Density- and wavefunction-normalized Cartesian spherical harmonics for l ? 20
Michael, J. Robert; Volkov, Anatoliy
2015-03-01
The widely used pseudoatom formalism in experimental X-ray charge-density studies makes use of real spherical harmonics when describing the angular component of aspherical deformations of the atomic electron density in molecules and crystals. The analytical form of the density-normalized Cartesian spherical harmonic functions for up to l ? 7 and the corresponding normalization coefficients were reported previously by Paturle & Coppens. It was shown that the analytical form for normalization coefficients is available primarily for
Density- and wavefunction-normalized Cartesian spherical harmonics for l â‰¤ 20
Michael, J. Robert; Volkov, Anatoliy
2015-03-01
The widely used pseudoatom formalism in experimental X-ray charge-density studies makes use of real spherical harmonics when describing the angular component of aspherical deformations of the atomic electron density in molecules and crystals. The analytical form of the density-normalized Cartesian spherical harmonic functions for up to l â‰¤ 7 and the corresponding normalization coefficients were reported previously by Paturle & Coppens. It was shown that the analytical form for normalization coefficients is available primarily for
Density- and wavefunction-normalized Cartesian spherical harmonics for l â‰¤ 20
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Michael, J. Robert; Volkov, Anatoliy
2015-03-01
The widely used pseudoatom formalism in experimental X-ray charge-density studies makes use of real spherical harmonics when describing the angular component of aspherical deformations of the atomic electron density in molecules and crystals. The analytical form of the density-normalized Cartesian spherical harmonic functions for up to l â‰¤ 7 and the corresponding normalization coefficients were reported previously by Paturle & Coppens. It was shown that the analytical form for normalization coefficients is available primarily forl â‰¤ 4. Only in very special cases it is possible to derive an analytical representation of the normalization coefficients for 4 < l â‰¤ 7.moreÂ Â» In most cases for l > 4 the density normalization coefficients were calculated numerically to within seven significant figures. In this study we review the literature on the density-normalized spherical harmonics, clarify the existing notations, use the Paturleâ€“Coppens method in the Wolfram Mathematicasoftware to derive the Cartesian spherical harmonics for l â‰¤ 20 and determine the density normalization coefficients to 35 significant figures, and computer-generate a Fortran90 code. The article primarily targets researchers who work in the field of experimental X-ray electron density, but may be of some use to all who are interested in Cartesian spherical harmonics.Â«Â less
Normal and abnormal evolution of argon metastable density in high-density plasmas
Seo, B. H.; Kim, J. H.; You, S. J.
2015-05-15
A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution has seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.
Mineral density volume gradients in normal and diseased human tissues
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.; Aikawa, Elena
2015-04-09
Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-raymoreÂ Â» fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.Â«Â less
Mineral density volume gradients in normal and diseased human tissues
Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.; Aikawa, Elena
2015-04-09
Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.
Distinct p53 genomic binding patterns in normal and cancer-derived human cells
Botcheva K.; McCorkle S. R.; McCombie W. R.; Dunn J. J.; Anderson C. W.
2011-12-15
We report here genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands, in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIPseq peaks to the recently published IMR90 methylome1 and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells.
Kraisler, Eli; Kronik, Leeor
2014-05-14
The fundamental gap is a central quantity in the electronic structure of matter. Unfortunately, the fundamental gap is not generally equal to the Kohn-Sham gap of density functional theory (DFT), even in principle. The two gaps differ precisely by the derivative discontinuity, namely, an abrupt change in slope of the exchange-correlation energy as a function of electron number, expected across an integer-electron point. Popular approximate functionals are thought to be devoid of a derivative discontinuity, strongly compromising their performance for prediction of spectroscopic properties. Here we show that, in fact, all exchange-correlation functionals possess a derivative discontinuity, which arises naturally from the application of ensemble considerations within DFT, without any empiricism. This derivative discontinuity can be expressed in closed form using only quantities obtained in the course of a standard DFT calculation of the neutral system. For small, finite systems, addition of this derivative discontinuity indeed results in a greatly improved prediction for the fundamental gap, even when based on the most simple approximate exchange-correlation density functional – the local density approximation (LDA). For solids, the same scheme is exact in principle, but when applied to LDA it results in a vanishing derivative discontinuity correction. This failure is shown to be directly related to the failure of LDA in predicting fundamental gaps from total energy differences in extended systems.
Eich, F. G.; Hellgren, Maria
2014-12-14
We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state and exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative.
Luan, S. X.; Yu, Wei; Shen, B. F.; Xu, Z. Z.; Yu, M. Y.; Zhuo, H. B.; Xu, Han; Wong, A. Y.; Wang, J. W.
2014-12-15
In a long subcritical density plasma, an ultrashort ultraintense laser pulse can self-organize into a fast but sub-relativistic propagating structure consisting of the modulated laser light and a large number of trapped electrons from the plasma. Upon impact of the structure with a solid foil target placed in the latter, the remaining laser light is reflected, but the dense and hot trapped electrons pass through the foil, together with the impact-generated target-frontsurface electrons to form a dense hot electron cloud at the back of the target suitable for enhancing target normal sheath acceleration of the target-backsurface ions. The accelerated ions are well collimated and of high charge and energy densities, with peak energies a full order of magnitude higher than that from target normal sheath acceleration without the subcritical density plasma. In the latter case, the space-charge field accelerating the ions is limited since they are formed only by the target-frontsurface electrons during the very short instant of laser reflection.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Medeiros, Stephen; Hagen, Scott; Weishampel, John; Angelo, James
2015-03-25
Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer tomoreÂ Â» true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 Â± 0.24 m and 0.32 Â± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.Â«Â less
Medeiros, Stephen; Hagen, Scott; Weishampel, John; Angelo, James
2015-03-25
Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer to true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 Â± 0.24 m and 0.32 Â± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.
Gudur, M; Hara, W; Wang, L; Xing, L; Li, R
2014-06-15
Purpose: MRI significantly improves the accuracy and reliability of target delineation for patient simulation and treatment planning in radiation therapy, due to its superior soft tissue contrast as compared to CT. An MRI based simulation will reduce cost and simplify clinical workflow with zero ionizing radiation. However, MRI lacks the key electron density information. The purpose of this work is to develop a reliable method to derive electron density from MRI. Methods: We adopt a probabilistic Bayesian approach for electron density mapping based on T1-weighted head MRI. For each voxel, we compute conditional probability of electron densities given its: (1) T1 intensity and (2) geometry in a reference anatomy, obtained by deformable image registration between the MRI of test patient and atlas. Intensity and geometry information are combined into a unifying posterior probability density function whose mean gives the electron density. Mean absolute HU error between the estimated and true CT, as well as ROC's for bone detection (HU>200) were calculated for 8 patients. The performance was compared with a global intensity approach based on T1 and no density correction (set whole head to water). Results: The proposed technique significantly reduced the errors in electron density estimation, with a mean absolute HU error of 132, compared with 139 for deformable registration (p=10{sup ?3}), 371 for the intensity approach (p=10{sup ?5}) and 282 without density correction (p=2×10{sup ?4}). For 90% sensitivity in bone detection, the proposed method had a specificity of 85% and that for deformable registration, intensity and without density correction are 80%, 24% and 10% respectively. Conclusion: The proposed unifying method provides accurate electron density estimation and bone detection from MRI of the head with highly heterogeneous regions. This paves the way for accurate dose calculation and generating reference images for patient setup in MRI-based treatment planning.
Choi, Ikjin; Chung, ChinWook [Department of Electrical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)] [Department of Electrical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Youn Moon, Se [High-Enthalpy Plasma Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do 561-756 (Korea, Republic of)] [High-Enthalpy Plasma Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do 561-756 (Korea, Republic of)
2013-08-15
In plasma diagnostics with a single Langmuir probe, the electron temperature T{sub e} is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain T{sub e} by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energy distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature T{sub e} obtained from the method is always lower than the effective temperatures T{sub eff} derived from EEDFs. The theoretical analysis for this is presented.
Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.
2011-03-15
A two-wavelength quantitative Schlieren technique that allows inferring the electron and gas densities of axisymmetric arc plasmas without imposing any assumption regarding statistical equilibrium models is reported. This technique was applied to the study of local thermodynamic equilibrium (LTE) departures within the core of a 30 A high-energy density cutting arc. In order to derive the electron and heavy particle temperatures from the inferred density profiles, a generalized two-temperature Saha equation together with the plasma equation of state and the quasineutrality condition were employed. Factors such as arc fluctuations that influence the accuracy of the measurements and the validity of the assumptions used to derive the plasma species temperature were considered. Significant deviations from chemical equilibrium as well as kinetic equilibrium were found at elevated electron temperatures and gas densities toward the arc core edge. An electron temperature profile nearly constant through the arc core with a value of about 14000-15000 K, well decoupled from the heavy particle temperature of about 1500 K at the arc core edge, was inferred.
Yang, Guangtao Swaaij, R. A. C. M. M. van; Dobrovolskiy, S.; Zeman, M.
2014-01-21
In this contribution, we demonstrate the application temperature dependent capacitance-frequency measurements (C-f) to n-i-p hydrogenated amorphous silicon (a-Si:H) solar cells that are forward-biased. By using a forward bias, the C-f measurement can detect the density of defect states in a particular energy range of the interface region. For this contribution, we have carried out this measurement method on n-i-p a-Si:H solar cells of which the intrinsic layer has been exposed to a H{sub 2}-plasma before p-type layer deposition. After this treatment, the open-circuit voltage and fill factor increased significantly, as well as the blue response of the solar cells as is concluded from external quantum efficiency. For single junction, n-i-p a-Si:H solar cells initial efficiency increased from 6.34% to 8.41%. This performance enhancement is believed to be mainly due to a reduction of the defect density in the i-p interface region after the H{sub 2}-plasma treatment. These results are confirmed by the C-f measurements. After H{sub 2}-plasma treatment, the defect density in the intrinsic layer near the i-p interface region is lower and peaks at an energy level deeper in the band gap. These C-f measurements therefore enable us to monitor changes in the defect density in the interface region as a result of a hydrogen plasma. The lower defect density at the i-p interface as detected by the C-f measurements is supported by dark current-voltage measurements, which indicate a lower carrier recombination rate.
Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Villadsen, Rene; Rank, Fritz; Bissell, Mina J.; Petersen, Ole William
2001-10-04
recapitulated in culture and that one reason for the ability of myoepithelial cells to induce polarity is because they are the only source of laminin-1 in the breast in vivo. A further conclusion is that a majority of tumor-derived/-associated myoepithelial cells are deficient in their ability to impart polarity because they have lost their ability to synthesize sufficient or functional laminin-1. These results have important implications for the role of myoepithelial cells in maintenance of polarity in normal breast and how they may function as structural tumor suppressors.
Bozkaya, U?ur
2014-09-28
General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller–Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.
Kadoura, Ahmad; Sun, Shuyu Salama, Amgad
2014-08-01
Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system's potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (?, ?) for single site models were proposed for methane, nitrogen and carbon monoxide.
Mullins, J; Duan, X; Kruse, J; Herman, M; Bues, M
2014-06-01
Purpose: To determine the suitability of dual-energy CT (DECT) to calculate relative electron density (RED) of tissues for accurate proton therapy dose calculation. Methods: DECT images of RED tissue surrogates were acquired at 80 and 140 kVp. Samples (RED=0.19âˆ’2.41) were imaged in a water-equivalent phantom in a variety of configurations. REDs were calculated using the DECT numbers and inputs of the high and low energy spectral weightings. DECT-derived RED was compared between geometric configurations and for variations in the spectral inputs to assess the sensitivity of RED accuracy versus expected values. Results: RED accuracy was dependent on accurate spectral input influenced by phantom thickness and radius from the phantom center. Material samples located at the center of the phantom generally showed the best agreement to reference RED values, but only when attenuation of the surrounding phantom thickness was accounted for in the calculation spectra. Calculated RED changed by up to 10% for some materials when the sample was located at an 11 cm radius from the phantom center. Calculated REDs under the best conditions still differed from reference values by up to 5% in bone and 14% in lung. Conclusion: DECT has previously been used to differentiate tissue types based on RED and Z for binary tissue-type segmentation. To improve upon the current standard of empirical conversion of CT number to RED for treatment planning dose calculation, DECT methods must be able to calculate RED to better than 3% accuracy throughout the image. The DECT method is sensitive to the accuracy of spectral inputs used for calculation, as well as to spatial position in the anatomy. Effort to address adjustments to the spectral calculation inputs based on position and phantom attenuation will be required before DECT-determined RED can achieve a consistent level of accuracy for application in dose calculation.
Gedanken densities and exact constraints in density functional theory
Perdew, John P.; Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 ; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron
2014-05-14
Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGAâ€™s. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.
Computing Instantaneous Frequency by normalizing Hilbert Transform
Huang, Norden E.
2005-05-31
This invention presents Normalized Amplitude Hilbert Transform (NAHT) and Normalized Hilbert Transform(NHT), both of which are new methods for computing Instantaneous Frequency. This method is designed specifically to circumvent the limitation set by the Bedorsian and Nuttal Theorems, and to provide a sharp local measure of error when the quadrature and the Hilbert Transform do not agree. Motivation for this method is that straightforward application of the Hilbert Transform followed by taking the derivative of the phase-angle as the Instantaneous Frequency (IF) leads to a common mistake made up to this date. In order to make the Hilbert Transform method work, the data has to obey certain restrictions.
Normal Conducting CLIC Technology
Jensen, Erk
2006-01-03
The CLIC (Compact Linear Collider) multi-lateral study group based at CERN is studying the technology for an electron-positron linear collider with a centre-of-mass energy up to 5 TeV. In contrast to the International Linear Collider (ILC) study which has chosen to use super-conducting cavities with accelerating gradients in the range of 30-40 MV/m to obtain centre-of-mass collision energies of 0.5-1 TeV, the CLIC study aims to use a normal-conducting system based on two-beam technology with gradients of 150 MV/m. It is generally accepted that this change in technology is not only necessary but the only viable choice for a cost-effective multi-TeV collider. The CLIC study group is studying the technology issues of such a machine, and is in particular developing state-of-the-art 30 GHz molybdenum-iris accelerating structures and power extraction and transfer structures (PETS). The accelerating structure has a new geometry which includes fully-profiled RF surfaces optimised to minimize surface fields, and hybrid damping using both iris slots and radial waveguides. A newly-developed structure-optimisation procedure has been used to simultaneously balance surface fields, power flow, short and long-range transverse wakefields, RF-to-beam efficiency and the ratio of luminosity to input power. The slotted irises allow a simple structure fabrication by high-precision high-speed 3D milling of just four pieces, and an even easier bolted assembly in a vacuum chamber.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gonis, A.; Zhang, X. G.; Stocks, G. M.; Nicholson, D. M.
2015-10-23
Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of themoreÂ Â» density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.Â«Â less
Gonis, A.; Zhang, X. G.; Stocks, G. M.; Nicholson, D. M.
2015-10-23
Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of the density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.
Palacio Mizrahi, J. H.
2014-06-15
A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.
