National Library of Energy BETA

Sample records for nonenergy-intensive manufacturing industries

  1. International Energy Outlook 2016-Industrial sector energy consumption -

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration 7. Industrial sector energy consumption print version Overview The industrial sector uses more delivered energy [294] than any other end-use sector, consuming about 54% of the world's total delivered energy. The industrial sector can be categorized by three distinct industry types: energy-intensive manufacturing, nonenergy-intensive manufacturing, and nonmanufacturing (Table 7-1). The mix and intensity of fuels consumed in the industrial sector vary across

  2. Industrial-Strength UPF | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chapter 7 Industrial sector energy consumption Overview The industrial sector uses more delivered energy 294 than any other end-use sector, consuming about 54% of the world's total delivered energy. The industrial sector can be categorized by three distinct industry types: energy-intensive manufacturing, nonenergy-intensive manufacturing, and nonmanufacturing (Table 7-1). The mix and intensity of fuels consumed in the industrial sector vary across regions and countries, depending on the level

  3. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel ...

  4. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial ...

  5. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D Overview of ...

  6. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Smart Manufacturing is a network data-driven process that combines innovative automation ... Smart Manufacturing is a network data-driven process that combines innovative automation ...

  7. Advanced Manufacturing Office (Formerly Industrial Technologies Program) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. DOE's Advanced Manufacturing Office (85.03 KB) More Documents & Publications Innovative Manufacturing Initiative Recognition Day Manufacturing Demonstration Facilities Workshop Agenda, March 2012 Advanced Manufacturing

  8. INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Scale Demonstration of Smart Manufacturing (554.65 KB) More Documents & Publications CX-010754: Categorical Exclusion Determination RAPID FREEFORM SHEET METAL FORMING: ...

  9. PEM Stack Manufacturing: Industry Status

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED ... B A L L A R D P O W E R S Y S T E M S PEM Stack ... Courtesy Manhattan Project for Fuel Cell Manufacturing AUGUST ...

  10. Smart Manufacturing Institute Industry Day Workshop Proceedings

    Office of Energy Efficiency and Renewable Energy (EERE)

    AMO hosted an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing. The workshop was held on February 25, 2015 at the Georgia Tech Hotel & Conference Center in Atlanta, GA.

  11. Smart Manufacturing Institute Industry Day Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing. The workshop was held on February 25, 2015 at the Georgia Tech Hotel & Conference Center in Atlanta, GA.

  12. AMO Industry Day Workshop on Upcoming Smart Manufacturing FOA

    Broader source: Energy.gov [DOE]

    AMO will host an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing.

  13. AMO Industry Day Workshop, February 25th, Targets Smart Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Day Workshop, February 25th, Targets Smart Manufacturing FOA AMO Industry Day Workshop, February 25th, Targets Smart Manufacturing FOA February 12, 2015 - 3:40pm Addthis ...

  14. QTR Webinar: Chapter 8 - Industry and Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Chapter 8 - Industry and Manufacturing QTR Webinar: Chapter 8 - Industry and Manufacturing Background The U.S. industrial sector accounts for approximately one-third of the overall energy consumption and associated carbon emissions in the U.S. About four-fifths of end-use industrial energy is consumed by the manufacturing sub-sector, which produces goods ranging from fundamental commodities to sophisticated final-use products. Many of these products have a significant energy and carbon

  15. EIA Energy Efficiency-Manufacturing Industry Trend Data, 1998...

    Gasoline and Diesel Fuel Update (EIA)

    Trends 1998, 2002, and 2006 Manufacturing Industry Trend Data 1998, 2002, and 2006 (NAICS) Page Last Modified: May 2010 Below are data from the 1998, 2002, and 2006 Manufacturing...

  16. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Energy Savers [EERE]

    ... Transformational IT infrastructure demonstration for manufacturing with potential ... furnaces is underway. Platform demonstration use case brings infrared camera data ...

  17. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    While many U.S. manufacturing operations utilize ... time across an entire production operation are rare in ... systems can be applied is in the management of waste heat. ...

  18. Smart Manufacturing Institute Industry Day Workshop | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Intensification Workshop - September 29-30, 2015 WORKSHOP: HIGH VALUE ROLL TO ROLL (HV R2R) MANUFACTURING INNOVATION, DECEMBER 2-3, 2015 Fiber Reinforced Polymer Composite ...

  19. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop and demonstrate pervasive materials technologies that reduce life-cycle energy ... and industry) to bridge the "Valley of Death" for new technologies and material systems. ...

  20. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video

    Broader source: Energy.gov [DOE]

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  1. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema (OSTI)

    Selldorff, John; Atwell, Monte

    2014-12-03

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  2. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect (OSTI)

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  3. Industrial Assessment Centers Small Manufacturers Reduce Energy & Increase

    Broader source: Energy.gov (indexed) [DOE]

    DOE/EE-1278 Industrial Assessment Centers Small Manufacturers Reduce Energy & Increase Productivity Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized

  4. Building a More Competitive American Manufacturing Industry with Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composites | Department of Energy a More Competitive American Manufacturing Industry with Advanced Composites Building a More Competitive American Manufacturing Industry with Advanced Composites January 9, 2015 - 10:21am Addthis Pictured above is the Shelby Cobra, a vehicle 3-D printed at Oak Ridge National Laboratory. Using advanced composites and 3-D printing both cut the car's weight in half and improved performance and safety. | Photo by Carlos Jones. Pictured above is the Shelby Cobra,

  5. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    SciTech Connect (OSTI)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  6. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Sustainable Manufacturing - Flow of Materials through Industry Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Manufacturing-Flow of Materials through Industry Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Sustainable Manufacturing-Flow of Materials through Industry is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology

  7. Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flow of Materials through Industry / Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 1 5 1.1 Supply chain and material flow analysis ....................................................................................... 1 6 2. Technology Assessment and Potential

  8. Prospects for U.S.-Based Manufacturing in the SSL Industry | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Prospects for U.S.-Based Manufacturing in the SSL Industry Prospects for U.S.-Based Manufacturing in the SSL Industry Prospects for U.S.-Based Manufacturing in the SSL Industry (215.11 KB) More Documents & Publications Manufacturing R&D Initiative Lowers Costs and Boosts Quality Manufacturing R&D Initiative Lowers Costs and Boosts Quality December 2014 Postings

  9. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    SciTech Connect (OSTI)

    2015-11-06

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. The IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.

  10. Integrated Design and Manufacturing of Cost-Effective & Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    Integrated design and manufacture of scalable vehicular TEG zuo.pdf (2.86 MB) More Documents & Publications Integrated Design and Manufacturing of Cost-Effective & ...

  11. Economic analysis for controlling water pollution in the paint manufacturing industry

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The document is the result of a study of the paint manufacturing industry. It will serve as guidance for State and local authorities in controlling the discharge of pollutants by plants within the paint manufacturing industry as the Agency has exempted the industry from regulation under Paragraph 8(a) (iv) of the Settlement Agreement.

  12. Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Activities at DOE: Efficiency, Manufacturing, Process & Materials R&D Joe Cresko David Hardy Advanced Manufacturing Office Metrology Workshop December 9, 2013 NREL Industrial Energy Use 2 Source: Manufacturing Energy and Carbon Footprint, derived from 2006 MECS AMO programs target: * Research, Development and Demonstration of new, advanced processes and materials technologies that reduce energy consumption for manufactured products and enable life-cycle energy savings *

  13. PEM Stack Manufacturing: Industry Status | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, ... Fuel Cell Manufacturing Needs A Total Cost of Ownership Model for Low Temperature PEM ...

  14. Building a More Competitive American Manufacturing Industry with...

    Broader source: Energy.gov (indexed) [DOE]

    will be able to reinvent products that are at the foundation of our clean energy economy - many of which directly impact our daily lives. Wind turbine manufacturers could...

  15. Manufacturing-Industrial Energy Consumption Survey(MECS) Historical...

    U.S. Energy Information Administration (EIA) Indexed Site

    reports, data tables and questionnaires Released: May 2008 The Manufacturing Energy Consumption Survey (MECS) is a periodic national sample survey devoted to measuring...

  16. Guides to pollution prevention: The paint-manufacturing industry

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    Paint manufacturing facilities generate large quantities of both hazardous and nonhazardous wastes. These wastes are: equipment cleaning wastewater and waste solvent, filter cartridges, off-spec paint, spills, leftover containers; and pigment dusts from air pollution control equipment. Reducing the generation of these wastes at the source, or recycling the wastes on- or off-site, will benefit paint manufacturers by reducing raw material needs, reducing disposal costs; and lowering the liabilities associated with hazardous waste disposal. The guide provides an overview of the paint manufacturing processes and operations that generate waste and presents options for minimizing the waste generation through source reduction or recycling.

  17. QTR Webinar: Chapter 8 - Industry and Manufacturing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... (32.01 MB) QTR Chapter 8 Reviewer Instructions and Comment Form (26.08 KB) AM - Additive Manufacturing (1.62 MB) CHP - Combined Heat and Power (794.06 KB) CRM - Critical Materials ...

  18. Federal and Industry Partners Issue Challenge to Manufacturers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. manufacturers: if you can build wireless sub-meters that cost less than 100 apiece and enable us to identify opportunities to save money by saving energy, we will buy them. ...

  19. Integrated Design and Manufacturing of Cost-Effective & Industrial-Scalable

    Broader source: Energy.gov (indexed) [DOE]

    TEG for Vehicle Applications | Department of Energy Integrated design and manufacture of scalable vehicular TEG zuo.pdf (2.86 MB) More Documents & Publications Integrated Design and Manufacturing of Cost-Effective & Industrial-Scalable TEG for Vehicle Applications Integrated Design and Manufacturing of Thermoelectric Generator Using Thermal Spray Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion

  20. Manufacturers and Utilities to Accelerate Industry Uptake of Superior Energy Performance

    Broader source: Energy.gov [DOE]

    At a White House meeting of the Better Buildings Initiative on December 3rd, six manufacturers and three utilities officially joined the Department of Energy’s Better Buildings Industrial Superior Energy Performance (SEP) Accelerator Program.

  1. Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D

    Broader source: Energy.gov [DOE]

    Overview of industrial activities at DOE by Joe Cresko, EERE Advanced Manufacturing Office, at the EERE QC Workshop held December 9-10, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

  2. AMO Industry Day Workshop, February 25th, Targets Smart Manufacturing FOA

    Broader source: Energy.gov [DOE]

    AMO will host an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing. The workshop will take place on Wednesday, February 25, 2015 at the Georgia Tech Global Learning Center, Atlanta, GA.

  3. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  4. Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries

    SciTech Connect (OSTI)

    Belzer, D.B. ); Serot, D.E. ); Kellogg, M.A. )

    1991-03-01

    Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner that allows evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study, conducted by Pacific Northwest Laboratory (PNL), developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key non-manufacturing sectors. This volume presents tabular and graphical results of the historical analysis and projections for each SIC industry. (JF)

  5. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry (Presentation)

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.

    2013-12-01

    This briefing provides an overview of supply chain developments in the global wind industry and a detailed assessment of blade manufacturing considerations for U.S. end-markets. The report discusses the international trade flows of wind power equipment, blade manufacturing and logistical costs, and qualitative issues that often influence factory location decisions. To help guide policy and research and development strategy decisions, this report offers a comprehensive perspective of both quantitative and qualitative factors that affect selected supply chain developments in the growing wind power industry.

  6. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry

    Broader source: Energy.gov [DOE]

    Over the past decade, significant wind manufacturing capacity has been built in the United States in response to an increasingly large domestic market. Recent U.S. manufacturing production levels exceed anticipated near-term domestic demand for select parts of the supply chain, in part due to policy uncertainty, and this is resulting in some restructuring in the industry. Factor location decisions are influenced by a combination of quantitative and qualitative factors; proximity to end-markets is often a key consideration, especially for manufacturers of large wind turbine components. Technology advancements in the wind sector are continuing , and larger blade designs are being pursued in the market, which may increase U.S.-based manufacturing opportunities.

  7. (Development of industrial processes for manufacturing of silicon sampling hadron calorimeters)

    SciTech Connect (OSTI)

    Plasil, F.; Walter, J.

    1991-01-04

    The travelers attended meetings in Dubna and in Zelenograd. Discussions in Dubna centered on (1) obtaining information on USSR capabilities in silicon detector manufacture and testing and on (2) strategy regarding the development of an industrial process and the manufacture of a large quantity of silicon detectors for the SSC L* collaboration. The ELMA plant in Zelenograd was inspected, and discussions were held on production process development and on a possible detector supply time line. In addition, J. Walter participated in technical and cost estimate forecast discussions with representatives of Wacker-Chemitronic Factory (Germany) about silicon crystals for possible use in the SSC.

  8. Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries - Volume 1: Concepts and Methodology

    SciTech Connect (OSTI)

    Belzer, D.B. ); Serot, D.E. ); Kellogg, M.A. )

    1991-03-01

    Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner to allow evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key nonmanufacturing sectors. This volume lays out the general concepts and methods used to develop the emergency operating estimates. The historical analysis of capacity extends from 1974 through 1986. Some nonmanufacturing industries are included. In addition to mining and utilities, key industries in transportation, communication, and services were analyzed. Physical capacity and efficiency of production were measured. 3 refs., 2 figs., 12 tabs. (JF)

  9. Manufacturing Industrial Development for the Alternative Energy Systems-Final Report

    SciTech Connect (OSTI)

    Dr. Chuck Ryan, National Center for Manufacturing Sciences; Dr. Dawn White, Accio Energy; Mr. Duncan Pratt, General Electric Global Research

    2013-01-30

    NCMS identified and developed critical manufacturing technology assessments vital to the affordable manufacturing of alternative-energy systems. NCMS leveraged technologies from other industrial sectors and worked with our extensive member organizations to provide DOE with two projects with far-reaching impact on the generation of wind energy. In the response for a call for project ideas, 26 project teams submitted ideas. Following a detailed selection criteria, two projects were chosen for development: Advanced Manufacturing for Modular Electro-kinetic (E-K) Wind Energy Conversion Technology - The goal of this project was to demonstrate that a modular wind energy technology based on electrohydrodynamic wind energy principles and employing automotive heritage high volume manufacturing techniques and modular platform design concepts can result in significant cost reductions for wind energy systems at a range of sizes from 100KW to multi-MW. During this program, the Accio/Boeing team made major progress on validating the EHD wind energy technology as commercially viable in the wind energy sector, and moved along the manufacturing readiness axis with a series of design changes that increased net system output. Hybrid Laser Arc Welding for Manufacture of Wind Towers - The goal of this research program was to reduce the cost of manufacturing wind towers through the introduction of hybrid laser arc welding (HLAW) into the supply chain for manufacturing wind towers. HLAW has the potential to enhance productivity while reducing energy consumption to offset the foreign low-cost labor advantage and thereby enhance U.S. competitiveness. HLAW technology combines laser welding and arc welding to produce an energy efficient, high productivity, welding process for heavy manufacturing. This process leverages the ability of a laser to produce deep weld penetration and the ability of gas metal arc welding (GMAW) to deposit filler material, thereby producing stable, high quality

  10. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  11. Drivers and barriers to e-invoicing adoption in Greek large scale manufacturing industries

    SciTech Connect (OSTI)

    Marinagi, Catherine E-mail: ptrivel@yahoo.com Trivellas, Panagiotis E-mail: ptrivel@yahoo.com Reklitis, Panagiotis E-mail: ptrivel@yahoo.com; Skourlas, Christos

    2015-02-09

    This paper attempts to investigate the drivers and barriers that large-scale Greek manufacturing industries experience in adopting electronic invoices (e-invoices), based on three case studies with organizations having international presence in many countries. The study focuses on the drivers that may affect the increase of the adoption and use of e-invoicing, including the customers demand for e-invoices, and sufficient know-how and adoption of e-invoicing in organizations. In addition, the study reveals important barriers that prevent the expansion of e-invoicing, such as suppliers’ reluctance to implement e-invoicing, and IT infrastructures incompatibilities. Other issues examined by this study include the observed benefits from e-invoicing implementation, and the financial priorities of the organizations assumed to be supported by e-invoicing.

  12. Methodological report on the 1980 manufacturing industries survey of large combustors (EIA-463)

    SciTech Connect (OSTI)

    Not Available

    1982-03-01

    The 1980 Manufacturing Industries Energy Consumption Study and Survey of Large Combustors (EIA-463) was designed to collect information on large combustors in the United States and the manufacturing establishments operating them. The survey was mailed to a list of respondents in late November and early December 1980. On February 20, 1981, the Secretary of Energy received notice from the Office of Management and Budget that authority for this information collection activity had been withdrawn and that the information already collected must be treated in a confidential manner. At that time, responses had been received from approximately 76 percent of the final survey frame and, even though this represented a respectable response rate, the usefulness of the survey was substantially disminished. This report presents a detailed overview of the methodology for this survey and a discussion of its limitations. This report is technical and is designed for analysts working with the results of this survey and for survey statisticians interested in specific survey methodologies.

