Powered by Deep Web Technologies
Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Comparison of Direct Normal Irradiance Derived from Silicon and Thermopile Global Hemispherical Radiation Detectors: Preprint  

SciTech Connect (OSTI)

Concentrating solar applications utilize direct normal irradiance (DNI) radiation, a measurement rarely available. The solar concentrator industry has begun to deploy numerous measurement stations to prospect for suitable system deployment sites. Rotating shadowband radiometers (RSR) using silicon photodiodes as detectors are typically deployed. This paper compares direct beam estimates from RSR to a total hemispherical measuring radiometer (SPN1) multiple fast thermopiles. These detectors simultaneously measure total and diffuse radiation from which DNI can be computed. Both the SPN1 and RSR-derived DNI are compared to DNI measured with thermopile pyrheliometers. Our comparison shows that the SPN1 radiometer DNI estimated uncertainty is somewhat greater than, and on the same order as, the RSR DNI estimates for DNI magnitudes useful to concentrator technologies.

Myers, D. R.

2010-01-01T23:59:59.000Z

2

DIRECT NORMAL IRRADIANCE FOR CSP BASED ON SATELLITE IMAGES OF METEOSAT SECOND  

E-Print Network [OSTI]

DIRECT NORMAL IRRADIANCE FOR CSP BASED ON SATELLITE IMAGES OF METEOSAT SECOND GENERATION A. Hammer1 Ertragsprognose Solarthermischer Kraftwerke ­ standardization of yield prognosis for solar thermal power plants). As for concentrating solar power (CSP) the frequency distribution of DNI is of special importance, special attention

Heinemann, Detlev

3

Characterizing the Performance of an Eppley Normal Incident Pyrheliometer An Eppley Normal Incident Pyrheliometer (NIP) is  

E-Print Network [OSTI]

With interest growing in the deployment of solar energy system, the accuracy of irradiance measurements becomes for concentrating solar energy systems. The Eppley Normal Incident Pyrheliometer (NIP) is used extensively for DNI and periods with clouds were excluded. The NIP is mounted on an automatic tracker that keeps the instrument

Oregon, University of

4

ARM - Measurement - Shortwave narrowband direct normal irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Relatedcontent ARMnumberDopplerdownwelling irradiance ARM

5

ARM - Measurement - Shortwave broadband direct normal irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Relatedcontent ARMnumberDoppler ARMdiffusedirect normal

6

A NEW HIGH FREQUENCY GLOBAL-TO-DIRECT IRRADIANCE CONVERSION METHODOLOGY  

E-Print Network [OSTI]

, Navarra (Spain) Abstract In order to accurately simulate the behavior of a solar thermal power plant will improve results of solar thermal power plants simulations. Keywords: Direct Normal Irradiance (DNI by knowing this information with accuracy, it will be possible to predict the solar thermal power plant

Paris-Sud XI, Université de

7

Intra-hour Direct Normal Irradiance solar forecasting using genetic programming  

E-Print Network [OSTI]

on an Eppley SMT-3 Solar Tracker. The SMT-3 can orient in aPSP mounted on a SMT-3 Solar Tracker. All of the DNI, GHI

Queener, Benjamin Daniel

2012-01-01T23:59:59.000Z

8

COMPARISON OF METHODOLOGIES TO ESTIMATE DIRECT NORMAL IRRADIATION FROM DAILY VALUES OF GLOBAL  

E-Print Network [OSTI]

. The reason is that a dual automatic tracker was installed by the end of 1999, providing better DNI 2-axis tracker. Measurements have been recorded every 5 seconds, but for the purpose of this work Sevilla (Spain). Phone: (+34) 954487233. Fax: (+34) 954 487233. E-mail: saramt@esi.us.es 2 Solar Thermal

Paris-Sud XI, Université de

9

Direct-Normal Solar Irradiance -A Closure Experiment, Halthore et al. 1 Comparison of Model Estimated and Measured Direct-Normal  

E-Print Network [OSTI]

). This is the energy in the solar spectrum falling per unit time on a unit area of a surface oriented normal to the Sun Direct-normal solar irradiance (DNSI), the total energy in the solar spectrum incident in unit time extinction of solar energy without regard to the details of the extinction - whether absorption or scattering

Schwartz, Stephen E.

10

Wedge test data for three new explosives: LAX112, 2,4-DNI, and TNAZ  

SciTech Connect (OSTI)

High pressure Pop-plots and inert Hugoniot curves have been measured for three new explosives: LAX112 (3,6-diamino-1,2,4,5-tetrazine-1,4-dioxide), 2,4-DNI (2,4-dinitroimidazole), and TNAZ (1,3,3-trinitroazetidine). LAX112 and 2,4-DNI are of interest because of their insensitivity, while TNAZ is useful for its performance and castability. The shock sensitivity of LAX112 and 2,4-DNI fall between that of pressed TNT and PBX9502, LAX112 being the less sensitive. The shock sensitivity of TNAZ falls between that of pressed PETN and PBX9501. The inert Hugoniots for all three materials are comparable to those of other explosives. {copyright} {ital 1996 American Institute of Physics.}

Hill, L.G.; Seitz, W.L.; Kramer, J.F.; Murk, D.M.; Medina, R.S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

1996-05-01T23:59:59.000Z

11

Wedge test data for three new explosives: LAX112, 2,4-DNI, and TNAZ  

SciTech Connect (OSTI)

High pressure Pop-plots and inert Hugoniot curves have been measured for three new explosives: LAX112 (3,6-diamino-1,2,4,5-tetrazine-1,4-dioxide), 2,4-DNI (2,4-dinitroimidazole), and TNAZ (1,3,3-trinitroazetidine). LAX112 and 2,4-DNI are of interest because of their insensitivity, while TNAZ is useful for its performance and castability. The shock sensitivity of LAX112 and 2,4-DNI fall between that of pressed TNT and PBX9502, LAX112 being the less sensitive. The shock sensitivity of TNAZ falls between that of pressed PETN and PBX9501. The Pop-plot and Hugoniot data for TNAZ matches well with the lower pressure gas-gun data of Sheffield, Gustavsen, and Alcon. The inert Hugoniots for all three materials are comparable to those of other explosives.

Hill, L.G.; Seitz, W.L.; Kramer, J.F.; Murk, D.M.; Medina, R.S.

1995-09-01T23:59:59.000Z

12

Three-dimensional heart dose reconstruction to estimate normal tissue complication probability after breast irradiation using portal dosimetry  

SciTech Connect (OSTI)

Irradiation of the heart is one of the major concerns during radiotherapy of breast cancer. Three-dimensional (3D) treatment planning would therefore be useful but cannot always be performed for left-sided breast treatments, because CT data may not be available. However, even if 3D dose calculations are available and an estimate of the normal tissue damage can be made, uncertainties in patient positioning may significantly influence the heart dose during treatment. Therefore, 3D reconstruction of the actual heart dose during breast cancer treatment using electronic imaging portal device (EPID) dosimetry has been investigated. A previously described method to reconstruct the dose in the patient from treatment portal images at the radiological midsurface was used in combination with a simple geometrical model of the irradiated heart volume to enable calculation of dose-volume histograms (DVHs), to independently verify this aspect of the treatment without using 3D data from a planning CT scan. To investigate the accuracy of our method, the DVHs obtained with full 3D treatment planning system (TPS) calculations and those obtained after resampling the TPS dose in the radiological midsurface were compared for fifteen breast cancer patients for whom CT data were available. In addition, EPID dosimetry as well as 3D dose calculations using our TPS, film dosimetry, and ionization chamber measurements were performed in an anthropomorphic phantom. It was found that the dose reconstructed using EPID dosimetry and the dose calculated with the TPS agreed within 1.5% in the lung/heart region. The dose-volume histograms obtained with EPID dosimetry were used to estimate the normal tissue complication probability (NTCP) for late excess cardiac mortality. Although the accuracy of these NTCP calculations might be limited due to the uncertainty in the NTCP model, in combination with our portal dosimetry approach it allows incorporation of the actual heart dose. For the anthropomorphic phantom, and for fifteen patients for whom CT data were available to test our method, the average difference between the NTCP values obtained with our method and those resulting from the dose distributions calculated with the TPS was 0.1% {+-}0.3% (1 SD). Most NTCP values were 1%-2% lower than those obtained using the method described by Hurkmans et al. [Radiother. Oncol. 62, 163-171 (2002)], using the maximum heart distance determined from a simulator image as a single pre-treatment parameter. A similar difference between the two methods was found for twelve patients using in vivo EPID dosimetry; the average NTCP value obtained with EPID dosimetry was 0.9%, whereas an average NTCP value of 2.2% was derived using the method of Hurkmans et al. The results obtained in this study show that EPID dosimetry is well suited for in vivo verification of the heart dose during breast cancer treatment, and can be used to estimate the NTCP for late excess cardiac mortality. To the best of our knowledge, this is the first study using portal dosimetry to calculate a DVH and NTCP of an organ at risk.

Louwe, R. J. W.; Wendling, M.; Herk, M. B. van; Mijnheer, B. J. [Department of Radiation Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

2007-04-15T23:59:59.000Z

13

A FUSION METHOD FOR CREATING SUB-HOURLY DNI-BASED TMY FROM LONG-TERM SATELLITE-BASED AND  

E-Print Network [OSTI]

, Marroco Abstract In order to correctly perform Concentrated Solar Power (CSP) plant electric energy output study of a Concentrated Solar Power (CSP) plant, the industry usually performs electric energy output-TERM GROUND-BASED IRRADIATION DATA Etienne WEY 1 , Claire THOMAS 1 , Philippe BLANC 2 , Bella ESPINAR 2

Boyer, Edmond

14

ARM - Measurement - Shortwave spectral direct normal irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Relatedcontent ARMnumberDopplerdownwellingdiffuse

15

Selective irradiation of the vascular endothelium  

E-Print Network [OSTI]

We developed a unique methodology to selectively irradiate the vascular endothelium in vivo to better understand the role of vascular damage in causing normal tissue radiation side-effects.The relationship between vascular ...

Schuller, Bradley W

2007-01-01T23:59:59.000Z

16

IRRADIATION EXPERIMENTS &  

E-Print Network [OSTI]

IRRADIATION EXPERIMENTS & FACILITIES AT BNL: BLIP & NSLS II Peter Wanderer Superconducting Magnet). Current user: LBNE ­ materials for Project X. · Long Baseline Neutrino Experiment ­ Abandoned gold mine

McDonald, Kirk

17

Impact of Aerosols on Atmospheric Attenuation Loss in Central Receiver Systems: Preprint  

SciTech Connect (OSTI)

Atmospheric attenuation loss between the heliostat field and receiver has been recognized as a significant source of loss in Central Receiver Systems. In clear sky situations, extinction of Direct Normal Irradiance (DNI) is primarily by aerosols in the atmosphere. When aerosol loading is high close to the surface the attenuation loss between heliostat and receivers is significantly influenced by the amount of aerosols present on a particular day. This study relates measured DNI to aerosol optical depths close to the surface of the earth. The model developed in the paper uses only measured DNI to estimate the attenuation between heliostat and receiver in a central receiver system. The requirement that only a DNI measurement is available potentially makes the model a candidate for widespread use.

Sengupta, M.; Wagner, M. J.

2011-08-01T23:59:59.000Z

18

ccsd00003444, Jordan Normal and Rational Normal  

E-Print Network [OSTI]

that the characteristic polynomial can be fully factorized (see e.g. Fortuna-Gianni for rational normal forms

19

Safer Food with Irradiation  

E-Print Network [OSTI]

This publication answers questions about food irradiation and how it helps prevent foodborne illnesses. Included are explanations of how irradiation works and its benefits. Irradiation is a safe method of preserving food quality and ensuring its...

Thompson, Britta; Vestal, Andy; Van Laanen, Peggy

2003-01-21T23:59:59.000Z

20

agr-1 irradiation experiment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

E. Schwartz Department Direct-normal solar irradiance (DNSI), the total energy in the solar spectrum incident in unit time Schwartz, Stephen E. 13 An Experiment at HiRadMat:...

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Normal Curvature . . . Geodesic Curvature . . .  

E-Print Network [OSTI]

Normal Curvature . . . Geodesic Curvature . . . Home Page Title Page Page 683 of 711 Go Back Full quadratic form associated with a surface. #12;Normal Curvature . . . Geodesic Curvature . . . Home Page Title Page Page 684 of 711 Go Back Full Screen Close Quit The component g is called the geodesic

Gallier, Jean

22

Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes  

E-Print Network [OSTI]

irradiation is defined by the combination of the optical, mechanical and thermodynamic properties irradiation regimes Leonid V. Zhigileia) and Barbara J. Garrisonb) Department of Chemistry, The Pennsylvania confinement regime results in broader velocity distributions in the direction normal to the irradiated surface

Zhigilei, Leonid V.

23

Laser-induced differential normalized fluorescence method for cancer diagnosis  

DOE Patents [OSTI]

An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample. 5 figs.

Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.

1996-12-03T23:59:59.000Z

24

Laser-induced differential normalized fluorescence method for cancer diagnosis  

DOE Patents [OSTI]

An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample.

Vo-Dinh, Tuan (Knoxville, TN); Panjehpour, Masoud (Knoxville, TN); Overholt, Bergein F. (Knoxville, TN)

1996-01-01T23:59:59.000Z

25

Origins of ion irradiation-induced Ga nanoparticle motion on GaAs surfaces  

SciTech Connect (OSTI)

We have examined the origins of ion irradiation-induced nanoparticle (NP) motion. Focused-ion-beam irradiation of GaAs surfaces induces random walks of Ga NPs, which are biased in the direction opposite to that of ion beam scanning. Although the instantaneous NP velocities are constant, the NP drift velocities are dependent on the off-normal irradiation angle, likely due to a difference in surface non-stoichiometry induced by the irradiation angle dependence of the sputtering yield. It is hypothesized that the random walks are initiated by ion irradiation-induced thermal fluctuations, with biasing driven by anisotropic mass transport.

Kang, M.; Wu, J. H.; Chen, H. Y.; Thornton, K.; Goldman, R. S. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Sofferman, D. L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, Adelphi University, Garden City, New York 11530-0701 (United States); Beskin, I. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)] [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)

2013-08-12T23:59:59.000Z

26

Comminuting irradiated ferritic steel  

DOE Patents [OSTI]

Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

Bauer, Roger E. (Kennewick, WA); Straalsund, Jerry L. (Kennewick, WA); Chin, Bryan A. (Auburn, AL)

1985-01-01T23:59:59.000Z

27

Irradiation Creep in Graphite  

SciTech Connect (OSTI)

An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

Ubic, Rick; Butt, Darryl; Windes, William

2014-03-13T23:59:59.000Z

28

Solar Radiometric Data Quality Assessment of SIRS, SKYRAD and GNDRAD Measurements (Poster)  

SciTech Connect (OSTI)

Solar radiation is the driving force for the earth's weather and climate. Understanding the elements of this dynamic energy balance requires accurate measurements of broadband solar irradiance. Since the mid-1990's the ARM Program has deployed pyrheliometers and pyranometers for the measurement of direct normal irradiance (DNI), global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), and upwelling shortwave (US) radiation at permanent and mobile field research sites. This poster summarizes the basis for assessing the broadband solar radiation data available from the SIRS, SKYRAD, and GNDRAD measurement systems and provides examples of data inspections.

Habte, A.; Stoffel, T.; Reda, I.; Wilcox, S.; Kutchenreiter, M.; Gotseff, P.; Anderberg, M.

2014-03-01T23:59:59.000Z

29

atr-a1 irradiation experiment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

E. Schwartz Department Direct-normal solar irradiance (DNSI), the total energy in the solar spectrum incident in unit time Schwartz, Stephen E. 13 An Experiment at HiRadMat:...

30

Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint  

SciTech Connect (OSTI)

Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

2014-09-01T23:59:59.000Z

31

Irradiation Stability of Carbon Nanotubes  

E-Print Network [OSTI]

Ion irradiation of carbon nanotubes is a tool that can be used to achieve modification of the structure. Irradiation stability of carbon nanotubes was studied by ion and electron bombardment of the samples. Different ion species at various energies...

Aitkaliyeva, Assel

2010-01-14T23:59:59.000Z

32

Normal matter storage of antiprotons  

SciTech Connect (OSTI)

Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

Campbell, L.J.

1987-01-01T23:59:59.000Z

33

Processing Irradiated Beryllium For Disposal  

SciTech Connect (OSTI)

The purpose of this research was to develop a process for decontaminating irradiated beryllium that will allow it to be disposed of through normal radwaste channels. Thus, the primary objectives of this ongoing study are to remove the transuranic (TRU) isotopes to less than 100 nCi/g and remove {sup 60}Co, and {sup 137}Cs, to levels that will allow the beryllium to be contact handled. One possible approach that appears to have the most promise is aqueous dissolution and separation of the isotopes by selected solvent extraction followed by precipitation, resulting in a granular form for the beryllium that may be fixed to prevent it from becoming respirable and therefore hazardous. Beryllium metal was dissolved in nitric and fluorboric acids. Isotopes of {sup 241}Am, {sup 239}Pu, {sup 85}Sr, and {sup 137}Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide (CCD) and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) in tributyl phosphate (TBP) diluted with dodecane for extracting the isotopes of Pu and Am. The results indicate that greater than 99.9% removal can be achieved for each isotope with only three contact stages.

T. J. Tranter; R. D. Tillotson; N. R. Mann; G. R. Longhurst

2005-11-01T23:59:59.000Z

34

Normalized cDNA libraries  

DOE Patents [OSTI]

This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library.

Soares, Marcelo B. (New York, NY); Efstratiadis, Argiris (Englewood, NJ)

1997-01-01T23:59:59.000Z

35

Normalized cDNA libraries  

DOE Patents [OSTI]

This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3{prime} noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. 4 figs.

Soares, M.B.; Efstratiadis, A.

1997-06-10T23:59:59.000Z

36

SDI: Solar Dome Instrument for Solar Irradiance Monitoring Tao Liu1, Ankur U. Kamthe1, Varick L. Erickson1, Carlos F. M. Coimbra2 and Alberto E. Cerpa1  

E-Print Network [OSTI]

SDI: Solar Dome Instrument for Solar Irradiance Monitoring Tao Liu1, Ankur U. Kamthe1, Varick L data for ground solar irradiance (direct normal and global irradiance) is a major obstacle for the de- velopment of adequate policies to promote and take advan- tage of existing solar technologies. Although

Cerpa, Alberto E.

37

Cool covered sky-splitting spectrum-splitting FK  

SciTech Connect (OSTI)

Placing a plane mirror between the primary lens and the receiver in a Fresnel Khler (FK) concentrator gives birth to a quite different CPV system where all the high-tech components sit on a common plane, that of the primary lens panels. The idea enables not only a thinner device (a half of the original) but also a low cost 1-step manufacturing process for the optics, automatic alignment of primary and secondary lenses, and cell/wiring protection. The concept is also compatible with two different techniques to increase the module efficiency: spectrum splitting between a 3J and a BPC Silicon cell for better usage of Direct Normal Irradiance DNI, and sky splitting to harvest the energy of the diffuse radiation and higher energy production throughout the year. Simple calculations forecast the module would convert 45% of the DNI into electricity.

Mohedano, Rubn; Chaves, Julio; Falicoff, Waqidi; Hernandez, Maikel; Sorgato, Simone [LPI, Altadena, CA, USA and Madrid (Spain); Miano, Juan C.; Benitez, Pablo [LPI, Altadena, CA, USA and Madrid, Spain and Universidad Politcnica de Madrid (UPM), Madrid (Spain); Buljan, Marina [Universidad Politcnica de Madrid (UPM), Madrid (Spain)

2014-09-26T23:59:59.000Z

38

Dissolution of ordered precipitates under ion irradiation  

SciTech Connect (OSTI)

The stability of the ordered {gamma}{prime} precipitates under 300-keV Ni{sup +} irradiation was investigated between room temperature and 623 K. The two competing mechanisms of destabilization by cascade producing irradiation, i.e. disordering and dissolution of the {gamma}{prime} precipitates in Nimonic PE16 alloy, has been studied separately by electron microscopy and field-ion microscopy with atom probe. At high temperatures, the precipitates are stable. At intermediate temperatures, the precipitates dissolve by ballistic mixing into the matrix, but the interface is restored by the radiation-enhanced atomic jumps. The order in the precipitates remains stable. At low temperatures, the precipitates are dissolved by atomic mixing. The dissolution proceeds in a diffusional manner with a diffusion coefficient normalized by the displacement rate D/K = 0.75 nm{sup 2}dpa{sup {minus}1}. The precipitates become disordered by a fluence of 0.1 dpa, whereas precipitate dissolution needs much higher fluences.

Camus, E.; Bourdeau, F.; Abromeit, C.; Wanderka, N.; Wollenberger, H. [Hahn-Meitner-Institut Berlin GmbH (Germany)

1995-09-01T23:59:59.000Z

39

Phase transformations in neutron-irradiated Zircaloys  

SciTech Connect (OSTI)

Microstructural evolution in Zircaloy-2 and -4 spent-fuel cladding specimens after approx.3 years of irradiation in commercial power reactors has been investigated by TEM and HVEM. Two kinds of precipitates induced by the fast-neutron irradiation in the reactors have been identified, i.e., Zr/sub 3/O and cubic-ZrO/sub 2/ particles approximately 2 to 10 nm in size. By means of a weak-beam dark-field ''2-1/2D-microscopy'' technique, the bulk nature of the precipitates and the surficial nature of artifact oxide and hydride phases could be discerned. The Zr(Fe/sub x/,Cr/sub 1-x/)/sub 2/ and Zr/sub 2/(Fe/sub x/,Ni/sub 1-x/) intermetallic precipitates normally present in the as-fabricated material virtually dissolved in the spent-fuel cladding specimens after a fast-neutron fluence of approx.4 x 10/sup 21/ ncm/sup -2/ in the power reactors. The observed radiation-induced phase transformations are compared with predictions based on the currently available understanding of the alloy characteristics. 29 refs.

Chung, H.M.

1986-04-01T23:59:59.000Z

40

Cascaded target normal sheath acceleration  

SciTech Connect (OSTI)

A cascaded target normal sheath acceleration (TNSA) scheme is proposed to simultaneously increase energy and improve energy spread of a laser-produced mono-energetic proton beam. An optimum condition that uses the maximum sheath field to accelerate the center of the proton beam is theoretically found and verified by two-dimensional particle-in-cell simulations. An initial 10 MeV proton beam is accelerated to 21 MeV with energy spread decreased from 5% to 2% under the optimum condition during the process of the cascaded TNSA. The scheme opens a way to scale proton energy lineally with laser energy.

Wang, W. P.; Shen, B. F.; Zhang, X. M.; Wang, X. F.; Xu, J. C.; Zhao, X. Y.; Yu, Y. H.; Yi, L. Q.; Shi, Y.; Zhang, L. G.; Xu, T. J.; Xu, Z. Z. [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)] [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

2013-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Status of the NGNP fuel experiment AGR-2 irradiated in the advanced test reactor  

SciTech Connect (OSTI)

The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also undergo on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and sup

S. Blaine Grover; David A. Petti

2014-05-01T23:59:59.000Z

42

Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energys Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

Blaine Grover

2012-10-01T23:59:59.000Z

43

ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

Hodges, Gary

44

Proton irradiation effect on SCDs  

E-Print Network [OSTI]

The Low Energy X-ray Telescope is a main payload on the Hard X-ray Modulation Telescope satellite. The swept charge device is selected for the Low Energy X-ray Telescope. As swept charge devices are sensitive to proton irradiation, irradiation test was carried out on the HI-13 accelerator at the China Institute of Atomic Energy. The beam energy was measured to be 10 MeV at the SCD. The proton fluence delivered to the SCD was $3\\times10^{8}\\mathrm{protons}/\\mathrm{cm}^{2}$ over two hours. It is concluded that the proton irradiation affects both the dark current and the charge transfer inefficiency of the SCD through comparing the performance both before and after the irradiation. The energy resolution of the proton-irradiated SCD is 212 eV@5.9 keV at $-60\\,^{\\circ}\\mathrm{C}$, while it before irradiated is 134 eV. Moreover, better performance can be reached by lowering the operating temperature of the SCD on orbit.

Yan-Ji Yang; Jing-Bin Lu; Yu-Sa Wang; Yong Chen; Yu-Peng Xu; Wei-Wei Cui; Wei Li; Zheng-Wei Li; Mao-Shun Li; Xiao-Yan Liu; Juan Wang; Da-Wei Han; Tian-Xiang Chen; Cheng-Kui Li; Jia Huo; Wei Hu; Yi Zhang; Bo Lu; Yue Zhu; Ke-Yan Ma; Di Wu; Yan Liu; Zi-Liang Zhang; Guo-He Yin; Yu Wang

2014-04-19T23:59:59.000Z

45

AGR-2 IRRADIATION TEST FINAL AS-RUN REPORT  

SciTech Connect (OSTI)

This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test contained six independently controlled and monitored capsules. Each U.S. capsule contained 12 compacts of either UCO or UO2 AGR coated fuel. No fuel particles failed during the AGR-2 irradiation. Final burnup values on a per compact basis ranged from 7.26 to 13.15% FIMA (fissions per initial heavy-metal atom) for UCO fuel, and 9.01 to 10.69% FIMA for UO2 fuel, while fast fluence values ranged from 1.94 to 3.471025 n/m2 (E >0.18 MeV) for UCO fuel, and from 3.05 to 3.531025 n/m2 (E >0.18 MeV) for UO2 fuel. Time-average volume-average (TAVA) temperatures on a capsule basis at the end of irradiation ranged from 987C in Capsule 6 to 1296C in Capsule 2 for UCO, and from 996 to 1062C in UO2-fueled Capsule 3. By the end of the irradiation, all of the installed thermocouples (TCs) had failed. Fission product release-to-birth (R/B) ratios were quite low. In the UCO capsules, R/B values during the first three cycles were below 10-6 with the exception of the hotter Capsule 2, in which the R/Bs reached 210-6. In the UO2 capsule (Capsule 3), the R/B values during the first three cycles were below 10-7. R/B values for all following cycles are not reliable due to gas flow and cross talk issues.

Blaise, Collin

2014-07-01T23:59:59.000Z

46

TRENDS IN DIRECT NORMAL SOLAR IRRADIANCE IN OREGON FROM 1979-2003 Laura Riihimaki  

E-Print Network [OSTI]

in large part on the data provided by the Global Energy Balance Archive. Additional data from the United is important for assessing the risks and reliability of power generated from solar energy facilities States National Solar Radiation Data Base (NSRDB) in the Liepert study contributes to some variation

Oregon, University of

47

Intra-hour Direct Normal Irradiance solar forecasting using genetic programming  

E-Print Network [OSTI]

in Electrical Engineering (Applied Ocean Sciences) byElectrical Engineering (Applied Ocean Sciences) University

Queener, Benjamin Daniel

2012-01-01T23:59:59.000Z

48

Turing's normal numbers: towards randomness Veronica Becher  

E-Print Network [OSTI]

presumably in 1938 Alan Turing gave an algorithm that produces real numbers normal to every integer base- putable normal numbers, and this result should be attributed to Alan Turing. His manuscript entitled "A

49

Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain  

SciTech Connect (OSTI)

Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy {gamma}-rays or a fractionated dose of 40 Gy {gamma}-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR). The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.

Lee, Won Hee [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States); Warrington, Junie P.; Sonntag, William E. [Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Lee, Yong Woo, E-mail: ywlee@vt.edu [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States); Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States)

2012-04-01T23:59:59.000Z

50

SMITH NORMAL FORM AND LAPLACIANS DINO LORENZINI  

E-Print Network [OSTI]

SMITH NORMAL FORM AND LAPLACIANS DINO LORENZINI Abstract. Let M denote the Laplacian matrix of a graph G. Associated with G is a finite group (G), obtained from the Smith normal form of M, and whose /Im(M). This group can be computed in practice using the Smith normal form of M, as follows. Given any

Lorenzini, Dino J.

51

Combinatorial Maps with Normalized Knot Dainis ZEPS  

E-Print Network [OSTI]

Combinatorial Maps with Normalized Knot Dainis ZEPS Abstract We consider combinatorial maps's normalization doesn't affect combinatorial map what concerns its generality. Knot's normalization leads to more concise numeration of corners in maps, e.g., odd or even corners allow easy to follow distinguished cycles

Paris-Sud XI, Université de

52

STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS  

SciTech Connect (OSTI)

Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

2014-09-01T23:59:59.000Z

53

Neutron irradiation of beryllium pebbles  

SciTech Connect (OSTI)

Seven subcapsules from the FFTF/MOTA 2B irradiation experiment containing 97 or 100% dense sintered beryllium cylindrical specimens in depleted lithium have been opened and the specimens retrieved for postirradiation examination. Irradiation conditions included 370 C to 1.6 {times} 10{sup 22} n/cm{sup 2}, 425 C to 4.8 {times} 10{sup 22} n/cm{sup 2}, and 550 C to 5.0 {times} 10{sup 22} n/cm{sup 2}. TEM specimens contained in these capsules were also retrieved, but many were broken. Density measurements of the cylindrical specimens showed as much as 1.59% swelling following irradiation at 500 C in 100% dense beryllium. Beryllium at 97% density generally gave slightly lower swelling values.

Gelles, D.S.; Ermi, R.M. [Pacific Northwest National Lab., Richland, WA (United States); Tsai, H. [Argonne National Lab., IL (United States)

1998-03-01T23:59:59.000Z

54

Low energy electron irradiation of an apple  

E-Print Network [OSTI]

The viability of pathogenic organisms on the surface of fresh fruits and vegetables can be significantly reduced by low energy electron beam irradiation. The most difficult technical challenge for surface irradiation of fruits and vegetable...

Brescia, Giovanni Batista

2002-01-01T23:59:59.000Z

55

Statistical criteria for characterizing irradiance time series.  

SciTech Connect (OSTI)

We propose and examine several statistical criteria for characterizing time series of solar irradiance. Time series of irradiance are used in analyses that seek to quantify the performance of photovoltaic (PV) power systems over time. Time series of irradiance are either measured or are simulated using models. Simulations of irradiance are often calibrated to or generated from statistics for observed irradiance and simulations are validated by comparing the simulation output to the observed irradiance. Criteria used in this comparison should derive from the context of the analyses in which the simulated irradiance is to be used. We examine three statistics that characterize time series and their use as criteria for comparing time series. We demonstrate these statistics using observed irradiance data recorded in August 2007 in Las Vegas, Nevada, and in June 2009 in Albuquerque, New Mexico.

Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

2010-10-01T23:59:59.000Z

56

3, 895959, 2006 Irradiance and  

E-Print Network [OSTI]

and corals. However, the contribution of benthic communities to the primary production of the global coastal energy source fueling marine primary prBGD 3, 895­959, 2006 Irradiance and primary production in the coastal ocean J.-P. Gattuso et al

Paris-Sud XI, Université de

57

sterilization by irradiation Arne Miller  

E-Print Network [OSTI]

-1:2006 Equipment characterization (6) Product definition (7) Process definition (8) Installation Qualification (9.1) Operational Qualification (9.2) · Performance Qualification (9.3) - later #12;3 Equipment characterization samples shall be irradiated to defined and uniform doses. #12;9 9.1 Installation qualification (A.9

58

Low temperature irradiation tests on  

E-Print Network [OSTI]

Sample cool down by He gas loop 10K 20K Fast neutron flux Measured by Ni activation in 2010 1.4xK #12;reactor Cryogenics #12;Al-Cu-Mg He gas temperature near sample 12K Resistance changesLow temperature irradiation tests on stabilizer materials using reactor neutrons at KUR Makoto

McDonald, Kirk

59

Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energys Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

A. Joseph Palmer; David A. Petti; S. Blaine Grover

2014-04-01T23:59:59.000Z

60

Irradiation-induced phenomena in carbon  

E-Print Network [OSTI]

Chapter 1 Irradiation-induced phenomena in carbon nanotubes To appear in "Chemistry of Carbon@acclab.helsinki.fi 1 #12;2CHAPTER 1. IRRADIATION-INDUCED PHENOMENA IN CARBON NANOTUBES #12;Contents 1 Irradiation-induced phenomena in carbon nanotubes 1 1.1 Introduction

Krasheninnikov, Arkady V.

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Transition from Irradiation-Induced Amorphization to Crystallization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Irradiation-Induced Amorphization to Crystallization in Nanocrystalline Silicon Carbide. Transition from Irradiation-Induced Amorphization to Crystallization in...

62

Occlusion-Aware Hessians for Error Control in Irradiance Caching /  

E-Print Network [OSTI]

Control for Irradiance Caching. In ACM Transactions on Graphics,Control for Irradiance Caching. In ACM Transactions on Graphics,

Schwarzhaupt, Jorge Andres

2013-01-01T23:59:59.000Z

63

Lambda hyperonic effect on the normal driplines  

E-Print Network [OSTI]

A generalized mass formula is used to calculate the neutron and proton drip lines of normal and lambda hypernuclei treating non-strange and strange nuclei on the same footing. Calculations suggest existence of several bound hypernuclei whose normal cores are unbound. Addition of Lambda or, Lambda-Lambda hyperon(s) to a normal nucleus is found to cause shifts of the neutron and proton driplines from their conventional limits.

C. Samanta; P. Roy Chowdhury; D. N. Basu

2008-02-21T23:59:59.000Z

64

AUGUSTOSAGNOTTI ScuolaNormaleSuperiore-Pisa  

E-Print Network [OSTI]

JoelScherk,unfisicodell'Eco- le Normale Supérieure di Parigi scomparso prematuramente nel- l'80. La stessa Teoria, creata nel 1968

Abbondandolo, Alberto

65

alla Normale 1_la Scuola 9  

E-Print Network [OSTI]

funzione che in Francia viene svolta dalla gemella ?cole Normale Supérieure di Parigi. A questa antica

Abbondandolo, Alberto

66

Conformal Universality in Normal Matrix Ensembles  

E-Print Network [OSTI]

A remarkable property of Hermitian ensembles is their universal behavior, that is, once properly rescaled the eigenvalue statistics does not depend on particularities of the ensemble. Recently, normal matrix ensembles have attracted increasing attention, however, questions on universality for these ensembles still remain under debate. We analyze the universality properties of random normal ensembles. We show that the concept of universality used for Hermitian ensembles cannot be directly extrapolated to normal ensembles. Moreover, we show that the eigenvalue statistics of random normal matrices with radially symmetric potential can be made universal under a conformal transformation.

Alexei M. Veneziani; Tiago Pereira; Domingos H. U. Marchetti

2009-09-18T23:59:59.000Z

67

Current Status of Concentrator Photovoltaic (CPV) Technology  

SciTech Connect (OSTI)

This report describes the current status of the market and technology for concentrator photovoltaic (CPV) cells and modules. Significant progress in CPV has been achieved, including record efficiencies for modules (36.7%) and cells (46%), as well as growth of large field installations in recent years. CPV technology may also have the potential to be cost-competitive on a levelized cost of energy (LCOE) basis in regions of high direct normal irradiance (DNI). The study includes an overview of all installations larger than 1 MW, information on companies currently active in the CPV field, efficiency data, and estimates of the LCOE in different scenarios.

Philipps, S. P.; Bett, A. W.; Horowitz, K.; Kurtz, S.

2015-01-01T23:59:59.000Z

68

Mechanism of Irradiation Assisted Cracking of Core Components in Light Water Reactors  

SciTech Connect (OSTI)

The overall goal of the project is to determine the mechanism of irradiation assisted stress corrosion cracking (IASCC). IASCC has been linked to hardening, microstructural and microchemical changes during irradiation. Unfortunately, all of these changes occur simultaneously and at similar rates during irradiation, making attribution of IASCC to any one of these features nearly impossible to determine. The strategy set forth in this project is to develop means to separate microstructural from microchemical changes to evaluate each separately for their effect on IASCC. In the first part, post irradiation annealing (PIA) treatments are used to anneal the irradiated microstructure, leaving only radiation induced segregation (RIS) for evaluation for its contribution to IASCC. The second part of the strategy is to use low temperature irradiation to produce a radiation damage dislocation loop microstructure without radiation induced segregation in order to evaluate the effect of the dislocation microstructure alone. A radiation annealing model was developed based on the elimination of dislocation loops by vacancy absorption. Results showed that there were indeed, time-temperature annealing combinations that leave the radiation induced segregation profile largely unaltered while the dislocation microstructure is significantly reduced. Proton irradiation of 304 stainless steel irradiated with 3.2 MeV protons to 1.0 or 2.5 dpa resulted in grain boundary depletion of chromium and enrichment of nickel and a radiation damaged microstructure. Post irradiation annealing at temperatures of 500 ? 600C for times of up to 45 min. removed the dislocation microstructure to a greater degree with increasing temperatures, or times at temperature, while leaving the radiation induced segregation profile relatively unaltered. Constant extension rate tensile (CERT) experiments in 288C water containing 2 ppm O2 and with a conductivity of 0.2 mS/cm and at a strain rate of 3 x 10-7 s-1 showed that the IASCC susceptibility, as measured by the crack length per unit strain, decreased with very short anneals and was almost completely removed by an anneal at 500C for 45 min. This annealing treatment removed about 15% of the dislocation microstructure and the irradiation hardening, but did not affect the grain boundary chromium depletion or nickel segregation, nor did it affect the grain boundary content of other minor impurities. These results indicate that RIS is not the sole controlling feature of IASCC in irradiated stainless steels in normal water chemistry. The isolation of the irradiated microstructure was approached using low temperature irradiation or combinations of low and high temperature irradiations to achieve a stable, irradiated microstructure without RIS. Experiments were successful in achieving a high degree of irradiation hardening without any evidence of RIS of either major or minor elements. The low temperature irradiations to doses up to 0.3 dpa at T<75C were also very successful in producing hardening to levels considerably above that for irradiations conducted under nominal conditions of 1 dpa at 360C. However, the microstructure consisted of an extremely fine dispersion of defect clusters of sizes that are not resolvable by either transmission electron microscopy (TEM) or small angle x-ray scattering (SAXS). The microstructure was not stable at the 288C IASCC test temperature and resulted in rapid reduction of hardening and presumably, annealing of the defect clusters at this temperature as well. Nevertheless, the annealing studies showed that treatments that resulted in significant decreases in the hardening produced small changes in the dislocation microstructure that were confined to the elimination of the finest of loops (~1 nm). These results substantiate the importance of the very fine defect microstructure in the IASCC process. The results of this program provide the first definitive evidence that RIS is not the sole controlling factor in the irradiation assisted stress corrosion cracking of austenitic stain

Gary S. Was; Michael Atzmon; Lumin Wang

2003-04-28T23:59:59.000Z

69

Extremal unital completely positive normal maps  

E-Print Network [OSTI]

We study the convex set of unital completely positive normal map on a von-Neumann algebra and find a necessary and sufficient condition for an element in the convex set to be extremal. We also deal with the same problem for the convex subset which admits a faithful normal state.

Anilesh Mohari

2013-01-11T23:59:59.000Z

70

Completing the Design of the Advanced Gas Reactor Fuel Development and Qualification Experiments for Irradiation in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energys Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energys lead laboratory for nuclear energy development. The ATR is one of the worlds premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

S. Blaine Grover

2006-10-01T23:59:59.000Z

71

Normalizing the causality between time series  

E-Print Network [OSTI]

Recently, a rigorous yet concise formula has been derived to evaluate the information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing three types of fundamental mechanisms that govern the marginal entropy change of the flow recipient. A normalized or relative flow measures its importance relative to other mechanisms. In analyzing realistic series, both absolute and relative information flows need to be taken into account, since the normalizers for a pair of reverse flows belong to two different entropy balances; it is quite normal that two identical flows may differ a lot in relative importance in their respective balances. We have reproduced these results with several autoregressive models. We have also shown applications to a climate change problem and a financial analysis problem. For the former, reconfirmed is the role of the Indian Ocean Dipole as ...

Liang, X San

2015-01-01T23:59:59.000Z

72

GTL-1 Irradiation Summary Report  

SciTech Connect (OSTI)

The primary objective of the Gas Test Loop (GTL-1) miniplate experiment is to confirm acceptable performance of high-density (i.e., 4.8 g-U/cm3) U3Si2/Al dispersion fuel plates clad in Al-6061 and irradiated under the relatively aggressive Booster Fast Flux Loop (BFFL) booster fuel conditions, namely a peak plate surface heat flux of 450 W/cm2. As secondary objectives, several design and fabrication variations were included in the test matrix that may have the potential to improve the high-heat flux, high-temperature performance of the base fuel plate design.1, 2 The following report summarizes the life of the GTL-1 experiment through end of irradiation, including as-run neutronic analysis, thermal analysis and hydraulic testing results.

D. M. Perez; G. S. Chang; N. E. Woolstenhulme; D. M. Wachs

2012-01-01T23:59:59.000Z

73

RERTR-6 Irradiation Summary Report  

SciTech Connect (OSTI)

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-6 was designed to evaluate several modified fuel designs that were proposed to address the possibility of breakaway swelling due to porosity within the (U. Mo) Al interaction product observed in the full-size plate tests performed in Russia and France1. The following report summarizes the life of the RERTR-6 experiment through end of irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.