Î± -cluster asymptotic normalization coefficients for nuclear...
Office of Scientific and Technical Information (OSTI)
-cluster asymptotic normalization coefficients for nuclear astrophysics Citation Details In-Document Search Title: -cluster asymptotic normalization coefficients for nuclear ...
Density functional theory for carbon dioxide crystal
Chang, Yiwen; Mi, Jianguo Zhong, Chongli
2014-05-28
We present a density functional approach to describe the solid?liquid phase transition, interfacial and crystal structure, and properties of polyatomic CO{sub 2}. Unlike previous phase field crystal model or density functional theory, which are derived from the second order direct correlation function, the present density functional approach is based on the fundamental measure theory for hard-sphere repulsion in solid. More importantly, the contributions of enthalpic interactions due to the dispersive attractions and of entropic interactions arising from the molecular architecture are integrated in the density functional model. Using the theoretical model, the predicted liquid and solid densities of CO{sub 2} at equilibrium triple point are in good agreement with the experimental values. Based on the structure of crystal-liquid interfaces in different planes, the corresponding interfacial tensions are predicted. Their respective accuracies need to be tested.
Aerosol Behavior Log-Normal Distribution Model.
Energy Science and Technology Software Center (OSTI)
2001-10-22
HAARM3, an acronym for Heterogeneous Aerosol Agglomeration Revised Model 3, is the third program in the HAARM series developed to predict the time-dependent behavior of radioactive aerosols under postulated LMFBR accident conditions. HAARM3 was developed to include mechanisms of aerosol growth and removal which had not been accounted for in the earlier models. In addition, experimental measurements obtained on sodium oxide aerosols have been incorporated in the code. As in HAARM2, containment gas temperature, pressure,moreÂ Â» and temperature gradients normal to interior surfaces are permitted to vary with time. The effects of reduced density on sodium oxide agglomerate behavior and of nonspherical shape of particles on aerosol behavior mechanisms are taken into account, and aerosol agglomeration due to turbulent air motion is considered. Also included is a capability to calculate aerosol concentration attenuation factors and to restart problems requiring long computing times.Â«Â less
Soares, M.B.; Efstratiadis, A.
1997-06-10
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3{prime} noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. 4 figs.
Soares, Marcelo B.; Efstratiadis, Argiris
1997-01-01
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library.
Visualization of electronic density
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan
2015-04-22
An atomâ€™s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.
Visualization of electronic density
Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan
2015-04-22
An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.
Normalized Elution Time Prediction Utility
Energy Science and Technology Software Center (OSTI)
2011-02-17
This program is used to compute the predicted normalized elution time (NET) for a list of peptide sequences. It includes the Kangas/Petritis neural network trained model, the Krokhin hydrophobicity model, and the Mant hydrophobicity model. In addition, it can compute the predicted strong cation exchange (SCX) fraction (on a 0 to 1 scale) in which a given peptide will appear.
Density-dependent covariant energy density functionals
Lalazissis, G. A.
2012-10-20
Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.
Spacetime Average Density (SAD) cosmological measures
Page, Don N.
2014-11-01
The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.
Anomalous density for Bose gases at finite temperature
Boudjemaa, A.; Benarous, M.
2011-10-15
We analyze the behavior of the anomalous density as function of the radial distance at different temperatures in a variational framework. We show that the temperature dependence of the anomalous density agrees with the Hartree-Fock-Bogoliubov (HFB) calculations. Comparisons between the normal and anomalous fractions at low temperature show that the latter remains higher and, consequently, the neglect of the anomalous density may destabilize the condensate. These results are compatible with those of Yukalov. Surprisingly, the study of the anomalous density in terms of the interaction parameter shows that the dip in the central density is destroyed for sufficiently weak interactions. We explain this effect.
Cascaded target normal sheath acceleration
Wang, W. P.; Shen, B. F.; Zhang, X. M.; Wang, X. F.; Xu, J. C.; Zhao, X. Y.; Yu, Y. H.; Yi, L. Q.; Shi, Y.; Zhang, L. G.; Xu, T. J.; Xu, Z. Z.
2013-11-15
A cascaded target normal sheath acceleration (TNSA) scheme is proposed to simultaneously increase energy and improve energy spread of a laser-produced mono-energetic proton beam. An optimum condition that uses the maximum sheath field to accelerate the center of the proton beam is theoretically found and verified by two-dimensional particle-in-cell simulations. An initial 10 MeV proton beam is accelerated to 21 MeV with energy spread decreased from 5% to 2% under the optimum condition during the process of the cascaded TNSA. The scheme opens a way to scale proton energy lineally with laser energy.
Chiral dynamics and peripheral transverse densities
Granados, Carlos G.; Weiss, Christian
2014-01-01
In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.
Density Equalizing Map Projections
Energy Science and Technology Software Center (OSTI)
1995-07-01
A geographic map is mathematically transformed so that the subareas of the map are proportional to a given quantity such as population. In other words, population density is equalized over the entire map. The transformed map can be used as a display tool, or it can be statistically analyzed. For example, cases of disease plotted on the transformed map should be uniformly distributed at random, if disease rates are everywhere equal. Geographic clusters of diseasemoreÂ Â» can be readily identified, and their statistical significance determined, on a density equalized map.Â«Â less
Multiple density layered insulator
Alger, Terry W.
1994-01-01
A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.
Vranjes, J.; Kono, M.
2015-01-15
Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.
Multiple density layered insulator
Alger, T.W.
1994-09-06
A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.
A DENSITY-INDEPENDENT FORMULATION OF SMOOTHED PARTICLE HYDRODYNAMICS
Saitoh, Takayuki R.; Makino, Junichiro
2013-05-01
The standard formulation of the smoothed particle hydrodynamics (SPH) assumes that the local density distribution is differentiable. This assumption is used to derive the spatial derivatives of other quantities. However, this assumption breaks down at the contact discontinuity. At the contact discontinuity, the density of the low-density side is overestimated while that of the high-density side is underestimated. As a result, the pressure of the low-density (high-density) side is overestimated (underestimated). Thus, unphysical repulsive force appears at the contact discontinuity, resulting in the effective surface tension. This tension suppresses fluid instabilities. In this paper, we present a new formulation of SPH, which does not require the differentiability of density. Instead of the mass density, we adopt the internal energy density (pressure) and its arbitrary function, which are smoothed quantities at the contact discontinuity, as the volume element used for the kernel integration. We call this new formulation density-independent SPH (DISPH). It handles the contact discontinuity without numerical problems. The results of standard tests such as the shock tube, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, point-like explosion, and blob tests are all very favorable to DISPH. We conclude that DISPH solved most of the known difficulties of the standard SPH, without introducing additional numerical diffusion or breaking the exact force symmetry or energy conservation. Our new SPH includes the formulation proposed by Ritchie and Thomas as a special case. Our formulation can be extended to handle a non-ideal gas easily.
Density Log | Open Energy Information
Density Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Density Log Details Activities (7) Areas (6) Regions (0) NEPA(0) Exploration...
Rock Density | Open Energy Information
Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Density Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique...
Analytic cubic and quartic force fields using density-functional theory
Ringholm, Magnus; Gao, Bin; Thorvaldsen, Andreas J.; Ruud, Kenneth; Jonsson, Dan; High Performance Computing Group, University of TromsÃ¸â€”The Arctic University of Norway, 9037 TromsÃ¸ ; Bast, Radovan; EkstrÃ¶m, Ulf; Helgaker, Trygve
2014-01-21
We present the first analytic implementation of cubic and quartic force constants at the level of Kohnâ€“Sham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchangeâ€“correlation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartreeâ€“Fock results. The Hartreeâ€“Fock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants.
Orbital-optimized density cumulant functional theory
Sokolov, Alexander Yu. Schaefer, Henry F.
2013-11-28
In density cumulant functional theory (DCFT) the electronic energy is evaluated from the one-particle density matrix and two-particle density cumulant, circumventing the computation of the wavefunction. To achieve this, the one-particle density matrix is decomposed exactly into the mean-field (idempotent) and correlation components. While the latter can be entirely derived from the density cumulant, the former must be obtained by choosing a specific set of orbitals. In the original DCFT formulation [W. Kutzelnigg, J. Chem. Phys. 125, 171101 (2006)] the orbitals were determined by diagonalizing the effective Fock operator, which introduces partial orbital relaxation. Here we present a new orbital-optimized formulation of DCFT where the energy is variationally minimized with respect to orbital rotations. This introduces important energy contributions and significantly improves the description of the dynamic correlation. In addition, it greatly simplifies the computation of analytic gradients, for which expressions are also presented. We offer a perturbative analysis of the new orbital stationarity conditions and benchmark their performance for a variety of chemical systems.
High Energy Density Capacitors
2010-07-01
BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.
Wolfe, Adam R.; Atkinson, Rachel L.; Reddy, Jay P.; Debeb, Bisrat G.; Larson, Richard; Li, Li; Masuda, Hiroko; Brewer, Takae; Atkinson, Bradley J.; Brewster, Abeena; Ueno, Naoto T.; Woodward, Wendy A.
2015-04-01
Purpose: We previously demonstrated that cholesterol-lowering agents regulate radiation sensitivity of inflammatory breast cancer (IBC) cell lines inÂ vitro and are associated with less radiation resistance among IBC patients who undergo postmastectomy radiation. We hypothesized that decreasing IBC cellular cholesterol induced by treatment with lipoproteins would increase radiation sensitivity. Here, we examined the impact of specific transporters of cholesterol (ie lipoproteins) on the responses of IBC cells to self-renewal and to radiation inÂ vitro and on clinical outcomes in IBC patients. Methods and Materials: Two patient-derived IBC cell lines, SUM 149 and KPL4, were incubated with low-density lipoproteins (LDL), very-low-density lipoproteins (VLDL), or high-density lipoproteins (HDL) for 24Â hours prior to irradiation (0-6Â Gy) and mammosphere formation assay. Cholesterol panels were examined in a cohort of patients withÂ primary IBC diagnosed between 1995 and 2011 at MD Anderson Cancer Center. Lipoprotein levels were then correlated to patient outcome, using the log rank statistical model, and examined in multivariate analysis using Cox regression. Results: VLDL increased and HDL decreased mammosphere formation compared toÂ untreated SUM 149 and KPL4 cells. Survival curves showed enhancement of survival in both of the IBC cell lines when pretreated with VLDL and, conversely, radiation sensitization in all cell lines when pretreated with HDL. In IBC patients, higher VLDL valuesÂ (>30Â mg/dL) predicted a lower 5-year overall survival rate than normal valuesÂ (hazard ratio [HR]Â =Â 1.9 [95% confidence interval [CI]: 1.05-3.45], P=.035). Lower-than-normal patient HDL values (<60Â mg/dL) predicted a lower 5-year overall survival rate than values higher than 60Â mg/dL (HR = 3.21 [95% CI: 1.25-8.27], P=.015). Conclusions: This study discovered a relationship among the plasma levels of lipoproteins, overall patient response, and radiation resistance in IBC patients
Low density microcellular foams
LeMay, J.D.
1991-11-19
Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 [mu]m is produced. Also disclosed are the foams produced by the process. 8 figures.
Low density microcellular foams
LeMay, James D.
1992-01-01
Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.
Low density microcellular foams
LeMay, James D.
1991-01-01
Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.
Low density microcellular foams
Aubert, James H.; Clough, Roger L.; Curro, John G.; Quintana, Carlos A.; Russick, Edward M.; Shaw, Montgomery T.
1987-01-01
Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.
Low density microcellular foams
Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.
1985-10-02
Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.
Paper area density measurement from forward transmitted scattered light
Koo, Jackson C.
2001-01-01
A method whereby the average paper fiber area density (weight per unit area) can be directly calculated from the intensity of transmitted, scattered light at two different wavelengths, one being a non-absorpted wavelength. Also, the method makes it possible to derive the water percentage per fiber area density from a two-wavelength measurement. In the optical measuring technique optical transmitted intensity, for example, at 2.1 microns cellulose absorption line is measured and compared with another scattered, optical transmitted intensity reference in the nearby spectrum region, such as 1.68 microns, where there is no absorption. From the ratio of these two intensities, one can calculate the scattering absorption coefficient at 2.1 microns. This absorption coefficient at this wavelength is, then, experimentally correlated to the paper fiber area density. The water percentage per fiber area density can be derived from this two-wavelength measurement approach.
Electromagnetic fluctuations and normal modes of a drifting relativistic plasma
Ruyer, C.; Gremillet, L.; BÃ©nisti, D.; Bonnaud, G.
2013-11-15
We present an exact calculation of the power spectrum of the electromagnetic fluctuations in a relativistic equilibrium plasma described by Maxwell-JÃ¼ttner distribution functions. We consider the cases of wave vectors parallel or normal to the plasma mean velocity. The relative contributions of the subluminal and supraluminal fluctuations are evaluated. Analytical expressions of the spatial fluctuation spectra are derived in each case. These theoretical results are compared to particle-in-cell simulations, showing a good reproduction of the subluminal fluctuation spectra.
High Energy Density Microwaves
Phillips, R.M. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)
1999-04-01
These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)
Vortices in normal part of proximity system
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kogan, V. G.
2015-05-26
It is shown that the order parameter ? induced in the normal part of superconductor-normal-superconductor proximity system is modulated in the magnetic field differently from vortices in bulk superconductors. Whereas ? turns zero at vortex centers, the magnetic structure of these vortices differs from that of Abrikosov's.
Vortices in normal part of proximity system
Kogan, V. G.
2015-05-26
It is shown that the order parameter Î” induced in the normal part of superconductor-normal-superconductor proximity system is modulated in the magnetic field differently from vortices in bulk superconductors. Whereas Î” turns zero at vortex centers, the magnetic structure of these vortices differs from that of Abrikosov's.
U.S. Energy Information Administration (EIA) Indexed Site
74-1988 For Methodology Concerning the Derived Estimates Total Consumption of Offsite-Produced Energy for Heat and Power by Industry Group, 1974-1988 Total Energy *** Electricity...
Dilatometric measurements of helium densities in bubbles arising from tritium decay in tantalum
Schober, T.; Lasser, R.; Golczewski, J.; Dieker, C.; Trinkaus, H.
1985-06-01
The swelling rates of the bulk tritides TaT/sub 0.42/ and TaT/sub 0.103/ were measured at room temperature using the technique of strain gauges. Such swelling is expected in tritides because of the decay of tritium to /sup 3/He and the subsequent precipitation of gas bubbles. Observations were made for up to 10 months. Almost-linear swelling was found in the first months for both tritides, indicative of a constant /sup 3/He density in the bubbles. The slopes of the linear parts of the expansion curves normalized to the T concentration were almost identical in the two cases considered. From this a /sup 3/He-to-Ta atom volume ratio, v/sub He//..cap omega..< or =0.52 +- 0.03 in the bubbles was derived, which is in good agreement with recent but less direct spectroscopic measurements of /sup 4/He densities in bubbles formed after room-temperature implantation into other metals. Corrections for the presence of self-interstitials and their clusters and due to the elastic relaxation of the bubbles were considered. Calculated bubble pressures were in the vicinity of 5 GPa, which is close to the expected threshold pressure for athermal bubble growth.
