the Maquoketa shale as a confining layer for CO2 sequestration. These conclusions are then upscaled to basin-wide inferences based on regional knowledge. Data and interpretations (stratigraphic, petrophysical, fractures, geochemical, risk, seismic) applicable to the Maquoketa Shale from the above mentioned projects was inventoried and summarized. Based on the analysis of these data and interpretations, the Maquoketa Shale is considered to be an effective caprock for a CO2 injection project in either the Potosi Dolomite or St. Peter Sandstone because it has a suitable thickness (~200ft. ~61m), advantageous petrophysical properties (low effective porosity and low permeability), favorable geomechanical properties, an absence of observable fractures and is regionally extensive. Because it is unlikely that CO2 would migrate upward through the Maquoketa Shale, CO2, impact to above lying fresh water aquifers is unlikely. Furthermore, the observations indicate that CO2 injected into the St. Peter Sandstone or Potosi Dolomite may never even migrate up into the Maquoketa Shale at a high enough concentrations or pressure to threaten the integrity of the caprock. Site specific conclusions were reached by unifying the data and conclusions from the IBDP, ICCS and the Knox projects. In the Illinois Basin, as one looks further away from these sites, the formation characteristics are expected to vary. The degree of how well this data can be extrapolated throughout the Basins (regionalized) is difficult to quantify because of the limited amount of data collected on the Maquoketa Shale away from IBDP, IL-ICCS and the Knox projects. Data gathered from the IBDP/IL-ICCS/Knox projects were used to make conclusions about the suitability of the Maquoketa shale as a confining layer for CO2 sequestration. This study indicates that the Maquoketa Shale would be a suitable caprock for a CO2 injection program in either the Potosi Dolomite or St. Peter Sandstone.

  11. Methane adsorption on Devonian shales 

    E-Print Network [OSTI]

    Li, Fan-Chang

    1992-01-01

    METHANE ADSORPTION ON DEVONIAN SHALES A Thesis by FAN-CHANG LI Submitted to thc Office of Graclua4e Sturiics of texas AgiM Ulllvel'sliy in pari, ial fulfilhuent of t, hc requirements I'or t, hc degree of ii IAS'I'Elf OF SCIL'NCE December... 1992 Major Subject, : Chemical Engineering METHANE ADSORPTION ON DEVONIAN SHALES A Thesis l&y I'AN-CHANC LI Approved as to style and contcut by: A. T. 'vtratson (Chair of Commitl. ee) John C. Slattery (Member) Bruce . Hcrhcrt (Memhcr...

  12. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  14. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  15. FINAL TECHNICAL REPORT AMERICAN RECOVERY AND REINVESTMENT ACT NORTH FORK SKOKOMISH POWERHOUSE AT CUSHMAN NO. 2 DAM

    SciTech Connect (OSTI)

    Fischer, Steve; Wilson, Matthew

    2013-09-30

    The objective of this project was to add generating capacity on an in-stream flow release at Tacoma Power's Cushman hydroelectric project, Cushman No. 2 Dam, FERC Project P-460. The flow that is being used to generate additional electricity was being discharged from a valve at the base of the dam without recovery of the energy. A second objective to the project was to incorporate upstream fish passage by use of a fish collection structure attached to the draft tubes of the hydroelectric units. This will enable reintroduction of native anadromous fish above the dams which have blocked fish passage since the late 1920's. The project was funded in part by the American Recovery and Reinvestment Act through the Department of Energy, Office of Energy, Efficiency and Renewable Energy, Wind and Water Power Program.

  16. Jordan ships oil shale to China

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    Jordan and China have signed an agreement to develop oil shale processing technology that could lead to a 200 ton/day oil shale plant in Jordan. China will process 1200 tons of Jordanian oil shale at its Fu Shun refinery. If tests are successful, China could build the demonstration plant in Jordan's Lajjun region, where the oil shale resource is estimated at 1.3 billion tons. China plans to send a team to Jordan to conduct a plant design study. A Lajjun oil shale complex could produce as much as 50,000 b/d of shale oil. An earlier 500 ton shipment of shale is said to have yielded promising results.

  17. Use of North American and European air quality networks to evaluate global chemistry-climate modeling of surface ozone

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schnell, J. L.; Prather, M. J.; Josse, B.; Naik, V.; Horowitz, L. W.; Cameron-Smith, P.; Bergmann, D.; Zeng, G.; Plummer, D. A.; Sudo, K.; et al

    2015-04-16

    We test the current generation of global chemistry-climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1° × 1° grid cells, allowing commensurate model-measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (~ 15:00) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is less successfully matched. The observedmore »summertime diurnal range (~ 25 ppb) is underestimated in all regions by about 7 ppb, and the observed seasonal range (~ 21 ppb) is underestimated by about 5 ppb except in the most polluted regions where it is overestimated by about 5 ppb. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80% of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The observed linear relationship showing increases in ozone by up to 6 ppb for larger-sized episodes is also matched.« less

  18. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    SciTech Connect (OSTI)

    Susan Stacy; Hollie K. Gilbert

    2005-02-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to house the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.

  19. Production of hydrogen from oil shale

    SciTech Connect (OSTI)

    Schora, F. C.; Feldkirchner, H. L.; Janka, J. C.

    1985-12-24

    A process for production of hydrogen from oil shale fines by direct introduction of the oil shale fines into a fluidized bed at temperatures about 1200/sup 0/ to about 2000/sup 0/ F. to obtain rapid heating of the oil shale. The bed is fluidized by upward passage of steam and oxygen, the steam introduced in the weight ratio of about 0.1 to about 10 on the basis of the organic carbon content of the oil shale and the oxygen introduced in less than the stoichiometric quantity for complete combustion of the organic carbonaceous kerogen content of the oil shale. Embodiments are disclosed for heat recovery from the spent shale and heat recovery from the spent shale and product gas wherein the complete process and heat recovery is carried out in a single reaction vessel. The process of this invention provides high conversion of organic carbon component of oil shale and high production of hydrogen from shale fines which when used in combination with a conventional oil shale hydroconversion process results in increased overall process efficiency of greater than 15 percent.

  20. Effects of diagenesis on the Nd-isotopic composition of black shales from the 420 Ma Utica Shale Magnafacies

    E-Print Network [OSTI]

    Basu, Asish R.

    Effects of diagenesis on the Nd-isotopic composition of black shales from the 420 Ma Utica Shale Abstract The Utica black shales were deposited in the Taconic Foreland basin 420 Ma ago. The organic matter in these shales is of marine origin and the timing of deposition of these shales has been constrained

  1. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Huron Shale - Gas production from Devonian Shale in Eastern Kentucky goes all the way back to 1892, when of the reservoir, efficient gas production was established. The most prolific horizon of Devonian Shale in Eastern Kentucky is the Lower Huron Shale, which is Ohio Shale member. Over 80% of Devonian gas production comes

  2. Use of North American and European air quality networks to evaluate global chemistry–climate modeling of surface ozone

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schnell, J. L.; Prather, M. J.; Josse, B.; Naik, V.; Horowitz, L. W.; Cameron-Smith, P.; Bergmann, D.; Zeng, G.; Plummer, D. A.; Sudo, K.; et al

    2015-09-25

    We test the current generation of global chemistry–climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1° × 1° grid cells, allowing commensurate model–measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (~ 15:00 local time (LT)) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is less successfullymore »matched. The observed summertime diurnal range (~ 25 ppb) is underestimated in all regions by about 7 ppb, and the observed seasonal range (~ 21 ppb) is underestimated by about 5 ppb except in the most polluted regions, where it is overestimated by about 5 ppb. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80 % of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The models also match the observed linear relationship between episode size and a measure of episode intensity, which shows increases in ozone abundance by up to 6 ppb for larger-sized episodes. We conclude that the skill of the models evaluated here provides confidence in their projections of future surface ozone.« less

  3. Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays

    Reports and Publications (EIA)

    2011-01-01

    To gain a better understanding of the potential U.S. domestic shale gas and shale oil resources, the Energy Information Administration (EIA) commissioned INTEK, Inc. to develop an assessment of onshore lower 48 states technically recoverable shale gas and shale oil resources. This paper briefly describes the scope, methodology, and key results of the report and discusses the key assumptions that underlie the results.

  4. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2012-01-01

    Cement Manufacture from Oil Shale, U.S. Patent 2,904,445,CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff Aprilhydraulic cements from spent oil shale is described in this

  5. 90-day Interim Report on Shale Gas Production - Secretary of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    90-day Interim Report on Shale Gas Production - Secretary of Energy Advisory Board 90-day Interim Report on Shale Gas Production - Secretary of Energy Advisory Board The Shale Gas...

  6. Control Strategies for Abandoned in situ Oil Shale Retorts

    E-Print Network [OSTI]

    Persoff, P.; Fox, J.P.

    1979-01-01

    Presented elt the TUJelfth Oil Shale Synlposittnz, Golden,for Abandoned In Situ Oil Shale Retorts P. Persoll and ]. P.Pollution of Spent Oil Shale Residues, EDB Lea, Salinity

  7. CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS

    E-Print Network [OSTI]

    Persoff, P.

    2011-01-01

    Controls for a Commercial Oil Shale In~try, Vol. I, An En~Mathematical Hodel for In-Situ Shale Retorting," in SecondBriefing on In-Situ Oil Shale Technology, Lawrence Livermore

  8. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2012-01-01

    CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P. Persoff AprilCement Manufacture from Oil Shale, U.S. Patent 2,904,445,CEMENTS FROM SPENT OIL SHALE P, K, Mehta Civil Engineering

  9. Control Strategies for Abandoned in situ Oil Shale Retorts

    E-Print Network [OSTI]

    Persoff, P.; Fox, J.P.

    1979-01-01

    Presented elt the TUJelfth Oil Shale Synlposittnz, Golden,for Abandoned In Situ Oil Shale Retorts P. Persoll and ]. P.Water Pollution of Spent Oil Shale Residues, EDB Lea,

  10. CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS

    E-Print Network [OSTI]

    Persoff, P.

    2011-01-01

    Controls for a Commercial Oil Shale In~try, Vol. I, An En~in Second Briefing on In-Situ Oil Shale Technology, LawrenceReactions in Colorado Oil Shale, Lawrence Report UCRL-

  11. Modern Shale Gas Development in the United States: A Primer ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modern Shale Gas Development in the United States: A Primer Modern Shale Gas Development in the United States: A Primer This Primer on Modern Shale Gas Development in the United...

  12. Groundwater and Shale Gas Development (Updated May 29, 2015)

    E-Print Network [OSTI]

    Walter, M.Todd

    Groundwater and Shale Gas Development (Updated May 29, 2015) Background In parts of New York where shale gas extraction is possible, the Marcellus distance separates shale gas and potable water there are still risks associated

  13. Shale Oil Value Enhancement Research

    SciTech Connect (OSTI)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  14. TREATMENT OF MULTIVARIATE ENVIRONMENTAL AND HEALTH PROBLEMS ASSOCIATED WITH OIL SHALE TECHNOLOGY

    E-Print Network [OSTI]

    Kland, M.J.

    2010-01-01

    Chemicals Identified in Oil Shale and Shale Oil. list." 1.of Trace Contaminants in Oil Shale Retort Wa- ters", Am.Trace Contaminants in Oil Shale Retort Waters", in Oil Shale

  15. Developments in oil shale in 1987

    SciTech Connect (OSTI)

    Knutson, C.F.; Dana, G.F.; Solti, G.; Qian, J.L.; Ball, F.D.; Hutton, A.C.; Hanna, J.; Russell, P.L.; Piper, E.M.

    1988-10-01

    Oil shale development continued at a slow pace in 1987. The continuing interest in this commodity is demonstrated by the 342 oil shale citations added to the US Department of Energy Energy Database during 1987. The Unocal project in Parachute, Colorado, produced 600,000 bbl of synfuel in 1987. An appreciable amount of 1987's activity was associated with the nonsynfuel uses of oil shale. 4 figs., 2 tabs.

  16. HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2013-01-01

    Investigations on hydraulic cement from spent oil shale,"April 16-18, 1980 HYDRAULIC CEMENT PREPARATION FROM LURGIpressi ve b strength, MPa this cement in moist environments.

  17. Gas Shale Plays? The Global Transition

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    wells, and install the extensive surface infrastructure needed to transport product to market. Industry is cautious regarding China's likely pace of shale gas development. Even...

  18. Gas Shale Plays? The Global Transition

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and transportation capacity in the Horn River Basin is being expanded to provide improved market access for its growing shale gas production. Pipeline infrastructure is being...

  19. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of energy,...

  20. Shale Gas Application in Hydraulic Fracturing Market is likely...

    Open Energy Info (EERE)

    on unconventional reservoirs such as coal bed methane, tight gas, tight oil, shale gas, and shale oil. Over the period of time, hydraulic fracturing technique has found...

  1. Oil Shale and Other Unconventional Fuels Activities | Department...

    Energy Savers [EERE]

    Services Petroleum Reserves Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy...

  2. New Models Help Optimize Development of Bakken Shale Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Models Help Optimize Development of Bakken Shale Resources New Models Help Optimize Development of Bakken Shale Resources February 7, 2012 - 12:00pm Addthis Washington, DC -...

  3. TechLine: Newly Released Study Highlights Significant Utica Shale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    indicates that the newly explored Utica Shale, which underlies the better-known Marcellus Shale, could hold far more natural gas and oil than previously estimated. If the...

  4. Northwestern University Technological Institute Tight Shale Gas-Hydraulic Fracturing

    E-Print Network [OSTI]

    Guo, Dongning

    Northwestern University Technological Institute Tight Shale Gas-Hydraulic Fracturing Seminar Series fracturing of horizontal wells is priceless Sidney Green, London Shale Gas Summit, 2010 #12;Vertical Well

  5. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room 137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of...