D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

2011-12-01T23:59:59.000Z

74

RERTR-13 Irradiation Summary Report  

SciTech Connect (OSTI)

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-13 was designed to assess performance of different types of neutron absorbers that can be potentially used as burnable poisons in the low enriched uranium-molybdenum based dispersion and monolithic fuels.1 The following report summarizes the life of the RERTR-13 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

D. M. Perez; M. A. Lillo; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

2012-09-01T23:59:59.000Z

75

Nuclear plant irradiated steel handbook  

SciTech Connect (OSTI)

This reference handbook presents selected information extracted from the EPRI reactor surveillance program database, which contains the results from surveillance program reports on 57 plants and 116 capsules. Tabulated data includes radiation induced temperature shifts, capsule irradiation conditions and statistical features of the Charpy V-notch curves. General information on the surveillance materials is provided and the Charpy V-notch energy results are presented graphically.

Oldfield, W.; Oldfield, F.M.; Lombrozo, P.M.; McConnell, P.

1986-09-01T23:59:59.000Z

76

Heavy-Section Steel Irradiation Program on irradiation effects in light-water reactor pressure vessel materials  

SciTech Connect (OSTI)

The safety of commercial light-water nuclear plants is highly dependent on the structural integrity of the reactor pressure vessel (RPV). In the absence of radiation damage to the RPV, fracture of the vessel is difficult to postulate. Exposure to high energy neutrons can result in embrittlement of radiation-sensitive RPV materials. The Heavy-Section Steel Irradiation (HSSI) Program at Oak Ridge National Laboratory, sponsored by the US Nuclear Regulatory Commission (USNRC), is assessing the effects of neutron irradiation on RPV material behavior, especially fracture toughness. The results of these and other studies are used by the USNRC in the evaluation of RPV integrity and regulation of overall nuclear plant safety. In assessing the effects of irradiation, prototypic RPV materials are characterized in the unirradiated condition and exposed to radiation under varying conditions. Mechanical property tests are conducted to provide data which can be used in the development of guidelines for structural integrity evaluations, while metallurgical examinations and mechanistic modeling are performed to improve understanding of the mechanisms responsible for embrittlement. The results of these investigations, in conjunction with results from commercial reactor surveillance programs, are used to develop a methodology for the prediction of radiation effects on RPV materials. This irradiation-induced degradation of the materials can be mitigated by thermal annealing, i.e., heating the RPV to a temperature above that of normal operation. Thus, thermal annealing and evaluation of reirradiation behavior are major tasks of the HSSI Program. This paper describes the HSSI Program activities by summarizing some past and recent results, as well as current and planned studies. 30 refs., 8 figs., 1 tab.

Nanstad, R.K.; Corwin, W.R.; Alexander, D.J.; Haggag, F.M.; Iskander, S.K.; McCabe, D.E.; Sokolov, M.A.; Stoller, R.E. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

1995-07-01T23:59:59.000Z

77

The influence of metallurgical variables on the temperature dependence of irradiation hardening in pressure vessel steels  

SciTech Connect (OSTI)

Yield stress elevations ({Delta}{sigma}{sub y}) in pressure vessel steels irradiated at intermediate flux and fluence systematically decreased with increasing temperature and decreasing copper and nickel content. Lower stress relief temperature also decreased {Delta}{sigma}{sub y} at bulk copper concentrations greater than about 0.3%. The dependence of {Delta}{sigma}{sub y} on irradiation temperature between 260 and 316 C increased with copper and nickel content and decreased with phosphorus content. When normalized by the average {Delta}{sigma}{sub y}, the fractional temperature dependence correlates with a simple empirical chemistry factor of copper and phosphorus. The correlation predicts data on the irradiation temperature dependence of {Delta}{sigma}{sub y} found in the literature within a standard error of about 0.3 MPa/{degree}C and is consistent with current understanding of hardening mechanisms. However, questions remain about the effects at very low flux and finer scale variations over smaller temperature intervals.

Odette, G.R.; Lucas, G.E.; Klingensmith, R.D. [Univ. of California, Santa Barbara, CA (United States). Dept. of Mechanical Engineering

1996-12-31T23:59:59.000Z

78

EPR Investigation of Irradiated Curry Powder  

SciTech Connect (OSTI)

Gamma-ray irradiated curry powder, a well priced oriental spice was investigated in order to establish the ability of EPR to detect the presence and time stability of free irradiation free-radicals. Accordingly, curry powder aliquots were irradiated with gradually increasing absorbed doses up to 11.3 kGy. The EPR spectra of all irradiated samples show the presence of al last two different species of free radicals, whose concentration increased monotonously with the absorbed doses. A 100 deg. C isothermal annealing of irradiated samples has shown a differential reduction of amplitude of various components of the initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after more than one year storage at room temperature, all of them being very useful in establishing the existence of any previous irradiation treatment.

Duliu, O. G.; Ali, S. I. [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Bucharest (Romania); Georgescu, R. [National Institute for Physics and Nuclear Engineering-Horia Hulubei, P.O. Box MG-6, 077125 Bucharest (Romania)

2007-04-23T23:59:59.000Z

79

Status of the Combined Third and Fourth NGNP Fuel Irradiations In the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energys Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in September 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. Since the purpose of this combined experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is significantly different from the first two experiments, though the control and monitoring systems are extremely similar. The design of the experiment will be discussed followed by its progress and status to date.

S. Blaine Grover; David A. Petti; Michael E. Davenport

2013-07-01T23:59:59.000Z

80

Sodium and potassium levels in the serum of acutely irradiated and non-irradiated rats  

E-Print Network [OSTI]

SODIUM AND POTASSIUM LEVELS IN THE SERUM OF ACUTELY IRRADIATED AND NON-IRRADIATED RATS A Thesis By DAVID PRESTON SHEPHERD Submitted to the Graduate College of the Texas ARM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1967 Major Subject: Zoology SODIUM AND POTASSIUM LEVELS IN THE SERUM OF ACUTELY IRRADIATED AND NON-IRRADIATED RATS A Thesis By DAVID PRESTON SHEPHERD Approved as to style and content by: (Chairman of Committee) (Head...

Shepherd, David Preston

1967-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energys Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energys lead laboratory for nuclear energy development. The ATR is one of the worlds premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In addition, the purpose and differences between the two experiments will be compared and the irradiation results to date on the first experiment will be presented.

S. Blaine Grover

2009-09-01T23:59:59.000Z

82

Status of the Norwegian thorium light water reactor (LWR) fuel development and irradiation test program  

SciTech Connect (OSTI)

Thorium based fuels offer several benefits compared to uranium based fuels and should thus be an attractive alternative to conventional fuel types. In order for thorium based fuel to be licensed for use in current LWRs, material properties must be well known for fresh as well as irradiated fuel, and accurate prediction of fuel behavior must be possible to make for both normal operation and transient scenarios. Important parameters are known for fresh material but the behaviour of the fuel under irradiation is unknown particularly for low Th content. The irradiation campaign aims to widen the experience base to irradiated (Th,Pu)O{sub 2} fuel and (Th,U)O{sub 2} with low Th content and to confirm existing data for fresh fuel. The assumptions with respect to improved in-core fuel performance are confirmed by our preliminary irradiation test results, and our fuel manufacture trials so far indicate that both (Th,U)O{sub 2} and (Th,Pu)O{sub 2} fuels can be fabricated with existing technologies, which are possible to upscale to commercial volumes.

Drera, S.S.; Bjork, K.I.; Kelly, J.F.; Asphjell, O. [Thor Energy AS: Sommerrogaten 13-15, Oslo, NO255 (Norway)

2013-07-01T23:59:59.000Z

83

Genetic Background Modulates Gene Expression Profile Induced by Skin Irradiation in Ptch1 Mice  

SciTech Connect (OSTI)

Purpose: Ptch1 germ-line mutations in mice predispose to radiation-induced basal cell carcinoma of the skin, with tumor incidence modulated by the genetic background. Here, we examined the possible mechanisms underlying skin response to radiation in F1 progeny of Ptch1{sup neo67/+} mice crossed with either skin tumor-susceptible (Car-S) or -resistant (Car-R) mice and X-irradiated (3 Gy) at 2 days of age or left untreated. Methods and Materials: We conducted a gene expression profile analysis in mRNA samples extracted from the skin of irradiated or control mice, using Affymetrix whole mouse genome expression array. Confirmation of the results was done using real-time reverse-transcriptase polymerase chain reaction. Results: Analysis of the gene expression profile of normal skin of F1 mice at 4 weeks of age revealed a similar basal profile in the nonirradiated mice, but alterations in levels of 71 transcripts in irradiated Ptch1{sup neo67/+} mice of the Car-R cross and modulation of only eight genes in irradiated Ptch1{sup neo67/+} mice of the Car-S cross. Conclusions: These results indicate that neonatal irradiation causes a persistent change in the gene expression profile of the skin. The tendency of mice genetically resistant to skin tumorigenesis to show a more complex pattern of transcriptional response to radiation than do genetically susceptible mice suggests a role for this response in genetic resistance to basal cell tumorigenesis.

Galvan, Antonella; Noci, Sara [Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale Tumori, Milan (Italy); Mancuso, Mariateresa; Pazzaglia, Simonetta; Saran, Anna [ENEA Laboratories, Rome (Italy); Dragani, Tommaso A. [Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale Tumori, Milan (Italy)], E-mail: tommaso.dragani@istitutotumori.mi.it

2008-12-01T23:59:59.000Z

84

Nuclear Engineering Division Irradiated Materials Laboratory  

E-Print Network [OSTI]

Nuclear Engineering Division Irradiated Materials Laboratory The Irradiated Materials Laboratory (IML) in Argonne's Nuclear Engineering Division is used to conduct research on the behavior. #12;C O N TA C T > Dr. Michael C. Billone | 630-252-7146 | billone@anl.gov | Nuclear Engineering

Kemner, Ken

85

Computing Instantaneous Frequency by normalizing Hilbert Transform  

DOE Patents [OSTI]

This invention presents Normalized Amplitude Hilbert Transform (NAHT) and Normalized Hilbert Transform(NHT), both of which are new methods for computing Instantaneous Frequency. This method is designed specifically to circumvent the limitation set by the Bedorsian and Nuttal Theorems, and to provide a sharp local measure of error when the quadrature and the Hilbert Transform do not agree. Motivation for this method is that straightforward application of the Hilbert Transform followed by taking the derivative of the phase-angle as the Instantaneous Frequency (IF) leads to a common mistake made up to this date. In order to make the Hilbert Transform method work, the data has to obey certain restrictions.

Huang, Norden E.

2005-05-31T23:59:59.000Z

86

AGC-1 Irradiation Experiment Test Plan  

SciTech Connect (OSTI)

The Advanced Graphite Capsule (AGC) irradiation test program supports the acquisition of irradiated graphite performance data to assist in the selection of the technology to be used for the VHTR. Six irradiations are planned to investigate compressive creep in graphite subjected to a neutron field and obtain irradiated mechanical properties of vibrationally molded, extruded, and iso-molded graphites for comparison. The experiments will be conducted at three temperatures: 600, 900, and 1200C. At each temperature, two different capsules will be irradiated to different fluence levels, the first from 0.5 to 4 dpa and the second from 4 to 7 dpa. AGC-1 is the first of the six capsules designed for ATR and will focus on the prismatic fluence range.

R. L. Bratton

2006-05-01T23:59:59.000Z

87

Irradiation-induced defect clustering and amorphization in silicon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiation-induced defect clustering and amorphization in silicon carbide. Irradiation-induced defect clustering and amorphization in silicon carbide. Abstract: Previous computer...

88

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary...  

Broader source: Energy.gov (indexed) [DOE]

Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities...

89

Magnetization measurements and XMCD studies on ion irradiated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

measurements and XMCD studies on ion irradiated iron oxide and core-shell ironiron-oxide nanomaterials. Magnetization measurements and XMCD studies on ion irradiated iron oxide...

90

Botryllus schlosseri (Tunicata) whole colony irradiation: Do senescent zooid resorption and immunological resorption involve similar recognition events  

SciTech Connect (OSTI)

The colonial tunicate Botryllus schlosseri undergoes cyclic blastogenesis where feeding zooids are senescened and resorbed and a new generation of zooids takes over the colony. When non-identical colonies come into direct contact, they either reject each other or fuse. Fusion is usually followed by the resorption of one of the partners in the chimera (immunological resorption). The striking morphological similarities between the two resorption phenomena suggest that both may involve tissue destruction following self-nonself recognition events. Here we attempt to modify these two events by whole colony gamma irradiation assays. Three sets of experiments were performed: (1) different doses of whole colony irradiation for determination of irradiation effects (110 colonies); (2) pairs of irradiated-nonirradiated isografts of clonal replicates for the potential of reconstruction of the irradiated partners (23 pairs); (3) chimeras of irradiated-nonirradiated partners for analysis of resorption hierarchy. Mortality increased with the irradiation dose. All colonies exposed to more than 5,000 rads died within 19 days, while no colony died below 2,000 rads. The average mortality periods, in days, for doses of 6,000-8,000, 5,000, and 2,500-4,000 rads were 14.4 +/- 3.1 (n = 24), 19.8 +/- 6.0 (n = 15), and 19.6 + 5.1 (n = 22), respectively. Younger colonies (3-6 months old) may survive radiation better than older ones (more than 13 months). Many morphological alterations were recorded in irradiated colonies: ampullar contraction and/or dilation, accumulation of pigment cells within ampullae, abnormal bleeding from blood vessels, sluggish blood circulation, necrotic zones, reduction in bud number, and irregularities in zooid and system structures. With doses of 3,000-4,000 rads and above, irradiation arrested the formation of new buds and interrupted normal takeover.

Rinkevich, B.; Weissman, I.L. (Israel Oceanographic and Limnological Research, Haifa (Israel))

1990-02-01T23:59:59.000Z

91

RERTR-7 Irradiation Summary Report  

SciTech Connect (OSTI)

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-7A, was designed to test several modified fuel designs to target fission densities representative of a peak low enriched uranium (LEU) burnup in excess of 90% U-235 at peak experiment power sufficient to generate a peak surface heat flux of approximately 300 W/cm2. The RERTR-7B experiment was designed as a high power test of 'second generation' dispersion fuels at peak experiment power sufficient to generate a surface heat flux on the order of 230 W/cm2.1 The following report summarizes the life of the RERTR-7A and RERTR-7B experiments through end of irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.

D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

2011-12-01T23:59:59.000Z

92

Janus Experiments: Data from Mouse Irradiation Experiments 1972 - 1989  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Janus Experiments, carried out at Argonne National Laboratory from 1972 to 1989 and supported by grants from the US Department of Energy, investigated the effects of neutron and gamma radiation on mouse tissues primarily from B6CF1 mice. 49,000 mice were irradiated: Death records were recorded for 42,000 mice; gross pathologies were recorded for 39,000 mice; and paraffin embedded tissues were preserved for most mice. Mouse record details type and source of radiation [gamma, neutrons]; dose and dose rate [including life span irradiation]; type and presence/absence of radioprotector treatment; tissue/animal morphology and pathology. Protracted low dose rate treatments, short term higher dose rate treatments, variable dose rates with a same total dose, etc. in some cases in conjunction with radioprotectors, were administered. Normal tissues, tumors, metastases were preserved. Standard tissues saved were : lung, liver, spleen, kidney, heart, any with gross lesions (including mammary glands, Harderian gland with eye, adrenal gland, gut, ovaries or testes, brain and pituitary, bone). Data are searchable and specimens can be obtained by request.

93

A Harmonic Approach for Calculating Daily Temperature Normals Constrained by2 Homogenized Monthly Temperature Normals3  

E-Print Network [OSTI]

1 1 A Harmonic Approach for Calculating Daily Temperature Normals Constrained by2 Homogenized a constrained harmonic technique that forces the daily30 temperature normals to be consistent with the monthly, or harmonic even though the annual march of temperatures for some locations can be highly asymmetric. Here, we

94

Improving Thermal Model Prediction Through Statistical Analysis of Irradiation and Post-Irradiation Data from AGR Experiments  

SciTech Connect (OSTI)

As part of the Research and Development program for Next Generation High Temperature Reactors (HTR), a series of irradiation tests, designated as Advanced Gas-cooled Reactor (AGR), have been defined to support development and qualification of fuel design, fabrication process, and fuel performance under normal operation and accident conditions. The AGR tests employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule and instrumented with thermocouples (TC) embedded in graphite blocks enabling temperature control. The data representing the crucial test fuel conditions (e.g., temperature, neutron fast fluence, and burnup) while impossible to obtain from direct measurements are calculated by physics and thermal models. The irradiation and post-irradiation examination (PIE) experimental data are used in model calibration effort to reduce the inherent uncertainty of simulation results. This paper is focused on fuel temperature predicted by the ABAQUS codes finite element-based thermal models. The work follows up on a previous study, in which several statistical analysis methods were adapted, implemented in the NGNP Data Management and Analysis System (NDMAS), and applied for improving qualification of AGR-1 thermocouple data. The present work exercises the idea that the abnormal trends of measured data observed from statistical analysis may be caused by either measuring instrument deterioration or physical mechanisms in capsules that may have shifted the system thermal response. As an example, the uneven reduction of the control gas gap in Capsule 5 revealed by the capsule metrology measurements in PIE helps justify the reduction in TC readings instead of TC drift. This in turn prompts modification of thermal model to better fit with experimental data, thus help increase confidence, and in other word reduce model uncertainties in thermal simulation results of the AGR-1 test.

Dr. Binh T. Pham; Grant L. Hawkes; Jeffrey J. Einerson

2012-10-01T23:59:59.000Z

95

AGC-1 Post Irradiation Examination Status  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) Graphite R&D program is currently measuring irradiated material property changes in several grades of nuclear graphite for predicting their behavior and operating performance within the core of new Very High Temperature Reactor (VHTR) designs. The Advanced Graphite Creep (AGC) experiment consisting of six irradiation capsules will generate this irradiated graphite performance data for NGNP reactor operating conditions. All six AGC capsules in the experiment will be irradiated in the Advanced Test Reactor (ATR), disassembled in the Hot Fuel Examination Facility (HFEF), and examined at the INL Research Center (IRC) or Oak Ridge National Laboratory (ORNL). This is the first in a series of status reports on the progress of the AGC experiment. As the first capsule, AGC1 was irradiated from September 2009 to January 2011 to a maximum dose level of 6-7 dpa. The capsule was removed from ATR and transferred to the HFEF in April 2011 where the capsule was disassembled and test specimens extracted from the capsules. The first irradiated samples from AGC1 were shipped to the IRC in July 2011and initial post irradiation examination (PIE) activities were begun on the first 37 samples received. PIE activities continue for the remainder of the AGC1 specimen as they are received at the IRC.

David Swank

2011-09-01T23:59:59.000Z

96

AGR-1 Irradiation Experiment Test Plan  

SciTech Connect (OSTI)

This document presents the current state of planning for the AGR-1 irradiation experiment, the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment will be irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). The test will contain six independently controlled and monitored capsules. Each capsule will contain a single type, or variant, of the AGR coated fuel. The irradiation is planned for about 700 effective full power days (approximately 2.4 calendar years) with a time-averaged, volume-average temperature of approximately 1050 C. Average fuel burnup, for the entire test, will be greater than 17.7 % FIMA, and the fuel will experience fast neutron fluences between 2.4 and 4.5 x 1025 n/m2 (E>0.18 MeV).

John T. Maki

2009-10-01T23:59:59.000Z

97

RERTR-12 Insertion 2 Irradiation Summary Report  

SciTech Connect (OSTI)

The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-12 was designed to provide comprehensive information on the performance of uranium-molybdenum (U-Mo) based monolithic fuels for research reactor applications.1 RERTR-12 insertion 2 includes the capsules irradiated during the last three irradiation cycles. These capsules include Z, Y1, Y2 and Y3 type capsules. The following report summarizes the life of the RERTR-12 insertion 2 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

D. M. Perez; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

2012-09-01T23:59:59.000Z

98

Measuring Degradation Rates Without Irradiance Data  

SciTech Connect (OSTI)

A method to report PV system degradation rates without using irradiance data is demonstrated. First, a set of relative degradation rates are determined by comparing daily AC final yields from a group of PV systems relative to the average final yield of all the PV systems. Then, the difference between relative and absolute degradation rates is found from a statistical analysis. This approach is verified by comparing to methods that utilize irradiance data. This approach is significant because PV systems are often deployed without irradiance sensors, so the analysis method described here may enable measurements of degradation using data that were previously thought to be unsuitable for degradation studies.

Pulver, S.; Cormode, D.; Cronin, A.; Jordan, D.; Kurtz, S.; Smith, R.

2011-02-01T23:59:59.000Z

99

Guidance on Utility Rate Estimations and Weather Normalization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Weather Normalization in an ESPC Document explains how to use estimated energy rates and normalized weather data in determining an energy service company's (ESCO's)...

100

Effects of Altered Levels of Extracellular Superoxide Dismutase and Irradiation on Hippocampal Neurogenesis in Female Mice  

SciTech Connect (OSTI)

Purpose: Altered levels of extracellular superoxide dismutase (EC-SOD) and cranial irradiation have been shown to affect hippocampal neurogenesis. However, previous studies were only conducted in male mice, and it was not clear if there was a difference between males and females. Therefore, female mice were studied and the results compared with those generated in male mice from an earlier study. Methods and Materials: Female wild-type, EC-SOD-null (KO), and EC-SOD bigenic mice with neuronal-specific expression of EC-SOD (OE) were subjected to a single dose of 5-Gy gamma rays to the head at 8 weeks of age. Progenitor cell proliferation, differentiation, and long-term survival of newborn neurons were determined. Results: Similar to results from male mice, EC-SOD deficiency and irradiation both resulted in significant reductions in mature newborn neurons in female mice. EC-SOD deficiency reduced long-term survival of newborn neurons whereas irradiation reduced progenitor cell proliferation. Overexpression of EC-SOD corrected the negative impacts from EC-SOD deficiency and irradiation and normalized the production of newborn neurons in OE mice. Expression of neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 were significantly reduced by irradiation in wild-type mice, but the levels were not changed in KO and OE mice even though both cohorts started out with a lower baseline level. Conclusion: In terms of hippocampal neurogenesis, EC-SOD deficiency and irradiation have the same overall effects in males and females at the age the studies were conducted.

Zou, Yani [Department of Neurology and Neurological Sciences, Stanford University, Stanford, California (United States); Leu, David [Department of Neurology and Neurological Sciences, Stanford University, Stanford, California (United States); Palo Alto Institute of Research and Education, Palo Alto, California (United States); Chui, Jennifer [Department of Neurology and Neurological Sciences, Stanford University, Stanford, California (United States); Fike, John R. [Departments of Neurosurgery and Radiation Oncology, University of California, San Francisco, California (United States); Huang, Ting-Ting, E-mail: tthuang@stanford.edu [Department of Neurology and Neurological Sciences, Stanford University, Stanford, California (United States); VA Palo Alto Health Care System, Palo Alto, California (United States)

2013-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Design and Status of the NGNP Fuel Experiment AGR-3/4 Irradiated in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energys Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in November 2013. Since the purpose of this experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is significantly different from the first two experiments, though the control and monitoring systems are very similar. The purpose and design of this experiment will be discussed followed by its progress and status to date.

Blaine Grover

2012-10-01T23:59:59.000Z

102

Introduction The bay scallop, Argopecten irradi-  

E-Print Network [OSTI]

71(3) 17 Introduction The bay scallop, Argopecten irradi- ans amplicostatus, has been present (Garcia-Cubas, 1968). Historical Uses Mollusks were used by the pre-Co- lumbian cultures in Mexico as food

103

High Dose-Per-Fraction Irradiation of Limited Lung Volumes Using an Image-Guided, Highly Focused Irradiator: Simulating Stereotactic Body Radiotherapy Regimens in a Small-Animal Model  

SciTech Connect (OSTI)

Purpose: To investigate the underlying biology associated with stereotactic body radiotherapy (SBRT), both in vivo models and image-guided, highly focal irradiation systems are necessary. Here, we describe such an irradiation system and use it to examine normal tissue toxicity in a small-animal model at lung volumes similar to those associated with human therapy. Methods and Materials: High-dose radiation was delivered to a small volume of the left lung of C3H/HeJCr mice using a small-animal stereotactic irradiator. The irradiator has a collimation mechanism to produce focal radiation beams, an imaging subsystem consisting of a fluorescent screen coupled to a charge-coupled device camera, and a manual positioning stage. Histopathologic examination and micro-CT were used to evaluate the radiation response. Results: Focal obliteration of the alveoli by fibrous connective tissue, hyperplasia of the bronchiolar epithelium, and presence of a small number of inflammatory cells are the main reactions to low-volume/high-dose irradiation of the mouse lung. The tissue response suggested a radiation dose threshold for early phase fibrosis lying between 40 and 100 Gy. The irradiation system satisfied our requirements of high-dose-rate, small beam diameter, and precise localization and verification. Conclusions: We have established an experimental model and image-guided animal irradiation system for the study of high dose per fraction irradiations such as those used with SBRT at volumes analogous to those used in human beings. It will also allow the targeting of specific anatomical structures of the thorax or ultimately, orthotopic tumors of the lung.

Cho, Jaeho [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX (United States); Department of Radiation Oncology, Yonsei University Health System, Seoul (Korea, Republic of); Kodym, Reinhard; Seliounine, Serguei [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX (United States)

2010-07-01T23:59:59.000Z

104

Respiratory Organ Motion and Dosimetric Impact on Breast and Nodal Irradiation  

SciTech Connect (OSTI)

Purpose: To examine the respiratory motion for target and normal structures during whole breast and nodal irradiation and the resulting dosimetric impact. Methods and Materials: Four-dimensional CT data sets of 18 patients with early-stage breast cancer were analyzed retrospectively. A three-dimensional conformal dosimetric plan designed to irradiate the breast was generated on the basis of CT images at 20% respiratory phase (reference phase). The reference plans were copied to other respiratory phases at 0% (end of inspiration) and 50% (end of expiration) to simulate the effects of breathing motion on whole breast irradiation. Dose-volume histograms, equivalent uniform dose, and normal tissue complication probability were evaluated and compared. Results: Organ motion of up to 8.8 mm was observed during free breathing. A large lung centroid movement was typically associated with a large shift of other organs. The variation of planning target volume coverage during a free breathing cycle is generally within 1%-5% (17 of 18 patients) compared with the reference plan. However, up to 28% of V{sub 45} variation for the internal mammary nodes was observed. Interphase mean dose variations of 2.2%, 1.2%, and 1.4% were observed for planning target volume, ipsilateral lung, and heart, respectively. Dose variations for the axillary nodes and brachial plexus were minimal. Conclusions: The doses delivered to the target and normal structures are different from the planned dose based on the reference phase. During normal breathing, the dosimetric impact of respiratory motion is clinically insignificant with the exception of internal mammary nodes. However, noticeable degradation in dosimetric plan quality may be expected for the patients with large respiratory motion.

Qi, X. Sharon, E-mail: xiangrong.qi@ucdenver.ed [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); White, Julia [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Rabinovitch, Rachel [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Merrell, Kenneth; Sood, Amit; Bauer, Anderson; Wilson, J. Frank [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Miften, Moyed [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Li, X. Allen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States)

2010-10-01T23:59:59.000Z

105

Neutron Irradiation Measurement for Superconducting Magnet  

E-Print Network [OSTI]

close to reactor core Sample cool down by He gas loop: 10K 20K Fast neutron flux (En>0.1MeV): 1.4x. Materials, 49, p161 (1973&74) Reactor n on Al Reactor n on Cu fluence up to 2*1022 n/m2 (En>0.1MeV) RRR Irradiation at KUR Kyoto Univ. Research Reactor Institute MW max. thermal power Irradiation cryostat

McDonald, Kirk

106

Dept. Computaci on. Universidade da Coru~na Apellidos: Nombre: DNI  

E-Print Network [OSTI]

) psicofuncionalismo 1 #12; (c) funcionalismo gen#19;erico 5. (1.5 puntos) (a) Siendo PCog el conjunto de procesos

Barreiro, Alvaro

107

File:NREL-bhutan-10kmsolar-dni.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdfMarcelluswatermgmt.pdf Jumpdir.pdf Jumpdni.pdf Jump to:

108

AGR-2 Irradiation Test Final As-Run Report, Rev 2  

SciTech Connect (OSTI)

This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test contained six independently controlled and monitored capsules. Each U.S. capsule contained 12 compacts of either UCO or UO2 AGR coated fuel. No fuel particles failed during the AGR-2 irradiation. Final burnup values on a per compact basis ranged from 7.26 to 13.15% FIMA (fissions per initial heavy-metal atom) for UCO fuel, and 9.01 to 10.69% FIMA for UO2 fuel, while fast fluence values ranged from 1.94 to 3.471025 n/m2 (E >0.18 MeV) for UCO fuel, and from 3.05 to 3.531025 n/m2 (E >0.18 MeV) for UO2 fuel. Time-average volume-average (TAVA) temperatures on a capsule basis at the end of irradiation ranged from 987C in Capsule 6 to 1296C in Capsule 2 for UCO, and from 996 to 1062C in UO2-fueled Capsule 3. By the end of the irradiation, all of the installed thermocouples (TCs) had failed. Fission product release-to-birth (R/B) ratios were quite low. In the UCO capsules, R/B values during the first three cycles were below 10-6 with the exception of the hotter Capsule 2, in which the R/Bs reached 210-6. In the UO2 capsule (Capsule 3), the R/B values during the first three cycles were below 10-7. R/B values for all following cycles are not reliable due to gas flow and cross talk issues.

Blaise Collin

2014-08-01T23:59:59.000Z

109

AGR-2 irradiation test final as-run report, Rev. 1  

SciTech Connect (OSTI)

This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities; (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing; and, (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test contained six independently controlled and monitored capsules. Each U.S. capsule contained 12 compacts of either UCO or UO2 AGR coated fuel. No fuel particles failed during the AGR-2 irradiation. Final burnup values on a per compact basis ranged from 7.26 to 13.15% FIMA (fissions per initial heavy-metal atom) for UCO fuel, and 9.01 to 10.69% FIMA for UO2 fuel, while fast fluence values ranged from 1.94 to 3.471025 n/m2 (E >0.18 MeV) for UCO fuel, and from 3.05 to 3.531025 n/m2 (E >0.18 MeV) for UO2 fuel. Time-average volume-average (TAVA) temperatures on a capsule basis at the end of irradiation ranged from 987C in Capsule 6 to 1296C in Capsule 2 for UCO, and from 996 to 1062C in UO2-fueled Capsule 3. By the end of the irradiation, all of the installed thermocouples (TCs) had failed. Fission product release-to-birth (R/B) ratios were quite low. In the UCO capsules, R/B values during the first three cycles were below 10-6 with the exception of the hotter Capsule 2, in which the R/Bs reached 210-6. In the UO2 capsule (Capsule 3), the R/B values during the first three cycles were below 10-7. R/B values for all following cycles are not reliable due to gas flow and cross talk issues.

Collin, Blaise P.

2014-08-01T23:59:59.000Z

110

Comparison of Deuterium Retention for Ion-irradiated and Neutron-irradiated Tungsten  

SciTech Connect (OSTI)

The behavior of D retention for Fe{sup 2+}-irradiated tungsten with a damage of 0.025-3 dpa was compared with that for neutron-irradiated tungsten with 0.025 dpa. The D{sub 2} thermal desorption spectroscopy (TDS) spectra for Fe{sup 2+}-irradiated tungsten consisted of two desorption stages at 450 and 550 K, while that for neutron-irradiated tungsten was composed of three stages and an addition desorption stage was found at 750 K. The desorption rate of the major desorption stage at 550K increased as the displacement damage increased due to Fe{sup 2+} irradiation increasing. In addition, the first desorption stage at 450K was found only for damaged samples. Therefore, the second stage would be based on intrinsic defects or vacancy produced by Fe{sup 2+} irradiation, and the first stage should be the accumulation of D in mono-vacancy and the activation energy would be relatively reduced, where the dislocation loop and vacancy is produced. The third one was found only for neutron irradiation, showing the D trapping by a void or vacancy cluster, and the diffusion effect is also contributed to by the high full-width at half-maximum of the TDS spectrum. Therefore, it can be said that the D{sub 2} TDS spectra for Fe{sup 2+}-irradiated tungsten cannot represent that for the neutron-irradiated one, indicating that the deuterium trapping and desorption mechanism for neutron-irradiated tungsten is different from that for the ion-irradiated one.

Yasuhisa Oya; Masashi Shimada; Makoto Kobayashi; Takuji Oda; Masanori Hara; Hideo Watanabe; Yuji Hatano; Pattrick Calderoni; Kenji Okuno

2011-12-01T23:59:59.000Z

111

Advances in target normal sheath acceleration theory  

SciTech Connect (OSTI)

A theoretical model of the Target Normal Sheath Acceleration (TNSA) process, able to go beyond the limits of available descriptions, is developed. It allows to achieve a more satisfactory interpretation of TNSA. The theory, also supported by two dimensional particle-in-cell simulations, elucidates the role played by the main laser and target parameters. Comparison between model predictions and experimental data related to the target thickness dependence of the maximum ion energy is discussed, showing satisfactory agreement. The model can be used as a simple but effective tool to guide the design of future experiments.

Passoni, M.; Sgattoni, A. [Dipartimento di Energia, Politecnico di Milano, and Sezione di Milano INFN, Milan (Italy)] [Dipartimento di Energia, Politecnico di Milano, and Sezione di Milano INFN, Milan (Italy); Perego, C. [Dipartimento di Fisica, Universit di Milano-Bicocca, Milan (Italy)] [Dipartimento di Fisica, Universit di Milano-Bicocca, Milan (Italy); Batani, D. [Universit Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France) [Universit Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Dipartimento di Energia, Politecnico di Milano, and Sezione di Milano INFN, Milan (Italy)

2013-06-15T23:59:59.000Z

112

Evolution of nanoripples on silicon by gas cluster-ion irradiation  

SciTech Connect (OSTI)

Si wafers of (100), (110) and (111) orientations were bombarded by gas cluster ion beam (GCIB) of 3000 Ar-atoms/cluster on average at a series of angles. Similar surface morphology ripples developed in different nanoscales. A simple scaling functional satisfactorily describe the roughness and wavelength of the ripple patterns as a function of dosage and angle of incidence. The ripples are formed orthogonal to the incident cluster-ions at large off-normal angles. An ellipsoidal pattern was created by two consecutive irradiations incident in mutually orthogonal directions with unequal exposure times between each irradiation, from 7:1 to 10:1, beyond which the original ripple imprints would be over-written. This work was inspired by use of the ripples to seed growth of controlled nanostructures without patterning by lithography or predeposition of catalysts.

Lozano, Omar; Chen, Q. Y.; Wadekar, P. V.; Chinta, P. V. [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 88204 (United States); Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Tilakaratne, B. P.; Wang, X. M.; Wijesundera, D.; Chu, W. K. [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 88204 (United States); Seo, H. W. [Department of Physics and Astronomy, University of Arkansas, Little Rock, AR 72204 (United States); Tu, L. W. [Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Ho, N. J. [Department of Materials and Optoelectronic Sciences and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan (China)

2013-06-15T23:59:59.000Z

113

Resonant normal form and asymptotic normal form behavior in magnetic bottle Hamiltonians  

E-Print Network [OSTI]

We consider normal forms in `magnetic bottle' type Hamiltonians of the form $H=\\frac{1}{2}(\\rho^2_\\rho+\\omega^2_1\\rho^2) +\\frac{1}{2}p^2_z+hot$ (second frequency $\\omega_2$ equal to zero in the lowest order). Our main results are: i) a novel method to construct the normal form in cases of resonance, and ii) a study of the asymptotic behavior of both the non-resonant and the resonant series. We find that, if we truncate the normal form series at order $r$, the series remainder in both constructions decreases with increasing $r$ down to a minimum, and then it increases with $r$. The computed minimum remainder turns to be exponentially small in $\\frac{1}{\\Delta E}$, where $\\Delta E$ is the mirror oscillation energy, while the optimal order scales as an inverse power of $\\Delta E$. We estimate numerically the exponents associated with the optimal order and the remainder's exponential asymptotic behavior. In the resonant case, our novel method allows to compute a `quasi-integral' (i.e. truncated formal integral) valid both for each particular resonance as well as away from all resonances. We applied these results to a specific magnetic bottle Hamiltonian. The non resonant normal form yields theorerical invariant curves on a surface of section which fit well the empirical curves away from resonances. On the other hand the resonant normal form fits very well both the invariant curves inside the islands of a particular resonance as well as the non-resonant invariant curves. Finally, we discuss how normal forms allow to compute a critical threshold for the onset of global chaos in the magnetic bottle.

C. Efthymiopoulos; M. Harsoula; G. Contopoulos

2015-01-28T23:59:59.000Z

114

Surface Radiation from GOES: A Physical Approach; Preprint  

SciTech Connect (OSTI)

Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.

Habte, A.; Sengupta, M.; Wilcox, S.

2012-09-01T23:59:59.000Z

115

E-Print Network 3.0 - additive irradiation procedures Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

irradiation procedures Search Powered by Explorit Topic List Advanced Search Sample search results for: additive irradiation procedures Page: << < 1 2 3 4 5 > >> 1 IRRADIANCE MAPS...

116

Overview Report: Normal and Emergency Operation Visualization  

SciTech Connect (OSTI)

This is an overview report to document and illustrate methods used in a project entitled Normal and Emergency Operations Visualization for a utility company, conducted in 2009-2010 timeframe with funding from the utility company and the U.S. Department of Energy. The original final report (about 180 pages) for the project is not available for distribution because it alludes to findings that assessed the design of an operational system that contained proprietary information; this abridged version contains descriptions of methods and some findings to illustrate the approach used, while avoiding discussion of sensitive or proprietary information. The client has approved this abridged version of the report for unlimited distribution to give researchers and collaborators the benefit of reviewing the research concepts and methods that were applied in this study.

Greitzer, Frank L.

2011-05-01T23:59:59.000Z

117

Horizontal modular dry irradiated fuel storage system  

DOE Patents [OSTI]

A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

Fischer, Larry E. (Los Gatos, CA); McInnes, Ian D. (San Jose, CA); Massey, John V. (San Jose, CA)

1988-01-01T23:59:59.000Z

118

Laboratory for Characterization of Irradiated Graphite  

SciTech Connect (OSTI)

The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Labs C19 and C20 of the Idaho National Laboratory Research Center (IRC). The CCL was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite and ceramic composite research and development activities. The research is in support of the Advanced Graphite Creep (AGC) experiment a major material irradiation experiment within the NGNP Graphite program. The CCL is designed to characterize and test low activated irradiated materials such as high purity graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully capable of characterizing material properties for both irradiated and nonirradiated materials.

Karen A. Moore

2010-03-01T23:59:59.000Z

119

Irradiation creep of vanadium-base alloys.  

SciTech Connect (OSTI)

A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the US. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200-300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 x 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

Tsai, H.; Matsui, H.; Billone, M. C.; Strain, R. V.; Smith, D. L.

1998-05-18T23:59:59.000Z

120

Irradiation effects on borosilicate waste glasses  

SciTech Connect (OSTI)

The effects of alpha decay on five borosilicate glasses containing simulated nuclear high-level waste oxides were studied. Irradiations carried out at room temperature were achieved by incorporating 1 to 8 wt % /sup 244/Cm/sub 2/O/sub 3/ in the glasses. Density changes and stored-energy build-up saturated at doses less than 2 x 10/sup 21/ alpha decays/kg. Damage manifested by stored energy was completely annealed at 633/sup 0/K. Positive and negative density changes were observed which never exceeded 1%. Irradiation had very little effect on mechanical strength or on chemical durability as measured by aqueous leach rates. Also, no effects were observed on the microstructure for vitreous waste glasses, although radiation-induced microcracking could be achieved on specimens that had been devitrified prior to irradiation.

Roberts, F.P.

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Heavy ion irradiation of crystalline water ice  

E-Print Network [OSTI]

Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C

2015-01-01T23:59:59.000Z

122

Heavy-Section Steel Irradiation Program  

SciTech Connect (OSTI)

Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established.

Rosseel, T.M.

2000-04-01T23:59:59.000Z

123

Gamma irradiation of the prenatal mouse dentition  

E-Print Network [OSTI]

as the dental lamina to the stage of the deposition of enamel and dentin. The purpose of this study was to determine the effect of a continuous stress of gamma irradiation on the structure of the odontogenic cells, the relative size and rate of development... development. In 1927, Leist (9) made a study of the effect of X-rays on teeth, which was brought about by the following rase. A worker in a Roentgen tube factory was exposed daily to a considerable dose of X-irradiation. Sometime later he began to show...

Kerley, Michael Auston

1969-01-01T23:59:59.000Z

124

Satellite-Based Solar Resource Data Sets for India 2002-2012  

SciTech Connect (OSTI)

A new 10-km hourly solar resource product was created for India. This product was created using satellite radiances from the Meteosat series of satellites. The product contains global horizontal irradiances (GHI) and direct normal irradiances (DNI) for the period from 2002 to 2011. An additional solar resource data set covering the period from January 2012 to June 2012 was created solely for validation because this period overlaps ground measurements that were made available from the Indian Ministry of New and Renewable Energy's (MNRE's) National Institute for Solar Energy for five stations that are part of MNRE's solar resource network. These measurements were quality checked using the SERI QC software and used to validate the satellite product. A comparison of the satellite product to the ground measurements for the five stations shows good agreement. This report also presents a comparison of the new version of solar resource data to the previous version, which covered the period from 2002 to 2008.

Sengupta, M.; Perez, R.; Gueymard, C.; Anderberg, M.; Gotseff, P.