ARM - Measurement - Shortwave spectral direct normal irradiance
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
direct normal irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral direct normal irradiance The narrow spectral range of measurements coming directly from the sun whose wavelength falls within the solar range of 0.4 and 4 {mu}m. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Embry, Irucka; Roland, Victor; Agbaje, Oluropo; Watson, Valetta; Martin, Marquan; Painter, Roger; Byl, Tom; Sharpe, Lonnie
2013-01-01
A new residence-time distribution (RTD) function has been developed and applied to quantitative dye studies as an alternative to the traditional advection-dispersion equation (AdDE). The new method is based on a jointly combined four-parameter gamma probability density function (PDF). The gamma residence-time distribution (RTD) function and its first and second moments are derived from the individual two-parameter gamma distributions of randomly distributed variables, tracer travel distance, and linear velocity, which are based on their relationship with time. The gamma RTD function was used on a steady-state, nonideal system modeled as a plug-flow reactor (PFR) in the laboratory to validate themoreÂ Â» effectiveness of the model. The normalized forms of the gamma RTD and the advection-dispersion equation RTD were compared with the normalized tracer RTD. The normalized gamma RTD had a lower mean-absolute deviation (MAD) (0.16) than the normalized form of the advection-dispersion equation (0.26) when compared to the normalized tracer RTD. The gamma RTD function is tied back to the actual physical site due to its randomly distributed variables. The results validate using the gamma RTD as a suitable alternative to the advection-dispersion equation for quantitative tracer studies of non-ideal flow systems.Â«Â less
Category:Rock Density | Open Energy Information
Rock Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Rock Density page? For detailed information on Rock Density as...
Shao, Kan; Gift, Jeffrey S.; Setzer, R. Woodrow
2013-11-01
Continuous responses (e.g. body weight) are widely used in risk assessment for determining the benchmark dose (BMD) which is used to derive a U.S. EPA reference dose. One critical question that is not often addressed in dose–response assessments is whether to model the continuous data as normally or log-normally distributed. Additionally, if lognormality is assumed, and only summarized response data (i.e., mean ± standard deviation) are available as is usual in the peer-reviewed literature, the BMD can only be approximated. In this study, using the “hybrid” method and relative deviation approach, we first evaluate six representative continuous dose–response datasets reporting individual animal responses to investigate the impact on BMD/BMDL estimates of (1) the distribution assumption and (2) the use of summarized versus individual animal data when a log-normal distribution is assumed. We also conduct simulation studies evaluating model fits to various known distributions to investigate whether the distribution assumption has influence on BMD/BMDL estimates. Our results indicate that BMDs estimated using the hybrid method are more sensitive to the distribution assumption than counterpart BMDs estimated using the relative deviation approach. The choice of distribution assumption has limited impact on the BMD/BMDL estimates when the within dose-group variance is small, while the lognormality assumption is a better choice for relative deviation method when data are more skewed because of its appropriateness in describing the relationship between mean and standard deviation. Additionally, the results suggest that the use of summarized data versus individual response data to characterize log-normal distributions has minimal impact on BMD estimates. - Highlights: • We investigate to what extent the distribution assumption can affect BMD estimates. • Both real data analysis and simulation study are conducted. • BMDs estimated using hybrid method are more sensitive to
Induced supersolidity in a mixture of normal and hard-core bosons
Mishra, Tapan; Das, B. P.; Pai, Ramesh V.
2010-01-01
We present a scenario where a supersolid is induced in one of the components of a mixture of two species bosonic atoms where there are no long-range interactions. We study a system of normal and hard-core boson mixture with only the former possessing long-range interactions. We consider three cases: the first where the total density is commensurate and the other two where it is incommensurate to the lattice. By suitable choices of the densities of normal and hard-core bosons and the interaction strengths between them, we predict that the charge density wave and the supersolid orders can be induced in the hard-core species as a result of the competing interatomic interactions.
Attractor comparisons based on density
Carroll, T. L.
2015-01-15
Recognizing a chaotic attractor can be seen as a problem in pattern recognition. Some feature vector must be extracted from the attractor and used to compare to other attractors. The field of machine learning has many methods for extracting feature vectors, including clustering methods, decision trees, support vector machines, and many others. In this work, feature vectors are created by representing the attractor as a density in phase space and creating polynomials based on this density. Density is useful in itself because it is a one dimensional function of phase space position, but representing an attractor as a density is also a way to reduce the size of a large data set before analyzing it with graph theory methods, which can be computationally intensive. The density computation in this paper is also fast to execute. In this paper, as a demonstration of the usefulness of density, the density is used directly to construct phase space polynomials for comparing attractors. Comparisons between attractors could be useful for tracking changes in an experiment when the underlying equations are too complicated for vector field modeling.
ARM - Measurement - Shortwave broadband direct normal irradiance
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
normal irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband direct normal irradiance The rate at which radiant energy in broad bands of wavelengths shorter than approximately 4{mu}m, that comes directly from the Sun without being scattered or absorbed in the atmosphere, passes through a unit area perpendicular to the direction from the Sun. Categories Radiometric Instruments
ARM - Measurement - Shortwave narrowband direct normal irradiance
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
normal irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband direct normal irradiance The rate at which radiant energy in narrow bands of wavelengths shorter than approximately 4{mu}m, that comes directly from the Sun without being scattered or absorbed in the atmosphere, passes through a unit area perpendicular to the direction from the Sun. Categories Radiometric Instruments
Phenomenological Relativistic Energy Density Functionals
Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.
2009-08-26
The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.
Wave-function functionals for the density
Slamet, Marlina; Pan Xiaoyin; Sahni, Viraht
2011-11-15
We extend the idea of the constrained-search variational method for the construction of wave-function functionals {psi}[{chi}] of functions {chi}. The search is constrained to those functions {chi} such that {psi}[{chi}] reproduces the density {rho}(r) while simultaneously leading to an upper bound to the energy. The functionals are thereby normalized and automatically satisfy the electron-nucleus coalescence condition. The functionals {psi}[{chi}] are also constructed to satisfy the electron-electron coalescence condition. The method is applied to the ground state of the helium atom to construct functionals {psi}[{chi}] that reproduce the density as given by the Kinoshita correlated wave function. The expectation of single-particle operators W={Sigma}{sub i}r{sub i}{sup n}, n=-2,-1,1,2, W={Sigma}{sub i}{delta}(r{sub i}) are exact, as must be the case. The expectations of the kinetic energy operator W=-(1/2){Sigma}{sub i}{nabla}{sub i}{sup 2}, the two-particle operators W={Sigma}{sub n}u{sup n}, n=-2,-1,1,2, where u=|r{sub i}-r{sub j}|, and the energy are accurate. We note that the construction of such functionals {psi}[{chi}] is an application of the Levy-Lieb constrained-search definition of density functional theory. It is thereby possible to rigorously determine which functional {psi}[{chi}] is closer to the true wave function.
Low density carbonized composite foams
Kong, Fung-Ming
1993-01-01
A carbonized composite foam having a density less than about 50 mg/cm.sup.3 and individual cell sizes no greater than about 1 .mu.m in diameter is described, and the process of making it.
Low density carbonized composite foams
Kong, Fung-Ming
1991-01-01
A carbonized composite foam having a density less than about 50 mg/cm.sup.3 and individual cell sizes no greater than about 1 .mu.m in diameter is described, and the process of making it.
Normal butane/iso-butane separation
Volles, W.K.; Cusher, N.A.
1986-08-26
This patent describes an improved pressure swing adsorption process for the separation of iso-butane from normal butane in an adsorption system having at least three adsorbent beds, each bed of which undergoes, on a cyclic basis and a processing sequence comprising: introducing a feed gas mixture of iso-butane and normal butane at an upper adsorption pressure to the feed end of the bed capable of selectively adsorbing normal butane as the more selectivity adsorbable component of the gas mixture. The iso-butane as the less readily adsorbable component passes through the bed and is discharged from the discharge end. The feed gas introduction is continued as a normal butane adsorption front is formed in the bed and passes through the bed from the feed end and breaks through at the discharge end of the bed, a portion of the iso-butane effluent stream thus discharged being diverted for passage as purge gas to another bed in the system; and countercurrently depressurizing the bed with release of gas from the feed end.
Low density metal hydride foams
Maienschein, Jon L.; Barry, Patrick E.
1991-01-01
Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.
Pushing schedule derivation method
Henriquez, B.
1996-12-31
The development of a Pushing Schedule Derivation Method has allowed the company to sustain the maximum production rate at CSH`s Coke Oven Battery, in spite of having single set oven machinery with a high failure index as well as a heat top tendency. The stated method provides for scheduled downtime of up to two hours for machinery maintenance purposes, periods of empty ovens for decarbonization and production loss recovery capability, while observing lower limits and uniformity of coking time.
Modeling pore corrosion in normally open gold- plated copper connectors.
Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien; Enos, David George; Serna, Lysle M.; Sorensen, Neil Robert
2008-09-01
The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.
Stout, Ray B.
2008-07-01
Future designs of nuclear fuels require an increased understanding of fission gas bubble density evolution. Derivations will be provided for a generic Boltzmann bubble density evolution equation, a bubble density deformation field equation, and a Cauchy stress/bubble-pressure equilibrium equation. (author)
High Density Sensor Network Development | The Ames Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
High Density Sensor Network Development
Normal Conducting RF Cavity for MICE
Li, D.; DeMello, A.; Virostek, S.; Zisman, M.; Summers, D.
2010-05-23
Normal conducting RF cavities must be used for the cooling section of the international Muon Ionization Cooling Experiment (MICE), currently under construction at Rutherford Appleton Laboratory (RAL) in the UK. Eight 201-MHz cavities are needed for the MICE cooling section; fabrication of the first five cavities is complete. We report the cavity fabrication status including cavity design, fabrication techniques and preliminary low power RF measurements.
Tabacchi, G; Hutter, J; Mundy, C
2005-04-07
A combined linear response--frozen electron density model has been implemented in a molecular dynamics scheme derived from an extended Lagrangian formalism. This approach is based on a partition of the electronic charge distribution into a frozen region described by Kim-Gordon theory, and a response contribution determined by the instaneous ionic configuration of the system. The method is free from empirical pair-potentials and the parameterization protocol involves only calculations on properly chosen subsystems. They apply this method to a series of alkali halides in different physical phases and are able to reproduce experimental structural and thermodynamic properties with an accuracy comparable to Kohn-Sham density functional calculations.
High-density fluid compositions
Sanders, D.C.
1981-09-29
Clear, high-density fluids suitable for use as well completion, packing, and perforation media comprise aqueous solutions of zinc bromide and calcium bromide having densities lying in the range of about 14.5 up to about 18.0 pounds per gallon and measured PH's lying in the range of about 3.5 up to about 6.0. Optionally, such fluids may also comprise calcium chloride and/or a soluble film-forming amine-based corrosion inhibitor. Such fluids under conditions of ordinary use exhibit low corrosion rates and have crystallization points lying well below the range of temperatures under which they are used.
Improving experimental phases for strong reflections prior to density modification
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.; Read, Randy J.
2013-09-20
Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D61, 899â€“902], the impact of identifying optimized phases for a small number ofmoreÂ Â» strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program,SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.Â«Â less
Symbolic computation of solitons in the normal dispersion regime of inhomogeneous optical fibres
Liu Wenjun; Tain Bo; Li Min; Jiang Yan; Qu Qixing; Wang Pan; Sun Kun
2011-06-30
A nonlinear Schroedinger equation with varying dispersion, nonlinearity and gain (or absorption) is studied for ultrashort optical pulses propagating in inhomogeneous optical fibres in the case of normal dispersion. Using the modified Hirota method and symbolic computation, the bilinear form and analytic soliton solution are derived. Stable bright and dark solitons are observed in the normal dispersion regime. A periodically varying soliton and compressed soliton without any fluctuation are obtained. Combined and kink-shaped solitons are observed. Possibly applicable soliton control techniques, which are used to design dispersion-managed systems, are proposed. The proposed techniques may find applications in soliton management communication links, soliton compression and soliton control. (solitons)
Normal Conditions of Transport Truck Test of a Surrogate Fuel...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. Citation Details In-Document Search Title: Normal Conditions of Transport Truck Test of a Surrogate Fuel...
Guidance on Utility Rate Estimations and Weather Normalization...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Utility Rate Estimations and Weather Normalization in an ESPC Guidance on Utility Rate Estimations and Weather Normalization in an ESPC Document explains how to use estimated ...
Plasma digital density determining device
Sprott, Julien C.; Lovell, Thomas W.; Holly, Donald J.
1976-01-01
The density of a decaying plasma in an electrically conducting enclosure is determined by applying an excitation to the cavity formed by the enclosure and counting digitally the number of resonant frequencies traversed by the combination of the cavity and the decaying plasma.
High energy density thermal cell
Fletcher, A.N.
1980-04-29
A thermal battery is described that uses a calcium anode and a catholyte consisting of a mixture of lithium, potassium, nitrate and chloride ions. The device is operable over a temperature range of about 150 to 600/sup 0/C and produces a long lasting, high energy density output.
Jahan, Kauser
2015-03-31
One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.
Statistical density modification using local pattern matching
Terwilliger, Thomas C.
2007-01-23
A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.
On the density limit in the helicon plasma sources
Kotelnikov, Igor A.
2014-12-15
Existence of the density limit in the helicon plasma sources is revisited. The low- and high-frequency regimes of a helicon plasma source operation are distinguished. In the low-frequency regime with Ï‰<âˆš(Ï‰{sub ci}Ï‰{sub ce}), the density limit is deduced from the Golant-Stix criterion of the accessibility of the lower hybrid resonance. In the high-frequency case, Ï‰>âˆš(Ï‰{sub ci}Ï‰{sub ce}), an appropriate limit is given by the Shamrai-Taranov criterion. Both these criteria are closely related to the phenomenon of the coalescence of the helicon wave with the Trivelpiece-Gould mode. We draw a conclusion that the derived density limits are not currently achieved in existing devices, perhaps, because of high energy cost of gas ionization.
Nonlinear upper hybrid waves and the induced density irregularities
Kuo, Spencer P.
2015-08-15
Upper hybrid waves are excited parametrically by the O-mode high-frequency heater waves in the ionospheric heating experiments. These waves grow to large amplitudes and self-induced density perturbations provide nonlinear feedback. The lower hybrid resonance modifies the nonlinear feedback driven by the ponderomotive force; the nonlinear equation governing the envelope of the upper hybrid waves is derived. Solutions in symmetric alternating functions, in non-alternating periodic functions, as well as in solitary functions are shown. The impact of lower hybrid resonance on the envelope of the upper hybrid waves is explored; the results show that both the spatial period and amplitude are enlarged. The average fluctuation level of induced density irregularities is also enhanced. In the soliton form, the induced density cavity is widened considerably.
ARM - Lesson Plans: Air Density and Temperature
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Teachers' Toolbox Lesson Plans Lesson Plans: Air Density and Temperature Objective The objective of this activity is to investigate the effect of temperature on the density of air. ...