  6. Secretary of Energy Advisory Board Hosts Conference Call on Shale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Advisory Board Hosts Conference Call on Shale Gas Draft Report Secretary of Energy Advisory Board Hosts Conference Call on Shale Gas Draft Report November 10, 2011 -...

  7. Secretary of Energy Advisory Board Subcommittee Releases Shale...

    Energy Savers [EERE]

    Releases Shale Gas Recommendations Secretary of Energy Advisory Board Subcommittee Releases Shale Gas Recommendations August 11, 2011 - 8:54am Addthis WASHINGTON, D.C. - A diverse...

  8. Paleoecology of the Devonian-Mississippian black-shale sequence...

    Office of Scientific and Technical Information (OSTI)

    54 ENVIRONMENTAL SCIENCES; 03 NATURAL GAS; 04 OIL SHALES AND TAR SANDS; BLACK SHALES; GEOLOGY; PALEONTOLOGY; KENTUCKY; DEVONIAN PERIOD; FOSSILS; GEOLOGIC HISTORY; BITUMINOUS...

  9. Method for forming an in-situ oil shale retort in differing grades of oil shale

    SciTech Connect (OSTI)

    Ricketts, T.E.

    1984-04-24

    An in-situ oil shale retort is formed in a subterranean formation containing oil shale. The formation comprises at least one region of relatively richer oil shale and another region of relatively leaner oil shale. According to one embodiment, formation is excavated from within a retort site for forming at least one void extending horizontally across the retort site, leaving a portion of unfragmented formation including the regions of richer and leaner oil shale adjacent such a void space. A first array of vertical blast holes are drilled in the regions of richer and leaner oil shale, and a second array of blast holes are drilled at least in the region of richer oil shale. Explosive charges are placed in portions of the blast holes in the first and second arrays which extend into the richer oil shale, and separate explosive charges are placed in portions of the blast holes in the first array which extend into the leaner oil shale. This provides an array with a smaller scaled depth of burial (sdob) and closer spacing distance between explosive charges in the richer oil shale than the sdob and spacing distance of the array of explosive charges in the leaner oil shale. The explosive charges are detonated for explosively expanding the regions of richer and leaner oil shale toward the horizontal void for forming a fragmented mass of particles. Upon detonation of the explosive, greater explosive energy is provided collectively by the explosive charges in the richer oil shale, compared with the explosive energy produced by the explosive charges in the leaner oil shale, resulting in comparable fragmentation in both grades of oil shale.

  10. Burgess Shale: Cambrian Explosion in Full Bloom

    E-Print Network [OSTI]

    Hagadorn, Whitey

    by research teams led by Walcott, P. E. Raymond, H. B. Whittington, and D. Collins has yielded over 75 basin or trough ad- jacent to a major carbonate escarpment. Rapid burial, low oxygenation, and early shale mem- bers of the Burgess Shale Formation, which are well exposed near the town of Field, British

  11. Chemical kinetics and oil shale process design

    SciTech Connect (OSTI)

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  12. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-07-28

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  13. LLNL oil shale project review: METC third annual oil shale contractors meeting

    SciTech Connect (OSTI)

    Cena, R.J.; Coburn, T.T.; Taylor, R.W.

    1988-01-01

    The Lawrence Livermore National Laboratory combines laboratory and pilot-scale experimental measurements with mathematical modeling of fundamental chemistry and physics to provide a technical base for evaluating oil shale retorting alternatives. Presented herein are results of four research areas of interest in oil shale process development: Recent Progress in Solid-Recycle Retorting and Related Laboratory and Modeling Studies; Water Generation During Pyrolysis of Oil Shale; Improved Analytical Methods and Measurements of Rapid Pyrolysis Kinetics for Western and Eastern Oil Shale; and Rate of Cracking or Degradation of Oil Vapor In Contact with Oxidized Shale. We describe operating results of a 1 tonne-per-day, continuous-loop, solid-recycle, retort processing both Western And Eastern oil shale. Sulfur chemistry, solid mixing limits, shale cooling tests and catalyst addition are all discussed. Using a triple-quadrupole mass spectrometer, we measure individual species evolution with greater sensitivity and selectivity. Herein we discuss our measurements of water evolution during ramped heating of Western and Eastern oil shale. Using improved analytical techniques, we determine isothermal pyrolysis kinetics for Western and Eastern oil shale, during rapid heating, which are faster than previously thought. Finally, we discuss the rate of cracking of oil vapor in contact with oxidized shale, qualitatively using a sand fluidized bed and quantitatively using a vapor cracking apparatus. 3 refs., 4 figs., 1 tab.

  14. Study of composite cement containing burned oil shale

    E-Print Network [OSTI]

    Dalang, Robert C.

    Study of composite cement containing burned oil shale Julien Ston Supervisors : Prof. Karen properties. SCMs can be by-products from various industries or of natural origin, such as shale. Oil shale correctly, give a material with some cementitious properties known as burned oil shale (BOS). This study

  15. Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development

    E-Print Network [OSTI]

    Chen, Tsuhan

    Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Transitions: A Systems Approach Including Marcellus Shale Gas Development Executive Summary In the 21st the Marcellus shale In addition to the specific questions identified for the case of Marcellus shale gas in New

  16. Engineering Methane is a major component of shale gas. Recent

    E-Print Network [OSTI]

    Chemical Engineering Methane is a major component of shale gas. Recent oversupply of shale gas has 30% of electricity from natural and shale gas, increasing from 15% in 2010. US chemical industries have begun using ethane from shale gas as a feedstock. The low methane price is expected to push its

  17. Differential thermal analysis of the reaction properties of raw and retorted oil shale with air

    SciTech Connect (OSTI)

    Wang, T.F.

    1984-01-01

    The results of a study to determine the kinetics of combustion of oil shale and its char by using differential thermal analysis are reported. The study indicates that Colorado oil shale and its char combustion rate is the fastest while Fushun oil shale and its char combustion rate is the slowest among the six oil shales used in this work. Oil shale samples used were Fushun oil shale, Maoming oil shale, Huang county oil shale, and Colorado oil shale.

  18. North Richmond: An American Story

    E-Print Network [OSTI]

    rogers, robert h

    2011-01-01

    was declared the world’s “murder capital” in 2009 by thefor a rate of 130 murders per 100,000 inhabitants. Caracas,Richmond was known as the murder capital of the country. ”

  19. North Richmond: An American Story

    E-Print Network [OSTI]

    rogers, robert h

    2011-01-01

    longtime resident Janet Polk, who is in her 50s, points toroot in the walls and under her kitchen sink, Polk said. “do nothing, nothing,” Polk said of the housing authority. “I

  20. North Richmond: An American Story

    E-Print Network [OSTI]

    rogers, robert h

    2011-01-01

    good jobs in Richmond’s shipyards and who had formerly livedoccasioned by the Kaiser Shipyards that were located inII brought the Kaiser Shipyards to Richmond, and in 1942,

  1. Mineral Sequestration of Carbon Dixoide in a Sandstone-Shale System

    E-Print Network [OSTI]

    Xu, Tianfu; Apps, John A.; Pruess, Karsten

    2004-01-01

    microfractures in geopressured shales. AAPG Bulletin 77(8),Porosimetry measurement of shale fabric and its relationshipof intra-aquifer shales and the relative effectiveness of

  2. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    Pashin, J.C. , 2008. Gas shale potential of Alabama.International Coalbed and Shale Gas Symposium, Paper 808.permeable are clays and shales? Water Resources Research,

  3. CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE

    E-Print Network [OSTI]

    Amy, Gary L.

    2013-01-01

    from Characterization of Spent Shale s . , , . • • . . • ,4. Preparation of Spent Shale Samples and Procedure forof Particular Types of Spent Shale References • Appendix A.

  4. Paleoecology and Geochemistry of the Upper Kellwasser Black Shale and Extinction Event

    E-Print Network [OSTI]

    Haddad, Emily Elizabeth

    2015-01-01

    A.D. , 2009. When do black shales tell molybdenum isotopeand redox facies in core shales of Upper PennsylvanianB.B. , 1994. Marine black shales: depositional mechanisms

  5. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    the Haynesville Shale, Gulf of Mexico Basin. Figure producedthe Haynesville Shale, Gulf of Mexico Basin. Figure producedThe Woodford Shale in southeastern New Mexico: distribution

  6. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    of the Mississippian Barnett Shale, Barnett-Paleozoic totalof the Mississippian Barnett Shale, Fort Worth Basin, andisopach maps of the Barnett Shale, Fort Worth Basin. Figure

  7. CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE

    E-Print Network [OSTI]

    Amy, Gary L.

    2013-01-01

    OF FIGURES Areal extent of oil shale deposits in the Greencommercial in~·situ oil shale facility. Possible alternativefor pyrolysis of oil shale Figure 7. Establishment of

  8. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    and isopach maps of the Maquoketa Shale, Illinois Basin.Figure 6) Illinois Basin Maquoketa Shale New Albany Shaleinformation on the Ordovician Maquoketa Shale. Bristol and

  9. WATER QUALITY EFFECTS OF LEACHATES FROM AN IN SITU OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01

    of spent shale, (2) direct disposal of raw oil shale withoutThis implies that direct disposal of raw oil shales without

  10. What is shale gas and why is it important?

    Reports and Publications (EIA)

    2012-01-01

    Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.

  11. North Louisiana Shale Gas Proved Reserves, Reserves Changes,...

    Gasoline and Diesel Fuel Update (EIA)

    2008 2009 2010 2011 2012 2013 View History Proved Reserves as of Dec. 31 858 9,307 20,070 21,950 13,523 11,473 2007-2013 Adjustments 131 2,347 -172 241 70 2009-2013 Revision...

  12. North Dakota Shale Gas Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    24 368 1,185 1,649 3,147 5,059 2007-2013 Adjustments 101 235 20 253 -72 2009-2013 Revision Increases 119 528 439 901 1,056 2009-2013 Revision Decreases 17 343 290 199 554 2009-2013...

  13. North Dakota Shale Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4Barrels)(Dollars per

  14. North Dakota Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan FebElements)Feet) Decade Year-063 9698

  15. North Louisiana Shale Gas Proved Reserves, Reserves Changes, and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan FebElements)Feet) Decade8 45 30 13 12

  16. Assessment of Factors Influencing Effective CO{sub 2} Storage Capacity and Injectivity in Eastern Gas Shales

    SciTech Connect (OSTI)

    Godec, Michael

    2013-06-30

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO{sub 2}) storage in these formations. The potential storage of CO {sub 2} in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO{sub 2} storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO{sub 2} storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO{sub 2} injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO{sub 2} injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO{sub 2} injection; (5) Identify and evaluate potential constraints to economic CO{sub 2} storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO{sub 2} storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO{sub 2} injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO{sub 2} storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO{sub 2} storage activities would commence consistent with the historical development practices. Alternative CO{sub 2} injection/EGR scenarios were considered and compared to well production without CO{sub 2} injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO{sub 2} that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO{sub 2} in the Marcellus, Utica, Antrim, and Devonian Ohio shales.

  17. Kerogen extraction from subterranean oil shale resources

    DOE Patents [OSTI]

    Looney, Mark Dean (Houston, TX); Lestz, Robert Steven (Missouri City, TX); Hollis, Kirk (Los Alamos, NM); Taylor, Craig (Los Alamos, NM); Kinkead, Scott (Los Alamos, NM); Wigand, Marcus (Los Alamos, NM)

    2010-09-07

    The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

  18. Kerogen extraction from subterranean oil shale resources

    DOE Patents [OSTI]

    Looney, Mark Dean (Houston, TX); Lestz, Robert Steven (Missouri City, TX); Hollis, Kirk (Los Alamos, NM); Taylor, Craig (Los Alamos, NM); Kinkead, Scott (Los Alamos, NM); Wigand, Marcus (Los Alamos, NM)

    2009-03-10

    The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

  19. Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts

    E-Print Network [OSTI]

    Fox, J.P.; Persoff, P.

    1980-01-01

    and L. L. Morriss, "Free Lime in Retorted Oil Shale," Energystrength hydraulic cement by lime addition to Lurgi spentcompounds are formed from lime and silica produced by the

  20. Oil shale mining studies and analyses of some potential unconventional uses for oil shale

    SciTech Connect (OSTI)

    McCarthy, H.E.; Clayson, R.L.

    1989-07-01

    Engineering studies and literature review performed under this contract have resulted in improved understanding of oil shale mining costs, spent shale disposal costs, and potential unconventional uses for oil shale. Topics discussed include: costs of conventional mining of oil shale; a mining scenario in which a minimal-scale mine, consistent with a niche market industry, was incorporated into a mine design; a discussion on the benefits of mine opening on an accelerated schedule and quantified through discounted cash flow return on investment (DCFROI) modelling; an estimate of the costs of disposal of spent shale underground and on the surface; tabulation of potential increases in resource recovery in conjunction with underground spent shale disposal; the potential uses of oil shale as a sulfur absorbent in electric power generation; the possible use of spent shale as a soil stabilizer for road bases, quantified and evaluated for potential economic impact upon representative oil shale projects; and the feasibility of co-production of electricity and the effect of project-owned and utility-owned power generation facilities were evaluated. 24 refs., 5 figs., 19 tabs.

  1. Method for retorting oil shale

    DOE Patents [OSTI]

    Shang, Jer-Yu; Lui, A.P.

    1985-08-16

    The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.

