Sample records for nonconventional recovery includes

  1. Nonconventional Liquid Fuels (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    Higher prices for crude oil and refined petroleum products are opening the door for nonconventional liquids to displace petroleum in the traditional fuel supply mix. Growing world demand for diesel fuel is helping to jump-start the trend toward increasing production of nonconventional liquids, and technological advances are making the nonconventional alternatives more viable commercially. Those trends are reflected in the Annual Energy Outlook 2006 projections.

  2. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    SciTech Connect (OSTI)

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20T23:59:59.000Z

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore); and (3) accurate approaches to account for the effects of reservoir heterogeneity and for the optimization of nonconventional well deployment. An overview of our progress in each of these main areas is as follows. A general purpose object-oriented research simulator (GPRS) was developed under this project. The GPRS code is managed using modern software management techniques and has been deployed to many companies and research institutions. The simulator includes general black-oil and compositional modeling modules. The formulation is general in that it allows for the selection of a wide variety of primary and secondary variables and accommodates varying degrees of solution implicitness. Specifically, we developed and implemented an IMPSAT procedure (implicit in pressure and saturation, explicit in all other variables) for compositional modeling as well as an adaptive implicit procedure. Both of these capabilities allow for efficiency gains through selective implicitness. The code treats cell connections through a general connection list, which allows it to accommodate both structured and unstructured grids. The GPRS code was written to be easily extendable so new modeling techniques can be readily incorporated. Along these lines, we developed a new dual porosity module compatible with the GPRS framework, as well as a new discrete fracture model applicable for fractured or faulted reservoirs. Both of these methods display substantial advantages over previous implementations. Further, we assessed the performance of different preconditioners in an attempt to improve the efficiency of the linear solver. As a result of this investigation, substantial improvements in solver performance were achieved.

  3. Recovery Boiler Modeling: An Improved Char Burning Model Including Sulfate Reduction and Carbon Removal

    E-Print Network [OSTI]

    Grace, T. M.; Wag, K. J.; Horton, R. R.; Frederick, W. J.

    gasification, reactions between oxygen and combustibles in the boundary layer, and integration of sulfate reduction and sulfide reoxidation into the char burning process. Simulations using the model show that for typical recovery boiler conditions, char burning...

  4. Review of nonconventional bioreactor technology

    SciTech Connect (OSTI)

    Turick, C.E.; Mcllwain, M.E.

    1993-09-01T23:59:59.000Z

    Biotechnology will significantly affect many industrial sectors in the future. Industrial sectors that will be affected include pharmaceutical, chemical, fuel, agricultural, and environmental remediation. Future research is needed to improve bioprocessing efficiency and cost-effectiveness in order to compete with traditional technologies. This report describes recent advances in bioprocess technologies and bioreactor designs and relates them to problems encountered in many industrial bioprocessing operations. The primary focus is directed towards increasing gas and vapor transfer for enhanced bioprocess kinetics as well as unproved by-product separation and removal. The advantages and disadvantages of various conceptual designs such as hollow-fiber, gas-phase, hyperbaric/hypobaric, and electrochemical bioreactors are also discussed. Specific applications that are intended for improved bioprocesses include coal desulfurization, coal liquefaction, soil bioremediation, biomass conversion to marketable chemicals, biomining, and biohydrometallurgy as well as bioprocessing of gases and vapors.

  5. Recovery Boiler Modeling: An Improved Char Burning Model Including Sulfate Reduction and Carbon Removal

    E-Print Network [OSTI]

    Grace, T. M.; Wag, K. J.; Horton, R. R.; Frederick, W. J.

    1994-01-01T23:59:59.000Z

    This paper describes an improved model of char burning during black liquor combustion that is capable of predicting net rates of sulfate reduction to sulfide as well as carbon burnup rates. Enhancements include a proper ...

  6. Conventional and Non-Conventional Nuclear Material Signatures

    SciTech Connect (OSTI)

    Gozani, Tsahi [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2009-03-10T23:59:59.000Z

    The detection and interdiction of concealed special nuclear material (SNM) in all modes of transport is one of the most critical security issues facing the United States and the rest of the world. In principle, detection of nuclear materials is relatively easy because of their unique properties: all of them are radioactive and all emit some characteristic gamma rays. A few emit neutrons as well. These signatures are the basis for passive non-intrusive detection of nuclear materials. The low energy of the radiations necessitates additional means of detection and validation. These are provided by high-energy x-ray radiography and by active inspection based on inducing nuclear reactions in the nuclear materials. Positive confirmation that a nuclear material is present or absent can be provided by interrogation of the inspected object with penetrating probing radiation, such as neutrons and photons. The radiation induces specific reactions in the nuclear material yielding, in turn, penetrating signatures which can be detected outside the inspected object. The 'conventional' signatures are first and foremost fission signatures: prompt and delayed neutrons and gamma rays. Their intensity (number per fission) and the fact that they have broad energy (non-discrete, though unique) distributions and certain temporal behaviors are key to their use. The 'non-conventional' signatures are not related to the fission process but to the unique nuclear structure of each element or isotope in nature. This can be accessed through the excitation of isotopic nuclear levels (discrete and continuum) by neutron inelastic scattering or gamma resonance fluorescence. Finally there is an atomic signature, namely the high atomic number (Z>74), which obviously includes all the nuclear materials and their possible shielding. The presence of such high-Z elements can be inferred by techniques using high-energy x rays. The conventional signatures have been addressed in another article. Non-conventional signatures and some of their current or potential uses will be discussed here.

  7. A new direct steel making process based upon the blast furnace (Including scrap processing with recovery of tramp elements)

    SciTech Connect (OSTI)

    Nabi, G.

    1996-12-31T23:59:59.000Z

    Steel is produced from raw materials containing iron and alloying elements with direct elimination of oxygen and impurities in the blast furnace process. The blast furnace shaft is modified to take off load from the liquid bath and carbon is prevented from going into the liquid steel. In the gas purification system sulphur and CO{sub 2} removal facilities are included and purified reducing gases so obtained are combusted in the hearth with oxygen to produce heat for smelting. Scrap can be charged as raw material with the recovery of tramp elements with continuous production of liquid steel.

  8. #include #include

    E-Print Network [OSTI]

    Campbell, Andrew T.

    process #12;#include #include pid_t pid = fork(); if (pid () failed */ } else if (pid == 0) { /* parent process */ } else { /* child process */ } #12;thread #12

  9. #include #include

    E-Print Network [OSTI]

    Poinsot, Laurent

    #include #include //Rappels : "getpid()" permet d'obtenir son propre pid // "getppid()" renvoie le pid du père d'un processus int main (void) { pid_t pid_fils; pid_fils = fork(); if(pid_fils==-1) { printf("Erreur de création du processus fils\

  10. RECOVERY ACT CASE STUDY CHP and district energy serve Texas A&M's 5,200-acre campus, which includes 750 buildings.

    E-Print Network [OSTI]

    .S. Congressman Chet Edwards Texas A&M's CHP system includes a gas turbine generator, heat recovery steam generator, and steam turbine generator. Photo courtesy of Texas A&M University 3 Riley, Jim, "Combined Heat, 2010. Brush Generator 34 MW RO Water Dresser Rand Steam Turbine Ideal Generator 11 MW 12.47 kV EIT HRSG

  11. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    SciTech Connect (OSTI)

    Anthony R. Kovscek; Louis M. Castanier

    2002-09-30T23:59:59.000Z

    The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

  12. Generalized Ginzburg-Landau models for non-conventional superconductors

    E-Print Network [OSTI]

    S. Esposito; G. Salesi

    2009-06-20T23:59:59.000Z

    We review some recent extensions of the Ginzburg-Landau model able to describe several properties of non-conventional superconductors. In the first extension, s-wave superconductors endowed with two different critical temperatures are considered, their main thermodynamical and magnetic properties being calculated and discussed. Instead in the second extension we describe spin-triplet superconductivity (with a single critical temperature), studying in detail the main predicted physical properties. A thorough discussion of the peculiar predictions of our models and their physical consequences is as well performed.

  13. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    SciTech Connect (OSTI)

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31T23:59:59.000Z

    Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project, cyclic water injection tests using high as well as low salinity were also conducted on several representative ANS core samples. These results indicate that less pore volume of water is required to recover the same amount of oil as compared with continuous water injection. Additionally, in cyclic water injection, oil is produced even during the idle time of water injection. It is understood that the injected brine front spreads/smears through the pores and displaces oil out uniformly rather than viscous fingering. The overall benefits of this project include increased oil production from existing Alaskan reservoirs. This conclusion is based on the performed experiments and results obtained on low-salinity water injection (including ANS lake water), vis-a-vis slightly altering the wetting conditions. Similarly, encouraging cyclic water-injection test results indicate that this method can help achieve residual oil saturation earlier than continuous water injection. If proved in field, this would be of great use, as more oil can be recovered through cyclic water injection for the same amount of water injected.

  14. Calibration and data reduction algorithms for non-conventional multi-hole pressure probes

    E-Print Network [OSTI]

    Ramakrishnan, Vijay

    2004-09-30T23:59:59.000Z

    This thesis presents the development of calibration and data-reduction algorithms for non-conventional multi-hole pressure probes. The algorithms that have been developed for conventional 5- and 7-hole probes are not optimal ...

  15. Simulation and Economic Screening of Improved Oil Recovery Methods with Emphasis on Injection Profile Control Including Waterflooding, Polymer Flooding and a Thermally Activated Deep Diverting Gel

    E-Print Network [OSTI]

    Okeke, Tobenna

    2012-07-16T23:59:59.000Z

    recovery of hydrocarbons and premature well or field abandonment. Water production can be more problematic during waterflooding in a highly heterogeneous reservoir with vertical communication between layers leading to unevenness in the flood front, cross...

  16. Abstract --The growth of non-conventional renewable energies involves a new challenge for optimal network expansion. A better

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Catlica de Chile)

    1 Abstract -- The growth of non-conventional renewable energies involves a new challenge and implementation of policies to develop Non-Conventional Renewable Energies (NCRE), they can be seen as a mechanism for optimal network expansion. A better integration of renewables will be allowed by determining transmission

  17. Inter American Conference on Non-Conventional Materials and Technologies in Ecological and Sustainable Construction

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    draining soils for reinforced soil construction have been [2]: Build up of pore pressure may reduceInter American Conference on Non-Conventional Materials and Technologies in Ecological and Sustainable Construction IAC-NOCMAT 2005 - Rio Rio de Janeiro - Brazil, November 11 15th, 2005 GEOSYNTHETIC

  18. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect (OSTI)

    Durlofsky, Louis J.; Aziz, Khalid

    2001-08-23T23:59:59.000Z

    Research results for the second year of this project on the development of improved modeling techniques for non-conventional (e.g., horizontal, deviated or multilateral) wells were presented. The overall program entails the development of enhanced well modeling and general simulation capabilities. A general formulation for black-oil and compositional reservoir simulation was presented.

  19. Technological impact of Non-Conventional Renewable Energy in the Chilean Electricity System

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Catlica de Chile)

    and determine the evolution of technological diversity variables, costs, CO2 emissions and energy injection mix), investment and operating costs, technological diversity, CO2 emissions and the injected powerTechnological impact of Non-Conventional Renewable Energy in the Chilean Electricity System Juan D

  20. Recovery Act State Memos Kentucky

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * KENTUCKY RECOVERY ACT SNAPSHOT Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)...

  1. Survey and assessment of the effects of nonconventional gases on gas distribution equipment

    SciTech Connect (OSTI)

    Jasionowski, W.J.; Scott, M.I.; Gracey, W.C.

    1982-10-01T23:59:59.000Z

    A literature search and a survey of the gas industry were conducted to assess potential problems in the distribution of nonconventional gases. Available literature did not uncover data that would describe potential problems or substantiate the presence of harmful trace elements in final gas compositions produced from various SNG processes. Information from the survey indicates that some companies have encountered problems with nonconventional gases and extraneous additives such as landfill gas, refinery off-gases, oil gas, carbureted water gas, coke-oven gas, propane-air, and compressor lubricant oils. These nonconventional gases and compressor oils may 1) cause pipeline corrosion, 2) degrade some elastomeric materials and greases and affect the integrity of seals, gaskets, O-rings, and meter and regulator diaphragms, and 3) cause operational and safety problems. The survey indicated that 62% of the responding companies plan to use supplemental gas, with most planning on more than one type. Distribution companies intend to significantly increase their use of polyethylene piping from 11.6% in 1980 to 22.4% in 2000 for gas mains and from 33.4% to 50.3% in 2000 for gas service lines.

  2. noise has been added. The included figure shows the recovery of an initial sharply peaked 2D Gaussian amplitude field by using the BRD algorithm

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    , Marseille, France. doi:10.1016/j.mri.2007.01.021 Improved noble gas polarization production for porous, University of Nottingham, c Department of Physics, Harvard University Laser-polarized xenon NMR and MRI in granular systems including fluidized beds [2]; (iii) more general two-phase fluid dynamics studies

  3. An investigation of wind loads on conventional and nonconventional highway signs

    E-Print Network [OSTI]

    Ross, Hayes Ellis

    1967-01-01T23:59:59.000Z

    ) With the flanged connection at the base of the tubular support the sign could be rotated. in 22. 5-degree increments allowing for a semi-controlled environment. (d) The wind loads on a sign with a single tubular support are believed to be of the same order...AN INVESTIGATION OF WIND LOADS ON CONVENTIONAL AND NONCONVENTIONAL HIGHWAY SIGNS A Thesis By Hayes Ellis Ross, Jr. Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree...

  4. Protein folding and non-conventional drug design: a primer for nuclear structure physicists

    SciTech Connect (OSTI)

    Broglia, R.A. [Dipartimento di Fisica, Universita di Milano, Via Celoria 16, I-20133 Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, I-20133 Milan (Italy); Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Tiana, G.; Provasi, D. [Dipartimento di Fisica, Universita di Milano, Via Celoria 16, I-20133 Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, I-20133 Milan (Italy)

    2004-02-27T23:59:59.000Z

    Some of the paradigms emerging from the study of the phenomena of phase transitions in finite many-body systems, like e.g. the atomic nucleus can be used at profit to solve the protein folding problem within the framework of simple (although not oversimplified) models. From this solution a paradigm emerges for the design of non-conventional drugs, which inhibit enzymatic action without inducing resistance (mutations). The application of these concepts to the design of an inhibitor to the HIV-protease central in the life cycle of the HIV virus is discussed.

  5. CALIFORNIA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    RECOVERY ACT SNAPSHOT California has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment...

  6. ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARKANSAS RECOVERY ACT SNAPSHOT Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act...

  7. IOWA RECOVERY ACT SNAPSHOT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IOWA RECOVERY ACT SNAPSHOT Iowa has substantial natural resources, including wind power and is the largest ethanol producer in the United States. The American Recovery &...

  8. ENI Renewable and Non-conventional Energy Prize 2012 High-efficiency solar cells based on nanophotonic design

    E-Print Network [OSTI]

    Polman, Albert

    new solar cell designs that enable both a higher photovoltaic conversion efficiency and reduced) Photonic design principles for ultrahigh-efficiency photovoltaics, A. Polman and H.A. Atwater, Nature MaterENI Renewable and Non-conventional Energy Prize 2012 High-efficiency solar cells based

  9. Register file soft error recovery

    DOE Patents [OSTI]

    Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.

    2013-10-15T23:59:59.000Z

    Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.

  10. Washington Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Recovery Act State Memo Washington State has substantial natural resources, including biomass, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act...

  11. New Mexico Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mexico Recovery Act State Memo New Mexico Recovery Act State Memo New Mexico has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric...