  13. Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains

    Broader source: Energy.gov [DOE]

    The project objective is to develop a smart manufacturing (SM) Platform for two commercial test beds that can be scaled to manufacturing operations to catalyze low-cost commercialization of the...

  14. Economic Measurements of Polysilicon for the Photovoltaic Industry: Market Competition and Manufacturing Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE)

    Using the calculations of several economic indicators, this study quantitatively measures the market competition, manufacturing costs, and prices for different technologies in different facility...

  15. Performance, Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices

    Office of Energy Efficiency and Renewable Energy (EERE)

    Market pricing of thermoelectric raw materials and processing, cost of manufacture of devices and systems constraints on the viability of a mass market thermoelectric product are discussed

  16. Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar Additive Manufacturing for Fuel Cells held on February 11, 2014.

  17. Energy Department's High Performance Computing for Manufacturing Program Seeks to Fund New Industry Proposals

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is seeking concept proposals from qualified U.S. manufacturers to participate in short-term, collaborative projects. Selectees will be given access to High Performance Computing facilities and will work with experienced DOE National Laboratories staff in addressing challenges in U.S. manufacturing.

  18. A Road Map for Success: How Northwest Manufactured Housing Conservation Efforts Revolutionized an Industry.

    SciTech Connect (OSTI)

    Gilbertson, William L.

    1993-04-01

    The evolution of an ongoing Bonneville Power Administration effort to improve the energy efficiency of manufactured homes is chronicled in this informal history. Over the past nine years, Bonneville`s manufactured housing project has undertaken many activities, including technical studies, cooperative ventures, design studies, and information dissemination. These activities are covered.

  19. Current and future industrial energy service characterizations. Volume III. Energy data on 15 selected states' manufacturing subsector

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-11-01

    An examination is made of the current and future energy demands, and uses, and cost to characterize typical applications and resulting services in the US and industrial sectors of 15 selected states. Volume III presents tables containing data on selected states' manufacturing subsector energy consumption, functional uses, and cost in 1974 and 1976. Alabama, California, Illinois, Indiana, Louisiana, Michigan, Missouri, New Jersey, New York, Ohio, Oregon, Pennsylvania, Texas, West Virginia, and Wisconsin were chosen as having the greatest potential for replacing conventional fuel with solar energy. Basic data on the quantities, cost, and types of fuel and electric energy purchased by industr for heat and power were obtained from the 1974 and 1976 Annual Survey of Manufacturers. The specific indutrial energy servic cracteristics developed for each selected state include. 1974 and 1976 manufacturing subsector fuels and electricity consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector fuel consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector average cost of purchsed fuels and electricity per million Btu by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); 1974 and 1976 manufacturing subsector fuels and electric energy intensity by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); manufacturing subsector average annual growth rates of (1) fuels and electricity consumption, (2) fuels and electric energy intensity, and (3) average cost of purchased fuels and electricity (1974 to 1976). Data are compiled on purchased fuels, distillate fuel oil, residual ful oil, coal, coal, and breeze, and natural gas. (MCW)

  20. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    SciTech Connect (OSTI)

    Atreya, Arvind

    2013-04-15

    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non

  1. Pilot Program Builds Sustainable Lab-Industry Partnerships for Breakthrough Manufacturing R&D

    Broader source: Energy.gov [DOE]

    The Clean Energy Manufacturing Initiative (CEMI) recently kicked off its new Technologist in Residence (TIR) pilot at an event at Argonne National Laboratory convening the pilot’s seven competitively selected technologist pairs, Energy Department officials, and national lab representatives. This two-year, $2.6 million pilot program is designed to strengthen U.S. clean energy manufacturing competitiveness and enhance the commercial impact of the Energy Department’s national laboratories.

  2. Industrial Assessment Center (IAC): Technical Assistance for Small and Medium Sized Manufacturers

    SciTech Connect (OSTI)

    2006-10-01

    This 2-page fact sheet highlights the Industrial Assessment Center program, and explains eligibility and objectives of the program.

  3. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  4. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to develop broad dissemination of additive manufacturing Industry Collaborations * ... 5 DOE-AMO 2015 Peer Review Understanding Additive Manufacturing Mainstream applications ...

  5. Walk-through survey report: Control technology for metal reclamation industries at East Penn Manufacturing Company Inc. , Lyon Station, Pennsylvania

    SciTech Connect (OSTI)

    Hall, R.M.

    1994-08-12

    A walk through survey was conducted at the East Penn Manufacturing Company (SIC-3341), Lyon Station, Pennsylvania to identify and evaluate potentially effective controls and work practices in the lead (7439921) reclamation industry. The facility was a secondary lead smelter which operated 7 days a week, and recycled about 20,000 batteries a day, primarily automobile batteries. The company employed automation, local exhaust ventilation, partial enclosures, and enclosed ventilation systems in the reverberatory furnace operations, blast furnace operations, and casting and refinery area to reduce employee exposure to lead. The arsenic (7440382) personal exposure time weighted averages ranged from 0.10 to 1.14 microg/cubic m in the industrial battery breaking area and ranged from nondetected to 6.16 microg/cubic m in the alloying/pots area.

  6. Energy Department to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today expanded DOE's work to maximize energy efficiency by increasing cooperation among U.S. industry and energy...

  7. Development of Functionally Graded Materials for Manufacturing Tools and Dies and Industrial Processing Equipment

    SciTech Connect (OSTI)

    Lherbier, Louis, W.; Novotnak, David, J.; Herling, Darrell, R.; Sears, James, W.

    2009-03-23

    Hot forming processes such as forging, die casting and glass forming require tooling that is subjected to high temperatures during the manufacturing of components. Current tooling is adversely affected by prolonged exposure at high temperatures. Initial studies were conducted to determine the root cause of tool failures in a number of applications. Results show that tool failures vary and depend on the operating environment under which they are used. Major root cause failures include (1) thermal softening, (2) fatigue and (3) tool erosion, all of which are affected by process boundary conditions such as lubrication, cooling, process speed, etc. While thermal management is a key to addressing tooling failures, it was clear that new tooling materials with superior high temperature strength could provide improved manufacturing efficiencies. These efficiencies are based on the use of functionally graded materials (FGM), a new subset of hybrid tools with customizable properties that can be fabricated using advanced powder metallurgy manufacturing technologies. Modeling studies of the various hot forming processes helped identify the effect of key variables such as stress, temperature and cooling rate and aid in the selection of tooling materials for specific applications. To address the problem of high temperature strength, several advanced powder metallurgy nickel and cobalt based alloys were selected for evaluation. These materials were manufactured into tooling using two relatively new consolidation processes. One process involved laser powder deposition (LPD) and the second involved a solid state dynamic powder consolidation (SSDPC) process. These processes made possible functionally graded materials (FGM) that resulted in shaped tooling that was monolithic, bi-metallic or substrate coated. Manufacturing of tooling with these processes was determined to be robust and consistent for a variety of materials. Prototype and production testing of FGM tooling showed the

  8. Industrialization of Biology. A Roadmap to Accelerate the Advanced Manufacturing of Chemicals

    SciTech Connect (OSTI)

    Friedman, Douglas C.

    2015-09-01

    The report stresses the need for efforts to inform the public of the nature of industrial biotechnology and of its societal benefits, and to make sure that concerns are communicated effectively between the public and other stakeholders. In addition to scientific advances, a number of governance and societal factors will influence the industrialization of biology. Industry norms and standards need to be established in areas such as read/write accuracy for DNA, data and machine technology specifications, and organism performance in terms of production rates and yields. An updated regulatory regime is also needed to accelerate the safe commercialization of new host organisms, metabolic pathways, and chemical products, and regulations should be coordinated across nations to enable rapid, safe, and global access to new technologies and products.

  9. Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Manufacturing is how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Manufacturing is the lifeblood of the American economy -- providing jobs

  10. Wind Manufacturing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Facilities Wind Manufacturing Facilities Wind Manufacturing Facilities America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state

  11. Intelligent Production Monitoring and Control based on Three Main Modules for Automated Manufacturing Cells in the Automotive Industry

    SciTech Connect (OSTI)

    Berger, Ulrich; Kretzschmann, Ralf; Algebra, A. Vargas Veronica

    2008-06-12

    The automotive industry is distinguished by regionalization and customization of products. As consequence, the diversity of products will increase while the lot sizes will decrease. Thus, more product types will be handled along the process chain and common production paradigms will fail. Although Rapid Manufacturing (RM) methodology will be used for producing small individual lot sizes, new solution for joining and assembling these components are needed. On the other hand, the non-availability of existing operational knowledge and the absence of dynamic and explicit knowledge retrieval minimize the achievement of on-demand capabilities. Thus, in this paper, an approach for an Intelligent Production System will be introduced. The concept is based on three interlinked main modules: a Technology Data Catalogue (TDC) based on an ontology system, an Automated Scheduling Processor (ASP) based on graph theory and a central Programmable Automation Controller (PAC) for real-time sensor/actor communication. The concept is being implemented in a laboratory set-up with several assembly and joining processes and will be experimentally validated in some research and development projects.

  12. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry

  13. Energy Intensity Indicators: Manufacturing Energy Intensity

    Broader source: Energy.gov [DOE]

    The manufacturing sector comprises 18 industry sectors, generally defined at the three-digit level of the North American Industrial Classification System (NAICS). The manufacturing energy data...

  14. Modeling plant-level industrial energy demand with the Manufacturing Energy Consumption Survey (MECS) database and the Longitudinal Research Database (LRD)

    SciTech Connect (OSTI)

    Boyd, G.A.; Neifer, M.J.; Ross, M.H.

    1992-08-01

    This report discusses Phase 1 of a project to help the US Department of Energy determine the applicability of the Manufacturing Energy Consumption Survey (MECS) database and the Longitudinal Research Database (LRD) for industrial modeling and analysis. Research was conducted at the US Bureau of the Census; disclosure of the MECS/LRD data used as a basis for this report was subject to the Bureau`s confidentiality restriction. The project is designed to examine the plant-level energy behavior of energy-intensive industries. In Phase 1, six industries at the four-digit standard industrial classification (SIC) level were studied. The utility of analyzing four-digit SIC samples at the plant level is mixed, but the plant-level structure of the MECS/LRD makes analyzing samples disaggregated below the four-digit level feasible, particularly when the MECS/LRD data are combined with trade association or other external data. When external data are used, the validity of using value of shipments as a measure of output for analyzing energy use can also be examined. Phase 1 results indicate that technical efficiency and the distribution of energy intensities vary significantly at the plant level. They also show that the six industries exhibit monopsony-like behavior; that is, energy prices vary significantly at the plant level, with lower prices being correlated with a higher level of energy consumption. Finally, they show to what degree selected energy-intensive products are manufactured outside their primary industry.

  15. Roll to Roll Manufacturing

    SciTech Connect (OSTI)

    Daniel, Claus

    2015-06-09

    ORNL researchers are developing roll to roll technologies for manufacturing, automotive, and clean energy applications in collaboration with industry partners such as Eastman Kodak.

  16. Clean Energy Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency

  17. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Ludtka, Gail Mackiewicz-; Chourey, Aashish

    2010-08-01

    As the original magnet designer and manufacturer of ORNL s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL s Materials Processing Group s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  18. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information AdministrationManufacturing Consumption of Energy 1994 SIC Residual...

  19. Steam system opportunity assessment for the pulp and paper, chemical manufacturing, and petroleum refining industries: Main report

    SciTech Connect (OSTI)

    None, None

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  20. A glove-likeability study of specially-treated gloves in the detonator manufacturing and packaging industry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cournoyer, Michael E.; Lawton, Cindy M.; Lounsbury, James B.; Armijo, Mark A.

    2016-03-22

    We use hand gloves (hereafter referred to as gloves) in the detonator manufacturing and packaging operations. As part of a process improvement program, new glove formulations have been considered that lower the overall risk of detonator operations by reducing ergonomic injury factors. Gloves with a specially treated surface for extra grip and control are now commercially available and have been recommended for use in detonator operations. A Glove Likeability Study demonstrated that detonator manufacturing and packaging workers prefer gloves with a specially treated surface over currently approved gloves made from latex and nitrile formulations. Glove material compatibility tests indicate thatmore » the recommended gloves are as compatible if not more compatible as the currently approved gloves for working with secondary explosives. Thus, these gloves with a specially treated surface for extra grip and control are now available for tasks where sensitivity and fingertip control are crucial. Replacement of the current gloves with gloves with a specially treated surface improves the safety configuration of detonator manufacturing and packaging operations.« less

  1. NREL: Energy Analysis - Manufacturing Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Publications "Economic Measurements of Polysilicon for the Photovoltaic Industry: Market Competition and Manufacturing Competitiveness" IEEE Journal of Photovoltaics Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry Economic Development Impact of 1,000 MW of Wind Energy in Texas Manufacturing Analysis With world-class manufacturing analysis capabilities, NREL analyzes clean energy industry trends; cost, price, and performance trends; market and

  2. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Lutdka, G. M.; Chourey, A.

    2010-05-12

    As the original magnet designer and manufacturer of ORNLs 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNLs Materials Processing Groups and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  3. Energy Intensity Indicators: Industrial Source Energy Consumption

    Broader source: Energy.gov [DOE]

    The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the...

  4. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  5. Tag: manufacturing | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manufacturing Tag: manufacturing Displaying 1 - 8 of 8... Category: News Tool of tomorrow today Y-12 and other Nuclear Security Enterprise sites investigate industry's next...

  6. Oak Ridge Centers for Manufacturing Technology - Partnership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact on the Semiconductor Industry, part 2 The Oak Ridge Centers for Manufacturing Technology in partnership with SEMATECH (Semiconductor Manufacturing TECHnology) had...

  7. Sustainable Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR DOE Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR Sustainable Manufacturing: Definitions ...

  8. Unlocking the Potential of Additive Manufacturing in the Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry Download presentation ...

  9. Unlocking the Potential of Additive Manufacturing in the Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry Download presentation...

  10. Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99

  11. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST » MST Research Programs » Additive Manufacturing Additive Manufacturing A method allowing unparalleled manufacturing control, data visualization, and high-value parts repair. Through additive manufacturing, Los Alamos is developing materials for the future. Taking complex manufacturing challenges from design to fabrication. A science and engineering approach for additive manufacturing solutions. Get Expertise John Carpenter Technical Staff Member Metallurgy Email Division Leader Materials

  12. Additive Manufacturing: Pursuing the Promise | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing: Pursuing the Promise Additive Manufacturing: Pursuing the Promise Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing. Additive Manufacturing: Pursuing the Promise (1.42 MB) More Documents & Publications Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry Fiber Reinforced Polymer Composite Manufacturing Workshop A National Strategic Plan For Advanced Manufacturing

  13. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  14. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  15. Transformational Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and

  16. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry

  17. Manufacturing Energy and Carbon Footprints Scope

    Broader source: Energy.gov [DOE]

    List of manufacturing sectors selected for analysis along with North American Industry Classification System (NAICS) code descriptions

  18. Additive Manufacturing - Materials by Design - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing - Materials by Design Lawrence Livermore National Laboratory ... Send Message Lawrence Livermore National Laboratory Industrial Partnerships Office Visit ...

  19. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart Manufacturing: ...

  20. MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge)

  1. Revolutionizing Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revolutionizing Manufacturing Revolutionizing Manufacturing Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy

  2. Energy 101: Clean Energy Manufacturing

    SciTech Connect (OSTI)

    2015-07-09

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  3. Hydroprocessing catalyst manufacture

    SciTech Connect (OSTI)

    Lostaglio, V.J.; Carruthers, J.D.

    1985-01-01

    Hydroprocessing catalysts for the oil-refining industry have undergone significant improvements since the oil shortages of the late 1970's. Spurred by the need for refiners to process heavy, sour feeds, catalyst manufacturers have developed technology to meet these changing demands. Current manufacturing techniques in the production of substrate and final catalyst are reviewed. New approach to the production of resid hydrotreatment catalysts are considered.

  4. Solid-State Lighting Manufacturing Workshop | Department of Energy

    Energy Savers [EERE]

    Conferences & Meetings Past Conferences Solid-State Lighting Manufacturing Workshop Solid-State Lighting Manufacturing Workshop Nearly 200 lighting industry leaders, chip ...

  5. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORKING TOGETHER TO BUILD A FASTER AND LEANER FUTURE FOR WIND TURBINE BLADE MANUFACTURING ... For the wind industry, 3D printing could transform turbine blade mold manufacturing, ...

  6. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) State...

  7. Resources at the State and Regional Level for Manufacturers ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources at the State and Regional Level for Manufacturers Manufacturers can use resources delivered by industrial energy efficiency programs in their area. AMO's cost-shared ...

  8. Manufacturing in the Clean Energy Race

    ScienceCinema (OSTI)

    Danielson, David; Jackson, Keoki; Johnson, Mark; Wince-Smith, Deborah L.

    2016-06-24

    There is an energy and manufacturing revolution in the world today. Here is what the United States Department of Energy has done through collaborations in pursuit of American prosperity in the energy and manufacturing industry of tomorrow.