Building a Universal Nuclear Energy Density Functional
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Building a Universal Nuclear Energy Density Functional Building a Universal Nuclear Energy Density Functional VaryMatrix.png Collaboration with mathematicians and computational...
Dynamics and diffusion mechanism of low-density liquid silicon
Shen, B.; Wang, Z. Y.; Dong, F.; Guo, Y. R.; Zhang, R. J.; Zheng, Y. X.; Wang, S. Y.; Wang, C. Z.; Ho, K. M.; Chen, L. Y.
2015-11-05
A first-order phase transition from a high-density liquid to a low-density liquid has been proposed to explain the various thermodynamic anomies of water. It also has been proposed that such liquidâ€“liquid phase transition would exist in supercooled silicon. Computer simulation studies show that, across the transition, the diffusivity drops roughly 2 orders of magnitude, and the structures exhibit considerable tetrahedral ordering. The resulting phase is a highly viscous, low-density liquid silicon. Investigations on the atomic diffusion of such a novel form of liquid silicon are of high interest. Here we report such diffusion results from molecular dynamics simulations using the classical Stillingerâ€“Weber (SW) potential of silicon. We show that the atomic diffusion of the low-density liquid is highly correlated with local tetrahedral geometries. We also show that atoms diffuse through hopping processes within short ranges, which gradually accumulate to an overall random motion for long ranges as in normal liquids. There is a close relationship between dynamical heterogeneity and hopping process. We point out that the above diffusion mechanism is closely related to the strong directional bonding nature of the distorted tetrahedral network. Here, our work offers new insights into the complex behavior of the highly viscous low density liquid silicon, suggesting similar diffusion behaviors in other tetrahedral coordinated liquids that exhibit liquidâ€“liquid phase transition such as carbon and germanium.
Dynamics and diffusion mechanism of low-density liquid silicon
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Shen, B.; Wang, Z. Y.; Dong, F.; Guo, Y. R.; Zhang, R. J.; Zheng, Y. X.; Wang, S. Y.; Wang, C. Z.; Ho, K. M.; Chen, L. Y.
2015-11-05
A first-order phase transition from a high-density liquid to a low-density liquid has been proposed to explain the various thermodynamic anomies of water. It also has been proposed that such liquidâ€“liquid phase transition would exist in supercooled silicon. Computer simulation studies show that, across the transition, the diffusivity drops roughly 2 orders of magnitude, and the structures exhibit considerable tetrahedral ordering. The resulting phase is a highly viscous, low-density liquid silicon. Investigations on the atomic diffusion of such a novel form of liquid silicon are of high interest. Here we report such diffusion results from molecular dynamics simulations using themoreÂ Â» classical Stillingerâ€“Weber (SW) potential of silicon. We show that the atomic diffusion of the low-density liquid is highly correlated with local tetrahedral geometries. We also show that atoms diffuse through hopping processes within short ranges, which gradually accumulate to an overall random motion for long ranges as in normal liquids. There is a close relationship between dynamical heterogeneity and hopping process. We point out that the above diffusion mechanism is closely related to the strong directional bonding nature of the distorted tetrahedral network. Here, our work offers new insights into the complex behavior of the highly viscous low density liquid silicon, suggesting similar diffusion behaviors in other tetrahedral coordinated liquids that exhibit liquidâ€“liquid phase transition such as carbon and germanium.Â«Â less
WARM MOLECULAR HYDROGEN EMISSION IN NORMAL EDGE-ON GALAXIES NGC 4565 AND NGC 5907
Laine, Seppo; Appleton, Philip N.; Gottesman, Stephen T.; Ashby, Matthew L. N.; Garland, Catherine A. E-mail: apple@ipac.caltech.ed E-mail: mashby@cfa.harvard.ed
2010-09-15
We have observed warm molecular hydrogen in two nearby edge-on disk galaxies, NGC 4565 and NGC 5907, using the Spitzer high-resolution infrared spectrograph. The 0-0 S(0) 28.2 {mu}m and 0-0 S(1) 17.0 {mu}m pure rotational lines were detected out to 10 kpc from the center of each galaxy on both sides of the major axis, and in NGC 4565 the S(0) line was detected at r = 15 kpc on one side. This location is beyond the transition zone where diffuse neutral atomic hydrogen starts to dominate over cold molecular gas and marks a transition from a disk dominated by high surface-brightness far-infrared (far-IR) emission to that of a more quiescent disk. It also lies beyond a steep drop in the radio continuum emission from cosmic rays (CRs) in the disk. Despite indications that star formation activity decreases with radius, the H{sub 2} excitation temperature and the ratio of the H{sub 2} line and the far-IR luminosity surface densities, {Sigma}(L{sub H{sub 2}})/{Sigma}(L{sub TIR}), change very little as a function of radius, even into the diffuse outer region of the disk of NGC 4565. This suggests that the source of excitation of the H{sub 2} operates over a large range of radii and is broadly independent of the strength and relative location of UV emission from young stars. Although excitation in photodissociation regions is the most common explanation for the widespread H{sub 2} emission, CR heating or shocks cannot be ruled out. At r = 15 kpc in NGC 4565, outside the main UV- and radio-continuum-dominated disk, we derived a higher than normal H{sub 2} to 7.7 {mu}m polycyclic aromatic hydrocarbon (PAH) emission ratio, but this is likely due to a transition from mainly ionized PAH molecules in the inner disk to mainly neutral PAH molecules in the outer disk. The inferred mass surface densities of warm molecular hydrogen in both edge-on galaxies differ substantially, being 4(-60) M{sub sun} pc{sup -2} and 3(-50) M{sub sun} pc{sup -2} at r = 10 kpc for NGC 4565 and NGC 5907
Overview Report: Normal and Emergency Operation Visualization
Greitzer, Frank L.
2011-05-01
This is an overview report to document and illustrate methods used in a project entitled â€œNormal and Emergency Operations Visualizationâ€ for a utility company, conducted in 2009-2010 timeframe with funding from the utility company and the U.S. Department of Energy. The original final report (about 180 pages) for the project is not available for distribution because it alludes to findings that assessed the design of an operational system that contained proprietary information; this abridged version contains descriptions of methods and some findings to illustrate the approach used, while avoiding discussion of sensitive or proprietary information. The client has approved this abridged version of the report for unlimited distribution to give researchers and collaborators the benefit of reviewing the research concepts and methods that were applied in this study.
Density variations and anomalies in palladium compacts
Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.
1992-05-14
Low-density compacts of palladium powder have relative densities of about 30{plus minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a steer's head.'' it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.
Density variations and anomalies in palladium compacts
Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.
1992-05-14
Low-density compacts of palladium powder have relative densities of about 30{plus_minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a ``steer`s head.`` it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.
Probability distribution of the vacuum energy density
Duplancic, Goran; Stefancic, Hrvoje; Glavan, Drazen
2010-12-15
As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy density for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.
DIFFUSE MOLECULAR CLOUD DENSITIES FROM UV MEASUREMENTS OF CO ABSORPTION
Goldsmith, Paul F.
2013-09-10
We use UV measurements of interstellar CO toward nearby stars to calculate the density in the diffuse molecular clouds containing the molecules responsible for the observed absorption. Chemical models and recent calculations of the excitation rate coefficients indicate that the regions in which CO is found have hydrogen predominantly in molecular form and that collisional excitation is by collisions with H{sub 2} molecules. We carry out statistical equilibrium calculations using CO-H{sub 2} collision rates to solve for the H{sub 2} density in the observed sources without including effects of radiative trapping. We have assumed kinetic temperatures of 50 K and 100 K, finding this choice to make relatively little difference to the lowest transition. For the sources having T{sup ex}{sub 10} only for which we could determine upper and lower density limits, we find (n(H{sub 2})) = 49 cm{sup -3}. While we can find a consistent density range for a good fraction of the sources having either two or three values of the excitation temperature, there is a suggestion that the higher-J transitions are sampling clouds or regions within diffuse molecular cloud material that have higher densities than the material sampled by the J = 1-0 transition. The assumed kinetic temperature and derived H{sub 2} density are anticorrelated when the J = 2-1 transition data, the J = 3-2 transition data, or both are included. For sources with either two or three values of the excitation temperature, we find average values of the midpoint of the density range that is consistent with all of the observations equal to 68 cm{sup -3} for T{sup k} = 100 K and 92 cm{sup -3} for T{sup k} = 50 K. The data for this set of sources imply that diffuse molecular clouds are characterized by an average thermal pressure between 4600 and 6800 K cm{sup -3}.
Marshall, J. Jr.
1961-10-24
A reactor is described in which natural-uranium bodies are located in parallel channels which extend through the graphite mass in a regular lattice. The graphite mass has additional channels that are out of the lattice and contain no uranium. These additional channels decrease in number per unit volume of graphite from the center of the reactor to the exterior and have the effect of reducing the density of the graphite more at the center than at the exterior, thereby spreading neutron activity throughout the reactor. (AEC)
THE INITIAL MASS FUNCTION AND THE SURFACE DENSITY PROFILE OF NGC 6231
Sung, Hwankyung; Sana, Hugues; Bessell, Michael S. E-mail: H.Sana@uva.nl
2013-02-01
We have performed new wide-field photometry of the young open cluster NGC 6231 to study the shape of the initial mass function (IMF) and mass segregation. We also investigated the reddening law toward NGC 6231 from optical to mid-infrared color excess ratios, and found that the total-to-selective extinction ratio is R{sub V} = 3.2, which is very close to the normal value. But many early-type stars in the cluster center show large color excess ratios. We derived the surface density profiles of four member groups, and found that they reach the surface density of field stars at about 10', regardless of stellar mass. The IMF of NGC 6231 is derived for the mass range 0.8-45 M{sub Sun }. The slope of the IMF of NGC 6231 ({Gamma} = -1.1 {+-} 0.1) is slightly shallower than the canonical value, but the difference is marginal. In addition, the mass function varies systematically, and is a strong function of radius-it is very shallow at the center, and very steep at the outer ring suggesting the cluster is mass segregated. We confirm the mass segregation for the massive stars (m {approx}> 8 M{sub Sun }) by a minimum spanning tree analysis. Using a Monte Carlo method, we estimate the total mass of NGC 6231 to be about 2.6 ({+-} 0.6) Multiplication-Sign 10{sup 3} M{sub Sun }. We constrain the age of NGC 6231 by comparison with evolutionary isochrones. The age of the low-mass stars ranges from 1 to 7 Myr with a slight peak at 3 Myr. However, the age of the high-mass stars depends on the adopted models and is 3.5 {+-} 0.5 Myr from the non-rotating or moderately rotating models of Brott et al. as well as the non-rotating models of Ekstroem et al. But the age is 4.0-7.0 Myr if the rotating models of Ekstroem et al. are adopted. This latter age is in excellent agreement with the timescale of ejection of the high-mass runaway star HD 153919 from NGC 6231, albeit the younger age cannot be entirely excluded.
Derived Annual Estimates of Manufacturing Energy Consumption...
U.S. Energy Information Administration (EIA) Indexed Site
> Derived Annual Estimates - Executive Summary Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988 Figure showing Derived Estimates Executive Summary This...
Status of High Power Tests of Normal Conducting Short Standing...
Office of Scientific and Technical Information (OSTI)
Status of High Power Tests of Normal Conducting Short Standing Wave Structures Citation Details In-Document Search Title: Status of High Power Tests of Normal Conducting Short Standing ...
Janjai, Serm
2010-09-15
In order to investigate a potential use of concentrating solar power technologies and select an optimum site for these technologies, it is necessary to obtain information on the geographical distribution of direct normal solar irradiation over an area of interest. In this work, we have developed a method for estimating direct normal irradiation from satellite data for a tropical environment. The method starts with the estimation of global irradiation on a horizontal surface from MTSAT-1R satellite data and other ground-based ancillary data. Then a satellite-based diffuse fraction model was developed and used to estimate the diffuse component of the satellite-derived global irradiation. Based on this estimated global and diffuse irradiation and the solar radiation incident angle, the direct normal irradiation was finally calculated. To evaluate its performance, the method was used to estimate the monthly average hourly direct normal irradiation at seven pyrheliometer stations in Thailand. It was found that values of monthly average hourly direct normal irradiation from the measurements and those estimated from the proposed method are in reasonable agreement, with a root mean square difference of 16% and a mean bias of -1.6%, with respect to mean measured values. After the validation, this method was used to estimate the monthly average hourly direct normal irradiation over Thailand by using MTSAT-1R satellite data for the period from June 2005 to December 2008. Results from the calculation were displayed as hourly and yearly irradiation maps. These maps reveal that the direct normal irradiation in Thailand was strongly affected by the tropical monsoons and local topography of the country. (author)
Oxides having high energy densities
Ceder, Gerbrand; Kang, Kisuk
2013-09-10
Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.
Aerodynamic Focusing Of High-Density Aerosols
Ruiz, D. E.; Fisch, Nathaniel
2014-02-24
High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Dane, Markus; Gonis, Antonios
2016-07-05
Based on a computational procedure for determining the functional derivative with respect to the density of any antisymmetric N-particle wave function for a non-interacting system that leads to the density, we devise a test as to whether or not a wave function known to lead to a given density corresponds to a solution of a SchrÃ¶dinger equation for some potential. We examine explicitly the case of non-interacting systems described by Slater determinants. Here, numerical examples for the cases of a one-dimensional square-well potential with infinite walls and the harmonic oscillator potential illustrate the formalism.
Weck, Philippe F.; Kim, Eunja
2015-06-11
The structure, lattice dynamics and thermodynamic properties of bulk technetium were investigated within the framework of density functional theory. The phonon density of states spectrum computed with density functional perturbation theory closely matches inelastic coherent neutron scattering measurements. The thermal properties of technetium were derived from phonon frequencies calculated within the quasi-harmonic approximation (QHA), which introduces a volume dependence of phonon frequencies as a part of the anharmonic effect. As a result, the predicted thermal expansion and isobaric heat capacity of technetium are in excellent agreement with available experimental data for temperatures up to ~1600 K.
Debayle, A.; ETSI AeronÃ¡uticos. Universidad PolitÃ©cnica de Madrid, Madrid 28040 ; Sanz, J.; Gremillet, L.; Mima, K.
2013-05-15
Following a recent work by Sanz et al. [Phys. Rev. E 85, 046411 (2012)], we elaborate upon a one-dimensional model describing the interaction between an ultra-intense, normally incident laser pulse and an overdense plasma. The analytical solutions of the reflected laser field, the electrostatic field, and the plasma surface oscillation are obtained within the cold-fluid approximation. The high-order harmonic spectrum is calculated from the exact solution of the plasma surface oscillations. In agreement with particle-in-cell simulations, two regimes of harmonic generation are predicted: for moderately relativistic laser intensities, or high plasma densities, the harmonic spectrum is determined by the discontinuity in the derivative of the reflected field when the electron plasma boundary oscillates across the fixed ion boundary. For higher intensities, the electron plasma boundary is confined inside the ion region and oscillates at relativistic velocities, giving rise to a train of reflected attosecond pulses. In both cases, the harmonic spectrum obeys an asymptotic Ï‰{sup âˆ’4} scaling. The acceleration of electrons and the related laser absorption efficiency are computed by a test particle method. The model self-consistently reproduces the transition between the â€œanomalous skin effectâ€ and the â€œJ Ã— Bâ€ heating predicted by particle-in-cell simulations. Analytical estimates of the different scalings are presented.