  12. Arizona Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is...

  13. Oklahoma Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Oklahoma has substantial natural resources, including oil, gas, solar, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is...

  14. Texas Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Texas has substantial natural resources, including oil, gas, solar, biomass, and wind power. The American Recovery & Reinvestment Act (ARRA) is making...

  15. Alabama Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Alabama Recovery Act State Memo Alabama has substantial natural resources, including gas, coal, biomass, geothermal, and hydroelectric power. The American Recovery &...

  16. Wyoming Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Wyoming Recovery Act State Memo Wyoming has substantial natural resources including coal, natural gas, oil, and wind power. The American Recovery & Reinvestment Act (ARRA) is...

  17. Kentucky Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is...

  18. Montana Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Montana has substantial natural resources, including coal, oil, natural gas, hydroelectric, and wind power. The American Recovery & Reinvestment Act...

  19. Alaska Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery &...

  20. Kansas Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memo Kansas Recovery Act State Memo Kansas has substantial natural resources, including oil, gas, biomass and wind power.The American Recovery & Reinvestment Act (ARRA) is making...

  1. Louisiana Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Memo Louisiana has substantial natural resources, including abundant oil, gas, coal, biomass, and hydroelectric power. The American Recovery & Reinvestment Act...

  2. Arkansas Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arkansas Recovery Act State Memo Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act...

  3. Recovery Act

    Broader source: Energy.gov [DOE]

    Recovery Act and Energy Department programs were designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

  4. Recovery Act: State Assistance for Recovery Act Related Electricity...

    Energy Savers [EERE]

    Information Center Recovery Act Recovery Act: State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related...

  5. IDAHO RECOVERY ACT SNAPSHOT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SNAPSHOT Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  6. GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy

    Energy Savers [EERE]

    ACT SNAPSHOT Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  7. ARIZONA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment...

  8. Power Recovery

    E-Print Network [OSTI]

    Murray, F.

    , will be the use of the ASTM Theoretical Steam Rate Tables. In addition, the author's experience regarding the minimum size for power recovery units that are economic in a Culf Coast plant will be presented. INTROD\\Jr.'rION When surveying an operation... will be discussed in detail. Each term in the equation will be considered in English units. Secondly, the use of Mollier diagrams to estimate the enthalphy change between the initial and final conditions will be considered. The last method, specific to steam...

  9. Kraft recovery boiler physical and chemical processes

    SciTech Connect (OSTI)

    Adams, T.N.; Frederick, W.J. (Adams (Terry N.), Tacoma, WA (USA); Oregon State Univ., Corvallis, OR (USA). Dept. of Chemical Engineering)

    1988-01-01T23:59:59.000Z

    The focus of this book is on the recent research into the physical and chemical processes occurring in and around a black liquor recovery boiler. Almost all of the detailed technical information in this book has previously appeared in the open literature. The purpose here is not to present research for the first time, but to present it in a context of the other processes occurring in recovery boilers. Topics covered include: general characteristics of recovery boilers; black liquor thermal and transport properties; black liquor droplet formation and combustion; recovery boiler char bed processes; flow and mixing in Kraft recovery boilers; entrainment and carryover in recovery furnaces; fume formation and dust chemistry; deposits and boiler plugging; and recovery boiler thermal performance. 257 refs., 102 figs., 38 tabs.

  10. The New Generation of Uranium In Situ Recovery Facilities: Design Improvements Should Reduce Radiological Impacts Relative to First Generation Uranium Solution Mining Plants

    SciTech Connect (OSTI)

    Brown, S.H. [CHP, SHB INC., Centennial, Colorado (United States)

    2008-07-01T23:59:59.000Z

    In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium In Situ Leaching / In Situ Recovery (ISL / ISR - also referred to as 'solution mining'), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and are expected to make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since the mid 1970's. However, current designs are expected to result in less radiological wastes and emissions relative to these 'first' generation plants (which were designed, constructed and operated through the 1980's). These early designs typically used alkaline leach chemistries in situ including use of ammonium carbonate which resulted in groundwater restoration challenges, open to air recovery vessels and high temperature calcining systems for final product drying vs the 'zero emissions' vacuum dryers as typically used today. Improved containment, automation and instrumentation control and use of vacuum dryers in the design of current generation plants are expected to reduce production of secondary waste byproduct material, reduce Radon emissions and reduce potential for employee exposure to uranium concentrate aerosols at the back end of the milling process. In Situ Recovery in the U.S. typically involves the circulation of groundwater, fortified with oxidizing (gaseous oxygen e.g) and complexing agents (carbon dioxide, e.g) into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant ( mill). Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which radon gas is evolved in the process and the unique aspects of controlling solution flow patterns underground. The radiological character of these processes are described using empirical data collected from many operating facilities. Additionally, the major aspects of the health physics and radiation protection programs that were developed at these first generation facilities are discussed and contrasted to circumstances of the current generation and state of the art of uranium ISR technologies and facilities. In summary: This paper has presented an overview of in situ Uranium recovery processes and associated major radiological aspects and monitoring considerations. Admittedly, the purpose was to present an overview of those special health physics considerations dictated by the in situ Uranium recovery technology, to point out similarities and differences to conventional mill programs and to contrast these alkaline leach facilities to modern day ISR designs. As evidenced by the large number of ISR projects currently under development in the U.S. and worldwide, non conventional Uranium recovery techniques

  11. Environmentally-assisted technique for transferring devices onto non-conventional substrates

    DOE Patents [OSTI]

    Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2014-08-26T23:59:59.000Z

    A device fabrication method includes: (1) providing a growth substrate including a base and an oxide layer disposed over the base; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.

  12. Mass and Heat Recovery

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    - 1 - MASS AND HEAT RECOVERY SYSTEM SALAH MAHMOUD HINDAWI DIRECTOR HINDAWI FOR ENGINEERING SERVICES & CONTRACTING NEW DAMIETTA , EGYPT ABSTRACT : In the last few years heat recovery was under spot . and in air conditioning fields... ) as a heat recovery . and I use the water as a mass recovery . The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines . THE BENEFIT OF THIS SYSTEM ARE : 1) Using the heat energy from...

  13. New Impetus for resource recovery

    SciTech Connect (OSTI)

    Marier, D.

    1990-04-01T23:59:59.000Z

    Indications are that the resource recovery field is getting a renewed focus as communities again respond to continuing waste problems and as more companies offer recycling and waste-to-energy services. Recent entries to the field include new divisions of an Australian firm, a Finnish environmental services company, an Italian tire recycler. Two utility affiliates have entered the resource recovery field, and one major engineering and construction firm is entering the field at the same time another is leaving. These companies and their waste processes are briefly described.

  14. Recovery Act State Summaries | Department of Energy

    Energy Savers [EERE]

    Act State Memo Virgin Islands Recovery Act State Memo Washington Recovery Act State Memo West Virginia Recovery Act State Memo Wisconsin Recovery Act State Memo Wyoming Recovery...

  15. Shock recovery experiments: An assessment

    SciTech Connect (OSTI)

    Gray, G.T. III

    1989-01-01T23:59:59.000Z

    Systematic shock recovery experiments, in which microstructural and mechanical property effects are characterized quantitatively, constitute an important means of increasing our understanding of shock processes. Through studies of the effects of variations in metallurgical and shock loading parameters on structure/property relationships, the micromechanisms of shock deformation, and how they differ from conventional strain rate processes, are beginning to emerge. This paper will highlight the state-of-the-art in shock recovery of metallic and ceramic materials. Techniques will be described which are utilized to ''soft'' recover shock-loaded metallic samples possessing low residual strain; crucial to accurate ''post-mortem'' metallurgical investigations of the influence of shock loading on material behavior. Illustrations of the influence of shock assembly design on the structure/property relationships in shock-recovered copper samples including such issues as residual strain and contact stresses, and their consequences are discussed. Shock recovery techniques used on brittle materials will be reviewed and discussed in light of recent experimental results. Finally, shock recovery structure/property results and VISAR data on the /alpha/--/omega/ shock-induced phase transition in titanium will be used to illustrate the beneficial link between shock recovery and ''real-time'' shock data. 26 refs., 3 figs.

  16. Recovery News Flashes

    Broader source: Energy.gov (indexed) [DOE]

    SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP http:energy.govemdownloadstru-success-srs-recovery-act-prepares...

  17. Recovery Act Milestones

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29T23:59:59.000Z

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  18. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  19. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  20. Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event Symposium

    SciTech Connect (OSTI)

    Lesperance, Ann M.

    2008-06-30T23:59:59.000Z

    On March 19, 2008, policy makers, emergency managers, and medical and Public Health officials convened in Seattle, Washington, for a workshop on Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event. The day-long symposium was aimed at generating a dialogue about restoration and recovery through a discussion of the associated challenges that impact entire communities, including people, infrastructure, and critical systems.

  1. Heat Recovery Design Considerations for Cogeneration Systems

    E-Print Network [OSTI]

    Pasquinelli, D. M.; Burns, E. D.

    1985-01-01T23:59:59.000Z

    The design and integration of the heat recovery section, which includes the steam generation, auxiliary firing, and steam turbine modules, is critical to the overall performance and economics of cogeneration, systems. In gas turbine topping...

  2. Heat Recovery Design Considerations for Cogeneration Systems

    E-Print Network [OSTI]

    Pasquinelli, D. M.; Burns, E. D.

    The design and integration of the heat recovery section, which includes the steam generation, auxiliary firing, and steam turbine modules, is critical to the overall performance and economics of cogeneration, systems. In gas turbine topping...

  3. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31T23:59:59.000Z

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

  4. Maine Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    State Memo Maine has substantial natural resources, including wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  5. Oregon Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Oregon has substantial natural resources, including wind, geothermal, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  6. New Hampshire Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Memo New Hampshire has substantial natural resources, including wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  7. Idaho Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Memo Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  8. Hawaii Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    has substantial natural resources, including solar, biomass , geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  9. Missouri Recovery Act State Memo | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Act State Memo Missouri has substantial natural resources, including wind and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  10. South Dakota Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dakota has substantial natural resources, including biomass, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  11. Georgia Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act State Memo Georgia has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  12. Wisconsin Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act State Memo Wisconsin has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)is making a meaningful down...

  13. West Virginia Recovery Act State Memo | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    West Virginia has substantial natural resources, including coal and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the...

  14. Nebraska Recovery Act State Memo | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    State Memo Nebraska has substantial natural resources, including oil, coal, wind, and hydro electric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful...

  15. Virginia Recovery Act State Memo | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Act State Memo Virginia has substantial natural resources, including coal and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on...

  16. Utah Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act State Memo Utah has substantial natural resources, including oil, coal, natural gas, wind, geothermal, and solar power. The American Recovery & Reinvestment Act (ARRA) is...

  17. Mississippi Recovery Act State Memo | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mississippi has substantial natural resources, including biomass, oil, coal, and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on...

  18. Iowa Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Memo Iowa has substantial natural resources, including wind power and is the largest ethanol producer in the United States. The American Recovery & Reinvestment Act (ARRA) is...

  19. Minnesota Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    has substantial natural resources, including biomass, wind power, and is a large ethanol producer. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  20. Recovery Act Project Stories

    Broader source: Energy.gov [DOE]

    Funded by the American Recovery and Reinvestment Act, these Federal Energy Management Program (FEMP) projects exemplify the range of technical assistance provided to federal agencies.

  1. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  2. Small Business Administration Recovery Act Implementation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small...

  3. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01T23:59:59.000Z

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  4. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-01T23:59:59.000Z

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  5. Recovery Boiler Corrosion Chemistry

    E-Print Network [OSTI]

    Das, Suman

    11/13/2014 1 Recovery Boiler Corrosion Chemistry Sandy Sharp and Honghi Tran Symposium on Corrosion of a recovery boiler each cause their own forms of corrosion and cracking Understanding the origin of the corrosive conditions enables us to operate a boiler so as to minimize corrosion and cracking select

  6. Mass and Heat Recovery

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  7. Recovery Act Funds at Work

    Broader source: Energy.gov [DOE]

    Funds from the American Recovery and Reinvestment Act of 2009 (Recovery Act) are being put to work to improve safety, reliability, and service in systems across the country. Here are case studies from a variety of Recovery Act programs.

  8. Internship Contract (Includes Practicum)

    E-Print Network [OSTI]

    Thaxton, Christopher S.

    Internship Contract (Includes Practicum) Student's name-mail: _________________________________________ Internship Agency Contact Agency Name: ____________________________________ Address-mail: __________________________________________ Location of Internship, if different from Agency: ________________________________________________ Copies

  9. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07T23:59:59.000Z

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  10. Living Expenses (includes approximately

    E-Print Network [OSTI]

    Maroncelli, Mark

    & engineering programs All other programs Graduate: MBA/INFSY at Erie & Harrisburg (12 credits) Business Guarantee 3 (Does not include Dependents Costs4 ) Altoona, Berks, Erie, and Harrisburg 12-Month Estimated

  11. Solvent recycle/recovery

    SciTech Connect (OSTI)

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01T23:59:59.000Z

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  12. Flash Steam Recovery Project

    E-Print Network [OSTI]

    Bronhold, C. J.

    2000-01-01T23:59:59.000Z

    /condensate recovery system, resulting in condensate flash steam losses to the atmosphere. Using computer simulation models and pinch analysis techniques, the Operational Excellence Group (Six Sigma) was able to identify a project to recover the flash steam losses as a...

  13. Recovery Boiler Modeling

    E-Print Network [OSTI]

    Abdullah, Z.; Salcudean, M.; Nowak, P.

    1994-01-01T23:59:59.000Z

    Preliminary computations of the cold flow in a simplified geometry of a recovery boiler are presented. The computations have been carried out using a new code containing multigrid methods and segmentation techniques. This approach is shown...

  14. Recovery Boiler Modeling

    E-Print Network [OSTI]

    Abdullah, Z.; Salcudean, M.; Nowak, P.

    Preliminary computations of the cold flow in a simplified geometry of a recovery boiler are presented. The computations have been carried out using a new code containing multigrid methods and segmentation techniques. This approach is shown...

  15. Recovery Act State Memos Montana

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 5 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Green power transmission line given new life ......

  16. From the hills to the mountain. [Oil recovery in California

    SciTech Connect (OSTI)

    McDonald, J.

    1980-05-01T23:59:59.000Z

    The oil reserves at Elk Hills field, California, are listed as amounting to 835 million bbl. There is 12 times that amount lying in shallow sands in the San Joaquin Valley, although the oil is much heavier and requires more refining before use. Improved recovery techniques have enabled higher rates of recovery for heavy oil than in the past. Some of these techniques are described, including bottom-hole heating, steam injection, and oil mining. Bottom-hole heating alone raised recovery rates for heavy oil to 25%, and steam injection raised rates to 50%. It is predicted that oil mining may be able to accomplish 100% recovery of the heavy oil.

  17. Rankine cycle waste heat recovery system

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12T23:59:59.000Z

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  18. ARM - Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become a UsergovAboutRecovery Act Recovery Act Logo

  19. Recovery Act Recipient Data | Department of Energy

    Office of Environmental Management (EM)

    Recovery Act Recipient Data Recovery Act Recipient Data A listing of all Recovery Act recipients and their allocations. Updated weekly. recoveryactfunding.xls More Documents &...

  20. Some Thoughts on Econometric Information Recovery

    E-Print Network [OSTI]

    Judge, George G.

    2013-01-01T23:59:59.000Z

    Paper 1135 Some Thoughts on Econometric Information Recoverys). Some Thoughts on Econometric Information Recovery GeorgeTheoretic Approach To Econometric Information Recovery

  1. Inherently safe in situ uranium recovery

    DOE Patents [OSTI]

    Krumhansl, James L; Brady, Patrick V

    2014-04-29T23:59:59.000Z

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  2. Challenges in Industrial Heat Recovery

    E-Print Network [OSTI]

    Dafft, T.