  9. NREL: Photovoltaics Research - Awards for Photovoltaic Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards for Photovoltaic Manufacturing R&D The following research efforts within the PV Manufacturing R&D Project were honored with prestigious industry awards. 1995-AstroPower (now ...

  10. Wood-Composites Industry Benefits from ALS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technological advances are contributing to stronger, environmentally friendly composite ... of members from the adhesives manufacturing and product manufacturing industries. ...

  11. Manufacturing consumption of energy 1994

    SciTech Connect (OSTI)

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  12. Manufacturing Glossary

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing...

  13. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  14. CEMI Industrial Efficiency (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version for the Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video.  

  15. Meehan s Industrial | Open Energy Information

    Open Energy Info (EERE)

    Meehan s Industrial Jump to: navigation, search Name: Meehan's Industrial Place: Milton, Ontario, Canada Zip: L9T 5C1 Product: Meehan's Industrial is a manufacturer, project...

  16. First Solar Manufacturing Solar Modules

    Broader source: Energy.gov [DOE]

    In this photograph, a First Solar associate handles photovoltaic materials at the company's Ohio manufacturing plant. First Solar is an industry partner with the U.S. Department of Energy Solar...

  17. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  18. Fiber Reinforced Polymer Composite Manufacturing Workshop | Department...

    Broader source: Energy.gov (indexed) [DOE]

    A workshop on Fiber Reinforced Polymer (FRP) Composite Manufacturing (held January 13, 2014, in Arlington, VA) brought together stakeholders from industry and academia to discuss...

  19. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE has supported the development of more than 250 energy-saving industrial technologies that ... collaborative communities to target a unique technology in advanced manufacturing. ...

  20. 2015 American Energy and Manufacturing Competitiveness Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 2015 American Energy & Manufacturing Competitiveness (AEMC) Summit is a gathering of preeminent leaders from industry, academia, labor, the national laboratories, government and media to:

  1. American Energy and Manufacturing Competitiveness Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

  2. Performance, Market and Manufacturing Constraints relevant to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance, Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices Market pricing of thermoelectric raw materials and processing, cost of ...

  3. 2007 Status of Manufacturing: Polymer Electrolyte Membrane (PEM) Fuel Cells

    SciTech Connect (OSTI)

    Wheeler, D.; Sverdrup, G.

    2008-03-01

    In this document we assess the North American industry's current ability to manufacture polymer electrolyte membrane (PEM) fuel cells.

  4. Presentations for Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  5. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  6. Sustainable Nanomaterials Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Perspective U.S. Department of Energy Advanced Manufacturing Office Sustainable ... Uses renewable resources grown with sustainable forestry practices Encourages ...

  7. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, andor...

  8. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... laser-sintering) Optomec LENS MR-7 Sciaky EBAM 68 Non-metal additive manufacturing Powder bed FORMIGA P 110 PolyJet 3D ... Fused deposition modeling print technology MakerBot ...

  9. Low Temperature PEM Fuel Cell Manufacturing Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PEM Fuel Cell Manufacturing Needs Low Temperature PEM Fuel Cell Manufacturing Needs Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. Low Temperature PEM Fuel Cell Manufacturing Needs (789.69 KB) More Documents & Publications Manufacturing Fuel Cell Manhattan Project PEM Stack Manufacturing: Industry Status 2011 NREL/DOE Hydrogen and Fuel Cell Manufacturing R&D Workshop Report

  10. Manufacturing Demonstration Facility

    Energy Savers [EERE]

    of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and ...

  11. The President's Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the ...

  12. Manufacturing Spotlight: Boosting American Competitiveness | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Manufacturing Spotlight: Boosting American Competitiveness Manufacturing Spotlight: Boosting American Competitiveness January 6, 2014 - 1:06pm Addthis Advancing the nation's clean energy manufacturing industry helps to capture the value of U.S. innovation in clean energy technologies, fosters further innovation right here in America, and makes U.S. manufacturers more competitive by reducing their energy costs - all while creating jobs and building a more sustainable planet for future

  13. Advanced Manufacturing Initiative Improves Turbine Blade Productivity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. The Advanced Manufacturing Initiative (AMI) at DOE's Sandia National Laboratories is working with industry to improve manufacturing processes and create U.S. jobs by improving labor productivity in wind

  14. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office The U.S. Department of Energy (DOE) funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. DOE has supported the development of more than 250 energy-saving industrial technologies that have been commercialized since 1976. DOE is also working to create a network of Manufacturing Innovation Institutes, each of which will create collaborative communities to target a unique technology in advanced manufacturing.

  15. 2014 Manufacturing Energy and Carbon Footprints: Scope

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scope The energy and carbon footprint analysis examines fifteen individual manufacturing sectors that together consume 95% of U.S. manufacturing primary energy consumption and account for 94% of U.S. manufacturing combustion greenhouse gas (GHG) emissions. Manufacturing sectors are defined by their respective NAICS (North American Industry Classification System) codes. i Individual sectors were selected for analysis based on their relative energy intensities, contribution to the U.S. economy,

  16. Exploring the Wind Manufacturing Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Manufacturing Map Exploring the Wind Manufacturing Map August 15, 2012 - 5:01pm Addthis America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? The domestic wind manufacturing industry has grown dramatically in the last 5 years, and now nearly 70 percent of the turbines installed in the United

  17. National Network for Manufacturing Innovation: A Preliminary Design |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy an effective manufacturing research infrastructure for U.S. industry and academia to solve industry-relevant problems. The NNMI will consist of linked Institutes for Manufacturing Innovation (IMIs) with common goals, but unique concentrations. In an IMI, industry, academia, and government partners leverage existing resources, collaborate, and co-invest to nurture manufacturing innovation and accelerate commercialization. As sustainable manufacturing innovation hubs, IMIs

  18. National Network for Manufacturing Innovation: A Preliminary Design |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy an effective manufacturing research infrastructure for U.S. industry and academia to solve industry-relevant problems. The NNMI will consist of linked Institutes for Manufacturing Innovation (IMIs) with common goals, but unique concentrations. In an IMI, industry, academia, and government partners leverage existing resources, collaborate, and co-invest to nurture manufacturing innovation and accelerate commercialization. As sustainable manufacturing innovation hubs, IMIs

  19. additive manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    additive manufacturing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  20. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers dramatically increase the energy efficiency of their operations and reduce costs. Each project will advance transformational technologies and materials that can benefit a broad cross-section of the domestic economy. This event created a platform for inter-agency and industry networking and also raised awareness among congressional staff and private investors.

  1. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  2. SunShot Photovoltaic Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market » SunShot Photovoltaic Manufacturing Initiative SunShot Photovoltaic Manufacturing Initiative The SunShot Photovoltaic Manufacturing Initiative (PVMI) invests in manufacturing-focused research projects that strengthen the competitiveness of the U.S. PV module industry and supply chain. PVMI funding also establishes manufacturing development facilities that provide infrastructure for demonstrating, testing, optimizing, and manufacturing new technologies with reduced capital

  3. Energy 101: Clean Energy Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Energy 101: Clean Energy Manufacturing Addthis Description Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Text version Below

  4. Hebei Huazheng Industry | Open Energy Information

    Open Energy Info (EERE)

    Hebei Province, China Zip: 53500 Product: Hebei Huazheng Industry manufactures electrical semiconductor devices. References: Hebei Huazheng Industry1 This article is a stub. You...

  5. Goat Industries Fuels | Open Energy Information

    Open Energy Info (EERE)

    Industries Fuels Jump to: navigation, search Name: Goat Industries Fuels Place: Gwynedd, Wales, United Kingdom Zip: LL56 4PZ Product: Welsh manufacturer of biodiesel equipment that...

  6. Office\tof\tEnergy\tEfficiency\t&\tRenewable\tEnergy Advanced\tManufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (QTR): Technology Assessment - Sustainable ManufacturingFlow of Materials Through Industry Joe Cresko - joe.cresko@ee.doe.gov Sustainable Manufacturing Workshop Portland, OR ...

  7. LARGE INDUSTRIAL FACILITIES BY STATE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LARGE INDUSTRIAL FACILITIES BY STATE LARGE INDUSTRIAL FACILITIES BY STATE PDF icon Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy...

  8. Career Map: Industrial Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Engineer Career Map: Industrial Engineer Two industrial engineers analyze data on a computer. Industrial Engineer Position Title Industrial Engineer Alternate Title(s) Production Engineer, Process Engineer, Manufacturing Engineer, Industrial Production Manager Education & Training Level Advanced, Bachelors required, prefer graduate degree Education & Training Level Description Industrial engineers should have a bachelor's degree in industrial engineering. Employers also value

  9. Fiber Reinforced Polymer Composite Manufacturing Workshop

    Broader source: Energy.gov [DOE]

    A workshop on Fiber Reinforced Polymer (FRP) Composite Manufacturing (held January 13, 2014, in Arlington, VA) brought together stakeholders from industry and academia to discuss manufacturing of composites. The workshop explored emerging FRP composite market applications in clean energy and barriers to the development and widespread commercial use of these lightweight, high-strength and high-stiffness materials. Improving the manufacturing speed and quality-and reducing their manufacturing costs-could accelerate their use in automotive, wind, compressed gas storage and other clean energy and industrial applications.

  10. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, and/or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial

  11. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  12. DMI Industries | Open Energy Information

    Open Energy Info (EERE)

    (NASDAQ: OTTR), is a diversified heavy steel manufacturer with a primary concentration on wind tower fabrication. References: DMI Industries1 This article is a stub....

  13. Barriers to Industrial Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    Barriers to Industrial Energy Efficiency A Study Pursuant to Section 7 of the American Energy Manufacturing Technical Corrections Act June 2015 Blank Page iii Statutory Requirement ...

  14. Solar Manufacturing Projects | Department of Energy

    Office of Environmental Management (EM)

    Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects SOLAR ...

  15. Manufacturing Innovation and Scale-up

    Broader source: Energy.gov [DOE]

    The SunShot Initiative funds cutting-edge research and development that will help the solar industry to reach specific manufacturing-related cost goals and supports cost-cutting advances in the solar supply chain, across system components, and in manufacturing processes. SunShot works to de-risk both near and long-term innovations in the private sector as well as manufacturing-oriented consortia.

  16. Manufacturing Energy and Carbon Footprint References

    Broader source: Energy.gov (indexed) [DOE]

    References AMO (Advanced Manufacturing Office), EERE (Energy Efficiency and Renewable Energy). 2012. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators. U.S. Department of Energy. http://www1.eere.energy.gov/manufacturing/tech_deployment/pdfs/steam22_backpressure.pdf AMO (Advanced Manufacturing Office), EERE (Energy Efficiency and Renewable Energy). 2012. Improving Steam System Performance: A Sourcebook for Industry, Second Edition. DOE-GO 102012-3423. Prepared by

  17. Working with SRNL - The Advanced Manufacturing Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4/2016 SEARCH SRNL GO The Advanced Manufacturing Collaborative Academia Government Industry AMC Leadership Contact AMC Home SRNL Home Working with SRNL The Advanced Manufacturing Collaborative For over 50 years, the Savannah River National Laboratory (SRNL) has been providing the science behind nuclear chemical manufacturing at the Savannah River Site (SRS), a sprawling nuclear complex that was once part of our nation's Cold War. Time has changed the mission at SRS from nuclear production for

  18. Advanced Methods for Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methods for Manufacturing Advanced Methods for Manufacturing The overall purpose of the AMM subprogram is to accelerate innovations that reduce the cost and schedule of constructing new nuclear plants and make fabrication of nuclear power plant components faster, cheaper, and more reliable. Based on past industry work and new stakeholder input, this effort will focus on opportunities that provide simplified, standardized, and labor-saving outcomes for manufacturing, fabrication, assembly, and

  19. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projection...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer ...

  20. Advanced Manufacturing Office Peer Review Final Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MAY 28-29, 2015 ... Difficult Materials LLC 10:10 - 10:30 am Coatings and Process Development Reduced PPG Industries, Inc. Energy Automotive ...

  1. Clean Energy Manufacturing Analysis Center (CEMAC)

    SciTech Connect (OSTI)

    2015-12-01

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  2. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Innovating Clean Energy Technologies in Advanced Manufacturing September 2015 Quadrennial Technology Review 6 Innovating Clean Energy Technologies in Advanced Manufacturing Issues and RDD&D Opportunities  Manufacturing affects the way products are designed, fabricated, used, and disposed; hence, manufacturing technologies have energy impacts extending beyond the industrial sector.  Life-cycle analysis is essential to assess the total energy impact of a manufactured product. 

  3. LARGE INDUSTRIAL FACILITIES BY STATE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) More Documents ...

  4. Materials and Additive Manufacturing for Energy Efficiency in...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Materials and Additive Manufacturing for Energy Efficiency in Wind Turbine and Aircraft Industries Citation Details In-Document Search Title: Materials and ...

  5. Manufacturing of Protected Lithium Electrodes for Advanced Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the largest manufacturer of rechargeable lead-acid batteries in the world and recognized as ... entirely petroleum-based > 20B battery industry PLE-based batteries provide ...

  6. Energy Department Announces New Investments in Innovative Manufacturing Technologies

    Broader source: Energy.gov [DOE]

    Research Partnerships with Private Industry Aim to Reduce Energy Use, Costs for U.S. Manufacturers and Boost U.S. Global Competitiveness

  7. HPC4Mfg: Boosting American Competiveness in Clean Energy Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    industrial products and processes-including paper manufacturing, food drying, and 3D printing aerospace parts-with the goal of dramatically reducing production costs and ...

  8. 3 Ways Our Manufacturing Institutes Are Changing the Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Composites Manufacturing Innovation just announced a new industry ... members who are working together to lower the cost of advanced composites like carbon ...

  9. Request for Information (RFI): Clean Energy Manufacturing Topics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The purpose of this RFI is to solicit feedback from industry, academia, research ... addressed could provide the underlying motivation for the formation of a manufacturing ...

  10. Presentations for Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    Industrial energy managers, utilities, and energy management professionals can find online trainings and information dissemination at no-cost. AMO has provided these energy-saving strategies from leading manufacturing companies and energy experts through several different presentation series.

  11. Steel Industry Profile

    Broader source: Energy.gov [DOE]

    The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of manufacturing, construction, transportation, and various consumer products. Traditionally...

  12. Industry Information Practices and the Failure to Remember

    Office of Environmental Management (EM)

    Information Resources » Industries & Technologies Industries & Technologies The Advanced Manufacturing Office (AMO) emphasizes innovative technologies to increase manufacturing agility and open new markets. AMO also maintains a range of projects, analyses, protocols, and strategies to reduce industrial energy intensity and carbon emissions in specific industries and technology areas: Industries Aluminum Chemicals Forest Products Glass Metal Casting Mining Other Industries Petroleum

  13. Industrial Fuel Flexibility Workshop

    SciTech Connect (OSTI)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  14. Industrial Energy Efficiency Assessments

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Cassie Mills Communications Associate in the Advanced

  15. Industrial & Manufacturing Processes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Nanosegregated Surfaces as Catalysts for Fuel Cells Method creates stable, platinum ... Precise Application of Transparent Conductive Oxide Coatings for Flat Panel Displays and ...

  16. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Beds * Install image-based temperature ... multi-vendor modeling and big data management, high ... through configurable modeling and data analysis. ...

  17. NNMI Industry Day: Smart Manufacturing AMO Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Action Plan: Efficiency and Sustainability National Economic Council: ... O&M High Fidelity Modelling X X X Data Architecture & Platform X X X Sensor Development & ...

  18. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Breakout Session 1: New Developments and ...

  19. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program ...

  20. Next Generation Manufacturing Processes

    Broader source: Energy.gov [DOE]

    New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high...

  1. HPC4Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab capabilities Manufacturing domain expertise National mission and guidance Bringing HPC to U.S. Manufacturers Energy Efficient Processes Energy Efficient Products...

  2. Manufacturing Innovation in the DOE

    Broader source: Energy.gov (indexed) [DOE]

    ...sitesdefaultfilesmicrositesostppcast-advanced-manufacturing-june2011.pdf. Advanced Manufacturing Office (AMO) manufacturing.energy.gov 3 Collaboration and ...

  3. Cincinnati Incorporated- A Success Story in American Manufacturing

    Broader source: Energy.gov [DOE]

    Cincinnati Incorporated, a fourth-generation-owned company, is one of the largest machine tool manufacturers in the United States, with almost 400 employees at its 500-thousand square foot plant and technical center. It’s also the first company in the manufacturing machine tool industry sector to enter the additive manufacturing arena.

  4. Clean Energy Manufacturing Initiative Solid-State Lighting

    Broader source: Energy.gov [DOE]

    Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  5. Clean Energy Manufacturing Initiative: Technology Research and Development

    Broader source: Energy.gov [DOE]

    Through the Clean Energy Manufacturing Initiative (CEMI), U.S. Department of Energy (DOE) offices and programs have increased funding for manufacturing research and development (R&D) across the board with the goal of growing the clean energy manufacturing industry in the United States.