  2. Australian Shale Gas Assessment Project Reza Rezaee

    E-Print Network [OSTI]

    , Access to different pore structure evaluation techniques including low pressure nitrogen adsorptionAustralian Shale Gas Assessment Project Reza Rezaee Unconventional Gas Research Group of natural gas in many countries. According to recent assessments, Australia has around 437 trillion cubic

  3. Multiscale strength homogenization : application to shale nanoindentation

    E-Print Network [OSTI]

    Gathier, Benjamin

    2008-01-01

    Shales are one of the most encountered materials in sedimentary basins. Because of their highly heterogeneous nature, their strength prediction for oil and gas exploitation engineering has long time been an enigma. In this ...

  4. Microporoelastic modeling of organic-rich shales

    E-Print Network [OSTI]

    Khosh Sokhan Monfared, Siavash

    2015-01-01

    Due to their abundance, organic-rich shales are playing a critical role in re-defining the world's energy landscape leading to shifts in global geopolitics. However, technical challenges and environmental concerns continue ...

  5. Case Study: Shale Bings in Central

    E-Print Network [OSTI]

    structure of burnt shale is unlike coal spoil or any other type of industrial waste. The substrate varies- duction of waste or residues that require storage and/ or treatment. In central Scotland, mining for coal

  6. QER- Comment of Marcellus Shale Coalition

    Broader source: Energy.gov [DOE]

    Attached please find the Marcellus Shale Coalition’s comments with regard to the U.S. Department of Energy’s Quadrennial Energy Review Task Force Hearing - Natural Gas Transmission, Storage and Distribution. Thank you

  7. Sorption of Methane and Ethane on Belgian Black Shale Using a Manometric Setup

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    Sorption of Methane and Ethane on Belgian Black Shale Using a Manometric Setup Naeeme Danesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Fundamentals 3 2.1 Shales.1.2 Shale characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.3 Shale gas

  8. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01

    measured mercury levels in shale gases and waters. The TLV'srecovery shale Spent shale gas (wet) CS~35 cs~s6 CS-57 CS-59on large areas of the shale bed if gas channeling and

  9. Microsoft Word - Honda_north amercian manufacturing facilities...

    Office of Environmental Management (EM)

    HONDA Submitted by: Ed Cohen Date: October 22, 2008 HONDA NORTH AMERICAN MANUFACTURING FACILITIES U.S. Department of Energy Advanced Technology Vehicle Manufacturing Loan Program 1...

  10. New York Marcellus Shale: Industry boom put on hold

    SciTech Connect (OSTI)

    Mercurio, Angelique

    2012-01-16

    Key catalysts for Marcellus Shale drilling in New York were identified. New York remains the only state in the nation with a legislative moratorium on high-volume hydraulic fracturing, as regulators and state lawmakers work to balance the advantages of potential economic benefits while protecting public drinking water resources and the environment. New York is being particularly careful to work on implementing sufficiently strict regulations to mitigate the environmental impacts Pennsylvania has already seen, such as methane gas releases, fracturing fluid releases, flowback water and brine controls, and total dissolved solids discharges. In addition to economic and environmental lessons learned, the New York Department of Environmental Conservation (DEC) also acknowledges impacts to housing markets, security, and other local issues, and may impose stringent measures to mitigate potential risks to local communities. Despite the moratorium, New York has the opportunity to take advantage of increased capital investment, tax revenue generation, and job creation opportunities by increasing shale gas activity. The combination of economic benefits, industry pressure, and recent technological advances will drive the pursuit of natural gas drilling in New York. We identify four principal catalysts as follows: Catalyst 1: Pressure from Within the State. Although high-volume hydraulic fracturing has become a nationally controversial technology, shale fracturing activity is common in every U.S. state except New York. The regulatory process has delayed potential economic opportunities for state and local economies, as well as many industry stakeholders. In 2010, shale gas production accounted for $18.6 billion in federal royalty and local, state, and federal tax revenues. (1) This is expected to continue to grow substantially. The DEC is under increased pressure to open the state to the same opportunities that Alabama, Arkansas, California, Colorado, Kansas, Louisiana, Montana, New Mexico, North Dakota, Ohio, Oklahoma, Pennsylvania, South Dakota, Texas, Utah, West Virginia, and Wyoming are pursuing. Positive labor market impacts are another major economic draw. According to the Revised Draft SGEIS on the Oil, Gas and Solution Mining Regulatory Program (September 2011), hydraulic fracturing would create between 4,408 and 17,634 full-time equivalent (FTE) direct construction jobs in New York State. Indirect employment in other sectors would add an additional 29,174 FTE jobs. Furthermore, the SGEIS analysis suggests that drilling activities could add an estimated $621.9 million to $2.5 billion in employee earnings (direct and indirect) per year, depending upon how much of the shale is developed. The state would also receive direct tax receipts from leasing land, and has the potential to see an increase in generated indirect revenue. Estimates range from $31 million to $125 million per year in personal income tax receipts, and local governments would benefit from revenue sharing. Some landowner groups say the continued delay in drilling is costing tens of thousands of jobs and millions of dollars in growth for New York, especially in the economically stunted upstate. A number of New York counties near Pennsylvania, such as Chemung, NY, have experienced economic uptick from Pennsylvania drilling activity just across the border. Chemung officials reported that approximately 1,300 county residents are currently employed by the drilling industry in Pennsylvania. The Marcellus shale boom is expected to continue over the next decade and beyond. By 2015, gas drilling activity could bring 20,000 jobs to New York State alone. Other states, such as Pennsylvania and West Virginia, are also expected to see a significant increase in the number of jobs. Catalyst 2: Political Reality of the Moratorium. Oil and gas drilling has taken place in New York since the 19th century, and it remains an important industry with more than 13,000 currently active wells. The use of hydraulic fracturing in particular has been employed for decades. Yet, as technological

  11. Method for maximizing shale oil recovery from an underground formation

    DOE Patents [OSTI]

    Sisemore, Clyde J. (Livermore, CA)

    1980-01-01

    A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

  12. Retorting of oil shale followed by solvent extraction of spent shale: Experiment and kinetic analysis

    SciTech Connect (OSTI)

    Khraisha, Y.H.

    2000-05-01

    Samples of El-Lajjun oil shale were thermally decomposed in a laboratory retort system under a slow heating rate (0.07 K/s) up to a maximum temperature of 698--773 K. After decomposition, 0.02 kg of spent shale was extracted by chloroform in a Soxhlet extraction unit for 2 h to investigate the ultimate amount of shale oil that could be produced. The retorting results indicate an increase in the oil yields from 3.24% to 9.77% of oil shale feed with retorting temperature, while the extraction results show a decrease in oil yields from 8.10% to 3.32% of spent shale. The analysis of the data according to the global first-order model for isothermal and nonisothermal conditions shows kinetic parameters close to those reported in literature.

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-04-26

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  14. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-08-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  15. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-07-29

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  16. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-28

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  17. Preliminary evaluation of shale-oil resources in Missouri

    SciTech Connect (OSTI)

    Nuelle, L.M.; Sumner, H.S.

    1981-02-01

    This report is a preliminary overview of oil-shale potential in Missouri. Two types of oil shales occur in Missouri: (1) the platform marine type, represented by the Devonian Chattanooga Shale, and (2) black shales in Pennsylvanian cyclothems, many of which overlie currently mined coal beds. The Chattanooga Shale contains black, fissile, carbonaceous shales and reaches a thickness of around 70 ft in southwestern Missouri. Oil-yield data from Missouri are not available, but based on yields from other states, the Chattanooga of southwest Missouri is estimated to contain between 2.6 and 15.8 billion barrels of oil. Preliminary estimates of the black, hard, fissile, carbonaceous Pennsylvanian shales indicate they contain between 100 and 200 billion barrels of shale oil. Many of these units directly overlie currently mined coal seams and could be recovered with the coal, but they are now discarded as overburden. These shales also contain significant amounts of phosphates and uranium. Other Paleozoic units with limited oil-shale potential are the Ordovician Decorah and Maquoketa Formations and the Upper Devonian Grassy Creek Shale. Ambitious research programs are needed to evaluate Missouri oil-shale resources. Further investigations should include economic and technological studies and the drilling, mapping, and sampling of potential oil-shale units. Shrinking supplies of crude oil make such studies desirable.

  18. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    O'Sullivan, Francis

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  19. Material invariant properties of shales : nanoindentation and microporoelastic analysis

    E-Print Network [OSTI]

    Delafargue, A. (Antoine), 1981-

    2005-01-01

    Shales compose the major part of sedimentary rocks and cover most of hydrocarbon bearing reservoirs. Shale materials are probably one of the most complex natural composites, and their mechanical properties are still an ...

  20. Shale gas production: potential versus actual greenhouse gas emissions

    E-Print Network [OSTI]

    O’Sullivan, Francis Martin

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  1. Strategic Significance of Americas Oil Shale Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    con- sists of three major steps: (1) oil shale mining and ore preparation (2) pyrolysis of oil shale to produce kerogen oil, and (3) processing kerogen oil to produce...

  2. Can We Accurately Model Fluid Flow in Shale?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can We Accurately Model Fluid Flow in Shale? Can We Accurately Model Fluid Flow in Shale? Print Thursday, 03 January 2013 00:00 Over 20 trillion cubic meters of natural gas are...

  3. Burngrange Nos.1 and 2 (oil Shale) Mine, Midlothian 

    E-Print Network [OSTI]

    Bryan, A. M.

    1947-01-01

    BURNGRANGE Nos. I AND 2 (Oil Shale) MINE, MIDLOTHIAN REPORT On the Causes of, and Circumstances attending, the Explosion and Fire which occurred on the 10th January, 1947, at the Burngrange Nos. I and 2 (Oil Shale) ...

  4. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2012-01-01

    ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P.Cement Manufacture from Oil Shale, U.S. Patent 2,904,445,203 (1974), E. D. York, Amoco Oil Co. , letter to J, P. Fox,

  5. Economics and Politics of Shale Gas in Europe

    E-Print Network [OSTI]

    Chyong, Chi Kong; Reiner, David M.

    2015-01-01

    In the wake of the dramatic growth in shale gas production in the United States, interest in shale gas exploration in Europe has been driven primarily by concerns over industrial competitiveness and energy security. A number of studies have been...

  6. Process Design and Integration of Shale Gas to Methanol 

    E-Print Network [OSTI]

    Ehlinger, Victoria M.

    2013-02-04

    Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact...

  7. Can We Accurately Model Fluid Flow in Shale?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 00:00 Over 20 trillion cubic meters of natural gas are trapped in shale, but many shale oil and gas producers still use models of underground fluid flow that date back to...

  8. Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale...

    Energy Savers [EERE]

    (SEAB) on Shale Gas Production Posts Draft Report Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale Gas Production Posts Draft Report November 10, 2011 - 1:12pm...

  9. Fracture-permeability behavior of shale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore »the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO? sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  10. Fracture-permeability behavior of shale

    SciTech Connect (OSTI)

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition to the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO? sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.

  11. System for utilizing oil shale fines

    DOE Patents [OSTI]

    Harak, Arnold E. (Laramie, WY)

    1982-01-01

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  12. Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL pages 56, Rochester, April 2007. c 2007 Association for Computational Linguistics

    E-Print Network [OSTI]

    and geographically. The term language as opposed to dialect is only an expression of power and dominance of one group the perception of the distinction between the Arabic language and an Arabic dialect. This power relationship valley: Egypt and Sudan. North African Arabic covers the dialects of Morocco, Algeria, Tunisia

  13. Shale Oil and Gas, Frac Sand, and Watershed

    E-Print Network [OSTI]

    Minnesota, University of

    ;Bakken Oil Shale scope · Light, Sweet crude ­ ideal for automotive fuels and mid-size refineries (Midwest

  14. Late Pennsylvanian cyclic sedimentary units of the Brownwood area, north-central Texas 

    E-Print Network [OSTI]

    Hojnacki, Robert Stephen

    1986-01-01

    . Sampled horizons of the Ranger, Home Creek, Bunger, Lower Gunsight and Upper Gunsight Limestones. Scale is in meters. 22 marine shales, which may include phosphatic shales near the base; 4) non-marine and/or shoreline clastics with common sands... of deposits in north-central Texas. Six cycles have been 1dent1f1ed and demonstrate well developed lithologic and faunal trends. Most cycles are bounded by paleosols, and some contain deep water phosphate nodule-bear1ng shales. Using these two endpoints...

  15. Location and Geology Fig 1. The Macasty black shale

    E-Print Network [OSTI]

    to the chondritic uniform reservoir (CHUR; black line) and the depleted mantle (purple line). The parameters of CHUR by calcite. Fig. 5. Pyritized fracture Fig. 6. Massive black shale Fig. 7. Graptolite in black shale Fig. 8 shale, - Measure the concentrations of major, minor and trace elements including organic carbon

  16. THE SHALE OIL BOOM: A U.S. PHENOMENON

    E-Print Network [OSTI]

    June 2013 THE SHALE OIL BOOM: A U.S. PHENOMENON LEONARDO MAUGERI The Geopolitics of Energy Project material clearly cite the full source: Leonardo Maugeri. "The Shale Oil Boom: A U.S. Phenomenon" Discussion and International Affairs. #12;June 2013 THE SHALE OIL BOOM: A U.S. PHENOMENON LEONARDO MAUGERI The Geopolitics

  17. Noncontacting benchtop measurements of the elastic properties of shales

    E-Print Network [OSTI]

    Boise State University

    Noncontacting benchtop measurements of the elastic properties of shales Thomas E. Blum1 , Ludmila the elastic anisotropy of horizontal shale cores. Whereas conventional transducer data contained an ambigu shales were almost surely exaggerated by delamination of clay platelets and microfracturing, but provided

  18. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale

    E-Print Network [OSTI]

    Jackson, Don

    Paleoecology of the Greater Phyllopod Bed community, Burgess Shale Jean-Bernard Caron , Donald A and composition, ecological attributes, and environmental influences for the Middle Cambrian Burgess Shale ecosystems further suggest the Burgess Shale community was probably highly dependent on immigration from

  19. SPE-163690-MS Synthetic, Geomechanical Logs for Marcellus Shale

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE-163690-MS Synthetic, Geomechanical Logs for Marcellus Shale M. O. Eshkalak, SPE, S. D of hydrocarbons from the reservoirs, notably shale, is attributed to realizing the key fundamentals of reservoir and mineralogy is crucial in order to identify the "right" pay-zone intervals for shale gas production. Also

  20. Red Leaf Resources and the Commercialization of Oil Shale

    E-Print Network [OSTI]

    Utah, University of

    Red Leaf Resources and the Commercialization of Oil Shale #12;About Red Leaf Resources 2006 Company commercial development field activities #12;Highlights Proven, Revolutionary Oil Shale Extraction Process Technology Significant Owned Oil Shale Resource #12;· The executive management team of Red Leaf Resources

  1. Creation and Impairment of Hydraulic Fracture Conductivity in Shale Formations 

    E-Print Network [OSTI]

    Zhang, Junjing

    2014-07-10

    Multi-stage hydraulic fracturing is the key to the success of many shale gas and shale oil reservoirs. The main objectives of hydraulic fracturing in shale are to create artificial fracture networks that are conductive for oil and gas flow...