    2007-01-01T23:59:59.000Z

    This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

  3. Sparse recovery and Fourier sampling

    E-Print Network [OSTI]

    Price, Eric C

    2013-01-01T23:59:59.000Z

    In the last decade a broad literature has arisen studying sparse recovery, the estimation of sparse vectors from low dimensional linear projections. Sparse recovery has a wide variety of applications such as streaming ...

  4. Challenges in Industrial Heat Recovery

    E-Print Network [OSTI]

    Dafft, T.

    2007-01-01T23:59:59.000Z

    This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

  5. Recovery Act State Memos Nebraska

    Energy Savers [EERE]

    ... 6 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Biofuels company builds new facility in Nebraska ... 7 * Nebraska appliance rebate...

  6. Recovery Act State Memos Arkansas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Program finds unique way to fund energy upgrades ... 7 * Green collar courses ......

  7. Improved screen-bowl centrifuge recovery using polymer injection technology

    SciTech Connect (OSTI)

    Burchett, R.T.; McGough, K.M.; Luttrell, G.H.

    2006-08-15T23:59:59.000Z

    The paper reports the improved screen-bowl centrifuge recovery process using polymer injection technology. Field test and economic analysis are also included in the paper. 3 refs., 3 figs., 1 tab.

  8. Low Temperature Waste Energy Recovery at Chemical Plants and Refineries

    E-Print Network [OSTI]

    Ferland, K.; papar, R.; Quinn, J.; Kumar, S.

    2013-01-01T23:59:59.000Z

    candidates of waste heat recovery technologies that might have an application in these industries. Four technologies that met the criteria of the Advisory Committee included: organic rankine cycle (ORC), absorption refrigeration and chilling, Kalina cycle...

  9. Incorporating Energy Efficiency into Disaster Recovery Efforts...

    Energy Savers [EERE]

    Incorporating Energy Efficiency into Disaster Recovery Efforts Incorporating Energy Efficiency into Disaster Recovery Efforts Better Buildings Residential Network Program...

  10. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  11. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07T23:59:59.000Z

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  12. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  13. Recovery Act Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting Microscopy IlluminatesHandbookRODs Recovery

  14. 1 INTRODUCTION Urban lifelines include electricity, communication,

    E-Print Network [OSTI]

    Spencer Jr., B.F.

    and functions, form recovery obstacles mutually, and lead to secondary disaster. The disaster of all lifelines and the relationship between the effect degree sequence and the post-quake recovery time sequence are studied by both, it will followed by functional Urban lifelines effects degree sequence and recovery time sequence Youpo Su, Yajie

  15. Heat recovery and seed recovery development project: preliminary design report (PDR)

    SciTech Connect (OSTI)

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

    1981-06-01T23:59:59.000Z

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  16. Flare Gas Recovery in Shell Canada Refineries

    E-Print Network [OSTI]

    Allen, G. D.; Wey, R. E.; Chan, H. H.

    1983-01-01T23:59:59.000Z

    the flow properties for compressor selection? What controls should be incorporated? How much operator and maintenance effort will be required for safe, efficient operation? What kind of process and hardware problems should be watched for? When...? This paper will touch on all these issues. SYSTEM CONFIGURATION A schematic of a typical refinery flare gas recovery facility is shown in Figure I. The facilities include the following pieces of equipment: - compressor suction drum - compressor set...

  17. HVAC Energy Recovery Design and Economic Evaluation

    E-Print Network [OSTI]

    Kinnier, R. J.

    1979-01-01T23:59:59.000Z

    . As shown in Chart 5, the power requirements to operate an energy recovery system are a significant factor in the economic evaluations of the project as well as the additional costs for auxiliary components. These extra costs must be included... in the overall feasibility analysis. Chart 5 - Auxiliary Components FAN TYPE SUPPLY EXHAUST STATIC PRESSURE EXCHANGER FAN FAN PUMP COMPRESSOR FILTERS CONTROLS REQUIREMENTS, IN WG SUPPLY EXHAUST STATIONARY ? ? ? 1 1.0- 2.0 l.0- 2.0 HEAT WHEEL HYGROSCOPIC...

  18. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01T23:59:59.000Z

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  19. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13T23:59:59.000Z

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  20. ARM - Recovery Act Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51Instruments Related Links RHUBC-IIActRecovery Act

  1. Summary - Caustic Recovery Technology

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the Passing of AdmiraltheOil and Less CO2Caustic Recovery

  2. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    three Recovery Act-funded Smart Grid Investment Grant (SGIG) projects. February 28, 2014 Smart Meter Investments Yield Positive Results in Maine Central Maine Power's (CMP) SGIG...

  3. Economic Recovery Loan Program (Maine)

    Broader source: Energy.gov [DOE]

    The Economic Recovery Loan Program provides subordinate financing to help businesses remain viable and improve productivity. Eligibility criteria are based on ability to repay, and the loan is...

  4. Recovery Act State Memos Florida

    Energy Savers [EERE]

    of renewable energy. The Florida Energy and Climate Commission has awarded the Florida Solar Energy Center (FSEC) 10 million in Recovery Act money, enabling the center to set...

  5. Identification of existing waste heat recovery and process improvement technologies

    SciTech Connect (OSTI)

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01T23:59:59.000Z

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  6. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1991-01-01T23:59:59.000Z

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  7. Hydraulic waste energy recovery

    SciTech Connect (OSTI)

    Lederer, C.C.; Thomas, A.H.; McGuire, J.L. (Detroit Buildings and Safety Engineering Dept., MI (USA))

    1990-12-01T23:59:59.000Z

    Water distribution systems are typically a municipality's largest consumer of energy and greatest expense. The water distribution network has varying pressure requirements due to the age of the pipeline and topographical differences. Certain circumstances require installation of pressure reducing devices in the pipeline to lower the water pressure in the system. The consequence of this action is that the hydraulic energy supplied by the high lift or booster pumps is wasted in the process of reducing the pressure. A possible solution to capture the waste hydraulic energy is to install an in-line electricity generating turbine. Energy recovery using in-line turbine systems is an emerging technology. Due to the lack of technical and other relevant information on in-line turbine system installations, questions of constructability and legal issues over the power service contract have yet to be answered. This study seeks to resolve these questions and document the findings so that other communities may utilize this information. 10 figs.

  8. Speech recovery device

    DOE Patents [OSTI]

    Frankle, Christen M.

    2004-04-20T23:59:59.000Z

    There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assisted person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.

  9. Waste Steam Recovery

    E-Print Network [OSTI]

    Kleinfeld, J. M.

    1979-01-01T23:59:59.000Z

    .15 Jet Ejector - 165 p~ia Saturated Motive (965 psia/925?F) JO 2].22 2].]0 23.35 35 23. 22 23.]0 23.35 45 23.22 23.]0 23.35 ($2.l2/MM Btu fuel, 85% boiler efficiency,) 55 23.22 23.30 2].]5 ., 23. 22 23. )0 2].35 80 23. 22 23. JO 23. ]5 1243... technique, and the costs of fuel and electrical power. If turbine flows are unaffected so that no by-product power generation is lost, direct exchange to process and jet ejector compression will always yield an energy profit. Recovery via mechanical...

  10. Energy recovery system

    DOE Patents [OSTI]

    Moore, Albert S. (Morgantown, WV); Verhoff, Francis H. (Morgantown, WV)

    1980-01-01T23:59:59.000Z

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  11. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1989-01-01T23:59:59.000Z

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  12. Aqueous flooding methods for tertiary oil recovery

    DOE Patents [OSTI]

    Peru, Deborah A. (Bartlesville, OK)

    1989-01-01T23:59:59.000Z

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  13. Metals recovery from wastes. (Latest citations from Metadex). Published Search

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The bibliography contains citations concerning the recovery and recycling or reuse of ferrous and nonferrous metals from various industrial wastes. Types of waste considered include waste water, sludge, scrap, battery waste, and waste liquors. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Weatherization Formula Grants - American Recovery and Reinvestment...

    Energy Savers [EERE]

    Weatherization Formula Grants - American Recovery and Reinvestment Act (ARRA) Weatherization Formula Grants - American Recovery and Reinvestment Act (ARRA) U.S. Department of...

  15. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  16. Status report on energy recovery from municipal solid waste: technologies, lessons and issues. Information bulletin of the energy task force of the urban consortium

    SciTech Connect (OSTI)

    None

    1980-01-01T23:59:59.000Z

    A review is presented of the lessons learned and issues raised regarding the recovery of energy from solid wastes. The review focuses on technologies and issues significant to currently operating energy recovery systems in the US - waterwall incineration, modular incineration, refuse derived fuels systems, landfill gas recovery systems. Chapters are: Energy Recovery and Solid Waste Disposal; Energy Recovery Systems; Lessons in Energy Recovery; Issues in Energy Recovery. Some basic conclusions are presented concerning the state of the art of energy from waste. Plants in shakedown or under construction, along with technologies in the development stages, are briefly described. Sources of additional information and a bibliography are included. (MCW)

  17. CAS Indirect Cost Recovery Practices "Facilities and Administration" (F&A) Costs or, "Indirect Cost Recovery (ICR)," are costs incurred by the

    E-Print Network [OSTI]

    Vonessen, Nikolaus

    CAS Indirect Cost Recovery Practices "Facilities and Administration" (F&A) Costs or, "Indirect Cost Recovery (ICR)," are costs incurred by the University for common or joint projects and cannot be specifically attributed to an individual project. Some examples of indirect costs include accounting staff

  18. First joint SPE/DOE symposium on enhanced oil recovery, proceedings supplement

    SciTech Connect (OSTI)

    None

    1980-01-01T23:59:59.000Z

    The First Joint Symposium on Enhanced Oil Recovery sponsored by the Society of Petroleum Engineers and the US Department of Energy was held in Tulsa, Oklahoma. Besides the thirty-three technical papers which covered all phases of enhanced oil recovery and were published in the Proceedings, the Symposium included a session on Enhanced Oil Recovery Incentives where ten papers were presented which discussed the status of enhanced oil recovery technology, and included papers on incentive programs of the United States, Canada and Venezuela. These papers are published in this Proceedings Supplement under the following titles: Federal Government Role in enhanced Oil Recovery; Financial Realities of an Adequate Petroleum Supply; Major Technology Constraints in Enhanced Oil Recovery; Decontrol-Opportunities and Dangers; Status of EOR Technology; Impact of Federal Incentives on US Production; Canadian Incentives Program; and Heavy Oil Incentives in Venezuela.

  19. Long road to recovery: Bastrop team develops plan to restore Lost Pines region

    E-Print Network [OSTI]

    Bentz, Laura

    2012-01-01T23:59:59.000Z

    from the September #28;re. ?In terms of the recovery, the Lost Pines Recovery Team put together a #28;ve-year plan that includes erosion control, reseeding, replanting and hazardous fuels management,? said Roxanne Hernandez, habitat conservation... challenges Erosion has proven to be one of the most di#27;cult challenges to recovery. Initially, the #28;re caused much fertile soil to erode. Hernandez said until vegetation grows to provide ground cover, erosion will continue. Newly planted pine tree...

  20. Heat Recovery from Coal Gasifiers

    E-Print Network [OSTI]

    Wen, H.; Lou, S. C.

    1981-01-01T23:59:59.000Z

    This paper deals with heat recovery from pressurized entrained and fixed bed coal gasifiers for steam generation. High temperature waste heat, from slagging entrained flow coal gasifier, can be recovered effectively in a series of radiant...

  1. Recovery and purification of ethylene

    DOE Patents [OSTI]

    Reyneke, Rian (Katy, TX); Foral, Michael J. (Aurora, IL); Lee, Guang-Chung (Houston, TX); Eng, Wayne W. Y. (League City, TX); Sinclair, Iain (Warrington, GB); Lodgson, Jeffery S. (Naperville, IL)

    2008-10-21T23:59:59.000Z

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  2. RMOTC - Testing - Enhanced Oil Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery Notice: As of July 1st, 2014, Testing at RMOTC has officially completed. We would like to thank all of our testing partners and everyone who helped make the...

  3. Low Level Heat Recovery Technology

    E-Print Network [OSTI]

    O'Brien, W. J.

    1982-01-01T23:59:59.000Z

    level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

  4. Waste Heat Recovery from Refrigeration

    E-Print Network [OSTI]

    Jackson, H. Z.

    1982-01-01T23:59:59.000Z

    heat recovery from refrigeration machines is a concept which has great potential for implementation in many businesses. If a parallel requirement for refrigeration and hot water exists, the installation of a system to provide hot water as a by...

  5. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

    2011-10-18T23:59:59.000Z

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  6. Developing a Regional Recovery Framework

    SciTech Connect (OSTI)

    Lesperance, Ann M.; Olson, Jarrod; Stein, Steven L.; Clark, Rebecca; Kelly, Heather; Sheline, Jim; Tietje, Grant; Williamson, Mark; Woodcock, Jody

    2011-09-01T23:59:59.000Z

    Abstract A biological attack would present an unprecedented challenge for local, state, and federal agencies; the military; the private sector; and individuals on many fronts ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare the Seattle region to recover from a biological attack, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a Regional Recovery Framework for a Biological Attack in the Seattle Urban Area. The goal was to reduce the time and resources required to recover and restore wide urban areas, military installations, and other critical infrastructure following a biological incident by providing a coordinated systems approach. Based on discussions in small workshops, tabletop exercises, and interviews with emergency response agency staff, the partners identified concepts of operation for various areas to address critical issues the region will face as recovery progresses. Key to this recovery is the recovery of the economy. Although the Framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach. The Framework also served to coalesce policy questions that must be addressed for long-term recovery. These questions cover such areas as safety and health, security, financial management, waste management, legal issues, and economic development.

  7. Activities of the Oil Implementation Task Force, reporting period March--August 1991; Contracts for field projects and supporting research on enhanced oil recovery, reporting period October--December 1990

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    Activities of DOE's Oil Implementation Task Force for the period March--August 1991 are reviewed. Contracts for fields projects and supporting research on enhanced oil recovery are discussed, with a list of related publications given. Enhanced recovery processes covered include chemical flooding, gas displacement, thermal recovery, and microbial recovery.

  8. Unconventional gas recovery program. Semi-annual report for the period ending September 30, 1979

    SciTech Connect (OSTI)

    Manilla, R.D. (ed.)

    1980-04-01T23:59:59.000Z

    This document is the third semi-annual report describing the technical progress of the US DOE projects directed at gas recovery from unconventional sources. Currently the program includes Methane Recovery from Coalbeds Project, Eastern Gas Shales Project, Western Gas Sands Project, and Geopressured Aquifers Project.

  9. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

  10. Countries Gasoline Prices Including Taxes

    Gasoline and Diesel Fuel Update (EIA)

    Selected Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 51115 6.15 6.08 6.28 6.83 6.96 6.75 3.06 5415 6.14 6.06...

  11. Sponsorship includes: Agriculture in the

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Sponsorship includes: · Agriculture in the Classroom · Douglas County Farm Bureau · Gifford Farm · University of Nebraska Agricultural Research and Development Center · University of Nebraska- Lincoln Awareness Coalition is to help youth, primarily from urban communities, become aware of agriculture

  12. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) policy regarding use of the Recovery Act logo by Recovery Act recipients and subgrantees.

  13. Hydrogen recovery process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

    2000-01-01T23:59:59.000Z

    A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

  14. Recovery Act | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energy Recovery ActCategoryRecovery Act

  15. Road to Recovery: Bringing Recovery to Small Town America

    ScienceCinema (OSTI)

    Nettamo, Paivi

    2012-06-14T23:59:59.000Z

    The Recovery Act hits the road to reach out to surrounding towns of the Savannah River Site that are struggling with soaring unemployment rates. This project helps recruit thousands of people to new jobs in environmental cleanup at the Savannah River Site.