  6. Ultratech Develops an Improved Lithography Tool for LED Wafer Manufacturing

    Broader source: Energy.gov [DOE]

    Ultratech modified an existing lithography tool used for semiconductor manufacturing to better meet the cost and performance targets of the high-brightness LED manufacturing industry. The goal was to make the equipment compatible with the wide range of substrate diameters and thicknesses prevalent in the industry while reducing the capital cost and the overall cost of ownership (COO).

  7. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  8. Advanced Manufacturing Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Manufacturing Production Technician; Electro-Mechanical Technician; Electronics Maintenance Technician  

  9. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  10. Wind Manufacturing and Supply Chain | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Wind Manufacturing and Supply Chain Wind Manufacturing and Supply Chain The U.S. Department of Energy (DOE) works with wind technology suppliers to promote advanced manufacturing capabilities. Its goals are to increase reliability while lowering production costs, and to promote an industry that can meet all demands domestically while competing in the global market. The Wind Program supports industry partnerships and targeted R&D investments that integrate new

  11. Lee Chung Yung Chemical Industry Corporation | Open Energy Information

    Open Energy Info (EERE)

    Chung Yung Chemical Industry Corporation Jump to: navigation, search Name: Lee Chung Yung Chemical Industry Corporation Place: Taipei, Taiwan Product: Chemical manufacturer...

  12. Shenzhen Coolead Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Shenzhen Coolead Industry Co. Ltd. Place: China Product: Air conditioning R&D, equipment manufacture and sales. References: Shenzhen Coolead Industry Co....

  13. Save Energy Now in Your Process Heating Systems; Industrial Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating Systems Process heating accounts for about 36% of the total energy used in industrial manufacturing applications. And in some industries, this percentage is much ...

  14. Kung Long Batteries Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kung Long Batteries Industrial Co Ltd Jump to: navigation, search Name: Kung Long Batteries Industrial Co Ltd Place: Nantou, Taiwan Product: Manufacturer of more than 200 types of...

  15. Manufacturing Supply Chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration (EIA) ‹ Consumption & Efficiency Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 1998-2010, September 6, 2013. New 2010 Manufacturing Energy

  16. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell Manufacturing Photo of scientific equipment in laboratory setting. NREL's in-line diagnostics help industry identify defects in fuel cell components. This small-scale manufacturing line at NREL's Energy Systems Integration Facility can convey fuel cell component materials at speeds of 100 feet per minute. NREL's fuel cell manufacturing R&D focuses on improving quality-inspection practices for high-volume manufacturing processes to enable higher production volumes, increased reliability,

  17. Manufacturing Innovation Multi-Topic Workshop Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Innovation Multi-Topic Workshop Report Manufacturing Innovation Multi-Topic Workshop Report The U.S. Department of Energy (DOE) and Department of Defense (DoD) held a Manufacturing Innovation Topics Workshop on October 8 and 9, 2014. Representatives from industry, academia, DOE national laboratories, and DoD centers gathered in Fort Worth TX to hear keynote addresses and participate in workshop breakout sessions. The Workshop Report is listed below. U.S DOE and DoD Manufacturing

  18. 2009 Solid-State Lighting Vancouver Manufacturing Workshop Highlights |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 09 Solid-State Lighting Vancouver Manufacturing Workshop Highlights 2009 Solid-State Lighting Vancouver Manufacturing Workshop Highlights Well over 150 lighting industry leaders gathered in Vancouver, Washington, on June 24-25, 2009, for the second DOE Solid-State Lighting (SSL) Manufacturing Workshop. The primary purpose was to review and refine a "strawman" roadmap for SSL manufacturing, based on insights and recommendations from the first workshop, which was

  19. Contacts for the Advanced Manufacturing Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contacts for the Advanced Manufacturing Office Contacts for the Advanced Manufacturing Office Welcome to the Advanced Manufacturing Office (AMO). Our address, email, and phone number are provided below. U.S. Department of Energy - Advanced Manufacturing Office (formerly Industrial Technologies Program) Room 5F-065, MS EE-5A 1000 Independence Ave, SW Washington, DC 20585 Phone: (202) 586-9488 Nearest Metro stop: Smithsonian (blue/orange line) Get directions Website Contact: Send us your comments,

  20. Wind Turbine Manufacturing Transforms with Three-Dimensional Printing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Turbine Manufacturing Transforms with Three-Dimensional Printing Wind Turbine Manufacturing Transforms with Three-Dimensional Printing May 19, 2016 - 12:57pm Addthis From medical devices to airplane components, three-dimensional (3-D) printing (also called additive manufacturing) is transforming the manufacturing industry. Now, research that supports the Energy Department's Atmosphere to Electrons (A2e) initiative is applying 3-D-printing processes to create wind turbine

  1. DOE - Office of Legacy Management -- Titanium Alloys Manufacturing Co Div

    Office of Legacy Management (LM)

    of National Lead of Ohio - NY 41 Alloys Manufacturing Co Div of National Lead of Ohio - NY 41 FUSRAP Considered Sites Site: TITANIUM ALLOYS MANUFACTURING CO., DIV. OF NATIONAL LEAD OF OHIO (NY.41) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Titanium Alloy Metals Titanium Alloy Manufacturing Division Titanium Alloy Manufacturing (TAM) Division of National Lead Company The Titanium Pigment Co. NL Industries ICD/Niagara NY.41-1 NY.41-2 NY.41-3

  2. Cincinnati Incorporated - A Success Story in American Manufacturing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cincinnati Incorporated - A Success Story in American Manufacturing Cincinnati Incorporated - A Success Story in American Manufacturing April 15, 2015 - 1:33pm Addthis Cincinnati Incorporated, a fourth-generation-owned company, is one of the largest machine tool manufacturers in the United States, with almost 400 employees at its 500-thousand square foot plant and technical center. It's also the first company in the manufacturing machine tool industry sector to enter the

  3. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry

  4. Colorado Industrial Energy Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State and Utility Engagement Activities » Colorado Industrial Energy Challenge Colorado Industrial Energy Challenge Colorado The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a Best Practices suite of tools to help industrial manufacturers reduce their energy intensity. AMO adopted the Energy Policy Act of 2005 objective of reducing industrial energy intensity 2.5% annually over the next

  5. Sustainable manufacturing Workshop: Workshop Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The DOE Office of Energy Efficiency and Renewable Energy (EERE)'s Advanced Manufacturing Office partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality domestic manufacturing jobs and enhance the global competitiveness of the United States. This document was prepared for DOE/EERE's AMO as a collaborative effort between DOE AMO and Energetics Incorporated, Columbia, MD. Disclaimer This

  6. American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    The 2015 American Energy and Manufacturing Competitiveness Summit will be hosted September 15–16; this gathering of preeminent leaders from industry, academia, labor, the national laboratories, government, and media aims to increase American competitiveness in clean energy and manufacturing. Bioenergy Technologies Office Technology Manager Jay Fitzgerald will be representing the Office, and the Lawrence Berkeley National Lab will be exhibiting a special hands-on demonstration of the latest bioenergy equipment, models, and other research, development, and demonstration tools.

  7. Driving Economic Growth: Advanced Technology Vehicles Manufacturing

    Broader source: Energy.gov [DOE]

    With $8 billion in loans and commitments to projects that have supported the production of more than 4 million fuel-efficient cars and more than 35,000 direct jobs across eight states, the Loan Programs Office Advanced Technology Vehicles Manufacturing (ATVM) loan program has played a key role in helping the American auto industry propel the resurgence of manufacturing in the United States.

  8. Leading manufacturers in the Better Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leading manufacturers in the Better Buildings, Better Plants Program are taking on bold commitments to improve energy efficiency across their operations. Building on President Obama's Better Buildings Initiative and the Administration's broader efforts to double energy productivity by 2030, the U.S. Department of Energy (DOE) works with manufacturers to set corporate-wide energy reduction goals, improve energy management, and track and report their progress. The industrial sector accounts for

  9. Supporting Texas Manufacturing to Save Energy Now Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy State and Utility Engagement Activities » Supporting Texas Manufacturing to Save Energy Now Program Supporting Texas Manufacturing to Save Energy Now Program Texas The industrial sector in Texas is very energy intensive, with approximately 53% of all energy consumed in the state occurring in industrial plants. Therefore, Texas industrials have a great opportunity to reduce their energy intensity and related carbon emissions. In 2009, the U.S. Department of Energy's (DOE's) Advanced

  10. Economics of Future Growth in Photovoltaics Manufacturing

    SciTech Connect (OSTI)

    Basore, Paul A.; Chung, Donald; Buonassisi, Tonio

    2015-06-14

    The past decade's record of growth in the photovoltaics manufacturing industry indicates that global investment in manufacturing capacity for photovoltaic modules tends to increase in proportion to the size of the industry. The slope of this proportionality determines how fast the industry will grow in the future. Two key parameters determine this slope. One is the annual global investment in manufacturing capacity normalized to the manufacturing capacity for the previous year (capacity-normalized capital investment rate, CapIR, units $/W). The other is how much capital investment is required for each watt of annual manufacturing capacity, normalized to the service life of the assets (capacity-normalized capital demand rate, CapDR, units $/W). If these two parameters remain unchanged from the values they have held for the past few years, global manufacturing capacity will peak in the next few years and then decline. However, it only takes a small improvement in CapIR to ensure future growth in photovoltaics. Any accompanying improvement in CapDR will accelerate that growth.

  11. Taiwan Glass Industry Corp | Open Energy Information

    Open Energy Info (EERE)

    Taiwan Glass Industry Corp Place: Taipei, Taiwan Zip: 10566 Product: Engaged in the manufacturing, processing and selling of various types of glass. References: Taiwan Glass...

  12. Nisshinbo Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Nisshinbo Industries Inc Place: Tokyo, Tokyo, Japan Zip: 103-8650 Product: Japanese manufacturing company; its Electronics division offers...

  13. Industrial Solar Technology Corp | Open Energy Information

    Open Energy Info (EERE)

    Solar Technology Corp Jump to: navigation, search Name: Industrial Solar Technology Corp Place: Golden, Colorado Zip: CO 80403-1 Product: IST designs, manufactures, installs and...

  14. Partnering for success: Industrial technologies program

    SciTech Connect (OSTI)

    None, None

    2004-02-01

    Partnering for Success features the R&D and industrial energy management best practices and accomplishments of manufacturers who are partnering with DOE.

  15. Thompson Technology Industries TTI | Open Energy Information

    Open Energy Info (EERE)

    TTI Jump to: navigation, search Name: Thompson Technology Industries (TTI) Place: Novato, California Zip: 94949 Sector: Solar Product: Designer and manufacturer of solar tracking...

  16. ET Industries: Proposed Penalty (2012-SE-2902)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that ET Industries, Inc. manufactured and distributed noncompliant showerheads in the U.S.

  17. Industrial and Process Efficiency Performance Incentives

    Broader source: Energy.gov [DOE]

    The New York State Energy Research and Development Authority (NYSERDA) offers the Industrial and Process Efficiency (IPE) Program to provide performance-based incentives to manufacturers and data...

  18. Solar Night Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    St Louis, Missouri Zip: 63147 Product: Manufacturer and distributor of products which store energy by day and release it by night. References: Solar Night Industries Inc1 This...

  19. ITP Metal Casting: Metalcasting Industry Technology Roadmap

    Broader source: Energy.gov [DOE]

    Castings are essential building blocks of U. S. industry. More than 90% of all mnaufactured, durable good and 100% of all manufacturing machinery contain castings.

  20. Solar Power Industries SPI | Open Energy Information

    Open Energy Info (EERE)

    Pennsylvania Zip: 15012 Product: US-based manufacturer of mono and multicrystalline PV cells, modules and systems. References: Solar Power Industries (SPI)1 This article is a...

  1. Manufacturing Day 2015

    Broader source: Energy.gov [DOE]

    All over the country, manufacturing companies and other organizations are preparing to host an anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On...

  2. Energy Use in Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  3. NREL: Innovation Impact - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Increasing U.S. Market Share in Solar Photovoltaic Manufacturing Close From 2000 to 2010, global shipments of solar cells and modules grew 53%, a wave that China and Taiwan rode to increase their combined market share from less than 2% to 54%. Meanwhile, U.S. market share

  4. Manufacturing Innovation Topics Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

  5. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013. Fuel Cell Manufacturing (2.61 MB) ...

  6. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing 1 Technology Assessment 2 1. Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Introduction to Additive Manufacturing ....................................................................................... 2 5 1.2 Additive Manufacturing Processes ............................................................................................... 2 6 1.3 Benefits of Additive

  7. U.S. Department of Energy Partners with the Next Generation Lighting Industry Alliance

    Broader source: Energy.gov [DOE]

    Administered by the National Electrical Manufacturers Association (NEMA), the Next Generation Lighting Industry Alliance (NGLIA) is an alliance of for-profit lighting manufacturers formed to...

  8. ET Industries: Order (2012-SE-2902)

    Broader source: Energy.gov [DOE]

    DOE ordered ET Industries, Inc. to pay a $39,000 civil penalty after finding ET Industries had manufactured and distributed in commerce in the U.S. 974 units of basic model TH-1, a noncompliant showerhead.

  9. Keystone coal industry manual

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  10. Energy Information Administration (EIA)- Manufacturing Energy Consumption

    Gasoline and Diesel Fuel Update (EIA)

    Survey (MECS) Steel Analysis Brief Steel Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities Introduction The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers,

  11. Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013.

  12. Industrial Energy Efficiency Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  13. The Advanced Manufacturing Partnership and the Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Program Office | Department of Energy The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office This presentation describes the Advanced Manufacturing Partnership from its beginning as a recommendation of the President's Council of Advisers on Science and Technology to its development and organization. The Advanced Manufacturing Partnership and the

  14. Working with SRNL - AMC - Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry The dynamic, long-term relationships that would emerge from this laboratory, industry, and academic collaborative would generate new concepts and approaches that not only "spin in" modern manufacturing methods that support DOE mission success but also "spin out" new innovations to support overall chemical and manufacturing competitiveness within the United States. Technology and innovation are being driven by the need to work smarter to reduce risk. The Advanced

  15. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect (OSTI)

    Shepperd, L.W.

    1995-11-01

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  16. Manufacturing fuel-switching capability, 1988

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  17. Manufacturing Energy and Carbon Footprint - Sector: All Manufacturing (NAICS 31-33), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    Energy Performance | Department of Energy At a White House meeting of the Better Buildings Initiative on December 3rd, six manufacturers and three utilities officially joined the Department of Energy's Better Buildings Industrial Superior Energy Performance (SEP) Accelerator Program. Manufacturers joining the Accelerator include the 3M Company, Cummins Inc., General Dynamics OTS, Nissan, Schneider Electric, and Volvo Group North America. Utilities joining the program include the Bonneville

  18. Additive Manufacturing: Going Mainstream

    Broader source: Energy.gov [DOE]

    Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

  19. Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    processes and reduce the cost of manufacturing components and systems for hydrogen production and delivery, hydrogen storage, and fuel cells for transportation, stationary, and ...

  20. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  1. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... For instance, the following parts have already been manufactured additively: 179 Structure parts for unmanned aircraft by SAAB Avitronics 15, 16; 180 Special tools for ...

  2. New Jersey Industrial Energy Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Jersey Industrial Energy Program New Jersey Industrial Energy Program Map highlighting New Jersey New Jersey is home to energy-intensive industrial manufacturing sectors such as chemicals, computers and electronics, and transportation equipment manufacturing. In 2007, industrial manufacturing in the state contributed to approximately 10% of New Jersey's gross domestic product and 20% of the state's energy usage, consuming 452.1 trillion British thermal units (Btu). As part of an initiative

  3. Manufacturing Fuel Cell Manhattan Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Office of Naval Research recently sponsored and completed the Manufacturing Fuel Cell Manhattan Project (MFCMP). Utilizing experts from industry, government, and academia, the Navy Manufacturing Technology Program's Benchmarking Best Practices Center of Excellence, in conjunction with Montana Tech, determined the major fuel cell manufacturing cost drivers, gaps, and best practices. This document, which was produced by the collective efforts of the subject matter experts, will communicate

  4. Manufacturing of Protected Lithium Electrodes for Advanced Batteries |

    Broader source: Energy.gov (indexed) [DOE]

    The Office of Naval Research recently sponsored and completed the Manufacturing Fuel Cell Manhattan Project (MFCMP). Utilizing experts from industry, government, and academia, the Navy Manufacturing Technology Program's Benchmarking Best Practices Center of Excellence, in conjunction with Montana Tech, determined the major fuel cell manufacturing cost drivers, gaps, and best practices. This document, which was produced by the collective efforts of the subject matter experts, will communicate

  5. Leadership Perspectives: The Opportunity for Clean Energy Manufacturing

    Broader source: Energy.gov [DOE]

    There is a tremendous opportunity for the United States to manufacture clean energy and energy efficiency products. Leaders from U.S. industry and the U.S. Department of Energy (DOE) discuss the...

  6. INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER

    SciTech Connect (OSTI)

    MELINDA KRAHENBUHL

    2010-05-28

    The U. S. Department of Energy’s Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

  7. Third Annual American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    Earlier this month, leaders in science and industry gathered at the Energy Department’s 2015 American Energy and Manufacturing Competitiveness's (AEMC) Summit in Washington, D.C. to showcase and celebrate the tremendous accomplishments to date of the Energy Department’s Clean Energy Manufacturing Initiative (CEMI), launched just two and a half years ago.