  2. Risks and Risk Governance in Unconventional Shale Gas Development

    E-Print Network [OSTI]

    Jackson, Robert B.

    Risks and Risk Governance in Unconventional Shale Gas Development Mitchell J. Small,*, Paul C, Desert Research Institute, Reno, Nevada 89512, United States 1. INTRODUCTION The recent U.S. shale gas Issue: Understanding the Risks of Unconventional Shale Gas Development Published: July 1, 2014 A broad

  3. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

  4. Optimization Models for Shale Gas Water Management Linlin Yang

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Optimization Models for Shale Gas Water Management Linlin Yang , Jeremy Manno and Ignacio E With the advancement in directional drilling and hydraulic fracturing, shale gas is predicted to provide 46% of the United States natural gas supply by 20351 . The number of wells drilled in the Marcellus shale play has

  5. Water's Journey Through the Shale Gas Drilling and

    E-Print Network [OSTI]

    Walter, M.Todd

    Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas in the Marcellus shale natural gas industry in the Mid-Atlantic region. Using publicly available information, we

  6. Northwestern University Technological Institute Tight Shale Gas-Hydraulic Fracturing

    E-Print Network [OSTI]

    Guo, Dongning

    Northwestern University Technological Institute Tight Shale Gas-Hydraulic Fracturing Seminar Series Where are we Today: Reservoir and Completion Quality Is Tight Shale Gas and Oil the Answer ? Sidney and with different economic and environmental impacts · Tight Shale Gas and Oil is at least part of the answer

  7. Spills and leaks Associated with Shale Gas Development

    E-Print Network [OSTI]

    Walter, M.Todd

    1 Spills and leaks Associated with Shale Gas Development (Updated April 27th , 2012) Brief of toxic chemicals, contaminated water, or hazardous materials. Spills and leaks associated with shale gas associated with shale gas development will depend on the pace and scale with which the industry grows

  8. Microbial Dynamics and Control in Shale Gas Production Jason Gaspar,

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Microbial Dynamics and Control in Shale Gas Production Jason Gaspar, Jacques Mathieu, Yu Yang, Ross effects in shale gas production, such as reservoir souring, plugging, equipment corrosion, and a decrease fluids, drilling mud, and impoundment water likely introduce deleterious microorganisms into shale gas

  9. Shale gas production: potential versus actual greenhouse gas emissions*

    E-Print Network [OSTI]

    Shale gas production: potential versus actual greenhouse gas emissions* Francis O Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level

  10. Stormwater, Erosion and Shale Gas Development (Updated May 11, 2014)

    E-Print Network [OSTI]

    Walter, M.Todd

    Stormwater, Erosion and Shale Gas Development (Updated May 11, 2014) Why and erosion at shale gas well sites do not receive a great deal of attention from are a major reason for the proposed ban on shale gas development within the New

  11. Oil shale retorting and combustion system

    DOE Patents [OSTI]

    Pitrolo, Augustine A. (Fairmont, WV); Mei, Joseph S. (Morgantown, WV); Shang, Jerry Y. (Fairfax, VA)

    1983-01-01

    The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

  12. A1. SHALE GAS PRODUCTION GROWTH IN THE UNITED STATES..............................1 A2. VARIABILITY IN SHALE WELL PRODUCTION PERFORMANCE ............................1

    E-Print Network [OSTI]

    1 APPENDIX1 Contents A1. SHALE GAS PRODUCTION GROWTH IN THE UNITED STATES FOR FLOWBACK GAS CAPTURE IN SHALE PLAYS..9 A5. REFERENCES...................................................................................................................13 A1. SHALE GAS PRODUCTION GROWTH IN THE UNITED STATES Natural gas production in the United States

  13. Shale Gas Production Theory and Case Analysis We researched the process of oil recovery and shale gas

    E-Print Network [OSTI]

    Huang, Xun

    Shale Gas Production Theory and Case Analysis (Siemens) We researched the process of oil recovery and shale gas recovery and compare the difference between conventional and unconventional gas reservoir and recovery technologies. Then we did theoretical analysis on the shale gas production. According

  14. SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01

    Properties of Spent Shales. Surface Area Measurements.Carbon. Effects. ~~ co 2,and Oil~Shale Partial-pressure andWater from Green River Oil Shale, 11 Chem. Ind. 1, 485 (

  15. SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01

    Water from Green River Oil Shale, 11 Chem. Ind. 1, 485 (Effluents from In-Situ Oil Shale Processing," in ProceedingsControl Technology for Oil Shale Retort Water," August 1978.

  16. Soil stabilization using oil-shale solid waste

    SciTech Connect (OSTI)

    Turner, J.P. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Civil and Archeological Engineering)

    1994-04-01

    Oil-shale solid wastes are evaluated for use as soil stabilizers. A laboratory study consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in durability and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern oil shale appears to be feasible for soil stabilization only if limestone is added during combustion. Testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented and the mechanisms of spent-shale cementation are discussed.

  17. Microbial desulfurization of Eastern oil shale: Bioreactor studies

    SciTech Connect (OSTI)

    Maka, A.; Akin, C.; Punwani, D.V.; Lau, F.S.; Srivastava, V.J.

    1989-01-01

    The removal of sulfur from Eastern oil shale (40 microns particle size) slurries in bioreactors by mixed microbial cultures was examined. A mixed culture that is able to remove the organic sulfur from model sulfur compounds presenting coal as well as a mixed culture isolated from oil shale enrichments were evaluated. The cultures were grown in aerobic fed-batch bioreactors where the oil shale served as the source of all nutrients except organic carbon. Glucose was added as an auxiliary carbon source. Microbial growth was monitored by plate counts, the pH was checked periodically, and oil shale samples were analyzed for sulfur content. Results show a 24% reduction in the sulfur content of the oil shale after 14 days. The settling characteristics of the oil shale in the bioreactors were examined in the presence of the microbes. Also, the mixing characteristics of the oil shale in the bioreactors were examined. 10 refs., 6 figs., 5 tabs.

  18. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    E-Print Network [OSTI]

    Liu, H.H.

    2012-01-01

    of a jurassic opalinum shale, switzerland. Clays and Clay96   1 INTRODUCTION Clay/shale has been considered asand Rupture of Heterogeneous Shale Samples by Using a Non-

  19. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    E-Print Network [OSTI]

    2015-01-01

    in the Haynesville Shale, Environ. Sci. Technol. , 44(24),of methane emissions from shale gas development, Proc. Natl.and northeastern Marcellus shale gas production regions, J.

  20. Biogeochemical Signatures in Precambrian Black Shales: Window Into the Co-Evolution of Ocean Chemistry and Life on Earth

    E-Print Network [OSTI]

    Scott, Clinton

    2009-01-01

    concentration in black shales: EXAFS evidence. Geochimica etOs and 2316Ma age for marine shale: implications forconcentration in black shales: EXAFS evidence. Geochimica et

  1. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    E-Print Network [OSTI]

    2015-01-01

    of methane emissions from shale gas development, Proc. Natl.and northeastern Marcellus shale gas production regions, J.Haynesville and Marcellus shale gas production regions, J.

  2. Partnership connects North America NGL markets

    SciTech Connect (OSTI)

    Bodenhamer, K.

    1998-12-31

    The United States and Canadian NGL/LPG pipeline network became a larger North America system on April 2, 1997 with the opening of the Rio Grande Pipeline, delivering LPG from the United States to Mexico. This North American pipeline system now links three of the world`s largest LPG producing and consuming nations.

  3. Shale Gas & Tight Oil Economic and Policy

    E-Print Network [OSTI]

    Guo, Dongning

    Dependence on Fossil Fuels Fracking concerns Potential impact on water resources Will LNG exports drive more Information Michael Ratner Specialist in Energy Policy Congressional Research Service 101 Independence Avenue · Hydraulic fracturing New Technology: Shale gas deposit Source: U.S. Department of Energy Northwestern -6 #12

  4. Boomtown blues; Oil shale and Exxon's exit

    SciTech Connect (OSTI)

    Gulliford, A. (Western New Mexico Univ., Silver City, NM (USA))

    1989-01-01

    This paper chronicles the social and cultural effects of the recent oil shale boom on the Colorado communities of Rifle, Silt, Parachute, and Grand Junction. The paper is based upon research and oral history interviews conducted throughout Colorado and in Houston and Washington, DC.

  5. Water mist injection in oil shale retorting

    DOE Patents [OSTI]

    Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

    1980-07-30

    Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

  6. SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01

    is pyrolysized to produce shale oil, gas, a solid referredshale, and aqueous effluents known as retort water and gasoil shale process waters were studied: retort water and gas

  7. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  8. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    E-Print Network [OSTI]

    2015-01-01

    Greater focus needed on methane leakage from natural gasAnthropogenic emissions of methane in the United States,A. R. , et al. (2014), Methane leaks from North American

  9. Determination of the Controls on Permeability and Transport in Shale by Use of Percolation Models 

    E-Print Network [OSTI]

    Chapman, Ian

    2012-10-19

    Page 2.1 SEM Image of Kerogen Pores from a Barnett Shale Sample ................................ 2 2.2 TEM Image of Barnett Shale Kerogen .................................................................. 3 2.3 Equivalent Pore Diameter... Histogram for Utica Shale Sample ............................. 4 2.4 Equivalent Pore Diameter for Fayetteville Shale Sample ..................................... 5 2.5 Adsorbed and Total Gas Content with Respect to TOC in Barnett Shale...

  10. The chemistry of minerals obtained from the combustion of Jordanian oil shale

    E-Print Network [OSTI]

    Shawabkeh, Reyad A.

    The chemistry of minerals obtained from the combustion of Jordanian oil shale Awni Y. Al was performed on the spent oil shale (oil shale ash) obtained from the combustion of Jordanian oil shale process, minimal fragmentation was encountered since Jordanian oil shale contains large proportions of ash

  11. Two-level, horizontal free face mining system for in situ oil shale retorts

    SciTech Connect (OSTI)

    Cha, C.Y.; Ricketts, T.E.

    1986-09-16

    A method is described for forming an in-situ oil shale retort within a retort site in a subterranean formation containing oil shale, such an in-situ oil shale retort containing a fragmented permeable mass of formation particles containing oil shale formed within upper, lower and side boundaries of an in-situ oil shale retort site.

  12. Paper #194973 GEOCHEMICAL CHARACTERIZATION OF THE RESERVOIR HOSTING SHALE-GAS AND OIL in

    E-Print Network [OSTI]

    Hattori, Kéiko H.

    Paper #194973 GEOCHEMICAL CHARACTERIZATION OF THE RESERVOIR HOSTING SHALE-GAS AND OIL a reservoir for shale-gas and oil. We examined organic-rich black shale, known as Macasty shale, of Upper SHALE-GAS AND OIL in THE SUBSURFACE OF ANTICOSTI ISLAND, CANADA Key Words: Provenance, Anticosti Island

  13. Forecasting, Sensitivity and Economic Analysis of Hydrocarbon Production from Shale Plays Using Artificial Intelligence & Data Mining

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    and condensate) from Marcellus Shale. Instead of imposing our understanding of flow and transport in shale gas Marcellus Shale. Introduction Shale gas has attracted attention throughout the world. As a result, there has been a lot of research on the shale gas reservoirs focusing toward improving the understanding

  14. Oil shale ash-layer thickness and char combustion kinetics

    SciTech Connect (OSTI)

    Aldis, D.F.; Singleton, M.F.; Watkins, B.E.; Thorsness, C.B.; Cena, R.J.

    1992-04-15

    A Hot-Recycled-Solids (HRS) oil shale retort is being studied at Lawrence Livermore National Laboratory. In the HRS process, raw shale is heated by mixing it with burnt retorted shale. Retorted shale is oil shale which has been heated in an oxygen deficient atmosphere to pyrolyze organic carbon, as kerogen into oil, gas, and a nonvolatile carbon rich residue, char. In the HRS retort process, the char in the spent shale is subsequently exposed to an oxygen environment. Some of the char, starting on the outer surface of the shale particle, is burned, liberating heat. In the HRS retort, the endothermic pyrolysis step is supported by heat from the exothermic char combustion step. The rate of char combustion is controlled by three resistances; the resistance of oxygen mass transfer through the gas film surrounding the solid particle, resistance to mass transfer through a ash layer which forms on the outside of the solid particles as the char is oxidized and the resistance due to the intrinsic chemical reaction rate of char and oxygen. In order to estimate the rate of combustion of the char in a typical oil shale particle, each of these resistances must be accurately estimated. We begin by modeling the influence of ash layer thickness on the over all combustion rate of oil shale char. We then present our experimental measurements of the ash layer thickness of oil shale which has been processed in the HRS retort.