2014-02-01T23:59:59.000Z

125

Effects of neutron flux and irradiation temperature on irradiation embrittlement of A533B steels  

SciTech Connect (OSTI)

Irradiation embrittlement of A533B steels with low copper contents were investigated from the point of dose rate and irradiation temperature effects. Change of neutron flux in the range from {minus}10{sup 12} to {minus}10{sup 13} n/cm{sup 2}/s (E > 1 MeV) did not have a significant effect on the embrittlement. Irradiation temperature change of 1 C resulted in the transition temperature shift ({Delta}T{sub 41J}) of about 1 C and yield stress change ({Delta}{sigma}{sub y}) of about 0.8 MPa. Factors that might affect the embrittlement of low copper steels are also discussed.

Suzuki, Masahide; Onizawa, Kunio; Kizaki, Minoru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

1996-12-31T23:59:59.000Z

126

Fructolysis in the semen of continuously irradiated and non-irradiated goats  

E-Print Network [OSTI]

Abbott showed that the androgenic activity of the testis is far more resistant to x- ray irradiation than is the germinal epi- 1 thelium. When Abbott administered 5, 000 and 10, OOOR to rats, he found no decrease in the sex accessory organ weights nor.... Another point which supports the data that the damaged spermatogonia give rise to subnormal sperm is 23 the studies done with in vitro sperm that have been irradiated. Man 15 stated that irradiation of whole, fresh semen has little or no effect...

Ziller, Henry Hubert

1966-01-01T23:59:59.000Z

127

Normalization and missing value imputation for label-free LC...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Normalization and missing value imputation for label-free LC-MS analysis. Normalization and missing value imputation for label-free LC-MS analysis. Abstract: Shotgun proteomic data...

128

Understanding the Irradiation Behavior of Zirconium Carbide  

SciTech Connect (OSTI)

Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC- based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response (ZrC) by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation-induced microstructures mapped spatially and temporally, microstructural evolution during post-irradiation annealing, and atomistic modeling of defect formation and transport energetics will provide new, critical understanding about property changes in ZrC. The behavior of materials under irradiation is determined by the balance between damage production, defect clustering, and lattice response. In order to predict those effects at high temperatures so targeted testing can be expanded and extrapolated beyond the known database, it is necessary to determine the defect energetics and mobilities as these control damage accumulation and annealing. In particular, low-temperature irradiations are invaluable for determining the regions of defect mobility. Computer simulation techniques are particularly useful for identifying basic defect properties, especially if closely coupled with a well-constructed and complete experimental database. The close coupling of calculation and experiment in this project will provide mutual benchmarking and allow us to glean a deeper understanding of the irradiation response of ZrC, which can then be applied to the prediction of its behavior in reactor conditions.

Motta, Arthur; Sridharan, Kumar; Morgan, Dane; Szlufarska, Izabela

2013-10-11T23:59:59.000Z

129

Response of Strontium Titanate to Ion and Electron Irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Strontium Titanate to Ion and Electron Irradiation. Response of Strontium Titanate to Ion and Electron Irradiation. Abstract: Response of strontium titanate (SrTiO3) to ion and...

130

Irradiation Stability of Carbon Nanotubes and Related Materials  

E-Print Network [OSTI]

defect annealing at elevated irradiation temperatures, which delays the formation of amorphous regions. Investigation of nanotube stability after various processing techniques and irradiation indicated that radiation response of CNTs in a composite...

Aitkaliyeva, Assel 1985-

2012-09-28T23:59:59.000Z

131

E-Print Network 3.0 - accelerated hyperfractionated irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Group Collection: Physics 79 Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet X-rays and 60 Summary: of 260 Mrad was used to irradiate Nd-Fe-B sample magnets with...

132

Fractal Fluctuations and Statistical Normal Distribution  

E-Print Network [OSTI]

Dynamical systems in nature exhibit selfsimilar fractal fluctuations and the corresponding power spectra follow inverse power law form signifying long-range space-time correlations identified as self-organized criticality. The physics of self-organized criticality is not yet identified. The Gaussian probability distribution used widely for analysis and description of large data sets underestimates the probabilities of occurrence of extreme events such as stock market crashes, earthquakes, heavy rainfall, etc. The assumptions underlying the normal distribution such as fixed mean and standard deviation, independence of data, are not valid for real world fractal data sets exhibiting a scale-free power law distribution with fat tails. A general systems theory for fractals visualizes the emergence of successively larger scale fluctuations to result from the space-time integration of enclosed smaller scale fluctuations. The model predicts a universal inverse power law incorporating the golden mean for fractal fluctuations and for the corresponding power spectra, i.e., the variance spectrum represents the probabilities, a signature of quantum systems. Fractal fluctuations therefore exhibit quantum-like chaos. The model predicted inverse power law is very close to the Gaussian distribution for small-scale fluctuations, but exhibits a fat long tail for large-scale fluctuations. Extensive data sets of Dow Jones index, Human DNA, Takifugu rubripes (Puffer fish) DNA are analysed to show that the space/time data sets are close to the model predicted power law distribution.

A. M. Selvam

2008-05-22T23:59:59.000Z

133

Smith Normal Form a possible basis for an  

E-Print Network [OSTI]

Smith Normal Form ­ a possible basis for an SVD ­ like code construction? (Semester Project I) Name.7 The Smith Normal Form . . . . . . . . . . . . . . . . . . . . . . . 12 3 Detailed treatment of the possibilities to use Smith's Normal Form for coding 14 3.1 Introduction

Henkel, Werner

134

EIGENVALUES AND THE SMITH NORMAL FORM Joseph J. Rushanan  

E-Print Network [OSTI]

EIGENVALUES AND THE SMITH NORMAL FORM Joseph J. Rushanan The MITRE Corporation, M/S E025, Bedford, MA 01730 Abstract. Results are shown that compare the Smith Normal Form (SNF) over the integers and its Smith Normal Form (SNF) over the integers. Our goals are more general than those results

Rushanan, Joe J.

135

Computation of Hermite and Smith Normal Forms of Matrices  

E-Print Network [OSTI]

Computation of Hermite and Smith Normal Forms of Matrices; Abstract We study the problem of computing Hermite and Smith normal forms of ma- trices over. One first result is a fast Las Vegas probabilistic algorithm to compute the * *Smith normal form

Storjohann, Arne

136

Computation of Hermite and Smith Normal Forms of Matrices  

E-Print Network [OSTI]

Computation of Hermite and Smith Normal Forms of Matrices by Arne Storjohann A thesis presented the problem of computing Hermite and Smith normal forms of ma­ trices over principal ideal domains. The main probabilistic algorithm to compute the Smith normal form of a polynomial matrix for those cases where pre

Storjohann, Arne

137

Implementation Plan for the Irradiated Materials Characterization Laboratory (IMCL)  

SciTech Connect (OSTI)

This document contains details regarding the planned implementation of the Irradiated Materials Characterization Laboratory at the INL.

Not Listed

2013-04-01T23:59:59.000Z

138

Effects of hadron irradiation on scintillating fibers  

SciTech Connect (OSTI)

Trackers based on scintillating-fiber technology are being considered by the Solenoidal Detector Collaboration at SSC and the D[phi] collaboration at Fermilab. An important issue is the effect of the radiation existing in the detector cores on fiber properties. Most studies of radiation damage in scintillators have irradiated small bulk samples rather than fibers, and have used X-rays, [sup 60]Co gammas, or electron beams, often at accelerated rates. The authors have irradiated some 600 fibers in the Fermilab Tevatron C[phi] area, thereby obtaining a hadronic irradiation at realistic rates. Four-meter-long samples of ten Bicron polystyrene-based fiber types, maintained in air, dry nitrogen, argon, and vacuum atmospheres within stainless-steel tubes, were irradiated for seven weeks at various distances from the accelerator beam pipes. Maximum doses, measured by thermoluminescence detectors, were about 80 Krad. Fiber properties, particularly light yield and attenuation length, have been measured over a one-year period. A description of the work together with the results is presented. At the doses achieved, corresponding to a few years of actual fiber-tracking detector operation, little degradation is observed. In addition, recovery after several days' exposure to air has been noted. Properties of unirradiated samples kept in darkness show no changes after one year.

Atac, M. (Univ. of California, Los Angeles, CA (United States) Fermi National Accelerator Lab., Batavia, IL (United States)); Buchanan, C.; Chrisman, D.; Cline, D.; Kolonko, J.; Kubic, J.; Park, J. (Univ. of California, Los Angeles, CA (United States)); Baumbaugh, A.; Binkley, M.; Bross, A.D.; Finley, D.; Elias, J.; Foster, G.W.; Kephart, R.; Kephart, R.; Kim, C.; Park, H.; Pla-Dalmau, A.; Rivetta, C.; Tkaczyk, S.; Wagner, R. (Fermi National Accelerator Lab., Batavia, IL (United States)); Chung, M.; Goldberg, H.; Jeskik, R.; Margulies, S.; Mendez, H.; Solomon, J.; Vaca, F. (Univ. of Illinois, Chicago, IL (United States)); Kelley, C. (Massachusetts College of Pharmacy and Allied Health Sciences, Boston, MA (United States)); Baumbaugh, B.; Bishop, J.; Biswas, N.; Cason, N.; Jacques, J.; Kehoe, R.; Kelly, M.; Kenney, V.; LoSecco, J.; Ruchti, R.; Shephard, W.; Warchol, J.; Wayne, M.; Marchant, J.; Mountain, R.J. (Univ. of Notre Dame, IN (United States)); Davis, D.; Vandergriff, D. (O

1993-08-01T23:59:59.000Z

139

SIPS: Solar Irradiance Prediction System Stefan Achleitner  

E-Print Network [OSTI]

-scaling capacities of renewable energy sources such as wind and solar. However, variability and uncertainty in powerSIPS: Solar Irradiance Prediction System Stefan Achleitner Computer Science and Engineering Liu and Alberto E. Cerpa Electrical Engineering and Computer Science University of California, Merced

Cerpa, Alberto E.

140

Continuous wave laser irradiation of explosives  

SciTech Connect (OSTI)

Quantitative measurements of the levels of continuous wave (CW) laser light that can be safely applied to bare explosives during contact operations were obtained at 532 nm, 785 nm, and 1550 nm wavelengths. A thermal camera was used to record the temperature of explosive pressed pellets and single crystals while they were irradiated using a measured laser power and laser spot size. A visible light image of the sample surface was obtained before and after the laser irradiation. Laser irradiation thresholds were obtained for the onset of any visible change to the explosive sample and for the onset of any visible chemical reaction. Deflagration to detonation transitions were not observed using any of these CW laser wavelengths on single crystals or pressed pellets in the unconfined geometry tested. Except for the photochemistry of DAAF, TATB and PBX 9502, all reactions appeared to be thermal using a 532 nm wavelength laser. For a 1550 nm wavelength laser, no photochemistry was evident, but the laser power thresholds for thermal damage in some of the materials were significantly lower than for the 532 nm laser wavelength. No reactions were observed in any of the studied explosives using the available 300 mW laser at 785 nm wavelength. Tables of laser irradiance damage and reaction thresholds are presented for pressed pellets of PBX9501, PBX9502, Composition B, HMX, TATB, RDX, DAAF, PETN, and TNT and single crystals of RDX, HMX, and PETN for each of the laser wavelengths.

McGrane, Shawn D.; Moore, David S.

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Sun and Climate Solar Irradiance  

E-Print Network [OSTI]

The Sun and Climate #12;Solar Irradiance The Solar Constant f = 1.4 x 106 erg/cm2/s. Over is higher when the Sun is more magnetically active. ·The Sun was magnetically active, and the climate the Sun Drive Climate? #12;The Temperature's Rising #12;Sunspots and CO2 What is Cause and What is Effect

Walter, Frederick M.

142

Total Solar Irradiance Satellite Composites and their  

E-Print Network [OSTI]

Chapter 12 Total Solar Irradiance Satellite Composites and their Phenomenological Effect on Climate. Phenomenological solar signature on climate 310 9. Conclusion 312 1. INTRODUCTION A contiguoustotal solar from each other, in particular about whether the TSI minimum during solar Cycles 22e23 (1995

Scafetta, Nicola

143

Irradiation Embritlement in Alloy HT-9  

SciTech Connect (OSTI)

HT-9 steel is a candidate structural and cladding material for high temperature lead-bismuth cooled fast reactors. In typical advanced fast reactor designs fuel elements will be irradiated for an extended period of time, reaching up to 5-7 years. Significant displacement damage accumulation in the steel is expected (> 200 dpa) when exposed to dpa-rates of 20-30 dpa{sub Fe}/y and high fast flux (E > 0.1 MeV) {approx}4 x 10{sup 15} n/cm{sup 2}s. Core temperatures could reach 400-560 C, with coolant temperatures at the inlet as low as 250 C, depending on the reactor design. Mechanical behavior in the presence of an intense fast flux and high dose is a concern. In particular, low temperature operation could be limited by irradiation embrittlement. Creep and corrosion effects in liquid metal coolants could set a limit to the upper operating temperature. In this report, we focus on the low temperature operating window limit and describe HT-9 embrittlement experimental findings reported in the literature that could provide supporting information to facilitate the consideration of a Code Case on irradiation effects for this class of steels in fast reactor environments. HT-9 has an extensive database available on irradiation performance, which makes it the best choice as a possible near-term candidate for clad, and ducts in future fast reactors. Still, as it is shown in this report, embrittlement data for very low irradiation temperatures (< 200 C) and very high radiation exposure (> 150 dpa) is scarce. Experimental findings indicate a saturation of DBTT shifts as a function of dose, which could allow for long lifetime cladding operation. However, a strong increase in DBTT shift with decreasing irradiation temperature could compromise operation at low service temperatures. Development of a deep understanding of the physics involved in the radiation damage mechanisms, together with multiscale computer simulation models of irradiation embrittlement will provide the basis to derive trendlines and quantitative engineering predictions.

Serrano De Caro, Magdalena [Los Alamos National Laboratory

2012-08-27T23:59:59.000Z

144

Final Assembly and Initial Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor  

SciTech Connect (OSTI)

The United States Department of Energys Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energys lead laboratory for nuclear energy development. The ATR is one of the worlds premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing.1,2 The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The final design phase for the first experiment was completed in 2005, and the fabrication and assembly of the first experiment test train (designated AGR-1) as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation were completed in 2006. The experiment was inserted in the ATR in December 2006, and will serve as a shakedown test of the multi-capsule experiment design that will be used in the subsequent irradiations as well as a test of the early variants of the fuel produced under this program. The experiment test train as well as the monitoring, control, and data collection systems are discussed.

S. B. Grover

2007-05-01T23:59:59.000Z

145

Response of neutron-irradiated RPV steels to thermal annealing  

SciTech Connect (OSTI)

One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels.

Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

1997-03-01T23:59:59.000Z

146

Total solar irradiance during the Holocene F. Steinhilber,1  

E-Print Network [OSTI]

Total solar irradiance during the Holocene F. Steinhilber,1 J. Beer,1 and C. Fro¨hlich2 Received 20 solar irradiance covering 9300 years is presented, which covers almost the entire Holocene. This reconstruction is based on a recently observationally derived relationship between total solar irradiance

Wehrli, Bernhard

147

Sensitivity of ultrasonic nonlinearity to irradiated, annealed, and re-irradiated microstructure changes in RPV steels  

SciTech Connect (OSTI)

The planned life extension of nuclear reactors throughout the US and abroad will cause reactor vessel and internals materials to be exposed to more neutron irradiation than was originally intended. A nondestructive evaluation (NDE) method to monitor radiation damage would enable safe and cost-effective continued operation of nuclear reactors. Radiation damage in reactor pressure vessel (RPV) steels causes microstructural changes that leave the material in an embrittled state. Nonlinear ultrasound is an NDE technique quantified by the measurable acoustic nonlinearity parameter, which is sensitive to microstructural changes in metallic materials such as dislocations, precipitates and their combinations. Recent research has demonstrated the sensitivity of the acoustic nonlinearity parameter to increasing neutron fluence in representative RPV steels. The current work considers nonlinear ultrasonic experiments conducted on similar RPV steel samples that had a combination of irradiation, annealing, re-irradiation, and/or re-annealing to a total neutron fluence of 0.5 5 1019 n/cm2 (E > 1 MeV) at an irradiation temperature of 290 C. The acoustic nonlinearity parameter generally increased with increasing neutron fluence, and consistently decreased from the irradiated to the annealed state over different levels of neutron fluence. Results of the measured acoustic nonlinearity parameter are compared with those from previous measurements on other RPV steel samples. This comprehensive set of results illustrates the dependence of the measured acoustic nonlinearity parameter on neutron fluence, material composition, irradiation temperature and annealing.

Matlack, Katie [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Kim, J-Y. [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Wall, J.J. [Electric Power Research Institute (EPRI)] [Electric Power Research Institute (EPRI); Jacobs, L.J. [Georgia Institute of Technology, Atlanta] [Georgia Institute of Technology, Atlanta; Sokolov, Mikhail A [ORNL] [ORNL

2014-01-01T23:59:59.000Z

148

Nanopatterning of metal-coated silicon surfaces via ion beam irradiation: Real time x-ray studies reveal the effect of silicide bonding  

SciTech Connect (OSTI)

We investigated the effect of silicide formation on ion-induced nanopatterning of silicon with various ultrathin metal coatings. Silicon substrates coated with 10 nm Ni, Fe, and Cu were irradiated with 200 eV argon ions at normal incidence. Real time grazing incidence small angle x-ray scattering (GISAXS) and x-ray fluorescence (XRF) were performed during the irradiation process and real time measurements revealed threshold conditions for nanopatterning of silicon at normal incidence irradiation. Three main stages of the nanopatterning process were identified. The real time GISAXS intensity of the correlated peaks in conjunction with XRF revealed that the nanostructures remain for a time period after the removal of the all the metal atoms from the sample depending on the binding energy of the metal silicides formed. Ex-situ XPS confirmed the removal of all metal impurities. In-situ XPS during the irradiation of Ni, Fe, and Cu coated silicon substrates at normal incidence demonstrated phase separation and the formation of different silicide phases that occur upon metal-silicon mixing. Silicide formation leads to nanostructure formation due the preferential erosion of the non-silicide regions and the weakening of the ion induced mass redistribution.

El-Atwani, Osman [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Gonderman, Sean; Suslova, Anastassiya; Fowler, Justin; El-Atwani, Mohamad [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); DeMasi, Alexander; Ludwig, Karl [Physics Department, Boston University, Boston, Massachusetts 02215 (United States); Paul Allain, Jean [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

2013-03-28T23:59:59.000Z

149

Inhalation radiotoxicity of irradiated thorium as a heavy water reactor fuel  

SciTech Connect (OSTI)

The online refueling capability of Heavy Water Reactors (HWRs), and their good neutron economy, allows a relatively high amount of neutron absorption in breeding materials to occur during normal fuel irradiation. This characteristic makes HWRs uniquely suited to the extraction of energy from thorium. In Canada, the toxicity and radiological protection methods dealing with personnel exposure to natural uranium (NU) spent fuel (SF) are well-established, but the corresponding methods for irradiated thorium fuel are not well known. This study uses software to compare the activity and toxicity of irradiated thorium fuel ('thorium SF') against those of NU. Thorium elements, contained in the inner eight elements of a heterogeneous high-burnup bundle having LEU (Low-enriched uranium) in the outer 35 elements, achieve a similar burnup to NU SF during its residence in a reactor, and the radiotoxicity due to fission products was found to be similar. However, due to the creation of such inhalation hazards as U-232 and Th-228, the radiotoxicity of thorium SF was almost double that of NU SF after sufficient time has passed for the decay of shorter-lived fission products. Current radio-protection methods for NU SF exposure are likely inadequate to estimate the internal dose to personnel to thorium SF, and an analysis of thorium in fecal samples is recommended to assess the internal dose from exposure to this fuel. (authors)

Edwards, G.W.R.; Priest, N.D.; Richardson, R.B. [Atomic Energy of Canada Ltd., Chalk River, Ontario, K0J 1J0 (Canada)

2013-07-01T23:59:59.000Z

150

Transformation of Fine Microstructure of WWER-1000 Materials After High Dose Irradiation and Annealing  

SciTech Connect (OSTI)

High nickel WWER-1000 RPV materials were irradiated at high dose rate up to doses close to design values and exceeding these values. The complex investigation of the materials was carried out using LEAP, SEM, AES and Charpy tests. It has been shown that the DBTT shift was conditioned by formation of late-blooming phases (LBP) precipitates, but at a certain fluence this phenomenon looks to saturate. Nevertheless, even with a non-increasing number density of LBP, the DBTT shift continues to increase with fluence. This increase can be induced by intergranular embrittlement. SEM has shown the presence of intergranular fracture on Charpy fracture surfaces and AES revealed a phosphorus content in the grain boundaries (GB) about 20% at. A model of irradiation-induced GB segregation of phosphorus at high nickel content has been used to calculate the phosphorus content in the GBs. The calculations confirm the value obtained by AES and show a significant increase in the GB content at fluxes typical of normal WWER-1000 RPV operation. The same model shows further increase of phosphorus content in high Ni steels during post-irradiation annealing. Thus, in spite of LBP dissolution during early stages of annealing at 450C, full recovery of the DBTT could not be obtained due to intergranular embrittlement.

Zabusov, Oleg O. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Chernobaeva, A. A. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Nikolaev, Yury A. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Kuleshova, E. A. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Miller, Michael K [ORNL; Russell, Kaye F [ORNL; Nanstad, Randy K [ORNL

2008-01-01T23:59:59.000Z

151

Effects of stress on microstructural evolution during irradiation  

SciTech Connect (OSTI)

Many theories have been postulated to describe irradiation creep but few have been supported with microstructural evidence. The purpose of this paper is to review microstructural studies of the effects of stress during irradiation in order to assess the validity of the available irradiation creep theories. Microstructural studies based on high voltage electron, ion, proton and neutron irradiation will be described, with major emphasis placed on interpreting behavior demonstrated in austenitic steels. Special attention will be given to work on fast neutron irradiated Nimonic PE16, a precipitation strengthened superalloy.

Gelles, D.S. [Pacific Northwest Lab., Richland, VA (United States)

1992-12-31T23:59:59.000Z

152

Materials Modification Under Ion Irradiation: JANNUS Project  

SciTech Connect (OSTI)

JANNUS (Joint Accelerators for Nano-Science and Nuclear Simulation) is a project designed to study the modification of materials using multiple ion beams and in-situ TEM observation. It will be a unique facility in Europe for the study of irradiation effects, the simulation of material damage due to irradiation and in particular of combined effects. The project is also intended to bring together experimental and modelling teams for a mutual fertilisation of their activities. It will also contribute to the teaching of particle-matter interactions and their applications. JANNUS will be composed of three accelerators with a common experimental chamber and of two accelerators coupled to a 200 kV TEM.

Serruys, Y.; Trocellier, P. [CEA-Saclay, DEN/DMN/SRMP, 91191 Gif-sur-Yvette Cedex (France); Ruault, M.-O.; Henry, S.; Kaietasov, O. [CSNSM, Bat. 104, Orsay Campus (France); Trouslard, Ph. [INSTN, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France)

2004-12-01T23:59:59.000Z

153

Neutron irradiation of beryllium: Recent Russian results  

SciTech Connect (OSTI)

Results on postirradiation tensile and compression testing, swelling and bubble growth during annealing for various grades of beryllium are presented. It is shown that swelling at temperatures above 550{degrees}C is sensitive to material condition and response is correlated with oxygen content. Swelling on the order of 15% can be expected at 700{degrees}C for doses on the order of 10{sup 22} n/cm{sup 2}. Bubble growth response depends on irradiation fluence.

Gelles, D.S. [Pacific Northwest Lab., Richland, VA (United States)

1992-12-31T23:59:59.000Z

154

ARM - Measurement - Shortwave broadband total net irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Relatedcontent ARMnumberDoppler ARMdiffusedirectnet irradiance

155

ARM - Measurement - Shortwave narrowband direct downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Relatedcontent ARMnumberDopplerdownwelling irradiance ARM Data

156

Normal Agricultural Operations and Dove Hunting in Texas  

E-Print Network [OSTI]

: baiting Doves are migratory birds, and dove hunting is therefore regulated by the Federal Migratory Bird Treaty Act, which specifically prohibits baiting. Under federal law, baiting is the direct or indirect placing, exposing, depositing, distributing... considers this acceptable to hunt over. A problem arises, however, as to what constitutes a ?normal agricultural operation.? For the purpose of the Migratory Bird Treaty Act ?normal agricultural operation? means a normal agricultural planting...

Redmon, Larry

2009-06-01T23:59:59.000Z

157

Magnetic phase formation in irradiated austenitic alloys  

SciTech Connect (OSTI)

Austenitic alloys are often observed to develop magnetic properties during irradiation, possibly associated with radiation-induced acceleration of the ferrite phase. Some of the parametric sensitivities of this phenomenon have been addressed using a series of alloys irradiated in the BOR-60 reactor at 593K. The rate of development of magnetic phase appears to be sensitive to alloy composition. To the first order, the largest sensitivities to accelerate ferrite formation, as explored in this experiment, are associated with silicon, carbon and manganese and chromium. Si, C, and Mn are thought to influence diffusion rates of point defects while Cr plays a prominent role in defining the chromium equivalent and therefore the amount of ferrite at equilibrium. Pre-irradiation cold working was found to accelerate ferrite formation, but it can play many roles including an effect on diffusion, but on the basis of these results the dominant role or roles of cold-work cannot be identified. Based on the data available, ferrite formation is most probably associated with diffusion.

Gussev, Maxim N [ORNL] [ORNL; Busby, Jeremy T [ORNL] [ORNL; Tan, Lizhen [ORNL] [ORNL; Garner, Francis A. [Radiation Effects Consulting, Richland, WA] [Radiation Effects Consulting, Richland, WA

2014-01-01T23:59:59.000Z

158

Upgrade to the Birmingham Irradiation Facility  

E-Print Network [OSTI]

The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 10^15 (1 MeV neutron equivalent (neq)) cm^-2 in 80 s with proton beam currents of 1 ?A and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of 50 1C in 30 min and aims to maintain sub-0 1C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and perform...

Dervan, P; Hodgson, P; Marin- Reyes; Parker, K; Wilson, J; Baca, M

2015-01-01T23:59:59.000Z

159

Irradiation response and stability of nanoporous materials  

SciTech Connect (OSTI)

Nanoporous materials consist of a regular organic or inorganic framework supporting a regular, porous structure. Pores are by definition roughly in the nanometre range, that is between 0.2 nm and 100 nm. Nanoporous materials can be subdivided into 3 categories (IUPAC): (1) Microporous materials - 0.2-2 nm; (2) Mesoporous materials - 2-50 nm; and (3) Macroporous materials - 50-1000 nm. np-Au foams were successfully synthesized by de-alloying process. np-Au foams remain porous structure after Ne ion irradiation to 1 dpa. Stacking Fault Tetrahedra (SFTs) were observed in RT irradiated np-Au foams under the highest and intermediate fluxes, but not under the lowest flux. SFTs were not observed in LNT irradiated np-Au foams under all fluxes. The vacancy diffusivity in Au at RT is high enough so that the vacancies have enough time to agglomerate and then collapse to form SFTs. The high ion flux creates more damage per unit time; vacancies don't have enough time to diffuse or recombine. As a result, SFTs were formed at high ion fluxes.

Fu, Engang [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory; Serrano De Caro, Magdalena [Los Alamos National Laboratory; Caro, Jose A. [Los Alamos National Laboratory; Zepeda-Ruiz, L [Lawrence Livermore national Laboratory; Bringa, E. [CONICET, Universidad de Cuyo, Argentina; Nastasi, Mike [University of Nebraska, Lincoln, NE; Baldwin, Jon K. [Los Alamos National Laboratory

2012-08-28T23:59:59.000Z

160

SciTech Connect: Effect of radiation on normal hematopoiesis...  

Office of Scientific and Technical Information (OSTI)

Effect of radiation on normal hematopoiesis and on viral induced cancer of the hematopoietic system. Technical progress report, August 1, 1973--July 31, 1974 Citation Details...

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

asymptotic normalization coefficients: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

zeilbergtokhniotSameSexMarriages Zeilberger, Doron 114 Journal of Multivariate Analysis 74, 49 68 (2000) Asymptotic Normality of Posterior Distributions for...

162

asymptotic normalization coefficient: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

zeilbergtokhniotSameSexMarriages Zeilberger, Doron 114 Journal of Multivariate Analysis 74, 49 68 (2000) Asymptotic Normality of Posterior Distributions for...

163

adjacent normal skin: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tangential mechanics SAI mechanoreceptor depth actuator strain energy density James Biggs; Mandayam A. Srinivasan 5 Expression and function of small RNAs in normal and...

164

Used Nuclear Fuel Loading and Structural Performance Under Normal...  

Energy Savers [EERE]

Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Demonstration of Approach and Results of Used Fuel Performance Characterization Used...

165

E-Print Network 3.0 - astrocytes normalizes revascularization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: astrocytes normalizes revascularization Page: << < 1 2 3 4 5 > >> 1 Brain Research 896 (2001) 8695 www.elsevier.comlocatebres Summary: Astrocytes are an ideal...

166

allowing normal bone: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assays. Correlations of fluoride levels between normal bone near the Nancy Medina; Chester W. Douglass; Gary M. Whitford; Robert N. Hoover; Thomas R. Fears 6 Differential...

167

Data Collection and Normalization for the Development of Cost...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This chapter discusses considerations for data collection and normalization. g4301-1chp19.pdf -- PDF Document, 21 KB Writer: John Makepeace Subjects: Administration Management...

168

The spectral irradiance traceability chain at PTB  

SciTech Connect (OSTI)

Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Systeme international d'unites, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck's radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties confirmed by international intercomparisons among NMIs. Ultimately, the spectral irradiance can be realized with expanded measurement uncertainties of far less than 1 % over a wide spectral range. Thus, for customers with high demands on low measurement uncertainties, it is possible to calibrate their working standards directly against the blackbody-radiator, taking into account the higher necessary effort. In special cases it is possible to calibrate the customer's spectroradiometric facilities directly in front of the blackbody-radiator. In the context of the European Metrology Research Project Traceability for surface spectral solar ultraviolet radiation, the traceability chain will be improved and adapted.

Sperfeld, P.; Pape, S.; Nevas, S. [Physikalisch-Technische Bundesanstalt, Bundesallee 10, 381160 Braunschweig (Germany)

2013-05-10T23:59:59.000Z

169

Evaluation of Neutron Irradiated Silicon Carbide and Silicon Carbide Composites  

SciTech Connect (OSTI)

The effects of fast neutron irradiation on SiC and SiC composites have been studied. The materials used were chemical vapor deposition (CVD) SiC and SiC/SiC composites reinforced with either Hi-Nicalon{trademark} Type-S, Hi-Nicalon{trademark} or Sylramic{trademark} fibers fabricated by chemical vapor infiltration. Statistically significant numbers of flexural samples were irradiated up to 4.6 x 10{sup 25} n/m{sup 2} (E>0.1 MeV) at 300, 500 and 800 C in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Dimensions and weights of the flexural bars were measured before and after the neutron irradiation. Mechanical properties were evaluated by four point flexural testing. Volume increase was seen for all bend bars following neutron irradiation. Magnitude of swelling depended on irradiation temperature and material, while it was nearly independent of irradiation fluence over the fluence range studied. Flexural strength of CVD SiC increased following irradiation depending on irradiation temperature. Over the temperature range studied, no significant degradation in mechanical properties was seen for composites fabricated with Hi-Nicalon{trademark} Type-S, while composites reinforced with Hi-Nicalon{trademark} or Sylramic fibers showed significant degradation. The effects of irradiation on the Weibull failure statistics are also presented suggesting a reduction in the Weibull modulus upon irradiation. The cause of this potential reduction is not known.

Newsome G, Snead L, Hinoki T, Katoh Y, Peters D

2007-03-26T23:59:59.000Z

170

Individualized Radical Radiotherapy of Non-Small-Cell Lung Cancer Based on Normal Tissue Dose Constraints: A Feasibility Study  

SciTech Connect (OSTI)

Purpose: Local recurrence is a major problem after (chemo-)radiation for non-small-cell lung cancer. We hypothesized that for each individual patient, the highest therapeutic ratio could be achieved by increasing total tumor dose (TTD) to the limits of normal tissues, delivered within 5 weeks. We report first results of a prospective feasibility trial. Methods and Materials: Twenty-eight patients with medically inoperable or locally advanced non-small-cell lung cancer, World Health Organization performance score of 0-1, and reasonable lung function (forced expiratory volume in 1 second > 50%) were analyzed. All patients underwent irradiation using an individualized prescribed TTD based on normal tissue dose constraints (mean lung dose, 19 Gy; maximal spinal cord dose, 54 Gy) up to a maximal TTD of 79.2 Gy in 1.8-Gy fractions twice daily. No concurrent chemoradiation was administered. Toxicity was scored using the Common Terminology Criteria for Adverse Events criteria. An {sup 18}F-fluoro-2-deoxy-glucose-positron emission tomography-computed tomography scan was performed to evaluate (metabolic) response 3 months after treatment. Results: Mean delivered dose was 63.0 {+-} 9.8 Gy. The TTD was most often limited by the mean lung dose (32.1%) or spinal cord (28.6%). Acute toxicity generally was mild; only 1 patient experienced Grade 3 cough and 1 patient experienced Grade 3 dysphagia. One patient (3.6%) died of pneumonitis. For late toxicity, 2 patients (7.7%) had Grade 3 cough or dyspnea; none had severe dysphagia. Complete metabolic response was obtained in 44% (11 of 26 patients). With a median follow-up of 13 months, median overall survival was 19.6 months, with a 1-year survival rate of 57.1%. Conclusions: Individualized maximal tolerable dose irradiation based on normal tissue dose constraints is feasible, and initial results are promising.

Baardwijk, Angela van [Department of Radiation Oncology (MAASTRO), GROW Research Institute, University Hospital Maastricht, Maastricht (Netherlands)], E-mail: angela.vanbaardwijk@maastro.nl; Bosmans, Geert; Boersma, Liesbeth; Wanders, Stofferinus; Dekker, Andre [Department of Radiation Oncology (MAASTRO), GROW Research Institute, University Hospital Maastricht, Maastricht (Netherlands); Dingemans, Anne Marie C. [Department of Pulmonology, University Hospital Maastricht, Maastricht (Netherlands); Bootsma, Gerben [Department of Pulmonology, Atrium Medical Centre, Heerlen (Netherlands); Geraedts, Wiel [Department of Pulmonology, Maasland Hospital, Sittard (Netherlands); Pitz, Cordula [Department of Pulmonology, Sint Laurentius Hospital, Roermond (Netherlands); Simons, Jean [Department of Pulmonology, Sint Jans Gasthuis, Weert (Netherlands); Lambin, Philippe; Ruysscher, Dirk de [Department of Radiation Oncology (MAASTRO), GROW Research Institute, University Hospital Maastricht, Maastricht (Netherlands)

2008-08-01T23:59:59.000Z

171

Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth's surface for cloudless atmospheres  

SciTech Connect (OSTI)

A new, simple model for calculating clear-sky direct and diffuse spectral irradiance on horizontal and tilted surfaces is presented. The model is based on previously reported simple algorithms and on comparisons with rigorous radiative transfer calculations and limited outdoor measurements. Equations for direct normal irradiance are outlined; and include: Raleigh scattering; aerosol scattering and absorption; water vapor absorption; and ozone and uniformly mixed gas absorption. Inputs to the model include solar zenith angle, collector tilt angle, atmospheric turbidity, amount of ozone and precipitable water vapor, surface pressure, and ground albedo. The model calculates terrestrial spectra from 0.3 to 4.0 ..mu..m with approximately 10 nm resolution. A major goal of this work is to provide researchers with the capability to calculate spectral irradiance for different atmospheric conditions and different collector geometries using microcomputers. A listing of the computer program is provided.

Bird, R.; Riordan, C.

1984-12-01T23:59:59.000Z

172

Oil production models with normal rate curves Dudley Stark  

E-Print Network [OSTI]

Oil production models with normal rate curves Dudley Stark School of Mathematical Sciences Queen;Abstract The normal curve has been used to fit the rate of both world and U.S.A. oil production. In this paper we give the first theoretical basis for these curve fittings. It is well known that oil field

Stark, Dudley

173

New Equipartition Results for Normal Mode Energies of Anharmonic Chains  

E-Print Network [OSTI]

New Equipartition Results for Normal Mode Energies of Anharmonic Chains B.I. Henry 1 and T. Szeredi 2;3 Date: 26 September 1995 The canonical and micro­canonical distribution of energy among. If the inter­particle potential is an even function then energy is distributed uniformly among the normal modes

Henry, Bruce Ian

174

SMITH NORMAL FORM OF A MULTIVARIATE MATRIX ASSOCIATED WITH PARTITIONS  

E-Print Network [OSTI]

SMITH NORMAL FORM OF A MULTIVARIATE MATRIX ASSOCIATED WITH PARTITIONS CHRISTINE BESSENRODT polynomials, and by determining not only the deter- minant but also the Smith normal form of these matrices. A priori the Smith form need not exist but its existence follows from the explicit computation

175

Numerical algorithms for the computation of the Smith normal  

E-Print Network [OSTI]

Numerical algorithms for the computation of the Smith normal form of integral matrices C of the Smith normal form of integral matrices are described. More specifically, the com­ pound matrix method of the algorithms. AMS Subject Classification: Primary 65F30, Secondary 15A21, 15A36. Key words and phrases: Smith

Seberry, Jennifer

176

Conformal Deformation from Normal to Hermitian Random Matrix Ensembles  

E-Print Network [OSTI]

We investigate the eigenvalues statistics of ensembles of normal random matrices when their order N tends to infinite. In the model the eigenvalues have uniform density within a region determined by a simple analytic polynomial curve. We study the conformal deformations of normal random ensembles to Hermitian random ensembles and give sufficient conditions for the latter to be a Wigner ensemble.

Alexei M. Veneziani; Tiago Pereira; Domingos H. U. Marchetti

2009-09-04T23:59:59.000Z

177

Improving ion irradiated high T{sub c} Josephson junctions by annealing: The role of vacancy-interstitial annihilation  

SciTech Connect (OSTI)

The authors have studied the annealing effect in the transport properties of high T{sub c} Josephson junctions (JJs) made by ion irradiation. Low temperature annealing (80 deg. C) increases the JJ coupling temperature (T{sub J}) and the I{sub c}R{sub n} product, where I{sub c} is the critical current and R{sub n} the normal resistance. They have found that the spread in JJ characteristics can be reduced by sufficient long annealing times, increasing the reproducibility of ion irradiated Josephson junctions. The characteristic annealing time and the evolution of the spread in the JJ characteristics can be explained by a vacancy-interstitial annihilation process rather than by an oxygen diffusion one.

Sirena, M.; Matzen, S.; Bergeal, N.; Lesueur, J.; Faini, G.; Bernard, R.; Briatico, J.; Crete, D. G. [Laboratoire Photons Et Matiere, ESPCI, 10 Rue Vauquelin, 75231 Paris (France); Laboratoire de Photonique et Nanostructures, Route de Nozay, 91460 Marcoussis (France); UMR-CNRS/THALES, Route D128, 91767 Palaiseau (France)

2007-10-01T23:59:59.000Z

178

Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation  

E-Print Network [OSTI]

Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation Wilfred Edwin Booij Gonville and Caius College Cambridge A dissertation submitted for the degree of Doctor of Philosophy at the University of Cambridge December 1997... Summary Josephson Junctions and Devices fabricated by Focused Electron Beam Irradiation The irradiation of high Tc superconducting thin films with a focused electron beam, such as that obtained in a scanning transmission electron microscope (STEM), can...

Booij, Wilfred Edwin

179

NANOSTRUCTURE PATTERNING UNDER ENERGETIC PARTICLE BEAM IRRADIATION  

SciTech Connect (OSTI)

Energetic ion bombardment can lead to the development of complex and diverse nanostructures on or beneath the material surface through induced self-organization processes. These self-organized structures have received particular interest recently as promising candidates as simple, inexpensive, and large area patterns, whose optical, electronic and magnetic properties are different from those in the bulk materials [1-5]. Compared to the low mass efficiency production rate of lithographic methods, these self-organized approaches display new routes for the fabrication of nanostructures over large areas in a short processing time at the nanoscale, beyond the limits of lithography [1,4]. Although it is believed that surface nanostructure formation is based on the morphological instability of the sputtered surface, driven by a kinetic balance between roughening and smoothing actions [6,7], the fundamental mechanisms and experimental conditions for the formation of these nanostructures has still not been well established, the formation of the 3-D naopatterns beneath the irradiated surface especially needs more exploration. During the last funding period, we have focused our efforts on irradiation-induced nanostructures in a broad range of materials. These structures have been studied primarily through in situ electron microscopy during electron or ion irradiation. In particular, we have performed studies on 3-D void/bubble lattices (in metals and CaF2), embedded sponge-like porous structure with uniform nanofibers in irradiated semiconductors (Ge, GaSb, and InSb), 2-D highly ordered pattern of nanodroplets (on the surface of GaAs), hexagonally ordered nanoholes (on the surface of Ge), and 1-D highly ordered ripple and periodic arrays (of Cu nanoparticles) [3,8-11]. The amazing common feature in those nanopatterns is the uniformity of the size of nanoelements (nanoripples, nanodots, nanovoids or nanofibers) and the distance separating them. Our research focuses on the understanding of fundamental scientific basis for the irradiation-induced self-organization processes. The fundamental physical mechanisms underlying ordered pattern formation, which include defect production and migration, ion sputtering, redeposition, viscous flow and diffusion, are investigated through a combination of modeling and in situ and ex-situ observations [3,9,11]. In addition, these nanostructured materials exhibit considerable improvement of optical properties [9,12,13]. For example, patterned Ge with a hexagonally ordered, honeycomb-like structure of nanoscale holes possesses a high surface area and a considerably blue-shifted energy gap [9], and oxidation of ordered Ga droplets shows noticeable enhancement of optical transmission [12]. This research has addressed nanopattern formation in a variety of materials under ion bombardment and provided a fundamental understanding of the dynamic mechanisms involved. In addition, have also stared to systematically investigate pattern formation under ion irradiation for more systems with varied experimental conditions and computation, including the collaboration with Dr. Veena Tikare of Sandia National Laboratory with a hybrid computation method at the ending this grant. A more detailed relationship between nanostructure formation and experimental conditions will be revealed with our continued efforts.