  16. Road to Recovery: Bringing Recovery to Small Town America

    SciTech Connect (OSTI)

    Nettamo, Paivi

    2010-01-01T23:59:59.000Z

    The Recovery Act hits the road to reach out to surrounding towns of the Savannah River Site that are struggling with soaring unemployment rates. This project helps recruit thousands of people to new jobs in environmental cleanup at the Savannah River Site.

  17. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect (OSTI)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01T23:59:59.000Z

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  18. Mixed surfactant systems for enhanced oil recovery

    SciTech Connect (OSTI)

    Llave, F.M.; Gall, B.L.; Noll, L.A.

    1990-12-01T23:59:59.000Z

    The results of an evaluation of mixed surfactant systems for enhanced oil recovery are described. Several surfactant combinations have been studied. These include alkyl aryl sulfonates as primary surfactants and carboxymethylated ethoxylated (CME) surfactants and ethoxylated sulfonates (ES) as secondary surfactants. The ethoxylated surfactants increase the salinity tolerance of the primary surfactants and, in theory, allow tailoring of the surfactant system to match selected reservoir conditions. The experiments conducted included interfacial tension (IFT) measurements, phase behavior measurements, adsorption and/or chromatographic separation of mixed surfactant systems, measurements of solution properties such as the critical micelle concentration (CMC) of surfactant mixtures, and crude oil displacement experiments. The effects of temperature, surfactant concentration, salinity, presence of divalent ions, hydrocarbon type, and component proportions in the mixed surfactant combinations, and injection strategies on the performance potential of the targeted surfactant/hydrocarbon systems were studied. 40 refs., 37 figs., 8 tabs.

  19. September 2010 American Recovery and

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    September 2010 i American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Naval by applying GSHP systems. The current HVAC system for the building is a conventional Air Handling Unit (AHU) system with chiller. The heating and the DHW are provided by district steam. The building is close

  20. Biosurfactant and enhanced oil recovery

    DOE Patents [OSTI]

    McInerney, Michael J. (Norman, OK); Jenneman, Gary E. (Norman, OK); Knapp, Roy M. (Norman, OK); Menzie, Donald E. (Norman, OK)

    1985-06-11T23:59:59.000Z

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  1. Quantifying Vegetation Recovery on Santa Rosa Island

    E-Print Network [OSTI]

    Rentschlar, Elizabeth

    2014-12-09T23:59:59.000Z

    The rate of recovery on barrier islands after hurricanes is not well understood, because the majority of studies have focused on the geomorphic impact of storms on barrier islands. Dune vegetation recovery is a vital component of barrier island...

  2. District of Columbia Recovery Act State Memo

    Broader source: Energy.gov [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nations energy and environmental future. The Recovery Act investments in the District of Columbia...

  3. Electrochemical catalyst recovery method

    DOE Patents [OSTI]

    Silva, L.J.; Bray, L.A.

    1995-05-30T23:59:59.000Z

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  4. Sandia National Laboratories: Recovery Act (ARRA) Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with: ARRA * awardees * contractors * DOE * Energy * Grid Integration * Partnership * photovoltaic * Photovoltaics * PV * Recovery Act * reliability * Renewable Energy * SAND...

  5. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yorstos, Yannis C.

    2003-03-19T23:59:59.000Z

    The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

  6. Recovery of hydrogen iodide

    DOE Patents [OSTI]

    Norman, J.H.

    1983-08-02T23:59:59.000Z

    A method is described for extraction of HI from an aqueous solution of HI and I[sub 2]. HBr is added to create a two-phase liquid mixture wherein a dry phase consists essentially of HBr, I and HI and is in equilibrium with a wet phase having a far greater HBr:HI ratio. Using a countercurrent extractor, two solutions can be obtained: a dry HBr--HI--I[sub 2] solution and a wet essentially HBr solution. The dry and wet phases are easily separable, and HI is recovered from the dry phase, after first separating I[sub 2], as by distillation. Alternatively, the HI-HBr liquid mixture is treated to catalytically decompose the HI. HBr is recovered from the wet phase by suitable treatment, including high-pressure distillation, to produce an H[sub 2]O--HBr azeotrope that is not more than 25 mole percent HBr. The azeotrope may be returned for use in an earlier step in the overall process which results in the production of the aqueous solution of HI and I[sub 2] without major detriment because of the presence of HBr. 1 fig.

  7. Recovery of hydrogen iodide

    DOE Patents [OSTI]

    Norman, John H. (La Jolla, CA)

    1983-01-01T23:59:59.000Z

    A method of extraction of HI from an aqueous solution of HI and I.sub.2. HBr is added to create a two-phase liquid mixture wherein a dry phase consists essentially of HBr, I and HI and is in equilibrium with a wet phase having a far greater HBr:HI ratio. Using a countercurrent extractor, two solutions can be obtained: a dry HBr--HI--I.sub.2 solution and a wet essentially HBr solution. The dry and wet phases are easily separable, and HI is recovered from the dry phase, after first separating I.sub.2, as by distillation. Alternatively, the HI-HBr liquid mixture is treated to catalytically decompose the HI. HBr is recovered from the wet phase by suitable treatment, including high-pressure distillation, to produce an H.sub.2 O--HBr azeotrope that is not more than 25 mole percent HBr. The azeotrope may be returned for use in an earlier step in the overall process which results in the production of the aqueous solution of HI and I.sub.2 without major detriment because of the presence of HBr.

  8. Recovery of cesium

    DOE Patents [OSTI]

    Izatt, Reed M. (Provo, UT); Christensen, James J. (Provo, UT); Hawkins, Richard T. (Orem, UT)

    1984-01-01T23:59:59.000Z

    A process of recovering cesium ions from mixtures of ions containing them and other ions, e.g., a solution of nuclear waste materials, which comprises establishing a separate source phase containing such a mixture of ions, establishing a separate recipient phase, establishing a liquid membrane phase in interfacial contact with said source and recipient phases, said membrane phase containing a ligand, preferably a selected calixarene as depicted in the drawing, maintaining said interfacial contact for a period of time long enough to transport by said ligand a substantial portion of the cesium ion from the source phase to the recipient phase, and recovering the cesium ion from the recipient phase. The separation of the source and recipient phases may be by the membrane phase only, e.g., where these aqueous phases are emulsified as dispersed phases in a continuous membrane phase, or may include a physical barrier as well, e.g., an open-top outer container with an inner open-ended container of smaller cross-section mounted in the outer container with its open bottom end spaced from and above the closed bottom of the outer container so that the membrane phase may fill the outer container to a level above the bottom of the inner container and have floating on its upper surface a source phase and a recipient phase separated by the wall of the inner container as a physical barrier. A preferred solvent for the ligand is a mixture of methylene chloride and carbon tetrachloride.

  9. Recovery Act Transportation Electrification

    SciTech Connect (OSTI)

    Gogineni, Kumar

    2013-12-31T23:59:59.000Z

    ChargePoint America demonstrated the viability, economic and environmental benefits of an electric vehicle-charging infrastructure. Electric vehicles (EVs) and plug-in electric vehicles (PHEVs) arrived in late 2010, there was a substantial lack of infrastructure to support these vehicles. ChargePoint America deployed charging infrastructure in ten (10) metropolitan regions in coordination with vehicle deliveries targeting those same regions by our OEM partners: General Motors, Nissan, Fisker Automotive, Ford, smart USA, and BMW. The metropolitan regions include Central Texas (Austin/San Antonio), Bellevue/Redmond (WA), Southern Michigan, Los Angeles area (CA), New York Metro (NY), Central Florida (Orlando/Tampa), Sacramento (CA), San Francisco/San Jose (CA), Washington DC and Boston (MA). ChargePoint America installed more than 4,600 Level 2 (220v) SAE J1772 UL listed networked charging ports in home, public and commercial locations to support approximately 2000 program vehicles. ChargePoint collected data to analyze how individuals, businesses and local governments used their vehicles. Understanding driver charging behavior patterns will provide the DoE with critical information as EV adoption increases in the United States.

  10. Recovery Act ? An Interdisciplinary Program for Education and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Recovery Act An Interdisciplinary Program for Education and Outreach in Transportation Electrification Recovery Act An Interdisciplinary...

  11. Engine breather oil recovery system

    SciTech Connect (OSTI)

    Speer, S.R.; Norton, J.G.; Wilson, J.D.

    1990-08-14T23:59:59.000Z

    This patent describes an engine breather oil recovery system, for use with reciprocating engines having an oil breather and an oil reservoir recovery system. It comprises:an engine breather outlet from the engine; a vapor and oil separator device in fluid flow connection with the engine breather outlet; a motive flow suction means in fluid flow connection between the separator device and the engine, so as to provide a substantially continuous pressure drop between the separator device and the engine oil reservoir; an engine fluid system in parallel with the separator device; and an engine driven pump in fluid flow connection with such other engine fluid system, wherein the motive force for the motive flow suction means is provided by the fluid from the engine pump.

  12. Counterpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, Emanuel M. (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  13. Overpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, Emanuel M. (Los Alamos, NM)

    1989-01-01T23:59:59.000Z

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  14. Recovery of gallium from aluminum industry residues

    SciTech Connect (OSTI)

    Carvalho, M.S.; Neto, K.C.M.; Nobrega, A.W.; Medeiros, J.A.

    2000-01-01T23:59:59.000Z

    A procedure is proposed to recover gallium from flue dust aluminum residues produced in plants by using solid-phase extraction with a commercial polyether-type polyurethane foam (PUF). Gallium can be separated from high concentrations of aluminum, iron, nickel, titanium, vanadium, copper, zinc, sulfate, fluoride, and chloride by extraction with PUF from 3 M sulfuric acid and 3 M sodium chloride concentration medium with at least a 92% efficiency. Gallium backextraction was fast and quantitative with ethanol solution. In all recovery steps commercial-grade reagents could be used, including tap water. The recovered gallium was precipitated with sodium hydroxide solution, purified by dissolution and precipitation, calcinated, and the final oxide was 98.6% pure.

  15. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect (OSTI)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30T23:59:59.000Z

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

  16. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 80. Quarterly report, July--September, 1994

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This report contains information on petroleum enhanced recovery projects. In addition to project descriptions, contract numbers, principal investigators and project management information is included.

  17. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers

    SciTech Connect (OSTI)

    Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

    2007-12-31T23:59:59.000Z

    The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or cut line to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel tubes. Also, these fluctuating air flow patterns can result in deposition of black liquor on the wall tubes, and during periods when deposition is high, there is a noticeable increase in the concentrations of sulfur-bearing gases like hydrogen sulfide and methyl mercaptan. Laboratory studies have shown that chromized and aluminized surface treatments on carbon steel improve the resistance to sulfidation attack. Studies of superheater corrosion and cracking have included laboratory analyses of cracked tubes, laboratory corrosion studies designed to simulate the superheater environment and field tests to study the movement of superheater tubes and to expose a corrosion probe to assess the corrosion behavior of alternate superheater alloys, particularly alloys that would be used for superheaters operating at higher temperatures and higher pressures than most current boilers. In the laboratory corrosion studies, samples of six alternate materials were immersed in an aggressive, low melting point salt mixture and exposed for times up to 336 h, at temperatures of 510, 530 or 560C in an inert or reactive cover gas. Using weight change and results of metallographic examination, the samples were graded on their resistance to the various environments. For the superheater corrosion probe studies, samples of the same six materials were exposed on an air-cooled corrosion probe exposed in the superheater section of a recovery boiler for 1000 h. Post exposure examination showed cracking and/or subsurface attack in the samples exposed at the higher temperatures with the attack being more severe for samples 13 exposed above the first melting temperature of the deposits that collected on the superheater tubes. From these superheater studies, a ranking was developed for the six materials tested. The task addressing cracking and corrosion of primary air port tubes that was part of this project produced results that have been extensively implemented in recovery boilers in North America, the Nordic countries and many other parts of the world. By utilizing these results, boilers ar

  18. Investigation of Electrochemical Recovery of Zirconium from Spent Nuclear Fuels

    SciTech Connect (OSTI)

    Michael Simpson; II-Soon Hwang

    2014-06-01T23:59:59.000Z

    This project uses both modeling and experimental studies to design optimal electrochemical technology methods for recovery of zirconium from used nuclear fuel rods for more effective waste management. The objectives are to provide a means of efficiently separating zirconium into metallic high-level waste forms and to support development of a process for decontamination of zircaloy hulls to enable their disposal as low- and intermediate-level waste. Modeling work includes extension of a 3D model previously developed by Seoul National University for uranium electrorefining by adding the ability to predict zirconium behavior. Experimental validation activities include tests for recovery of zirconium from molten salt solutions and aqueous tests using surrogate materials. *This is a summary of the FY 2013 progress for I-NERI project # 2010-001-K provided to the I-NERI office.

  19. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOE Patents [OSTI]

    Agarwal, Pradeep K.

    2007-01-16T23:59:59.000Z

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  20. Process for tertiary oil recovery using tall oil pitch

    DOE Patents [OSTI]

    Radke, Clayton J. (El Cerrito, CA)

    1985-01-01T23:59:59.000Z

    Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.

  1. Recovery from chemical, biological, and radiological incidents :

    SciTech Connect (OSTI)

    Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

    2012-06-01T23:59:59.000Z

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  2. Counterpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1984-09-28T23:59:59.000Z

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  3. Overpulse railgun energy recovery circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1984-09-28T23:59:59.000Z

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  4. Recovery Act State Memos Tennessee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8, 2015JuneDepartmentRecovery

  5. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8,Past Opportunities » Recovery Act

  6. Modification of chemical and physical factors in steamflood to increase heavy oil recovery

    SciTech Connect (OSTI)

    Yortsos, Yanis C.

    2000-01-19T23:59:59.000Z

    This report covers the work performed in the various physicochemical factors for the improvement of oil recovery efficiency. In this context the following general areas were studied: (1) The understanding of vapor-liquid flows in porous media, including processes in steam injection; (2) The effect of reservoir heterogeneity in a variety of foams, from pore scale to macroscopic scale; (3) The flow properties of additives for improvement of recovery efficiency, particularly foams and other non-Newtonian fluids; and (4) The development of optimization methods to maximize various measures of oil recovery.

  7. Faces of the Recovery Act: Sun Catalytix

    Broader source: Energy.gov [DOE]

    At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act.

  8. Combustion & Fuels Waste Heat Recovery & Utilization Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion & Fuels Waste Heat Recovery & Utilization Project Project Technical Lead - Thermoelectric Analysis & Materials 27 February 2008 2008 DOE OVT Annual Merit Review 2008...

  9. American Recovery and Reinvestment Act, Financial Assistance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ARRAAttachment3.rtf FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR) Financial Assistance Funding Opportunity Announcement...

  10. Recovery Act Progress Update: Reactor Closure Feature

    SciTech Connect (OSTI)

    Cody, Tom

    2010-01-01T23:59:59.000Z

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  11. Faces of the Recovery Act: 1366 Technologies

    Broader source: Energy.gov [DOE]

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production.

  12. Recovery Act Progress Update: Reactor Closure Feature

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14T23:59:59.000Z

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  13. Los Alamos plants willows for flood recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plants willows Los Alamos plants willows for flood recovery The Laboratory's Corrective Actions Program (CAP) planted nearly 10,000 willows to help preserve the Pueblo Canyon...

  14. Recovery News Flashes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery and Reinvestment Act workers are in the final stage of decommissioning a nuclear reactor after they recently removed thick steel shields once used to absorb...