Control of target-normal-sheath-accelerated protons from a guiding cone
Zou, D. B.; Zhuo, H. B.; Yang, X. H.; Yu, T. P.; Shao, F. Q.; Pukhov, A.
2015-06-15
It is demonstrated through particle-in-cell simulations that target-normal-sheath-accelerated protons can be well controlled by using a guiding cone. Compared to a conventional planar target, both the collimation and number density of proton beams are substantially improved, giving a high-quality proton beam which maintained for a longer distance without degradation. The effect is attributed to the radial electric field resulting from the charge due to the hot target electrons propagating along the cone surface. This electric field can effectively suppress the spatial spread of the protons after the expansion of the hot electrons.
NEUTRONIC REACTOR HAVING LOCALIZED AREAS OF HIGH THERMAL NEUTRON DENSITIES
Newson, H.W.
1958-06-01
A nuclear reactor for the irradiation of materials designed to provide a localized area of high thermal neutron flux density in which the materials to be irradiated are inserted is described. The active portion of the reactor is comprised of a cubicle graphite moderator of about 25 feet in length along each axis which has a plurality of cylindrical channels for accommodatirg elongated tubular-shaped fuel elements. The fuel elements have radial fins for spacing the fuel elements from the channel walls, thereby providing spaces through which a coolant may be passed, and also to serve as a heatconductirg means. Ducts for accommnodating the sample material to be irradiated extend through the moderator material perpendicular to and between parallel rows of fuel channels. The improvement is in the provision of additional fuel element channels spaced midway between 2 rows of the regular fuel channels in the localized area surrounding the duct where the high thermal neutron flux density is desired. The fuel elements normally disposed in the channels directly adjacent the duct are placed in the additional channels, and the channels directly adjacent the duct are plugged with moderator material. This design provides localized areas of high thermal neutron flux density without the necessity of providing additional fuel material.
National Nuclear Security Administration (NNSA)
Robert C. Jones, Colleen M. Beck, and Barbara A. Holz Division of Earth and Ecosystem Sciences Cultural Resources Technical Report No.102 Desert Research Institute Las Vegas, ...
Genome Wide Evaluation of Normal Human Tissue in Response to...
Office of Scientific and Technical Information (OSTI)
Wide Evaluation of Normal Human Tissue in Response to Controlled, In vivo Low-Dose Low LET Ionizing Radiation Exposure: Pathways and Mechanisms Final Report, September 2013 Rocke,...
Normal Conditions of Transport Truck Test of a Surrogate Fuel...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. McConnell, Paul E.; Wauneka, Robert; Saltzstein, Sylvia J.; Sorenson, Ken B. Abstract not provided. Sandia...
Used Nuclear Fuel Loading and Structural Performance Under Normal...
Office of Environmental Management (EM)
Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan Used Nuclear Fuel Loading and ...
Dating of major normal fault systems using thermochronology-...
Dating of major normal fault systems using thermochronology- An example from the Raft River detachment, Basin and Range, western United States Jump to: navigation, search OpenEI...
Quartz resonator fluid density and viscosity monitor
Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.
1998-01-01
A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.
High Density Fuel Development for Research Reactors
Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove
2007-09-01
An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.
The Quantum Energy Density: Improved E
Krogel, Jaron; Yu, Min; Kim, Jeongnim; Ceperley, David M.
2013-01-01
We establish a physically meaningful representation of a quantum energy density for use in Quantum Monte Carlo calculations. The energy density operator, dened in terms of Hamiltonian components and density operators, returns the correct Hamiltonian when integrated over a volume containing a cluster of particles. This property is demonstrated for a helium-neon \\gas," showing that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems. The formation energies of defects or interfaces are typically calculated as total energy dierences. Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfacial energies can be calculated more eciently with the energy density, since the region of interest is small. We also demonstrate how the energy density correctly transitions to the bulk limit away from the interface where the correct energy is obtainable from a separate total energy calculation.
Method of synthesizing a low density material
Lorensen, L.E.; Monaco, S.B.
1987-02-27
A novel method of synthesizing a polymeric material of low density of the order of 50mg/cc or less. Such a low density material has applications in many areas including laser target fabrication. The method comprises preparing a polymer blend of two incompatible polymers as a major and a minor phase by mixing them and extruding the mixture, and then selectively extracting the major component, to yield a fine, low density structure.
Sigman, Michael E.; Dindal, Amy B.
2003-11-11
Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.
Building a Universal Nuclear Energy Density Functional
Bertulani, Carlos A.
2014-09-10
This grant had two components: Density functional theory and pairing and Nuclear reactions. This final report summarizes the activities for this SciDAC-2 project.
3-D capacitance density imaging system
Fasching, G.E.
1988-03-18
A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.
Calculating Atomic Number Densities for Uranium
Energy Science and Technology Software Center (OSTI)
1993-01-01
Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.
Screening potential in high density plasmas
Amari, M.; Arranz, J. P.; Butaux, J.; Nguyen, H.
1997-01-05
On the basis of a two-ion center model, an accurate closed form of the screening potential is suggested for intermediate and high density plasmas.
Universal Nuclear Energy Density Functional (Technical Report...
Office of Scientific and Technical Information (OSTI)
Country of Publication: United States Language: English Subject: 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Nuclear structure; nuclear energy density functional Word Cloud ...
Mini-review of Electron Density Visualization
Adler, Joan; Adler, Omri; Kreif, Meytal; Cohen, Or; Grosso, Bastien; Hashibon, Adham; Cooper, Valentino R
2015-01-01
We describe both educational and research oriented examples of electronic density visualization with AViz. Several detailed cases are presented and the procedures for their preparation are described.
Uncertainty Quantification for Nuclear Density Functional Theory...
Office of Scientific and Technical Information (OSTI)
Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements Citation Details In-Document Search This content will become publicly...
Chiral dynamics and peripheral transverse densities Granados...
Office of Scientific and Technical Information (OSTI)
dynamics and peripheral transverse densities Granados, Carlos G. Uppsala University (Sweden); Weiss, Christian JLAB, Newport News, VA (United States) 72 PHYSICS OF ELEMENTARY...
High Energy Density Ultracapacitors | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es038smith2011p.pdf (1.95 MB) More Documents & Publications High Energy Density Ultracapacitors ...
Magnetic cellulose-derivative structures
Walsh, Myles A.; Morris, Robert S.
1986-09-16
Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorbtion agents can be incorporated during the manufacture of the structure.
Magnetic cellulose-derivative structures
Walsh, M.A.; Morris, R.S.
1986-09-16
Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorption agents can be incorporated during the manufacture of the structure. 3 figs.
Particle visualization in high-power impulse magnetron sputtering. II. Absolute density dynamics
Britun, Nikolay Palmucci, Maria; Konstantinidis, Stephanos; Snyders, Rony
2015-04-28
Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. The present, second, paper of the study is related to the discharge characterization in terms of the absolute density of species using resonant absorption spectroscopy. The results on the time-resolved density evolution of the neutral and singly-ionized Ti ground state atoms as well as the metastable Ti and Ar atoms during the discharge on- and off-time are presented. Among the others, the questions related to the inversion of population of the Ti energy sublevels, as well as to re-normalization of the two-dimensional density maps in terms of the absolute density of species, are stressed.
Cervantes, O
2010-06-01
Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 gÂ·cm-3 or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.
Laser-induced differential normalized fluorescence method for cancer diagnosis
Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.
1996-01-01
An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample.
Laser-induced differential normalized fluorescence method for cancer diagnosis
Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.
1996-12-03
An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample. 5 figs.
High bandwidth vapor density diagnostic system
Globig, Michael A.; Story, Thomas W.
1992-01-01
A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.
High density laser-driven target
Lindl, John D.
1981-01-01
A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.
Enhancing critical current density of cuprate superconductors
Chaudhari, Praveen
2015-06-16
The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.
Redox Chemistry of Anthraquinone Derivatives Via Simulations...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
August 27, 2014, Research Highlights Redox Chemistry of Anthraquinone Derivatives Via ... S. Assary, Investigation of the Redox Chemistry of Anthraquinone Derivatives Using ...
Neutral depletion and the helicon density limit
Magee, R. M.; Galante, M. E.; Carr, J. Jr.; Lusk, G.; McCarren, D. W.; Scime, E. E.
2013-12-15
It is straightforward to create fully ionized plasmas with modest rf power in a helicon. It is difficult, however, to create plasmas with density >10{sup 20} m{sup ?3}, because neutral depletion leads to a lack of fuel. In order to address this density limit, we present fast (1 MHz), time-resolved measurements of the neutral density at and downstream from the rf antenna in krypton helicon plasmas. At the start of the discharge, the neutral density underneath the antenna is reduced to 1% of its initial value in 15 ?s. The ionization rate inferred from these data implies that the electron temperature near the antenna is much higher than the electron temperature measured downstream. Neutral density measurements made downstream from the antenna show much slower depletion, requiring 14 ms to decrease by a factor of 1/e. Furthermore, the downstream depletion appears to be due to neutral pumping rather than ionization.
Core density turbulence in the HSX Stellarator
Deng, C. B.; Brower, D. L.; Anderson, D. T.; Anderson, F. S. B.; Briesemeister, Alexis R.; Likin, K. M.
2015-10-23
Broadband turbulent density fluctuations are explored in the helically symmetric stellarator experiment (HSX) by investigating changes related to plasma heating power and location. No fluctuation response is observed to occur with large changes in electron temperature and its gradient, thereby eliminating temperature gradient as a driving mechanism. Instead, measurements reveal that density turbulence varies inversely with electron density scale length. This response is consistent with density gradient drive as one might expect for trapped electron mode (TEM) turbulence. In general, the plasma stored energy and particle confinement are higher for discharges with reduced fluctuations in the plasma core. When the density fluctuation amplitude is reduced, increased plasma rotation is also evident suggesting a role is being played by intrinsic plasma flow.
BHR equations re-derived with immiscible particle effects
Schwarzkopf, John Dennis; Horwitz, Jeremy A.
2015-05-01
Compressible and variable density turbulent flows with dispersed phase effects are found in many applications ranging from combustion to cloud formation. These types of flows are among the most challenging to simulate. While the exact equations governing a system of particles and fluid are known, computational resources limit the scale and detail that can be simulated in this type of problem. Therefore, a common method is to simulate averaged versions of the flow equations, which still capture salient physics and is relatively less computationally expensive. Besnard developed such a model for variable density miscible turbulence, where ensemble-averaging was applied to the flow equations to yield a set of filtered equations. Besnard further derived transport equations for the Reynolds stresses, the turbulent mass flux, and the density-specific volume covariance, to help close the filtered momentum and continuity equations. We re-derive the exact BHR closure equations which include integral terms owing to immiscible effects. Physical interpretations of the additional terms are proposed along with simple models. The goal of this work is to extend the BHR model to allow for the simulation of turbulent flows where an immiscible dispersed phase is non-trivially coupled with the carrier phase.
Giant increase in critical current density of KxFe2-ySeâ‚‚ single crystals
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Lei, Hechang; Petrovic, C.
2011-12-28
The critical current density Jabc of KxFe2-ySeâ‚‚ single crystals can be enhanced by more than one order of magnitude, up to ~2.1Ã—10â´ A/cmÂ² by the post annealing and quenching technique. A scaling analysis reveals the universal behavior of the normalized pinning force as a function of the reduced field for all temperatures, indicating the presence of a single vortex pinning mechanism. The main pinning sources are three-dimensional (3D) point-like normal cores. The dominant vortex interaction with pinning centers is via spatial variations in critical temperature Tc (â€œÎ´Tc pinningâ€).
Ions in solution: Density corrected density functional theory (DC-DFT)
Kim, Min-Cheol; Sim, Eunji; Burke, Kieron
2014-05-14
Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HOÂ·Cl{sup âˆ’} and HOÂ·H{sub 2}O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent.
Periodic subsystem density-functional theory
Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide
2014-11-07
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohnâ€“Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohnâ€“Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.
Low density, resorcinol-formaldehyde aerogels
Pekala, Richard W.
1991-01-01
The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "Clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density.ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100.circle.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.
Low density, resorcinol-formaldehyde aerogels
Pekala, Richard W.
1989-01-01
The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density .ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 .ANG.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.
Low density, resorcinol-formaldehyde aerogels
Pekala, R.W.
1989-10-10
The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer clusters. The covalent crosslinking of these clusters produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density [<=]100 mg/cc; cell size [<=]0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 [angstrom]. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.
Low density, resorcinol-formaldehyde aerogels
Pekala, R.W.
1988-05-26
The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer ''clusters''. The covalent crosslinking of these ''clusters'' produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density less than or equal to100 mg/cc; cell size less than or equal to0.1 microns). The aerogels are transparent,dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 A/degree/. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron. 1 fig., 1 tab.
Density equalizing map projections (cartograms) in public health applications
Merrill, D.W.
1998-05-01
In studying geographic disease distributions, one normally compares rates among arbitrarily defined geographic subareas (e.g. census tracts), thereby sacrificing some of the geographic detail of the original data. The sparser the data, the larger the subareas must be in order to calculate stable rates. This dilemma is avoided with the technique of Density Equalizing Map Projections (DEMP){copyright}. Boundaries of geographic subregions are adjusted to equalize population density over the entire study area. Case locations plotted on the transformed map should have a uniform distribution if the underlying disease risk is constant. On the transformed map, the statistical analysis of the observed distribution is greatly simplified. Even for sparse distributions, the statistical significance of a supposed disease cluster can be calculated with validity. The DEMP algorithm was applied to a data set previously analyzed with conventional techniques; namely, 401 childhood cancer cases in four counties of California. The distribution of cases on the transformed map was analyzed visually and statistically. To check the validity of the method, the identical analysis was performed on 401 artificial cases randomly generated under the assumption of uniform risk. No statistically significant evidence for geographic non-uniformity of rates was found, in agreement with the original analysis performed by the California Department of Health Services.
JTA8B Normal Mechanical Discussion Meeting Minutes January 7...
Office of Scientific and Technical Information (OSTI)
Resource Relation: Conference: JTA8B Normal Mechanical Discussion Meeting Minutes January,7, 2016 ; 2016-01-07 - 2016-01-07 ; Albuquerque, New Mexico, United States Research Org: ...
Financial derivative pricing under probability operator via Esscher transfomation
Achi, Godswill U.