Wang, Lumin [Regents of the University of Michigan; Lu, Wei [Regents of the University of Michigan

2013-01-31T23:59:59.000Z

180

A Simplified Shuttle Irradiation Facility for ATR  

SciTech Connect (OSTI)

During the past fifteen years there has been a steady increase in the demand for radioisotopes in nuclear medicine and a corresponding decline in the number of reactors within the U.S. capable of producing them. The Advanced Test Reactor (ATR) is the largest operating test reactor in the U.S., but its isotope production capabilities have been limited by the lack of an installed isotope shuttle irradiation system. A concept for a simple low cost shuttle irradiation facility for ATR has been developed. Costs were reduced (in comparison to previous ATR designs) by using a shielded trough of water installed in an occupiable cubicle as a shielding and contamination control barrier for the send and receive station. This shielding concept also allows all control valves to be operated by hand and thus the need for an automatic control system was eliminated. It was determined that 4 5 ft of water would be adequate to shield the isotopes of interest while shuttles are transferred to a small carrier. An additional feature of the current design is a non-isolatable by-pass line, which provides a minimum coolant flow to the test region regardless of which control valves are opened or closed. This by-pass line allows the shuttle facility to be operated without bringing reactor coolant water into the cubicle except for send and receive operations. The irradiation position selected for this concept is a 1.5 inch B hole (B-11). This position provides neutron fluxes of approximately: 1.6 x 1014 (<0.5 eV) and 4.0 x 1013 (>0.8 MeV) n/cm2*sec.

Palmer, Alma Joseph; Laflin, S. T.

1999-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Emulation of reactor irradiation damage using ion beams  

SciTech Connect (OSTI)

The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiations and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiations establishes the capability of tailoring ion irradiations to emulate the reactor-irradiated microstructure.

G. S. Was; Z. Jiao; E. Beckett; A. M. Monterrosa; O. Anderoglu; B. H. Sencer; M. Hackett

2014-10-01T23:59:59.000Z

182

apres irradiation globale: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

necessary for the evaluation of global irradiance on inclined surface which is needed for photovoltaic Boyer, Edmond 7 Caractristiques lectriques de diodes Au-Si(N) ralises aprs...

183

Microsoft Word - Analysis of Deformation Mode Changes in Irradiated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

steels); however, in many cases they may have a negative impact on material performance (hydrogen embrittlement of bcc-phase, etc.). Irradiation leads to defects accumulation,...

184

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic...

185

alpha particle irradiation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

186

alpha particles irradiation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

187

alpha particle irradiated: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

188

apres irradiation alpha: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edmond 8 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

189

Modification of Defect Structures in Graphene by Electron Irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations. Modification of Defect Structures in Graphene by Electron...

190

Dynamic Recovery in Silicate-Apatite Structures Under Irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery in Silicate-Apatite Structures Under Irradiation and Implications for Long-Term Immobilization of Actinides. Dynamic Recovery in Silicate-Apatite Structures Under...

191

Microstructural examination of irradiated vanadium alloys  

SciTech Connect (OSTI)

Microstructural examination results are reported for a V-5Cr-5Ti unirradiated control specimens of heat BL-63 following annealing at 1050{degrees}C, and V-4Cr-4Ti heat BL-47 irradiated in three conditions from the DHCE experiment: at 425{degrees}C to 31 dpa and 0.39 appm He/dpa, at 600{degrees}C to 18 dpa and 0.54 appm He/dpa and at 600{degrees}C to 18 dpa and 4.17 appm He/dpa.

Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States); Chung, H.M. [Argonne National Lab., IL (United States)

1997-04-01T23:59:59.000Z

192

Mitigation of irradiation embrittlement by annealing  

SciTech Connect (OSTI)

The main results of a complex investigation carried out in Russia of post irradiation annealing and reembrittlement of WWER-440 reactor pressure vessel materials are presented. The dependence of the Charpy transition temperature recovery on annealing temperature and fluence was established. Charpy specimens were reirradiated after annealing at 340, 380, 420, and 460 C. Experimental values of the Charpy transition temperature after reirradiation are compared to that predicted by three methods. At annealing temperatures equal to or above 420 C, results of the analysis indicate that, of the methods investigated, the lateral shift method gives the best result for estimating the transition temperature shift due to reirradiation.

Amayev, A.D.; Kryukov, A.M.; Levit, V.I.; Platonov, P.A.; Sokolov, M.A. [Kurchatov Inst., Moscow (Russian Federation)

1996-12-31T23:59:59.000Z

193

Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries  

SciTech Connect (OSTI)

Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for hightemperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 ?C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carried out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 ?C up to doses of 3 dpa were performed on ZrCx (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.

Y. Huang; B.R. Maier; T.R. Allen

2014-10-01T23:59:59.000Z

194

Evolution of the nanostructure OF VVER-1000 RPV materials under neutron irradiation and post irradiation annealing  

SciTech Connect (OSTI)

A high nickel VVER-1000 (15Kh2NMFAA) base metal (1.34 wt% Ni, 0.47% Mn, 0.29% Si and 0.05% Cu), and a high nickel (12Kh2N2MAA) weld metal (1.77 wt% Ni, 0.74% Mn, 0.26% Si and 0.07% Cu) have been characterized by atom probe tomography to determine the changes in the microstructure during neutron irradiation to high fluences. The base metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 14.9 x 10{sup 23} m{sup -2} (E > 0.5 MeV), and the weld metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 11.5 x 10{sup 23} m{sup -2} (E > 0.5 MeV). High number densities of 2-nm-diameter Ni-, Si- and Mn-enriched nanoclusters were found in the neutron irradiated base and weld metals. No significant copper enrichment was associated with these nanoclusters and no copper-enriched precipitates were observed. The number densities of these nanoclusters correlate with the shifts in the {Delta}T{sub 41 J} ductile-to-brittle transition temperature. These nanoclusters were present after a post irradiOffice of Science (US)C, but had dissolved into the matrix after 24 h at 450 C. Phosphorus, nickel, silicon and to a lesser extent manganese were found to be segregated to the dislocations.

Miller, Michael K [ORNL; Chernobaeva, A. A. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Shtrombakh, Ya. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Erak, D. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Zabusov, Oleg O. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Russell, Kaye F [ORNL; Nanstad, Randy K [ORNL

2009-01-01T23:59:59.000Z

195

A Simplified Shuttle Irradiation Facility for ATR  

SciTech Connect (OSTI)

During the past fifteen years there has been a steady increase in the demand for radioisotopes in nuclear medicine and a corresponding decline in the number of reactors within the U.S. capable of producing them. The Advanced Test Reactor (ATR) is the largest operating test reactor in the U.S., but its isotope production capabilities have been limited by the lack of an installed isotope shuttle irradiation system. A concept for a simple "low cost" shuttle irradiation facility for ATR has been developed. Cost were reduced (in comparison to previous ATR designs) by using a shielded trough of water installed in an occupiable cubicle as a shielding and contamination control barrier for the send and receive station. This shielding concept also allows all control valves to be operated by hand and thus the need for an automatic control system was eliminated. It was determined that 4-5 ft of water would be adequate to shield the isotopes of interest while shuttles are transferred to a small carrier. An additional feature of the current design is a non-isolatable by-pass line, which provides a minimum coolant flow to the test region regardless of which control valves are opened or closed. This by-pass line allows the shuttle facility to be operated without bringing reactor coolant water into the cubicle except for send and receive operations.

A. J. Palmer; S. T. Laflin

1999-08-01T23:59:59.000Z

196

Optimisation of buildings' solar irradiation availability  

SciTech Connect (OSTI)

In order to improve the sustainability of new and existing urban settlements it is desirable to maximise the utilisation of the solar energy incident on the building envelope, whether by passive or active means. To this end we have coupled a multi-objective optimisation algorithm with the backwards ray tracing program RADIANCE which itself uses a cumulative sky model for the computation of incident irradiation (W h/m{sup 2}) in a single simulation. The parameters to optimise are geometric (the height of buildings up to their facade and the height and orientation of roofs), but with the constraint of maintaining an overall built volume, and the objective function is heating season solar irradiation offset by envelope heat losses. This methodology has been applied to a range of urban typologies and produces readily interpretable results. The focus of this work is on the design of new urban forms but the method could equally be applied to examine the relative efficiency of existing urban settlements, by comparison of existing forms with the calculated optima derived from relevant specifications of the building envelope. (author)

Kaempf, Jerome Henri; Montavon, Marylene; Bunyesc, Josep; Robinson, Darren [Solar Energy and Building Physics Laboratory, Station 18, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Bolliger, Raffaele [Industrial Energy Systems Laboratory, Station 9, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland)

2010-04-15T23:59:59.000Z

197

LWRS ATR Irradiation Testing Readiness Status  

SciTech Connect (OSTI)

The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

Kristine Barrett

2012-09-01T23:59:59.000Z

198

Analysis of tritium transport in irradiated beryllium  

SciTech Connect (OSTI)

Analysis of the beryllium tritium release results with simple analytical models indicated that tritium behavior in Be is not dominated by one simple mechanism, but by a combination of several mechanisms including surface processes and helium bubbles. A model was developed and the initial version of the model included tritium diffusion in the beryllium and the beryllium oxide, second order desorption at the solid/gas interface and diffusion through interconnected porosity. Fundamental data, tritium diffusion and desorption coefficients for Be and BeO, were derived from experimental data using the model. Beryllium is a metal to which one can generally apply the concepts of diffusion, solubility, surface processes and traps. Tritium transport in the irradiated beryllium is affected by processes occurring in the bulk, He bubbles, the bulk/surface and surface/gas interfaces. There are two types of solid/gas surfaces in the irradiated Be. One is the surface at the pure Be/He bubble interface where no oxide layer exists and the other is the surface at the BeO layer/purge gas interface. Although the material characteristics of the Be and BeO layer are different and have different activation barriers, the surface processes can be applied to both interfaces.

Cho, S.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

1994-12-31T23:59:59.000Z

199

Dose-Response Effect of Charged Carbon Beam on Normal Rat Retina Assessed by Electroretinography  

SciTech Connect (OSTI)

Purpose: To compare the effects of carbon beam irradiation with those of proton beam irradiation on the physiology of the retina of rats. Methods and Materials: Eight-week-old Wister rats were used. The right eyes were irradiated with carbon beam (1, 2, 4, 8, and 16 Gy) or proton beam (4, 8, 16, and 24 Gy) with the rats under general anesthesia. Electroretinograms were recorded 1, 3, 6, and 12 months after the irradiation, and the amplitudes of the a and b waves were compared with those of control rats. Results: The amplitude of b waves was reduced more than that of a waves at lower irradiation doses with both types of irradiation. With carbon ion irradiation, the amplitudes of the b wave were significantly reduced after radiation doses of 8 and 16 Gy at 6 months and by radiation doses of 4, 8, and 16 Gy at 12 months. With proton beam irradiation, the b-wave amplitudes were significantly reduced after 16 and 24 Gy at 6 months and with doses of 8 Gy or greater at 12 months. For the maximum b-wave amplitude, a significant difference was observed in rats irradiated with carbon beams of 4 Gy or more and with proton beams of 8 Gy or more at 12 months after irradiation. Conclusions: These results indicate that carbon beam irradiation is about two times more damaging than proton beam irradiation on the rat retina at the same dose.

Mizota, Atsushi, E-mail: mizota-a@med.teikyo-u.ac.j [Department of Ophthalmology, Teikyo University School of Medicine, Tokyo (Japan); Department of Ophthalmology, Juntendo University Urayasu Hospital, Urayasu (Japan); Tanaka, Minoru [Department of Ophthalmology, Juntendo University Urayasu Hospital, Urayasu (Japan); Kubota, Mariko; Negishi, Hisanari [Department of Ophthalmology, National Hospital Organization Chiba Medical Center, Chiba (Japan); Watanabe, Emiko [Department of Ophthalmology, Teikyo University School of Medicine, Tokyo (Japan); Tsuji, Hiroshi; Miyahara, Nobuyuki; Furusawa, Yoshiya [National Institute of Radiological Sciences, Chiba (Japan)

2010-12-01T23:59:59.000Z

200

Characteristics of Wind Turbines Under Normal and Fault Conditions: Preprint  

SciTech Connect (OSTI)

This paper investigates the characteristics of a variable-speed wind turbine connected to a stiff or weak grid under normal and fault conditions and the role of reactive power compensation.

Muljadi, E.; Butterfield, C. P.; Parsons, B.; Ellis, A.

2007-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Normality of Monte Carlo criticality eigenfunction decomposition coefficients  

SciTech Connect (OSTI)

A proof is presented, which shows that after a single Monte Carlo (MC) neutron transport power method iteration without normalization, the coefficients of an eigenfunction decomposition of the fission source density are normally distributed when using analog or implicit capture MC. Using a Pearson correlation coefficient test, the proof is corroborated by results from a uniform slab reactor problem, and those results also suggest that the coefficients are normally distributed with normalization. The proof and numerical test results support the application of earlier work on the convergence of eigenfunctions under stochastic operators. Knowledge of the Gaussian shape of decomposition coefficients allows researchers to determine an appropriate level of confidence in the distribution of fission sites taken from a MC simulation. This knowledge of the shape of the probability distributions of decomposition coefficients encourages the creation of new predictive convergence diagnostics. (authors)

Toth, B. E.; Martin, W. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Griesheimer, D. P. [Bechtel Bettis, Inc., P.O. Box 79, West Mifflin, PA 15122 (United States)

2013-07-01T23:59:59.000Z

202

Coarser connected topologies and non-normality points  

E-Print Network [OSTI]

We investigate two topics, coarser connected topologies and non-normality points. The motivating question in the first topic is: When does a space have a coarser connected topology with a nice topological property? We will ...

Yengulalp, Lynne Christine

2009-01-01T23:59:59.000Z

203

Computing Simplicial Homology Based on Efficient Smith Normal Form Algorithms  

E-Print Network [OSTI]

in general are sparse. We provide a review of several al- gorithms for the calculation of Smith Normal Form defined by ieA = i j=0 (-1)j eA\\{aj }, where A = {a0

Dumas, Jean-Guillaume

204

Paducah and Portsmouth Off-Specification Enriched and Normal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enriched and Normal UF 6 Inventory 1 3B refers to a 30B cylinder size and 4A refers to a 48A size cylinder. Table 1 PORTS Enriched Inventory Container ID Sample Transfer Gross lbs...

205

Deconvolution in Random Effects Models via Normal Mixtures  

E-Print Network [OSTI]

This dissertation describes a minimum distance method for density estimation when the variable of interest is not directly observed. It is assumed that the underlying target density can be well approximated by a mixture of normals. The method...

Litton, Nathaniel A.

2010-10-12T23:59:59.000Z

206

Postharvest irradiation treatment effect on grapefruit functional components and their role in prevention of colon cancer  

E-Print Network [OSTI]

and irradiation significantly (P ? 0.05) affected the bioactive compounds in grapefruit, however, the effect of storage was prominent. The third study examined the influence of irradiation and freeze drying on bioactive compounds of grapefruit. Irradiation...

Vanamala, Jairam Krishna Prasad

2005-11-01T23:59:59.000Z

207

Use of Normalized Radial Basis Function in Hydrology  

SciTech Connect (OSTI)

In this article we will present a use of normalized radial basis function in hydrology for prediction of missing river Reka runoff data. The method is based on multidimensional normal distribution, where standard deviation is first optimized and later the whole prediction process is learned on existing data [5]. We can conclude, that the method works very well for middle ranges of data, but not so well for extremes because of its interpolating nature.

Cotar, Anton; Brilly, Mitja [Chair of Hydrology and Hydraulic Engineering, University of Ljubljana, Jamova 2, 1000 Ljubljana (Slovenia)

2008-11-13T23:59:59.000Z

208

SHORT COMMUNICATION Microbeam irradiation of C. elegans nematode in microfluidic  

E-Print Network [OSTI]

SHORT COMMUNICATION Microbeam irradiation of C. elegans nematode in microfluidic channels M implemented a microfluidic tool for microbeam irradiation of Caenorhabditis elegans. The device allows into the microfluidic device through liquid flow between an inlet and an outlet, and the size of each microchannel

Brenner, David Jonathan

209

Retention of Hydrogen Isotopes in Neutron Irradiated Tungsten  

SciTech Connect (OSTI)

To investigate the effects of neutron irradiation on hydrogen isotope retention in tungsten, disk-type specimens of pure tungsten were irradiated in the High Flux Isotope Reactor in Oak Ridge National Laboratory followed by exposure to high flux deuterium (D) plasma in Idaho National Laboratory. The results obtained for low dose n-irradiated specimens (0.025 dpa for tungsten) are reviewed in this paper. Irradiation at coolant temperature of the reactor (around 50 degrees C) resulted in the formation of strong trapping sites for D atoms. The concentrations of D in n-irradiated specimens were ranging from 0.1 to 0.4 mol% after exposure to D plasma at 200 and 500 degrees C and significantly higher than those in non-irradiated specimens because of D-trapping by radiation defects. Deep penetration of D up to a depth of 50-100 m was observed at 500 degrees C. Release of D in subsequent thermal desorption measurements continued up to 900 degrees C. These results were compared with the behaviour of D in ion-irradiated tungsten, and distinctive features of n-irradiation were discussed.

Yuji Hatano; Masashi Shimada; Yasuhisa Oya; Guoping Cao; Makoto Kobayashi; Masanori Hara; Brad J. Merrill; Kenji Okuno; Mikhail A. Sokolov; Yutai Katoh

2013-03-01T23:59:59.000Z

210

Irradiation effects in high-density polyethylene Jussi Polvia  

E-Print Network [OSTI]

Irradiation effects in high-density polyethylene Jussi Polvia , Kai Nordlunda a simulations, we have studied the irradiation effects in high density polyethylene. We determined the threshold energy for creating defects in the polyethylene lattice as a function of the incident angle. We found

Nordlund, Kai

211

Asymmetric Orientational Writing in glass with femtosecond laser irradiation  

E-Print Network [OSTI]

Asymmetric Orientational Writing in glass with femtosecond laser irradiation B. Poumellec,1 M in the dielectric inducing an asymmetric stress field is proposed. ©2013 Optical Society of America OCIS codes: (160. Prade, and A. Mysyrowicz, "Femtosecond laser irradiation stress induced in pure silica," Opt. Express 11

Boyer, Edmond

212

Physica B 308310 (2001) 612615 Irradiation effects in semiconducting diamonds  

E-Print Network [OSTI]

Physica B 308­310 (2001) 612­615 Irradiation effects in semiconducting diamonds N. Kristianpoller irradiation on semiconducting diamonds (type IIb) were studied and compared with those induced at the same conditions in natural (type Ia) and in synthetic diamonds. Methods of optical absorption, of X-ray and light

Chen, Reuven

213

SPECTRAL SOLAR IRRADIANCE AND ITS ENTROPIC EFFECT ON EARTH'S CLIMATE  

E-Print Network [OSTI]

SPECTRAL SOLAR IRRADIANCE AND ITS ENTROPIC EFFECT ON EARTH'S CLIMATE Wei Wu1 , Yangang Liu1 of the spectral solar irradiance (SSI) at the top of the Earth's atmosphere by the Solar Radiation and Climate's entropy flux from the TOA incident solar radiation. Two extreme cases are examined by using Planck

214

Standard Guide for Packaging Materials for Foods to Be Irradiated  

E-Print Network [OSTI]

1.1 This guide provides a format to assist producers and users of food packaging materials in selecting materials that have the desirable characteristics for their intended use and comply with applicable standards or government authorizations. It outlines parameters that should be considered when selecting food-contact packaging materials intended for use during irradiation of prepackaged foods and it examines the criteria for fitness for their use. 1.2 This guide identifies known regulations and regulatory frameworks worldwide pertaining to packaging materials for holding foods during irradiation; but it does not address all regulatory issues associated with the selection and use of packaging materials for foods to be irradiated. It is the responsibility of the user of this guide to determine the pertinent regulatory issues in each country where foods are to be irradiated and where irradiated foods are distributed. 1.3 This guide does not address all of the food safety issues associated with the synergisti...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

215

Neutronics and Fuel Performance Evaluation of Accident Tolerant Fuel under Normal Operation Conditions  

SciTech Connect (OSTI)

This report details the analysis of neutronics and fuel performance analysis for enhanced accident tolerance fuel, with Monte Carlo reactor physics code Serpent and INLs fuel performance code BISON, respectively. The purpose is to evaluate two of the most promising candidate materials, FeCrAl and Silicon Carbide (SiC), as the fuel cladding under normal operating conditions. Substantial neutron penalty is identified when FeCrAl is used as monolithic cladding for current oxide fuel. From the reactor physics standpoint, application of the FeCrAl alloy as coating layer on surface of zircaloy cladding is possible without increasing fuel enrichment. Meanwhile, SiC brings extra reactivity and the neutron penalty is of no concern. Application of either FeCrAl or SiC could be favorable from the fuel performance standpoint. Detailed comparison between monolithic cladding and hybrid cladding (cladding + coating) is discussed. Hybrid cladding is more practical based on the economics evaluation during the transition from current UO2/zircaloy to Accident Tolerant Fuel (ATF) system. However, a few issues remain to be resolved, such as the creep behavior of FeCrAl, coating spallation, inter diffusion with zirconium, etc. For SiC, its high thermal conductivity, excellent creep resistance, low thermal neutron absorption cross section, irradiation stability (minimal swelling) make it an excellent candidate materials for future nuclear fuel/cladding system.

Xu Wu; Piyush Sabharwall; Jason Hales

2014-07-01T23:59:59.000Z

216

Effects of nanosecond-scale prepulse on generation of high-energy protons in target normal sheath acceleration  

SciTech Connect (OSTI)

A pulse cleaner based on noncollinear optical-parametric amplification and second-harmonic generation processes is used to improve the contrast of a laser of peak intensity {approx}2 Multiplication-Sign 10{sup 19} W/cm{sup 2} to {approx}10{sup 11} at 100 ps before the peak of the main pulse. A 7 MeV proton beam is observed when a 2.5 {mu}m-thick Al foil is irradiated by this high-contrast laser. The maximum proton energy decreases to 2.9 MeV when a low-contrast ({approx}10{sup 8}) laser is used. Two-dimensional particle-in-cell simulations combined with MULTI simulations show that the maximum proton energy sensitively relies on the detecting direction. The ns-time-scale prepulse can bend a thin target before the main pulse arrives, which reduces maximum proton energy in the target normal sheath acceleration.

Wang, W. P.; Shen, B. F.; Zhang, H.; Xu, Y.; Li, Y. Y.; Lu, X. M.; Wang, C.; Liu, Y. Q.; Shi, Y.; Leng, Y. X.; Liang, X. Y.; Li, R. X.; Xu, Z. Z. [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)] [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Lu, J. X.; Wang, N. Y. [Department of Nuclear Technology Application, China Institute of Atom Energy, Beijing 102413 (China)] [Department of Nuclear Technology Application, China Institute of Atom Energy, Beijing 102413 (China)

2013-06-03T23:59:59.000Z

217

E-Print Network 3.0 - accelerated partial-breast irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

irradiated for one hour... 1 Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet ... Source: Kemner, Ken - Biosciences Division, Argonne National Laboratory...

218

Instrumentation to Enhance Advanced Test Reactor Irradiations  

SciTech Connect (OSTI)

The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

2009-09-01T23:59:59.000Z

219

Irradiation behavior of metallic fast reactor fuels  

SciTech Connect (OSTI)

Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985.

Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

1991-01-01T23:59:59.000Z

220

Optimization parameter design for proton irradiation accelerator  

E-Print Network [OSTI]

The proton irradiation accelerator is widely founded for industry application, and should be designed as compact, reliable, and easy operate. A 10 MeV proton beam is designed to be injected into the slow circulation ring with the repetition rate of 0.5 Hz for accumulation and acceleration, and then the beam with the energy of 300MeV will be slowly extracted by third order resonance method. For getting a higher intensity and more uniform beam, the height of the injection bump is carefully optimised during the injection period. Besides, in order to make the extracted beam with a more uniform distribution, a RF Knock-out method is adopted, and the RF kicker's amplitude is well optimised.

Yu-Wen An; Hong-Fei Ji; Sheng Wang; Shou-Yan Xu

2014-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Recovery of niobium from irradiated targets  

DOE Patents [OSTI]

A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.

Phillips, Dennis R. (Los Alamos, NM); Jamriska, Sr., David J. (Los Alamos, NM); Hamilton, Virginia T. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

222

AGC-3 Irradiation Data Qualification Final Report  

SciTech Connect (OSTI)

The Graphite Technology Development Program will run a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The third experiment, Advanced Graphite Creep 3 (AGC 3), began with Advanced Test Reactor (ATR) Cycle 152B on November 27, 2012, and ended with ATR Cycle 155B on April 23, 2014. This report documents qualification of AGC 3 experiment irradiation monitoring data for use by the Very High Temperature Reactor (VHTR) Technology Development Office (TDO) Program for research and development activities required to design and license the first VHTR nuclear plant. Qualified data meet the requirements for data collection and use as described in the experiment planning and quality assurance documents. Failed data do not meet the requirements. Trend data may not meet the requirements, but may still provide some useable information. All thermocouples (TCs) functioned throughout the AGC 3 experiment. There was one interval between December 18, 2012, and December 20, 2012, where 10 NULL values were reported for various TCs. These NULL values were deleted from the Nuclear Data Management and Analysis System database. All temperature data are Qualified for use by the VHTR TDO Program. Argon, helium, and total gas flow data were within expected ranges and are Qualified for use by the VHTR TDO Program. Total gas flow was approximately 50 sccm through the AGC 3 experiment capsule. Helium gas flow was briefly increased to 100 sccm during ATR shutdowns. At the start of the AGC 3 experiment, moisture in the outflow gas line was stuck at a constant value of 335.6174 ppmv for the first cycle (Cycle 152B). When the AGC 3 experiment capsule was reinstalled in ATR for Cycle 154B, a new moisture filter was installed. Moisture data from Cycle 152B are Failed. All moisture data from the final three cycles (Cycles 154B, 155A, and 155B) are Qualified for use by the VHTR TDO Program.

Laurence Hull

2014-08-01T23:59:59.000Z

223

Method for construction of normalized cDNA libraries  

DOE Patents [OSTI]

This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3` noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to appropriate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. This invention also provides normalized cDNA libraries generated by the above-described method and uses of the generated libraries. 19 figs.

Soares, M.B.; Efstratiadis, A.

1998-11-03T23:59:59.000Z

224

Method for construction of normalized cDNA libraries  

DOE Patents [OSTI]

This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to appropriate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. This invention also provides normalized cDNA libraries generated by the above-described method and uses of the generated libraries.

Soares, Marcelo B. (New York, NY); Efstratiadis, Argiris (Englewood, NJ)

1998-01-01T23:59:59.000Z

225

Indoor and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance Measurement  

SciTech Connect (OSTI)

This report details the global spectral irradiance intercomparison using spectroradiometers that was organized by the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. The intercomparison was performed both indoors and outdoors on September 17, 2013. Five laboratories participated in the intercomparison using 10 spectroradiometers, and a coordinated measurement setup and a common platform were employed to compare spectral irradiances under both indoor and outdoor conditions. The intercomparison aimed to understand the performance of the different spectroradiometers and to share knowledge in making spectral irradiance measurements. This intercomparison was the first of its kind in the United States.

Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, R.; Kobashi, T.; Akiyama, A.; Takagi, S.

2014-05-01T23:59:59.000Z

226

Gamma irradiation effects on the biodegradation of lignin  

E-Print Network [OSTI]

parts: biological utilization of irradiated Calcium Lignosulphonate (CLS) and irradiation effects on the composition of CLS. The CLS used in this study was a commercially available lignin compound which is produced by flash evaporation of spent... 4/ X / 2. 0 3. 0 4. 0 5. 0 6. 0 7. 0 Wavelength in microns 8. 0 9. 0 28 CHAPTER VI RESULTS AND CONCLUSIONS A commercia I CLS was irradiated in a dry state to various total dose levels of Co-60 gamma rays. The effects on the structure...

Krysinski, Thomas Leon

1966-01-01T23:59:59.000Z

227

Electron Beam Irradiation for Improving Safety of Fruits and Vegetables  

E-Print Network [OSTI]

. An alternative may be irradiation which is emerging as a promising tool to enhance safety and extend shelf life of fresh and fresh cut produce. Gamma rays have been the most extensively studied form of irradiation and have been successfully applied to spices..., tubers, grains and meat products for the space program. However, consumer reluctance has limited its application over a broad range of food stuffs. As a result, alternate irradiation technologies such as e-beam and X-rays are attracting attention...

Adavi, Megha Sarthak

2012-07-16T23:59:59.000Z

228

Method for construction of normalized cDNA libraries  

DOE Patents [OSTI]

This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form. The method comprises: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3` noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. 4 figs.

Soares, M.B.; Efstratiadis, A.

1996-01-09T23:59:59.000Z

229

Method for construction of normalized cDNA libraries  

DOE Patents [OSTI]

This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library.

Soares, Marcelo B. (New York, NY); Efstratiadis, Argiris (Englewood, NJ)

1996-01-01T23:59:59.000Z

230

Pyrolytic carbon free-radical evolution and irradiation damage of polyimide under low-energy proton irradiation  

SciTech Connect (OSTI)

Ionization and displacement effects are basic phenomena in damage processes of materials under space-particle irradiation. In this paper, the damage behaviors were investigated on the polyimide under proton irradiation using electron paramagnetic resonance (EPR) spectra analysis and optical absorbance valuation. The results indicate that the proton irradiation induces the formation of pyrolytic carbon free-radical with a g value of 2.0025, and the population of free radicals increases with the irradiation fluence. The most important finding is that the irradiation-induced free-radical population increases linearly with the displacement damage dose, as does the optical degradation, whereas the ionization effect alone, during the irradiation, cannot induce the formation of pyrolytic carbon free radical. Furthermore, during the post storage, after irradiation, the free-radical population decreases following a sum of an exponential and a linear mode with the storage time. It is interesting that, during the post storage, the recovery of the degraded optical absorbance of the polyimide follows a similar mode to that of free radicals, and the characteristic time constant changes with the wavelength of the optical spectra.

Sun Chengyue; Wu Yiyong; Xiao Jingdong; Li Ruifeng; Yang Dezhuang; He Shiyu [National Key Lab in Materials Behaviors and Evaluation Technology in Space Environments, Harbin Institute of Technology, Harbin 150001 (China)

2011-12-15T23:59:59.000Z

231

AGC-2 Irradiation Data Qualification Final Report  

SciTech Connect (OSTI)

The Graphite Technology Development Program will run a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The second Advanced Graphite Creep (AGC) experiment (AGC-2) began with Advanced Test Reactor (ATR) Cycle 149A on April 12, 2011, and ended with ATR Cycle 151B on May 5, 2012. The purpose of this report is to qualify AGC-2 irradiation monitoring data following INL Management and Control Procedure 2691, Data Qualification. Data that are Qualified meet the requirements for data collection and use as described in the experiment planning and quality assurance documents. Data that do not meet the requirements are Failed. Some data may not quite meet the requirements, but may still provide some useable information. These data are labeled as Trend. No Trend data were identified for the AGC-2 experiment. All thermocouples functioned throughout the AGC-2 experiment. There was one instance where spurious signals or instrument power interruption resulted in a recorded temperature value being well outside physical reality. This value was identified and labeled as Failed data. All other temperature data are Qualified. All helium and argon gas flow data are within expected ranges. Total gas flow was approximately 50 sccm through the capsule. Helium gas flow was briefly increased to 100 sccm during reactor shutdown. All gas flow data are Qualified. At the start of the experiment, moisture in the outflow gas line increased to 200 ppmv then declined to less than 10 ppmv over a period of 5 days. This increase in moisture coincides with the initial heating of the experiment and drying of the system. Moisture slightly exceeded 10 ppmv three other times during the experiment. While these moisture values exceed the 10 ppmv threshold value, the reported measurements are considered accurate and to reflect moisture conditions in the capsule. All moisture data are Qualified. Graphite creep specimens are subjected to one of three loads, 393 lbf, 491 lbf, or 589 lbf. Loads were consistently within 5% of the specified values throughout the experiment. Stack displacement increased consistently throughout the experiment with total displacement ranging from 1 to 1.5 inches. No anomalous values were identified. During reactor outages, a set of pneumatic rams are used to raise the stacks of graphite creep specimens to ensure the specimens have not become stuck within the test train. This stack raising was performed after all cycles when the capsule was in the reactor. All stacks were raised successfully after each cycle. The load and displacement data are Qualified

Laurence C. Hull

2012-07-01T23:59:59.000Z

232

The modelling of irradiation-enhanced phosphorus segregation in neutron irradiated reactor pressure vessel submerged-arc welds  

SciTech Connect (OSTI)

Recent results on neutron-irradiated RPV submerged-arc welds have revealed grain boundary segregation of phosphorus during irradiation, which may lead to intergranular fracture. However, the experimental database is insufficient to define the dependence of the process on variables such ad dose, dose-rate and temperature. This paper describes work in which two existing models of phosphorus segregation, under thermal or irradiation conditions, have been developed to obtain predictions of these dependencies. The critical parameters in the models have been adjusted to give consistency with the available reference data, and predictions have been made of the dependence of segregation on a number of variables.

Druce, S.G.; English, C.A.; Foreman, A.J.E.; McElroy, R.J.; Vatter, I.A. [AEA Technology, Didcot (United Kingdom). Harwell Lab.; Bolton, C.J.; Buswell, J.T.; Jones, R.B. [Nuclear Electric, Berkeley (United Kingdom). Berkeley Technology Centre

1996-12-31T23:59:59.000Z

233

Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty  

E-Print Network [OSTI]

Solar irradiance data . . . . . . . . . . . . .Accuracy . . . . . . . . . . . . . . . . . Solar Resourcev Uncertainty In Solar Resource: Forecasting

Marquez, Ricardo

2012-01-01T23:59:59.000Z

234

K.K. Gan ATLAS Tracker Upgrade Workshop 1 Irradiation Results and Transmission on  

E-Print Network [OSTI]

Power vs Dosage all VCSELs still produce optical power at SLHC dosage should irradiate at lower Workshop 14 Post-Irradiation Analysis all arrays except ULM 5 G still produce optical power post-irradiationK.K. Gan ATLAS Tracker Upgrade Workshop 1 Irradiation Results and Transmission on Small Cables

Gan, K. K.

235

Water-Energy Shortages in the West: The New Normal?  

E-Print Network [OSTI]

Water-Energy Shortages in the West: The New Normal? Tuesday, November 19, 2013 12:00 - 1:30 p, Kristen Averyt, director of the Western Water Assessment, a NOAA program based at CIRES, will discuss the connections between climate science and decision- making across the West , in particular, the water

Zhang, Junshan

236

Rigid Shape Interpolation Using Normal Equations William Baxter  

E-Print Network [OSTI]

Rigid Shape Interpolation Using Normal Equations William Baxter OLM Digital, Inc. Pascal Barla INRIA Bordeaux University Ken-ichi Anjyo OLM Digital, Inc. Figure 1: Rigid Morphing with large rotations works well and is a very practical way e-mail: baxter@olm.co.jp e-mail: pascal.barla@labri.fr e

Boyer, Edmond

237

Auditory Responses in Normal-Hearing, Noise-Exposed Ears  

E-Print Network [OSTI]

....................................................................................... 29 Influence of ABR Recording Electrode ......................................................................................... 31 ABR Wave V Amplitude... membrane electrode (Ferguson and Ferraro, 1989; Schwartz et al., 1994; Hall, 2007b; Gaddam and Ferraro, 2008). Variability is commonly seen in ABR response amplitude, even in normal-hearing ears (Schwartz et al., 1994). In light of the recent animal data...

Stamper, Greta

2013-12-31T23:59:59.000Z

238

DENSITY FUNCTIONAL THEORY OF NORMAL AND SUPERCONDUCTING ELECTRON LIQUIDS: EXPLICIT  

E-Print Network [OSTI]

DENSITY FUNCTIONAL THEORY OF NORMAL AND SUPERCONDUCTING ELECTRON LIQUIDS: EXPLICIT FUNCTIONALS VIA?th University Nathan, Queensland 4111, Australia Abstract The basic idea of density functional theory is to map potential which is a functional of the density. The central task of density functional theory is to #12;nd

Gross, E.K.U.

239

Liquidliquid separation in solutions of normal and sickle cell hemoglobin  

E-Print Network [OSTI]

Liquid­liquid separation in solutions of normal and sickle cell hemoglobin Oleg Galkin*, Kai Chen, Comprehensive Sickle Cell Center, Bronx, NY 10461 Edited by John M. Prausnitz, University of California the nucleation of HbS polymers, whose formation is the primary pathogenic event for sickle cell anemia. In view

Vekilov, Peter

240

Oddelek za ziko Normal modes in the atmosphere  

E-Print Network [OSTI]

weather prediction. In section 3 I concentrate on the normal modes of a very simple model, shallow water #12;Numerical weather prediction is an initial condition problem. That means we need ini- tial-gravity waves just play their role, but in numerical models of the atmosphere, they can cause huge problems. 1

?umer, Slobodan

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CONCENTRATED SOLID SOLUTIONS OF NORMAL METALS By H. JONES,  

E-Print Network [OSTI]

637. CONCENTRATED SOLID SOLUTIONS OF NORMAL METALS By H. JONES, Imperial College. Department and Heine [1] in the light of the new knowledge of the Fermi surface revealed by experi- ments alloys is reviewed in the light of modern work on the nature of the Fermi surfaces in the noble metals

Boyer, Edmond

242

Some Properties of Realcompact Subspaces and Coarser Normal Spaces  

E-Print Network [OSTI]

William Fleissner. In 1997 Buzjakova proved that for a pseudocompact space X, there exists an ordinal such that the product of X and that ordinal condenses onto a normal space if and only if X condenses onto a compact space. In the third chapter, we extend...

Niknejad, Jila

2009-04-23T23:59:59.000Z

243

PAS kinase is required for normal cellular energy balance  

E-Print Network [OSTI]

PAS kinase is required for normal cellular energy balance Huai-Xiang Hao*, Caleb M. Cardon*, Wojtek, University of Utah School of Medicine, Salt Lake City, UT 84112 Edited by Steven L. McKnight, University in a cell-autonomous manner to maintain cellular energy homeostasis and is a potential therapeutic target

Rutter, Jared

244

Rates of Convergence of Extremes from Skew Normal Samples  

E-Print Network [OSTI]

a standard skew-normal distribution with shape parameter R (written as X SN()) if its probability density); population structure of Schima superba in Qingliangfeng National Nature Reserve (Liu et al., 2011); rain); modeling of seasonal rainfall in Africa (Siebert and Ward, 2011); modeling of HIV viral loads

Sidorov, Nikita

245

NAVARRO VERTICES AND NORMAL SUBGROUPS IN GROUPS OF ODD ORDER  

E-Print Network [OSTI]

NAVARRO VERTICES AND NORMAL SUBGROUPS IN GROUPS OF ODD ORDER JAMES P. COSSEY Abstract. Let p be a prime and suppose G is a finite solvable group and is an ordinary irreducible character of G. Navarro character of Q, which is unique up to conjugacy. This pair is called the Navarro vertex

Cossey, James P.

246

Review of Dynamic Recovery Effects on Ion Irradiation Damage...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6HSiC, ionization processes are less dominant. Citation: Weber WJ, Y Zhang, and LM Wang.2012."Review of Dynamic Recovery Effects on Ion Irradiation Damage in...

247

Materials for cold neutron sources: Cryogenic and irradiation effects  

SciTech Connect (OSTI)

Materials for the construction of cold neutron sources must satisfy a range of demands. The cryogenic temperature and irradiation create a severe environment. Candidate materials are identified and existing cold sources are briefly surveyed to determine which materials may be used. Aluminum- and magnesium-based alloys are the preferred materials. Existing data for the effects of cryogenic temperature and near-ambient irradiation on the mechanical properties of these alloys are briefly reviewed, and the very limited information on the effects of cryogenic irradiation are outlined. Generating mechanical property data under cold source operating conditions is a daunting prospect. It is clear that the cold source material will be degraded by neutron irradiation, and so the cold source must be designed as a brittle vessel. The continued effective operation of many different cold sources at a number of reactors makes it clear that this can be accomplished. 46 refs., 8 figs., 2 tab.

Alexander, D.J.

1990-01-01T23:59:59.000Z

248

Irradiation facilities at the Los Alamos Meson Physics Facility  

SciTech Connect (OSTI)

The irradiation facilities for testing SSC components and detector systems are described. Very high intensity proton, neutron, and pion fluxes are available with beam kinetic energies of up to 800 MeV. 4 refs., 12 figs., 2 tabs.

Sandberg, V.