  8. Clean Energy Manufacturing Boosting U.S. Competitiveness

    SciTech Connect (OSTI)

    2015-09-14

    Clean energy manufacturing is booming in the United States. U.S. clean energy investment topped $51 billion in 2014 alone, and even more growth is expected in the $250 billion clean energy market worldwide in coming years. America has an important opportunity to continue growing clean energy manufacturing industries, along with the high quality jobs and stronger local economies that come with them.

  9. Preliminary Fuel Cell Manufacturing R&D Topics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preliminary Fuel Cell Manufacturing R&D Topics Preliminary Fuel Cell Manufacturing R&D Topics Preliminary draft research topics subject to revision prior to a soliciatation being issued. preliminary_solicitation_topics.pdf (164.55 KB) More Documents & Publications DOE Hydrogen Program Manufacturing R&D Pre-Solicitation Meeting PEM Stack Manufacturing: Industry Status 2011 NREL/DOE Hydrogen and Fuel Cell Manufacturing R&D Workshop Report

  10. Manufacturing Institutes Exhibit American Innovation at Hannover Messe |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Manufacturing Institutes Exhibit American Innovation at Hannover Messe Manufacturing Institutes Exhibit American Innovation at Hannover Messe April 25, 2016 - 4:30pm Addthis The 70th annual Hannover Messe, the world's largest industrial fair, kicked off this week in Germany. Hannover Messe is one of the largest conferences in the world and drives conversation about innovation and issues affecting industry worldwide. The United States is the official Partner Country

  11. Ten Years of Manufacturing R and D in PVMaT -- Technical Accomplishmen...

    Office of Scientific and Technical Information (OSTI)

    The Photovoltaic Manufacturing Technology Project has been conducting cost-shared R and D with industry for ten years. Objectives of this project are to improve photovoltaic ...

  12. Manufacturing Innovation in the DOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Innovation in the DOE January 13, 2014 Mark Johnson Director Advanced Manufacturing Office manufacturing.energy.gov Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 What is Advanced Manufacturing? A family of activities that: * Depend on the use and coordination of information, automation, computation, software, sensing, and networking; and/or * Make use of cutting edge materials and emerging capabilities. Advanced Manufacturing involves both: * New ways to

  13. Low Cost Lithography Tool for High Brightness LED Manufacturing

    SciTech Connect (OSTI)

    Andrew Hawryluk; Emily True

    2012-06-30

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  14. Major manufacturing and mining investment projects

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This book lists manufacturing and mining investment projects with development costs of $5 million or more. Manufacturing projects are classified in accordance with the Australian Bureau of Statistics' Australian Standard Industrial Classification (ASIC) and mining projects by broad mineral categories. The book includes information on the nature of each project, its location and timing, the company of joint venture name, whether the investment is at a new site or at an existing site, the type of product, the value of the annual output, production, employment, past and future costs and the composition (structure and plant) of the investment.

  15. Clean Energy Manufacturing Initiative Southeast Regional Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    Registration is now open for the Clean Energy Manufacturing Initiative’s (CEMI) Southeast Regional Summit! The all-day conference, hosted by the U.S. Department of Energy (DOE), will take place on July 9 in Atlanta, Georgia, at the Renaissance Atlanta Midtown Hotel. The Southeast Regional Summit will bring together leaders from industry, academia, and government to focus on competitiveness and innovation in clean energy manufacturing throughout the southeastern United States. The Summit is the third in a series organized around the country, and will convene key stakeholders to:

  16. Advanced Vehicles Manufacturing Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  17. Manufacturing laser glass by continuous melting

    SciTech Connect (OSTI)

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  18. Industrial-market opportunities for geothermal energy in Colorado. Special Publication 20

    SciTech Connect (OSTI)

    Coe, B.A.

    1982-04-01

    Geothermal sites in Colorado are listed. The potential industrial market for geothermal energy in Colorado is described for agriculture, manufacturing, and the tourism and travel industry.

  19. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  20. Technology Solutions for New Manufactured Homes, Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Solutions for New Manufactured Homes Idaho, Oregon, and Washington Manufactured Home Builders PROJECT INFORMATION Project Name: High Performance Manufactured Home Prototyping and Construction Development Location: Pacific Northwest states (ID, OR, and WA) Partners: Northwest Manufactured Housing industry Building America Partnership for Improved Residential Construction, www.ba-pirc.org Building Components: HVAC, building envelope, lighting, and water heating Application: New, single

  1. Hydrogen Manufacturing R&D Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing R&D Workshop Hydrogen Manufacturing R&D Workshop The U.S. Department of Energy, in collaboration with the U.S. Department of Commerce, sponsored a Manufacturing R&D for the Hydrogen Economy Workshop in Washington, DC, July 13-14, 2005. The workshop brought together key industry, university, and government representatives to develop a roadmap for manufacturing R&D for: (1) hydrogen production and delivery systems, (2) hydrogen storage systems, and (3) fuel cells that

  2. Energy-Saving Opportunities for Manufacturing Enterprises in China (International Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This English/Chinese brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help Chinese manufacturing facilities reduce industrial energy intensity.

  3. Energy-Saving Opportunities for Manufacturing Companies, International Fact Sheet (Spanish)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    This English/Spanish fact sheet describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

  4. Energy-Saving Opportunities for Manufacturing Companies, (English/Russian Fact Sheet) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This English/Russian brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

  5. Energy-Saving Opportunities for Manufacturing Companies (English/Portuguese Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This English/Portuguese brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

  6. Renewable Energy Manufacturing Program

    Broader source: Energy.gov [DOE]

    Note: The initial application deadline for the Renewable Energy Manufacturing Program is June 30, 2016. Applications will be accepted following that date only if there are remaining funds available...

  7. Innovative Manufacturing Initiative Project Selections

    Broader source: Energy.gov [DOE]

    The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

  8. Ohio Center for Industrial Energy Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ohio Center for Industrial Energy Efficiency Ohio Center for Industrial Energy Efficiency Ohio The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a best practices suite of tools to help industrial manufacturers reduce their energy intensity. AMO adopted the Energy Policy Act of 2005 objective of reducing industrial energy intensity 2.5% annually over the next 10 years. To help achieve this

  9. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...

  10. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  11. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Advanced Laser Manufacturing Tools Deliver Higher Performance Click to ... Advanced Laser Manufacturing Tools Deliver Higher Performance In a research lab looking ...

  12. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  13. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect (OSTI)

    Somberg, H. )

    1991-11-01

    This report describes existing integrated processes for solar cell manufacturing and lists as the primary opportunity for improvement the following areas: low-cost silicon sheets with improved characteristics; improved large-scale and automated solar cell processes that can lead to cell efficiencies in the range of 14% (encapsulated) for direct-cast wafers; improved handling and lamination of large-area modules for the emerging utility market. The proposed solutions can lead to finished module costs on the order of $1.55 per square meter or a selling price of less than $2.00/Watt. The problems that may be considered generic to the industry and that have been addressed in this work are as follows: gettering and passivation of silicon wafers; spray-on passivation layers; dual antireflection coatings; ink-jet printing of metallizations; and automated handling of large-area modules and associated vertical lamination. 14 refs.

  14. Oak Ridge Manufacturing Demonstration Facility (MDF) | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Oak Ridge Manufacturing Demonstration Facility (MDF) Oak Ridge Manufacturing Demonstration Facility (MDF) The Manufacturing Demonstration Facility (MDF) is a ...

  15. Manufacturing Demonstration Facility Workshop Videos | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facility Workshop Videos Manufacturing Demonstration Facility Workshop Videos Dr. Leo Christodoulou, Program Manager, EERE Advanced Manufacturing ...

  16. Additive manufacturing of hybrid circuits

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David M.; Hirschfeld, Deidre; Hall, Aaron Christopher

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  17. DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative

    SciTech Connect (OSTI)

    none,

    2010-02-01

    This draft report summarizes the results of the U.S. Department of Energy PV Manufacturing Request for Information (RFI), DE-FOA-0000153, that was released in September 2009. The PV Manufacturing Initiative is intended to help facilitate the development of a strong PV manufacturing industry in the United States.

  18. EERE Success Story-Colorado State University Industrial Assessment Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Saves Manufacturers Money and Trains the Next Generation of Engineers | Department of Energy Colorado State University Industrial Assessment Center Saves Manufacturers Money and Trains the Next Generation of Engineers EERE Success Story-Colorado State University Industrial Assessment Center Saves Manufacturers Money and Trains the Next Generation of Engineers April 18, 2013 - 12:00am Addthis Partnering with EERE, Colorado State University's Industrial Assessment Center (IAC) provides small-

  19. Optical manufacturing requirements for an AVLIS plant

    SciTech Connect (OSTI)

    Primdahl, K.; Chow, R.; Taylor, J.R.

    1997-07-14

    A uranium enrichment plant utilizing Atomic Vapor Laser Isotope Separation (AVLIS) technology is currently being planned. Deployment of the Plant will require tens of thousands of commercial and custom optical components and subsystems. The Plant optical system will be expected to perform at a high level of optical efficiency and reliability in a high-average-power-laser production environment. During construction, demand for this large number of optics must be coordinated with the manufacturing capacity of the optical industry. The general requirements and approach to ensure supply of optical components is described. Dynamic planning and a closely coupled relationship with the optics industry will be required to control cost, schedule, and quality.

  20. Compressed Air System Optimization Saves Energy and Improves Production at a Textile Manufacturing Mill (Peerless Division, Thomastown Mills, Inc.)

    SciTech Connect (OSTI)

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the textile manufacturing mill project.

  1. Directory of Tennessee's forest industries 1980

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    A directory of primary and secondary forest industries is presented. Firm names and addresses are listed by county in alphabetical order. The following information is listed for each industry: type of plant, production and employee size class, products manufactured, and equipment. For the primary industries, the major species of trees used are listed. (MHR)

  2. EERE Success Story-DOE Industry Partnerships Lead to Widespread...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in real world situations, beyond manufacturer's data sheets and laboratory testing. ... bring together industry, utilities, and environmental groups in forming the new standard. ...

  3. President's Council on Jobs and Competitiveness Announces Industry...

    Office of Environmental Management (EM)

    U.S. Chamber of Commerce, National Association of Manufacturers and the American Chemistry Council, announced that 45 industry leaders have committed to double the engineering ...

  4. Gantan Beauty Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Gantan Beauty Industry Co Ltd Place: Kanagawa, Japan Zip: 252-0804 Product: Manufactures, sells, and installs metal roofings; also sells...

  5. Energy-Related Carbon Emissions, by Industry, 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Efficiency Page > Energy Energy-Related Carbon Emissions > Total Table Total Energy-Related Carbon Emissions for Manufacturing Industries, 1994 Carbon Emissions (million...

  6. Universal Scientific Industrial USI Group | Open Energy Information

    Open Energy Info (EERE)

    Group is a design and manufacturing services company that is venturing into polysilicon production. References: Universal Scientific Industrial (USI Group)1 This article is a...

  7. Industrial Assessment Centers Help Students, Communities Learn About Energy Efficiency

    Broader source: Energy.gov [DOE]

    Manufacturers get free energy, waste, and productivity assessments and students get hands-on experience in the plants. According to these participants, Industrial Assessment Centers benefit everyone involved.

  8. Stage Gate Review Guide for the Industrial Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Stage-Gate Innovation Management Guidelines: Managing Risk Through Structured Project Decision-Making, February 2007. From the Industrial Technologies Program (now the Advanced Manufacturing Office).

  9. Improving Pumping System Performance: A Sourcebook for Industry, Second Edition

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    Prepared for the DOE Industrial Technologies Program, this sourcebook contains the practical guidelines and information manufacturers need to improve the efficiency of their pumping systems.

  10. Rayana Paper Board Industries Ltd RPBIL | Open Energy Information

    Open Energy Info (EERE)

    Pradesh, India Zip: 272175 Product: Manufacturer of media and kraft paper with cogeneration activities References: Rayana Paper Board Industries Ltd. (RPBIL)1 This article...

  11. Nanjing Auheng Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Place: Nanjing, Jiangsu Province, China Zip: 210005 Sector: Hydro, Solar, Wind energy Product: Manufactures industrial components, including electric vehicle...

  12. All Manufacturing Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  13. Photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. )

    1991-12-01

    This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

  14. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  15. Hydrogen and Fuel Cell Manufacturing R&D Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cell Manufacturing R&D Workshop Hydrogen and Fuel Cell Manufacturing R&D Workshop The National Renewable Energy Laboratory (NREL) hosted a Hydrogen and Fuel Cell Manufacturing R&D Workshop August 11-12, 2011, in Washington, DC, following the ASME 2011 Energy Sustainability and Fuel Cell Conference. The goal of the workshop was to bring together key industry, university, and government representatives to discuss the critical issues facing all aspects of manufacturing of

  16. Drug development and manufacturing

    DOE Patents [OSTI]

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  17. Implementing an Industrial Energy Efficiency Program in Minnesota

    Broader source: Energy.gov [DOE]

    Minnesota implemented an Industrial Energy Efficiency Program utilizing the state award from AMO to develop and implement an industrial energy efficiency program that identified key manufacturing sectors and accelerated technology adoption to reduce energy intensity.

  18. ASi Industries GmbH | Open Energy Information

    Open Energy Info (EERE)

    Zip: D-99310 Product: Manufacturer of monocrystalline ingots and wafers for the photovoltaics industry. References: ASi Industries GmbH1 This article is a stub. You can help...

  19. Advanced ceramic manufacturing of SiAlON exhaust valves

    SciTech Connect (OSTI)

    Bright, E.; Eckalbar, J.F.; McEntire, B.J.; Pujari, V.K.; Tricard, M.

    1996-09-01

    Norton Advanced Ceramic`s (NAC) is performing ceramic manufacturing development as part of the DOE-sponsored Advanced Ceramic Manufacturing Technology (ACMT) Program. NAC`s ACMT effort is focused on developing a cost effective manufacturing process for a ceramic exhaust valve. An industry team has been assembled to address cost reduction for this ceramic component. Technical progress made by NAC`s ACMT industry team in reducing the cost of ceramic valves is summarized within this communication. Particular emphasis is placed on describing progress in the development of intelligent processing systems for the powder processing, spray drying, and forming operations. Ceramic valve manufacturing process enhancements including continuous sintering, high-speed diamond grinding, and cost effective proof testing are summarized as well.

  20. Southeastern Center for Industrial Energy Intensity Reduction

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE’s) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a best practices suite of tools to...

  1. Motech Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Motech Industries Inc Place: Hsin, Taiwan Product: Taiwan-based manufacturer of PV cells. Coordinates: 38.401501, 112.730118 Show Map Loading map... "minzoom":false,"mapp...

  2. Zoe Industries: Order (2011-SW-2912)

    Broader source: Energy.gov [DOE]

    DOE ordered Zoe Industries, Inc. to pay a $25,000 civil penalty after finding Zoe had manufactured and distributed in commerce in the U.S. at least 2,235 units of basic model 150043, a noncompliant showerhead.

  3. Pennsylvania's Comprehensive, Statewide, Pro-Active Industrial Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency (E2) Program | Department of Energy Pennsylvania's Comprehensive, Statewide, Pro-Active Industrial Energy Efficiency (E2) Program Pennsylvania's Comprehensive, Statewide, Pro-Active Industrial Energy Efficiency (E2) Program Pennsylvania The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a best practices suite of tools to help industrial manufacturers reduce their energy

  4. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ORNL) Big Area Additive Manufacturing (BAAM) system. BAAM is 500 to 1,000 times faster and capable of printing polymer components over 10 times larger than today's industrial additive machines. With research blades measuring 13 meters (42 feet) in length, BAAM provides the necessary scale and foundation for this ground-breaking advancement in blade research and manufacturing. The U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) plays a strategic role

  5. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Big Area Additive Manufacturing, or BAAM machine developed in collaboration with Cincinnati Incorporated. BAAM is 500 to 1,000 times faster and capable of printing polymer components over 10 times larger than today's industrial additive machines. With research blades measuring 13 meters (42 feet) in length, BAAM provides the necessary scale and foundation for this ground-breaking advancement in blade research and manufacturing. The U.S. Department of Energy's (DOE's) Office of Energy Efficiency

  6. DOE - Office of Legacy Management -- Liberty Aircraft Manufacturing Company

    Office of Legacy Management (LM)

    - 025 Liberty Aircraft Manufacturing Company - 025 FUSRAP Considered Sites Site: Liberty Aircraft Manufacturing Company (025) Regulated by the U.S. Environmental Protection Agency and the State of New York. More information at http://cumulis.epa.gov/supercpad/cursites/csitinfo.cfm?id=0201184&msspp=med Designated Name: Not Designated under FUSRAP Alternate Name: Liberty Industrial Finishing Location: Long Island, New York (alternate location: Farmingdale, New York) Evaluation Year: Not

  7. Clean Energy Manufacturing Leaders to Convene at Northeast Regional Summit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in New York | Department of Energy Energy Manufacturing Leaders to Convene at Northeast Regional Summit in New York Clean Energy Manufacturing Leaders to Convene at Northeast Regional Summit in New York April 20, 2016 - 1:35pm Addthis Assistant Secretary for Energy Efficiency and Renewable Energy Dr. Dave Danielson addresses national industry leaders and stakeholders in his remarks at the 2015 AEMC Summit. Assistant Secretary for Energy Efficiency and Renewable Energy Dr. Dave Danielson

  8. DOE Institutes Enforcement Action against 4 Showerhead Manufacturers for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Failure to Certify 116 Products | Department of Energy Institutes Enforcement Action against 4 Showerhead Manufacturers for Failure to Certify 116 Products DOE Institutes Enforcement Action against 4 Showerhead Manufacturers for Failure to Certify 116 Products January 28, 2010 - 1:49pm Addthis WASHINGTON DC - The Office of General Counsel has issued Notices of Proposed Civil Penalty to Zoe Industries, Altmans Products LLC, EZ-FLO International, and Watermark Designs, Ltd. for failing to

  9. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

  10. Clean Energy Manufacturing Initiative Solid-State Lighting

    ScienceCinema (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-12-03

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  11. Clean Energy Manufacturing Initiative Solid-State Lighting

    SciTech Connect (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  12. Clean Energy Manufacturing Initiative Solid-State Lighting Video

    SciTech Connect (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  13. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Officer National Institute of Standards and Technology Carrie Houtman Senior Public Policy Manager Dow Chemical Overview * Advanced Manufacturing Activities * Advanced ...