  15. Los Alamos environmental activities/oil shale effluents

    SciTech Connect (OSTI)

    Peterson, E.J.

    1985-01-01

    The objectives of this research are to determine the nature, magnitude, and time dependence of the major and trace element releases as functions of the raw shale mineralogy, retorting conditions, and spent shale mineral assemblages. These experimental studies will focus on retorting variable regimes characteristic of most retorting processes. As an adjunct objective, the relation of laboratory results to those obtained from both bench-scale and pilot-scale retorts, when both have been operated under similar retorting conditions, will be defined. The goal is to develop a predictive capability for spent shale chemistry as a function of the raw material feedstock and process parameters. Key accomplishments follow: completed an overview of health, environmental effects, and potential ''show stoppers'' in oil shale development; elucidated the importance of both raw material and process in the identity and behavior of spent shale wastes (Occidental raw and spent shales from the Logan Wash site); completed a balanced factorial design experiment to investigate the influence of shale type, temperature, and atmosphere on spent shale behavior; compared the behavior of spent shales from laboratory experiments with shales generated from MIS retorting by OOSI at Logan Wash, Colorado; completed a study of the partitioning of minerals, inorganics, and organics as a function of particle size in a raw shale from Anvil Points, Colorado; evaluated the application of the Los Alamos nuclear microprobe to the characterization of trace element residences in shale materials; established the use of chemometrics as a major tool for evaluating large data bases in oil shale research and for relating field and laboratory results; conceptualized and evaluated experimentally a multistaged leaching control for abandonment of underground retorts; and coordinated activities with other DOE laboratories, industry laboratories, and universities. 13 refs., 1 fig., 2 tabs.

  16. Water management practices used by Fayetteville shale gas producers.

    SciTech Connect (OSTI)

    Veil, J. A.

    2011-06-03

    Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

  17. A feasibility study of oil shale fired pulse combustors with applications to oil shale retorting

    SciTech Connect (OSTI)

    Morris, G.J.; Johnson, E.K.; Zhang, G.Q.; Roach, R.A.

    1992-07-01

    The results of the experimental investigation performed to determine the feasibility of using pulverized Colorado oil shale to fuel a bench scale pulse combustor reveal that oil shale cannot sustain pulsations when used alone as fuel. Trace amounts of propane mixed with the oil shale enabled the pulsations, however. Up to 80% of the organic material in the oil shale was consumed when it was mixed with propane in the combustor. Beyond the feasibility objectives, the operating conditions of the combustor fuel with propane and mixtures of oil shale and propane were characterized with respect to pulsation amplitude and frequency and the internal combustor wall temperature over fuel lean and fuel rich stoichiometries. Maximum pressure excursions of 12.5 kPa were experienced in the combustor. Pulsation frequencies ranged from 50 to nearly 80 Hz. Cycle resolved laser Doppler anemometry velocities were measured at the tail pipe exit plane. Injecting inert mineral matter (limestone) into the pulse combustor while using propane fuel had only a slight effect on the pulsation frequency for the feed rates tested.

  18. Utilization of Estonian oil shale at power plants

    SciTech Connect (OSTI)

    Ots, A. [Tallin Technical Univ. (Estonia). Thermal Engineering Department

    1996-12-31

    Estonian oil shale belongs to the carbonate class and is characterized as a solid fuel with very high mineral matter content (60--70% in dry mass), moderate moisture content (9--12%) and low heating value (LHV 8--10 MJ/kg). Estonian oil shale deposits lie in layers interlacing mineral stratas. The main constituent in mineral stratas is limestone. Organic matter is joined with sandy-clay minerals in shale layers. Estonian oil shale at power plants with total capacity of 3060 MW{sub e} is utilized in pulverized form. Oil shale utilization as fuel, with high calcium oxide and alkali metal content, at power plants is connected with intensive fouling, high temperature corrosion and wear of steam boiler`s heat transfer surfaces. Utilization of Estonian oil shale is also associated with ash residue use in national economy and as absorbent for flue gas desulfurization system.

  19. WATER QUALITY EFFECTS OF LEACHATES FROM AN IN SITU OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01

    on the other oil-shale related solid wastes. This tsbulationPiles Solid wastes from the shale-oil recovery process alsooil shale, and other mine spoils and solids from water and waste-

  20. USE OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY FOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES

    E-Print Network [OSTI]

    Girvin, D.G.

    2011-01-01

    A. Robb, and T. J. Spedding. Minor Elements in Oil Shale andOil-Shale Products. LERC RI 77-1, 1977. Bertine, K. K. andFrom A Simulated In-Situ Oil Shale Retort. In: Procedings of

  1. INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER

    E-Print Network [OSTI]

    Farrier, D.S.

    2011-01-01

    A. Robb, and T. J. Spedding. Minor Elements in Oil Shale andOil Shale Products. LERC Rept. of Invest. 77-1, 1977.Significant to In Situ Oil Shale Processing. Quart. Colo.

  2. SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS

    E-Print Network [OSTI]

    Fish, Richard H.

    2013-01-01

    organoarsenic compounds in oi.l shale process waters using aPresented at the 13th Oil Shale Symposium, Golden, CO, April~1ETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS Richard H.

  3. WATER QUALITY EFFECTS OF LEACHATES FROM AN IN SITU OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01

    from a Simulated In-Situ Oil Shale Retort, Proceedings ofthe 11th Oil Shale Symposium, 1978. J. W.MB_terial in Green River Oil Shale, U.S. Bur. lvlines Rept.

  4. INTERCOMPARISON STUDY OF ELEMENTAL ABUNDANCES IN RAW AND SPENT OIL SHALES

    E-Print Network [OSTI]

    Fox, J.P.

    2011-01-01

    A. Robb, and T. J. Spedding. Minor Elements ~n Oil Shale andOil-Shale Products. LERC RI-77/1, 1977. Wildeman, T. R.H. Meglen. The Analysis of Oil-Shale Materials for Element

  5. OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    ,

    2012-01-01

    from In-Situ Retorting of Oil Shale," Energy and EnvironmentTrace Contaminants in Oil Shale Retort Water M. J. Kland, A.Arsenic Compounds 1n Oil Shale Process Waters R. H. Fish,

  6. A Strategy for the Abandonment of Modified In-Situ Oil Shale Retorts

    E-Print Network [OSTI]

    Fox, J.P.; Persoff, P.; Moody, M.M.; Sisemore, C.J.

    1978-01-01

    Effects of steam on oil shale ing: a preliminary laboratoryJr. , "Disposal J. spent shale ash in "in situ" retortedInstitute to Rio Blanco Oil Shale Project, May 1977. 1~

  7. ANAEROBIC FERMENTATION OF SIMULATED IN-SITU OIL SHALE RETORT WATER

    E-Print Network [OSTI]

    Ossio, E.A.

    2011-01-01

    Water from Green River Oil Shale, Chemistry and Industry,an In-Situ Produced Oil-Shale Processin g Water, LERC ReportOf Simulated In-Situ Oil Shale Retort Water B.A. Ossio, J.P.

  8. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01

    from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,E . • 1977; Mercury in Oil Shale from the Mahogany Zone the

  9. OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    ,

    2012-01-01

    from In-Situ Retorting of Oil Shale," Energy and EnvironmentStudies Trace Contaminants in Oil Shale Retort Water M. J.Organic Arsenic Compounds 1n Oil Shale Process Waters R. H.

  10. OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    ,

    2012-01-01

    from In-Situ Retorting of Oil Shale," Energy and EnvironmentTrace Contaminants in Oil Shale Retort Water M. J. Kland, A.Organic Arsenic Compounds 1n Oil Shale Process Waters R. H.

  11. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    E-Print Network [OSTI]

    Dobson, Patrick

    2014-01-01

    in U.S. Geological Survey Oil Shale Assessment Team, ed. ,Oil shale resources in the Eocene Green River Formation,Assessment of in-place oil shale resources in the Eocene

  12. ANAEROBIC FERMENTATION OF SIMULATED IN-SITU OIL SHALE RETORT WATER

    E-Print Network [OSTI]

    Ossio, E.A.

    2011-01-01

    Water from Green River Oil Shale, Chemistry and Industry,for an In-Situ Produced Oil-Shale Processin g Water, LERCOf Simulated In-Situ Oil Shale Retort Water B.A. Ossio, J.P.

  13. SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS

    E-Print Network [OSTI]

    Fish, Richard H.

    2013-01-01

    Presented at the 13th Oil Shale Symposium, Golden, CO, April~1ETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS Richard H.compounds in the seven oil shale process waters. These

  14. A Strategy for the Abandonment of Modified In-Situ Oil Shale Retorts

    E-Print Network [OSTI]

    Fox, J.P.; Persoff, P.; Moody, M.M.; Sisemore, C.J.

    1978-01-01

    Effects of steam on oil shale ing: a preliminary laboratoryInstitute to Rio Blanco Oil Shale Project, May 1977. 1~52089, part 2, March 1978. oil shale: J. H. Campbell and J.

  15. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01

    from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,V. E . • 1977; Mercury in Oil Shale from the Mahogany Zone

  16. WATER QUALITY EFFECTS OF LEACHATES FROM AN IN SITU OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01

    from a Simulated In-Situ Oil Shale Retort, Proceedingsof the 11th Oil Shale Symposium, 1978. J. W.MB_terial in Green River Oil Shale, U.S. Bur. lvlines Rept.

  17. SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS

    E-Print Network [OSTI]

    Fish, Richard H.

    2013-01-01

    Division of Oil, Gas, and Shale Technology to appropriateseven oil shale process waters including retort water, gas1d1i lc the gas condensate is condensed develop oil shale

  18. WATER QUALITY EFFECTS OF LEACHATES FROM AN IN SITU OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01

    may occur spent shale and the recycle gas. For of componentsmg per 100 of spent shale for inert gas runs; from 1.0 to .4material from spent shale produced inert gas runs, 011d

  19. Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems 

    E-Print Network [OSTI]

    Freeman, Craig Matthew

    2013-11-25

    . These challenges have impeded efficient economic development of shale resources. New fundamental insights and tools are needed to improve the state of shale gas development. Few attempts have been made to model the compositional behavior of fluids in shale gas...

  20. OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    ,

    2012-01-01

    oil, water, spent shale, and gas. These data were enteredtoxic trace elements in oil shale gases and is using thisin the raw oil shale and input gases that is accounted for

  1. Research and information needs for management of oil shale development

    SciTech Connect (OSTI)

    Not Available

    1983-05-01

    This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

  2. Tensile strengths of problem shales and clays. Master's thesis

    SciTech Connect (OSTI)

    Rechner, F.J.

    1990-01-01

    The greatest single expense faced by oil companies involved in the exploration for crude oil is that of drilling wells. The most abundant rock drilled is shale. Some of these shales cause wellbore stability problems during the drilling process. These can range from slow rate of penetration and high torque up to stuck pipe and hole abandonment. The mechanical integrity of the shale must be known when the shalers are subjected to drilling fluids to develop an effective drilling plan.

  3. ,"New Mexico Shale Gas Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"0630...

  4. Department of Energy, Office of Naval Petroleum & Oil Shale Reserves

    Energy Savers [EERE]

    Items that may be marked "disposrtron not Office of Naval Petroleum & Oil Shale Reserves approved" or "withdrawn" In column 10 4 Nameof Personwith whom to confer 5...

  5. ,"Texas Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas...

  6. ,"Nebraska Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska...

  7. ,"Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi...

  8. ,"Indiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana...

  9. ,"California Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California...

  10. ,"South Dakota Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","South...

  11. ,"Kansas Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas...

  12. ,"Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana...

  13. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah...

  14. ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming...

  15. ,"West Virginia Natural Gas Gross Withdrawals from Shale Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West...

  16. ,"Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan...

  17. ,"Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma...

  18. ,"Ohio Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio...

  19. ,"Oregon Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon...

  20. ,"Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana...

  1. ,"Florida Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida...

  2. ,"Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia...

  3. ,"Nevada Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada...

  4. ,"Tennessee Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee...

  5. ,"Maryland Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland...

  6. ,"Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky...

  7. ,"Colorado Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado...

  8. ,"Missouri Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri...

  9. ,"Pennsylvania Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  10. Attrition and abrasion models for oil shale process modeling

    SciTech Connect (OSTI)

    Aldis, D.F.

    1991-10-25

    As oil shale is processed, fine particles, much smaller than the original shale are created. This process is called attrition or more accurately abrasion. In this paper, models of abrasion are presented for oil shale being processed in several unit operations. Two of these unit operations, a fluidized bed and a lift pipe are used in the Lawrence Livermore National Laboratory Hot-Recycle-Solid (HRS) process being developed for the above ground processing of oil shale. In two reports, studies were conducted on the attrition of oil shale in unit operations which are used in the HRS process. Carley reported results for attrition in a lift pipe for oil shale which had been pre-processed either by retorting or by retorting then burning. The second paper, by Taylor and Beavers, reported results for a fluidized bed processing of oil shale. Taylor and Beavers studied raw, retorted, and shale which had been retorted and then burned. In this paper, empirical models are derived, from the experimental studies conducted on oil shale for the process occurring in the HRS process. The derived models are presented along with comparisons with experimental results.

  11. The Naval Petroleum and Oil Shale Reserves | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in California, Utah, and Wyoming were set aside that became the Naval Petroleum and Oil Shale Reserves - the oldest component of today's Fossil Energy organization. Naval...