1990-01-01T23:59:59.000Z

249

Sandis irradiator for dried sewage solids. Final safety analysis report  

SciTech Connect (OSTI)

Analyses of the hazards associated with the operation of the Sandia irradiator for dried sewage solids, as well as methods and design considerations to minimize these hazards, are presented in accordance with DOE directives.

Morris, M.

1980-07-01T23:59:59.000Z

250

Microstructural and Mechanical Property Changes in Ion Irradiated Tunsgten  

E-Print Network [OSTI]

on the sustainability of tungsten as a plasma facing material (PFM). During operation, PFM must withstand harsh conditions with combined effects from high temperature, mechanical stress, irradiation, transmutation, and the production of hydrogen (H) and helium (He...

General, Michael

2013-04-08T23:59:59.000Z

251

Post-irradiation Examination and Fission Product Inventory Analysis of AGR-1 Irradiation Capsules  

SciTech Connect (OSTI)

The AGR-1 experiment was the first in a series of Advanced Gas Reactor (AGR) experiments designed to test TRISO fuel under High Temperature Gas Reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INLs Materials and Fuels Complex (MFC). The inventory and distribution of fission products, especially Ag-110m, was assessed and analyzed for all the components of the AGR-1 capsules. This data should help inform the study of fission product migration in coated particle fuel. Gamma spectrometry was used to measure the activity of various different fission products in the different components of the AGR-1 test train. Each capsule contained: 12 fuel compacts, a graphite holder that kept the fuel compacts in place, graphite spacers that were above and below the graphite holders and fuel compacts, gas lines through which a helium neon gas mixture flowed in and out of each capsule, and the stainless steel shell that contained the experiment. Gamma spectrometry results and the experimental techniques used to capture these results will be presented for all the capsule components. The components were assayed to determine the total activity of different fission products present in or on them. These totals are compared to the total expected activity of a particular fission product in the capsule based on predictions from physics simulation. Based on this metric, a significant fraction of the Ag-110m was detected outside the fuel compacts, but the amount varied highly between the 6 capsules. Very small fractions of Cs-137 (<2E-5), Cs-134 (<1e-5), and Eu-154 (<4e-4) were detected outside of the fuel compacts. Additionally, the distribution of select fission products in some of the components including the fuel compacts and the graphite holders were measured and will be discussed.

J M Harp; P D Demkowicz; S A Ploger

2012-10-01T23:59:59.000Z

252

Irradiation Assisted Grain Boundary Segregation in Steels  

SciTech Connect (OSTI)

The understanding of radiation-induced grain boundary segregation (RIS) has considerably improved over the past decade. New models have been introduced and much effort has been devoted to obtaining comprehensive information on segregation from the literature. Analytical techniques have also improved so that chemical analysis of layers 1 nm thick is almost routine. This invited paper will review the major methods used currently for RIS prediction: namely, Rate Theory, Inverse Kirkendall, and Solute Drag approaches. A summary is made of the available data on phosphorus RIS in reactor pressure vessel (RPV) steels. This will be discussed in the light of the predictions of the various models in an effort to show which models are the most reliable and easy to use for forecasting P segregation behaviour in steels. A consequence of RIS in RPV steels is a radiation induced shift in the ductile to brittle transition temperature (DBTT). It will be shown how it is possible to relate radiation-induced P segregation levels to DBTT shift. Examples of this exercise will be given for RPV steels and for ferritic steels being considered for first wall fusion applications. Cr RIS in high alloy stainless steels and associated irradiation-assisted stress corrosion cracking (IASCC) will be briefly discussed. (authors)

Lu, Zheng; Faulkner, Roy G. [IPTME, Loughborough University, Loughborough, Leics (United Kingdom)

2008-07-01T23:59:59.000Z

253

Recovery of germanium-68 from irradiated targets  

DOE Patents [OSTI]

A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

Phillips, Dennis R. (Los Alamos, NM); Jamriska, Sr., David J. (Los Alamos, NM); Hamilton, Virginia T. (Los Alamos, NM)

1993-01-01T23:59:59.000Z

254

Ion irradiation induced effects in polyamidoimide  

SciTech Connect (OSTI)

The interaction between ion beam and polyamidoimide (PAI) is studied by means of low-temperature infrared spectroscopy. 200 keV Ar{sup +} and 250 keV He{sup +} beams with fluences ranging from 10{sup 13} ions cm{sup {minus}2} to 5{times}10{sup 16} ions cm{sup {minus}2} are found to induce atomic bond breaks leading to absorption bands at 2344, 2261, and 2125 cm{sup {minus}1} corresponding respectively to CO{sub 2}, C=N=N and C=N--R vibrations. Shrinkage of the polymer along with a drastic decrease of the resistivity during Ar{sup +} and He{sup +} irradiation are observed. Speculations on the respective role of electronic processes and atomic collisions in the evolution of the polymer are made. No evidence of PAI modification through knock-on mechanism for fluences lower than 5{times}10{sup 15} ions cm{sup {minus}2} is noticed. In fact, our results would suggest a predominant role of the electronic processes for the low fluences (up to 5{times}10{sup 15} ions cm{sup {minus}2} ), whereas a degradation mechanism based on atomic collisions is more likely to take place for higher fluences. A theoretical mechanism of reactions based upon our Fourier transform infrared (FTIR) and secondary ion mass spectroscopies (SIMS) results, describing the chemical changes occurring in the PAI, is presented and briefly discussed.

Merhari, L.; Belorgeot, C.; Moliton, J.P. (Laboratoire d'Electronique des Polymeres sous Faisceaux Ioniques 123, avenue Albert Thomas, 87060 Limoges Cedex (France))

1991-09-01T23:59:59.000Z

255

Use of laser extensometer for mechanical test on irradiated materials  

SciTech Connect (OSTI)

Techniques have been developed by EDF`s hot laboratory in Chinon for performing mechanical tests on irradiated materials. Some of these techniques aim to facilitate strain measurements, which are particularly difficult to perform on irradiated specimens at high temperatures or on subsize specimens. Recent progress has been driven by laser technology combined with software development. The use of this technique, which allows strain measurements without contact on the specimen, is described for tensile (especially on subsize specimens), fatigue and creep tests.

Brillaud, C.; Meylogan, T.; Salathe, P. [Electricite de France, Avoine (France)

1996-12-31T23:59:59.000Z

256

USE OF SILICON CARBIDE MONITORS IN ATR IRRADIATION TESTING  

SciTech Connect (OSTI)

In April 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) a National Scientific User Facility (NSUF) to advance US leadership in nuclear science and technology. By attracting new users from universities, laboratories, and industry, the ATR will support basic and applied nuclear research and development and help address the nation's energy security needs. In support of this new program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced temperature sensors for irradiation testing. Although most efforts emphasize sensors capable of providing real-time data, selected tasks have been completed to enhance sensors provided in irradiation locations where instrumentation leads cannot be included, such as drop-in capsule and Hydraulic Shuttle Irradiation System (HSIS) or 'rabbit' locations. For example, silicon carbide (SiC) monitors are now available to detect peak irradiation temperatures between 200C and 800C. Using a resistance measurement approach, specialized equipment installed at INL's High Temperature Test Laboratory (HTTL) and specialized procedures were developed to ensure that accurate peak irradiation temperature measurements are inferred from SiC monitors irradiated at the ATR. Comparison examinations were completed by INL to demonstrate this capability, and several programs currently rely on SiC monitors for peak temperature detection. This paper discusses the use of SiC monitors at the ATR, the process used to evaluate them at the HTTL, and presents representative measurements taken using SiC monitors.

K. L. Davis; B. Chase; T. Unruh; D. Knudson; J. L. Rempe

2012-07-01T23:59:59.000Z

257

Comparison of /sup 32/P therapy and sequential hemibody irradiation (HBI) for bony metastases as methods of whole body irradiation  

SciTech Connect (OSTI)

We report a retrospective study of 15 patients with prostate carcinoma and diffuse bone metastases treated with sodium /sup 32/P for palliation of pain at Downstate Medical Center and Kings County Hospital from 1973 to 1978. The response rates, duration of response, and toxicities are compared with those of other series of patients treated with /sup 32/P and with sequential hemibody irradiation. The response rates and duration of response are similar with both modalities ranging from 58 to 95% with a duration of 3.3 to 6 months with /sup 32/P and from 75 to 86% with a median duration of 5.5 months with hemibody irradiation. There are significant differences in the patterns of response and in the toxicities of the two treatment methods. Both methods cause significant bone marrow depression. Acute radiation syndrome, radiation pneumonitis, and alopecia are seen with sequential hemibody irradiation and not with /sup 32/P, but their incidence can be reduced by careful treatment planning. Hemibody irradiation can provide pain relief within 24 to 48 h, while /sup 32/P may produce an initial exacerbation of pain. Lower hemibody irradiation alone is less toxic than either upper hemibody irradiation or /sup 32/P treatment.

Aziz, H.; Choi, K.; Sohn, C.; Yaes, R.; Rotman, M.

1986-06-01T23:59:59.000Z

258

Multivariate Normal Tissue Complication Probability Modeling of Heart Valve Dysfunction in Hodgkin Lymphoma Survivors  

SciTech Connect (OSTI)

Purpose: To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced asymptomatic heart valvular defects (RVD). Methods and Materials: Fifty-six patients treated with sequential chemoradiation therapy for Hodgkin lymphoma (HL) were retrospectively reviewed for RVD events. Clinical information along with whole heart, cardiac chambers, and lung dose distribution parameters was collected, and the correlations to RVD were analyzed by means of Spearman's rank correlation coefficient (Rs). For the selection of the model order and parameters for NTCP modeling, a multivariate logistic regression method using resampling techniques (bootstrapping) was applied. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). Results: When we analyzed the whole heart, a 3-variable NTCP model including the maximum dose, whole heart volume, and lung volume was shown to be the optimal predictive model for RVD (Rs = 0.573, P<.001, AUC = 0.83). When we analyzed the cardiac chambers individually, for the left atrium and for the left ventricle, an NTCP model based on 3 variables including the percentage volume exceeding 30 Gy (V30), cardiac chamber volume, and lung volume was selected as the most predictive model (Rs = 0.539, P<.001, AUC = 0.83; and Rs = 0.557, P<.001, AUC = 0.82, respectively). The NTCP values increase as heart maximum dose or cardiac chambers V30 increase. They also increase with larger volumes of the heart or cardiac chambers and decrease when lung volume is larger. Conclusions: We propose logistic NTCP models for RVD considering not only heart irradiation dose but also the combined effects of lung and heart volumes. Our study establishes the statistical evidence of the indirect effect of lung size on radio-induced heart toxicity.

Cella, Laura, E-mail: laura.cella@cnr.it [Institute of Biostructures and Bioimaging, National Council of Research, Naples (Italy); Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples (Italy); Liuzzi, Raffaele; Conson, Manuel [Institute of Biostructures and Bioimaging, National Council of Research, Naples (Italy); Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples (Italy); DAvino, Vittoria [Institute of Biostructures and Bioimaging, National Council of Research, Naples (Italy); Salvatore, Marco [Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples (Italy); Pacelli, Roberto [Institute of Biostructures and Bioimaging, National Council of Research, Naples (Italy); Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples (Italy)

2013-10-01T23:59:59.000Z

259

SciTech Connect: Normal Conditions of Transport Truck Test of...  

Office of Scientific and Technical Information (OSTI)

Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. Citation Details In-Document Search Title: Normal Conditions of Transport Truck Test of a Surrogate Fuel...

260

E-Print Network 3.0 - absolutely normal bone Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

females (N 49). The data set consisted of bone biopsies from normal and vertebral fracture subjects... microradiographic studies of normal and oste- oporotic ... Source: Ecole...

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Low-Oxygen Induction of Normally Cryptic psbA Genes in Cyanobacteria...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen Induction of Normally Cryptic psbA Genes in Cyanobacteria. Low-Oxygen Induction of Normally Cryptic psbA Genes in Cyanobacteria. Abstract: Microarray analysis indicated...

262

Procedure for normalization of cDNA libraries  

DOE Patents [OSTI]

This invention provides a method to normalize a cDNA library constructed in a vector capable of being converted to single-stranded circles and capable of producing complementary nucleic acid molecules to the single-stranded circles comprising: (a) converting the cDNA library in single-stranded circles; (b) generating complementary nucleic acid molecules to the single-stranded circles; (c) hybridizing the single-stranded circles converted in step (a) with complementary nucleic acid molecules of step (b) to produce partial duplexes to an appropriate Cot; (e) separating the unhybridized single-stranded circles from the hybridized single-stranded circles, thereby generating a normalized cDNA library. 1 fig.

Bonaldo, M.D.; Soares, M.B.

1997-12-30T23:59:59.000Z

263

Measurement of normal contact stiffness of fractal rough surfaces  

E-Print Network [OSTI]

We investigate the effects of roughness and fractality on the normal contact stiffness of rough surfaces. Samples of isotropically roughened aluminium surfaces are considered. The roughness and fractal dimension were altered through blasting using different sized particles. Subsequently, surface mechanical attrition treatment (SMAT) was applied to the surfaces in order to modify the surface at the microscale. The surface topology was characterised by interferometry based profilometry. The normal contact stiffness was measured through nanoindentation with a flat tip utilising the partial unloading method. We focus on establishing the relationships between surface stiffness and roughness, combined with the effects of fractal dimension. The experimental results, for a wide range of surfaces, showed that the measured contact stiffness depended very closely on surfaces' root mean squared (RMS) slope and their fractal dimension, with correlation coefficients of around 90\\%, whilst a relatively weak correlation coefficient of 57\\% was found between the contact stiffness and RMS roughness.

Chongpu Zhai; Sbastien Bevand; Yixiang Gan; Dorian Hanaor; Gwnalle Proust; Bruno Guelorget; Delphine Retraint

2014-09-03T23:59:59.000Z

264

Procedure for normalization of cDNA libraries  

DOE Patents [OSTI]

This invention provides a method to normalize a cDNA library constructed in a vector capable of being converted to single-stranded circles and capable of producing complementary nucleic acid molecules to the single-stranded circles comprising: (a) converting the cDNA library in single-stranded circles; (b) generating complementary nucleic acid molecules to the single-stranded circles; (c) hybridizing the single-stranded circles converted in step (a) with complementary nucleic acid molecules of step (b) to produce partial duplexes to an appropriate Cot; (e) separating the unhybridized single-stranded circles from the hybridized single-stranded circles, thereby generating a normalized cDNA library.

Bonaldo, Maria DeFatima (New York, NY); Soares, Marcelo Bento (New York, NY)

1997-01-01T23:59:59.000Z

265

Higher-Rank Numerical Ranges of Unitary and Normal Matrices  

E-Print Network [OSTI]

We verify a conjecture on the structure of higher-rank numerical ranges for a wide class of unitary and normal matrices. Using analytic and geometric techniques, we show precisely how the higher-rank numerical ranges for a generic unitary matrix are given by complex polygons determined by the spectral structure of the matrix. We discuss applications of the results to quantum error correction, specifically to the problem of identification and construction of codes for binary unitary noise models.

Man-Duen Choi; John A. Holbrook; David W. Kribs; Karol Zyczkowski

2007-01-31T23:59:59.000Z

266

Normal completely positive maps on the space of quantum operations  

E-Print Network [OSTI]

We define a class of higher-order linear maps that transform quantum operations into quantum operations and satisfy suitable requirements of normality and complete positivity. For this class of maps we prove two dilation theorems which are the analogues of the Stinespring and Radon-Nikodym theorems for quantum operations. A structure theorem for probability measures with values in this class of higher-order maps is also derived.

Chiribella, G; Umanit, V

2010-01-01T23:59:59.000Z

267

Surface tension with Normal Curvature in Curved Space-Time  

E-Print Network [OSTI]

With an aim to include the contribution of surface tension in the action of the boundary, we define the tangential pressure in terms of surface tension and Normal curvature in a more naturally geometric way. First, we show that the negative tangential pressure is independent of the four-velocity of a very thin hyper-surface. Second, we relate the 3-pressure of a surface layer to the normal curvature and the surface tension. Third, we relate the surface tension to the energy of the surface layer. Four, we show that the delta like energy flows across the hyper-surface will be zero for such a representation of intrinsic 3-pressure. Five, for the weak field approximation and for static spherically symmetric configuration, we deduce the classical Kelvin's relation. Six, we write a modified action for the boundary having contributions both from surface tension and normal curvature of the surface layer. Also we propose a method to find the physical action assuming a reference background, where the background is not flat.

Himanshu kumar; Sharf Alam; Suhail Ahmad

2012-11-01T23:59:59.000Z

268

Physics of collisionless scrape-off-layer plasma during normal and off-normal Tokamak operating conditions.  

SciTech Connect (OSTI)

The structure of a collisionless scrape-off-layer (SOL) plasma in tokamak reactors is being studied to define the electron distribution function and the corresponding sheath potential between the divertor plate and the edge plasma. The collisionless model is shown to be valid during the thermal phase of a plasma disruption, as well as during the newly desired low-recycling normal phase of operation with low-density, high-temperature, edge plasma conditions. An analytical solution is developed by solving the Fokker-Planck equation for electron distribution and balance in the SOL. The solution is in good agreement with numerical studies using Monte-Carlo methods. The analytical solutions provide an insight to the role of different physical and geometrical processes in a collisionless SOL during disruptions and during the enhanced phase of normal operation over a wide range of parameters.

Hassanein, A.; Konkashbaev, I.

1999-03-15T23:59:59.000Z

269

Synthesis of nanosize BPO{sub 4} under microwave irradiation  

SciTech Connect (OSTI)

Highlights: ? Nanosize BPO{sub 4} are prepared under microwave-irradiation conditions. ? This reaction is only performed at less than 640 W power for 2.55 min. ? The particles of sample irradiated at 400 W are 4090 nm in size and well dispersed. ? A simple, fast and green procedure for synthesis of nanosize BPO{sub 4} is developed. -- Abstract: Nanosize BPO{sub 4} was synthesized using H{sub 3}BO{sub 3} and H{sub 3}PO{sub 4} (85%) as raw materials under microwave irradiation. This reaction was performed at powers lower than 640 W and irradiation time ranging from 2.5 min to 5 min, which were only a fraction of the time required for conventional synthetic procedures. The structure of the as-prepared BPO{sub 4} is analogous to that of a high cristobalite. The particle sizes of the samples irradiated at 640 and 400 W range from 40 nm to 90 nm and 30 nm to 60 nm, respectively. The effects of different conditions on the experimental outcome are also discussed.

Wang, Rui, E-mail: wr_wrwr@163.com [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China) [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China); School of Chemical Engineering, Dalian University of Technology, Dalian 116023 (China); Jiang, Heng; Gong, Hong; Zhang, Jun [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China)] [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China)

2012-08-15T23:59:59.000Z

270

A Statistical Selection Strategy for Normalization Procedures in LC-MS Proteomics Experiments through Dataset Dependent Ranking of Normalization Scaling Factors  

SciTech Connect (OSTI)

Quantification of LC-MS peak intensities assigned during peptide identification in a typical comparative proteomics experiment will deviate from run-to-run of the instrument due to both technical and biological variation. Thus, normalization of peak intensities across a LC-MS proteomics dataset is a fundamental step in pre-processing. However, the downstream analysis of LC-MS proteomics data can be dramatically affected by the normalization method selected . Current normalization procedures for LC-MS proteomics data are presented in the context of normalization values derived from subsets of the full collection of identified peptides. The distribution of these normalization values is unknown a priori. If they are not independent from the biological factors associated with the experiment the normalization process can introduce bias into the data, which will affect downstream statistical biomarker discovery. We present a novel approach to evaluate normalization strategies, where a normalization strategy includes the peptide selection component associated with the derivation of normalization values. Our approach evaluates the effect of normalization on the between-group variance structure in order to identify candidate normalization strategies that improve the structure of the data without introducing bias into the normalized peak intensities.

Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Jacobs, Jon M.; Pounds, Joel G.; Waters, Katrina M.

2011-12-01T23:59:59.000Z

271

SMITH NORMAL FORMS OF INCIDENCE MATRICES Abstract. A brief introduction is given to the topic of Smith normal forms of incidence  

E-Print Network [OSTI]

SMITH NORMAL FORMS OF INCIDENCE MATRICES PETER SIN Abstract. A brief introduction is given to the topic of Smith normal forms of incidence matrices. A general discussion of techniques is illustrated, the fundamental invariant is the Smith normal form of A, whose definition we now recall. A square integer matrix

Sin, Peter

272

Planning Hybrid Intensity Modulated Radiation Therapy for Whole-breast Irradiation  

SciTech Connect (OSTI)

Purpose: To test tangential and not-tangential hybrid intensity modulated radiation therapy (IMRT) for whole-breast irradiation. Methods and Materials: Seventy-eight (36 right-, 42 left-) breast patients were randomly selected. Hybrid IMRT was performed by direct aperture optimization. A semiautomated method for planning hybrid IMRT was implemented using Pinnacle scripts. A plan optimization volume (POV), defined as the portion of the planning target volume covered by the open beams, was used as the target objective during inverse planning. Treatment goals were to prescribe a minimum dose of 47.5 Gy to greater than 90% of the POV and to minimize the POV and/or normal tissue receiving a dose greater than 107%. When treatment goals were not achieved by using a 4-field technique (2 conventional open plus 2 IMRT tangents), a 6-field technique was applied, adding 2 non tangential (anterior-oblique) IMRT beams. Results: Using scripts, manual procedures were minimized (choice of optimal beam angle, setting monitor units for open tangentials, and POV definition). Treatment goals were achieved by using the 4-field technique in 61 of 78 (78%) patients. The 6-field technique was applied in the remaining 17 of 78 (22%) patients, allowing for significantly better achievement of goals, at the expense of an increase of low-dose ({approx}5 Gy) distribution in the contralateral tissue, heart, and lungs but with no significant increase of higher doses ({approx}20 Gy) in heart and lungs. The mean monitor unit contribution to IMRT beams was significantly greater (18.7% vs 9.9%) in the group of patients who required 6-field procedure. Conclusions: Because hybrid IMRT can be performed semiautomatically, it can be planned for a large number of patients with little impact on human or departmental resources, promoting it as the standard practice for whole-breast irradiation.

Farace, Paolo, E-mail: paolofarace@gmail.com [Medical Physics Department, Regional Oncological Hospital, Cagliari (Italy)] [Medical Physics Department, Regional Oncological Hospital, Cagliari (Italy); Zucca, Sergio; Solla, Ignazio; Fadda, Giuseppina; Durzu, Silvia; Porru, Sergio; Meleddu, Gianfranco [Medical Physics Department, Regional Oncological Hospital, Cagliari (Italy)] [Medical Physics Department, Regional Oncological Hospital, Cagliari (Italy); Deidda, Maria Assunta; Possanzini, Marco; Orru, Sivia; Lay, Giancarlo [Radiotherapy Department, Regional Oncological Hospital, Cagliari (Italy)] [Radiotherapy Department, Regional Oncological Hospital, Cagliari (Italy)

2012-09-01T23:59:59.000Z

273

Effect of 710 nm visible light irradiation on neurite outgrowth in primary rat cortical neurons following ischemic insult  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer 710 nm wavelength light (LED) has a protective effect in the stroke animal model. Black-Right-Pointing-Pointer We determined the effects of LED irradiation in vitro stroke model. Black-Right-Pointing-Pointer LED treatment promotes the neurite outgrowth through MAPK activation. Black-Right-Pointing-Pointer The level of synaptic markers significantly increased with LED treatment. Black-Right-Pointing-Pointer LED treatment protects cell death in the in vitro stroke model. -- Abstract: Objective: We previously reported that 710 nm Light-emitting Diode (LED) has a protective effect through cellular immunity activation in the stroke animal model. However, whether LED directly protects neurons suffering from neurodegeneration was entirely unknown. Therefore, we sought to determine the effects of 710 nm visible light irradiation on neuronal protection and neuronal outgrowth in an in vitro stroke model. Materials and methods: Primary cultured rat cortical neurons were exposed to oxygen-glucose deprivation (OGD) and reoxygenation and normal conditions. An LED array with a peak wavelength of 710 nm was placed beneath the covered culture dishes with the room light turned off and were irradiated accordingly. LED treatments (4 min at 4 J/cm{sup 2} and 50 mW/cm{sup 2}) were given once to four times within 8 h at 2 h intervals for 7 days. Mean neurite density, mean neurite diameter, and total fiber length were also measured after microtubule associated protein 2 (MAP2) immunostaining using the Axio Vision program. Synaptic marker expression and MAPK activation were confirmed by Western blotting. Results: Images captured after MAP2 immunocytochemistry showed significant (p < 0.05) enhancement of post-ischemic neurite outgrowth with LED treatment once and twice a day. MAPK activation was enhanced by LED treatment in both OGD-exposed and normal cells. The levels of synaptic markers such as PSD 95, GAP 43, and synaptophysin significantly increased with LED treatment in both OGD-exposed and normal cells (p < 0.05). Conclusion: Our data suggest that LED treatment may promote synaptogenesis through MAPK activation and subsequently protect cell death in the in vitro stroke model.

Choi, Dong-Hee [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of) [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Department of Medical Science, Konkuk University School of Medicine, Seoul (Korea, Republic of); Lee, Kyoung-Hee; Kim, Ji-Hye; Kim, Moon Young [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of)] [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Lim, Jeong Hoon [Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of) [Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of); Rehabilitation Medicine, Division of Neurology, Department of Medicine, National University Hospital, National University Health System (Singapore); Lee, Jongmin, E-mail: leej@kuh.ac.kr [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of) [Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul (Korea, Republic of); Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of)

2012-06-01T23:59:59.000Z

274

AGR-1 Irradiation Test Final As-Run Report  

SciTech Connect (OSTI)

This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39 ?1025 n/m2 (E >0.18 MeV). Well say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below 10-7 with only one capsule significantly exceeding this value. A maximum R/B of around 2?10-7 was reached at the end of the irradiation in Capsule 5. Several shakedown issues were encountered and resolved during the first three cycles. These include the repair of minor gas line leaks; repair of faulty gas line valves; the need to position moisture monitors in regions of low radiation fields for proper functioning; the enforcement of proper on-line data storage and backup, the need to monitor thermocouple performance, correcting for detector spectral gain shift, and a change in the mass flow rate range of the neon flow controllers.

Blaise P. Collin

2012-06-01T23:59:59.000Z

275

Irradiation behavior of miniature experimental uranium silicide fuel plates  

SciTech Connect (OSTI)

Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk from, on the order of 7 x 10/sup 20/ cm/sup -3/, far short of the approximately 20 x 10/sup 20/ cm/sup -3/ goal established for the RERTR program. The purpose of the irradiation experiments on silicide fuels on the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix.

Hofman, G.L.; Neimark, L.A.; Mattas, R.F.

1983-01-01T23:59:59.000Z

276

Radiation Damage Study in Natural Zircon Using Neutrons Irradiation  

SciTech Connect (OSTI)

Changes of atomic displacements in crystalline structure of natural zircon (ZrSiO{sub 4}) can be studied by using neutron irradiation on the surface of zircon and compared the data from XRD measurements before and after irradiation. The results of neutron irradiation on natural zircon using Pneumatic Transfer System (PTS) at PUSPATI TRIGA Research Reactor in the Malaysian Nuclear Agency are discussed in this work. The reactor produces maximum thermal power output of 1 MWatt and the neutron flux of up to 1x10{sup 13} ncm{sup -2}s{sup -1}. From serial decay processes of uranium and thorium radionuclides in zircon crystalline structure, the emission of alpha particles can produce damage in terms of atomic displacements in zircon. Hence, zircon has been extensively studied as a possible candidate for immobilization of fission products and actinides.

Lwin, Maung Tin Moe; Amin, Yusoff Mohd.; Kassim, Hasan Abu [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mohamed, Abdul Aziz [Materials Technology Group, Industrial Technology Division, Malaysian Nuclear Agency Bangi, 43000 Kajang, Selangor Darul Ehsan (Malaysia); Karim, Julia Abdul [Reactor Physics Section, Nuclear Power Division, Malaysian Nuclear Agency Bangi, 43000 Kajang, Selangor Darul Ehsan (Malaysia)

2011-03-30T23:59:59.000Z

277

Neutron and gamma irradiation damage to organic materials.  

SciTech Connect (OSTI)

This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

White, Gregory Von, II; Bernstein, Robert

2012-04-01T23:59:59.000Z

278

On the Absorption and Redistribution of Energy in Irradiated Planets  

E-Print Network [OSTI]

We present a sequence of toy models for irradiated planet atmospheres, in which the effects of geometry and energy redistribution are modelled self-consistently. We use separate but coupled grey atmosphere models to treat the ingoing stellar irradiation and outgoing planetary reradiation. We investigate how observed quantities such as full phase secondary eclipses and orbital phase curves depend on various important parameters, such as the depth at which irradiation is absorbed and the depth at which energy is redistributed. We also compare our results to the more detailed radiative transfer models in the literature, in order to understand how those map onto the toy model parameter space. Such an approach can prove complementary to more detailed calculations, in that they demonstrate, in a simple way, how the solutions change depending on where, and how, energy redistribution occurs. As an example of the value of such models, we demonstrate how energy redistribution and temperature equilibration at moderate o...

Hansen, Brad

2008-01-01T23:59:59.000Z

279

[Grain boundary and interface kinetics during ion irradiation  

SciTech Connect (OSTI)

Proposed here is renewed support of a research program focused on interface motion and phase transformation during ion irradiation, with emphasis on elemental semiconductors. Broadly speaking, the aims of this program are to explore defect kinetics in amorphous and crystalline semiconductors, and to relate defect dynamics to interface motion and phase transformations. Over the last three years, we initiated a program under DOE support to explore crystallization and amorphization of elemental semiconductors under irradiation. This research has enabled new insights about the nature of defects in amorphous semiconductors and about microstructural evolution in the early stages of crystallization. In addition, we have demonstrated almost arbitrary control over the relative rates of crystal nucleation and crystal growth in silicon. As a result, the impinged grain microstructure of thin (100 nm) polycrystalline films crystallized under irradiation can be controlled with grain sizes ranging from a few nanometers to several micrometers, which may have interesting technological implications.

Atwater, H.A.

1991-12-31T23:59:59.000Z

280

(Grain boundary and interface kinetics during ion irradiation)  

SciTech Connect (OSTI)

Proposed here is renewed support of a research program focused on interface motion and phase transformation during ion irradiation, with emphasis on elemental semiconductors. Broadly speaking, the aims of this program are to explore defect kinetics in amorphous and crystalline semiconductors, and to relate defect dynamics to interface motion and phase transformations. Over the last three years, we initiated a program under DOE support to explore crystallization and amorphization of elemental semiconductors under irradiation. This research has enabled new insights about the nature of defects in amorphous semiconductors and about microstructural evolution in the early stages of crystallization. In addition, we have demonstrated almost arbitrary control over the relative rates of crystal nucleation and crystal growth in silicon. As a result, the impinged grain microstructure of thin (100 nm) polycrystalline films crystallized under irradiation can be controlled with grain sizes ranging from a few nanometers to several micrometers, which may have interesting technological implications.

Atwater, H.A.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

TEST RESULTS FROM GAMMA IRRADIATION OF ALUMINUM OXYHYDROXIDES  

SciTech Connect (OSTI)

Hydrated metal oxides or oxyhydroxides boehmite and gibbsite that can form on spent aluminum-clad nuclear fuel assemblies during in-core and post-discharge wet storage were exposed as granular powders to gamma irradiation in a {sup 60}Co irradiator in closed laboratory test vessels with air and with argon as separate cover gases. The results show that boehmite readily evolves hydrogen with exposure up to a dose of 1.8 x 10{sup 8} rad, the maximum tested, in both a full-dried and moist condition of the powder, whereas only a very small measurable quantity of hydrogen was generated from the granular powder of gibbsite. Specific information on the test setup, sample characteristics, sample preparation, irradiation, and gas analysis are described.

Fisher, D.; Westbrook, M.; Sindelar, R.

2012-02-01T23:59:59.000Z

282

RADIATION SENSITIVITY & PROCESSING OF DNA DAMAGE FOLLOWING LOW DOSES OF GAMMA-RAY ALPHA PARTICLES & HZE IRRADIATION OF NORMAL DSB REPAIR DEFICIENT CELLS  

SciTech Connect (OSTI)

Non-homologous end joining (NHEJ) predominates in the repair of DNA double strand breaks (DSB) over homologous recombination (HR). NHEJ occurs throughout the cell cycle whereas HR occurs in late S/G2 due to the requirement of a sister chromatid (Rothkamm et al, Mol Cell Biol 23 5706-15 [2003]). To date evidence obtained with DSB repair deficient cells using pulsed-field gel electrophoresis has revealed the major pathway throughout all phases of the cell cycle for processing high dose induced DSBs is NHEJ (Wang et al, Oncogene 20 2212-24 (2001); Pluth et al, Cancer Res. 61 2649-55 [2001]). These findings however were obtained at high doses when on average >> 20-30 DSBs are formed per cell. The contribution of the repair pathways (NHEJ and HR) induced in response to DNA damage during the various phases of the cell cycle may depend upon the dose (the level of initial DSBs) especially since low levels of DSBs are induced at low dose. To date, low dose studies using NHEJ and HR deficient mutants have not been carried out to address this important question with radiations of different quality. The work presented here leads us to suggest that HR plays a relatively minor role in the repair of radiation-induced prompt DSBs. SSBs lead to the induction of DSBs which are associated specifically with S-phase cells consistent with the idea that they are formed at stalled replication forks in which HR plays a major role in repair. That DNA-PKcs is in some way involved in the repair of the precursors to replication-induced DSB remains an open question. Persistent non-DSB oxidative damage also leads to an increase in RAD51 positive DSBs. Both simple and complex non-DSB DNA damage may therefore contribute to indirect DSBs induced by ionising radiation at replication forks.

O'Neil, Peter

2009-05-15T23:59:59.000Z

283

Frequency combs and platicons in optical microresonators with normal GVD  

E-Print Network [OSTI]

We predict the existence of a novel type of the flat-top dissipative solitonic pulses, "platicons", in microresonators with normal group velocity dispersion (GVD). We propose methods to generate these platicons from cw pump. Their duration may be altered significantly by tuning the pump frequency. The transformation of a discrete energy spectrum of dark solitons of the Lugiato-Lefever equation into a quasicontinuous spectrum of platicons is demonstrated. Generation of similar structures is also possible with bi-harmonic, phase/amplitude modulated pump or via laser injection locking.

Lobanov, V E; Kippenberg, T J; Gorodetsky, M L

2015-01-01T23:59:59.000Z

284

SRS reactor control rod cooling without normal forced convection cooling  

SciTech Connect (OSTI)

This paper describes an analytical study of the coolability of the control rods in the Savannah River site (SRS) K production reactor under conditions of loss of normal forced convection cooling. The study was performed as part of the overall safety analysis of the reactor supporting its restart. The analysis addresses the buoyancy-driven boiling flow over the control rods that occurs when forced cooling is lost. The objective of the study was to demonstrate that the control rods will remain cooled (i.e., no melting) at powers representative of those anticipated for restart of the reactor.

Smith, D.C. (SAIC, Albuquerque, NM (United States)); Easterling, T.C. (Westinghouse Savannah River Co., Aiken, SC (United States))

1993-01-01T23:59:59.000Z

285

Combinatorics and Boson normal ordering: A gentle introduction  

E-Print Network [OSTI]

We discuss a general combinatorial framework for operator ordering problems by applying it to the normal ordering of the powers and exponential of the boson number operator. The solution of the problem is given in terms of Bell and Stirling numbers enumerating partitions of a set. This framework reveals several inherent relations between ordering problems and combinatorial objects, and displays the analytical background to Wick's theorem. The methodology can be straightforwardly generalized from the simple example given herein to a wide class of operators.

Blasiak, P; Penson, K A; Solomon, A I; Duchamp, G H E

2007-01-01T23:59:59.000Z

286

Combinatorics and Boson normal ordering: A gentle introduction  

E-Print Network [OSTI]

We discuss a general combinatorial framework for operator ordering problems by applying it to the normal ordering of the powers and exponential of the boson number operator. The solution of the problem is given in terms of Bell and Stirling numbers enumerating partitions of a set. This framework reveals several inherent relations between ordering problems and combinatorial objects, and displays the analytical background to Wick's theorem. The methodology can be straightforwardly generalized from the simple example given herein to a wide class of operators.

P. Blasiak; A. Horzela; K. A. Penson; A. I. Solomon; G. H. E. Duchamp

2007-04-24T23:59:59.000Z

287

Fitting Parton Distribution Data with Multiplicative Normalization Uncertainties  

E-Print Network [OSTI]

We consider the generic problem of performing a global fit to many independent data sets each with a different overall multiplicative normalization uncertainty. We show that the methods in common use to treat multiplicative uncertainties lead to systematic biases. We develop a method which is unbiased, based on a self--consistent iterative procedure. We demonstrate the use of this method by applying it to the determination of parton distribution functions with the NNPDF methodology, which uses a Monte Carlo method for uncertainty estimation.

The NNPDF Collaboration; Richard D. Ball; Luigi Del Debbio; Stefano Forte; Alberto Guffanti; Jose I. Latorre; Juan Rojo; Maria Ubiali

2010-06-01T23:59:59.000Z

288

Asymptotic normalization coefficients for B-10->Be-9+p  

E-Print Network [OSTI]

started the Asymptotic normalization coefficient A. M. Mukhamedzhanov, H. L. Clark, C. A. Gagliardi, Y.-W Cyclotron Institute, Texas A&M University V. Burjan, J. Cejpek Institute for Nuclear Physics, Czech Academ F. Carstoi Institute of Atomic...! the 7Be(p ,g)8B radiative capture cross section at ver astrophysics. @S0556-2813~97!02109-2# PACS number~s!: 25.70.Hi, 21.10.Jx, 24.10.Ht, 25.70.B I. INTRODUCTION Despite considerable experimental and theoretical progress in determining...

Mukhamedzhanov, AM; Clark, HL; Gagliardi, Carl A.; Lui, YW; Trache, L.; Tribble, Robert E.; Xu, HM; Zhou, XG; Burjan, V.; Cejpek, J.; Kroha, V.; Carstoiu, F.

1997-01-01T23:59:59.000Z

289

High-accuracy measurements of the normal specular reflectance  

SciTech Connect (OSTI)

The French Laser Megajoule (LMJ) is designed and constructed by the French Commissariata l'Energie Atomique (CEA). Its amplifying section needs highly reflective multilayer mirrors for the flash lamps. To monitor and improve the coating process, the reflectors have to be characterized to high accuracy. The described spectrophotometer is designed to measure normal specular reflectance with high repeatability by using a small spot size of 100 {mu}m. Results are compared with ellipsometric measurements. The instrument can also perform spatial characterization to detect coating nonuniformity.

Voarino, Philippe; Piombini, Herve; Sabary, Frederic; Marteau, Daniel; Dubard, Jimmy; Hameury, Jacques; Filtz, Jean Remy

2008-05-01T23:59:59.000Z

290

Termination of a Major Normal Fault | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:TaosISGANAttribution(Alabama)Tennessee/WindTequesta,Normal

291

Respiration Induced Heart Motion and Indications of Gated Delivery for Left-Sided Breast Irradiation  

SciTech Connect (OSTI)

Purpose: To investigate respiration-induced heart motion for left-sided breast irradiation using a four-dimensional computed tomography (4DCT) technique and to determine novel indications to assess heart motion and identify breast patients who may benefit from a gated treatment. Methods and Materials: Images of 4DCT acquired during free breathing for 20 left-sided breast cancer patients, who underwent whole breast irradiation with or without regional nodal irradiation, were analyzed retrospectively. Dose distributions were reconstructed in the phases of 0%, 20%, and 50%. The intrafractional heart displacement was measured in three selected transverse CT slices using D{sub LAD} (the distance from left ascending aorta to a fixed line [connecting middle point of sternum and the body] drawn on each slice) and maximum heart depth (MHD, the distance of the forefront of the heart to the line). Linear regression analysis was used to correlate these indices with mean heart dose and heart dose volume at different breathing phases. Results: Respiration-induced heart displacement resulted in observable variations in dose delivered to the heart. During a normal free-breathing cycle, heart-induced motion D{sub LAD} and MHD changed up to 9 and 11 mm respectively, resulting in up to 38% and 39% increases of mean doses and V{sub 25.2} for the heart. MHD and D{sub LAD} were positively correlated with mean heart dose and heart dose volume. Respiratory-adapted gated treatment may better spare heart and ipsilateral-lung compared with the conventional non-gated plan in a subset of patients with large D{sub LAD} or MHD variations. Conclusion: Proposed indices offer novel assessment of heart displacement based on 4DCT images. MHD and D{sub LAD} can be used independently or jointly as selection criteria for respiratory gating procedure before treatment planning. Patients with great intrafractional MHD variations or tumor(s) close to the diaphragm may particularly benefit from the gated treatment.