  15. American Recovery and Reinvestment Act | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    imaging as well as next-generation oxygen-plasma assisted molecular beam epitaxy Microfluidics manipulation and manufacturing. Learn more detail about Recovery Act Instruments...

  16. Cost Recovery Charge (CRC) Calculation Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost Recovery Charge (CRC) Calculation Table Updated: March 20, 2015 FY 2016 February 2015 CRC Calculation Table (pdf) Final FY 2015 CRC Letter & Table (pdf) Note: The Cost...

  17. Industrial Heat Recovery with Organic Rankine Cycles

    E-Print Network [OSTI]

    Hnat, J. G.; Patten, J. S.; Cutting, J. C.; Bartone, L. M.

    1982-01-01T23:59:59.000Z

    to examine a specific application of the use of an ORC heat recovery system and compare it to a stear), Rankine cycle heat recovery system. The particular application ~ssumed is heat recovery from diesel engine exhaust gas at a temPErature of 700F. Figure...,vaporized and superheated ina flue gas heat recovery su bsystem. he super heated fluid is expanded through a turbine for power p oduction, condensed in a water cooled condenser and return d to the vaporizer via feed pu mps. In the steam cycle, a port n of the Figure 1...

  18. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes...

  19. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with...

  20. Modified Accelerated Cost-Recovery System (MACRS)

    Broader source: Energy.gov [DOE]

    Under the federal Modified Accelerated Cost-Recovery System (MACRS), businesses may recover investments in certain property through depreciation deductions. The MACRS establishes a set of class l...

  1. Advanced Oil Recovery Technologies for Improved Recovery From Slope Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect (OSTI)

    Mark B. Murphy

    1998-01-30T23:59:59.000Z

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  2. Wastewater heat recovery method and apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-01-01T23:59:59.000Z

    This invention is comprised of a heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  3. Faces of the Recovery Act: Sun Catalytix

    ScienceCinema (OSTI)

    Nocera, Dave

    2013-05-29T23:59:59.000Z

    BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

  4. Optimize carbon dioxide sequestration, enhance oil recovery

    E-Print Network [OSTI]

    - 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

  5. Managing Manure with Biogas Recovery Systems

    E-Print Network [OSTI]

    Mukhtar, Saqib

    emissions and capture biogas--a useful source of energy. About Anaerobic Digestion Biogas recovery systems manure in an oxygen-free environment. One of the natural prod- ucts of anaerobic digestion is biogas Digestion Biogas recovery systems are a proven technology. Currently, more than 30 digester systems

  6. Thermal recovery of oil and bitumen

    SciTech Connect (OSTI)

    Butler, R.M. (Dept. of Chemical and Petroleum Engineering, Univ. of Calgary, Calgary, Alberta (CA))

    1991-01-01T23:59:59.000Z

    This book is organized into the following chapters: Introduction to Thermal Recovery; Conduction of Heat Within Solids; Convective Heating within Reservoirs; Steamfloodings; The Displacement of Heavy Oil; Cyclic Steam Simulation; Steam-Assisted Gravity Drainage; Steam Recovery Equipment and Facilities; and In Situ Combustion.

  7. Recovery in aluminium Ph.D. thesis

    E-Print Network [OSTI]

    to be superior. iii #12;The first use of the method was a study of recovery of a deformed aluminium alloy (AA1050). The aluminium alloy was deformed by cold rolling to a thickness reduction of 38%. The sample was annealed at 300Recovery in aluminium Ph.D. thesis by Carsten Gundlach Supervisors: Henning Friis Poulsen Wolfgang

  8. Recovery of uranium from seawater

    SciTech Connect (OSTI)

    Sugasaka, K. (Government Industrial Research Inst., Shikoku, Japan); Katoh, S.; Takai, N.; Takahashi, H.; Umezawa, Y.

    1981-01-01T23:59:59.000Z

    Seawater contains various elements in solution. Deuterium, lithium, and uranium are the important ingredients for energy application at present and in the future. This paper deals with the recovery of uranium from seawater, with emphasis on the development of an adsorbent with high selectivity and rate of adsorption for uranium. Polyacrylamidoxime chelating resins were synthesized from various co-polymers of acrylonitrile and cross-linking agents. The resulting resins with the chelating amidoxime group showed selective adsorption for uranium in seawater. The amount of uranium adsorbed from seawater at room temperature reached 3.2 mg/g resin after 180 days. Polyacrylamidoxime fiber, which was prepared from polyacrylonitrile fiber and hydroxylamine, showed a high rate of adsorption for uranium. The polyacrylamidoxime fiber conditioned with 1 M HC1 and 1 M NaOH adsorbed 4 mg U/g fiber from seawater in ten days. 9 figures, 6 tables.

  9. Method for enhanced oil recovery

    DOE Patents [OSTI]

    Comberiati, Joseph R. (Morgantown, WV); Locke, Charles D. (Morgantown, WV); Kamath, Krishna I. (Chicago, IL)

    1980-01-01T23:59:59.000Z

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  10. Environmental regulations handbook for enhanced oil recovery. Final report

    SciTech Connect (OSTI)

    Wilson, T.D.

    1980-08-01T23:59:59.000Z

    A guide to environmental laws and regulations which have special significance for enhanced oil recovery (EOR) is presented. The Clean Air Act, the Clean Water Act, the Safe Drinking Water Act, Resource Conservation and Recovery Act, federal regulations, and state regulations are discussed. This handbook has been designed as a planning tool and a convenient reference source. The 16 states included comprise the major oil-producing states in various regions of the state. The major topics covered are: general guidelines for complying with environmental laws and regulations; air pollution control; water pollution control; protecting drinking water: underground injection control; hazardous waste management; and federal laws affecting siting or operation of EOR facilities. (DMC)

  11. ASPEN Plus Simulation of CO2 Recovery Process

    SciTech Connect (OSTI)

    Charles W. White III

    2003-09-30T23:59:59.000Z

    ASPEN Plus simulations have been created for a CO{sub 2} capture process based on adsorption by monoethanolamine (MEA). Three separate simulations were developed, one each for the flue gas scrubbing, recovery, and purification sections of the process. Although intended to work together, each simulation can be used and executed independently. The simulations were designed as template simulations to be added as a component to other more complex simulations. Applications involving simple cycle or hybrid power production processes were targeted. The default block parameters were developed based on a feed stream of raw flue gas of approximately 14 volume percent CO{sub 2} with a 90% recovery of the CO{sub 2} as liquid. This report presents detailed descriptions of the process sections as well as technical documentation for the ASPEN simulations including the design basis, models employed, key assumptions, design parameters, convergence algorithms, and calculated outputs.

  12. Optimal recovery sequencing for critical infrastructure resilience assessment.

    SciTech Connect (OSTI)

    Vugrin, Eric D.; Brown, Nathanael J. K.; Turnquist, Mark Alan (Cornell University, Ithaca, NY)

    2010-09-01T23:59:59.000Z

    Critical infrastructure resilience has become a national priority for the U. S. Department of Homeland Security. System resilience has been studied for several decades in many different disciplines, but no standards or unifying methods exist for critical infrastructure resilience analysis. This report documents the results of a late-start Laboratory Directed Research and Development (LDRD) project that investigated the identification of optimal recovery strategies that maximize resilience. To this goal, we formulate a bi-level optimization problem for infrastructure network models. In the 'inner' problem, we solve for network flows, and we use the 'outer' problem to identify the optimal recovery modes and sequences. We draw from the literature of multi-mode project scheduling problems to create an effective solution strategy for the resilience optimization model. We demonstrate the application of this approach to a set of network models, including a national railroad model and a supply chain for Army munitions production.

  13. Public Service Commission Authorization to Utilize an Alternative Method of Cost Recovery for Certain Base Load Generation (Mississippi)

    Broader source: Energy.gov [DOE]

    The Senate Bill 2793 authorizes the Public Service Commission (PSC) to utilize an alternative cost recovery for certain base load generation. The PSC is authorized to include in an electric...

  14. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 78, quarter ending March 31, 1994

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This report presents descriptions of various research projects and field projects concerned with the enhanced recovery of petroleum. Contract numbers, principal investigators, company names, and project management information is included.

  15. Predicting the adsorption of second generation biofuels by polymeric resins with applications for in situ product recovery (ISPR)

    E-Print Network [OSTI]

    Nielsen, David R.

    The application of hydrophobic polymeric resins as solid-phase adsorbent materials for the recovery and purification of prospective second generation biofuel compounds, including ethanol, iso-propanol, n-propanol, iso-butanol, ...

  16. Metals recovery from wastes. (Latest citations from Metadex). NewSearch

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The bibliography contains citations concerning the recovery and recycling or reuse of ferrous and nonferrous metals from various industrial wastes. Types of waste considered include waste water, sludge, scrap, battery waste, and waste liquors. (Contains 250 citations and includes a subject term index and title list.)

  17. Heat Recovery From Solid Waste

    E-Print Network [OSTI]

    Underwood, O. W.

    1981-01-01T23:59:59.000Z

    areas of evaluation, including the cost of fuel, cost of solid waste disposal, plant energy requirements, available technology, etc....

  18. Activities of the Oil Implementation Task Force; Contracts for field projects and supporting research on enhanced oil recovery, July--September 1990

    SciTech Connect (OSTI)

    Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

    1991-05-01T23:59:59.000Z

    The report contains a general introduction and background to DOE's revised National Energy Strategy Advanced Oil Recovery Program and activities of the Oil Implementation Task Force; a detailed synopsis of the symposium, including technical presentations, comments and suggestions; a section of technical information on deltaic reservoirs; and appendices containing a comprehensive listing of references keyed to general deltaic and geological aspects of reservoirs and those relevant to six selected deltaic plays. Enhanced recovery processes include chemical floodings, gas displacement, thermal recovery, geoscience, and microbial recovery.

  19. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yorstos, Yanis C.

    2002-03-11T23:59:59.000Z

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes.

  20. Performance and cost models for the direct sulfur recovery process. Task 1 Topical report, Volume 3

    SciTech Connect (OSTI)

    Frey, H.C. [North Carolina State Univ., Raleigh, NC (United States); Williams, R.B. [Carneigie Mellon Univ., Pittsburgh, PA (United States)

    1995-09-01T23:59:59.000Z

    The purpose of this project is to develop performance and cost models of the Direct Sulfur Recovery Process (DSRP). The DSRP is an emerging technology for sulfur recovery from advanced power generation technologies such as Integrated Gasification Combined Cycle (IGCC) systems. In IGCC systems, sulfur present in the coal is captured by gas cleanup technologies to avoid creating emissions of sulfur dioxide to the atmosphere. The sulfur that is separated from the coal gas stream must be collected. Leading options for dealing with the sulfur include byproduct recovery as either sulfur or sulfuric acid. Sulfur is a preferred byproduct, because it is easier to handle and therefore does not depend as strongly upon the location of potential customers as is the case for sulfuric acid. This report describes the need for new sulfur recovery technologies.

  1. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    DOE Patents [OSTI]

    Meisner, Gregory P

    2013-10-08T23:59:59.000Z

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  2. Office of Electricity Delivery and Energy Reliability Recovery...

    Energy Savers [EERE]

    Electricity Delivery and Energy Reliability Recovery Program Plan Office of Electricity Delivery and Energy Reliability Recovery Program Plan Microsoft Word - OE PSRP June 5 2009...

  3. Supporting Statement: OE Recovery Act Financial Assistance Grants...

    Energy Savers [EERE]

    Supporting Statement: OE Recovery Act Financial Assistance Grants OMB Control Number 1910-5149 Supporting Statement: OE Recovery Act Financial Assistance Grants OMB Control Number...

  4. South Carolina Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    South Carolina Recovery Act State Memo South Carolina has substantial nuclear and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful...

  5. Recovery Act, Office of the Biomass Program,Funding Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special Notice Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special...

  6. advanced oil recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 4 Enhanced oil recovery through water imbibition in fractured...

  7. actinides recovery rar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 111 Key recovery in a business environment Computer Technologies...

  8. abnormal metabolic recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 140 Key recovery in a business environment Computer Technologies...

  9. advanced secondary recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known 116 Key recovery in a business environment Computer Technologies...

  10. FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act...

    Energy Savers [EERE]

    FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR) FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated...

  11. Synchrophasor Technologies and their Deployment in the Recovery...

    Broader source: Energy.gov (indexed) [DOE]

    Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid...

  12. Recovery Act Selections for Smart Grid Invesment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July...

  13. American Recovery & Reinvestment Act, ARRA, clean energy projects...

    Energy Savers [EERE]

    American Recovery & Reinvestment Act, ARRA, clean energy projects, energy efficiency, smart grid, alternative fuels, geothermal energy American Recovery & Reinvestment Act, ARRA,...

  14. Cumulative Federal Payments to OE Recovery Act Recipients, through...

    Broader source: Energy.gov (indexed) [DOE]

    September 30, 2014 Cumulative Federal Payments to OE Recovery Act Recipients, through September 30, 2014 Cumulative Federal Payments to OE Recovery Act Recipients, through...

  15. Cumulative Federal Payments to OE Recovery Act Recipients, through...

    Broader source: Energy.gov (indexed) [DOE]

    3 Cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2013 Graph of cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2013. OE...

  16. Cumulative Federal Payments to OE Recovery Act Recipients, through...

    Broader source: Energy.gov (indexed) [DOE]

    4 Cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2014 Cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2014. OE ARRA...

  17. Energy Secretary Chu Announces $384 Million in Recovery Act Funding...

    Energy Savers [EERE]

    384 Million in Recovery Act Funding for Environmental Cleanup in New Mexico Energy Secretary Chu Announces 384 Million in Recovery Act Funding for Environmental Cleanup in New...

  18. Recovery Act Workers Demolish Facility Tied to Project Pluto...

    Office of Environmental Management (EM)

    Recovery and Rein- vestment Act accomplishment helping clean up traces of past nuclear testing at the Nevada National Security Site (NNSS). Recovery Act workers safely hauled...

  19. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Abstract: A novel EOR method using...

  20. Post-Shred Materials Recovery Technology Development and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration 2009 DOE Hydrogen Program and Vehicle...

  1. Post-Shred Materials Recovery Technology Development and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Post-Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration Presentation from the U.S. DOE Office...

  2. Department of Energy Issues Loan Guarantee Supported by Recovery...

    Office of Environmental Management (EM)

    Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project September...

  3. Department of Energy Issues Loan Guarantee Supported by Recovery...

    Energy Savers [EERE]

    Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada...

  4. Dynamic Recovery in Silicate-Apatite Structures Under Irradiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery in Silicate-Apatite Structures Under Irradiation and Implications for Long-Term Immobilization of Actinides. Dynamic Recovery in Silicate-Apatite Structures Under...

  5. President Obama Announces Over $467 Million in Recovery Act Funding...

    Office of Environmental Management (EM)

    Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar...

  6. President Obama Announces Over $467 Million in Recovery Act Funding...

    Energy Savers [EERE]

    President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for...

  7. DOE Offers $15 Million Geothermal Heat Recovery Opportunity ...

    Office of Environmental Management (EM)

    15 Million Geothermal Heat Recovery Opportunity DOE Offers 15 Million Geothermal Heat Recovery Opportunity August 25, 2010 - 11:11am Addthis Photo of geothermal power plant....

  8. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

  9. addiction recovery principles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    management, and recovery coaching helped, or are now helping, transform addiction treatment into a more person-centered, holistic, family-centered, and recovery-focused system...

  10. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  11. An Overview of Thermoelectric Waste Heat Recovery Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

  12. Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry 2005...

  13. Performance of an Organic Rankine Cycle Waste Heat Recovery System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty...

  14. Overview of Fords Thermoelectric Programs: Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control Overview of progress...