2014-10-24
The problem of pricing contingent claims has been extensively studied for non-Gaussian models, and in particular, Black- Scholes formula has been derived for the NIG asset pricing model. This approach was first developed in insurance pricing{sup 9} where the original distortion function was defined in terms of the normal distribution. This approach was later studied6 where they compared the standard Black-Scholes contingent pricing and distortion based contingent pricing. So, in this paper, we aim at using distortion operators by Cauchy distribution under a simple transformation to price contingent claim. We also show that we can recuperate the Black-Sholes formula using the distribution. Similarly, in a financial market in which the asset price represented by a stochastic differential equation with respect to Brownian Motion, the price mechanism based on characteristic Esscher measure can generate approximate arbitrage free financial derivative prices. The price representation derived involves probability Esscher measure and Esscher Martingale measure and under a new complex valued measure Ï† (u) evaluated at the characteristic exponents Ï†{sub x}(u) of X{sub t} we recuperate the Black-Scholes formula for financial derivative prices.
Mao, J. Y.; Chen, L. M.; Huang, K.; Ma, Y.; Zhao, J. R.; Yan, W. C.; Ma, J. L.; Wei, Z. Y.; Li, D. Z.; Aeschlimann, M.; Zhang, J.
2015-03-30
Optimized-quality monoenergetic target surface electron beams at MeV level with low normalized emittance (0.03Ï€ mm mrad) and high charge (30 pC) per shot have been obtained from 3 TW laser-solid interactions at a grazing incidence. The 2-Dimension particle-in-cell simulations suggest that electrons are wake-field accelerated in a large-scale, near-critical-density preplasma. It reveals that a bubble-like structure as an accelerating cavity appears in the near-critical-density plasma region and travels along the target surface. A bunch of electrons are pinched transversely and accelerated longitudinally by the wake field in the bubble. The outstanding normalized emittance and monochromaticity of such highly collimated surface electron beams could make it an ideal beam for fast ignition or may serve as an injector in traditional accelerators.
Normal Force and Drag Force in Magnetorheological Finishing
Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.
2010-01-13
The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, tau, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials including optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low “coefficient of friction”. The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.
Density controlled carbon nanotube array electrodes
Ren, Zhifeng F.; Tu, Yi
2008-12-16
CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.
Separation of carbon nanotubes in density gradients
Hersam, Mark C.; Stupp, Samuel I.; Arnold, Michael S.
2012-02-07
The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.
Separation of carbon nanotubes in density gradients
Hersam, Mark C.; Stupp, Samuel I.; Arnold, Michael S.
2010-02-16
The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.
High density load bearing insulation peg
Nowobilski, Jeffert J.; Owens, William J.
1985-01-01
A high density peg which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure.
High density load bearing insulation peg
Nowobilski, J.J.; Owens, W.J.
1985-01-29
A high density peg is disclosed which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure. 4 figs.
Chiral dynamics and peripheral transverse densities (Journal...
Office of Scientific and Technical Information (OSTI)
Journal Article: Chiral dynamics and peripheral transverse densities Citation Details ... Report Number(s): JLAB-THY--13-1763; DOEOR--23177-2641 Journal ID: ISSN 1029-8479; TRN: ...
Shock compression of low-density foams
Holmes, N.C.
1993-07-01
Shock compression of very low density micro-cellular materials allows entirely new regimes of hot fluid states to be investigated experimentally. Using a two-stage light-gas gun to generate strong shocks, temperatures of several eV are readily achieved at densities of roughly 0.5--1 g/cm{sup 3} in large, uniform volumes. The conditions in these hot, expanded fluids are readily found using the Hugoniot jump conditions. We will briefly describe the basic methodology for sample preparation and experimental measurement of shock velocities. We present data for several materials over a range of initial densities. This paper will explore the applications of these methods for investigations of equations of state and phase diagrams, spectroscopy, and plasma physics. Finally, we discus the need for future work on these and related low-density materials.
Communication: Embedded fragment stochastic density functional theory
Neuhauser, Daniel; Baer, Roi; Rabani, Eran
2014-07-28
We develop a method in which the electronic densities of small fragments determined by Kohn-Sham density functional theory (DFT) are embedded using stochastic DFT to form the exact density of the full system. The new method preserves the scaling and the simplicity of the stochastic DFT but cures the slow convergence that occurs when weakly coupled subsystems are treated. It overcomes the spurious charge fluctuations that impair the applications of the original stochastic DFT approach. We demonstrate the new approach on a fullerene dimer and on clusters of water molecules and show that the density of states and the total energy can be accurately described with a relatively small number of stochastic orbitals.
Breast Density and Cancer | GE Global Research
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Breast Cancer Awareness Series: Understanding Breast Density Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in ...
High Energy Density Ultracapacitors | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. esp22smith.pdf (1.09 MB) More Documents & Publications High Energy Density Ultracapacitors High ...
High-Energy-Density Plasmas, Fluids
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
High-Energy-Density Plasmas, Fluids High-Energy-Density Plasmas, Fluids National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. TRIDENT target chamber Sasi Palaniyappan, right, and Rahul Shah left inside a target chamber where the TRIDENT short pulse laser is aimed at a very thin diamond- foil target, a fraction of a micrometer thick. The
THERMOCHEMICAL CONVERSION OF FERMENTATION-DERIVED OXYGENATES TO FUELS
Ramasamy, Karthikeyan K.; Wang, Yong
2013-06-01
At present ethanol generated from renewable resources through fermentation process is the dominant biofuel. But ethanol suffers from undesirable fuel properties such as low energy density and high water solubility. The production capacity of fermentation derived oxygenates are projected to rise in near future beyond the current needs. The conversion of oxygenates to hydrocarbon compounds that are similar to gasoline, diesel and jet fuel is considered as one of the viable option. In this chapter the thermo catalytic conversion of oxygenates generated through fermentation to fuel range hydrocarbons will be discussed.
SU-E-I-18: CT Scanner QA Using Normalized CTDI Ratio
Randazzo, M; Tambasco, M; Russell, B
2014-06-01
Purpose: To create a ratio of weighted computed tomography dose index (CTDIw) data normalized to in-air measurements (CTDIair) as a function of beam quality to create a look-up table for frequent, rapid quality assurance (QA) checks of CTDI. Methods: The CTDIw values were measured according to TG-63 protocol using a pencil ionization chamber (Unfors Xi CT detector) and head and body Polymethyl methacrylate (PMMA) phantoms (16 and 32 cm diameter, respectively). Single scan dose profiles were measured at each clinically available energy (80,100,120,140 kVp) on three different CT scanners (two Siemens SOMATOM Definition Flash and one GE Optima), using a tube current of 400 mA, a one second rotation time, and the widest available beam width (32 Ã— 0.6 mm and 16 Ã— 1.25 mm, respectively). These values were normalized to CTDIair measurements using the same conditions as CTDIw. The ratios (expressed in cGy/R) were assessed for each scanner as a function of each energy's half value layer (HVL) paired with the phantom's appropriate bow tie filter measured in mmAl. Results: Normalized CTDI values vary linearly with HVL for both the head and body phantoms. The ratios for the two Siemens machines are very similar at each energy. Compared to the GE scanner, these values vary between 10â€“20% for each kVp setting. Differences in CTDIair contribute most to the deviation of the ratios across machines. Ratios are independent of both mAs and collimation. Conclusion: Look-up tables constructed of normalized CTDI values as a function of HVL can be used to derive CTDIw data from only three in-air measurements (one for CTDIair and two with added filtration for HVL) to allow for simple, frequent QA checks without CT phantom setup. Future investigations will involve comparing results with Monte Carlo simulations for validation.
Binder enhanced refuse derived fuel
Daugherty, Kenneth E.; Venables, Barney J.; Ohlsson, Oscar O.
1996-01-01
A refuse derived fuel (RDF) pellet having about 11% or more particulate calcium hydroxide which is utilized in a combustionable mixture. The pellets are used in a particulate fuel bring a mixture of 10% or more, on a heat equivalent basis, of the RDF pellet which contains calcium hydroxide as a binder, with 50% or more, on a heat equivalent basis, of a sulphur containing coal. Combustion of the mixture is effective to produce an effluent gas from the combustion zone having a reduced SO.sub.2 and polycyclic aromatic hydrocarbon content of effluent gas from similar combustion materials not containing the calcium hydroxide.
Capacitance-level/density monitor for fluidized-bed combustor
Fasching, George E.; Utt, Carroll E.
1982-01-01
A multiple segment three-terminal type capacitance probe with segment selection, capacitance detection and compensation circuitry and read-out control for level/density measurements in a fluidized-bed vessel is provided. The probe is driven at a high excitation frequency of up to 50 kHz to sense quadrature (capacitive) current related to probe/vessel capacitance while being relatively insensitive to the resistance current component. Compensation circuitry is provided for generating a negative current of equal magnitude to cancel out only the resistive component current. Clock-operated control circuitry separately selects the probe segments in a predetermined order for detecting and storing this capacitance measurement. The selected segment acts as a guarded electrode and is connected to the read-out circuitry while all unselected segments are connected to the probe body, which together form the probe guard electrode. The selected probe segment capacitance component signal is directed to a corresponding segment channel sample and hold circuit dedicated to that segment to store the signal derived from that segment. This provides parallel outputs for display, computer input, etc., for the detected capacitance values. The rate of segment sampling may be varied to either monitor the dynamic density profile of the bed (high sampling rate) or monitor average bed characteristics (slower sampling rate).
General relation between density of states and dwell times in mesoscopic systems
Iannaccone, G. Dipartimento di Ingegneria dell'Informazione: Elettronica, Informatica e Telecomunicazioni, Universita degli Studi di Pisa, Via Diotisalvi 2, I-56126 Pisa )
1995-02-15
A relevant relation between the dwell time and the density of states for a three-dimensional system of arbitrary shape with an arbitrary number of incoming channels is derived. This result extends the one obtained by Gasparian and co-workers for the case of a one-dimensional symmetrical potential barrier. We believe that such a strong relation is rich in physical significance because the dwell time is the most widely accepted time measure of a particle's dynamics and the density of states in a given region is one of the most relevant properties of a system in equilibrium.
Wang, Peng; Barajas-Solano, David A.; Constantinescu, Emil; Abhyankar, S.; Ghosh, Donetta L.; Smith, Barry; Huang, Zhenyu; Tartakovsky, Alexandre M.
2015-09-22
Wind and solar power generators are commonly described by a system of stochastic ordinary differential equations (SODEs) where random input parameters represent uncertainty in wind and solar energy. The existing methods for SODEs are mostly limited to delta-correlated random parameters (white noise). Here we use the Probability Density Function (PDF) method for deriving a closed-form deterministic partial differential equation (PDE) for the joint probability density function of the SODEs describing a power generator with time-correlated power input. The resulting PDE is solved numerically. A good agreement with Monte Carlo Simulations shows accuracy of the PDF method.
Yeung, E.S.; Chen, G.
1990-05-01
A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.
Yeung, Edward S.; Chen, Guoying
1990-05-01
A method and means for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived.
ON THE SIZE, SHAPE, AND DENSITY OF DWARF PLANET MAKEMAKE
Brown, M. E.
2013-04-10
A recent stellar occultation by the dwarf planet Makemake provided an excellent opportunity to measure the size and shape of one of the largest objects in the Kuiper belt. The analysis of these results provided what were reported to be precise measurements of the lengths of the projected axes, the albedo, and even the density of Makemake, but these results were, in part, derived from qualitative arguments. We reanalyzed the occultation timing data using a quantitative statistical description, and, in general, found the previously reported results on the shape of Makemake to be unjustified. In our solution, in which we use our inference from photometric data that Makemake is being viewed nearly pole-on, we find a 1{sigma} upper limit to the projected elongation of Makemake of 1.02, with measured equatorial diameter of 1434 {+-} 14 km and a projected polar diameter of 1422 {+-} 14 km, yielding an albedo of 0.81{sup +0.01}{sub -0.02}. If we remove the external constraint on the pole position of Makemake, we find instead a 1{sigma} upper limit to the elongation of 1.06, with a measured equatorial diameter of 1434{sup +48}{sub -18} km and a projected polar diameter of 1420{sup +18}{sub -24} km, yielding an albedo of 0.81{sup +0.03}{sub -0.05}. Critically, we find that the reported measurement of the density of Makemake was based on the misapplication of the volatile retention models. A corrected analysis shows that the occultation measurements provide no meaningful constraint on the density of Makemake.
Upgrading of biorenewables to high energy density fuels
Gordon, John C; Batista, Enrique R; Chen, Weizhong; Currier, Robert P; Dirmyer, Matthew R; John, Kevin D; Kim, Jin K; Keith, Jason; Martin, Richard L; Pierpont, Aaron W; Silks Ill, L. A. "" Pete; Smythe, Mathan C; Sutton, Andrew D; Taw, Felicia L; Trovitch, Ryan J; Vasudevan, Kalyan V; Waidmann, Christopher R; Wu, Ruilian; Baker, R. Thomas; Schlaf, Marcel
2010-12-07
According to a recent report, lignocellulose is the most abundant renewable biological resource on earth, with an annual production of {approx} 200 x 10{sup 9} tons. Conversion of lignocellulosics derived from wood, agricultural wastes, and woody grasses into liquid fuels and value-added chemical feedstocks is an active area of research that has seen an explosion of effort due to the need to replace petroleum based sources. The carbohydrates D-glucose (C{sub 6}), L-arabinose (C{sub 5}), and D-xylose (C{sub 5}) are readily obtained from the hydrolysis of lignocellulose and constitute the most abundant renewable organic carbon source on the planet. Because they are naturally produced on such a large scale, these sugars have the greatest potential to displace petrochemical derived transportation fuel. Recent efforts in our laboratories aimed towards the production of high energy density transportation fuels from carbohydrates have been structured around the parameters of selective carbohydrate carbon chain extension chemistries, low reaction temperatures, and the desired use of water or neat substrate as the solvent. Some of our efforts in this regard will be presented.
COMMENTS ON ANOMALOUS EFFECTS IN CHARGING OF PD POWDERS WITH HIGH DENSITY HYDROGEN ISOTOPES
Shanahan, K.
2009-10-01
In Kitamura, et al, Pd-containing materials are exposed to isotopes of hydrogen and anomalous results obtained. These are claimed to be a replication of another experiment conducted by Arata and Zhang. Erroneous basic assumptions are pointed out herein that alter the derived conclusions significantly. The final conclusion is that the reported results are likely normal chemistry combined with noise. Thus the claim to have proven that cold fusion is occurring in these systems is both premature and unlikely.
Method and apparatus for measuring surface density of explosive and inert dust in stratified layers
Sapko, Michael J.; Perlee, Henry E.
1988-01-01
A method for determining the surface density of coal dust on top of rock dust or rock dust on top of coal dust is disclosed which comprises directing a light source at either a coal or rock dust layer overlaying a substratum of the other, detecting the amount of light reflected from the deposit, generating a signal from the reflected light which is converted into a normalized output (V), and calculating the surface density from the normalized output. The surface density S.sub.c of coal dust on top of rock dust is calculated according to the equation: S.sub.c =1/-a.sub.c ln(V) wherein a.sub.c is a constant for the coal dust particles, and the surface density S.sub.r of rock dust on top of coal dust is determined by the equation: ##EQU1## wherein a.sub.r is a constant based on the properties of the rock dust particles. An apparatus is also disclosed for carrying out the method of the present invention.