Qi, X. Sharon, E-mail: xiangrong.qi@ucdenver.edu [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Hu, Angela [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Wang Kai [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Newman, Francis [Department of Radiation Oncology, University of Colorado Denver, Aurora, CO (United States); Crosby, Marcus; Hu Bin; White, Julia; Li, X. Allen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States)

2012-04-01T23:59:59.000Z

292

Physiological Interaction of Heart and Lung in Thoracic Irradiation  

SciTech Connect (OSTI)

Introduction: The risk of early radiation-induced lung toxicity (RILT) limits the dose and efficacy of radiation therapy of thoracic tumors. In addition to lung dose, coirradiation of the heart is a known risk factor in the development RILT. The aim of this study was to identify the underlying physiology of the interaction between lung and heart in thoracic irradiation. Methods and Materials: Rat hearts, lungs, or both were irradiated to 20 Gy using high-precision proton beams. Cardiopulmonary performance was assessed using breathing rate measurements and F{sup 18}-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG-PET) scans biweekly and left- and right-sided cardiac hemodynamic measurements and histopathology analysis at 8 weeks postirradiation. Results: Two to 12 weeks after heart irradiation, a pronounced defect in the uptake of {sup 18}F-FDG in the left ventricle (LV) was observed. At 8 weeks postirradiation, this coincided with LV perivascular fibrosis, an increase in LV end-diastolic pressure, and pulmonary edema in the shielded lungs. Lung irradiation alone not only increased pulmonary artery pressure and perivascular edema but also induced an increased LV relaxation time. Combined irradiation of lung and heart induced pronounced increases in LV end-diastolic pressure and relaxation time, in addition to an increase in right ventricle end-diastolic pressure, indicative of biventricular diastolic dysfunction. Moreover, enhanced pulmonary edema, inflammation and fibrosis were also observed. Conclusions: Both lung and heart irradiation cause cardiac and pulmonary toxicity via different mechanisms. Thus, when combined, the loss of cardiopulmonary performance is intensified further, explaining the deleterious effects of heart and lung coirradiation. Our findings show for the first time the physiological mechanism underlying the development of a multiorgan complication, RILT. Reduction of dose to either of these organs offers new opportunities to improve radiation therapy treatment of thoracic tumors, potentially facilitating increased treatment doses and tumor control.

Ghobadi, Ghazaleh; Veen, Sonja van der [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands) [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Bartelds, Beatrijs [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Boer, Rudolf A. de [Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Dickinson, Michael G. [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Jong, Johan R. de [Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Faber, Hette; Niemantsverdriet, Maarten [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands) [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Brandenburg, Sytze [Kernfysisch Versneller Instituut, University of Groningen, Groningen (Netherlands)] [Kernfysisch Versneller Instituut, University of Groningen, Groningen (Netherlands); Berger, Rolf M.F. [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)] [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands) [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Luijk, Peter van, E-mail: p.van.luijk@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

2012-12-01T23:59:59.000Z

293

Threshold irradiation dose for amorphization of silicon carbide  

SciTech Connect (OSTI)

The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface or strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56eV. This model successfully explains the difference in the temperature dependent amorphization behavior of SiC irradiated with 0.56 MeV Si{sup +} at 1 x 10{sup -3} dpa/s and with fission neutrons irradiated at 1 x 10{sup -6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340{+-}10K.

Snead, L.L.; Zinkle, S.J.

1997-03-01T23:59:59.000Z

294

Structural and luminescent properties of electron-irradiated silicon  

SciTech Connect (OSTI)

Structural defects induced by electron irradiation of p-Cz-Si wafers were identified. The influence of the annealing conditions in a chlorine-containing atmosphere on the structural and luminescent properties of the samples was examined. Light-emitting diodes based on electron-irradiated and high-temperature-annealed wafers were fabricated by a vapour-phase epitaxy technique and their luminescence properties were studied. A high-intensity dislocation-related D1 line was observed at 1.6 ?m in the room-temperature electroluminescence spectrum.

Sobolev, N. A.; Loshachenko, A. S. [Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia and Fok Institute of Physics, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Aruev, P. N.; Kalyadin, A. E.; Shek, E. I.; Zabrodskiy, V. V. [Ioffe Physical-Technical Institute, 194021 St. Petersburg (Russian Federation); Shtel'makh, K. F. [Ioffe Physical-Technical Institute, 194021 St. Petersburg, Russia and St. Petersburg State Technical University, 195251 St. Petersburg (Russian Federation); Vdovin, V. I. [Rzhanov Institute of Semiconductor Physics, 630090 Novosibirsk (Russian Federation); Xiang, Luelue; Yang, Deren [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, 310027 Hangzhou (China)

2014-02-21T23:59:59.000Z

295

Fission product release from irradiated LWR fuel under accident conditions  

SciTech Connect (OSTI)

Fission product release from irradiated LWR fuel is being studied by heating fuel rod segments in flowing steam and an inert carrier gas to simulate accident conditions. Fuels with a range of irradiation histories are being subjected to several steam flow rates over a wide range of temperatures. Fission product release during each test is measured by gamma spectroscopy and by detailed examination of the collection apparatus after the test has been completed. These release results are complemented by a detailed posttest examination of samples of the fuel rod segment. Results of release measurements and fuel rod characterizations for tests at 1400 through 2000/sup 0/C are presented in this paper.

Strain, R.V.; Sanecki, J.E.; Osborne, M.F.

1984-01-01T23:59:59.000Z

296

Enhanced electrochemical etching of ion irradiated silicon by localized amorphization  

SciTech Connect (OSTI)

A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

Dang, Z. Y.; Breese, M. B. H. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore Singapore 117542 (Singapore); Lin, Y.; Tok, E. S. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Vittone, E. [Physics Department, NIS Excellence Centre and CNISM, University of Torino, via Pietro Giuria 1, 10125 Torino (Italy)

2014-05-12T23:59:59.000Z

297

Thermal response of photovoltaic cell to laser beam irradiation  

E-Print Network [OSTI]

This paper firstly presents the concept of using dual laser beam to irradiate the photovoltaic cell, so as to investigate the temperature dependency of the efficiency of long distance energy transmission. Next, the model on the multiple reflection and absorption of any monochromatic light in multilayer structure has been established, and the heat generation in photovoltaic cell has been interpreted in this work. Then, the finite element model has been set up to calculate the temperature of photovoltaic cell subjected to laser irradiation. Finally, the effect of temperature elevation on the efficiency and reliability of photovoltaic cell has been discussed to provide theoretical references for designing the light-electricity conversion system.

Yuan, Yu-Chen

2014-01-01T23:59:59.000Z

298

The effects of gamma irradiation on Serratia marcescens  

E-Print Network [OSTI]

that there was little difference in the five strains. This suggests that growth rates do not alter the survival curves. The effects of irradiation on pigmentation ability were studied using the wild type, nims, and the more-resistant R-25. Pyrex tubes, 16 x 150 mm...). 5. D. L. Dewey, The X-ray sensitivity of Serratia marcescens. Radiation Res. 19, 64-87 (1963). 6. D. L. Dewey, Effect of irradiation on the ability of Pseudonrtnas to synthesize two inducible enzymes. Radiation Res. 21, 367-75 (1964). 7. F...

Bartlett, William Thomas

1969-01-01T23:59:59.000Z

299

Properties of solar gravity mode signals in total irradiance observations  

SciTech Connect (OSTI)

Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs.

Kroll, R.J.; Chen, J.; Hill, H.A.

1988-01-01T23:59:59.000Z

300

Light water reactor mixed-oxide fuel irradiation experiment  

SciTech Connect (OSTI)

The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding.

Hodge, S.A.; Cowell, B.S. [Oak Ridge National Lab., TN (United States); Chang, G.S.; Ryskamp, J.M. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface ReactionsIrradiation Effects onIrradiation

302

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface ReactionsIrradiation EffectsIrradiation

303

SLIGHTLY IRRADIATED FUEL (SIF) INTERIM DISPOSITION PROJECT  

SciTech Connect (OSTI)

CH2M HILL Plateau Remediation Company (CH2M HILL PRC) is proud to submit the Slightly Irradiated Fuel (SIF) Interim Disposition Project for consideration by the Project Management Institute as Project of the Year for 2010. The SIF Project was a set of six interrelated sub-projects that delivered unique stand-alone outcomes, which, when integrated, provided a comprehensive and compliant system for storing high risk special nuclear materials. The scope of the six sub-projects included the design, construction, testing, and turnover of the facilities and equipment, which would provide safe, secure, and compliant Special Nuclear Material (SNM) storage capabilities for the SIF material. The project encompassed a broad range of activities, including the following: Five buildings/structures removed, relocated, or built; Two buildings renovated; Structural barriers, fencing, and heavy gates installed; New roadways and parking lots built; Multiple detection and assessment systems installed; New and expanded communication systems developed; Multimedia recording devices added; and A new control room to monitor all materials and systems built. Project challenges were numerous and included the following: An aggressive 17-month schedule to support the high-profile Plutonium Finishing Plant (PFP) decommissioning; Company/contractor changeovers that affected each and every project team member; Project requirements that continually evolved during design and construction due to the performance- and outcome-based nature ofthe security objectives; and Restrictions imposed on all communications due to the sensitive nature of the projects In spite of the significant challenges, the project was delivered on schedule and $2 million under budget, which became a special source of pride that bonded the team. For years, the SIF had been stored at the central Hanford PFP. Because of the weapons-grade piutonium produced and stored there, the PFP had some of the tightest security on the Hanford nuclear reservation. Workers had to pass through metal detectors when they arrived at the plant and materials leaving the plant had to be scanned for security reasons. Whereas other high-security nuclear materials were shipped from the PFP to Savannah River, S.C. as part ofa Department of Energy (DOE) program to consolidate weapons-grade plutonium, it was determined that the SIF should remain onsite pending disposition to a national repository. Nevertheless, the SIF still requires a high level of security that the PFP complex has always provided. With the 60-year PFP mission of producing and storing plutonium concluded, the environmental cleanup plans for Hanford call for the demolition of the 63-building PFP complex. Consequently, if the SIF remained at PFP it not only would have interfered with the environmental cleanup plans, but would have required $100 million in facility upgrades to meet increased national security requirements imposed after the 9/11 terrorist attacks. A new smaller and more cost-effective area was needed to store this material, which led to the SIF Project. Once the SIF project was successfully completed and the SIF was safely removed from PFP, the existing Protected Area at PFP could be removed, and demolition could proceed more quickly without being encumbered by restrictive security requirements that an active Protected Area requires. The lightened PFP security level brought by safely removing and storing the SIF would also yield lowered costs for deactivation and demolition, as well as reduce overall life-cycle costs.

NORTON SH

2010-02-23T23:59:59.000Z

304

Verification of TG-61 dose for synchrotron-produced monochromatic x-ray beams using fluence-normalized MCNP5 calculations  

SciTech Connect (OSTI)

Purpose: Ion chamber dosimetry is being used to calibrate dose for cell irradiations designed to investigate photoactivated Auger electron therapy at the Louisiana State University Center for Advanced Microstructures and Devices (CAMD) synchrotron facility. This study performed a dosimetry intercomparison for synchrotron-produced monochromatic x-ray beams at 25 and 35 keV. Ion chamber depth-dose measurements in a polymethylmethacrylate (PMMA) phantom were compared with the product of MCNP5 Monte Carlo calculations of dose per fluence and measured incident fluence. Methods: Monochromatic beams of 25 and 35 keV were generated on the tomography beamline at CAMD. A cylindrical, air-equivalent ion chamber was used to measure the ionization created in a 10 Multiplication-Sign 10 Multiplication-Sign 10-cm{sup 3} PMMA phantom for depths from 0.6 to 7.7 cm. The American Association of Physicists in Medicine TG-61 protocol was applied to convert measured ionization into dose. Photon fluence was determined using a NaI detector to make scattering measurements of the beam from a thin polyethylene target at angles 30 Degree-Sign -60 Degree-Sign . Differential Compton and Rayleigh scattering cross sections obtained from xraylib, an ANSI C library for x-ray-matter interactions, were applied to derive the incident fluence. MCNP5 simulations of the irradiation geometry provided the dose deposition per photon fluence as a function of depth in the phantom. Results: At 25 keV the fluence-normalized MCNP5 dose overestimated the ion-chamber measured dose by an average of 7.2 {+-} 3.0%-2.1 {+-} 3.0% for PMMA depths from 0.6 to 7.7 cm, respectively. At 35 keV the fluence-normalized MCNP5 dose underestimated the ion-chamber measured dose by an average of 1.0 {+-} 3.4%-2.5 {+-} 3.4%, respectively. Conclusions: These results showed that TG-61 ion chamber dosimetry, used to calibrate dose output for cell irradiations, agreed with fluence-normalized MCNP5 calculations to within approximately 7% and 3% at 25 and 35 keV, respectively.

Brown, Thomas A. D.; Hogstrom, Kenneth R.; Alvarez, Diane; Matthews, Kenneth L. II; Ham, Kyungmin [Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809 and Department of Physics and Astronomy, Louisiana State University and A and M College, 202 Nicholson Hall, Baton Rouge, Louisiana 70803 (United States); Department of Physics and Astronomy, Louisiana State University and A and M College, 202 Nicholson Hall, Baton Rouge, Louisiana 70803 (United States); Center for Advanced Microstructures and Devices, Louisiana State University and A and M College, 6980 Jefferson Highway, Baton Rouge, Louisiana 70806 (United States)

2012-12-15T23:59:59.000Z

305

A hybrid electron and photon IMRT planning technique that lowers normal tissue integral patient dose using standard hardware  

SciTech Connect (OSTI)

Purpose: To present a mixed electron and photon IMRT planning technique using electron beams with an energy range of 6-22 MeV and standard hardware that minimizes integral dose to patients for targets as deep as 7.5 cm. Methods: Ten brain cases, two lung, a thyroid, an abdominal, and a parotid case were planned using two planning techniques: a photon-only IMRT (IMRT) versus a mixed modality treatment (E + IMRT) that includes an enface electron beam and a photon IMRT portion that ensures a uniform target coverage. The electron beam is delivered using a regular cutout placed in an electron cone. The electron energy was chosen to provide a good trade-off between minimizing integral dose and generating a uniform, deliverable plan. The authors choose electron energies that cover the deepest part of PTV with the 65%-70% isodose line. The normal tissue integral dose, the dose for ring structures around the PTV, and the volumes of the 75%, 50%, and 25% isosurfaces were used to compare the dose distributions generated by the two planning techniques. Results: The normal tissue integral dose was lowered by about 20% by the E + IMRT plans compared to the photon-only IMRT ones for most studied cases. With the exception of lungs, the dose reduction associated to the E + IMRT plans was more pronounced further away from the target. The average dose ratio delivered to the 0-2 cm and the 2-4 cm ring structures for brain patients for the two planning techniques were 89.6% and 70.8%, respectively. The enhanced dose sparing away from the target for the brain patients can also be observed in the ratio of the 75%, 50%, and 25% isodose line volumes for the two techniques, which decreases from 85.5% to 72.6% and further to 65.1%, respectively. For lungs, the lateral electron beams used in the E + IMRT plans were perpendicular to the mostly anterior/posterior photon beams, generating much more conformal plans. Conclusions: The authors proved that even using the existing electron delivery hardware, a mixed electron/photon planning technique (E + IMRT) can decrease the normal tissue integral dose compared to a photon-only IMRT plan. Different planning approaches can be enabled by the use of an electron beam directed toward organs at risk distal to the target, which are still spared due the rapid dose fall-off of the electron beam. Examples of such cases are the lateral electron beams in the thoracic region that do not irradiate the heart and contralateral lung, electron beams pointed toward kidneys in the abdominal region, or beams treating brain lesions pointed toward the brainstem or optical apparatus. For brain, electron vertex beams can also be used without irradiating the whole body. Since radiation retreatments become more and more common, minimizing the normal tissue integral dose and the dose delivered to tissues surrounding the target, as enabled by E + IMRT type techniques, should receive more attention.

Rosca, Florin [Department of Radiation Oncology, Massachusetts General Hospital, Danvers, Massachusetts 01923 (United States)

2012-06-15T23:59:59.000Z

306

Radiochemical Transformation of High Pressure Methane under Gamma, Electron, and Neutron Irradiation  

E-Print Network [OSTI]

The chemical effects of irradiation on high pressure methane and noble gas mixtures were investigated using gamma, electron beam, and neutron irradiation sources. The gamma source used was the La-140 source from the Nuclear Science Center (NSC...

Clemens, Jeffrey Tyler

2014-05-01T23:59:59.000Z

307

Etch-free Formation of Porous Silicon by High-energy Ion Irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Etch-free Formation of Porous Silicon by High-energy Ion Irradiation. Etch-free Formation of Porous Silicon by High-energy Ion Irradiation. Abstract: In this study, porous silicon...

308

U.S. consumers' acceptance and willingness to buy irradiated food  

E-Print Network [OSTI]

in their decisions regarding irradiated foods. Education programs seem to have positive effects on shaping consumer opinion about irradiation, which can improve the safety of food products. Thus, the results of this study provide useful information required...

Poghosyan, Arsen Vahagn

2002-01-01T23:59:59.000Z

309

Radiosensitization Strategies for Enhanced E-beam Irradiation Treatment of Fresh Produce  

E-Print Network [OSTI]

necessary to develop treatments that will reduce their prevalence and numbers on fresh produce. Irradiation is a penetrating nonthermal treatment that effectively eliminates bacteria. Irradiated baby spinach leaves up to 1.0 kGy showed negligible (P>0...

Gomes, Carmen

2011-08-08T23:59:59.000Z

310

Conjugated linoleic acid reduces lipid oxidation in irradiated, cooked ground beef patties  

E-Print Network [OSTI]

This study was conducted to examine the antioxidative effect of conjugated linoleic acid (CLA) in irradiated, cooked ground beef patties. The hypothesis was that CLA would be retained during irradiation and would reduce lipid oxidation...

Chae, Sung Hee

2007-09-17T23:59:59.000Z

311

Electron Irradiation Induced Changes of the Electrical Transport Properties of Graphene  

E-Print Network [OSTI]

. In addition, the effect of electron irradiation on a PMMA (Poly Methyl Methacrylate)/Graphene bilayer was studied. We observed a deterioration of the electrical transport properties of a graphene FET. Prior to electron irradiation, we observed that the PMMA...

Woo, Sung Oh

2014-08-06T23:59:59.000Z

312

E-Print Network 3.0 - alleviates irradiation-induced brain Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

irradiation-induced brain Search Powered by Explorit Topic List Advanced Search Sample search results for: alleviates irradiation-induced brain Page: << < 1 2 3 4 5 > >> 1 ORIGINAL...

313

Response of nanostructured ferritic alloys to high-dose heavy ion irradiation  

SciTech Connect (OSTI)

A latest-generation aberration-corrected scanning/transmission electron microscope (STEM) is used to study heavy-ion-irradiated nanostructured ferritic alloys (NFAs). Results are presented for STEM X-ray mapping of NFA 14YWT irradiated with 10 MeV Pt to 16 or 160 dpa at -100C and 750C, as well as pre-irradiation reference material. Irradiation at -100C results in ballistic destruction of the beneficial microstructural features present in the pre-irradiated reference material, such as Ti-Y-O nanoclusters (NCs) and grain boundary (GB) segregation. Irradiation at 750C retains these beneficial features, but indicates some coarsening of the NCs, diffusion of Al to the NCs, and a reduction of the Cr-W GB segregation (or solute excess) content. Ion irradiation combined with the latest-generation STEM hardware allows for rapid screening of fusion candidate materials and improved understanding of irradiation-induced microstructural changes in NFAs.

Parish, Chad M.; White, Ryan M.; LeBeau, James M.; Miller, Michael K.

2014-02-01T23:59:59.000Z

314

E-Print Network 3.0 - animal irradiation preliminary Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Centre de mathmatiques Collection: Mathematics 97 Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet X-rays and 60 Summary: 1 Irradiation of Nd-Fe-B...

315

E-Print Network 3.0 - accelerator irradiation issledovaniya Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Group Collection: Physics 66 Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet X-rays and 60 Summary: of 260 Mrad was used to irradiate Nd-Fe-B sample magnets with...

316

Ion irradiation of Fe-Fe oxide core-shell nanocluster films:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

irradiation of Fe-Fe oxide core-shell nanocluster films: Effect of interface on stability of magnetic properties. Ion irradiation of Fe-Fe oxide core-shell nanocluster films:...

317

Mutation Research 568 (2004) 4148 Detection of chromosomal instability in -irradiated  

E-Print Network [OSTI]

in the progeny at subsequent generations (genomic instability) and in non-irradiated neighbors of irradiated the link between the radiation-induced phenomena of genomic instability and the bystander effect. © 2004

318

E-Print Network 3.0 - argon ion irradiation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mathmatiques Collection: Mathematics 3 Straightening Suspended Single Walled Carbon Nanotubes by Ion Irradiation Summary: Straightening Suspended Single Walled Carbon Nanotubes...

319

Irradiation Testing of Blanket Materials at the HFR Petten with On Line Tritium Monitoring  

SciTech Connect (OSTI)

Irradiation experiments are performed in support of fusion blanket technology development. These comprise ceramic solid breeder materials, and a liquid Lithium Lead alloy, as well as blanket subassemblies and components. Experimental facilities at the HFR to study tritium release, permeation characteristics, and neutron irradiation performance, have recently been extended. This paper gives an overview on the tritium breeding materials irradiation programme and describes the facilities required for irradiation testing and on-line tritium measurement.

Magielsen, A.J.; Laan, J.G. van der; Hegeman, J.B.J.; Stijkel, M.P.; Ooijevaar, M.A.G

2005-07-15T23:59:59.000Z

320

SURVEILLANCE OF PHOTOVOLTAIC SOLAR ENERGY SYSTEMS USING METEOSAT DERIVED IRRADIANCES  

E-Print Network [OSTI]

SURVEILLANCE OF PHOTOVOLTAIC SOLAR ENERGY SYSTEMS USING METEOSAT DERIVED IRRADIANCES Annette Hammer.Heinemann@uni-oldenburg.de 2Enecolo AG, Lindhof 235, CH-8617 M¨onchaltorf 3Fraunhofer Insitute for Solar Energy Systems Wiemken3, Hans Georg Beyer4, Vincent van Dijk5, Jethro Betcke5 1Dept. of Energy and Semiconductor Research

Heinemann, Detlev

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS  

E-Print Network [OSTI]

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg.girodo@uni-oldenburg.de ABSTRACT Solar energy is expected to contribute major shares of the future global energy supply. Due to its and solar energy conversion processes has to account for this behaviour in respective operating strategies

Heinemann, Detlev

322

The modelling of irradiation embrittlement in submerged-arc welds  

SciTech Connect (OSTI)

Until very recently, the irradiation embrittlement behavior of submerged-arc welds has been interpreted in terms of two mechanisms, namely a matrix damage component and an additional component due to the irradiation-enhanced production of copper-rich precipitates. However, some of the weld specimens from a recent accelerated re-irradiation experiment have shown high Charpy shifts which exceeded the values expected from the measured shift in yield stress. Microstructural examination has revealed the occurrence of intergranular fracture (IGF) in these specimens, accompanied by grain boundary segregation of phosphorus. Theoretical models were developed to predict the parametric dependence of irradiation-enhanced phosphorus segregation on experimental variables. Using these parametric forms, along with the concept of a critical level of segregation for the onset of IGF instead of cleavage, a three mechanism trend curve has been developed. The form of this trend curve, taking into account IGF as well as matrix and copper embrittlement, is thus mechanistically based. The constants in the equation, however, are obtained by a statistical fit to the actual Charpy shift database.

Bolton, C.J.; Buswell, J.T.; Jones, R.B.; Moskovic, R.; Priest, R.H. [Nuclear Electric plc, Berkeley (United Kingdom). Berkeley Technology Centre

1996-12-31T23:59:59.000Z

323

Simultaneous Irradiation and Imaging of Blood Vessels During Pulsed  

E-Print Network [OSTI]

energy produced hemorrhage. In larger vessels, coagula often were attached to the superficial vessel wall; port wine stains INTRODUCTION Previous studies examining the effect of la- ser irradiation on cutaneous preparation. The short pulse duration illus- trated an extreme; energy was deposited quickly Contract grant

Barton, Jennifer K.

324

Development of a chemical dosimeter for electron beam food irradiation  

E-Print Network [OSTI]

uniform irradiation treatment on apple-phantoms (a complex shaped target) and GAFCHROMIC® HD-810 films using electron beams from (1) a 2 MeV Van de Graaff (VDG) accelerator, (2) a 10 MeV Linear Accelerator (LINAC), and (3) X-rays from a 5 MeV LINAC...

Rivadeneira, Ramiro Geovanny

2006-08-16T23:59:59.000Z

325

RETHINKING SATELLITE BASED SOLAR IRRADIANCE MODELLING R. W. Mueller  

E-Print Network [OSTI]

of Oldenburg, D-26111 Oldenburg; 2-University of Bergen; 3-Fraunhofer Institute for Solar Energy Systems; 4-German Aerospace Center; 5-Ecole des Mines de Paris ABSTRACT Accurate solar irradiance data are not only necessary for an efficient planning and operation of solar energy systems. Within the European project

Heinemann, Detlev

326

adt materials irradiated: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

adt materials irradiated First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Umsetzung von ADTs ADT in...

327

Large Animal Irradiation J. Daniel Bourland, PhD  

E-Print Network [OSTI]

Departments of Physics and Biomedical Engineering Wake Forest School of Medicine Winston-Salem, North Carolina · Summary #12;Irradiation Issues same as for humans · Animal size (nominal L x W x H) · Photon energy (to Beam (high energy) Orthovoltage or Diagnostic X rays (low energy) #12;Isodose Curves Representing

328

Lymphocyte depletion in peripheral blood of gamma irradiated rats  

E-Print Network [OSTI]

38. F. H. Hager, A study of the effect of partial-body irradiation on the early reduction of circulating lymphocytes. (Thesis) Texas AKM University, 1969. 39. G. D'Angelo and M. Lacombe, A practical diluent for electz onic white cell counts. Amer...

Goldin, Eric Michael

1972-01-01T23:59:59.000Z

329

Spatial Pattern Formation in Fused Silica Under UV Irradiation  

E-Print Network [OSTI]

Spatial Pattern Formation in Fused Silica Under UV Irradiation Problem Presenter Leslie Button lenses gradually degrades and ultimately damages these optical components. Corning is a global supplier of optical and ceramic materials across various industries and is particularly interested in this damage

Edwards, David A.

330

Vacuum aperture isolator for retroreflection from laser-irradiated target  

DOE Patents [OSTI]

The disclosure is directed to a vacuum aperture isolator for retroreflection of a laser-irradiated target. Within a vacuum chamber are disposed a beam focusing element, a disc having an aperture and a recollimating element. The edge of the focused beam impinges on the edge of the aperture to produce a plasma which refracts any retroreflected light from the laser's target.

Benjamin, Robert F. (Los Alamos, NM); Mitchell, Kenneth B. (Los Alamos, NM)

1980-01-01T23:59:59.000Z

331

The AGR-1 Irradiation -Objectives, Success Criteria and Risk Management  

SciTech Connect (OSTI)

The AGR-1 experiment being conducted by the US Department of Energy Advanced Gas Reactor Fuel Development and Qualification Program (AGR fuel program) will irradiate TRISO-coated particle fuel in compacts under conditions representative of a Very High Temperature Reactor (VHTR) core. The anticipated fuel performance requirements of a prismatic core VHTR significantly exceed established TRISO-coated particle fuel capability in terms of burnup, temperature and fast fluence. AGR-1 is the first in a planned series of eight irradiations leading to the qualification of low enriched uranium coated particle fuel compacts for service in a VHTR, as identified in an overall Technical Program Plan produced at the beginning of the program . The AGR-1 experiment is scheduled for insertion in the Advanced Test Reactor (ATR) in the first quarter of fiscal year 2007 and to be irradiated for a period of up to approximately two and a half years. The irradiation rig, designated a "test train" is designed to provide six independently controlled (for temperature) and monitored (for fission product gas release) capsules containing fuel samples.

James Kendall

2006-06-01T23:59:59.000Z

332

Proton Irradiation Damage Assessment of Carbon Reinforced Composites  

E-Print Network [OSTI]

Proton Irradiation Damage Assessment of Carbon Reinforced Composites: 2-D & 3-D Weaved Structures carbon-carbon composite ATJ Graphite 3D CC composite AGS Beam-on-Target tests show clearly that carbon composites are better absorbers of thermo- mechanical shock. This is attributed to the very low coeff

McDonald, Kirk

333

Post Irradiation Capabilities at the Idaho National Laboratory  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

Schulthess, J.L.

2011-08-01T23:59:59.000Z

334

Post Irradiation Capabilities at the Idaho National Laboratory  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

Schulthess, J.L.; Robert D. Mariani; Rory Kennedy; Doug Toomer

2011-08-01T23:59:59.000Z

335

Compressive Strength of Gamma-Irradiated Polymer Concrete  

E-Print Network [OSTI]

Compressive Strength of Gamma-Irradiated Polymer Concrete Gonzalo Marti´nez-Barrera,1,2 Uriel concrete (PC) was developed by using differ- ent concentrations of silica sand as aggregate of Plastics Engineers INTRODUCTION Polymer concrete (PC) is a particulate composite where thermoset resins

North Texas, University of

336

atomic hydrogen irradiation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrogen irradiation First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Synergistic Formation of Radicals...

337

Thermoelastic Generation of Ultrasound by Line-Focused Laser Irradiation  

E-Print Network [OSTI]

Thermoelastic Generation of Ultrasound by Line-Focused Laser Irradiation Irene Arias and Jan D 60208, USA Abstract A two-dimensional theoretical model for the field generated in the thermoelas- tic for the model. Some representative results are presented to illustrate the generated field and provide insight

Huerta, Antonio

338

Hard Sphere Dynamics for Normal and Granular Fluids  

E-Print Network [OSTI]

A fluid of N smooth, hard spheres is considered as a model for normal (elastic collisions) and granular (inelastic collisions) fluids. The potential energy is discontinuous for hard spheres so the pairwise forces are singular and the usual forms of Newtonian and Hamiltonian mechanics do not apply. Nevertheless, particle trajectories in the N particle phase space are well defined and the generators for these trajectories can be identified. The first part of this presentation is a review of the generators for the dynamics of observables and probability densities. The new results presented in the second part refer to applications of these generators to the Liouville dynamics for granular fluids. A set of eigenvalues and eigenfunctions of the generator for this Liouville dynamics is identified in a special "stationary representation". This provides a class of exact solutions to the Liouville equation that are closely related to hydrodynamics for granular fluids.

James W. Dufty; Aparna Baskaran

2005-03-08T23:59:59.000Z

339

Tunneling from super- to normal-deformed minima in nuclei.  

SciTech Connect (OSTI)

An excited minimum, or false vacuum, gives rise to a highly elongated superdeformed (SD) nucleus. A brief review of superdeformation is given, with emphasis on the tunneling from the false to the true vacuum, which occurs in the feeding and decay of SD bands. During the feeding process the tunneling is between hot states, while in the decay it is from a cold to a hot state. The {gamma} spectra connecting SD and normal-deformed (ND) states provide information on several physics issues: the decay mechanism; the spin/parity quantum numbers, energies and microscopic structures of SD bands; the origin of identical SD bands; the quenching of pairing with excitation energy; and the chaoticity of excited ND states at 2.5-5 MeV. Other examples of tunneling in nuclei, which are briefly described, include the possible role of tunneling in {Delta}I = 4 bifurcation in SD bands, sub-barrier fusion and proton emitters.

Khoo, T. L.

1998-01-08T23:59:59.000Z

340

Asymptotic normalization coefficients, spectroscopic factors, and direct radiative capture rates  

E-Print Network [OSTI]

of the norms of the overlap function and the radial bound-state wave function are, correspondingly, the spectroscopic factor SlB jB and unity, the single-particle spec- troscopic factor SlB jB (sp) in Eq. ~5! will equal the spectroscopic factor SlB jB... of the radial overlap function is given by Eq. ~3!, and the asymptotic normalization of the radial bound-state wave function is defined as wnBlB jB~r ! ? r.RN blB jB W 2hB ,lB11/2~2kBr ! r . ~6! By the proper choice of SlB jB (sp) , one can make Eq...

Mukhamedzhanov, AM; Gagliardi, Carl A.; Tribble, Robert E.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Phenomenology of electrostatically charged droplet combustion in normal gravity  

SciTech Connect (OSTI)

Experimental findings are provided on the effect of electrostatically charging a fuel on single-burning droplet combustion in normal gravity. It was established that significant modification of the flame morphology and the droplet burning time could be achieved, solely by the droplet charge, without the application of external electric fields. Negative charging of the droplets of mixtures of isooctane with either ethanol or a commercially available anti-static additive generated intense motion of the flame and abbreviated the droplet burning time by as much as 40% for certain blend compositions. Positive charging of the droplets generated almost spherical flames, because electrostatic attraction toward the droplets countered the effect of buoyancy. By comparing combustion of droplets of the same conductivity but different compositions, coupling of electrostatics with combustion chemistry was established. (author)

Anderson, Eric K.; Koch, Jeremy A.; Kyritsis, Dimitrios C. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

2008-08-15T23:59:59.000Z

342

The helium abundances in HgMn and normal stars  

E-Print Network [OSTI]

The parameter-free model of diffusion in the atmospheres of HgMn stars (Michaud 1986; Michaud et al 1979) predicts that helium should sink below the He II ionization zone in order that diffusion of other elements may take place, and that all HgMn stars should have deficits of helium in their photospheres, with a minimum deficit of 0.3 dex. In this study, the Smith & Dworetsky (1993) sample of HgMn stars and normal comparison stars is examined, and the helium abundances determined by spectrum synthesis using echelle spectra taken at Lick Observatory and the AAT. The prediction is confirmed; all HgMn stars are deficient in He by as much as 1.5 dex. Also, two HgMn stars, HR7361 and HR7664, show clear evidence of helium stratification.

M. M. Dworetsky

2004-07-26T23:59:59.000Z

343

Fermi Normal Coordinates and Fermion Curvature Couplings in General Relativity  

E-Print Network [OSTI]

We study gravitational curvature effects in circular and radial geodesics in static, spherically symmetric space-times, using Fermi normal coordinates. We first set up these coordinates in the general case, and then use this to study effective magnetic fields due to gravitational curvature in the exterior and interior Schwarzschild, Janis-Newman-Winicour, and Bertrand space-times. We show that these fields can be large for specific parameter values in the theories, and thus might have observational significance. We discuss the qualitative differences of the magnetic field for vacuum space-times and for those seeded by matter. We estimate the magnitude of these fields in realistic galactic scenarios and discuss their possible experimental relevance. Gravitational curvature corrections to the Hydrogen atom spectrum for these space-times are also discussed briefly.

Anshuman Dey; Abhisek Samanta; Tapobrata Sarkar

2014-03-18T23:59:59.000Z

344

Annealing of paramagnetic centres in electron- and ion-irradiated yttria-stabilized zirconia: effect of yttria content  

SciTech Connect (OSTI)

We have studied the effect of the yttria content on the recovery of paramagnetic centres in electron-irradiated yttria-stabilized zirconia (ZrO2: Y3+). Single crystals with 9.5 mol% or 18 mol% Y2O3 were irradiated with electrons of 1.0, 1.5, 2.0 and 2.5 MeV. Paramagnetic centre thermal annealing was studied by X-band EPR spectroscopy. Hole-centres are found to be annealed more quickly, or at a lower temperature, for 18 mol% than for 9.5 mol% Y2O3. At long annealing times, a non-zero asymptotic behaviour is observed in the isothermal annealing curves of hole-centres and F+-type centres between 300 and 500 K. The normalized asymptotic concentration of both defects has a maximum value of about 0.5 for annealing temperatures near 375 K, below the onset of the (isochronal) recovery stage, regardless of the yttria content. Such an uncommon behaviour is analyzed on the basis of either kinetic rate equations of charge transfer or equilibria between point defects with different charge states.

Costantini, Jean-Marc [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette] [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Beuneu, Francois [Ecole Polytechnique, Paris, France] [Ecole Polytechnique, Paris, France; Weber, William J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

345

Insolation data manual and direct normal solar radiation data manual  

SciTech Connect (OSTI)

The Insolation Data Manual presents monthly averaged data which describes the availability of solar radiation at 248 National Weather Service (NWS) stations, principally in the United States. Monthly and annual average daily insolation and temperature values have been computed from a base of 24--25 years of data, generally from 1952--1975, and listed for each location. Insolation values represent monthly average daily totals of global radiation on a horizontal surface and are depicted using the three units of measurement: kJ/m{sup 2} per day, Btu/ft{sup 2} per day and langleys per day. Average daily maximum, minimum and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3 C (65 F). For each station, global {bar K}{sub T} (cloudiness index) values were calculated on a monthly and annual basis. Global {bar K}{sub T} is an index of cloudiness and indicates fractional transmittance of horizontal radiation, from the top of the atmosphere to the earth's surface. The second section of this volume presents long-term monthly and annual averages of direct normal solar radiation for 235 NWS stations, including a discussion of the basic derivation process. This effort is in response to a generally recognized need for reliable direct normal data and the recent availability of 23 years of hourly averages for 235 stations. The relative inaccessibility of these data on microfiche further justifies reproducing at least the long-term averages in a useful format. In addition to a definition of terms and an overview of the ADIPA model, a discussion of model validation results is presented.

none,

1990-07-01T23:59:59.000Z

346

Whole-breast irradiation: a subgroup analysis of criteria to stratify for prone position treatment  

SciTech Connect (OSTI)

To select among breast cancer patients and according to breast volume size those who may benefit from 3D conformal radiotherapy after conservative surgery applied with prone-position technique. Thirty-eight patients with early-stage breast cancer were grouped according to the target volume (TV) measured in the supine position: small ({<=}400 mL), medium (400-700 mL), and large ({>=}700 ml). An ad-hoc designed and built device was used for prone set-up to displace the contralateral breast away from the tangential field borders. All patients underwent treatment planning computed tomography in both the supine and prone positions. Dosimetric data to explore dose distribution and volume of normal tissue irradiated were calculated for each patient in both positions. Homogeneity index, hot spot areas, the maximum dose, and the lung constraints were significantly reduced in the prone position (p < 0.05). The maximum heart distance and the V{sub 5Gy} did not vary consistently in the 2 positions (p = 0.06 and p = 0.7, respectively). The number of necessary monitor units was significantly higher in the supine position (312 vs. 232, p < 0.0001). The subgroups analysis pointed out the advantage in lung sparing in all TV groups (small, medium and large) for all the evaluated dosimetric constraints (central lung distance, maximum lung distance, and V{sub 5Gy}, p < 0.0001). In the small TV group, a dose reduction in nontarget areas of 22% in the prone position was detected (p = 0.056); in the medium and high TV groups, the difference was of about -10% (p = NS). The decrease in hot spot areas in nontarget tissues was 73%, 47%, and 80% for small, medium, and large TVs in the prone position, respectively. Although prone breast radiotherapy is normally proposed in patients with breasts of large dimensions, this study gives evidence of dosimetric benefit in all patient subgroups irrespective of breast volume size.

Ramella, Sara, E-mail: s.ramella@unicampus.it [Radiation Oncology, Campus Bio-Medico University, Rome (Italy); Trodella, Lucio; Ippolito, Edy; Fiore, Michele; Cellini, Francesco; Stimato, Gerardina; Gaudino, Diego; Greco, Carlo [Radiation Oncology, Campus Bio-Medico University, Rome (Italy); Ramponi, Sara; Cammilluzzi, Eugenio; Cesarini, Claudio [Breast Unit, S. Pertini Hospital, Rome (Italy); Piermattei, Angelo [Department of Physics, Catholic University, Rome (Italy); Cesario, Alfredo [CdC San Raffaele Velletri (Italy); Department of Thoracic Surgery, Catholic University, Rome (Italy); D'Angelillo, Rolando Maria [Radiation Oncology, Campus Bio-Medico University, Rome (Italy)

2012-07-01T23:59:59.000Z

347

Evaluating Quality and Palatability Characteristics of Beef Subprimals Treated with Low-dose Irradiation  

E-Print Network [OSTI]

. Paired subprimals were randomly assigned to treated (irradiated) and control (non-irradiated) groups. The treated group was irradiated with a surface dose of 1-1.5 kGy. Following treatment, subprimals were fabricated into thirds and randomly assigned...

Arnold, John

2012-02-14T23:59:59.000Z

348

Dose characterization of the rad source 2400 x-ray irradiator  

E-Print Network [OSTI]

The RS 2400 irradiator has been looked to as a replacement for discontinued gamma irradiators. The RS 2400 has a cylindrical, rather than point, x-ray source, which yields higher dose rates. The irradiator unit allows the user to set the current...