  15. Recovery Act Workers Remediate and Restore Former Waste Sites...

    Office of Environmental Management (EM)

    Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War...

  16. Recovery Act: Wind Energy Consortia between Institutions of Higher...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry A...

  17. High Efficiency Microturbine with Integral Heat Recovery - Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery - Presentation by Capstone Turbine Corporation, June 2011 High Efficiency Microturbine with Integral Heat Recovery -...

  18. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Office of Environmental Management (EM)

    Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated...

  19. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and installed with DOE Recovery Act Funding. Blast Furnace Gas Recovery Boiler Provides Steam and Power at Steel Mill More Documents & Publications Capturing Waste Gas: Saves...

  20. americium recovery service: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25 Next Page Last Page Topic Index 1 Asynchronous intrusion recovery for interconnected web services Biology and Medicine Websites Summary: Asynchronous intrusion recovery for...

  1. Audit Report: The Department of Energy's American Recovery and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy's American Recovery and Reinvestment Act - California State Energy Program Audit Report: The Department of Energy's American Recovery and Reinvestment Act - California...

  2. Direct condensation refrigerant recovery and restoration system

    SciTech Connect (OSTI)

    Grant, D.C.H.

    1992-03-10T23:59:59.000Z

    This patent describes a refrigerant recovery and purification system for removing gaseous refrigerant from a disabled refrigeration unit, cleaning the refrigerant of contaminants, and converting the gaseous refrigerant to a liquid state for storage. It comprises a low pressure inlet section; a high pressure storage section; the low pressure inlet section comprising: an oil and refrigerant gas separator, including a separated oil removal means, first conduit means for connecting an inlet of the separator to the disabled refrigerant unit, a slack-sided accumulator, second conduit means connecting the separator to the slack-sided accumulator, a reclaim condenser, third conduit means connecting the separator and the reclaim condenser in series, an evaporator coil in the reclaim condenser connectable to a conventional operating refrigeration system for receiving a liquid refrigerant under pressure for expansion therein, the evaporator coil forming a condensing surface for condensing the refrigerant gas at near atmospheric pressure in the condenser, a liquid receiver, a reclaimed refrigerant storage tank, fourth conduit means further connecting the liquid receiver in series with the reclaim condenser, downstream thereof, means between the reclaim condenser and the liquid receiver.

  3. Strontium-90 and promethium-147 recovery

    SciTech Connect (OSTI)

    Hoisington, J.E.; McDonell, W.R.

    1982-08-30T23:59:59.000Z

    Strontium-90 and promethium-147 are fission product radionuclides with potential for use as heat source materials in high reliability, non-interruptible power supplies. Interest has recently been expressed in their utilization for Department of Defense (DOD) applications. This memorandum summarizes the current inventories, the annual production rates, and the possible recovery of Sr-90 and Pm-147 from nuclear materials production operations at Hanford and Savannah River. Recovery of these isotopes from LWR spend fuel utilizing the Barnwell Nuclear Fuels Plant (BNFP) is also considered. Unit recovery costs at each site are provided.

  4. Inertial fusion energy power reactor fuel recovery system

    SciTech Connect (OSTI)

    Gentile, C. A.; Kozub, T.; Langish, S. W.; Ciebiera, L. P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Nobile, A.; Wermer, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sessions, K. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2008-07-15T23:59:59.000Z

    A conceptual design is proposed to support the recovery of un-expended fuel, ash, and associated post-detonation products resident in plasma exhaust from a {approx}2 GWIFE direct drive power reactor. The design includes systems for the safe and efficient collection, processing, and purification of plasma exhaust fuel components. The system has been conceptually designed and sized such that tritium bred within blankets, lining the reactor target chamber, can also be collected, processed, and introduced into the fuel cycle. The system will nominally be sized to process {approx}2 kg of tritium per day and is designed to link directly to the target chamber vacuum pumping system. An effort to model the fuel recovery system (FRS) using the Aspen Plus engineering code has commenced. The system design supports processing effluent gases from the reactor directly from the exhaust of the vacuum pumping system or in batch mode, via a buffer vessel in the Receiving and Analysis System. Emphasis is on nuclear safety, reliability, and redundancy as to maximize availability. The primary goal of the fuel recovery system design is to economically recycle components of direct drive IFE fuel. The FRS design is presented as a facility sub-system in the context of supporting the larger goal of producing safe and economical IFE power. (authors)

  5. Recovery of flexible polyurethane foam from shredder residue.

    SciTech Connect (OSTI)

    Daniels, E. J.; Jody, b. J.

    1999-06-29T23:59:59.000Z

    Argonne National Laboratory has developed a patented, continuous process for the recovery of flexible polyurethane foam (PUF) from auto shredder residue (ASR). To test the process, Argonne researchers conceived of, designed, and built a continuous foam washing and drying system that was pilot-tested at a shredder facility for six months. Economic analysis of the process, using manufacturers' quotes and operating data from Argonne's pilot plant, indicates a payback of less than two years for a plant producing about 1,000 ton/yr of foam. Samples of clean foam were shipped to three major foam reprocessors; all three indicated that the quality of the PUF recovered by the Argonne process met their requirements. Tests of the recovered foam by an independent testing laboratory showed that the recycled foam met the specifications for several automotive applications, including carpet padding, headliner, and sound-suppression support materials. Recovery of foam reduces the mass and the volume of material going to the landfill by about 5% and 30%, respectively. Annually, recovery will save about 1.2 x 10{sup 12} Btu of energy, cut the amount of solid waste being landfilled by about 150,000 tons, and eliminate the emission of about 250 tons of volatile organic compounds (VOCs) into the air.

  6. Energy Recovery from Solid Waste for Small Cities - Has the Time Really Come?

    E-Print Network [OSTI]

    Winn, W. T., Jr.; Paxton, W.

    1980-01-01T23:59:59.000Z

    to consider energy recovery from solid waste using modular, two stage incinerations with waste heat recovery....

  7. Recovery Act State Memos Indiana

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    outdoor products in its production facility. Lighting fixtures including light-emitting diode (LED) technologies dramatically reduce energy consumption due to longer product...

  8. Recovery Act State Memos Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to advance the Department's mission across a wide range of areas, including developing Smart Grids and novel, renewable and or ecologically friendly energy sources. AnAdArko...

  9. DEVELOPMENT OF BIOSURFACTANT-MEDIATED OIL RECOVERY IN MODEL POROUS SYSTEMS AND COMPUTER SIMULATIONS OF BIOSURFACTANT-MEDIATED OIL RECOVERY

    SciTech Connect (OSTI)

    M.J. McInerney; S.K. Maudgalya; R. Knapp; M. Folmsbee

    2004-05-31T23:59:59.000Z

    Current technology recovers only one-third to one-half of the oil that is originally present in an oil reservoir. Entrapment of petroleum hydrocarbons by capillary forces is a major factor that limits oil recovery (1, 3, 4). Hydrocarbon displacement can occur if interfacial tension (IFT) between the hydrocarbon and aqueous phases is reduced by several orders of magnitude. Microbially-produced biosurfactants may be an economical method to recover residual hydrocarbons since they are effective at low concentrations. Previously, we showed that substantial mobilization of residual hydrocarbon from a model porous system occurs at biosurfactant concentrations made naturally by B. mojavensis strain JF-1 if a polymer and 2,3-butanediol were present (2). In this report, we include data on oil recovery from Berea sandstone experiments along with our previous data from sand pack columns in order to relate biosurfactant concentration to the fraction of oil recovered. We also investigate the effect that the JF-2 biosurfactant has on interfacial tension (IFT). The presence of a co-surfactant, 2,3-butanediol, was shown to improve oil recoveries possibly by changing the optimal salinity concentration of the formulation. The JF-2 biosurfactant lowered IFT by nearly 2 orders of magnitude compared to typical values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. Tertiary oil recovery experiments showed that biosurfactant solutions with concentrations ranging from 10 to 60 mg/l in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of the residual oil present in Berea sandstone cores. When PHPA was used alone, about 10% of the residual oil was recovered. Thus, about 10% of the residual oil recovered in these experiments was due to the increase in viscosity of the displacing fluid. Little or no oil was recovered at biosurfactant concentrations below the critical micelle concentration (about 10 mg/l). Below this concentration, the IFT values were high. At biosurfactant concentrations from 10 to 40 mg/l, the IFT was 1 mN/m. As the biosurfactant concentration increased beyond 40 mg/l, IFT decreased to about 0.1 mN/m. At biosurfactant concentrations in excess of 10 mg/l, residual oil recovery was linearly related to biosurfactant concentration. A modified mathematical model that relates oil recovery to biosurfactant concentration adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration.

  10. Waste Heat Recovery Power Generation with WOWGen

    E-Print Network [OSTI]

    Romero, M.

    applications of heat recovery power generation can be found in Industry (e.g. steel, glass, cement, lime, pulp and paper, refining and petrochemicals), Power Generation (CHP, biomass, biofuel, traditional fuels, gasifiers, diesel engines) and Natural Gas...

  11. Lab completes Recovery Act-funded demolition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demolished under the Recovery Act program at Los Alamos National Laboratory is now a pile of rubble. Built in 1965, the 34,000-square foot High Temperature Chemistry Facility...

  12. Use Feedwater Economizers for Waste Heat Recovery

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  13. Design Considerations for Industrial Heat Recovery Systems

    E-Print Network [OSTI]

    Bywaters, R. P.

    1979-01-01T23:59:59.000Z

    recovery design considerations as well as a summary of typical "waste heat" sources and application sites. A procedure for conducting industrial waste heat surveys is presented. Thermodynamic and heat transfer factors are discussed. Problems associated...

  14. Unconventional gas recovery: state of knowledge document

    SciTech Connect (OSTI)

    Geffen, C.A.

    1982-01-01T23:59:59.000Z

    This report is a synthesis of environmental data and information relevant to the four areas of unconventional gas recovery (UGR) resource recovery: methane from coal, tight western sands, Devonian shales and geopressurized aquifers. Where appropriate, it provides details of work reviewed; while in other cases, it refers the reader to relevant sources of information. This report consists of three main sections, 2, 3, and 4. Section 2 describes the energy resource base involved and characteristics of the technology and introduces the environmental concerns of implementing the technology. Section 3 reviews the concerns related to unconventional gas recovery systems which are of significance to the environment. The potential health and safety concerns of the recovery of natural gas from these resources are outlined in Section 4.

  15. Fluid Catalytic Cracking Power Recovery Computer Simulation

    E-Print Network [OSTI]

    Samurin, N. A.

    1979-01-01T23:59:59.000Z

    operating conditions. The digital computer model simulates the performance of the axial compressor, power recovery expander, regenerator section, and system pressure drops. The program can simulate the process system design conditions for compatibility...

  16. Accuracy guarantees for l1-recovery ?

    E-Print Network [OSTI]

    2010-11-05T23:59:59.000Z

    Nov 5, 2010 ... entries in the signal x (of norm x1 = 5s). On Figure 3 we present the recovery error as a function of s. We run the same simulations in the...

  17. RECOVERY ACT: TAPOCO PROJECT: CHEOAH UPGRADE

    SciTech Connect (OSTI)

    Tran, Paul; 740, 293 Highway; Baden, NC 28009

    2013-02-28T23:59:59.000Z

    Under Funding Opportunity Announcement Number: DE-FOA-0000120, Recovery Act: Hydroelectric Facility Modernization, Alcoa Power Generating Inc. (APGI), a fully owned subsidiary of Alcoa Inc., implemented major upgrades at its Cheoah hydroelectric facility near Robbinsville, North Carolina.

  18. Recovery News Flashes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and radioactive waste landfill. MDA-B was used from 1944 to 1948. April 14, 2011 Idaho Site Advances Recovery Act Cleanup after Inventing Effective Treatment For the first...

  19. Asset Management Equipment Disposal Form -Refrigerant Recovery

    E-Print Network [OSTI]

    Sin, Peter

    Asset Management Equipment Disposal Form - Refrigerant Recovery Safe Disposal Requirements Under refrigeration, cold storage warehouse refrigeration, chillers, and industrial process refrigeration) has to have the refrigerant recovered in accordance with EPA's requirements for servicing. However, equipment that typically

  20. Autonomous Thruster Failure Recovery for Underactuated Spacecraft

    E-Print Network [OSTI]

    . Miller September 2010 SSL #1310 #12;2 #12;Autonomous Thruster Failure Recovery for Underactuated Spacecraft Christopher Masaru Pong, David W. Miller September 2010 SSL #1211 This work is based

  1. Recovery Act State Memos South Dakota

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    solar-wind generates savings for S.D. city ... 6 Clean energy tax credits and grants: 1 For total Recovery Act jobs numbers in South Dakota go to...

  2. Autonomous thruster failure recovery for underactuated spacecraft

    E-Print Network [OSTI]

    Pong, Christopher Masaru

    2010-01-01T23:59:59.000Z

    Thruster failures historically account for a large percentage of failures that have occurred on orbit. Therefore, autonomous thruster failure detection, isolation, and recovery (FDIR) is an essential component to any robust ...

  3. Recovery Act-Funded HVAC projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into heating, ventilation, and air conditioning (HVAC) technologies and...

  4. Pennsylvania Solid Waste- Resource Recovery Development Act

    Broader source: Energy.gov [DOE]

    This act promotes the construction and the application of solid waste disposal/processing and resource recovery systems that preserve and enhance the quality of air, water, and land resources. The...

  5. An Introduction to Waste Heat Recovery

    E-Print Network [OSTI]

    Darby, D. F.

    our dependence on petroleum-based fuels, paper, glass, and agricultural and automotive and hence improve our merchandise .trade balance. equipment industries have all had proven success with heat recovery projects. Solar, wind, geothermal, oil shale...

  6. Recovery Plan Scots Pine Blister Rust

    E-Print Network [OSTI]

    . Monitoring and Detection 7 V. Response 8 VI. USDA Pathogens Permits 9 VII. Economic Impact and Compensation Recovery System (NPDRS) called for in Homeland Security Presidential Directive Number 9 (HSPD-9

  7. Gravity Recovery and Interior Laboratory (GRAIL) Launch

    E-Print Network [OSTI]

    Gravity Recovery and Interior Laboratory (GRAIL) Launch Press Kit/AUGUst 2011 #12;http of its four channels to AC-3, making each channel's secondary audio MPEG 1 Layer II. For digital downlink

  8. Fluid Catalytic Cracking Power Recovery Computer Simulation

    E-Print Network [OSTI]

    Samurin, N. A.

    1979-01-01T23:59:59.000Z

    operating conditions. The digital computer model simulates the performance of the axial compressor, power recovery expander, regenerator section, and system pressure drops. The program can simulate the process system design conditions for compatibility...

  9. Recovery Act Worker Update: Mike Gunnels

    SciTech Connect (OSTI)

    Tire, Brian

    2010-01-01T23:59:59.000Z

    Mike Gunnels at the Savannah River Site tells how the Recovery Act got him out of unemployment and the benefits of training and teamwork in his new job with the Department of Energy.

  10. Recovery Act Worker Update: Mike Gunnels

    ScienceCinema (OSTI)

    Tire, Brian

    2012-06-14T23:59:59.000Z

    Mike Gunnels at the Savannah River Site tells how the Recovery Act got him out of unemployment and the benefits of training and teamwork in his new job with the Department of Energy.

  11. Recovery Act-Funded Working Fluid Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into working fluid technologies and applications. Projects funded by the...

  12. Energy Recovery from Potato Chip Fryers

    E-Print Network [OSTI]

    McKee, H. B.; Kympton, H. W.; Arnold, J. W.; Paisan, J. J.