Evolving Density and Static Mechanical Properties in Plutonium from Self-Irradiation
Chung, B W; Thompson, S R; Lema, K E; Hiromoto, D S; Ebbinghaus, B B
2008-07-31
Plutonium, because of its self-irradiation by alpha decay, ages by means of lattice damage and helium in-growth. These integrated aging effects result in microstructural and physical property changes. Because these effects would normally require decades to measure, studies are underway to assess the effects of extended aging on the physical properties of plutonium alloys by incorporating roughly 7.5 weight % of highly specific activity isotope {sup 238}Pu into the {sup 239}Pu metal to accelerate the aging process. This paper presents updated results of self-irradiation effects on {sup 238}Pu-enriched alloys measured by immersion density, dilatometry, and tensile tests. After nearly 90 equivalent years of aging, both the immersion density and dilatometry show that the enriched alloys continue to decreased in density by {approx}0.002% per year, without void swelling. Quasi-static tensile measurements show that the aging process increases the strength of plutonium alloys.
Optical based tactile shear and normal load sensor
Salisbury, Curt Michael
2015-06-09
Various technologies described herein pertain to a tactile sensor that senses normal load and/or shear load. The tactile sensor includes a first layer and an optically transparent layer bonded together. At least a portion of the first layer is made of optically reflective material. The optically transparent layer is made of resilient material (e.g., clear silicone rubber). The tactile sensor includes light emitter/light detector pair(s), which respectively detect either normal load or shear load. Light emitter(s) emit light that traverses through the optically transparent layer and reflects off optically reflective material of the first layer, and light detector(s) detect and measure intensity of reflected light. When a normal load is applied, the optically transparent layer compresses, causing a change in reflected light intensity. When shear load is applied, a boundary between optically reflective material and optically absorptive material is laterally displaced, causing a change in reflected light intensity.
Method for construction of normalized cDNA libraries
Soares, M.B.; Efstratiadis, A.
1998-11-03
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3` noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to appropriate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. This invention also provides normalized cDNA libraries generated by the above-described method and uses of the generated libraries. 19 figs.
Method for construction of normalized cDNA libraries
Soares, Marcelo B.; Efstratiadis, Argiris
1998-01-01
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to appropriate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. This invention also provides normalized cDNA libraries generated by the above-described method and uses of the generated libraries.
Statistical approach to nuclear level density
Sen'kov, R. A.; Horoi, M.; Zelevinsky, V. G.
2014-10-15
We discuss the level density in a finite many-body system with strong interaction between the constituents. Our primary object of applications is the atomic nucleus but the same techniques can be applied to other mesoscopic systems. We calculate and compare nuclear level densities for given quantum numbers obtained by different methods, such as nuclear shell model (the most successful microscopic approach), our main instrument - moments method (statistical approach), and Fermi-gas model; the calculation with the moments method can use any shell-model Hamiltonian excluding the spurious states of the center-of-mass motion. Our goal is to investigate statistical properties of nuclear level density, define its phenomenological parameters, and offer an affordable and reliable way of calculation.
High power density solid oxide fuel cells
Pham, Ai Quoc; Glass, Robert S.
2004-10-12
A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.
Fabrication of low density ceramic material
Meek, T.T.; Blake, R.D.; Sheinberg, H.
1985-01-01
A precursor mixture and a method of making a low-density ceramic structural material are disclosed. The precursor mixture includes hollow microballoons, typically made of glass, together with a cementing agent capable of being cured by microwave irradiation. A preferred cementing agent is liquid hydrated potassium silicate, which is mixed with the glass microballoons to form a slurry. Upon irradiation the potassium silicate is dehydrated to form a solid porous matrix in which the microballoons are evenly distributed. Ground glass or other filling agents may be included in the slurry to enhance the properties of the final product. Low-density structural ceramics having densities on the order of 0.1 to 0.3 are obtained.
Nonlinear normal modes modal interactions and isolated resonance curves
Kuether, Robert J.; Renson, L.; Detroux, T.; Grappasonni, C.; Kerschen, G.; Allen, M. S.
2015-05-21
The objective of the present study is to explore the connection between the nonlinear normal modes of an undamped and unforced nonlinear system and the isolated resonance curves that may appear in the damped response of the forced system. To this end, an energy balance technique is used to predict the amplitude of the harmonic forcing that is necessary to excite a specific nonlinear normal mode. A cantilever beam with a nonlinear spring at its tip serves to illustrate the developments. Furthermore, the practical implications of isolated resonance curves are also discussed by computing the beam response to sine sweep excitations of increasing amplitudes.
Method for construction of normalized cDNA libraries
Soares, M.B.; Efstratiadis, A.
1996-01-09
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form. The method comprises: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3` noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. 4 figs.
Method for construction of normalized cDNA libraries
Soares, Marcelo B.; Efstratiadis, Argiris
1996-01-01
This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library.
Nonlinear normal modes modal interactions and isolated resonance curves
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kuether, Robert J.; Renson, L.; Detroux, T.; Grappasonni, C.; Kerschen, G.; Allen, M. S.
2015-05-21
The objective of the present study is to explore the connection between the nonlinear normal modes of an undamped and unforced nonlinear system and the isolated resonance curves that may appear in the damped response of the forced system. To this end, an energy balance technique is used to predict the amplitude of the harmonic forcing that is necessary to excite a specific nonlinear normal mode. A cantilever beam with a nonlinear spring at its tip serves to illustrate the developments. Furthermore, the practical implications of isolated resonance curves are also discussed by computing the beam response to sine sweepmoreÂ Â» excitations of increasing amplitudes.Â«Â less
Closeness to spheres of hypersurfaces with normal curvature bounded below
Borisenko, A A; Drach, K D
2013-11-30
For a Riemannian manifold M{sup n+1} and a compact domain ?? M{sup n+1} bounded by a hypersurface ?? with normal curvature bounded below, estimates are obtained in terms of the distance from O to ?? for the angle between the geodesic line joining a fixed interior point O in ? to a point on ?? and the outward normal to the surface. Estimates for the width of a spherical shell containing such a hypersurface are also presented. Bibliography: 9 titles.
Fragment transition density method to calculate electronic coupling for excitation energy transfer
Voityuk, Alexander A.
2014-06-28
A general approach, the Fragment Transition Density (FTD) scheme, is introduced to estimate electronic coupling for excitation energy transfer in a molecular system. Within this method, the excitation energies and transition densities of the system are used to derive the coupling matrix element. The scheme allows one to treat systems where exciton donor and acceptor are close together and their exchange interaction and orbital overlap are significant. The FTD method can be applied in combination with any quantum mechanical approach to treat excited states of general nature including single-, double-, and higher excitations. Using FTD approach, we derive excitonic couplings for several systems computed with the CIS, TD DFT and MS-CASPT2 methods. In particular, it is shown that the estimated coupling values in DNA ?-stacks are strongly affected by the short-range electronic interaction of adjacent nucleobases.
NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR
Young, G.J.
1959-06-30
The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.
Low density, microcellular foams, preparation, and articles
Young, Ainslie T.; Marsters, Robert G.; Moreno, Dawn K.
1984-01-01
A microcellular low density foam of poly(4-methyl-1-pentene) which is particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 .mu.m). Methods for forming the foam and articles are given; and the yield strength of the foam of the invention is higher than was obtained in other structures of this same material.
Low density, microcellular foams, preparation, and articles
Young, A.T.
1982-03-03
A microcellular low-density foam of poly(4-methyl-1-pentene) particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 ..mu..m). Methods for forming the foam and articles are given. The yield strength of the foam of the invention is higher than was obtained in other structures of this same material.
Hwang, Seho; Shin, Jehyun; Kim, Jongman; Won, Byeongho
2015-03-10
Density log is widely applied for a variety of fields such as the petroleum exploration, mineral exploration, and geotechnical survey. The logging condition of density log is normally open holes but there are frequently cased boreholes. The primary calibration curve by slim hole logging manufacturer is normally the calibration curves for the variation of borehole diameter. In this study, we have performed the correction of steel casing effects using numerical and experimental methods. We have performed numerical modeling using the Monte Carlo N-Particle (MCNP) code based on Monte Carlo method, and field experimental method from open and cased hole log. In this study, we used the FDGS (Formation Density Gamma Sonde) for slim borehole with a 100 mCi 137Cs source, three inch borehole and steel casing. The casing effect between numerical and experimental method is well matched.
Analytic derivation of the map of null rays passing near a naked singularity
Tanaka, Takahiro; Singh, T. P.
2001-06-15
Recently the energy emission from a naked singularity forming in spherical dust collapse has been investigated. This radiation is due to particle creation in a curved spacetime. In this discussion, the central role is played by the mapping formula between the incoming and the outgoing null coordinates. For the self-similar model, this mapping formula has been derived analytically. But for the model with C{sup {infinity}} density profile, the mapping formula has been obtained only numerically. In the present paper, we argue that the singular nature of the mapping is determined by the local geometry around the point at which the singularity is first formed. If this is the case, it would be natural to expect that the mapping formula can be derived analytically. In the present paper, we analytically rederive the same mapping formula for the model with C{sup {infinity}} density profile that has been earlier derived using a numerical technique.
Ou, Qi; Fatehi, Shervin; Alguire, Ethan; Subotnik, Joseph E.; Shao, Yihan
2014-07-14
Working within the Tamm-Dancoff approximation, we calculate the derivative couplings between time-dependent density-functional theory excited states by assuming that the Kohn-Sham superposition of singly excited determinants represents a true electronic wavefunction. All Pulay terms are included in our derivative coupling expression. The reasonability of our approach can be established by noting that, for closely separated electronic states in the infinite basis limit, our final expression agrees exactly with the Chernyak-Mukamel expression (with transition densities from response theory). Finally, we also validate our approach empirically by analyzing the behavior of the derivative couplings around the T{sub 1}/T{sub 2} conical intersection of benzaldehyde.
A new method for determining the plasma electron density using three-color interferometer
Arakawa, Hiroyuki; Kawano, Yasunori; Itami, Kiyoshi
2012-06-15
A new method for determining the plasma electron density using the fractional fringes on three-color interferometer is proposed. Integrated phase shift on each interferometer is derived without using the temporal history of the fractional fringes. The dependence on the fringe resolution and the electrical noise are simulated on the wavelengths of CO{sub 2} laser. Short-time integrations of the fractional fringes enhance the reliability of this method.
Fast magnetic reconnection in low-density electron-positron plasmas
Bessho, Naoki; Bhattacharjee, A.
2010-10-15
Two-dimensional particle-in-cell simulations have been performed to study magnetic reconnection in low-density electron-positron plasmas without a guide magnetic field. Impulsive reconnection rates become of the order of unity when the background density is much smaller than 10% of the density in the initial current layer. It is demonstrated that the outflow speed is less than the upstream Alfven speed, and that the time derivative of the density must be taken into account in the definition of the reconnection rate. The reconnection electric fields in the low-density regime become much larger than the ones in the high-density regime, and it is possible to accelerate the particles to high energies more efficiently. The inertial term in the generalized Ohm's law is the most dominant term that supports a large reconnection electric field. An effective collisionless resistivity is produced and tracks the extension of the diffusion region in the late stage of the reconnection dynamics, and significant broadening of the diffusion region is observed. Because of the broadening of the diffusion region, no secondary islands, which have been considered to play a role to limit the diffusion region, are generated during the extension of the diffusion region in the outflow direction.
Physics of Radiation-driven Islands Near the Tokamak Density Limit
D.A. Gates, L. Delgado-Apricio and R.B. White
2013-01-10
In previous work [1], the onset criterion for radiation driven islands [2] in combination with a simple cylindrical model of tokamak current channel behavior was shown to be consistent with the empirical scaling of the tokamak density limit [3]. A number of the unexplained phenomena at the density limit are consistent with this novel physics mechanism. In this work, a more formal theoretical underpinning, consistent with cylindrical tearing mode theory, is developed for the onset criteria of these modes. The appropriate derivation of the radiation-driven addition to the modified Rutherford equation is discussed. Additionally, the ordering of the terms in the MRE is examined in a regime near the density limit. It is hoped that given the apparent success of this simple model in explaining the observed global scalings will lead to a more comprehensive analysis of the possibility that radiation driven islands are the physics mechanism responsible for the density limit. In particular, with modern diagnostic capabilities detailed measurements of current densities, electron densities and impurity concentrations at rational surfaces should be possible, enabling verification of the concepts described above.
Microwaving of normally opaque and semi-opaque substances
Sheinberg, H.; Meek, T.T.; Blake, R.D.
1990-07-17
Disclosed is a method of heating small particles using microwave radiation which are not normally capable of being heated by microwaves. The surfaces of the particles are coated with a material which is transparent to microwave radiation in order to cause microwave coupling to the particles and thus accomplish heating of the particles.
Microwaving of normally opaque and semi-opaque substances
Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.
1990-01-01
Method of heating small particles using microwave radiation which are not normally capable of being heated by microwaves. The surfaces of the particles are coated with a material which is transparent to microwave radiation in order to cause microwave coupling to the particles and thus accomplish heating of the particles.
Metastatic prostatic pulmonary nodules with normal bone image
Petras, A.F.; Wollett, F.C.
1983-11-01
Asymptomatic prostatic caricnoma presented as multiple bilateral pulmonary modules in a patient without any evidence of skeletal involvement by normal bone image. Percutaneous biopsy provided the initial clue to diagnosis. The authors recommend that asymptomatic prostatic carcinoma be included in the differential diagnosis of pulmonary nodules, even when there is no evidence of skeletal metastasis.
Deep Borehole Disposal Remediation Costs for Off-Normal Outcomes
Finger, John T.; Cochran, John R.; Hardin, Ernest
2015-08-17
This memo describes rough-order-of-magnitude (ROM) cost estimates for a set of off-normal (accident) scenarios, as defined for two waste package emplacement method options for deep borehole disposal: drill-string and wireline. It summarizes the different scenarios and the assumptions made for each, with respect to fishing, decontamination, remediation, etc.
Terrestrial Food-Chain Model for Normal Operations.
Energy Science and Technology Software Center (OSTI)
1991-10-01
Version 00 TERFOC-N calculates radiation doses to the public due to atmospheric releases of radionuclides in normal operations of nuclear facilities. The code estimates the highest individual dose and the collective dose from four exposure highways: internal doses from ingestion and inhalation, external doses from cloudshine and groundshine.
Durable high-density data storage
Stutz, R.A.; Lamartine, B.C.
1996-09-01
This paper will discuss the Focus Ion Beam (FIB) milling process, media life considerations, and methods of reading the micromilled data. The FIB process for data storage provides a new non-magnetic storage method for archiving large amounts of data. The process stores data on robust materials such as steel, silicon, and gold coated silicon. The storage process was developed to provide a method to insure the long term storage life of data. We estimate the useful life of data written on silicon or gold coated silicon to be a few thousand years. The process uses an ion beam to carve material from the surface much like stone cutting. The deeper information is carved into the media the longer the expected life of the information. The process can read information in three formats: (1) binary at densities of 3.5 Gbits/cm{sup 2}, (2) alphanumeric at optical or non-optical density, and (3) graphical at optical and non-optical density. The formats can be mixed on the same media; and thus it is possible to record, in a human readable format, instructions that can be read using an optical microscope. These instructions provide guidance on reading the higher density information.