  14. Borla Performance Industries, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance Industries is a 35-year technology leader, manufacturer and marketer of exhaust for the automotive industry, delivering innovative, patented exhaust systems that enhance the performance of internal combustion engines. Borla has an option to license a novel, nano-pore membrane technology from OakRidge National Laboratory.

  15. Industrial Assessment Centers (IACs) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Small- and medium-sized manufacturers may be eligible to receive a no-cost assessment provided by DOE Industrial Assessment Centers (IACs). Teams located at 24 universities around the country conduct the energy audits to identify opportunities to improve productivity, reduce waste, and save energy. IACs typically identify more than $130,000 in potential annual

  16. Tuesday Webcasts for Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tuesday Webcasts for Industry Tuesday Webcasts for Industry Learn about AMO's software tools, technologies, partnership opportunities, and other resources by watching the Tuesday Webcasts for Industry. They are held on the first Tuesday of every month from 2:00 to 3:00 p.m. Eastern time and are presented by manufacturers, AMO staff, and industry experts. Register to participate in upcoming Tuesday webcasts by visiting the AMO Events Calendar or Training Calendar. Each entry includes the

  17. Benefits from the U.S. photovoltaic manufacturing technology project

    SciTech Connect (OSTI)

    Mitchell, R.L.; Witt, C.E.; Thomas, H.P.

    1996-05-01

    This paper examines the goals of the Photovoltaic Manufacturing Technology (PVMaT) project and its achievements in recapturing the investment by the photovoltaic (PV) industry and the public in this research. The PVMaT project was initiated in 1990 with the goal of enhancing the world-wide competitiveness of the U.S. PV industry. Based on the authors analysis, PVMaT has contributed to PV module manufacturing process improvements, increased product value, and reductions in the price of today`s PV products. An evaluation of success in this project was conducted using data collected from 10 of the PVMaT industrial participants in late fiscal year (FY) 1995. These data indicate a reduction of 56% in the weighted average module manufacturing costs from 1992 to 1996. During this same period, U.S. module manufacturing capacity has increased by more than a factor of 6. Finally, the analysis indicates that both the public and the manufacturers will recapture the funds expended in R&D manufacturing improvements well before the year 2000.

  18. National Electrical Manufacturers Association

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 24, 2014 VIA EMAIL TO: Regulatory.Review@hq.doe.gov Steven Croley, General Counsel Office of the General Counsel U.S. Department of Energy 1000 Independence Avenue SW., Washington, DC 20585 NEMA Comments on DOE Reducing Regulatory Burden RFI 79 Fed.Reg. 28518 (July 3, 2014) Dear Mr. Croley, The National Electrical Manufacturers Association (NEMA) thanks you for the opportunity to provide comments on the Department of Energy's efforts to make its regulatory program more effective and less

  19. Contribution to Nanotechnology Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning three institutions, including Los Alamos National Laboratory, has discovered a more efficient way of fusing charge-carrying electrical contacts to tiny "nanowires" of silicon to create the nanotechnology at the heart of potential future advances in modern electronics, sensing, and energy collection. Nanotech

  20. SUSTAINABLE MANUFACTURING WORKSHOP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Flows in the United States - a Physical Accounting of the U.S. Industrial Economy. World Resource Institute, Washington, DC. ISBN 978-1-56973-682-1. Available at: ...

  1. Manufacturer Voluntarily Reports Noncompliance

    Broader source: Energy.gov [DOE]

    Cooper Power Systems, LLC (“Cooper”), a wholly-owned subsidiary of Cooper Industries notified the U.S. Department of Energy’s (“DOE”) Office of Enforcement that it had distributed three...

  2. Manufactured Homes Tool

    Energy Science and Technology Software Center (OSTI)

    2005-03-09

    The MH Tool software is designed to evaluate existing and new manufactured homes for structural adequacy in high winds. Users define design elements of a manufactured home and then select the hazard(s) for analysis. MH Tool then calculates and reports structural analysis results for the specified design and hazard Method of Solution: Design engineers input information (geometries, materials, etc.) describing the structure of a manufactured home, from which the software automatically creates a mathematical model.more » Windows, doors, and interior walls can be added to the initial design. HUD Code loads (wind, snow loads, interior live loads, etc.) are automatically applied. A finite element analysis is automatically performed using a third party solver to find forces and stresses throughout the structure. The designer may then employ components of strength (and cost) most appropriate for the loads that must be carried at each location, and then re-run the analysis for verification. If forces and stresses are still within tolerable limits (such as the HUD requirements), construction costs would be reduced without sacrificing quality.« less

  3. Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  4. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  5. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use of Nanomaterials, January 2011 ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, ...

  6. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THE OPPORTUNITY OF CLEAN ENERGY MANUFACTURING By 2030, the global market for new energy generation technology is expected to reach $790B annually-an $11 trillion cumulative investment from 2013. Leveraging energy productivity and domestic energy resources in manufacturing represents important opportunities for U.S. manufacturers to enhance their global competitiveness by realizing lower energy costs. A focus on increased energy productivity will save manufacturers billions of dollars, grow the

  7. Additive Manufacturing: Technology and Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing: Technology and Applications Natural Gas Infrastructure R&D and ... * Success in development and integration of multidisciplinary teams ...

  8. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    SciTech Connect (OSTI)

    Hemrick, James G.; Hayden, H. Wayne; Angelini, Peter; Moore, Robert E.; Headrick, William L.

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  9. Out of Bounds Additive Manufacturing

    SciTech Connect (OSTI)

    Holshouser, Chris [Lockheed Martin Corporation; Newell, Clint [Lockheed Martin Corporation; Palas, Sid [Lockheed Martin Corporation; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Rowe, John C [ORNL; Blue, Craig A [ORNL; Duty, Chad E [ORNL; Peter, William H [ORNL; Dehoff, Ryan R [ORNL

    2013-01-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing (AM) system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  10. Out of bounds additive manufacturing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; et al

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  11. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  12. GE Scientist Stephan Biller Discusses the Industrial Internet | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Manufacturing Scientist Stephan Biller Discusses the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Manufacturing Scientist Stephan Biller Discusses the Industrial Internet Stephan Biller, Chief Manufacturing Scientist at GE Global Research, talked with the Farstuff Podcast about the

  13. EERE's Technologist in Residence Program: National Lab-Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership Pilot to Bolster U.S. Clean Energy Manufacturing Competitiveness | Department of Energy EERE's Technologist in Residence Program: National Lab-Industry Partnership Pilot to Bolster U.S. Clean Energy Manufacturing Competitiveness EERE's Technologist in Residence Program: National Lab-Industry Partnership Pilot to Bolster U.S. Clean Energy Manufacturing Competitiveness April 24, 2015 - 2:45pm Addthis Scientists like these pictured at the Energy Department's Sandia National Labs

  14. Rebuilding the American Auto Industry

    Broader source: Energy.gov [DOE]

    The Administration made strategic investments to help U.S. auto manufacturers retool to produce the hybrid, electric, and highly fuel efficient advanced vehicles of the future. With the help of these investments -- and the incredible talent and commitment of America's auto workers -- the auto industry is growing again.

  15. Additive Manufacturing: Pursuing the Promise | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing. Additive Manufacturing: Pursuing the Promise More Documents...

  16. FHP Manufacturing Company Geothermal | Open Energy Information

    Open Energy Info (EERE)

    FHP Manufacturing Company Geothermal Jump to: navigation, search Name: FHP Manufacturing Company: Geothermal Place: Florida Sector: Geothermal energy Product: FHP Manufacturing...

  17. Teksun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name: Teksun PV Manufacturing Inc Address: 401 Congress Ave Place: Austin, Texas Zip:...

  18. MECS 2006 - All Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Energy and Carbon Footprint All Manufacturing (NAICS 31-33) (120.28 KB) More Documents & Publications All Manufacturing (2010 MECS) MECS 2006 - Alumina and Aluminum ...

  19. GE's Digital Marketplace to Revolutionize Manufacturing | GE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Commons" - a global ecosystem for manufacturing businesses The Commons ... The project aims to build an expansive manufacturing ecosystem, with the goal of having ...

  20. WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW PDF icon Sustainable Manufacturing Workshop Agenda.pdf ...

  1. About the Clean Energy Manufacturing Initiative | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Clean Energy Manufacturing Initiative About the Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative (CEMI) is a U.S. Department of Energy ...

  2. Solar Manufacturing Technology | Department of Energy

    Energy Savers [EERE]

    Technology to Market Solar Manufacturing Technology Solar Manufacturing Technology The SunShot Solar Manufacturing Technology (SolarMat) program funds the development of ...

  3. NREL: Energy Systems Integration Facility - Manufacturing and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing and Material Diagnostics Manufacturing and material diagnostics help manufacturers of clean energy technologies scale up production to volumes that meet U.S....

  4. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy ...

  5. Manufacturing High Temperature Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing and Scale Up Challenges Joseph Hartvigsen Ceramatec, Inc. National Renewable Energy Laboratory Golden, CO February 28, 2014 Antipode Assertions * Electric power generation is not the limitation - To misquote Jay Leno "Use all you want, we'll make more" - http://atomicinsights.com/2013/02/use-all-the-electricity-you-want-well-make-more.html * High electric costs come from working the demand curve from below rather than above * "Grid Storage" is a misleading

  6. MANUFACTURED TO AIIM STANOAROS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    + .,+++_ _+++ +..++,+ + ++++_. _+ ,++p + +% ++ + +_++ +_,/x+'_ MANUFACTURED TO AIIM STANOAROS _ ..+ ++ BY APPLIED IMAGE, INC, _+ + .DK3E/NV/11482..139 DOE/NV/11..4_L2-139 National Emission Standards forHazardousAir Pollutant_ Submittal 993 Stuart B_.Black June 1994 Work Pe_ Under Contract No, DE-AC08-94NV11432 PreparedbY: Reynolds Electrical & EnglneerlngCo., Inc, Post Office Bo_(98521 Los Vegas. Nevada 89193-8521 MA,TER II_OT/lOg DFTItI,_ DOCUMENT f$ UNLIMITED TABLE OF CONTENTS List of

  7. Industrial Combustion Vision: A Vision by and for the Industrial Combustion Community

    SciTech Connect (OSTI)

    none,

    1998-05-01

    The Industrial Combustion Vision is the result of a collaborative effort by manufacturers and users of burners, boilers, furnaces, and other process heating equipment. The vision sets bold targets for tomorrow's combustion systems.

  8. Advanced Manufacturing Office Update, July 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Advanced Manufacturing Office Update, July 2014 July 14, 2014 - 4:00pm Addthis In This Issue Featured Article Cummins Achieves Dramatic Energy Savings through DOE Collaboration Partners in the Spotlight Legrand and UTC Suppliers Join Better Plants Seven Industry Partners Focus on Improving Water Efficiency in a Better Buildings Challenge Pilot Nissan, 3M, and Schneider Electric Highlight the Benefits of SEP at IETC 2014 DOE Collaboration Enables 3D Printed Car Challenge AMO and Industry News

  9. Continuous Nanofiber/Nanotube Manufacturing System - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Continuous Nanofiber/Nanotube Manufacturing System Integrated Electrospinning - IR Heating and Pneumatic Collection System (EIPC) Argonne National Laboratory Contact ANL About This Technology Publications: PDF Document Publication Presentation Slide (206 KB) 1st Generation Proof of Concept 10KW 0.001 mg/h 1st Generation Proof of Concept 10KW 0.001 mg/h 2nd

  10. Smart Manufacturing Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Manufacturing Innovation Smart Manufacturing Innovation Addthis Find out how advanced technologies developed by our latest institute will make U.S. manufacturing more productive, energy efficient, and competitive. Learn more about advanced manufacturing

  11. Oak Ridge Centers for Manufacturing Technology - The Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  12. Oak Ridge Centers for Manufacturing Technology ? The Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  13. Semiconductor Manufacturing International Corp SMIC | Open Energy...

    Open Energy Info (EERE)

    Manufacturing International Corp SMIC Jump to: navigation, search Name: Semiconductor Manufacturing International Corp (SMIC) Place: Shanghai, Shanghai Municipality, China Zip:...

  14. Nakagawa Electric Machinery Manufacturer | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Nakagawa Electric Machinery Manufacturer Place: Saku, Nagano, Japan Product: A company engages in electrical equipment manufacture. Coordinates:...

  15. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Summary (372.05 KB) More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Multimaterial Joining Workshop Manufacturing ...

  16. Innovative Manufacturing Initiatives Recognition Day Agenda ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Manufacturing Initiatives Recognition Day Agenda imirecogitiondayagenda.pdf (76.67 KB) More Documents & Publications Innovative Manufacturing Initiative Recognition ...

  17. Understanding Manufacturing Energy and Carbon Footprints, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Understanding Manufacturing Energy and Carbon Footprints, October 2012 Understanding Manufacturing Energy and Carbon Footprints, October 2012 understandingenergyfootprints2012.p...

  18. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Initiative: Increasing American Competitiveness Through Innovation Clean ... Manufacturing Initiative (CEMI), a collaborative effort between the federal government, ...

  19. Plumbing Manufacturer's Institute Ex Parte Communication Regarding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Letter to Department ...

  20. Sustainable manufacturing Workshop: Workshop Summary Report

    Energy Savers [EERE]

    AMO Workshop on Sustainable Manufacturing i | P a g e Table of Contents 1. Workshop ......... 6 Sustainable Manufacturing Technology Assessment ...

  1. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facilities Workshop Marriott Springhill Suites O'Hare - ... mechanics of the Manufacturing Demonstration Facility (MDF) concept and the ...

  2. Clean Energy Manufacturing Innovation Institute for Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures ...

  3. Building a More Competitive American Manufacturing Industry with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... To learn more, watch our latest video on how advanced composites could revolutionize clean ... Concept to reality in just six weeks. Photo Gallery: 3D Printing Brings Classic Shelby ...

  4. Manufacturers and Utilities to Accelerate Industry Uptake of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilities joining the program include the Bonneville Power Administration, Efficiency ... can achieve, sustain, and expand over time with an effective energy management system. ...

  5. Metrology for Industry for use in the Manufacture of Grazing...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 47 OTHER INSTRUMENTATION ... SCOTS; Software Configurable Optical Test System Word Cloud More Like This Full Text ...

  6. Industrial Assessment Centers Train Future Energy-Savvy Engineers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers April 12, 2013 - 11:06am Addthis Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility

  7. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  8. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  9. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. Clean Energy Manufacturing Initiative: http://www1.eere.energy.gov/energymanufacturing

  10. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  11. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4 Average thermal performance rating of solar thermal collectors by type shipped in 2009 ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." ...

  12. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5 Shipments of complete solar thermal collector systems, 2008 and 2009 Shipment ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  13. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by ensuring critical feedback from the production phase to invention and discovery. Additive manufacturing is just one of several technologies advanced by the Energy...

  14. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

  15. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified...

  16. Energy-Efficient Manufactured Homes

    Broader source: Energy.gov [DOE]

    Like site-built homes, new manufactured homes (formerly known as mobile homes) can be designed for energy efficiency and renewable energy.

  17. Advanced Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The U.S. Department of Energy funds the research, development, and demonstration of highly ... that enable the development and demonstration of advanced manufacturing ...

  18. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Fuel Cell Manhattan Project Presented by the Benchmarking and Best Practices ... in providing valued information on affordable and implementable fuel cell technology. ...