    1980-01-01T23:59:59.000Z

    The design, operating characteristics, and energy savings from an energy recovery system employed on a potato chip fryer which became operational in December, 1979, is discussed. The design incorporates a modification to an odor control system which...

  13. An Introduction to Waste Heat Recovery

    E-Print Network [OSTI]

    Darby, D. F.

    1985-01-01T23:59:59.000Z

    The recovery of waste heat energy is one element of a complete energy conservation plan. In addition to contributing to the goal of saving energy, utilization of waste heat is also an important source of cost savings. This presentation details...

  14. Recovery Act-Funded Water Heating Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into water heating technologies and applications. Projects funded by the...

  15. Recovery Act State Memos American Samoa

    Energy Savers [EERE]

    Recovery Act funds to set up eight anemometers to measure and quantify the territory's wind potential. Award(s): 9.6 million, Energy Efficiency and Conservation Block Grant...

  16. Design Considerations for Industrial Heat Recovery Systems

    E-Print Network [OSTI]

    Bywaters, R. P.

    1979-01-01T23:59:59.000Z

    recovery design considerations as well as a summary of typical "waste heat" sources and application sites. A procedure for conducting industrial waste heat surveys is presented. Thermodynamic and heat transfer factors are discussed. Problems associated...

  17. Waste Heat Recovery Submerged Arc Furnaces (SAF)

    E-Print Network [OSTI]

    O'Brien, T.

    2008-01-01T23:59:59.000Z

    Waste Heat Recovery- Submerged Arc Furnaces (SAF) Thomas O?Brien Recycled Energy Development, LLC tobrien@recycled-energy.com Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000oF using...

  18. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    -expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat...

  19. USDOE Innovative Clean Coal Technology Demonstration Project: Passamaquoddy Technology Recovery Scrubber{trademark}. Final report: Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This Final Report provides available design, operational, and maintenance information, and marketing plans, on the Passamaquoddy Technology Recovery Scrubber{trademark} demonstration Project at the Dragon Products company`s cement plant at Thomaston, Maine. In addition, data on pollutant removal efficiencies and system economics are reviewed. The Recovery Scrubber was developed to simultaneously address the emission of acid gas pollutants and the disposal of alkaline solid waste at a cement plant. The process, however, has general application to other combustion processes including waste or fossil fuel fired boilers. Selected chemistry of the exhaust gas, (before and after treatment by the Recovery Scrubber), selected chemistry of the cement plant kiln baghouse dust catch (before and after treatment by the Recovery Scrubber), and Dragon cement plant economics are presented. current marketing efforts and potential markets for the Recovery Scrubber in several industries are discussed.

  20. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  1. Faces of the Recovery Act: 1366 Technologies

    SciTech Connect (OSTI)

    Sachs, Ely; Mierlo, Frank van; Obama, Barack

    2010-01-01T23:59:59.000Z

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

  2. Faces of the Recovery Act: 1366 Technologies

    ScienceCinema (OSTI)

    Sachs, Ely; Mierlo, Frank van; Obama, Barack

    2013-05-29T23:59:59.000Z

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

  3. Exhaust Gas Energy Recovery Technology Applications

    SciTech Connect (OSTI)

    Wagner, Robert M [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

  4. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1994-01-01T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  5. Recovery of tritium from tritiated molecules

    DOE Patents [OSTI]

    Swansiger, W.A.

    1984-10-17T23:59:59.000Z

    This invention relates to the recovery of tritium from various tritiated molecules by reaction with uranium. More particularly, the invention relates to the recovery of tritium from tritiated molecules by reaction with uranium wherein the reaction is conducted in a reactor which permits the reaction to occur as a moving front reaction from the point where the tritium enters the reactor charged with uranium down the reactor until the uranium is exhausted.

  6. Advanced Fluidized Bed Waste Heat Recovery Systems

    E-Print Network [OSTI]

    Peterson, G. R.

    ADVANCED FLUIDIZED BED WASTE HEAT RECOVERY SYSTEMS G. R. PETERSON Project Manager U.S. Department of Energy, Idaho Operations Office Idaho Falls, Idaho ABSTRACT The U.S. Department of Energy, Office of Industri al Programs, has sponsored... the development of a Fluidized Bed Waste Heat Recovery System (FBWHRS) and a higher temperature variant, the Ceramic Tubular Distributor Plate (CTOP) Fluidized Bed Heat Exchanger (FBHX) system. Both systems recover energy from high-temperature flue gases...

  7. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect (OSTI)

    Murphy, Michael B.

    2002-02-21T23:59:59.000Z

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  8. LOWER COLUMBIA SALMON RECOVERY & SUBBASIN PLAN December 2004 RECOVERY GOALS 5-1

    E-Print Network [OSTI]

    ." This vision for recovery encompasses ESA de-listing goals in the sense that ESA de-listing could be achieved

  9. Evaluate Supply and Recovery of Woody Biomass for Energy

    E-Print Network [OSTI]

    Gray, Matthew

    Biomass Recovery DataContrasting Woody Biomass Recovery Data Forest Biomass Supply in the Southeastern4/11/2011 1 Evaluate Supply and Recovery of Woody Biomass for Energy Production from Natural. Other studies of biomass supply have supply have assumedassumed a technical recovery rate

  10. Dutchess County Resource Recovery Task Force report: Dutchess County Pyrolysis Program

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    Dutchess County initiated development of a long-range master plan for Solid Waste Management in 1971. The plan included development of a resource recovery facility to service the municipalities in the County population center. Based on early recommendations, a pyrolysis facility employing Purox technology was to be implemented. A feasibility study, paid for by County funds was completed in 1975. The study provided siting recommendations, estimation of available waste, and preliminary facility design. Because of various considerations, the project was not developed. Under the Department of Energy grant, the County reassessed the feasibility of a resource recovery facility, with emphasis on confirming previous conclusions supporting the Purox technology, waste availability, energy recovery and sale and siting of the plant. The conclusions reached in the new study were: a resource recovery facility is feasible for the County; sufficient waste for such a facility is available and subject to control; While Purox technology was feasible it is not the most appropriate available technoloy for the County; that mass burning with steam recovery is the most appropriate technology; and that resource recovery while presently more expensive than landfilling, represents the only cost effective, energy efficient, and environmentally sound way to handle the solid waste problem in the County.

  11. Method for maximizing shale oil recovery from an underground formation

    DOE Patents [OSTI]

    Sisemore, Clyde J. (Livermore, CA)

    1980-01-01T23:59:59.000Z

    A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

  12. Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations

    SciTech Connect (OSTI)

    Eric P. Robertson

    2010-09-01T23:59:59.000Z

    Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.

  13. MHK technologies include current energy conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research leverages decades of experience in engineering and design and analysis (D&A) of wind power technologies, and its vast research complex, including high-performance...

  14. Microbial enhanced oil recovery research. [Peptides

    SciTech Connect (OSTI)

    Sharma, M.M.; Georgiou, G. (Texas Univ., Austin, TX (United States))

    1992-01-01T23:59:59.000Z

    The surface active lipopeptide produced by Bacillus licheniformis JF-2 was isolated to near apparent homogeneity. NMR experiments revealed that this compound consists of a heptapeptide with an amino acid sequence similar to surfactin and a heterogeneous fatty acid consisting of the normal-, anteiso-, and iso- branched isomers. The surface activity of the B. licheniformis JF-2 surfactant was shown to depend on the presence of fermentation products and is strongly affected by the pH. Under conditions of optimal salinity and pH the interfacial tension against decane was 6 [times] 10[sup 3] mN/m which is one of the lowest values ever obtained with a microbial surfactant. Microbial compounds which exhibit particularly high surface activity are classified as biosurfactants. Microbial biosurfactants include a wide variety of surface and interfacially active compounds, such as glycolipids, lipopeptides polysaccharideprotein complexes, phospholipids, fatty acids and neutral lipids. Biosurfactants are easily biodegradable and thus are particularly suited for environmental applications such as bioremediation and the dispersion of oil spills. Bacillus licheniformis strain JF-2 has been shown to be able to grow and produce a very effective biosurfactant under both aerobic and anaerobic conditions and in the presence of high salt concentrations. The production of biosurfactants in anaerobic, high salt environments is potentially important for a variety of in situ applications such as microbial enhanced oil recovery. As a first step towards evaluating the commercial utility of the B. licheniformis JF-2 surfactant, we isolated t-he active. compound from the culture supernatant, characterized its chemical structure and investigated its phase behavior. We found that the surface activity of the surfactant is strongly dependent on the pH of the aqueous. phase. This may be important for the biological function of the surfactant and is of interest for several applications in surfactancy.

  15. Resource Recovery Opportunities at Americas Water Resource Recovery Facilities

    Broader source: Energy.gov [DOE]

    Breakout Session 3AConversion Technologies III: Energy from Our WasteWill we Be Rich in Fuel or Knee Deep in Trash by 2025? Resource Recovery Opportunities at Americas Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL

  16. Offsite source recovery project - ten years of sealed source recovery and disposal

    SciTech Connect (OSTI)

    Whitworth, Julia Rose [Los Alamos National Laboratory; Pearson, Mike [Los Alamos National Laboratory; Witkowski, Ioana [Los Alamos National Laboratory; Wald - Hopkins, Mark [Los Alamos National Laboratory; Cuthbertson, A [NNSA

    2010-01-01T23:59:59.000Z

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted radioactive sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources (this number has since increased to more than 23,000). This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Decades later, these sources began to exceed their special form certifications or fall out of regular use. As OSRP has collected and stored sealed sources, initially using 'No Path Forward' waste exemptions for storage within the Department of Energy (DOE) complex, it has consistently worked to create disposal pathways for the material it has recovered. The project was initially restricted to recovering sealed sources that would meet the definition of Greater-than-Class-C (GTCC) low-level radioactive waste, assisting DOE in meeting its obligations under the Low-level Radioactive Waste Policy Act Amendments (PL 99-240) to provide disposal for this type of waste. After being transferred from DOE-Environmental Management (EM) to the U.S. National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as GTCC when it became waste, but also any other materials that might constitute a 'national security consideration.' It was recognized at the time that the GTCC category was a waste designation having to do with environmental consequence, rather than the threat posed by deliberate or accidental misuse. The project faces barriers to recovery in many areas, but disposal continues to be one of the more difficult to overcome. This paper discusses OSRP's disposal efforts over its 10-year history. For sources meeting the DOE definition of 'transuranic,' OSRP has achieved many milestones, including defense determinations for various isotopes, a WIPP RCRA permit modification to accommodate headspace gas sampling requirements, and approval of a peer-reviewed non-assay radiological characterization methodology. For non-transuranic sources, which OSRP began to recover in 2004, OSRP has achieved NEP A coverage for storage and implemented consolidated storage at both DOE and commercial locations, as well as completing several specific disposal operations. The closure of the Barnwell low-level waste disposal site in 2008 has left 36 states with absolutely no commercial disposal pathway for most sealed sources, increasing the demands on OSRP. This and other current challenges and future work will also be discussed.

  17. Use and recovery of ammonia in power plant cycles

    SciTech Connect (OSTI)

    Pflug, H.D.; Bettenworth, H.J.; Syring, H.A. [Preussen Elektra AG, Hanover (Germany)

    1995-01-01T23:59:59.000Z

    The paper presents some practical and theoretical aspects of the use of ammonia in power plant water/steam cycles. The plants considered are fully automated units with once-through boilers, which operate under complex conditions and are subject to frequent starts and load changes. The boilers are chemically conditioned with combined oxygen ammonia treatment and the condensate polishing plant is only operated during start-up, in the event of a condenser leak or to remove excess ammonia. The paper also covers the recovery of ammonia from the condensate polishing plant waste regenerants and reuse for conditioning the feedwater. In particular, the paper deals with the following points: theoretical analysis of the chemical equilibrium of ammonia and carbon dioxide in water, including calculation of the concentrations from the parameters normally measured, such as conductivities and pH; equipment for monitoring and controlling the amount of ammonia fed to the water/steam cycle, including the optimum positioning of the sampling and feed-points, the parameters suitable for feed control and their temperature dependence; the partial pressure and distribution coefficient of ammonia; the consumption and losses of ammonia through the water/steam cycle during operation; the recovery of ammonia from condensate polishing plant waste regenerants by steam stripping. The paper should be of interest to both planning engineers and plant operators.

  18. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 86, quarter ending March 31, 1996

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    Summaries are presented for 37 enhanced oil recovery contracts being supported by the Department of Energy. The projects are grouped into gas displacement methods, thermal recovery methods, geoscience technology, reservoir characterization, and field demonstrations in high-priority reservoir classes. Each summary includes the objectives of the project and a summary of the technical progress, as well as information on contract dates, size of award, principal investigator, and company or facility doing the research.

  19. Research report Axon growth and recovery of function supported by human bone marrow

    E-Print Network [OSTI]

    Fischer, Itzhak

    may be donor-dependent. Similarly, a battery of behavioral tests showed partial recovery in some highlight the need for establishing adequate characterization, including the development of relevant, and characterization. As a 0006-8993/$ - see front matter D 2004 Elsevier B.V. All rights reserved. doi:10.1016/j

  20. Tritium recovery from carbon particulate Until 2009 the JET machine has operated with a

    E-Print Network [OSTI]

    objectives Design and construction of a facility to recover tritium from carbon. Including: · Commissioning of the material. case study DT fuel cycle Solution Significant R&D effort went into developing an oxidation: technologyservices@ccfe.ac.uk www.ccfe.ac.uk/technologyservices.aspx Recovery system during construction #12;

  1. www.energy.ca.gov/recovery/documents/funding_summary.pdf 1 Energy Efficiency & Conservation

    E-Print Network [OSTI]

    , local government and tribal government to support the development of energy efficiency and conservation strategies and programs, including energy audit programs and projects to install renewable energy projectswww.energy.ca.gov/recovery/documents/funding_summary.pdf 1 Energy Efficiency & Conservation Block

  2. Research on improved and enhanced oil recovery in Illinois through reservoir characterization

    SciTech Connect (OSTI)

    Not Available

    1990-06-25T23:59:59.000Z

    The Illinois Department of Energy and Natural Resources through a Memorandum of Understanding with the US Department of Energy has commenced a research program in Improved and Enhanced Oil Recovery from Illinois Reservoirs Through Reservoir Characterization.'' The program will include studies on mineralogy, petrography of reservoir rock, database management, engineering assessment, seismic studies and acoustic logs, and mapping. 8 figs. (CBS)

  3. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 89

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    Summaries are presented for the DOE contracts related to supported research for thermal recovery of petroleum, geoscience technology, and field demonstrations in high-priority reservoir classes. Data included for each project are: title, contract number, principal investigator, research organization, beginning date, expected completion date, amount of award, objectives of the research, and summary of technical progress.

  4. Alternate Materials for Recovery Boiler Superheater Tubes

    SciTech Connect (OSTI)

    Keiser, James R [ORNL; Kish, Joseph [McMaster University; Singbeil, Douglas [FPInnovations

    2009-01-01T23:59:59.000Z

    The ever escalating demands for increased efficiency of all types of boilers would most sensibly be realized by an increase in the steam parameters of temperature and pressure. However, materials and corrosion limitations in the steam generating components, particularly the superheater tubes, present major obstacles to boiler designers in achieving systems that can operate under the more severe conditions. This paper will address the issues associated with superheater tube selection for many types of boilers; particularly chemical recovery boilers, but also addressing the similarities in issues for biomass and coal fired boilers. It will also review our recent study of materials for recovery boiler superheaters. Additional, more extensive studies, both laboratory and field, are needed to gain a better understanding of the variables that affect superheater tube corrosion and to better determine the best means to control this corrosion to ultimately permit operation of recovery boilers at higher temperatures and pressures.