Density waves in the Calogero model - revisited
Bardek, V. Feinberg, J. Meljanac, S.
2010-03-15
The Calogero model bears, in the continuum limit, collective excitations in the form of density waves and solitary modulations of the density of particles. This sector of the spectrum of the model was investigated, mostly within the framework of collective-field theory, by several authors, over the past 15 years or so. In this work we shall concentrate on periodic solutions of the collective BPS-equation (also known as 'finite amplitude density waves'), as well as on periodic solutions of the full static variational equations which vanish periodically (also known as 'large amplitude density waves'). While these solutions are not new, we feel that our analysis and presentation add to the existing literature, as we explain in the text. In addition, we show that these solutions also occur in a certain two-family generalization of the Calogero model, at special points in parameter space. A compendium of useful identities associated with Hilbert transforms, including our own proofs of these identities, appears in Appendix A. In Appendix B we also elucidate in the present paper some fine points having to do with manipulating Hilbert-transforms, which appear ubiquitously in the collective field formalism. Finally, in order to make this paper self-contained, we briefly summarize in Appendix C basic facts about the collective field formulation of the Calogero model.
Interferometer for the measurement of plasma density
Jacobson, Abram R.
1980-01-01
An interferometer which combines the advantages of a coupled cavity interferometer requiring alignment of only one light beam, and a quadrature interferometer which has the ability to track multi-fringe phase excursions unambiguously. The device utilizes a Bragg cell for generating a signal which is electronically analyzed to unambiguously determine phase modulation which is proportional to the path integral of the plasma density.
Quantum crystallographic charge density of urea
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wall, Michael E.
2016-07-01
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamoreÂ Â» is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.Â«Â less
?Linear Gas Jet with Tailored Density Profile"
KRISHNAN, Mahadevan
2012-12-10
Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.
Bakosi, Jozsef; Ristorcelli, Raymond J
2010-01-01
Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.
Charge density stabilised local electron spin pair states in insulating polymers
Serra, S.; Dissado, L. A.
2014-12-14
A model is presented that addresses the energy stability of localized electron states in insulating polymers with respect to delocalized free electron-like states at variable charge densities. The model was derived using an effective Hamiltonian for the total energy of electrons trapped in large polarons and spin-paired bipolarons, which includes the electrostatic interaction between charges that occurs when the charge density exceeds the infinite dilution limit. The phase diagram of the various electronic states with respect to the charge density is derived using parameters determined from experimental data for polyethylene, and it is found that a phase transition from excess charge in the form of stable polarons to a stable state of bipolarons with chargeâ€‰=â€‰2 and spin number Sâ€‰=â€‰0 is predicted for a charge density between 0.2â€‰C/m{sup 3} and âˆ¼2â€‰C/m{sup 3}. This transition is consistent with a change from low mobility charge transport to charge transport in the form of pulses with a mobility orders of magnitude higher that has been observed in several insulating polymers.
Total-derivative supersymmetry breaking
Haba, Naoyuki; Uekusa, Nobuhiro
2010-05-15
On an interval compactification in supersymmetric theory, boundary conditions for bulk fields must be treated carefully. If they are taken arbitrarily following the requirement that a theory is supersymmetric, the conditions could give redundant constraints on the theory. We construct a supersymmetric action integral on an interval by introducing brane interactions with which total-derivative terms under the supersymmetry transformation become zero due to a cancellation. The variational principle leads equations of motion and also boundary conditions for bulk fields, which determine boundary values of bulk fields. By estimating mass spectrum, spontaneous supersymmetry breaking in this simple setup can be realized in a new framework. This supersymmetry breaking does not induce a massless R axion, which is favorable for phenomenology. It is worth noting that fermions in hyper-multiplet, gauge bosons, and the fifth-dimensional component of gauge bosons can have zero-modes (while the other components are all massive as Kaluza-Klein modes), which fits the gauge-Higgs unification scenarios.
Distribution of Radiation Density in a Homogeneous Cloudy Laye
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of Radiation Density in a Homogeneous Cloudy Layer S. V. Dvoryashin, K. A. Shukorov, A. H. ... method) allowing calculating radiation density in homogeneous and non-uniform ...
Real-Time Simultaneous Measurements of Size, Density, and Composition...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Simultaneous Measurements of Size, Density, and Composition of Single Ultrafine Diesel Tailpipe Particles Real-Time Simultaneous Measurements of Size, Density, and Composition of ...
Density Functional Theory Approach to Nuclear Fission (Conference...
Office of Scientific and Technical Information (OSTI)
Density Functional Theory Approach to Nuclear Fission Citation Details In-Document Search Title: Density Functional Theory Approach to Nuclear Fission You are accessing a document ...
Density Functional Theory Study of Surface Carbonate Formation...
Office of Scientific and Technical Information (OSTI)
Density Functional Theory Study of Surface Carbonate Formation on BaO(001) Citation Details In-Document Search Title: Density Functional Theory Study of Surface Carbonate Formation ...
Ultra Low Density Amorphous Shape Memory polymer Foams. (Conference...
Office of Scientific and Technical Information (OSTI)
Ultra Low Density Amorphous Shape Memory polymer Foams. Citation Details In-Document Search Title: Ultra Low Density Amorphous Shape Memory polymer Foams. You are accessing a ...
Time Adaptive Conditional Kernel Density Estimation for Wind...
Office of Scientific and Technical Information (OSTI)
Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting Citation Details In-Document Search Title: Time Adaptive Conditional Kernel Density Estimation for ...
Combinatorial nuclear level-density model (Journal Article) ...
Office of Scientific and Technical Information (OSTI)
Combinatorial nuclear level-density model Citation Details In-Document Search Title: Combinatorial nuclear level-density model You are accessing a document from the Department ...
Engineering Density of States of Earth Abundant Semiconductors...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Density of States of Earth Abundant Semiconductors for Enhanced Thermoelectric Power Factor Engineering Density of States of Earth Abundant Semiconductors for Enhanced ...
Error Analysis in Nuclear Density Functional Theory (Journal...
Office of Scientific and Technical Information (OSTI)
Error Analysis in Nuclear Density Functional Theory Citation Details In-Document Search Title: Error Analysis in Nuclear Density Functional Theory Authors: Schunck, N ; McDonnell,...
Error Analysis in Nuclear Density Functional Theory (Journal...
Office of Scientific and Technical Information (OSTI)
Error Analysis in Nuclear Density Functional Theory Citation Details In-Document Search Title: Error Analysis in Nuclear Density Functional Theory You are accessing a document...
XUV Absorption by Solid Density Aluminum (Journal Article) |...
Office of Scientific and Technical Information (OSTI)
XUV Absorption by Solid Density Aluminum Citation Details In-Document Search Title: XUV Absorption by Solid Density Aluminum An inverse bremsstrahlung model for plasmas and simple ...
Mitigating Breakdown in High Energy Density Perovskite Polymer...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012 ...
Controlling the Actuation Rate of Low Density Shape Memory Polymer...
Office of Scientific and Technical Information (OSTI)
Density Shape Memory Polymer Foams in Water Citation Details In-Document Search Title: Controlling the Actuation Rate of Low Density Shape Memory Polymer Foams in Water Authors: ...
Using Radio Waves to Control Fusion Plasma Density
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Using Radio Waves to Control Fusion Plasma Density Using Radio Waves to Control Fusion Plasma Density Simulations Run at NERSC Support Fusion Experiments at MIT, General Atomics ...
Pairing Nambu-Goldstone Modes within Nuclear Density Functional...
Office of Scientific and Technical Information (OSTI)
Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory Citation Details ... Title: Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory Authors: ...
Accuracy of density functionals for molecular electronics: The...
Office of Scientific and Technical Information (OSTI)
Accuracy of density functionals for molecular electronics: The Anderson junction Title: Accuracy of density functionals for molecular electronics: The Anderson junction Authors: ...
Molecular adsorption on metal surfaces with van der Waals density...
Office of Scientific and Technical Information (OSTI)
Molecular adsorption on metal surfaces with van der Waals density functionals Title: Molecular adsorption on metal surfaces with van der Waals density functionals Authors: Li, Guo ...
Low density biodegradable shape memory polyurethane foams for...
Office of Scientific and Technical Information (OSTI)
Low density biodegradable shape memory polyurethane foams for embolic biomedical applications Citation Details In-Document Search Title: Low density biodegradable shape memory...
Basic Research Needs for High Energy Density Laboratory Physics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
National Laboratory. Basic Research Needs for High Energy Density Laboratory Physics Report of the Workshop on High Energy Density Laboratory Physics Research Needs November ...
High Energy Density Laboratory Plasmas Program | National Nuclear...
National Nuclear Security Administration (NNSA)
Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program NNSA invests in next ...
Probability Density Function Method for Langevin Equations with...
Office of Scientific and Technical Information (OSTI)
Probability Density Function Method for Langevin Equations with Colored Noise Citation Details In-Document Search Title: Probability Density Function Method for Langevin Equations ...
Stabilizing laser energy density on a target during pulsed laser...
Office of Scientific and Technical Information (OSTI)
Patent: Stabilizing laser energy density on a target during pulsed laser deposition of thin films Citation Details In-Document Search Title: Stabilizing laser energy density on a ...
Research on Factors Relating to Density and Climate Change |...
on Factors Relating to Density and Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Research on Factors Relating to Density and Climate Change Agency...
A New Mechanism of Charge Density Wave Discovered in Transition...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
8 A New Mechanism of Charge Density Wave Discovered in Transition Metal Dichalcogenides Charge density waves (CDW) are a type of coupled electronic-lattice instability found in...
The problem of the universal density functional and the density matrix functional theory
Bobrov, V. B. Trigger, S. A.
2013-04-15
The analysis in this paper shows that the Hohenberg-Kohn theorem is the constellation of two statements: (i) the mathematically rigorous Hohenberg-Kohn lemma, which demonstrates that the same ground-state density cannot correspond to two different potentials of an external field, and (ii) the hypothesis of the existence of the universal density functional. Based on the obtained explicit expression for the nonrel-ativistic particle energy in a local external field, we prove that the energy of the system of more than two non-interacting electrons cannot be a functional of the inhomogeneous density. This result is generalized to the system of interacting electrons. It means that the Hohenberg-Kohn lemma cannot provide justification of the universal density functional for fermions. At the same time, statements of the density functional theory remain valid when considering any number of noninteracting ground-state bosons due to the Bose condensation effect. In the framework of the density matrix functional theory, the hypothesis of the existence of the universal density matrix functional corresponds to the cases of noninteracting particles and to interaction in the Hartree-Fock approximation.
Procedure for normalization of cDNA libraries
Bonaldo, Maria DeFatima; Soares, Marcelo Bento
1997-01-01
This invention provides a method to normalize a cDNA library constructed in a vector capable of being converted to single-stranded circles and capable of producing complementary nucleic acid molecules to the single-stranded circles comprising: (a) converting the cDNA library in single-stranded circles; (b) generating complementary nucleic acid molecules to the single-stranded circles; (c) hybridizing the single-stranded circles converted in step (a) with complementary nucleic acid molecules of step (b) to produce partial duplexes to an appropriate Cot; (e) separating the unhybridized single-stranded circles from the hybridized single-stranded circles, thereby generating a normalized cDNA library.
Procedure for normalization of cDNA libraries
Bonaldo, M.D.; Soares, M.B.
1997-12-30
This invention provides a method to normalize a cDNA library constructed in a vector capable of being converted to single-stranded circles and capable of producing complementary nucleic acid molecules to the single-stranded circles comprising: (a) converting the cDNA library in single-stranded circles; (b) generating complementary nucleic acid molecules to the single-stranded circles; (c) hybridizing the single-stranded circles converted in step (a) with complementary nucleic acid molecules of step (b) to produce partial duplexes to an appropriate Cot; (e) separating the unhybridized single-stranded circles from the hybridized single-stranded circles, thereby generating a normalized cDNA library. 1 fig.
A comparison of normal and worst case cement plant emissions
Woodford, J.; Gossman, D.; Johnson, N.
1996-12-31
Lone Star Industries, Inc. in Cape Girardeau, Missouri conducted a trial burn in October, 1995. Two metals emissions test days were conducted. One of the test days was a worst case metals spiking day and one of the test days was a normal emissions day. This paper examines and compares the emissions from these two test days. Much has been made of metals emissions from hazardous waste burning cement kilns, but for the most part, this has been due to the worst case metals emissions data that became available from the 1992 BIF compliance testing performed and reported by 24 cement plants. By comparison, very little data exists on normal cement kiln emissions. This paper provides one comparison.
Liu Wenjun; Tian Bo; Xu Tao; Sun Kun; Jiang Yan
2010-08-15
Symbolically investigated in this paper is a nonlinear Schroedinger equation with the varying dispersion and nonlinearity for the propagation of optical pulses in the normal dispersion regime of inhomogeneous optical fibers. With the aid of the Hirota method, analytic one- and two-soliton solutions are obtained. Relevant properties of physical and optical interest are illustrated. Different from the previous results, both the bright and dark solitons are hereby derived in the normal dispersion regime of the inhomogeneous optical fibers. Moreover, different dispersion profiles of the dispersion-decreasing fibers can be used to realize the soliton control. Finally, soliton interaction is discussed with the soliton control confirmed to have no influence on the interaction. The results might be of certain value for the study of the signal generator and soliton control.
Ultra-high density diffraction grating
Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.
2012-12-11
A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.
Inductor Geometry With Improved Energy Density
Cui, H; Ngo, KDT; Moss, J; Lim, MHF; Rey, E
2014-10-01
The "constant-flux" concept is leveraged to achieve high magnetic-energy density, leading to inductor geometries with height significantly lower than that of conventional products. Techniques to shape the core and to distribute the winding turns to shape a desirable field profile are described for the two basic classes of magnetic geometries: those with the winding enclosed by the core and those with the core enclosed by the winding. A relatively constant flux distribution is advantageous not only from the density standpoint, but also from the thermal standpoint via the reduction of hot spots, and from the reliability standpoint via the suppression of flux crowding. In this journal paper on a constant-flux inductor (CFI) with enclosed winding, the foci are operating principle, dc analysis, and basic design procedure. Prototype cores and windings were routed from powder-iron disks and copper sheets, respectively. The design of CFI was validated by the assembled inductor prototype.
Global coherence of dust density waves
Killer, Carsten; Melzer, André
2014-06-15
The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.
Current density fluctuations and ambipolarity of transport
Shen, W.; Dexter, R.N.; Prager, S.C.
1991-10-01
The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f < 30 kHz) are tearing modes and high frequency fluctuations (30 kHz < f < 250 kHz) are localized turbulence in resonance with the local equilibrium magnetic field (i.e., k {center_dot} B = 0). Correlation of current density and magnetic fluctuations (< {tilde j}{parallel}{tilde B}{sub r} >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range.