  12. DOE's Early Investment in Shale Gas Technology Producing Results...

    Broader source: Energy.gov (indexed) [DOE]

    sources of natural gas such as Devonian shales, coals, and low permeability or "tight" sands. Recognizing the need for research and development to quantify these unconventional...

  13. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    E-Print Network [OSTI]

    Mehta, P.K.

    2012-01-01

    Research INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OILCalifornia. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENTA process for making hydraulic cements from spent oil shale

  14. Oil Shale and Oil Sands Development Robert Keiter; John Ruple...

    Office of Scientific and Technical Information (OSTI)

    Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development Robert Keiter; John Ruple; Heather Tanana; Rebecca Holt 29 ENERGY...

  15. COLLOQUIUM: "The Environmental Footprint of Shale Gas Extraction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: "The Environmental Footprint of Shale Gas Extraction and Hydraulic Fracturing" Professor Robert Jackson Duke University...

  16. Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes

    SciTech Connect (OSTI)

    Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

    1983-01-01

    The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

  17. TREATMENT OF MULTIVARIATE ENVIRONMENTAL AND HEALTH PROBLEMS ASSOCIATED WITH OIL SHALE TECHNOLOGY

    E-Print Network [OSTI]

    Kland, M.J.

    2010-01-01

    Jr. and M. D. Shelby, "Chemicals Identified in Oil Shaleand Shale Oil. list." 1. Preliminary Environmental MutagenTrace Contaminants in Oil Shale Retort Wa- ters", Am. Chern.

  18. The optimal reverse logistics network for consumer batteries in North America

    E-Print Network [OSTI]

    Rahman, Asgar

    2013-01-01

    The recycling of household consumer batteries is gaining legislative support throughout North America. The intent of this thesis document is to provide a broad overview of the current North American reverse logistics network ...

  19. Trace elements in oil shale. Progress report, 1979-1980

    SciTech Connect (OSTI)

    Chappell, W R

    1980-01-01

    The purpose of this research program is to understand the potential impact of an oil shale industry on environmental levels of trace contaminants in the region. The program involves a comprehensive study of the sources, release mechanisms, transport, fate, and effects of toxic trace chemicals, principally the trace elements, in an oil shale industry. The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements by shale and oil production and use. The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. Leachate studies show that significant amounts of B, F, and Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements are not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. Many of the so-called standard methods for analyzing trace elements in oil shale-related materials are inadequate. A sampling manual is being written for the environmental scientist and practicing engineer. A new combination of methods is developed for separating the minerals in oil shale into different density fractions. Microbial investigations have tentatively identified the existence of thiobacilli in oil shale materials such as leachates. (DC)

  20. General screening criteria for shale gas reservoirs and production data analysis of Barnett shale 

    E-Print Network [OSTI]

    Deshpande, Vaibhav Prakashrao

    2009-05-15

    Shale gas reservoirs are gaining importance in United States as conventional oil and gas resources are dwindling at a very fast pace. The purpose of this study is twofold. First aim is to help operators with simple screening criteria which can help...

  1. Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers

    E-Print Network [OSTI]

    that fracking the shale could reduce that transport time to tens or hundreds of years. Conductive faults to reach a new equilibrium reflecting the significant changes caused by fracking the shale, which could for development. Hydraulic fracturing (fracking, the industry term for the operation; Kramer 2011) loosens

  2. Back to previous page Shale gas: Can we safely tap

    E-Print Network [OSTI]

    Deutch, John

    and potential environmental impacts of shale-gas production, not just from fracking. The proposed approach.S. energy outlook in 50 years. But realizing this opportunity will require cooperation between industry.S. energy supply. Shale gas has grown from less than 2 percent of domestic natural gas production in 2001

  3. Implementation of an anisotropic mechanical model for shale in Geodyn

    SciTech Connect (OSTI)

    Attaia, A.; Vorobiev, O.; Walsh, S.

    2015-05-15

    The purpose of this report is to present the implementation of a shale model in the Geodyn code, based on published rock material models and properties that can help a petroleum engineer in his design of various strategies for oil/gas recovery from shale rock formation.

  4. History and some potentials of oil shale cement

    SciTech Connect (OSTI)

    Knutson, C.F.; Smith, R.P.; Russell, B.F. (Idaho National Engineering Lab., Idaho Falls, ID (USA))

    1989-01-01

    The utilization of oil shale as a cement component is discussed. It was investigated in America and Europe during World War I. Additional development occurred in Western Europe, Russia, and China during the 1920s and 1930s. World War II provided further development incentives and a relatively mature technology was in place in Germany, Russia, and China prior to 1980. The utilization of oil shale in cement has taken a number of different paths. One approach has been to utilize the energy in the oil shale as the principal source for the cement plant and to use the combusted shale as a minor constituent of the plant's cement product. A second approach has been to use the combusted shale as a class C or cementitious fly-ash component in portland cement concrete. Other approaches utilizing eastern oil shale have been to use the combusted oil shale with additives as a specialty cement, or to cocombust the oil shale with coal and utilize the sulfur-rich combustion product.

  5. Physical and mechanical properties of bituminous mixtures containing oil shales

    SciTech Connect (OSTI)

    Katamine, N.M.

    2000-04-01

    Rutting of bituminous surfaces on the Jordanian highways is a recurring problem. Highway authorities are exploring the use of extracted shale oil and oil shale fillers, which are abundant in Jordan. The main objectives of this research are to investigate the rheological properties of shale oil binders (conventional binder with various percentages of shale oil), in comparison with a conventional binder, and to investigate the ability of mixes to resist deformation. The latter is done by considering three wearing course mixes containing three different samples of oil shale fillers--which contained three different oil percentages--together with a standard mixture containing limestone filler. The Marshall design method and the immersion wheel tracking machine were adopted. It was concluded that the shale oil binders displayed inconsistent physical properties and therefore should be treated before being used. The oil shale fillers have provided mixes with higher ability to resist deformation than the standard mix, as measured by the Marshall quotients and the wheel tracking machine. The higher the percentages of oil in the oil shale fillers, the lower the ability of the mixes to resist deformation.

  6. Removal of nitrogen and sulfur from oil-shale

    SciTech Connect (OSTI)

    Olmstead, W.N.

    1986-01-28

    This patent describes a process for enhancing the removal of nitrogen and sulfur from oil-shale. The process consists of: (a) contacting the oil-shale with a sufficient amount of an aqueous base solution comprised of at least a stoichiometric amount of one or more alkali metal or alkaline-earth metal hydroxides based on the total amount of nitrogen and sulfur present in the oil-shale. Also necessary is an amount sufficient to form a two-phase liquid, solid system, a temperature from about 50/sup 0/C to about 350/sup 0/C., and pressures sufficient to maintain the solution in liquid form; (b) separating the effluents from the treated oil-shale, wherein the resulting liquid effluent contains nitrogen moieties and sulfur moieties from the oil-shale and any resulting gaseous effluent contains nitrogen moieties from the oil-shale, and (c) converting organic material of the treated oil-shale to shale-oil at a temperature from about 450/sup 0/C to about 550/sup 0/C.

  7. Assessment of industry needs for oil shale research and development

    SciTech Connect (OSTI)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  8. Oil shale as an energy source in Israel

    SciTech Connect (OSTI)

    Fainberg, V.; Hetsroni, G. [Technion-Israel Inst. of Tech., Haifa (Israel)

    1996-01-01

    Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis of the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.

  9. Oil shale retorting with steam and produced gas

    SciTech Connect (OSTI)

    Merrill, L.S. Jr.; Wheaton, L.D.

    1991-08-20

    This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

  10. Beginning of an oil shale industry in Australia

    SciTech Connect (OSTI)

    Wright, B. (Southern Pacific Petroleum NL, 143 Macquarie Street, Sydney (AU))

    1989-01-01

    This paper discusses how preparations are being made for the construction and operation of a semi commercial plant to process Australian oil shale. This plant is primarily designed to demonstrate the technical feasibility of processing these shales at low cost. Nevertheless it is expected to generate modest profits even at this demonstration level. This will be the first step in a three staged development of one of the major Australian oil shale deposits which may ultimately provide nearly 10% of Australia's anticipated oil requirements by the end of the century. In turn this development should provide the basis for a full scale oil shale industry in Australia based upon the advantageously disposed oil shale deposits there. New sources of oil are becoming critical since Australian production is declining rapidly while consumption is accelerating.

  11. Expectations for Oil Shale Production (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Oil shales are fine-grained sedimentary rocks that contain relatively large amounts of kerogen, which can be converted into liquid and gaseous hydrocarbons (petroleum liquids, natural gas liquids, and methane) by heating the rock, usually in the absence of oxygen, to 650 to 700 degrees Fahrenheit (in situ retorting) or 900 to 950 degrees Fahrenheit (surface retorting). (Oil shale is, strictly speaking, a misnomer in that the rock is not necessarily a shale and contains no crude oil.) The richest U.S. oil shale deposits are located in Northwest Colorado, Northeast Utah, and Southwest Wyoming. Currently, those deposits are the focus of petroleum industry research and potential future production. Among the three states, the richest oil shale deposits are on federal lands in northwest Colorado.

  12. Jurassic and Cretaceous clays of the northern and central North Sea

    E-Print Network [OSTI]

    Haszeldine, Stuart

    within North Sea sandstones is detrital in origin, the majority of workers have concluded flushing. Within sandstones, the earliest authigenic kaolin has a vermiform morphology, the distribution, and can degrade reservoir quality significantly. Both within sandstones and shales, there is an apparent

  13. Oil Shale Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis,EnergyOctillionEdison Co JumpOhio, et al. v. EPA,Shale

  14. New Mexico Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226Underground Storage Volume (MillionperShale

  15. Western States Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1 Year-2YearWestern States Shale Production

  16. Shale gas is natural gas trapped inside

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 » Searchwith FirstatOpportunitiesDOE forSevenShale gas is

  17. Shale Gas Glossary | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant to theDepartmentWorkalongShale Gas Glossary

  18. Characteristics of the C Shale and D Shale reservoirs, Monterey Formation, Elk Hills Field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A.; McIntyre, J.L. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); McJannet, G.S. [Dept. of Energy, Tupman, CA (United States)

    1996-12-31

    The upper Miocene C Shale and D Shale reservoirs of the Elk Hills Shale Member of the Monterey Formation have cumulative oil and gas production much higher than the originally estimated recovery. These San Joaquin basin reservoirs are the lowest of the Stevens producing zones at Elk Hills and currently produce from a 2800-acre area on the 31 S anticline. The C Shale contains lower slope and basin plain deposits of very fine grained, thinly bedded, graded turbidites, pelagic and hemipelagic claystone, and slump deposits. Although all units are oil-bearing, only the lower parts of the graded turbidity intervals have sufficient horizontal permeability to produce oil. The D Shale consists of chart, claystone, carbonates and slump deposits, also originating in a lower slope to basin plain setting. All D Shale rock types contain oil, but the upper chart interval is the most productive. The chart has high matrix porosity, and due to a complex horizontal and vertical microfracture system, produces at a highly effective rate. Core samples indicate more oil-in-place is present in the thin, graded C Shale beds and in the porous D Shale chart than is identifiable from conventional electric logs. High gas recovery rates are attributed mostly to this larger volume of associated oil. Gas also enters the reservoirs from the adjacent 26R reservoir through a leaky normal fault. Significant gas volumes also may desorb from immature organic material common in the rock matrix.

  19. Characteristics of the C Shale and D Shale reservoirs, Monterey Formation, Elk Hills Field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A.; McIntyre, J.L. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

    1996-01-01

    The upper Miocene C Shale and D Shale reservoirs of the Elk Hills Shale Member of the Monterey Formation have cumulative oil and gas production much higher than the originally estimated recovery. These San Joaquin basin reservoirs are the lowest of the Stevens producing zones at Elk Hills and currently produce from a 2800-acre area on the 31 S anticline. The C Shale contains lower slope and basin plain deposits of very fine grained, thinly bedded, graded turbidites, pelagic and hemipelagic claystone, and slump deposits. Although all units are oil-bearing, only the lower parts of the graded turbidity intervals have sufficient horizontal permeability to produce oil. The D Shale consists of chart, claystone, carbonates and slump deposits, also originating in a lower slope to basin plain setting. All D Shale rock types contain oil, but the upper chart interval is the most productive. The chart has high matrix porosity, and due to a complex horizontal and vertical microfracture system, produces at a highly effective rate. Core samples indicate more oil-in-place is present in the thin, graded C Shale beds and in the porous D Shale chart than is identifiable from conventional electric logs. High gas recovery rates are attributed mostly to this larger volume of associated oil. Gas also enters the reservoirs from the adjacent 26R reservoir through a leaky normal fault. Significant gas volumes also may desorb from immature organic material common in the rock matrix.

  20. JUDICIAL SYSTEM NORTH CAROLINA

    E-Print Network [OSTI]

    Shamos, Michael I.

    THE JUDICIAL SYSTEM IN NORTH CAROLINA ADMINISTRATIVE OFFICE OF THE COURTS Raleigh, North Carolina #12;THE JUDICIAL SYSTEM IN NORTH CAROLINA ADMINISTRATIVE OFFICE OF THE COURTS Raleigh, North Carolina / 2007 #12;Contents The North Carolina Court System............................... 3 The Appellate

  1. Using Data-Driven Analytics to Assess the Impact of Design Parameters on Production from Shale

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Shale Esmaili, S., West Virginia University and Mohaghegh, S.D., Intelligent Solution Inc. and West of SPE copyright. Abstract The importance of production from Shale and its impact on the total US energy from Shale assets with different degrees of success. The notion that shale is a "statistical play" may

  2. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater

    E-Print Network [OSTI]

    Shawabkeh, Reyad A.

    Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater Reyad; available online 29 October 2003 Abstract A by-product fly ash from oil shale processing was converted shale; Ash; Zeolite; Cadmium and lead removal 1. Introduction Oil shale exists in Jordan with large

  3. Fire and explosion hazards of oil shale. Report of Investigations/1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This publication presents the results of investigations into the fire and explosion hazards of oil-shale rocks and dust. Three areas were examined: the explosibility and ignitability of oil-shale dust clouds, the fire hazards of oil-shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles.

  4. Modeling, History Matching, Forecasting and Analysis of Shale Reservoirs Performance Using Artificial Intelligence

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    matching, forecasting and analyzing oil and gas production in shale reservoirs. In this new approach and analysis of oil and gas production from shale formations. Examples of three case studies in Lower Huron and New Albany shale formations (gas producing) and Bakken Shale (oil producing) is presented

  5. Methods for minimizing plastic flow of oil shale during in situ retorting

    DOE Patents [OSTI]

    Lewis, Arthur E. (Los Altos, CA); Mallon, Richard G. (Livermore, CA)

    1978-01-01

    In an in situ oil shale retorting process, plastic flow of hot rubblized oil shale is minimized by injecting carbon dioxide and water into spent shale above the retorting zone. These gases react chemically with the mineral constituents of the spent shale to form a cement-like material which binds the individual shale particles together and bonds the consolidated mass to the wall of the retort. This relieves the weight burden borne by the hot shale below the retorting zone and thereby minimizes plastic flow in the hot shale. At least a portion of the required carbon dioxide and water can be supplied by recycled product gases.

  6. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  7. Status of LLNL Hot-Recycled-Solid oil shale retort

    SciTech Connect (OSTI)

    Baldwin, D.E.; Cena, R.J.

    1993-12-31

    We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day, HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. Over the last three years, from June 1991 to June 1993, we completed a series of runs (H10--H27) using the 4-TPD pilot plant to demonstrate the technical feasibility of the HRS process and answer key scale-up questions. With our CRADA partners, we seek to further develop the HRS technology, maintain and enhance the knowledge base gained over the past two decades through research and development by Government and industry and determine the follow on steps needed to advance the technology towards commercialization. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

  8. Making History : : The Role of History in Contemporary Native American Art

    E-Print Network [OSTI]

    Cluff, Leah Diane

    Native North American Art. Oxford: Oxford University Press,Star. ” In Native American Art in the Twentieth Century,Cultural Value(s) of the Art Object. ” Journal of Material

  9. Economic Impact of Reservoir Properties, Horizontal Well Length and Orientation on Production from Shale Formations: Application to New

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    and the orientation of horizontal wells on gas production in New Albany Shale. The study was conducted using on the Net Present Value of investing on gas wells producing from New Albany Shale. Introduction New Albany Shale Gas -The New Albany Shale is predominantly an organic-rich brownish-black and grayish-black shale

  10. CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS

    E-Print Network [OSTI]

    Persoff, P.

    2011-01-01

    No. 12, 260 (Feb. 1966). Soil~Lime Stabilization," Public H.and L. L. Harriss, "Free Lime ln Retorted Oil Shale," Eners;may be formed by placing lime in an abandoned retort and

  11. West Lothian Biodiversity Action Plan: Oil Shale Bings 

    E-Print Network [OSTI]

    Harvie, Barbra

    2005-01-01

    This report establishes the importance of the West Lothian oil-shale bings at both a national (UK) and local (West Lothian) scale, for their contribution to local biodiversity, their historical importance, their education ...

  12. Strategic Significance of Americas Oil Shale Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heavy oil and tar sand, coal liquids, gas-to-liquids (GTL), hydrogen, gas hydrates, and renewable energy resources, as well as oil shale, which is the focus of this re- port....

  13. Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale...

    Broader source: Energy.gov (indexed) [DOE]

    WASHINGTON, D.C. - The Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale Gas Production released its second and final ninety-day report reviewing the progress that...

  14. Modeling of Magnetic Nanoparticles Transport in Shale Reservoirs 

    E-Print Network [OSTI]

    An, Cheng

    2014-12-18

    stimulated reservoir volume (SRV) from induced fractures play a critical role in significantly increasing well productivity. In this project, a mathematical model for simulating nanoparticle transport in shale reservoirs was developed. The simulator includes...

  15. Dynamics of Matrix-Fracture Coupling During Shale Gas Production 

    E-Print Network [OSTI]

    Wasaki, Asana

    2015-07-08

    In this work, a dynamic permeability model for organic-rich shale matrix is constructed and implemented into a flow simulation to investigate the impact on production. Effective stress and molecular transport effects on the permeability...

  16. Forecasting long-term gas production from shale

    E-Print Network [OSTI]

    Cueto-Felgueroso, Luis

    Oil and natural gas from deep shale formations are transforming the United States economy and its energy outlook. Back in 2005, the US Energy Information Administration published projections of United States natural gas ...

  17. Economic analysis of shale gas wells in the United States

    E-Print Network [OSTI]

    Hammond, Christopher D. (Christopher Daniel)

    2013-01-01

    Natural gas produced from shale formations has increased dramatically in the past decade and has altered the oil and gas industry greatly. The use of horizontal drilling and hydraulic fracturing has enabled the production ...

  18. ,"New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico...

  19. ,"New York Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York...

  20. Documentation of INL's In Situ Oil Shale Retorting Water Usage...

    Office of Scientific and Technical Information (OSTI)

    Documentation of INL's In Situ Oil Shale Retorting Water Usage System Dynamics Model Earl D Mattson; Larry Hull 02 PETROLEUM water water A system dynamic model was construction to...

  1. Paleoecology of the Devonian-Mississippian black-shale sequence...

    Office of Scientific and Technical Information (OSTI)

    shales contain abundant evidence of life from upper parts of the water column such as fish fossils, conodonts, algae and other phytoplankton; however, there is a lack of evidence...

  2. Associated Shale Gas- From Flares to Rig Power 

    E-Print Network [OSTI]

    Wallace, Elizabeth Michelle

    2014-10-16

    From September 2011 to July 2013 the percentage of flared associated gas produced in the Bakken shale formation decreased from 36% to 29%. Although the percentage decreased, the volume of associated gas produced has almost tripled to 900 MMcf...

  3. Analysis of Water Flowback Data in Gas Shale Reservoirs 

    E-Print Network [OSTI]

    Aldaif, Hussain

    2014-09-24

    Properties of both shale gas reservoirs and hydraulic fractures are usually estimated by analyzing hydrocarbon production data while water data is typically ignored. This study introduces a new method to estimate the effective fracture volume...

  4. North American Electric Reliability Council Outage Announcement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    p.m. EDT, major losses of electric load occurred in the northeastern United States and Canada in the Eastern Interconnection. Although the exact cause is not known at present, the...

  5. Frequency Instability Problems in North American Interconnections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is the rotational analog to mass. Power systems with multiple smaller turbine generators on-line (i.e., a primarily distributed generation system) have less rotational...

  6. ARIZONA COOPERATIVE ARIZONA AND THE NORTH AMERICAN

    E-Print Network [OSTI]

    Crimmins, Michael A.

    . This shift in winds, from onshore to offshore and then back again, happens each year with the changing systems that traverse the Southwest, drawing in moisture from the Pacific Ocean high pressure system anchored over the eastern Pacific Ocean (Figure 1b). The mechanism that produces

  7. Monitoring Rehabilitation in Temperate North American Estuaries

    SciTech Connect (OSTI)

    Rice, Casimir A.; Hood, W Gregory; Tear, Lucinda M.; Simenstad, Charles; Williams, Gregory D.; Johnson, L. L.; Feist, B. E.; Roni, P.

    2005-02-01

    In this chapter, we propose that monitoring rehabilitation in estuarine ecosystems by necessity requires quantifying relationships between dynamic estuarine processes and sensitive indicators of ecosystem function. While we do discuss temperate systems in general, emphasis is placed on anadromous salmon habitats in the Pacific Northwest because anadromous fishes are such a major focus of rehabilitation efforts, and present some of the greater challenges in linking function of one segment of their life history to conditions in a specific habitat. We begin with a basic overview of the ecological and socioeconomic significance of, as well as anthropogenic effects on, estuaries. Next, we briefly summarize the various kinds of estuarine rehabilitation historically practiced in temperate regions, and review estuarine rehabilitation monitoring design and methods, highlighting the unique challenges involved in monitoring estuarine systems. We then close with a summary and conclusions.

  8. Chapter VI: Integrating North American Energy Markets

    Broader source: Energy.gov (indexed) [DOE]

    percent of gross GHG emissions (on a CO 2 -equivalent basis) from U.S. anthropogenic sources, nearly one- quarter of which were emitted by natural gas systems. 34 While 80...

  9. NORTH AMERICAN MOBILITY PROJECT WILFRID LAURIER UNIVERSITY

    E-Print Network [OSTI]

    Hutcheon, James M.

    VERACRUZANA XALAPA, VERACRUZ, MEXICO MOUNT ALLISON UNIVERSITY SACKVILLE, NEW BRUNSWICK, CANADA UNIVERSIDAD DE SONORA HERMOSILLO, SONORA, MEXICO GEORGIA SOUTHERN UNIVERSITY STATESBORO, GEORGIA, U.S.A. BOWLING GREEN and the creation of exchange opportunities for students wishing to study in Canada, Mexico, and the United States

  10. North American and Global Forest Products Markets

    E-Print Network [OSTI]

    ­ A housing bubble or one in the making? · Industrial timbers are booming due to fracking and oil exploration

  11. North American Wind Energy Academy 2015 Symposium

    Broader source: Energy.gov [DOE]

    The NAWEA 2015 Symposium, which will be held 9-11 June 2015 at Virginia Tech in Blacksburg, VA, includes technical sessions, panel discussions, graduate student symposium, poster session,...

  12. North American Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: EnergyReservoir |Solkraft AS Jump to:

  13. North American Coating Laboratories | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: EnergyReservoir |Solkraft AS Jump to:Coating

  14. North American Hydro | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: EnergyReservoir |Solkraft AS Jump to:CoatingHydro

  15. North American Electric Reliability Corporation Interconnections |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBeryllium Disease | Department of0DOEDepartment ofNon-ProliferationConsiderations from

  16. North American Electric Reliability Corporation (NERC): Reliability

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 News en INFOGRAPHIC: HowFranklin OrrSamplingof

  17. North American Synchrophasor Initiative (NASPI) Program Information |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 News en INFOGRAPHIC: HowFranklintheDepartment

  18. North American Electric Reliability Corporation Interconnections |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew Jersey isDepartmentGasFacilityEnergy

  19. Chapter VI: Integrating North American Energy Markets

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulkChapter 9 of the LANL34 QER38 QER

  20. North American Electric Reliability Council Outage Announcement |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t e g r i t y - S e

  1. Frequency Instability Problems in North American Interconnections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming Upgrades toFreezing a Droplet to Stop

  2. Cyclone oil shale retorting concept. [Use it all retorting process

    SciTech Connect (OSTI)

    Harak, A.E.; Little, W.E.; Faulders, C.R.

    1984-04-01

    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  3. Microstructures and Rheology of a Limestone-Shale Thrust Fault 

    E-Print Network [OSTI]

    Wells, Rachel Kristen

    2011-02-22

    AND RHEOLOGY OF A LIMESTONE-SHALE THRUST FAULT A Thesis by RACHEL KRISTEN WELLS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December... 2010 Major Subject: Geology MICROSTRUCTURES AND RHEOLOGY OF A LIMESTONE-SHALE THRUST FAULT A Thesis by RACHEL KRISTEN WELLS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  4. Validation Results for Core-Scale Oil Shale Pyrolysis

    SciTech Connect (OSTI)

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation. Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.

  5. Technology experience and economics of oil shale mining in Estonia

    SciTech Connect (OSTI)

    Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

    1995-11-01

    The exhaustion of fuel-energy resources became an evident problem of the European continent in the 1960s. Careful utilization of their own reserves of coal, oil, and gas (Germany, France, Spain) and assigned shares of imports of these resources make up the strategy of economic development of the European countries. The expansion of oil shale utilization is the most topical problem. The experience of mining oil shale deposits in Estonia and Russia, in terms of the practice and the economic results, is reviewed in this article. The room-and-pillar method of underground mining and the open-cut technology of clearing the ground ensure the fertility of a soil. The economics of underground and open pit oil shale mines is analyzed in terms of natural, organizational, and technical factors. These analyses are used in the planning and management of oil shale mining enterprises. The perspectives of the oil shale mining industry of Estonia and the economic expediency of multiproduction are examined. Recommendations and guidelines for future industrial utilization of oil shale are given in the summary.

  6. Life-cycle analysis of shale gas and natural gas.

    SciTech Connect (OSTI)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  7. Occurrence of Multiple Fluid Phases Across a Basin, in the Same Shale Gas Formation – Eagle Ford Shale Example 

    E-Print Network [OSTI]

    Tian, Yao

    2014-04-29

    .......................................................................... 97 Relative Permeability ........................................................................ 99 Transmissibility Multiplier ............................................................. 101 Pressure/Volume/Temperature (PVT) Data Acquisition.... Data from Drillinginfo (2013). ........................................................................................ 23 Fig. 20—Eagle Ford Shale reservoir pressure of from PVT analysis results. Data from TRC (2013...

  8. PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01

    V. , 1979, Analysis of oil shale of products and effluents:In- Situ Retorting of Oil Shale in a Controlled- Stateelement matrices by x-ray for shale retort: Quarterly of the

  9. PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01

    V. , 1979, Analysis of oil shale of products and effluents:In- Situ Retorting of Oil Shale in a Controlled- Stateactivation: Archaeometry, oil-shale analysis v. 11, p.