Wagner, Jennifer Ann Koop

2009-05-15T23:59:59.000Z

349

Irradiation Studies of Optical Components CERN, ~ April 15-24, 2005  

E-Print Network [OSTI]

Irradiation Studies of Optical Components 43 2 5 1 CERN, ~ April 15-24, 2005 1 GeV proton beam 4 x, 2005Optical components #12;Irradiation summary ­ transmittance/reflectance measurements Activity right 10 15 proton Irradiation dose: equivalent to 40 pulses of 24 GeV proton beam Received radiation dose

McDonald, Kirk

350

Rapid degradation of CdSe/ZnS colloidal quantum dots exposed to gamma irradiation  

E-Print Network [OSTI]

- grade their optical properties. In this paper, we report on the effects of gamma irradiationRapid degradation of CdSe/ZnS colloidal quantum dots exposed to gamma irradiation Nathan J. Withers of 137 Cs gamma irradiation on photoluminescent properties of CdSe/ZnS colloidal quantum dots

New Mexico, University of

351

Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and  

E-Print Network [OSTI]

Estimation of the inherent optical properties of natural waters from the irradiance attenuation, and the backscattering bb coefficients in the upper ocean from irradiance reflectance just beneath the sea surface, R 0 , and the average attenuation coefficient for downwelling irradiance, Kd 1, between the surface and the first

Stramski, Dariusz

352

Thermally and optically stimulated processes in X-irradiated scheelite type crystals  

E-Print Network [OSTI]

Thermally and optically stimulated processes in X-irradiated scheelite type crystals M. Bohm, R at http://dx.doi.org/10.1051/jphyscol:19806132 #12;THbKMALLY AND OPTICALLY STIMULATED PROCESSES IN X-IRRADIATED and extrinsic) hole and electron centres are created by X-irradiation at liquid nitrogen temperature. Several

Paris-Sud XI, Université de

353

Photorefractive measurements in electron irradiated semi-insulating GaAs  

E-Print Network [OSTI]

. The native and irradiation induced defects have been assessed by electron paramagnetic resonance and optical irradiation induced defects in GaAs, we present results of electron paramagnetic resonance (EPR) and optical1 Photorefractive measurements in electron irradiated semi-insulating GaAs P. Delaye(1), H.J. von

354

Capillary Electrophoresis Separation of Protein Composition of c-Irradiated Food Pathogens Listeria  

E-Print Network [OSTI]

Capillary Electrophoresis Separation of Protein Composition of c-Irradiated Food Pathogens Listeria proteins expression which may be related to the resistance or sensitivity of food pathogens to c-irradiation Composition of c-Irradiated Food Pathogens Listeria monocytogenes and Staphylococcus aureus. PLoS ONE 7(3): e

Paris-Sud XI, Université de

355

Total Solar Irradiance Calibration Transfer Experiment/TIM Frequently Asked Questions  

E-Print Network [OSTI]

TCTE Total Solar Irradiance Calibration Transfer Experiment/TIM Frequently Asked Questions What is the purpose of the TCTE mission? The Total Solar Irradiance Calibration Transfer Experiment (TCTE to monitor changes in solar irradiance at the top of the Earth's atmosphere. TCTE will launch as one of five

Mojzsis, Stephen J.

356

A new, lower value of total solar irradiance: Evidence and climate significance  

E-Print Network [OSTI]

data. TIM's lower solar irradiance value is not a change in the Sun's output, whose variationsA new, lower value of total solar irradiance: Evidence and climate significance Greg Kopp1 14 January 2011. [1] The most accurate value of total solar irradiance during the 2008 solar minimum

357

Irradiation and annealing of p-type silicon carbide  

SciTech Connect (OSTI)

The development of the technology of semiconductor devices based on silicon carbide and the beginning of their industrial manufacture have made increasingly topical studies of the radiation hardness of this material on the one hand and of the proton irradiation to form high-receptivity regions on the other hand. This paper reports on a study of the carrier removal rate (V{sub d}) in p-6H-SiC under irradiation with 8 MeV protons and of the conductivity restoration in radiation- compensated epitaxial layers of various p-type silicon carbide polytypes. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that the complete compensation of samples with the initial value of Na - Nd ? 1.5 10{sup 18} cm{sup ?3} occurs at an irradiation dose of ?1.1 10{sup 16} cm{sup ?2}. It is shown that specific features of the sublimation layer SiC (compared to CVD layers) are clearly manifested upon the gamma and electron irradiation and are hardly noticeable under the proton and neutron irradiation. It was also found that the radiation-induced compensation of SiC is retained after its annealing at ?1000C. The conductivity is almost completely restored at T ? 1200C. This character of annealing of the radiation compensation is independent of a silicon carbide polytype and the starting doping level of the epitaxial layer. The complete annealing temperatures considerably exceed the working temperatures of SiC-based devices. It is shown that the radiation compensation is a promising method in the technology of high-temperature devices based on SiC.

Lebedev, Alexander A.; Bogdanova, Elena V.; Grigor'eva, Maria V.; Lebedev, Sergey P. [A.F. Ioffe Physical-Technical Institute, St. Petersburg, 194021 (Russian Federation); Kozlovski, Vitaly V. [St. Petersburg State Polytechnic University, St. Petersburg, 195251 (Russian Federation)

2014-02-21T23:59:59.000Z

358

Microscopic analysis of irradiated AGR-1 coated particle fuel compacts  

SciTech Connect (OSTI)

The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak compact-average burnup of 19.5% FIMA with no in-pile failures observed out of 3 x 105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Six compacts have been examined, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose from 36 to 79 individual particles near midplane on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, bufferIPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, 981 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in 23% of the particles, and these fractures often resulted in unconstrained kernel protrusion into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. BufferIPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only four classified particles, all in conjunction with IPyCSiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures and IPyCSiC debonds.

Scott A. Ploger; Paul A. Demkowicz; John D. Hunn; Jay S. Kehn

2014-05-01T23:59:59.000Z

359

Microscopic analysis of irradiated AGR-1 coated particle fuel compacts  

SciTech Connect (OSTI)

The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak burnup of 19.5% FIMA with no in-pile failures observed out of 3105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Five compacts have been examined so far, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose between approximately 40-80 individual particles on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer-IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, over 800 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in approximately 23% of the particles, and these fractures often resulted in unconstrained kernel swelling into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer-IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only three particles, all in conjunction with IPyC-SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures, IPyC-SiC debonds, and SiC fractures.

Scott Ploger; Paul Demkowicz; John Hunn; Robert Morris

2012-10-01T23:59:59.000Z

360

Irradiation hardening and loss of ductility of type 316L(N) stainless steel plate material due to neutron-irradiation  

SciTech Connect (OSTI)

Type 316 stainless steel is the primary candidate austenitic structural material for fusion first wall constructions. Here, type 316L(N) stainless steel plate material has been irradiated up to 10 dpa at temperatures of 80, 225, 325, and 425 C in the High Flux Reactor (HFR) of Petten. Tensile tests have been performed in the temperature range from RT to 575 C at a conventional strain rate of 5 {times} 10{sup {minus}4} s{sup {minus}1}. The results of the tensile tests are analyzed in terms of irradiation hardening and loss of ductility due to irradiation. Tensile properties saturate in the early stage (within 0.65 dpa) at the lowest applied irradiation temperature. It is indicated that the most severe degradation of tensile ductility occurs in the temperature range of 275 to 350 C. Comparison with literature data revealed a large scatter in irradiation hardening at irradiation temperatures above 325 C.

Horsten, M.G.; Vries, M.I. de [Netherlands Energy Research Foundation, Petten (Netherlands)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

US/French Joint Research Program regarding the behavior of polymer base materials subjected to beta radiation. Volume 1. Phase-1 normalization results  

SciTech Connect (OSTI)

As part of the ongoing multi-year joint NRC/CEA international cooperative test program to investigate the dose-damage equivalence of gamma and beta radiation on polymer base materials, dosimetry and ethylene-propylene rubber (EPR) specimens were exchanged, irradiated, and evaluated for property changes at research facilities in the US (Sandia National Laboratories) and France (Compagnie ORIS Industrie). The purpose of this Phase-1 test series was to normalize and cross-correlate the results obtained by one research center to the other, in terms of exposure (1.0 MeV accelerated electrons and /sup 60/Co gammas) and postirradiation testing (ultimate elongation and tensile strength, hardness, and density) techniques. The dosimetry and material specimen results indicate good agreement between the two countries regarding the exposure conditions and postirradiation evaluation techniques employed.

Wyant, F.J.; Buckalew, W.H.; Chenion, J.; Carlin, F.; Gaussens, G.; Le Tutour, P.; Le Meur, M.

1986-06-01T23:59:59.000Z

362

Irradiated Materials Testing Complex (IMTL) The Irradiated Materials Testing Laboratory provides the capability to conduct high temperature  

E-Print Network [OSTI]

provides the capability to conduct high temperature corrosion and stress corrosion cracking of neutron next to a hot cell. This configuration allows us to disconnect the autoclave from its water loop, maneuver it into the hot cell, where the neutron irradiated specimens can be safely mounted

Kamat, Vineet R.

363

Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.  

SciTech Connect (OSTI)

The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the source was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential experimental configurations and neutron spectra for component irradiation. The final product of this work is a MCNP model validated by measurements, an overall understanding of neutron irradiation system including photon/neutron transport and effective dose rates throughout the system, and possible experimental configurations for future irradiation of components.

Franco, Manuel,

2014-08-01T23:59:59.000Z

364

Implant breast reconstruction followed by radiotherapy: Can helical tomotherapy become a standard irradiation treatment?  

SciTech Connect (OSTI)

To evaluate the benefits and limitations of helical tomotherapy (HT) for loco-regional irradiation of patients after a mastectomy and immediate implant-based reconstruction. Ten breast cancer patients with retropectoral implants were randomly selected for this comparative study. Planning target volumes (PTVs) 1 (the volume between the skin and the implant, plus margin) and 2 (supraclavicular, infraclavicular, and internal mammary nodes, plus margin) were 50 Gy in 25 fractions using a standard technique and HT. The extracted dosimetric data were compared using a 2-tailed Wilcoxon matched-pair signed-rank test. Doses for PTV1 and PTV2 were significantly higher with HT (V95 of 98.91 and 97.91%, respectively) compared with the standard technique (77.46 and 72.91%, respectively). Similarly, the indexes of homogeneity were significantly greater with HT (p = 0.002). HT reduced ipsilateral lung volume that received {>=}20 Gy (16.7 vs. 35%), and bilateral lungs (p = 0.01) and neighboring organs received doses that remained well below tolerance levels. The heart volume, which received 25 Gy, was negligible with both techniques. HT can achieve full target coverage while decreasing high doses to the heart and ipsilateral lung. However, the low doses to normal tissue volumes need to be reduced in future studies.

Massabeau, Carole, E-mail: cmassabeau@hotmail.com [Department of Radiation Oncology, Institut Curie, Paris (France); Fournier-Bidoz, Nathalie; Wakil, Georges; Castro Pena, Pablo; Viard, Romain; Zefkili, Sofia; Reyal, Fabien; Campana, Francois; Fourquet, Alain; Kirova, Youlia M. [Department of Radiation Oncology, Institut Curie, Paris (France)

2012-01-01T23:59:59.000Z

365

Detection of toxic factors after gamma-irradiation in vitro and in vivo  

E-Print Network [OSTI]

its effects in the living organism. Thus, ths irradiation of pure chemlcai compounds was usecl as a first step in order to understand the stf??cts oi' irradiation in vivo. Studies of Daniel and Park (5, 6) showed that toxic factors wnlcn cause... source of gamma-irradiation. The doss rats in this study vaa constant TGG r/minute. The dose rate vas calibrated by a sliver aotixated phosphate glass dosimetry. Different, levels of irradiation vers achiewsd by expoairg the samples to ths irradiation...

Shihabi, Zakariya Kamel

1965-01-01T23:59:59.000Z

366

Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel  

SciTech Connect (OSTI)

Neutron irradiation effects on ultra-fine grain (UFG) low carbon steel prepared by equal channel angular pressing (ECAP) has been examined. Counterpart samples with conventional grain (CG) sizes have been irradiated alongside with the UFG ones for comparison. Samples were irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to 1.24 dpa. Atom probe tomography revealed manganese, silicon-enriched clusters in both ECAP and CG steel after neutron irradiation. X-ray quantitative analysis showed that dislocation density in CG increased after irradiation. However, no significant change was observed in UFG steel revealing better radiation tolerance.

Ahmad Alsabbagh; Apu Sarkar; Brandon Miller; Jatuporn Burns; Leah Squires; Douglas Porter; James I. Cole; K. L. Murty

2014-10-01T23:59:59.000Z

367

Recent Accomplishments in the Irradiation Testing of Engineering-Scale Monolithic Fuel Specimens  

SciTech Connect (OSTI)

The US fuel development team is focused on qualification and demonstration of the uranium-molybdenum monolithic fuel including irradiation testing of engineering-scale specimens. The team has recently accomplished the successful irradiation of the first monolithic multi-plate fuel element assembly within the AFIP-7 campaign. The AFIP-6 MKII campaign, while somewhat truncated by hardware challenges, exhibited successful irradiation of a large-scale monolithic specimen under extreme irradiation conditions. The channel gap and ultrasonic data are presented for AFIP-7 and AFIP-6 MKII, respectively. Finally, design concepts are summarized for future irradiations such as the base fuel demonstration and design demonstration experiment campaigns.

N.E. Woolstenhulme; D.M. Wachs; M.K. Meyer; H.W. Glunz; R.B. Nielson

2012-10-01T23:59:59.000Z

368

SPEECH-CODING AND TRAINING-INDUCED PLASTICITY IN AUDITORY CORTEX OF NORMAL AND DYSLEXIA  

E-Print Network [OSTI]

SPEECH-CODING AND TRAINING-INDUCED PLASTICITY IN AUDITORY CORTEX OF NORMAL AND DYSLEXIA MODEL RATS anymore... #12;SPEECH-CODING AND TRAINING-INDUCED PLASTICITY IN AUDITORY CORTEX OF NORMAL AND DYSLEXIA

Kilgard, Michael P.

369

3D culture models of normal and malignant breast epithelial cells  

E-Print Network [OSTI]

3D culture models of normal and malignant breast epithelialcells; Lee et al. 3D culture models of normal and malignantFor correspondence: mjbissell@lbl.gov 3D culture models of

Lee, Genee Y.; Kenny, Paraic A.; Lee, Eva H.; Bissell, Mina J.

2006-01-01T23:59:59.000Z

370

Imaging of normal and pathologic joint synovium using nonlinear optical microscopy as a potential  

E-Print Network [OSTI]

, and gout at 3.0 million. Arthritis can result in irreversible destruction and loss of normal articular

Rose, Michael R.

371

Detection of irradiated spices using photo-stimulated luminescence technique (PSL)  

SciTech Connect (OSTI)

Photo-stimulated luminescence (PSL) technique was applied to detect irradiated black pepper (Piper nigrum), cinnamon (Cinnamomum verum) and turmeric (Curcuma longa) after dark storage for 1 day, 3 and 6 months. Using screening and calibrated PSL, all samples were correctly discriminated between non-irradiated and spices irradiated with doses 1, 5 and 10 kGy. The PSL photon counts (PCs) of irradiated spices increased with increasing dose, with turmeric showing highest sensitivity index to irradiation compared to black pepper and cinnamon. The differences in response are possibly attributed to the varying quantity and quality of silicate minerals present in each spice sample. PSL signals of all irradiated samples reduced after 3 and 6 months storage. The results of this study provide a useful database on the applicability of PSL technique for the detection of Malaysian irradiated spices.

Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi [Faculty of Science and Technology, National University of Malaysia, Bangi, 43000 Kajang, Selangor (Malaysia); Othman, Zainon; Abdullah, Wan Saffiey Wan [Malaysian Nuclear Agency, Bangi 43000 Kajang, Selangor (Malaysia)

2014-09-03T23:59:59.000Z

372

Synchrotron radiation damage observations in normal incidence copper mirrors  

SciTech Connect (OSTI)

Water-cooled copper mirrors used at near-normal incidence on two beam lines at the NSLS are observed to undergo severe degradation upon exposure to the direct SR beam. These mirrors are used on beam lines designed to utilize radiation in the wavelength regions longer than 100 nm and are coated with a uv reflection-enhancing coating, consisting of one or more bilayers of aluminum with a MgF/sub 2/ overcoat. Beamline performance degrades very rapidly following installation of a new set of mirrors. Analysis of the mirror surfaces by various non-destructive techniques indicates severe degradation of the coating and surface along the central strip where most of the x-ray power is absorbed from the beam. In one case where the mirror had three bilayer coatings, the outer coating layer has disappeared along the central strip. Rutherford backscatter measurements indicate compositional changes between layers and confirm the existence of a carbon deposit on the surface. Thermal modeling suggests that most of the damage is caused by direct photon interaction, since the temperature rise in the energy deposition region is small.

Takacs, P.Z.; Melendez, J.; Colbert, J.

1985-08-01T23:59:59.000Z

373

Sampling Plan for Assaying Plates Containing Depleted or Normal Uranium  

SciTech Connect (OSTI)

This paper describes the rationale behind the proposed method for selecting a 'representative' sample of uranium metal plates, portions of which will be destructively assayed at the Y-12 Security Complex. The total inventory of plates is segregated into two populations, one for Material Type 10 (depleted uranium (DU)) and one for Material Type 81 (normal [or natural] uranium (NU)). The plates within each population are further stratified by common dimensions. A spreadsheet gives the collective mass of uranium element (and isotope for DU) and the piece count of all plates within each stratum. These data are summarized in Table 1. All plates are 100% uranium metal, and all but approximately 60% of the NU plates have Kel-F{reg_sign} coating. The book inventory gives an overall U-235 isotopic percentage of 0.22% for the DU plates, ranging from 0.19% to 0.22%. The U-235 ratio of the NU plates is assumed to be 0.71%. As shown in Table 1, the vast majority of the plates are comprised of depleted uranium, so most of the plates will be sampled from the DU population.

Ivan R. Thomas

2011-11-01T23:59:59.000Z

374

Rap G protein signal in normal and disordered lymphohematopoiesis  

SciTech Connect (OSTI)

Rap proteins (Rap1, Rap2a, b, c) are small molecular weight GTPases of the Ras family. Rap G proteins mediate diverse cellular events such as cell adhesion, proliferation, and gene activation through various signaling pathways. Activation of Rap signal is regulated tightly by several specific regulatory proteins including guanine nucleotide exchange factors and GTPase-activating proteins. Beyond cell biological studies, increasing attempts have been made in the past decade to define the roles of Rap signal in specific functions of normal tissue systems as well as in cancer. In the immune and hematopoietic systems, Rap signal plays crucial roles in the development and function of essentially all lineages of lymphocytes and hematopoietic cells, and importantly, deregulated Rap signal may lead to unique pathological conditions depending on the affected cell types, including various types of leukemia and autoimmunity. The phenotypical studies have unveiled novel, even unexpected functional aspects of Rap signal in cells from a variety of tissues, providing potentially important clues for controlling human diseases, including malignancy.

Minato, Nagahiro, E-mail: minato@imm.med.kyoto-u.ac.jp

2013-09-10T23:59:59.000Z

375

Assessing the efficiency of dye-swap normalization to remove systematic bias  

E-Print Network [OSTI]

Assessing the efficiency of dye-swap normalization to remove systematic bias from two. Using three different data sets, this paper assesses the effectiveness of dye-swap normalization. The results show how dye-swap normalization corrects the bias introduced by the different properties

Rostock, Universität

376

The Smith Normal Form of a Matrix Associated with Young's Lattice  

E-Print Network [OSTI]

The Smith Normal Form of a Matrix Associated with Young's Lattice Tommy Wuxing Cai and Richard P. Stanley Abstract. We prove a conjecture of Miller and Reiner on the Smith normal form of the operator DU be a commutative ring with 1 and M an m?m matrix over R. We say that M has a Smith normal form (SNF) over R

377

Improving the AGR Fuel Testing Power Density Profile Versus Irradiation-Time in the Advanced Test Reactor  

SciTech Connect (OSTI)

The Very High Temperature gas-cooled Reactor (VHTR), which is currently being developed, achieves simplification of safety through reliance on ceramic-coated fuel particles. Each TRISO-coated fuel particle has its own containment which serves as the principal barrier against radionuclide release under normal operating and accident conditions. These fuel particles, in the form of graphite fuel compacts, are currently undergoing a series of irradiation tests in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) to support the Advanced Gas-Cooled Reactor (AGR) fuel qualification program. A representive coated fuel particle with an 235U enrichment of 19.8 wt% was used in this analysis. The fuel burnup analysis tool used to perform the neutronics study reported herein, couples the Monte Carlo transport code MCNP, with the radioactive decay and burnup code ORIGEN2. The fuel burnup methodology known as Monte-Carlo with ORIGEN2 (MCWO) was used to evaluate the AGR experiment assembly and demonstrate compliance with ATR safety requirements. For the AGR graphite fuel compacts, the MCWO-calculated fission power density (FPD) due to neutron fission in 235U is an important design parameter. One of the more important AGR fuel testing requirements is to maintain the peak fuel compact temperature close to 1250C throughout the proposed irradiation campaign of 550 effective full power days (EFPDs). Based on the MCWO-calculated FPD, a fixed gas gap size was designed to allow regulation of the fuel compact temperatures throughout the entire fuel irradiation campaign by filling the gap with a mixture of helium and neon gases. The chosen fixed gas gap can only regulate the peak fuel compact temperature in the desired range during the irradiation test if the ratio of the peak power density to the time-dependent low power density (P/T) at 550 EFPDs is less than 2.5. However, given the near constant neutron flux within the ATR driver core and the depletion of 235U in the graphite fuel compacts versus EFPD, the P/T ratio was calculated to be 5.3, which is unacceptable given the fuel compact temperature control requirement. To flatten the FPD profile versus EFPDs, two proposed options are (a) add fertile (232Th) particles to the fuel compact and (b) add burnable absorber (B4C) to the graphite holder. The effectiveness of these two proposed options to flatten the FPD profile versus EFPDs were investigated and the results are compared in this study.

Gray S. Chang; David A. Petti; John T. Maki; Misti A. Lillo

2009-05-01T23:59:59.000Z

378

Development of positron annihilation spectroscopy for characterizing neutron irradiated tungsten  

SciTech Connect (OSTI)

Tungsten samples (6 mm diameter, 0.2 mm thick) were irradiated to 0.025 and 0.3 dpa with neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. Samples were then exposed to deuterium plasma in the tritium plasma experiment (TPE) at 100, 200 and 500C to a total fluence of 1 x 1026 m-2. Nuclear reaction analysis (NRA) and Doppler broadening positron annihilation spectroscopy (DB-PAS) were performed at various stages to characterize damage and retention. We present the first known results of neutron damaged tungsten characterized by DB-PAS in order to study defect concentration. Two positron sources, 22Na and 68Ge, probe ~58 m and through the entire 200 m thick samples, respectively. DB-PAS results reveal clear differences between the various irradiated samples. These results, and the calibration of DB-PAS to NRA data are presented.

C.N. Taylor; M. Shimada; D.W. Akers; M.W. Drigert; B.J. Merrill; Y. Hatano

2013-05-01T23:59:59.000Z

379

Conceptual Design Report for the Irradiated Materials Characterization Laboratory (IMCL)  

SciTech Connect (OSTI)

This document describes the design at a conceptual level for the Irradiated Materials Characterization Laboratory (IMCL) to be located at the Materials and Fuels Complex (MFC) at the Idaho National Laboratory (INL). The IMCL is an 11,000-ft2, Hazard Category-2 nuclear facility that is designed for use as a state of the-art nuclear facility for the purpose of hands-on and remote handling, characterization, and examination of irradiated and nonirradiated nuclear material samples. The IMCL will accommodate a series of future, modular, and reconfigurable instrument enclosures or caves. To provide a bounding design basis envelope for the facility-provided space and infrastructure, an instrument enclosure or cave configuration was developed and is described in some detail. However, the future instrument enclosures may be modular, integral with the instrument, or reconfigurable to enable various characterization environments to be configured as changes in demand occur. They are not provided as part of the facility.

Stephanie Austad

2010-06-01T23:59:59.000Z

380

Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report  

SciTech Connect (OSTI)

An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities capabilities distributed among multiple locations ? Modify Existing DOE Facilities capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

Jeff Bryan; Bill Landman; Porter Hill

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Production of sodium-22 from proton irradiated aluminum  

DOE Patents [OSTI]

A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

Taylor, Wayne A. (Los Alamos, NM); Heaton, Richard C. (Los Alamos, NM); Jamriska, David J. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

382

Extending Shelf Life of Sliced Mushrooms (Agaricus bisporus) by using Vacuum Impregnation and Electron-beam Irradiation  

E-Print Network [OSTI]

. The best treatment was the combination of vacuum impregnation with irradiation according to the consumer studies....

Sevimli, Zeynep

2013-01-14T23:59:59.000Z

383

Ceramographic Examinations of Irradiated AGR-1 Fuel Compacts  

SciTech Connect (OSTI)

The AGR 1 experiment involved irradiating 72 cylindrical fuel compacts containing tri-structural isotropic (TRISO)-coated particles to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures observed out of almost 300,000 particles. Six irradiated AGR 1 fuel compacts were selected for microscopy that span a range of irradiation conditions (temperature, burnup, and fast fluence). These six compacts also included all four TRISO coating variations irradiated in the AGR experiment. The six compacts were cross-sectioned both transversely and longitudinally, mounted, ground, and polished after development of careful techniques for preserving particle structures against preparation damage. From 36 to 79 particles within each cross section were exposed near enough to midplane for optical microscopy of kernel, buffer, and coating behavior. The microstructural analysis focused on kernel swelling and porosity, buffer densification and fracture, debonding between the buffer and inner pyrolytic carbon (IPyC) layers, and fractures in the IPyC and SiC layers. Three basic particle morphologies were established according to the extent of bonding between the buffer and IPyC layers: complete debonding along the interface (Type A), no debonding along the interface (Type B), and partial debonding (Type AB). These basic morphologies were subdivided according to whether the buffer stayed intact or fractured. The resulting six characteristic morphologies were used to classify particles within each cross section, but no spatial patterns were clearly observed in any of the cross-sectional morphology maps. Although positions of particle types appeared random within compacts, examining a total of 931 classified particles allowed other relationships among morphological types to be established.

Paul Demkowicz; Scott Ploger; John Hunn; Jay S. Kehn

2012-09-01T23:59:59.000Z

384

Ceramographic Examinations of Irradiated AGR-1 Fuel Compacts  

SciTech Connect (OSTI)

The AGR 1 experiment involved irradiating 72 cylindrical fuel compacts containing tri-structural isotropic (TRISO)-coated particles to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures observed out of almost 300,000 particles. Five irradiated AGR 1 fuel compacts were selected for microscopy that span a range of irradiation conditions (temperature, burnup, and fast fluence). These five compacts also included all four TRISO coating variations irradiated in the AGR experiment. The five compacts were cross-sectioned both transversely and longitudinally, mounted, ground, and polished after development of careful techniques for preserving particle structures against preparation damage. Approximately 40 to 80 particles within each cross section were exposed near enough to mid-plane for optical microscopy of kernel, buffer, and coating behavior. The microstructural analysis focused on kernel swelling and porosity, buffer densification and fracture, debonding between the buffer and inner pyrolytic carbon (IPyC) layers, and fractures in the IPyC and SiC layers. Three basic particle morphologies were established according to the extent of bonding between the buffer and IPyC layers: complete debonding along the interface (Type A), no debonding along the interface (Type B), and partial debonding (Type AB). These basic morphologies were subdivided according to whether the buffer stayed intact or fractured. The resulting six characteristic morphologies were used to classify particles within each cross section, but no spatial patterns were clearly observed in any of the cross-sectional morphology maps. Although positions of particle types appeared random within compacts, examining a total of 830 classified particles allowed other relationships among morphological types to be established.

Paul Demkowicz; Scott Ploger; John Hunn

2012-05-01T23:59:59.000Z

385

Method for improving performance of irradiated structural materials  

DOE Patents [OSTI]

Method for extending service life of nuclear reactor components prepared from ductile, high strength crystalline alloys obtained by devitrification of metallic glasses. Two variations of the method are described: (1) cycling the temperature of the nuclear reactor between the operating temperature which leads to irradiation damage and a l The U.S. Government has rights in this invention by virtue of Department of Energy, Office of Fusion Energy, Grant No. DE-AC02-78ER-10107.

Megusar, Janez (Belmont, MA); Harling, Otto K. (Hingham, MA); Grant, Nicholas J. (Winchester, MA)

1989-01-01T23:59:59.000Z

386

Updated FY12 Ceramic Fuels Irradiation Test Plan  

SciTech Connect (OSTI)

The Fuel Cycle Research and Development program is currently devoting resources to study of numerous fuel types with the aim of furthering understanding applicable to a range of reactors and fuel cycles. In FY11, effort within the ceramic fuels campaign focused on planning and preparation for a series of rabbit irradiations to be conducted at the High Flux Isotope Reactor located at Oak Ridge National Laboratory. The emphasis of these planned tests was to study the evolution of thermal conductivity in uranium dioxide and derivative compositions as a function of damage induced by neutron damage. Current fiscal realities have resulted in a scenario where completion of the planned rabbit irradiations is unlikely. Possibilities for execution of irradiation testing within the ceramic fuels campaign in the next several years will thus likely be restricted to avenues where strong synergies exist both within and outside the Fuel Cycle Research and Development program. Opportunities to augment the interests and needs of modeling, advanced characterization, and other campaigns present the most likely avenues for further work. These possibilities will be pursued with the hope of securing future funding. Utilization of synthetic microstructures prepared to better understand the most relevant actors encountered during irradiation of ceramic fuels thus represents the ceramic fuel campaign's most efficient means to enhance understanding of fuel response to burnup. This approach offers many of the favorable attributes embraced by the Separate Effects Testing paradigm, namely production of samples suitable to study specific, isolated phenomena. The recent success of xenon-imbedded thick films is representative of this approach. In the coming years, this strategy will be expanded to address a wider range of problems in conjunction with use of national user facilities novel characterization techniques to best utilize programmatic resources to support a science-based research program.

Nelson, Andrew T. [Los Alamos National Laboratory

2012-05-24T23:59:59.000Z

387

Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation  

SciTech Connect (OSTI)

Upon femtosecond laser irradiation, a bright, broadband photoluminescence is observed from graphene at frequencies well above the excitation frequency. Analyses show that it arises from radiative recombination of a broad distribution of nonequilibrium electrons and holes, generated by rapid scattering between photoexcited carriers within tens of femtoseconds after the optical excitation. Its highly unusual characteristics come from the unique electronic and structural properties of graphene.

Liu, Wei-Tao; Wu, S.W.; Schuck, P.J.; Salmeron, Miquel; Shen, Y.R.; Wang, F.

2010-07-01T23:59:59.000Z

388

Structural and magnetic properties of irradiated SiC  

SciTech Connect (OSTI)

We present a comprehensive structural characterization of ferromagnetic SiC single crystals induced by Ne ion irradiation. The ferromagnetism has been confirmed by electron spin resonance, and possible transition metal impurities can be excluded to be the origin of the observed ferromagnetism. Using X-ray diffraction and Rutherford backscattering/channeling spectroscopy, we estimate the damage to the crystallinity of SiC, which mutually influences the ferromagnetism in SiC.

Wang, Yutian; Helm, Manfred [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, 01314 Dresden (Germany); Technische Universitt Dresden, 01062 Dresden (Germany); Chen, Xuliang; Yang, Zhaorong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Lin [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, 01314 Dresden (Germany); Department of Physics and Electronics, School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Shalimov, Artem; Prucnal, Slawomir; Munnik, Frans; Skorupa, Wolfgang; Zhou, Shengqiang, E-mail: s.zhou@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, 01314 Dresden (Germany); Tong, Wei [High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

2014-05-07T23:59:59.000Z

389

Post Irradiation Capabilities at the Idaho National Laboratory  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory, Idaho National Laboratory (INL) has a rich history, experience, workforce and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt these advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and work load increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and Advanced Post Irradiation Examination Capability , these facilities are next generation PIE laboratories designed to perform the work of PIE that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California, Berkeley.

J. L. Schulthess; K. E. Rosenberg

2011-05-01T23:59:59.000Z

390

Cation disorder in high dose neutron irradiated spinel  

SciTech Connect (OSTI)

The crystal structures of MgAl{sub 2}O{sub 4} spinel single crystals irradiated to high neutron fluences (>5{center_dot}10{sup 26} n/m{sup 2} (E{sub n}>0.1 MeV)), were examined by neutron diffraction. Crystal structure refinement of the highest dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by {approximately}20% while increasing by {approximately}8% on octahedral sites. Since the neutron scattering length for Mg is considerably larger than for Al, this result is consistent with site exchange between Mg{sup 2+} ions on tetrahedral sites and Al{sup 3+} ions on octahedral sites. Least squares refinements also indicated that in all irradiated samples, at least 35% of Mg{sup 2+} and Al{sup 3+} ions in the crystal experienced disordering replacements. This retained dpa on the cation sublattices is the largest retained damage ever measured in an irradiated spinel material.

Sickafus, K.E.; Larson, A.C.; Yu, N.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hollenberg, G.W.; Garner, F.A. [Pacific Northwest Lab., Richland, WA (United States); Bradt, R.C. [Univ. of Nevada, Reno, NV (United States)

1994-06-01T23:59:59.000Z

391

Cation disorder in high-dose, neutron-irradiated spinel  

SciTech Connect (OSTI)

The objective of this effort is to determine whether MgAl{sub 2}O{sub 4} spinel is a suitable ceramic for fusion applications. Here, the crystal structures of MgAl{sub 2}O{sub 4} spinel single crystals irradiated to high neutron fluences [>5{center_dot}10{sup 26} n/m{sup 2} (E{sub n} > 0.1 MeV)] were examined by neutron diffraction. Crystal structure refinement of the highest dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by {approximately} 20% while increasing by {approximately} 8% on octahedral sites. Since the neutron scattering length for Mg is considerably larger than for Al, this results is consistent with site exchange between Mg{sup 2+} ions on tetrahedral sites and Al{sup 3+} ions on octahedral sites. Least-squares refinements also indicated that, in all irradiated samples, at least 35% of Mg{sup 2+} and Al{sup 3+} ions in the crystal experienced disordering replacements. This retained dpa on the cation sublattices is the largest retained damage ever measured in an irradiated spinel material.

Sickafus, K.E.; Larson, A.C.; Yu, N.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hollenberg, G.W.; Garner, F.A. [Pacific Northwest Lab., Richland, WA (United States); Bradt, R.C. [Univ. of Nevada, Reno, NV (United States)

1994-08-01T23:59:59.000Z

392

IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL  

SciTech Connect (OSTI)

High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

M.K. Meyer; J. Gan; J.-F. Jue; D.D. Keiser; E. Perez; A. Robinson; D.M. Wachs; N. Woolstenhulme; G.L. Hofman; Y.-S. Kim

2014-04-01T23:59:59.000Z

393

On the Absorption and Redistribution of Energy in Irradiated Planets  

E-Print Network [OSTI]

We present a sequence of toy models for irradiated planet atmospheres, in which the effects of geometry and energy redistribution are modelled self-consistently. We use separate but coupled grey atmosphere models to treat the ingoing stellar irradiation and outgoing planetary reradiation. We investigate how observed quantities such as full phase secondary eclipses and orbital phase curves depend on various important parameters, such as the depth at which irradiation is absorbed and the depth at which energy is redistributed. We also compare our results to the more detailed radiative transfer models in the literature, in order to understand how those map onto the toy model parameter space. Such an approach can prove complementary to more detailed calculations, in that they demonstrate, in a simple way, how the solutions change depending on where, and how, energy redistribution occurs. As an example of the value of such models, we demonstrate how energy redistribution and temperature equilibration at moderate optical depths can lead to temperature inversions in the planetary atmosphere, which may be of some relevance to recent observational findings.

Brad Hansen

2008-01-18T23:59:59.000Z

394

Thermal Structure and Radius Evolution of Irradiated Gas Giant Planets  

E-Print Network [OSTI]

We consider the thermal structure and radii of strongly irradiated gas giant planets over a range in mass and irradiating flux. The cooling rate of the planet is sensitive to the surface boundary condition, which depends on the detailed manner in which starlight is absorbed and energy redistributed by fluid motion. We parametrize these effects by imposing an isothermal boundary condition $T \\equiv T_{\\rm deep}$ below the photosphere, and then constrain $T_{\\rm deep}$ from the observed masses and radii. We compute the dependence of luminosity and core temperature on mass, $T_{\\rm deep}$ and core entropy, finding that simple scalings apply over most of the relevant parameter space. These scalings yield analytic cooling models which exhibit power-law behavior in the observable age range $0.1-10 {\\rm Gyr}$, and are confirmed by time-dependent cooling calculations. We compare our model to the radii of observed transiting planets, and derive constraints on $T_{\\rm deep}$. Only HD 209458 has a sufficiently accurate radius measurement that $T_{\\rm deep}$ is tightly constrained; the lower error bar on the radii for other planets is consistent with no irradiation. More accurate radius and age measurements will allow for a determination of the correlation of $T_{\\rm deep}$ with the equilibrium temperature, informing us about both the greenhouse effect and day-night asymmetries.

Phil Arras; Lars Bildsten

2006-01-15T23:59:59.000Z

395

Effects of mass loss for highly-irradiated giant planets  

E-Print Network [OSTI]

We present calculations for the evolution and surviving mass of highly-irradiated extrasolar giant planets (EGPs) at orbital semimajor axes ranging from 0.023 to 0.057 AU using a generalized scaled theory for mass loss, together with new surface-condition grids for hot EGPs and a consistent treatment of tidal truncation. Theoretical estimates for the rate of energy-limited hydrogen escape from giant-planet atmospheres differ by two orders of magnitude, when one holds planetary mass, composition, and irradiation constant. Baraffe et al. (2004, A&A 419, L13-L16) predict the highest rate, based on the theory of Lammer et al. (2003, Astrophys. J. 598, L121-L124). Scaling the theory of Watson et al. (1981, Icarus 48, 150-166) to parameters for a highly-irradiated exoplanet, we find an escape rate ~102 lower than Baraffe's. With the scaled Watson theory we find modest mass loss, occurring early in the history of a hot EGP. In this theory, mass loss including the effect of Roche-lobe overflow becomes significant primarily for masses below a Saturn mass, for semimajor axes = 0.023 AU. This contrasts with the Baraffe model, where hot EGPs are claimed to be remnants of much more massive bodies, originally several times Jupiter and still losing substantial mass fractions at present.

W. B. Hubbard; M. F. Hattori; A. Burrows; I. Hubeny; D. Sudarsky

2006-10-27T23:59:59.000Z

396

RECENT DEVELOPMENT IN TEM CHARACTERIZATION OF IRRADIATED RERTR FUELS  

SciTech Connect (OSTI)

The recent development on TEM work of irradiated RERTR fuels includes microstructural characterization of the irradiated U-10Mo/alloy-6061 monolithic fuel plate, the RERTR-7 U-7Mo/Al-2Si and U-7Mo/Al-5Si dispersion fuel plates. It is the first time that a TEM sample of an irradiated nuclear fuel was prepared using the focused-ion-beam (FIB) lift-out technical at the Idaho National Laboratory. Multiple FIB TEM samples were prepared from the areas of interest in a SEM sample. The characterization was carried out using a 200kV TEM with a LaB6 filament. The three dimensional orderings of nanometer-sized fission gas bubbles are observed in the crystalline region of the U-Mo fuel. The co-existence of bubble superlattice and dislocations is evident. Detailed microstructural information along with composition analysis is obtained. The results and their implication on the performance of these fuels are discussed.

J. Gan; B.D. Miller; D.D. Keiser Jr.; A.B. Robinson; J.W. Madden; P.G. Medvedev; D.M. Wachs

2011-10-01T23:59:59.000Z

397

Microstructure of RERTR DU-Alloys Irradiated with Krypton Ions  

SciTech Connect (OSTI)

Fuel development for reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium fuels that can be employed to replace existing high enrichment uranium fuels currently used in many research and test reactors worldwide. Radiation stability of the interaction product formed at fuel-matrix interface has a strong impact on fuel performance. Three depleted uranium alloys are cast that consist of the following 5 phases of interest to be investigated: U(Si,Al)3, (U,Mo)(Si,Al)3, UMo2Al20, U6Mo4Al43 and UAl4. Irradiation of TEM disc samples with 500 keV Kr ions at 200?C to high doses up to ~100 dpa were conducted using an intermediate voltage electron microscope equipped with an ion accelerator. The irradiated microstructure of the 5 phases is characterized using transmission electron microscopy. The results will be presented and the implication of the observed irradiated microstructure on the fuel performance will be discussed.

J. Gan; D. Keiser; D. Wachs; B. Miller; T. Allen; M. Kirk; J. Rest

2009-11-01T23:59:59.000Z

398

Modeling pore corrosion in normally open gold- plated copper connectors.  

SciTech Connect (OSTI)

The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.

Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien; Enos, David George; Serna, Lysle M.; Sorensen, Neil Robert

2008-09-01T23:59:59.000Z

399

Normal and lateral Casimir forces between deformed plates  

SciTech Connect (OSTI)

The Casimir force between macroscopic bodies depends strongly on their shape and orientation. To study this geometry dependence in the case of two deformed metal plates, we use a path-integral quantization of the electromagnetic field which properly treats the many-body nature of the interaction, going beyond the commonly used pairwise summation (PWS) of van der Waals forces. For arbitrary deformations we provide an analytical result for the deformation induced change in the Casimir energy, which is exact to second order in the deformation amplitude. For the specific case of sinusoidally corrugated plates, we calculate both the normal and the lateral Casimir forces. The deformation induced change in the Casimir interaction of a flat and a corrugated plate shows an interesting crossover as a function of the ratio of the mean plate distance H to the corrugation length {lambda}: For {lambda}<>H. The amplitude of the lateral force between two corrugated plates which are out of registry is shown to have a maximum at an optimal wavelength of {lambda}{approx_equal}2.5 H. With increasing H/{lambda} > or approx. 0.3 the PWS approach becomes a progressively worse description of the lateral force due to many-body effects. These results may be of relevance for the design and operation of novel microelectromechanical systems (MEMS) and other nanoscale devices.