  19. Geothermal Heat Pump Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Geothermal heat pump shipments by origin, 2008 and 2009 (rated capacity in tons) Origin ... Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey

  20. Geothermal Heat Pump Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 Geothermal heat pump domestic shipments by customer type, 2008 and 2009 (rated capacity ... Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey

  1. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    1 Geothermal heat pump domestic shipments by sector and model type, 2009 (rated capacity ... Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey

  2. Geothermal Heat Pump Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Geothermal heat pump shipments by model type, 2000 - 2009 (number of units) ARI-320 ... Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey."

  3. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    Rated capacity of geothermal heat pump shipments by model type, 2000 - 2009 (tons) ARI-320 ... Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey."

  4. High Pressure Hydrogen Tank Manufacturing

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  5. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    the CM, the ASM contains two components. The first component is the mail portion, a probability sample of manufacturing establishments selected from the list of establishments...

  6. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  7. About Industrial Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » About Industrial Technical Assistance About Industrial Technical Assistance CHP System at Frito Lay facility in Killingly, Connecticut.<br /> <em>Photo courtesy of Energy Solutions Center.</em> CHP System at Frito Lay facility in Killingly, Connecticut. Photo courtesy of Energy Solutions Center. Industrial Technical Assistance supports the deployment of energy efficient manufacturing technologies and practices, including strategic energy management and

  8. INDUSTRIAL ASSESSMENT CENTERS IAC Quarterly Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summer 2015 INDUSTRIAL ASSESSMENT CENTERS IAC Quarterly Update Spring 2014 INDUSTRIAL ASSESSMENT CENTERS The IAC Update, Summer 2015 About the IAC Program Beginning in 1976, the Industrial Assessment Centers (IACs) have provided small and medium-sized manufacturers with site- specific recommendations for improving energy efficiency, reducing waste, and increasing productivity through changes in processes and equipment. A typical IAC client will receive recommendations that save more than

  9. Presentations for Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations for Industry Presentations for Industry Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and energy management professionals can find no-cost software tools, training (including online training), and technical publications. For presentations from workshops on R&D and Facilities activities, please review the workshop materials. Energy

  10. The Road to Hydrogen--Challenges Ahead in Technology and Manufacturing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Road to Hydrogen--Challenges Ahead in Technology and Manufacturing The Road to Hydrogen--Challenges Ahead in Technology and Manufacturing Presentation prepared by Rick Zalesky for the 2005 Hydrogen Manufacturing R&D Workshop. mfg_wkshp_industry.pdf (679.85 KB) More Documents & Publications Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current

  11. Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    Based on the Manufacturing Energy Consumption Survey (MECS) conducted by the U.S. Department of Energy, Energy Information Administration (EIA), this paper presents historical energy-related carbon dioxide emission estimates for energy-intensive sub-sectors and 23 industries. Estimates are based on surveys of more than 15,000 manufacturing plants in 1991, 1994, 1998, and 2002. EIA is currently developing its collection of manufacturing data for 2006.

  12. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative 1 of 1 Summary: DOE will launch a collaborative effort with industry to evaluate and scope high- impact manufacturing R&D to improve natural gas system efficiency and reduce leaks with the goal of establishing an advanced manufacturing initiative. This will include a formal request for information, public workshops, and technical analysis and will leverage technology development areas already in progress through DOE's

  13. Advanced Manufacturing Office FY 2016 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 6 Budget At-A-Glance Advanced Manufacturing Office FY 2016 Budget At-A-Glance The Advanced Manufacturing Office (AMO) partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality manufacturing jobs, enhance the global competitiveness of the United States, and reduce energy use by encouraging a culture of continuous enrichment in corporate energy management. AMO FY 2016 Budget

  14. The Fourth Annual DOE Solid-State Lighting Manufacturing R&D Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Information Resources » Conferences & Meetings » Past Conferences » The Fourth Annual DOE Solid-State Lighting Manufacturing R&D Workshop The Fourth Annual DOE Solid-State Lighting Manufacturing R&D Workshop Photo of a room of people seated at conference tables. Two hundred lighting industry leaders from across the country, representing every link in the supply chain-from chip makers, to luminaire manufacturers, to material and equipment suppliers, to

  15. Investing in a New Era of Manufacturing Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investing in a New Era of Manufacturing Technology Investing in a New Era of Manufacturing Technology June 24, 2011 - 6:05pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this mean for me? The Energy Department will be investing up to $120 million over three years in the development of transformational manufacturing technologies and innovative materials that could enable industrial facilities to dramatically increase their energy efficiency.

  16. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative

    Office of Environmental Management (EM)

    Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative 1 of 1 Summary: DOE will launch a collaborative effort with industry to evaluate and scope high- impact ...

  17. OLEDWORKS DEVELOPS INNOVATIVE HIGH-PERFORMANCE DEPOSITION TECHNOLOGY TO REDUCE MANUFACTURING COST OF OLED LIGHTING

    Broader source: Energy.gov [DOE]

    The high manufacturing cost of OLED lighting is a major barrier to the growth of the emerging OLED lighting industry. OLEDWorks is developing high-performance deposition technology that addresses...

  18. Memorandum of Understanding between the U.S. Wind Turbine Manufacturer...

    Broader source: Energy.gov (indexed) [DOE]

    and the signing members of the wind turbine industry (the Parties) agree to work ... of Understanding between the U.S. Wind Turbine Manufacturers and the U.S. Department of ...

  19. Reality Check: Cheaper Batteries are GOOD for America’s Electric Vehicle Manufacturers

    Broader source: Energy.gov [DOE]

    Director of Public Affairs Dan Leistikow details how investments in battery manufacturing are on pace to employ thousands of Americans and ensure that our country can lead in a growing global industry.

  20. The Sixth Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    About 140 industry leaders from across the country, representing every link in the supply chain—from chip makers, to luminaire manufacturers, to material and equipment suppliers, to packagers, to...

  1. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994:...

  2. Utility Manufacturing Workshop. Discussion Summary

    SciTech Connect (OSTI)

    none,

    2012-07-16

    Summarizes the industrial energy efficiency workshop, held in September 2011, that focused on addressing industrial efficiency, CHP, waste heat recovery, and barriers to investment in these areas.

  3. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  4. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  5. Compressed Air System Enhancement Increase Efficiency and Provides Energy Savings at a Circuit Board Manufacturer

    SciTech Connect (OSTI)

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the circuit board manufacturer (Sanmina Plant) project.

  6. Energy Department Requests Proposals for New Institute to Boost Efficiency in Manufacturing

    Broader source: Energy.gov [DOE]

    The Energy Department has requested proposals for a new Clean Energy Manufacturing Innovation Institute as part of the Administration’s broader National Network for Manufacturing Innovation (NNMI), which drives collaboration between small- and medium-sized companies, academic institutions, industrial research organizations, and national laboratories.

  7. Statistics for Industry Groups and Industries, 2003

    SciTech Connect (OSTI)

    2009-01-18

    Statistics for the U.S. Department of Commerce including types of manufacturing, employees, and products as outlined in the Annual Survey of Manufacturers (ASM).

  8. Real time PV manufacturing diagnostic system

    SciTech Connect (OSTI)

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  9. Energy Department Supports Manufacturing Day

    Broader source: Energy.gov [DOE]

    The Energy Department’s Office of Energy Efficiency and Renewable Energy (EERE) is supporting Manufacturing Day—a nationwide event that opens the doors of nearly 2000 manufacturing companies to the public—with visits to sites in the Midwest.

  10. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  11. Industry Economists

    U.S. Energy Information Administration (EIA) Indexed Site

    Industry Economists The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Industry Economist, whose work is associated with the performance of economic analyses using economic techniques. Responsibilities: Industry Economists perform or participate in one or more of the following

  12. Advanced Manufacturing Office At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE FY 2017 BUDGET AT-A-GLANCE The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector. What We Do The Advanced Manufacturing Offce uses an integrated approach that relies on three

  13. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR...

  14. Industrial Technologies Program - A Clean, Secure Energy Future via Industrial Energy Efficiency

    SciTech Connect (OSTI)

    2010-05-01

    The Industrial Technologies Program (ITP) leads the national effort to save energy and reduce greenhouse gas emissions in the largest energy-using sector of the U.S. economy. ITP drives energy efficiency improvements and carbon dioxide reductions throughout the manufacturing supply chain, helping develop and deploy innovative technologies that transform the way industry uses energy.

  15. Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition

    SciTech Connect (OSTI)

    2008-02-01

    This is one in a series of sourcebooks to help manufacturers optimize their industrial systems; this particular sourcebook addresses process heating systems.

  16. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of

  17. An analysis of buildings-related energy use in manufacturing

    SciTech Connect (OSTI)

    Niefer, M.J.; Ashton, W.B.

    1997-04-01

    This report presents research by the Pacific Northwest National Laboratory (PNNL) to develop improved estimates of buildings-related energy use in US manufacturing facilities. The research was supported by the Office of Building Technology, State and Community Programs (BTS), Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy (DOE). The research scope includes only space conditioning and lighting end uses. In addition, this study also estimates the energy savings potential for application of selected commercial buildings technologies being developed by the BTS office to manufacturing and other industrial process facilities. 17 refs., 2 figs., 19 tabs.

  18. Insights from Hydrogen Refueling Station Manufacturing Competitiveness Analysis

    SciTech Connect (OSTI)

    Mayyas, Ahmad

    2015-12-18

    In work for the Clean Energy Manufacturing Analysis Center (CEMAC), NREL is currently collaborating with Great Lakes Wind Network in conducting a comprehensive hydrogen refueling stations manufacturing competitiveness and supply chain analyses. In this project, CEMAC will be looking at several metrics that will facilitate understanding of the interactions between and within the HRS supply chain, such metrics include innovation potential, intellectual properties, learning curves, related industries and clustering, existing supply chains, ease of doing business, and regulations and safety. This presentation to Fuel Cell Seminar and Energy Exposition 2015 highlights initial findings from CEMAC's analysis.

  19. Vibration control for precision manufacturing at Sandia National Laboratories

    SciTech Connect (OSTI)

    Hinnerichs, T.; Martinez, D.

    1995-04-01

    Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ``smart`` structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics.

  20. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. Advanced Technology Vehicles Manufacturing Incentive Program (1.49 MB) More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  1. Manufacturing serendipity: Chicago Innovation Exchange enhancing regional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Association of Electrical and Medical Imaging Equipment Manufacturers Manufacturing Solutions for Energy Efficiency in Buildings Patrick Hughes Policy Director, High Performance Buildings National Electrical Manufacturers Association The Association of Electrical and Medical Imaging Equipment Manufacturers What is NEMA? The Association of Electrical Equipment and Medical Imaging Manufacturers Which policies encourage energy efficiency in buildings? Energy Savings Performance Contracts Tax

  2. Secure Manufacturing | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure Manufacturing Secure Manufacturing The depth and breadth of Y-12's manufacturing capabilities and expertise enable Y-12 to address current and emerging national security challenges by providing leadership and direction to perform the following activities: solving unique, high-risk manufacturing problems; eliminating the most difficult manufacturability and development obstacles; protecting classified and proprietary materials, components, and information; developing unique technologies to

  3. Smart Manufacturing: Transforming American Manufacturing with Information Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    Our country is known for its culture of innovation. We are a country of innovators. Innovation in the manufacturing sector has given us a competitive edge in the global economy with revolutionary...

  4. Design and manufacturing of complex optics: the dragonfly eye optic.

    SciTech Connect (OSTI)

    Claudet, Andre A.; Sweatt, William C.; Hodges, V. Carter; Adams, David Price; Gill, David Dennis; Vasile, Michael J.

    2006-01-01

    The ''Design and Manufacturing of Complex Optics'' LDRD sought to develop new advanced methods for the design and manufacturing of very complex optical systems. The project team developed methods for including manufacturability into optical designs and also researched extensions of manufacturing techniques to meet the challenging needs of aspherical, 3D, multi-level lenslet arrays on non-planar surfaces. In order to confirm the applicability of the developed techniques, the team chose the Dragonfly Eye optic as a testbed. This optic has arrays of aspherical micro-lenslets on both the exterior and the interior of a 4mm diameter hemispherical shell. Manufacturing of the dragonfly eye required new methods of plunge milling aspherical optics and the development of a method to create the milling tools using focused ion beam milling. The team showed the ability to create aspherical concave milling tools which will have great significance to the optical industry. A prototype dragonfly eye exterior was created during the research, and the methods of including manufacturability in the optical design process were shown to be successful as well.

  5. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Manufacturing at GE Global Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Laser Manufacturing at GE Global Research Learn how laser sintering, an additive laser manufacturing process practiced at GE Global Research, makes parts from metal powder. You Might Also Like Munich_interior_V 10 Years ON: From

  6. Industrial Facility Combustion Energy Use

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McMillan, Colin

    2016-08-01

    Facility-level industrial combustion energy use is calculated from greenhouse gas emissions data reported by large emitters (>25,000 metric tons CO2e per year) under the U.S. EPA's Greenhouse Gas Reporting Program (GHGRP, https://www.epa.gov/ghgreporting). The calculation applies EPA default emissions factors to reported fuel use by fuel type. Additional facility information is included with calculated combustion energy values, such as industry type (six-digit NAICS code), location (lat, long, zip code, county, and state), combustion unit type, and combustion unit name. Further identification of combustion energy use is provided by calculating energy end use (e.g., conventional boiler use, co-generation/CHP use, process heating, other facility support) by manufacturing NAICS code. Manufacturing facilities are matched by their NAICS code and reported fuel type with the proportion of combustion fuel energy for each end use category identified in the 2010 Energy Information Administration Manufacturing Energy Consumption Survey (MECS, http://www.eia.gov/consumption/manufacturing/data/2010/). MECS data are adjusted to account for data that were withheld or whose end use was unspecified following the procedure described in Fox, Don B., Daniel Sutter, and Jefferson W. Tester. 2011. The Thermal Spectrum of Low-Temperature Energy Use in the United States, NY: Cornell Energy Institute.

  7. Applications of time-frequency analysis to signals from manufacturing and machine monitoring sensors

    SciTech Connect (OSTI)

    Atlas, L.E.; Narayanan, S.B.; Bernard, G.D.

    1996-09-01

    Manufacturing industries are now demanding substantial increases in flexibility, productivity and reliability from their process machines as well as increased quality and value of their products. One important strategy to support this goal is sensor-based, on-line, real-time evaluation of key characteristics of both machines and products, throughout the manufacturing process. Recent advances in time-frequency (TF) analysis are particularly well suited to extracting key vibrational characteristics from monitoring sensors. Thus this paper presents applications of TF analysis to several important manufacturing and machine monitoring tasks, to show the value of these forms of digital signal processing applied to manufacturing.

  8. DOE Invests $20 Million in U.S. Solar Manufacturing and Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaic Technologies | Department of Energy Invests $20 Million in U.S. Solar Manufacturing and Advanced Photovoltaic Technologies DOE Invests $20 Million in U.S. Solar Manufacturing and Advanced Photovoltaic Technologies February 4, 2011 - 4:10pm Addthis As part of the U.S. Department of Energy's SunShot Initiative, DOE is investing up to $20.3 million in innovative projects to strengthen the U.S. solar manufacturing industry, improve manufacturing efficiencies, and reduce costs. This

  9. World Congress on Industrial Biotechnology

    Broader source: Energy.gov [DOE]

    The World Congress on Industrial Biotechnology is the world’s largest conference on biotechnology and will gather leaders across the bioeconomy. The conference will be held April 17–20, 2016 in San Diego, California. Deputy Assistant Secretary of Sustainable Transportation Reuben Sarkar will also be speaking on a panel titled, “Genomics Pushing the Boundaries of Advanced Manufacturing,” and Technology Manager Jay Fitzgerald will be in attendance

  10. MHTool User's Guide - Software for Manufactured Housing Structural Design

    SciTech Connect (OSTI)

    W. D. Richins

    2005-07-01

    Since the late 1990s, the Department of Energy's Idaho National Laboratory (INL) has worked with the US Department of Housing and Urban Development (HUD), the Manufactured Housing Institute (MHI), the National Institute of Standards and Technology (NIST), the National Science Foundation (NSF), and an industry committee to measure the response of manufactured housing to both artificial and natural wind loads and to develop a computational desktop tool to optimize the structural performance of manufactured housing to HUD Code loads. MHTool is the result of an 8-year intensive testing and verification effort using single and double section homes. MHTool is the first fully integrated structural analysis software package specifically designed for manufactured housing. To use MHTool, industry design engineers will enter information (geometries, materials, connection types, etc.) describing the structure of a manufactured home, creating a base model. Windows, doors, and interior walls can be added to the initial design. Engineers will input the loads required by the HUD Code (wind, snow loads, interior live loads, etc.) and run an embedded finite element solver to find walls or connections where stresses are either excessive or very low. The designer could, for example, substitute a less expensive and easier to install connection in areas with very low stress, then re-run the analysis for verification. If forces and stresses are still within HUD Code requirements, construction costs would be saved without sacrificing quality. Manufacturers can easily change geometries or component properties to optimize designs of various floor plans then submit MHTool input and output in place of calculations for DAPIA review. No change in the regulatory process is anticipated. MHTool, while not yet complete, is now ready for demonstration. The pre-BETA version (Build-16) was displayed at the 2005 National Congress & Expo for Manufactured & Modular Housing. Additional base models and an

  11. CFL Manufacturers: ENERGY STAR Letters

    Broader source: Energy.gov [DOE]

    DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program.