  10. PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2011-01-01

    elements. Over 25% of the raw shale gas five groups productsthe oil, in the raw oil shale gas, consequence of retorting„good product raw oil shale and input gases that is accounted

  11. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO{sub 2} Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Michael F. Morea

    1997-03-14

    The Buena Vista Hills field is located about 25 miles southwest of Bakersfield, in Kern County, California, about two miles north of the city of Taft, and five miles south of the Elk Hills field. The Antelope Shale zone was discovered at the Buena Vista Hills field in 1952, and has since been under primary production. Little research was done to improve the completion techniques during the development phase in the 1950s, so most of the wells are completed with about 1000 ft of slotted liner. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization of the first phase of the project will be performed using data collected in the pilot pattern wells. This is the first annual report of the project. It covers the period February 12, 1996 to February 11, 1997. During this period the Chevron Murvale 653Z-26B well was drilled in Section 26-T31S/R23E in the Buena Vista Hills field, Kern County, California. The Monterey Formation equivalent Brown and Antelope Shales were continuously cored, the zone was logged with several different kinds of wireline logs, and the well was cased to a total depth of 4907 ft. Core recovery was 99.5%. Core analyses that have been performed include Dean Stark porosity, permeability and fluid saturations, field wettability, anelastic strain recovery, spectral core gamma, profile permeametry, and photographic imaging. Wireline log analysis includes mineral-based error minimization (ELAN), NMR T2 processing, and dipole shear wave anisotropy. A shear wave vertical seismic profile was acquired after casing was set and processing is nearly complete.

  12. Slow Radio-Frequency Processing of Large Oil Shale Volumes to Produce Petroleum-Like Shale Oil

    SciTech Connect (OSTI)

    Burnham, A K

    2003-08-20

    A process is proposed to convert oil shale by radio frequency heating over a period of months to years to create a product similar to natural petroleum. Electrodes would be placed in drill holes, either vertical or horizontal, and a radio frequency chosen so that the penetration depth of the radio waves is of the order of tens to hundreds of meters. A combination of excess volume production and overburden compaction drives the oil and gas from the shale into the drill holes, where it is pumped to the surface. Electrical energy for the process could be provided initially by excess regional capacity, especially off-peak power, which would generate {approx}3 x 10{sup 5} bbl/day of synthetic crude oil, depending on shale grade. The electricity cost, using conservative efficiency assumptions, is $4.70 to $6.30/bbl, depending on grade and heating rate. At steady state, co-produced gas can generate more than half the electric power needed for the process, with the fraction depending on oil shale grade. This would increase production to 7.3 x 10{sup 5} bbl/day for 104 l/Mg shale and 1.6 x 10{sup 6} bbl/day for 146 l/Mg shale using a combination of off-peak power and power from co-produced gas.

  13. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    E-Print Network [OSTI]

    2015-01-01

    well sites of the Barnett shale gas play [Eastern Researchof well sites in the Barnett shale play accounted for 70% of

  14. Statistical nano-chemo-mechanical assessment of shale by wave dispersive spectroscopy and nanoindentation

    E-Print Network [OSTI]

    Deirieh, Amer (Amer Mohammad)

    2011-01-01

    Shale is a common type of sedimentary rock formed by clay particles and silt inclusions, and, in some cases, organic matter. Typically, shale formations serve as geological caps for hydrocarbon reservoirs. More recently, ...

  15. CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE

    E-Print Network [OSTI]

    Amy, Gary L.

    2013-01-01

    Inc. , Air Quality Assessment of the Oil Shale DeveloEmentassessment. As ous disclosed in the introduction, rich deposits of oiloil shale resources should not be permitted until the completion of additional research related to the assessment .

  16. Assessing the mechanical microstructure of shale by nanoindentation : the link between mineral composition and mechanical properties

    E-Print Network [OSTI]

    Bobko, Christopher Philip, 1981-

    2008-01-01

    Shale is a multi-phase, multi-scale sedimentary rock that makes up 75% of the earth's sedimentary basins and is especially critical in petroleum engineering applications. At macroscopic scales, shales possess a diverse set ...

  17. 90-day Interim Report on Shale Gas Production- Secretary of Energy Advisory Board

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Shale Gas Subcommittee of the Secretary of Energy Advisory Board is charged with identifying measures that can be taken to reduce the environmental impact and improve the safety of shale gas...

  18. Shale oil recovery systems incorporating ore beneficiation : final report, October 1982

    E-Print Network [OSTI]

    Weiss, M. A.

    1982-01-01

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is, concentration of the kerogen) before the oil-recovery step. The objective was to ...

  19. Rigorous Simulation Model of Kerogen Pyrolysis for the In-situ Upgrading of Oil Shales 

    E-Print Network [OSTI]

    Lee, Kyung Jae

    2014-10-09

    Oil shale is a vast, yet untapped energy source, and the pyrolysis of kerogen in the oil shales releases recoverable hydrocarbons. In this dissertation, we investigate how to increase process efficiency and decrease the costs of in-situ upgrading...

  20. Plan and justification for a Proof-of-Concept oil shale facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

  1. INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER

    E-Print Network [OSTI]

    Farrier, D.S.

    2011-01-01

    W. A. Robb, and T. J. Spedding. Minor Elements in Oil Shaleand Oil Shale Products. LERC Rept. of Invest. 77-1, 1977.Significant to In Situ Oil Shale Processing. Quart. Colo.

  2. USE OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY FOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES

    E-Print Network [OSTI]

    Girvin, D.G.

    2011-01-01

    W. A. Robb, and T. J. Spedding. Minor Elements in Oil Shaleand Oil-Shale Products. LERC RI 77-1, 1977. Bertine, K. K.From A Simulated In-Situ Oil Shale Retort. In: Procedings of

  3. Examination of eastern oil shale disposal problems - the Hope Creek field study

    SciTech Connect (OSTI)

    Koppenaal, D.W.; Kruspe, R.R.; Robl, T.L.; Cisler, K.; Allen, D.L.

    1985-02-01

    A field-based study of problems associated with the disposal of processed Eastern oil shale was initiated in mid-1983 at a private research site in Montgomery County, Kentucky. The study (known as the Hope Creek Spent Oil Shale Disposal Project) is designed to provide information on the geotechnical, revegetation/reclamation, and leachate generation and composition characteristics of processed Kentucky oil shales. The study utilizes processed oil shale materials (retorted oil shale and reject raw oil shale fines) obtained from a pilot plant run of Kentucky oil shale using the travelling grate retort technology. Approximately 1000 tons of processed oil shale were returned to Kentucky for the purpose of the study. The study, composed of three components, is described. The effort to date has concentrated on site preparation and the construction and implementation of the field study research facilities. These endeavors are described and the project direction in the future years is defined.

  4. Pressure Transient Analysis and Production Analysis for New Albany Shale Gas Wells 

    E-Print Network [OSTI]

    Song, Bo

    2010-10-12

    Shale gas has become increasingly important to United States energy supply. During recent decades, the mechanisms of shale gas storage and transport were gradually recognized. Gas desorption was also realized and quantitatively ...

  5. The Effect of Proppant Size and Concentration on Hydraulic Fracture Conductivity in Shale Reservoirs 

    E-Print Network [OSTI]

    Kamenov, Anton

    2013-04-11

    Hydraulic fracture conductivity in ultra-low permeability shale reservoirs is directly related to well productivity. The main goal of hydraulic fracturing in shale formations is to create a network of conductive pathways in the rock which increase...

  6. The Influence of Vertical Location on Hydraulic Fracture Conductivity in the Fayetteville Shale 

    E-Print Network [OSTI]

    Briggs, Kathryn

    2014-05-05

    Hydraulic fracturing is the primary stimulation method within low permeability reservoirs, in particular shale reservoirs. Hydraulic fracturing provides a means for making shale reservoirs commercially viable by inducing and propping fracture...

  7. INTERCOMPARISON STUDY OF ELEMENTAL ABUNDANCES IN RAW AND SPENT OIL SHALES

    E-Print Network [OSTI]

    Fox, J.P.

    2011-01-01

    W. A. Robb, and T. J. Spedding. Minor Elements ~n Oil Shaleand Oil-Shale Products. LERC RI-77/1, 1977. Wildeman, T. R.H. Meglen. The Analysis of Oil-Shale Materials for Element

  8. Nuclear renewable oil shale hybrid energy systems : configuration, performance, and development pathways

    E-Print Network [OSTI]

    Curtis, Daniel Joseph

    2015-01-01

    Nuclear Renewable Oil Shale Systems (NROSS) are a class of large Hybrid Energy Systems in which nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and also provide flexible, ...

  9. Rock-Fluid Chemistry Impacts on Shale Hydraulic Fracture and Microfracture Growth 

    E-Print Network [OSTI]

    Aderibigbe, Aderonke

    2012-07-16

    The role of surface chemical effects in hydraulic fracturing of shale is studied using the results of unconfined compression tests and Brazilian tests on Mancos shale- cored at depths of 20-60 ft. The rock mineralogy, total ...

  10. Barnett Shale Municipal Oil and Gas Ordinance Dynamics: A Spatial Perspective 

    E-Print Network [OSTI]

    Murphy, Trey Daniel-Aaron

    2013-09-27

    Previously unattainable shale gas deposits have become accessible since the late 1990s using a technique called hydraulic fracturing — the injection of chemicals, water, and sand into subsurface shale to free extractable gas. This practice, along...

  11. Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses 

    E-Print Network [OSTI]

    Vera Rosales, Fabian 1986-

    2012-12-11

    The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability...

  12. Evidence of Reopened Microfractures in Production Data of Hydraulically Fractured Shale Gas Wells 

    E-Print Network [OSTI]

    Apiwathanasorn, Sippakorn

    2012-10-19

    the presence of reopened natural fracture network can be observed in pressure and production data of shale gas wells producing from two shale formations with different well and reservoir properties. Homogeneous, dual porosity and triple porosity models...

  13. The Diurnal Path of the Sun: Ideology and Interregional Interaction in Ancient Northwest Mesoamerica and the American Southwest

    E-Print Network [OSTI]

    Mathiowetz, Michael Dean

    2011-01-01

    impact of the West Mexican Aztatlán culture and cosmology on social transformations that occurred in the North American Southwest and northern Mexico

  14. Western states enhanced oil shale recovery program: Shale oil production facilities conceptual design studies report

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This report analyzes the economics of producing syncrude from oil shale combining underground and surface processing using Occidental's Modified-In-Situ (MIS) technology and Lawrence Livermore National Laboratory's (LLNL) Hot Recycled Solids (HRS) retort. These retorts form the basic technology employed for oil extraction from oil shale in this study. Results are presented for both Commercial and Pre-commercial programs. Also analyzed are Pre-commercialization cost of Demonstration and Pilot programs which will confirm the HRS and MIS concepts and their mechanical designs. These programs will provide experience with the circulating Fluidized Bed Combustor (CFBC), the MIS retort, the HRS retort and establish environmental control parameters. Four cases are considered: commercial size plant, demonstration size plant, demonstration size plant minimum CFBC, and a pilot size plant. Budget cost estimates and schedules are determined. Process flow schemes and basic heat and material balances are determined for the HRS system. Results consist of summaries of major equipment sizes, capital cost estimates, operating cost estimates and economic analyses. 35 figs., 35 tabs.

  15. The use of Devonian oil shales in the production of portland cement

    SciTech Connect (OSTI)

    Schultz, C.W.; Lamont, W.E. [Alabama Univ., University, AL (United States); Daniel, J. [Lafarge Corp., Alpena, MI (United States)

    1991-12-31

    The Lafarge Corporation operates a cement plant at Alpena, Michigan in which Antrim shale, a Devonian oil shale, is used as part of the raw material mix. Using this precedent the authors examine the conditions and extent to which spent shale might be utilized in cement production. They conclude that the potential is limited in size and location but could provide substantial benefit to an oil shale operation meeting these criteria.

  16. Conversion of Waste CO2 & Shale Gas to High Value Chemicals

    Broader source: Energy.gov (indexed) [DOE]

    of Novomer Process: High Selectivity Catalyst (>99%) Leverages low cost shale gas & ethylene derivatives Lower energy & carbon footprint Novomer process...

  17. Modeling and History Matching Hydrocarbon Production from Marcellus Shale using Data Mining and Pattern Recognition Technologies

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE 161184 Modeling and History Matching Hydrocarbon Production from Marcellus Shale using Data. The abstract must contain conspicuous acknowledgment of SPE copyright. Abstract The Marcellus Shale play has a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset

  18. Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    July 2010 SPE 139101 Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky O. Grujic, S.D. Mohaghegh, G. Bromhal The research Huron Shale · Data Preparation · Conventional Reservoir Simulation vs. Top Down Reservoir Modeling · Top

  19. What controls selenium release during shale weathering? Adriana Matamoros-Veloza

    E-Print Network [OSTI]

    Benning, Liane G.

    What controls selenium release during shale weathering? Adriana Matamoros-Veloza , Robert J can clearly separate the proportions of Se present in the sulphide versus the organic pools in shales and pyrite oxidation will control the release of selenium during shale weathering. Ó 2011 Elsevier Ltd. All

  20. CLADID CRINOIDS FROM THE LATE KINDERHOOKIAN MEADVILLE SHALE, CUYAHOGA FORMATION OF OHIO

    E-Print Network [OSTI]

    Kammer, Thomas

    CLADID CRINOIDS FROM THE LATE KINDERHOOKIAN MEADVILLE SHALE, CUYAHOGA FORMATION OF OHIO THOMAS W--A total of 17 species of cladid crinoids are documented from the late Kinderhookian Meadville Shale Member Mississippian Meadville Shale at Richfield, Summit County, Ohio were first noted by Hall (1863) and later fully