Emig, Thorsten; Hanke, Andreas; Golestanian, Ramin; Kardar, Mehran [Institut fuer Theoretische Physik, Universitaet zu Koeln, Zuelpicher Strasse 77, D-50937 Cologne (Germany); Institut fuer Theoretische Physik, Universitaet Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany); Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of); Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2003-02-01T23:59:59.000Z

400

Post-irradiation Examination Plan for ORNL and University of California Santa Barbara Assessment of UCSB ATR-2 Irradiation Experiment  

SciTech Connect (OSTI)

New and existing databases will be combined to support development of physically based models of transition temperature shifts (TTS) for high fluence-low flux (? < 10{sup 11}n/cm{sup 2}-s) conditions, beyond the existing surveillance database, to neutron fluences of at least 110{sup 20} n/cm{sup 2} (>1 MeV). All references to neutron flux and fluence in this report are for fast neutrons (>1 MeV). The reactor pressure vessel (RPV) task of the Light Water Reactor Sustainability (LWRS) Program is working with various organizations to obtain archival surveillance materials from commercial nuclear power plants to allow for comparisons of the irradiation-induced microstructural features from reactor surveillance materials with those from similar materials irradiated under high flux conditions in test reactors

Nanstad, R. K. [Materials Science and Technology Division, Oak Ridge National Laboratory; Yamamoto, T. [University of California Santa Barbara; Sokolov, M. A. [Materials Science and Technology Division, Oak Ridge National Laboratory

2014-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Characterization of polymeric films subjected to lithium ion beam irradiation  

SciTech Connect (OSTI)

Two different polymeric materials that are candidate materials for use as binders for mixed uraniumplutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the CO and CC bonds, which furnish radical intermediates that react by radical recombination with Hradical dot and OHradical dot. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2Omethanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were wholly dominated by hydrocarbon ion series, and no difference was observed between unirradiated and irradiated samples. The studies demonstrate that for the PEG-based polymers, direct evidence for radiolytic scission can be observed using ESI-MS, and suggests that both radiolytic pathways and efficiencies as a function of dose should be measurable by calibrating instrument response to the small oligomeric degradation products.

Gary S. Groenewold; W. Roger Cannon; Paul A. Lessing; Recep Avci; Muhammedin Deliorman; Mark Wolfenden; Doug W. Akers; J. Keith Jewell

2013-02-01T23:59:59.000Z

402

Cardiotoxic Effects of Tangential Breast Irradiation in Early Breast Cancer Patients: The Role of Irradiated Heart Volume  

SciTech Connect (OSTI)

Purpose: To assess the risk of cardiovascular disease (CVD) after postlumpectomy irradiation restricted to tangential fields. Methods and Materials: We assessed the incidence of CVD in 1601 patients with T1-2N0 breast cancer (BC) treated with breast tangentials in five different hospitals between 1980 and 1993. Patients treated with radiation fields other than breast tangentials and those treated with adjuvant chemotherapy were excluded. For patients with left-sided BC, maximum heart distance (MHD) was measured on the simulator films as a proxy for irradiated heart volume. Risk of CVD by laterality and MHD categories was evaluated by Cox proportional hazards regression analysis. Results: Follow-up was complete for 94% of the patients, and median follow-up was 16 years. The incidence of CVD overall was 14.1%, of ischemic heart disease 7.3%, and for other types of heart disease 9.2%, with a median time to event of 10 to 11 years. The incidence of CVD was 11.6% in patients with right-sided BC, compared with 16.0% in left-sided cases. The hazard ratio associated with left-sided vs. right-sided BC was 1.38 (95% confidence interval [CI], 1.05-1.81) for CVD overall, 1.35 (95% CI, 0.93-1.98) for ischemic heart disease , and 1.53 (95% CI, 1.09-2.15) for other heart disease, adjusted for age, diabetes, and history of CVD. The risk of CVD did not significantly increase with increasing MHD. Conclusions: Patients irradiated for left-sided BC with tangential fields have a higher incidence of CVD compared with those with right-sided cancer. However, the risk does not seem to increase with larger irradiated heart volumes.

Borger, Jacques H. [Maastricht Radiation Oncology Clinic, Maastricht (Netherlands)], E-mail: jacques.borger@maastro.nl; Hooning, Maartje J. [Department of Epidemiology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Ziekenhuis, Amsterdam (Netherlands); Boersma, Liesbeth J. [Maastricht Radiation Oncology Clinic, Maastricht (Netherlands); Snijders-Keilholz, Antonia [Department of Radiotherapy, Erasmus MC/Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Aleman, Berthe M.P. [Department of Radiotherapy, Netherlands Cancer Institute/Antoni van Leeuwenhoek Ziekenhuis, Amsterdam (Netherlands); Lintzen, Eelke [Maastricht Radiation Oncology Clinic, Maastricht (Netherlands); Brussel, Sara van [Department of Radiotherapy, Universiteitsziekenhuis, Leuven (Belgium); Toorn, Peter-Paul van der [Department of Radiotherapy, Catharina Ziekenhuis, Eindhoven (Netherlands); Alwhouhayb, Maitham [Maastricht Radiation Oncology Clinic, Maastricht (Netherlands); Leeuwen, Flora E. van [Department of Epidemiology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Ziekenhuis, Amsterdam (Netherlands)

2007-11-15T23:59:59.000Z

403

Booster irradiation to the spleen following total body irradiation. A new immunosuppressive approach for allogeneic bone marrow transplantation  

SciTech Connect (OSTI)

Graft rejection presents a major obstacle for transplantation of T cell-depleted bone marrow in HLA-mismatched patients. In a primate model, after conditioning exactly as for leukemia patients, it was shown that over 99% of the residual host clonable T cells are concentrated in the spleen on day 5 after completion of cytoreduction. We have now corroborated these findings in a mouse model. After 9-Gy total body irradiation (TBI), the total number of Thy-1.2+ cells in the spleen reaches a peak between days 3 and 4 after TBI. The T cell population is composed of both L3T4 (helper) and Lyt-2 (suppressor) T cells, the former being the major subpopulation. Specific booster irradiation to the spleen (5 Gy twice) on days 2 and 4 after TBI greatly enhances production of donor-type chimera after transplantation of T cell-depleted allogeneic bone marrow. Similar enhancement can be achieved by splenectomy on day 3 or 4 after TBI but not if splenectomy is performed 1 day before TBI or 1 day after TBI, strengthening the hypothesis that, after lethal TBI in mice, the remaining host T cells migrate from the periphery to the spleen. These results suggest that a delayed booster irradiation to the spleen may be beneficial as an additional immunosuppressive agent in the conditioning of leukemia patients, in order to reduce the incidence of bone marrow allograft rejection.

Lapidot, T.; Singer, T.S.; Salomon, O.; Terenzi, A.; Schwartz, E.; Reisner, Y.

1988-10-15T23:59:59.000Z

404

7-Tesla Susceptibility-Weighted Imaging to Assess the Effects of Radiotherapy on Normal-Appearing Brain in Patients With Glioma  

SciTech Connect (OSTI)

Purpose: To evaluate the intermediate- and long-term imaging manifestations of radiotherapy on normal-appearing brain tissue in patients with treated gliomas using 7T susceptibility-weighted imaging (SWI). Methods and Materials: SWI was performed on 25 patients with stable gliomas on a 7 Tesla magnet. Microbleeds were identified as discrete foci of susceptibility that did not correspond to vessels. The number of microbleeds was counted within and outside of the T2-hyperintense lesion. For 3 patients, radiation dosimetry maps were reconstructed and fused with the 7T SWI data. Results: Multiple foci of susceptibility consistent with microhemorrhages were observed in patients 2 years after chemoradiation. These lesions were not present in patients who were not irradiated. The prevalence of microhemorrhages increased with the time since completion of radiotherapy, and these lesions often extended outside the boundaries of the initial high-dose volume and into the contralateral hemisphere. Conclusions: High-field SWI has potential for visualizing the appearance of microbleeds associated with long-term effects of radiotherapy on brain tissue. The ability to visualize these lesions in normal-appearing brain tissue may be important in further understanding the utility of this treatment in patients with longer survival.

Lupo, Janine M., E-mail: janine.lupo@ucsf.edu [Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (United States); Chuang, Cynthia F. [Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA (United States); Chang, Susan M. [Department of Neurosurgery, University of California, San Francisco, San Francisco, CA (United States); Barani, Igor J. [Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA (United States); Jimenez, Bert; Hess, Christopher P. [Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (United States); Nelson, Sarah J. [Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (United States); Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA (United States)

2012-03-01T23:59:59.000Z

405

The effect of neutron irradiation on the mechanical properties of C/SiC composites  

SciTech Connect (OSTI)

The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/ mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material.

Shih, Chunghao [ORNL] [ORNL; Katoh, Yutai [ORNL] [ORNL; Snead, Lance Lewis [ORNL] [ORNL; Steinbeck, John [ORNL] [ORNL

2013-01-01T23:59:59.000Z

406

Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor  

SciTech Connect (OSTI)

Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

2006-10-01T23:59:59.000Z

407

Effectiveness of irradiation in killing pathogens. [Treatment of sewage sludge for land application  

SciTech Connect (OSTI)

United States Environmental Protection Agency regulations include gamma ray irradiation of sludge as an approved Process to Further Reduce Pathogens (PFRP) prior to land application. Research at Sandia National Laboratories on pathogen inactivation in sludge by gamma irradiation has demonstrated that the 1 Mrad PFRP dose is capable, by itself, of eliminating bacterial, fungal, and parasitic pathogens from sludge. Gamma irradiation of sludge in conjunction with the required Processes to Significantly Reduce Pathogens (PSRP) should also eliminate the viral hazard from wastewater sludges.

Yeager, J.G.; Ward, R.L.

1980-01-01T23:59:59.000Z

408

Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences  

SciTech Connect (OSTI)

The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. Microstructural observation and data analysis were performed.

Koyanagi, Takaaki [ORNL; Shimoda, Kazuya [Kyoto University, Japan; Kondo, Sosuke [Kyoto University, Japan; Hinoki, Tatsuya [Kyoto University, Japan; Ozawa, Kazumi [ORNL; Katoh, Yutai [ORNL

2014-01-01T23:59:59.000Z

409

Formation of long-range ordered quantum dots arrays in amorphous matrix by ion beam irradiation  

SciTech Connect (OSTI)

We demonstrate the production of a well ordered three-dimensional array of Ge quantum dots in amorphous silica matrix. The ordering is achieved by ion beam irradiation and annealing of a multilayer film. Structural analysis shows that quantum dots nucleate along the direction of the ion beam used for irradiation, while the mutual distance of the quantum dots is determined by the diffusion properties of the multilayer material rather than the distances between traces of ions that are used for irradiation.

Buljan, M. [Charles University in Prague, Prague 12116 (Czech Republic); Ruder Boskovic Institute, Zagreb 10000 (Croatia); Bogdanovic-Radovic, I.; Karlusic, M.; Desnica, U. V.; Radic, N.; Dubcek, P. [Ruder Boskovic Institute, Zagreb 10000 (Croatia); Drazic, G. [Jozef Stefan Institute, Ljubljana 1000 (Slovenia); Salamon, K. [Institute of Physics, Zagreb 10000 (Croatia); Bernstorff, S. [Sincrotrone Trieste, Basovizza 34012 (Italy); Holy, V. [Charles University in Prague, Prague 12116 (Czech Republic)

2009-08-10T23:59:59.000Z

410

Temperature dependence of fracture toughness in HT9 steel neutron-irradiated up to 145 dpa  

SciTech Connect (OSTI)

The temperature dependence of fracture toughness in HT9 steel irradiated to high doses was investigated using miniature three-point bend (TPB) fracture specimens. These specimens were from the ACO-3 fuel duct wall of the Fast Flux Test Facility (FFTF), in which irradiation doses were in the range of 3.2 144.8 dpa and irradiation temperatures in the range of 380.4 502.6 oC. A miniature specimen reuse technique has been established for this investigation: the specimens used were the tested halves of miniature Charpy impact specimens (~13 3 4 mm) with diamond-saw cut in the middle. The fatigue precracking for specimens and fracture resistance (J-R) tests were carried out in a MTS servo-hydraulic testing machine with a vacuum furnace following the standard procedure described in the ASTM Standard E 1820-09. For each of five irradiated and one archive conditions, 7 to 9 J-R tests were performed at selected temperatures ranging from 22 C to 600 C. The fracture toughness of the irradiated HT9 steel was strongly dependent on irradiation temperatures rather than irradiation dose. When the irradiation temperature was below about 430 C, the fracture toughness of irradiated HT9 increased with test temperature, reached an upper shelf of 180 200 MPa m at 350 450 C and then decreased with test temperature. When the irradiation temperature 430 C, the fracture toughness was nearly unchanged until about 450 C and decreased with test temperature in higher temperature range. Similar test temperature dependence was observed for the archive material although the highest toughness values are lower after irradiation. Ductile stable crack growth occurred except for a few cases where both the irradiation temperature and test temperature are relatively low.

Baek, Jong-Hyuk [KAERI] [KAERI; Byun, Thak Sang [ORNL] [ORNL; Maloy, S [Los Alamos National Laboratory (LANL)] [Los Alamos National Laboratory (LANL); Toloczko, M [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL)

2014-01-01T23:59:59.000Z

411

UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS  

SciTech Connect (OSTI)

Unlike previously explored relationships between the properties of hot Jovian atmospheres, the geometric albedo and the incident stellar flux do not exhibit a clear correlation, as revealed by our re-analysis of Q0-Q14 Kepler data. If the albedo is primarily associated with the presence of clouds in these irradiated atmospheres, a holistic modeling approach needs to relate the following properties: the strength of stellar irradiation (and hence the strength and depth of atmospheric circulation), the geometric albedo (which controls both the fraction of starlight absorbed and the pressure level at which it is predominantly absorbed), and the properties of the embedded cloud particles (which determine the albedo). The anticipated diversity in cloud properties renders any correlation between the geometric albedo and the stellar flux weak and characterized by considerable scatter. In the limit of vertically uniform populations of scatterers and absorbers, we use an analytical model and scaling relations to relate the temperature-pressure profile of an irradiated atmosphere and the photon deposition layer and to estimate whether a cloud particle will be lofted by atmospheric circulation. We derive an analytical formula for computing the albedo spectrum in terms of the cloud properties, which we compare to the measured albedo spectrum of HD 189733b by Evans et al. Furthermore, we show that whether an optical phase curve is flat or sinusoidal depends on whether the particles are small or large as defined by the Knudsen number. This may be an explanation for why Kepler-7b exhibits evidence for the longitudinal variation in abundance of condensates, while Kepler-12b shows no evidence for the presence of condensates despite the incident stellar flux being similar for both exoplanets. We include an 'observer's cookbook' for deciphering various scenarios associated with the optical phase curve, the peak offset of the infrared phase curve, and the geometric albedo.

Heng, Kevin [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Demory, Brice-Olivier, E-mail: kevin.heng@csh.unibe.ch, E-mail: demory@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

2013-11-10T23:59:59.000Z

412

Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation  

SciTech Connect (OSTI)

This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs.

Maziasz, P.J.

1985-11-01T23:59:59.000Z

413

E-Print Network 3.0 - advanced alloys irradiated Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shifts due to irradiation... on a presentation made at the 15th European Conference of Fracture "Advanced Fracture ... Source: Ecole Polytechnique, Centre de mathmatiques...

414

Effect of {gamma}-irradiation on strength of concrete for nuclear-safety structures  

SciTech Connect (OSTI)

Concrete applied for construction of nuclear power plant (NPP) Temelin (Czech Republic) has been exposed to {gamma}-irradiation up to dose 6x10{sup 5} Gy. Depending on the level of irradiation, changes in strength, porous structure and phase composition of the concrete have been studied. It is found that irradiation lowers both the strength of concrete (about 10%) and volume (resp. surface) of porous space. On the other hand, {gamma}-irradiation increases the ratio of calcite, CaCO{sub 3}, in the concrete. Observed effects are discussed with respect to safety of NPPs.

Vodak, F. [Czech Technical University (CVUT), Faculty of Civil Engineering, Prague, Thakurova 7, CZ 166 29 Prague 6 (Czech Republic); Trtik, K. [Czech Technical University (CVUT), Faculty of Civil Engineering, Prague, Thakurova 7, CZ 166 29 Prague 6 (Czech Republic); Sopko, V. [Czech Technical University (CVUT), Faculty of Civil Engineering, Prague, Thakurova 7, CZ 166 29 Prague 6 (Czech Republic); Kapickova, O. [Czech Technical University (CVUT), Faculty of Civil Engineering, Prague, Thakurova 7, CZ 166 29 Prague 6 (Czech Republic); Demo, P. [Czech Technical University (CVUT), Faculty of Civil Engineering, Prague, Thakurova 7, CZ 166 29 Prague 6 (Czech Republic)]. E-mail: demo@fzu.cz

2005-07-01T23:59:59.000Z

415

all-sky solar irradiance: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

our climate. A non-negligible influence is suggested by correlation studies between solar variability and climate indicators. The mechanism for solar irradiance variations...

416

E-Print Network 3.0 - acute gamma irradiation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Upgraded D Detector D Collaboration Summary: is due to the bulk silicon properties, photodiode test structures from the same wafer were irradiated Source: Fermi National...

417

The second and third NGNP advanced gas reactor fuel irradiation experiments  

SciTech Connect (OSTI)

The United States Dept. of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is currently scheduled to irradiate a total of five low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The irradiations are being accomplished to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas cooled reactors. The experiments will each consist of at least six separate capsules, and will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The effluent sweep gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and completed a very successful irradiation in early November 2009. The second experiment (AGR-2) started irradiation in June 2010, and the third and fourth experiments have been combined into a single larger irradiation (AGR-3/4) that is currently being assembled. The design and status of the second through fourth experiments as well as the irradiation results of the second experiment to date are discussed. (authors)

Grover, S. B.; Petti, D. A. [Idaho National Laboratory, 2525 N. Fremont Ave., Idaho Falls, ID 83415 (United States)

2012-07-01T23:59:59.000Z

418

E-Print Network 3.0 - accidental irradiation-induced aplasia...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Helsinki Collection: Materials Science 4 Making junctions between carbon nanotubes using an ion beam Summary: ; Ion-irradiation-induced defects; Defect annealing The...

419

E-Print Network 3.0 - atomic clusters irradiated Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nanotubes encapsulating cobalt crystals Summary: to the shrinkage of the irradiated nanotubes due to atom sputtering 22 and defect migration 23... by a different mechanism...

420

Microsoft Word - ORNL-TM-2014-513 Status of SiC Joint Irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

513 STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDESILICON CARBIDE JOINTS Yutai Katoh Takaaki Koyanagi Jim Kiggans Nesrin Cetiner Joel McDuffee September 2014...

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Accumulation and Recovery of Disorder in Au2+-Irradiated Cd2Nb2O7...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the disorder has been observed below room temperature. Citation: Jiang W, WJ Weber, and LA Boatner.2005."Accumulation and Recovery of Disorder in Au2+-Irradiated...

422

Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty  

E-Print Network [OSTI]

114 Solar Irradiance And Power Output Variabilityand L. Bangyin. Online 24-h solar power forecasting based onNielsen. Online short-term solar power forecasting. Solar

Marquez, Ricardo

2012-01-01T23:59:59.000Z

423

E-Print Network 3.0 - absorbed fraction internal irradiation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fission and Nuclear Technologies 56 Development of a method for assessing non-targeted radiation damage in an artificial 3D human skin model Summary: partial irradiation with...

424

E-Print Network 3.0 - apres irradiation neutronique Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tel-00005708,version1-5Apr2004 12;Sommaire 1 INTRODUCTION... COMPORTEMENT DES POLYMERES SOUS IRRADIATION SOUS ATMOSPHERE ANAEROBIE Source: Ecole Polytechnique, Centre de...

425

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

United States California Solar Initiative Coastally Trappedparticipants in the California Solar Initiative (CSI)on location. In California, solar irradiance forecasts near

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

426

A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting  

E-Print Network [OSTI]

iscriticalforcoastalCaliforniasolarforecasting. affectingsolarirradianceinsouthernCalifornia. solar photovoltaicgeneration(thesouthernCalifornia

Mathiesen, Patrick; Collier, Craig; Kleissl, Jan

2013-01-01T23:59:59.000Z

427

alpha-particles microbeam irradiation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Incidence characteristics of alpha particles on detectors irradiated in a radon progeny atmosphere Biology and Medicine Websites Summary: Incidence characteristics of...

428

Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty  

E-Print Network [OSTI]

114 Solar Irradiance And Power Output Variabilitytechniques for solar power output with no exogenous inputs.and their effect on solar power output. For large scale

Marquez, Ricardo

2012-01-01T23:59:59.000Z

429

E-Print Network 3.0 - accidental irradiation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of materials that have been... irradiated at the Brookhaven National Laboratory (BNL) Isotope facility. The effort is part... of an experimental study that focuses on how prone to...

430

E-Print Network 3.0 - au ion irradiation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Josephson Junctions Summary: of the Au mask after the ion irradiation. Excellent Josephson junctions and Josephson junction arrays... removal of metal mask after ion...

431

A Search for Channel Deformation in Irradiated Vanadium Tensile Specimens  

SciTech Connect (OSTI)

A miniature tensile specimen of V-4Cr-4Ti which had be irradiated in the 17J test at 425C to 3.7 dpa was mechanically polished, deformed to 3.9% strain at room temperature, and examined by scanning and transmission electron microscopy in order to look for evidence of channel deformation. It was found that uniform deformation can occur without channel deformation, but evidence for channeling was found with channels appearing most prominently after the onset of necking. The channeling occurs on wavy planes with large variations in localized deformation from channel to channel.

Gelles, David S.; Toloczko, Mychailo B.; Kurtz, Richard J.

2010-02-26T23:59:59.000Z

432

Toward Understanding Dynamic Annealing Processes in Irradiated Ceramics  

E-Print Network [OSTI]

values (given in the legend in units of 1012 cm?2 s?1), and (c) with a pulsed beam with different values of toff (given in the legend in units of 10?3 s) and all the other parameters fixed (fluence = 2.4 ? 1014 cm?2, ton = 1 ms, and Fon = 1.2 ? 1013... ions does not render ZnO amorphous at RT. Ion-beam-produced disorder has been intensively investigated in ZnO [2?12]. For a wide range of irradiation conditions, the level of stable post-implantation disorder in the ZnO crystal bulk depends...

Myers, Michael

2013-03-04T23:59:59.000Z

433

Supine Craniospinal Irradiation Setup with Two Spine Fields  

SciTech Connect (OSTI)

Craniospinal irradiation is an integral part of treatment for a number of cancers. Typically, patients are positioned prone, which allows visualization of field matches. However, a supine position allows better airway access for patients requiring anesthesia, and is more comfortable for patients. One potential difficulty with supine positioning occurs when the patient is tall and requires matching 2 spine fields. We describe a technique to match the spine fields using light fields on the bottom of the treatment table, and verified the approach on a phantom. The accuracy of the technique is demonstrated for the first 4 patients, with the majority of field gaps and overlaps below our clinical tolerance of 2 mm.

Liu, Arthur K. [University of Colorado Denver, Department of Radiation Oncology, Aurora, Colorado (United States)], E-mail: arthur.liu@uchsc.edu; Thornton, Dale; Backus, Jennifer; Dzingle, Wayne; Stoehr, Scott; Newman, Francis [University of Colorado Denver, Department of Radiation Oncology, Aurora, Colorado (United States)

2009-10-01T23:59:59.000Z

434

The effects of alpha particle irradiation on stainless steel  

E-Print Network [OSTI]

and an approximation based on the first year's fluence. . . . . . . . . 17 CHAPTER I INTRODUCTION The storage of Weapons Grade Plutonium (WGPu) pits has prompted this study of the effects of alpha particle irradiation on stainless steel. Previous studies of alpha... and properties of WGPu. ISOTOPE Pu-239 Pu-240 P0-241 Density* Crystal Structure* ATOMIC ABD. (/o) 94. 0 5. 8 0. 2 15. 7 g/cm' BCC 'Note: The density and crystal structure of elemental plutonium is 19. 7 g/cm' and FCC, respectively...

Shipp, John Douglas

1999-01-01T23:59:59.000Z

435

Defect studies in ion irradiated AlGaN. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data Files 1B&W Y-12studies in ion irradiated AlGaN.

436

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface ReactionsIrradiation Effects on Human

437

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface ReactionsIrradiation Effects on

438

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface ReactionsIrradiation Effects

439

Irradiation Effects on Microstructure Change in Nanocrystalline Ceria -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/Surface ReactionsIrradiation

440

www.mdpi.com/journal/ijms Physical Properties of Normal Grade Biodiesel and Winter Grade Biodiesel  

E-Print Network [OSTI]

Abstract: In this study, optical and thermal properties of normal grade and winter grade palm oil biodiesel were investigated. Surface Plasmon Resonance and Photopyroelectric technique were used to evaluate the samples. The dispersion curve and thermal diffusivity were obtained. Consequently, the variation of refractive index, as a function of wavelength in normal grade biodiesel is faster than winter grade palm oil biodiesel, and the thermal diffusivity of winter grade biodiesel is higher than the thermal diffusivity of normal grade biodiesel. This is attributed to the higher palmitic acid C16:0 content in normal grade than in winter grade palm oil biodiesel.

Amir Reza Sadrolhosseini; Mohd Maarof Moksin; Harrison Lau; Lik Nang; Monir Norozi; W. Mahmood; Mat Yunus; Azmi Zakaria

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

E-Print Network 3.0 - acute normal tissue Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering, Tel Aviv University Collection: Engineering ; Biology and Medicine 16 Blast-induced phenotypic switching in cerebral vasospasm Summary: blast. (G-H) Normalized...

442

E-Print Network 3.0 - asymptotically normal estimators Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jin, Jiashun - Department of Statistics, Carnegie Mellon University Collection: Mathematics 2 Robust Asymptotic Statistics Exponential Families Summary: . normal M-, L-, R-,...

443

Pentose fermentation of normally toxic lignocellulose prehydrolysate with strain of Pichia stipitis yeast using air  

DOE Patents [OSTI]

Strains of the yeast Pichia stipitis NPw9 (ATCC PTA-3717) useful for the production of ethanol using oxygen for growth while fermenting normally toxic lignocellulosic prehydrolysates.

Keller, Jr., Fred A. (Lakewood, CO); Nguyen, Quang A. (Golden, CO)

2002-01-01T23:59:59.000Z

444

Ar-40/Ar-39 Age Constraints for the Jaramillo Normal Subchron...  

Open Energy Info (EERE)

oxygen isotope, climate record calibration of the astronomical timescale proposed by Johnson (1982) and Shackleton et al. (1990). Ar-40Ar-39 ages of a normally magnetized...

445

E-Print Network 3.0 - asymp normalization coefficients Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Department of Mathematics, Capital Normal University Beijing 100048, China Abstract: It's a joint work... our recent work on the asymp- totic stability of the waves...

446

Tribological degradation of fluorocarbon coated silicon microdevice surfaces in normal and sliding contact  

E-Print Network [OSTI]

Tribological degradation of fluorocarbon coated silicon microdevice surfaces in normal and sliding degradation of the contact interface of a fluorocarbon monolayer-coated polycrystalline silicon microdevice

Krim, Jacqueline

447

ON THE EXISTENCE OF SHOCKS IN IRRADIATED EXOPLANETARY ATMOSPHERES  

SciTech Connect (OSTI)

Supersonic flows are expected to exist in the atmospheres of irradiated exoplanets, but the question of whether shocks develop lingers. Specifically, it reduces to whether continuous flow in a closed loop may become supersonic and if some portions of the supersonic flow steepen into shocks. We first demonstrate that continuous, supersonic flow may exist in two flavors: isentropic and non-isentropic, with shocks being included in the latter class of solutions. Supersonic flow is a necessary but insufficient condition for shocks to develop. The development of a shock requires the characteristics of neighboring points in a flow to intersect. We demonstrate that the intersection of characteristics may be quantified via the knowledge of the Mach number. Finally, we examine three-dimensional simulations of hot Jovian atmospheres and demonstrate that shock formation is expected to occur mostly on the dayside hemisphere, upstream of the substellar point, because the enhanced temperatures near the substellar point provide a natural pressure barrier for the returning flow. Understanding the role of shocks in irradiated exoplanetary atmospheres is relevant to correctly modeling observables such as the peak offsets of infrared phase curves.

Heng, Kevin [Institute for Astronomy, ETH Zuerich, Wolfgang-Pauli-Strasse 27, CH-8093 Zuerich (Switzerland)

2012-12-10T23:59:59.000Z

448

Irradiation testing of a niobium-molybdenum developmental thermocouple  

SciTech Connect (OSTI)

A need exists for a radiation-resistant thermocouple capable of monitoring temperatures in excess of the limits of the chromel/alumel system. Tungsten/rhenium and platinum/rhodium thermocouples have sufficient temperature capability but have proven to be unstable because of irradiation-induced decalibration. The niobium/molybdenum system is believed to hold great potential for nuclear applications at temperatures up to 2000 K. However, the fragility of pure niobium and fabrication problems with niobium/molybdenum alloys have limited development of this system. Utilizing the Fast Flux Test Facility, a developmental thermocouple with a thermoelement pair consisting of a pure molybdenum and a niobium-1%zirconium alloy wire was irradiated fro 7200 hours at a temperature of 1070 K. The thermocouple performed flawlessly for the duration of the experiment and exhibited stability comparable to a companion chromel/alumel unit. A second thermocouple, operating at 1375 K, is currently being employed to monitor a fusion materials experiment in the Fast Flux Test Facility. This experiment, also scheduled for 7200 hours, will serve to further evaluate the potential of the niobium-1%zirconium/molybdenum thermoelement system. 7 refs., 7 figs.

Knight, R.C.; Greenslade, D.L.

1991-10-01T23:59:59.000Z

449

Simulation of Electron-Beam Irradiation of Skin Tissue Model  

SciTech Connect (OSTI)

Monte Carlo simulation of electrons stopping in liquid water was used to model the penetration and dose distribution of electron beams incident on the full-thickness EpiDermTM skin model (MatTek, Ashland, VA). This 3D tissue model has a fully developed basement membrane separating an epidermal layer of keratinocytes in various stages of differentiation from a dermal layer of fibroblast embedded in collagen. The simulations were motivated by a desire to selectively expose the epidermal layer to low linear-energy-transfer (LET) radiation in the presence of a non-irradiated dermal layer. Using the variable energy electron microbeam at the Pacific Northwest National Laboratory (PNNL) as a model of device characteristics and irradiation geometry, we find that at the highest beam energy available (90 keV), the estimated 90th percentile of penetration remains in the epidermal layer. To investigate the depth-dose distribution, we calculated lineal energy spectra for 10um thick layers near the 10th, 50th, and 90th percentile of penetration by the 90 keV electron beam. Biphasic spectra showed an increasing component of "stoppers" with increasing depth. Despite changes in the lineal energy spectra, the main effect on dose deposition with increasing depth is the screening effect of tissue above the layer of interest.

Miller, John H.; Suleiman, Atef; Chrisler, William B.; Sowa, Marianne B.

2011-01-03T23:59:59.000Z

450

Global horizontal irradiance clear sky models : implementation and analysis.  

SciTech Connect (OSTI)

Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 different sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.

Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.

2012-03-01T23:59:59.000Z

451

Method for monitoring irradiated fuel using Cerenkov radiation  

DOE Patents [OSTI]

A method is provided for monitoring irradiated nuclear fuel inventories located in a water-filled storage pond wherein the intensity of the Cerenkov radiation emitted from the water in the vicinity of the nuclear fuel is measured. This intensity is then compared with the expected intensity for nuclear fuel having a corresponding degree of irradiation exposure and time period after removal from a reactor core. Where the nuclear fuel inventory is located in an assembly having fuel pins or rods with intervening voids, the Cerenkov light intensity measurement is taken at selected bright sports corresponding to the water-filled interstices of the assembly in the water storage, the water-filled interstices acting as Cerenkov light channels so as to reduce cross-talk. On-line digital analysis of an analog video signal is possible, or video tapes may be used for later measurement using a video editor and an electrometer. Direct measurement of the Cerenkov radiation intensity also is possible using spot photometers pointed at the assembly.

Dowdy, E.J.; Nicholson, N.; Caldwell, J.T.

1980-05-21T23:59:59.000Z

452

The effect of neutron irradiation on silicon carbide fibers  

SciTech Connect (OSTI)

Nine types of SiC fiber have been exposed to neutron radiation in the Advanced Test Reactor at 250 C for various lengths of time ranging from 83 to 128 days. The effects of these exposures have been initially determined using scanning electron microscopy. The fibers tested were Nicalon{trademark} CG, Tyranno, Hi-Nicalon{trademark}, Dow Corning SiC, Carborundum SiC, Textron SCS-6, polymethysilane (PMS) derived SiC from the University of Michigan, and two types of MER SiC fiber. This covers a range of fibers from widely used commercial fibers to developmental fibers. Consistent with previous radiation experiments, Nicalon fiber was severely degraded by the neutron irradiation. Similarly, Tyranno suffered severe degradation. The more advanced fibers which approach the composition and properties of SiC performed well under irradiation. Of these, the Carborundum SiC fiber appeared to perform the best. The Hi-Nicalon and Dow Corning Fibers exhibited good general stability, but also appear to have some surface roughening. The MER fibers and the Textron SCS-6 fibers both had carbon cores which adversely influenced the overall stability of the fibers.

Newsome, G.A. [Lockheed Martin Corp., Schenectady, NY (United States)

1997-01-01T23:59:59.000Z

453

Is irradiation important for the secular evolution of low-mass X-ray binaries?  

E-Print Network [OSTI]

It is argued that irradiation in low-mass X-ray binaries (LMXBs) caused by accretion-generated X-rays can not only change the optical appearance of LMXBs but also their outburst properties and possibly also their long-term evolution. Irradiation during an outburst of the outer parts of the accretion disc in a transient LMXB leads to drastic changes in the outburst properties. As far as the secular evolution of such systems is concerned, these changes can result in enhanced loss of mass and angular momentum from the system and, most important, in neutron star LMXBs in a much less efficient use of the transferred matter to spin up the neutron star to a ms-pulsar. Irradiation of the donor star can destabilize mass transfer and lead to irradiation-driven mass transfer cycles, i.e. to a secular evolution which differs drastically from an evolution in which irradiation is ignored. It is argued that irradiation-driven mass transfer cycles cannot occur in systems which are transient because of disc instabilities, i.e. in particular in long-period LMXBs with a giant donor. It is furthermore shown that for irradiating either the disc or the donor star, direct irradiation alone is insufficient. Rather, indirect irradiation via scattered accretion luminosity must play an important role in transient LMXBs and is, in fact, necessary to destabilize mass transfer in short-period systems by irradiating the donor star. Whether and to what extent irradiation in LMXBs does change their secular evolution depends on a number of unsolved problems which are briefly discussed at the end of this article.

H. Ritter

2008-03-14T23:59:59.000Z

454

Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics  

SciTech Connect (OSTI)

A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation of irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD {beta}-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination.

Senor, D.J.; Youngblood, G.E. [Pacific Northwest National Lab., Richland, WA (United States); Moore, C.E. [Auburn Univ., AL (United States); Trimble, D.J. [Westinghouse Hanford Co., Richland, WA (United States); Woods, J.J. [Lockheed Martin, Schenectady, NY (United States)

1996-06-01T23:59:59.000Z

455

Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics  

SciTech Connect (OSTI)

A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation after irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD {beta}-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination.

Senor, D.J.; Youngblood, G.E. [Pacific Northwest National Lab., Richland, WA (United States); Moore, C.E. [Auburn Univ., AL (United States); Trimble, D.J. [Westinghouse Hanford Co., Richland, WA (United States); Woods, J.J. [Lockheed Martin, Schenectady, NY (United States)

1997-05-01T23:59:59.000Z

456

Normalized Microwave Reflection Index: A Vegetation Measurement Derived From GPS Networks  

E-Print Network [OSTI]

is known as Normalized Differ- ence Water Index (NDWI) [12]. It is calculated using reflectance in two near infrared (NIR) channels. Similar indices have been proposed that use reflectance at other NIR wavelengthsNormalized Microwave Reflection Index: A Vegetation Measurement Derived From GPS Networks Kristine

Small, Eric

457

Impact of assumption of log-normal distribution on monthly rainfall estimation from TMI  

E-Print Network [OSTI]

-evaluate the assumption for estimates from TMI, which, unlike the SSM/I, has a 10 GHz channel. The minimum chi-square estimation technique was used for the log-normal method. To check the credibility of the estimation routines, log-normally distributed synthetic data were...

Lee, Dong Heon

2001-01-01T23:59:59.000Z

458

Original article Normal and sickle red blood cell dynamics under venular flow  

E-Print Network [OSTI]

1 Original article Normal and sickle red blood cell dynamics under venular flow C. Allayousa , A these notions are found in sickle cell disease where sickle red blood cells become more rigid, leading. Thus, normal and sickle red blood cells are classified into different sub-groups, showing

Paris-Sud XI, Université de

459

Projective re-normalization for improving the behavior of a homogeneous conic linear system  

E-Print Network [OSTI]

In this paper we study the homogeneous conic system F : Ax = 0, x ? C \\ {0}. We choose a point s ? intC? that serves as a normalizer and consider computational properties of the normalized system Fs : Ax = 0, sT x = 1, ...

Belloni, Alexandre

460

The Smith Normal Form of the Incidence Matrix of Skew Lines in PG(3, q)  

E-Print Network [OSTI]

The Smith Normal Form of the Incidence Matrix of Skew Lines in PG(3, q) Peter Sin, University. In our case D = q4I. #12;Smith normal forms A, L define endomorphisms of the free Z-module on lines. Cokernel of A is called the Smith group and the torsion subgroup of the cokernel of L is known

Sin, Peter

Note: This page contains sample records for the topic "normal irradiance dni" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Geometry and scaling relations of a population of very small rift-related normal faults  

E-Print Network [OSTI]

normal faults within the Solite Quarry of the Dan River rift basin range in length from a few millimetres AND SCALING RELATIONS The small normal faults are present in quarries of the Virginia Solite Corporation outcrops and quarried boulders (Fig. 2). The fault traces are typically straight, although the fault tips

462

Temperature dependence of the structure of Langmuir films of normal-alkanes on liquid mercury  

E-Print Network [OSTI]

Temperature dependence of the structure of Langmuir films of normal-alkanes on liquid mercury H phase behavior of Langmuir films of n-alkanes CH3(CH2)n 2CH3 , denote Cn on mercury was studied surface normal, alkanes on mercury are always oriented surface parallel and show no long-range in

Ocko, Ben

463

A Filtering Mechanism for Normal Fish Trajectories Cigdem Beyan, Robert B. Fisher  

E-Print Network [OSTI]

A Filtering Mechanism for Normal Fish Trajectories Cigdem Beyan, Robert B. Fisher IPAB, School of Informatics, University of Edinburgh, UK C.Beyan@sms.ed.ac.uk, rbf@inf.ed.ac.uk Abstract Understanding fish surveillance, etc. However, the literature is very limited in terms of normal/abnormal fish behavior

Fisher, Bob

464

Interpolating wind speed normals from the sparse Dutch network to a high resolution  

E-Print Network [OSTI]

, we had potential wind speed time series with 30 years of data (with at least 20 yearly and monthly by Verkaik (Verkaik, 2001). The method is a five-step procedure: 1 Use series of (potential) wind to calculate (potential) normals at measuring sites 2 Calculate wind speed normals at the top of the surface

Stoffelen, Ad

465

20th century changes in surface solar irradiance in simulations and observations  

E-Print Network [OSTI]

20th century changes in surface solar irradiance in simulations and observations A. Romanou,1 B December 2006; accepted 5 February 2007; published 8 March 2007. [1] The amount of solar irradiance reaching the surface is a key parameter in the hydrological and energy cycles of the Earth's climate. We

466

Irradiation research capabilities at HFIR (High Flux Isotope Reactor) and ANS (Advanced Neutron Source)  

SciTech Connect (OSTI)

A variety of materials irradiation facilities exist in the High Flux Isotope Reactor (HFIR) and are planned for the Advanced Neutron Source (ANS) reactor. In 1986 the HFIR Irradiation Facilities Improvement (HIFI) project began modifications to the HFIR which now permit the operation of two instrumented capsules in the target region and eight capsules of 46-mm OD in the RB region. Thus, it is now possible to perform instrumented irradiation experiments in the highest continuous flux of thermal neutrons available in the western world. The new RB facilities are now large enough to permit neutron spectral tailoring of experiments and the modified method of access to these facilities permit rotation of experiments thereby reducing fluence gradients in specimens. A summary of characteristics of irradiation facilities in HFIR is presented. The ANS is being designed to provide the highest thermal neutron flux for beam facilities in the world. Additional design goals include providing materials irradiation and transplutonium isotope production facilities as good, or better than, HFIR. The reference conceptual core design consists of two annular fuel elements positioned one above the other instead of concentrically as in the HFIR. A variety of materials irradiation facilities with unprecedented fluxes are being incorporated into the design of the ANS. These will include fast neutron irradiation facilities in the central hole of the upper fuel element, epithermal facilities surrounding the lower fuel element, and thermal facilities in the reflector tank. A summary of characteristics of irradiation facilities presently planned for the ANS is presented. 2 tabs.

Thoms, K.R.

1990-01-01T23:59:59.000Z

467

Antimicrobial packaging system for optimization of electron beam irradiation of fresh produce  

E-Print Network [OSTI]

This study evaluated the potential use of an antimicrobial packaging system in combination with electron beam irradiation to enhance quality of fresh produce. Irradiated romaine lettuce up to 3.2 kGy showed negligible (p > 0.05) changes in color...

Han, Jaejoon

2006-10-30T23:59:59.000Z

468

P5.60B DERIVATION OF DAYLIGHT AND SOLAR IRRADIANCE DATA FROM SATELLITE OBSERVATIONS  

E-Print Network [OSTI]

P5.60B DERIVATION OF DAYLIGHT AND SOLAR IRRADIANCE DATA FROM SATELLITE OBSERVATIONS A. Hammer, D project SATELLIGHT an att