  12. Manufacturing means jobs ? Mike Arms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Means Jobs - Mike Arms Mike Arms and I usually meet and say hello at the East Tennessee Economic Council meetings each Friday morning at 7:30 a.m. This unique meeting...

  13. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    U.S. Total 74 88 Percent of Total Sales Revenue Number of Companies Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers ...

  14. Alternative Energy Manufacturing Tax Credit

    Broader source: Energy.gov [DOE]

    The Alternative Energy Manufacturing Tax Credit is a nonrefundable tax credit for up to 100% of new state tax revenues (including state, corporate, sales, and withholding taxes) over the life of a...

  15. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of...

  16. 2014 Manufacturing Energy Consumption Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U S C E N S U S B U R E A U 2014 Manufacturing Energy Consumption Survey Sponsored by the Energy Information Administration U.S. Department of Energy Administered and Compiled by ...

  17. The President's Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation prepared by Dale Hall for the Roadmap Workshop on Manufacturing R&D for the ... Manufacturing National Program Office Roadmap on Manufacturing R&D for the Hydrogen ...

  18. Manufacturing Day | Department of Energy

    Office of Environmental Management (EM)

    Than $2 Billion in Energy Costs; Program Expands to Help America's Water Systems | Department of Energy Manufacturers in U.S. Energy Department's Better Plants Program Save More Than $2 Billion in Energy Costs; Program Expands to Help America's Water Systems Manufacturers in U.S. Energy Department's Better Plants Program Save More Than $2 Billion in Energy Costs; Program Expands to Help America's Water Systems September 30, 2015 - 9:03am Addthis NEWS MEDIA CONTACT (202) 586-4940

  19. The Industrial Technologies Program: Meeting the Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Technologies Program: Meeting the Challenge STEAB Meeting October 17, 2007 Douglas E. Kaempf Program Manager Industry: Critical to U.S. Energy Security & Economy The U.S. manufacturing sector * Consumes more energy than any sector of the economy * Makes highest contribution to GDP (12%) * Produces nearly 1/4 th of world manufacturing output * Supplies >60% of US exports, worth $50 billion/month 2004 Nominal GDP, $ Billions 15,000 Ranks as 12,000 eighth largest 9,000 economy

  20. All Manufacturing (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All Manufacturing (2010 MECS) All Manufacturing (2010 MECS) Manufacturing Energy and Carbon Footprint for All Manufacturing Sector (NAICS 31-33) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: June 2015 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint All Manufacturing (111.63 KB) More Documents & Publications Cement (2010 MECS) Chemicals (2010 MECS) Computers, Electronics and Electrical Equipment

  1. Industry Perspective

    Broader source: Energy.gov [DOE]

    Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  2. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry @ ALS Industry @ ALS Hewlett Packard Labs Gains Insights with Innovative ALS Research Tools Print Thursday, 05 May 2016 11:21 For the past eight years, Hewlett Packard Labs, the central research organization of Hewlett Packard Enterprise, has been using cutting-edge ALS techniques to advance some of their most promising technological research, including vanadium dioxide phase transitions and atomic movement during memristor operation. Summary Slide Read more... ALS, Molecular Foundry,

  3. Third Annual American Energy and Manufacturing Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and included showpieces highlighting advanced composites manufacturing and large scale additive manufacturing. Image: Photo courtesy of Attlee Photography View All Galleries

  4. Static Sankey Diagram Full Sector Manufacturing | Department...

    Broader source: Energy.gov (indexed) [DOE]

    consumption across manufacturing subsectors. The U.S. Manufacturing diagram below shows the fuel, steam and electricity ... Applied energy (applied toward direct production or end use ...

  5. ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of Surfaces with Nanoscale and Microscale Features ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale and Microscale Features superhydrophobicsurfaces.p...

  6. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. PDF icon esarravt002flicker2010p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing...

  7. Processing and Manufacturing Equipment | Open Energy Information

    Open Energy Info (EERE)

    Processing and Manufacturing Equipment Jump to: navigation, search TODO: Add description List of Processing and Manufacturing Equipment Incentives Retrieved from "http:...

  8. Technologies Enabling Agile Manufacturing (TEAM) ? an ORCMT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Enabling Agile Manufacturing (TEAM) - An ORCMT success story Technologies Enabling Agile Manufacturing (TEAM) was one of the larger programs to come from the...

  9. Bio Solutions Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Solutions Manufacturing Inc Jump to: navigation, search Name: Bio Solutions Manufacturing Inc Place: Las Vegas, Nevada Zip: 89103 Product: Waste-to-energy bioremediation developer....

  10. Chung Hsin Electric Machinery Manufacturing Corporation CHEM...

    Open Energy Info (EERE)

    Chung Hsin Electric Machinery Manufacturing Corporation CHEM Jump to: navigation, search Name: Chung Hsin Electric & Machinery Manufacturing Corporation (CHEM) Place: Taoyuan...

  11. Leitner Shriram Manufacturing Ltd | Open Energy Information

    Open Energy Info (EERE)

    Manufacturing Ltd Jump to: navigation, search Name: Leitner Shriram Manufacturing Ltd Place: Chennai, Tamil Nadu, India Zip: 600095 Sector: Wind energy Product: Chennai-based JV...

  12. Advanced Qualification of Additive Manufacturing Materials Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Qualification of Additive Manufacturing Materials Workshop Advanced Qualification of Additive Manufacturing Materials Workshop WHEN: Jul 20, 2015 8:30 AM - Jul 21, 2015...

  13. Aurora Photovoltaics Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Manufacturing Jump to: navigation, search Name: Aurora Photovoltaics Manufacturing Place: Lawrenceville, New Jersey Zip: 8648 Sector: Solar Product: A subsidiary of...

  14. Brighter Future for Kentucky Manufacturing Plants | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brighter Future for Kentucky Manufacturing Plants Brighter Future for Kentucky Manufacturing Plants May 28, 2010 - 3:04pm Addthis Montaplast North America, Inc. is replacing almost ...

  15. Funding Opportunity Announcement for Water Power Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity Announcement for Water Power Manufacturing Funding Opportunity Announcement for Water Power Manufacturing April 11, 2014 - 11:23am Addthis On April 11, 2014, ...

  16. Electric Drive Component Manufacturing Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Component Manufacturing Facilities Electric Drive Component Manufacturing Facilities 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  17. Electric Drive Component Manufacturing Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Component Manufacturing Facilities Electric Drive Component Manufacturing Facilities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  18. Miraial formerly Kakizaki Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Miraial (formerly Kakizaki Manufacturing) Place: Tokyo, Japan Zip: 171-0021 Product: Manufacturer of wafer handling products and other components...

  19. American Wind Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind...

  20. Foreword: Additive Manufacturing: Interrelationships of Fabrication...

    Office of Scientific and Technical Information (OSTI)

    Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing ...

  1. 2010 Manufacturing Energy and Carbon Footprints: Definitions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Energy and Carbon Footprints: Definitions and Assumptions This 13-page document defines key terms and details assumptions and references used in the Manufacturing ...

  2. Solid Oxide Fuel Cell Manufacturing Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Manufacturing Overview Hydrogen and Fuel Cell Technologies Manufacturing R&D Workshop August ... VPS projected cost reductions in SECA Copyright 2011 Versa Power Systems. ...

  3. Wind Energy & Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, will be delivered to wind farms across the United...

  4. FY 2008 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2008 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2008 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  5. FY 2010 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2010 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2010 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  6. FY 2009 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2009 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2009 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  7. FY 2006 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2006 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2006 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  8. FY 2007 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2007 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2007 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  9. FY 2011 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2011 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2011 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  10. Clean Energy Manufacturing Initiative Southeast Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Southeast Regional Summit Clean Energy Manufacturing Initiative Southeast Regional Summit July 9, 2015 8:30AM to 6:00PM EDT Renaissance...

  11. Advanced Battery Manufacturing Facilities and Equipment Program...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact Sheet: Grid-Scale ...

  12. Manufacturing Consumption of Energy 1991--Combined Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of...

  13. Manufacturing Energy and Carbon Footprint References | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Energy and Carbon Footprint References footprintreferences.pdf (309.04 KB) More Documents & Publications 2010 Manufacturing Energy and Carbon Footprints: References ...

  14. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Energy Savers [EERE]

    Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air ...

  15. Manufacturing Demonstration Facility Workshop | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    March 12, 2012 The Manufacturing Demonstration Facility Workshop (held in Chicago, IL, on ... aspects of planning a series of Manufacturing Demonstration Facilities (MDFs). ...

  16. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facilities Workshop Agenda, March 2012 mdfworkshopagenda.pdf (263.06 KB) More Documents & Publications Manufacturing Demonstration Facility Workshop ...

  17. Clean Energy Manufacturing Funding Opportunities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunities Clean Energy Manufacturing Funding Opportunities To accomplish the goals of the Clean Energy Manufacturing Initiative (CEMI), the U.S. Department of Energy ...

  18. Energy Department Invests in Innovative Manufacturing Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Innovative Manufacturing Technologies Energy Department Invests in Innovative Manufacturing Technologies June 13, 2012 - 12:00am Addthis The Energy Department announced on June...

  19. China Shandong Penglai Electric Power Equipment Manufacturing...

    Open Energy Info (EERE)

    Penglai Electric Power Equipment Manufacturing Jump to: navigation, search Name: China Shandong Penglai Electric Power Equipment Manufacturing Place: Penglai, Shandong Province,...

  20. Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moniz Discusses Advanced Technology Vehicle Manufacturing Loans Sec. Moniz Discusses Advanced Technology Vehicle Manufacturing Loans April 2, 2014 - 4:37pm Addthis NEWS MEDIA ...

  1. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics...

  2. Advanced Manufacturing Office and Potential Technologies for...

    Broader source: Energy.gov (indexed) [DOE]

    Potential Technologies for Clean Energy Manufacturing Innovation October 8, 2014 DOEDOD Planning Workshop- Fort Worth, TX 2 1. Background on DOE and Manufacturing 2. Technical ...

  3. Final Report- Improved Large Aperture Collector Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar Thermal Electric (STE) power generation is facing significant challenges from other sources of renewable energy; their advances have made it more and more difficult for solar thermal to remain a cost effective alternative in the United States. The primary advantage of STE is the thermal storage capability, which allows plants to continue producing electricity long after the sun has set. While it is necessary for the industry to fully develop this storage technology, it is also critical that significant cost reductions are found in the solar field construction and installation. If STE is to be competitive, these cost reductions must be recognized not only in the design and manufacture of the collectors, but also in the assembly and installation of the solar field. The goal of this project was to evaluate the current state of the art parabolic trough collector field and develop an improved field that can be installed for

  4. Barriers to Industrial Energy Efficiency Report to Congress Released

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is pleased to announce the release of Barriers to Industrial Energy Efficiency, prepared as directed by the American Energy Manufacturing Technical Corrections...

  5. Carbon Capture and Storage from Industrial Sources | Department...

    Energy Savers [EERE]

    ... CO2 from an industrial coal-fired source to produce biofuel and other high value co-products. ... Aggregates, Ltd. cement manufacturing plant in San Antonio, Texas. (DOE Share: ...

  6. Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing

    Broader source: Energy.gov [DOE]

    Office: Advanced ManufacturingPost date: 9/15/15Original Closing Date for Applications: Jan 29, 2016 A mandatory Concept Paper is due 11/04/2015 at 5:00pm ET.

  7. Idaho Save Energy Now - Industries of the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Save Energy Now - Industries of the Future Idaho Save Energy Now - Industries of the Future Idaho In 2009, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) ) awarded grants to 23 state and 5 regional entities to help disseminate energy-saving resources and information to industrial manufacturers in their areas. Idaho's Office of Energy Resources (OER) received one of these grants to support its Idaho Save Energy

  8. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    Open Energy Info (EERE)

    and Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)...

  9. Innovations in the Use of Nuclear Energy for Sustainable Manufacturing

    SciTech Connect (OSTI)

    J. Stephen Herring

    2010-10-01

    Abstract Over the next 50 years, nuclear energy will become increasingly important in providing the electricity and heat needed both by the presently industrialized countries and by those countries which are now developing their manufacturing industries. The twin concerns of global climate change and of the vulnerability of energy supplies caused by increasing international competition will lead to a greater reliance on nuclear energy for both electricity and process heat. Conservative estimates of new nuclear construction indicate a 50% increase in capacity by 2030. Other estimates predict a tripling of present capacity. Required machine tool technologies will include the improvements in the manufacture of standard LWR components, such as pressure vessels and pumps. Further in the future, technologies for working high temperature metals and ceramics will be needed and will require new machining capabilities.

  10. Wind power manufacturing and supply chain summit USA.

    SciTech Connect (OSTI)

    Hill, Roger Ray

    2010-12-01

    The area of wind turbine component manufacturing represents a business opportunity in the wind energy industry. Modern wind turbines can provide large amounts of electricity, cleanly and reliably, at prices competitive with any other new electricity source. Over the next twenty years, the US market for wind power is expected to continue to grow, as is the domestic content of installed turbines, driving demand for American-made components. Between 2005 and 2009, components manufactured domestically grew eight-fold to reach 50 percent of the value of new wind turbines installed in the U.S. in 2009. While that growth is impressive, the industry expects domestic content to continue to grow, creating new opportunities for suppliers. In addition, ever-growing wind power markets around the world provide opportunities for new export markets.

  11. PPG Industries Develops a Low-Cost Integrated OLED Substrate

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, PPG Industries, Inc., has developed a low-cost OLED substrate, using inexpensive soda-lime "float" glass that the company manufactures at high volume for the architectural industry. Float glass is thin sheet glass and is much less expensive than the borosilicate or double-side-polished display glass that's currently being used as substrates by OLED device manufacturers.

  12. IMPROVING COMPRESSED AIR SYSTEM PERFORMANCE: A SOURCEBOOK FOR INDUSTRY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IMPROVING COMPRESSED AIR SYSTEM PERFORMANCE: A SOURCEBOOK FOR INDUSTRY Improving Compressed Air System Performance A Sourcebook for Industry Third Edition U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy ADVANCED MANUFACTURING OFFICE IMPROVING COMPRESSED AIR SYSTEM PERFORMANCE: A SOURCEBOOK FOR INDUSTRY ACKNOWLEDGEMENTS Improving Compressed Air System Performance: A Sourcebook for Industry is a cooperative effort of the U.S. Department of Energy's Office of Energy Efficiency

  13. DOE Selects 26 Universities to Assess Industrial Energy Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 26 Universities to Assess Industrial Energy Efficiency DOE Selects 26 Universities to Assess Industrial Energy Efficiency July 24, 2006 - 4:32pm Addthis Smart use of energy key to America's industrial and manufacturing competitiveness WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the selection of 26 universities across the country for negotiation of award to set up and operate regional Industrial Assessment Centers (IAC). The

  14. Advanced Manufacturing Office Update, March 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2015 Advanced Manufacturing Office Update, March 2015 March 30, 2015 - 3:13pm Addthis In This Issue Featured Articles Better Plants Welcomes New Partners from Diverse Sectors Better Plants Challenge Partners Share Energy-Saving Solutions Harbec Receives 2014 Environmental Excellence Award from New York State AMO and Industry News Heat Exchange Materials Research Advances Accomplishments Highlighted at Critical Materials Institute Annual Peer Review Benefits of Combined Heat and Power

  15. Advanced Manufacturing Office Update, May 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 2014 Advanced Manufacturing Office Update, May 2014 May 6, 2014 - 4:00pm Addthis In This Issue Partners in the Spotlight Novelis Joins Better Plants Legrand Partners with DOE to Advance Supply Chain Energy Efficiency General Dynamics and Nissan Case Studies Highlight Benefits of Superior Energy Performance Volvo Recognized for Leadership in Energy Efficiency Schneider Electric Showcases Solar Field and SEP Implementation at Smyrna, TN, Site AMO and Industry News DOE's New Checklist Helps

  16. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  17. Metrology for Fuel Cell Manufacturing

    SciTech Connect (OSTI)

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  18. Oak Ridge Manufacturing Demonstration Facility (MDF)

    Broader source: Energy.gov [DOE]

    The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

  19. Manufacturing Demonstration Facilities Workshop Agenda, March 2012

    Broader source: Energy.gov [DOE]

    Agenda for the Manufacturing Demonstration Facilities Workshop on March 12, 2012 outlining objectives and times

  20. CEMI Is Working with Industry to Make the U.S. the Leader in Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing | Department of Energy CEMI Is Working with Industry to Make the U.S. the Leader in Clean Energy Manufacturing CEMI Is Working with Industry to Make the U.S. the Leader in Clean Energy Manufacturing December 16, 2015 - 3:35pm Addthis CEMI Is Working with Industry to Make the U.S. the Leader in Clean Energy Manufacturing David Danielson Former Assistant Secretary for the Office of Energy Efficiency and Renewable Energy Above: Assistant Secretary David Danielson (center) with