  5. EE Regional Technology Roadmap Includes comparison

    E-Print Network [OSTI]

    EE Regional Technology Roadmap Includes comparison against 6th Power Plan (Update cyclically Data Clearinghouse BPA/RTF NEEA/Regional Programs Group Update Regional EE Technology Roadmap Lighting

  6. DIDACTICAL HOLOGRAPHIC EXHIBIT INCLUDING (HOLOGRAPHIC TELEVISION)

    E-Print Network [OSTI]

    de Aguiar, Marcus A. M.

    DIDACTICAL HOLOGRAPHIC EXHIBIT INCLUDING HoloTV (HOLOGRAPHIC TELEVISION) José J. Lunazzi , DanielCampinasSPBrasil Abstract: Our Institute of Physics exposes since 1980 didactical exhibitions of holography in Brazil where

  7. Sessions include: Beginning Farmer and Rancher

    E-Print Network [OSTI]

    Watson, Craig A.

    Sessions include: Beginning Farmer and Rancher New Markets and Regulations Food Safety Good Bug, Bad Bug ID Horticulture Hydroponics Livestock and Pastured Poultry Mushrooms Organic Live animal exhibits Saturday evening social, and Local foods Florida Small Farms and Alternative

  8. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  9. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  10. Audit Report on "The Department of Energy's American Recovery and Reinvestment Act -- Florida State Energy Program"

    SciTech Connect (OSTI)

    None

    2010-06-01T23:59:59.000Z

    The Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) provides grants to states, territories, and the District of Columbia to support their energy priorities through the State Energy Program (SEP). The SEP provides Federal financial assistance to carry out energy efficiency and renewable energy projects that meet each state's unique energy needs while also addressing national goals such as energy security. Federal funding is based on a grant formula that takes into account population and energy consumption. The SEP emphasizes the state's role as the decision maker and administrator for the program. The American Recovery and Reinvestment Act of 2009 (Recovery Act) expanded the SEP, authorizing $3.1 billion in grants. Based on existing grant formulas and after reviewing state-level plans, EERE made awards to states. The State of Florida's Energy Office (Florida) was allocated $126 million - a 90-fold increase over Florida's average annual SEP grant of $1.4 million. Per the Recovery Act, this funding must be obligated by September 30, 2010, and spent by April 30, 2012. As of March 10, 2010, Florida had expended $13.2 million of the SEP Recovery Act funds. Florida planned to use its grant funds to undertake activities that would preserve and create jobs; save energy; increase renewable energy sources; and, reduce greenhouse gas emissions. To accomplish Recovery Act objectives, states could either fund new or expand existing projects. As a condition of the awards, EERE required states to develop and implement sound internal controls over the use of Recovery Act funds. Based on the significant increase in funding from the Recovery Act, we initiated this review to determine whether Florida had internal controls in place to provide assurance that the goals of the SEP and Recovery Act will be met and accomplished efficiently and effectively. We identified weaknesses in the implementation of SEP Recovery Act projects that have adversely impacted Florida's ability to meet the goals of the SEP and the Recovery Act. Specifically: (1) Florida used about $8.3 million to pay for activities that did not meet the intent of the Recovery Act to create new or save existing jobs. With the approval of the Department, Florida used these funds to pay for rebates related to solar energy projects that had been completed prior to passage of the Recovery Act; (2) State officials did not meet Florida's program goals to obligate all Recovery Act funds by January 1, 2010, thus delaying projects and preventing them from achieving the desired stimulative economic impact. Obligations were delayed because Florida officials selected a number of projects that either required a lengthy review and approval process or were specifically prohibited. In June 2009, the Department notified Florida that a number of projects would not be approved; however, as of April 1, 2010, the State had not acted to name replacement projects or move funds to other projects; (3) Florida officials had not ensured that 7 of the 18 award requirements for Recovery Act funding promulgated by the Department had been passed down to sub-recipients of the award, as required; and, (4) Certain internal control weaknesses that could jeopardize the program and increase the risk of fraud, waste and abuse were identified in the Solar Energy System Incentives Program during our September 2009 visit to Florida. These included a lack of separation of duties related to the processing of rebates and deficiencies in the written procedures for grant managers to review and approve rebates. From a forward looking perspective, absent aggressive corrective action, these weaknesses threaten Florida's efforts to meet future Recovery Act goals. In response to our review, Florida took corrective action to incorporate the additional award requirements in sub-recipient documents. It also instituted additional controls to correct the internal control weaknesses we identified. More, however, needs to be done with respect to Department oversight. This report details the circumstances sur

  11. Economic Implementation and Optimization of Secondary Oil Recovery Process: St. Mary West Field, Lafayette County, Arkansas

    SciTech Connect (OSTI)

    Brock P.E., Cary D.

    2003-03-10T23:59:59.000Z

    The purpose of this study was to investigate the economic appropriateness of several enhanced oil recovery processes that are available to a small mature oil field located in southwest Arkansas and to implement the most economic efficient process evaluated. The State of Arkansas natural resource laws require that an oilfield is to be unitized before conducting a secondary recovery project. This requires all properties that can reasonably be determined to include the oil productive reservoir must be bound together as one common lease by a legal contract that must be approved to be fair and equitable to all property owners within the proposed unit area.

  12. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    SciTech Connect (OSTI)

    Thekdi, Arvind [E3M Inc; Nimbalkar, Sachin U [ORNL

    2015-01-01T23:59:59.000Z

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  13. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

  14. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    DIGESTERS AND BIOGAS RECOVERY Digesters Do Not Address theMethane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE

  15. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-11-29T23:59:59.000Z

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  16. Recovery of anhydrous hydrogen iodide

    DOE Patents [OSTI]

    O'Keefe, Dennis R. (San Diego, CA); McCorkle, Jr., Kenneth H. (Del Mar, CA); de Graaf, Johannes D. (The Hague, NL)

    1982-01-01T23:59:59.000Z

    Relatively dry hydrogen iodide can be recovered from a mixture of HI, I.sub.2 and H.sub.2 O. After the composition of the mixture is adjusted so that the amounts of H.sub.2 O and I.sub.2 do not exceed certain maximum limits, subjection of the mixture to superatmospheric pressure in an amount equal to about the vapor pressure of HI at the temperature in question causes distinct liquid phases to appear. One of the liquid phases contains HI and not more than about 1 weight percent water. Often the adjustment in the composition will include the step of vaporization, and the distinct layers appear following the increase in pressure of the vapor mixture. Adjustment in the composition may also include the addition of an extraction agent, such as H.sub.3 PO.sub.4, and even though the adjusted composition mixture contains a significant amount of such an agent, the creation of the distinct liquid phases is not adversely affected.

  17. Asynchronous intrusion recovery for interconnected web services

    E-Print Network [OSTI]

    Sabatini, David M.

    Asynchronous intrusion recovery for interconnected web services Ramesh Chandra, Taesoo Kim, and tracking down and recovering from such an attack re- quires significant manual effort. Web services for such web services. Aire addresses several challenges, such as propagating repair across services when some

  18. After a Disaster: Recovery Safety Tips (Spanish)

    E-Print Network [OSTI]

    FCS Project Team - FDRM UNIT

    2007-10-08T23:59:59.000Z

    /recovery_assistance Producido por AgriLife Communications and Marketing, El Sistema Texas A&M Las publicaciones de Texas AgriLife Extension Service se pueden encontrar en Internet en: http://AgriLifebookstore.org Los programas educativos de Texas AgriLife Extension Service est...

  19. An Integrated Low Level Heat Recovery System

    E-Print Network [OSTI]

    Sierra, A. V., Jr.

    1981-01-01T23:59:59.000Z

    A large amount of low level thermal energy is lost to air or water in a typical petroleum refinery. This paper discusses a complex integrated low level heat recovery system that is being engineered for installation in a large petroleum refinery...

  20. After a Disaster: Recovery Safety Tips (Spanish)

    E-Print Network [OSTI]

    FCS Project Team - FDRM UNIT

    2007-10-08T23:59:59.000Z

    /recovery_assistance Producido por AgriLife Communications and Marketing, El Sistema Texas A&M Las publicaciones de Texas AgriLife Extension Service se pueden encontrar en Internet en: http://AgriLifebookstore.org Los programas educativos de Texas AgriLife Extension Service est...

  1. Heat Recovery Boilers for Process Applications

    E-Print Network [OSTI]

    Ganapathy, V.; Rentz, J.; Flanagan, D.

    of the use of heat recovery due primarily to process considerations. On the other hand, cost and payback are main considerations in the case of gas turbine and incineration plants, where large quantities of gases are exhausted at temperatures varying from 800...

  2. The Economic Recovery Tax Act of 1981.

    E-Print Network [OSTI]

    Pena, Jose G.; Lovell, Ashley C.; Kensing, Robert H.

    1983-01-01T23:59:59.000Z

    The Texas A&M University System Texas Agricultural Extension Service Zerle L. Carpenter, Director College Station B-1456 The Economic Recovery Tax Act of 1981 Better Estate Plannin CONTENTS Increase in Unified Credit... .................................................................... 7 Repeal of Orphans' Exclusion ............................................................. 7 Delay in the Imposition of New Generation-Skipping Tax .................................... 7 Technical Changes in Special Use Valuation Provisions...

  3. Disaster Resiliency and Recovery: Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) is the nation's leader in energy efficient and renewable energy technologies, practices, and strategies. For the last 15 years, NREL has provided expertise, tools, and innovations to private industry; federal, state, and local governments; non-profit organizations; and communities during the planning, recovery, and rebuilding stages after disaster strikes.

  4. Recovery Act Weekly Video: 200 West Drilling

    ScienceCinema (OSTI)

    None

    2012-06-14T23:59:59.000Z

    President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

  5. Energy Recovery from Potato Chip Fryers

    E-Print Network [OSTI]

    McKee, H. B.; Kympton, H. W.; Arnold, J. W.; Paisan, J. J.

    1980-01-01T23:59:59.000Z

    permits heat recovery from the fryer cooking fumes. The fumes consist primarily of water vapor (11 psia) and air (3.7 psia) at a temperature of 275 F. About 10% of the available energy is dissipated in a scrubber which removes particulate material...

  6. Waste water treatment and metal recovery

    E-Print Network [OSTI]

    Braun, Paul

    Waste water treatment and metal recovery Nickel catalysts for hydrogen production Nickel and single versions of which contained cobalt, chromium, carbon, molybdenum, tungsten, and nickel. In 1911 and 1912% on their stainless steel production. The company paid sizable dividends to its owners until it was dissolved

  7. Avoided Gigawatts Through Utility Capital Recovery Fees

    E-Print Network [OSTI]

    Frosenfeld, A. N.; Verdict, M. E.

    1985-01-01T23:59:59.000Z

    structure is possible through the use of capital recovery fees for new electric meter hookups similar to those commonly used for new water and wastewater hookups where the developer/owner is required to capitalize the marginal cost of new demand. By giving...

  8. Communication in automation, including networking and wireless

    E-Print Network [OSTI]

    Antsaklis, Panos

    Communication in automation, including networking and wireless Nicholas Kottenstette and Panos J and networking in automation is given. Digital communication fundamentals are reviewed and networked control are presented. 1 Introduction 1.1 Why communication is necessary in automated systems Automated systems use

  9. Electrochemical cell including ribbed electrode substrates

    SciTech Connect (OSTI)

    Breault, R.D.; Goller, G.J.; Roethlein, R.J.; Sprecher, G.C.

    1981-07-21T23:59:59.000Z

    An electrochemical cell including an electrolyte retaining matrix layer located between and in contact with cooperating anode and cathode electrodes is disclosed herein. Each of the electrodes is comprised of a ribbed (or grooved) substrate including a gas porous body as its main component and a catalyst layer located between the substrate and one side of the electrolyte retaining matrix layer. Each substrate body includes a ribbed section for receiving reactant gas and lengthwise side portions on opposite sides of the ribbed section. Each of the side portions includes a channel extending along its entire length from one surface thereof (e.g., its outer surface) to but stopping short of an opposite surface (e.g., its inner surface) so as to provide a web directly between the channel and the opposite surface. Each of the channels is filled with a gas impervious substance and each of the webs is impregnated with a gas impervious substance so as to provide a gas impervious seal along the entire length of each side portion of each substrate and between the opposite faces thereof (e.g., across the entire thickness thereof).

  10. Prices include compostable serviceware and linen tablecloths

    E-Print Network [OSTI]

    California at Davis, University of

    & BLACK BEAN ENCHILADAS Fresh corn tortillas stuffed with tender brown butter sauted butternut squash, black beans and yellow on- ions, garnished with avocado and sour cream. $33 per person EDAMAME & CORN SQUASH & BLACK BEAN ENCHILADA FREE RANGE CHICK- EN SANDWICH PLATED ENTREES All plated entrees include

  11. Energy Consumption of Personal Computing Including Portable

    E-Print Network [OSTI]

    Namboodiri, Vinod

    Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

  12. Recovery Act Workers Accomplish Cleanup of Second Cold War Coal...

    Office of Environmental Management (EM)

    June 21, 2011 Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin AIKEN, S.C. - American Recovery and Reinvestment Act workers re- cently cleaned up a second...

  13. Industrial HVAC Air-to-Air Energy Recovery Retrofit Economics

    E-Print Network [OSTI]

    Graham, E. L.

    1980-01-01T23:59:59.000Z

    Retrofitting air-to-air energy recovery equipment is relatively simply to design and easy to install. Additionally, HVAC energy recovery is almost risk free when compared to process retrofit. Life cycle cost analysis is the best way to illustrate...

  14. ADAPTIVE SENSING FOR SPARSE SIGNAL RECOVERY Jarvis Haupt, Robert Nowak

    E-Print Network [OSTI]

    Castro, Rui

    ADAPTIVE SENSING FOR SPARSE SIGNAL RECOVERY Jarvis Haupt, Robert Nowak University of Wisconsin remains stable in the presence of random noise; i.e., the recovery degrades gracefully, but markedly

  15. advanced heat recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling,000 tons (Standby) (average) Heat Recovery 13.5 MW 5.6MW 1 MW...

  16. BRIEF REPORT Autonomic recovery and habituation in social anxiety

    E-Print Network [OSTI]

    Gross, James J.

    trait socially anxious (HTSA) and low trait socially anxious (LTSA) individuals show comparable between groups might emerge during recovery or habituation, 35 HTSA and LTSA participants gave two the LTSA participants, autonomic measures showed comparable reactivity, habituation, and recovery

  17. Mineral Nutrient Recovery from Pyrolysis Co-Products

    E-Print Network [OSTI]

    Wise, Jatara Rob

    2012-07-16T23:59:59.000Z

    -bed reactors located in College Station, TX and Wyndmoor, PA. Nutrient recoveries, on a feedstock basis, were calculated for a comparison of reactor efficiencies. In addition to nutrient recoveries, physical and chemical properties of input biomass and of bio...

  18. Methane productivity and nutrient recovery from manure Henrik B. Mller

    E-Print Network [OSTI]

    Methane productivity and nutrient recovery from manure Henrik B. Mller Danish Institute This thesis, entitled "Methane productivity and nutrient recovery from manure" is presented in partial of digested and separated products.................... 13 3. Methane productivity and greenhouse gas emissions

  19. 2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program...

    Energy Savers [EERE]

    FCVT Merit Review: BSST Waste Heat Recovery Program 2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program Presentation from the U.S. DOE Office of Vehicle Technologies...

  20. Secretary Chu Announces $93 Million from Recovery Act to Support...

    Broader source: Energy.gov (indexed) [DOE]

    93 Million from Recovery Act to Support Wind Energy Projects Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects April 29, 2009 - 12:00am Addthis...

  1. Energy Secretary Steven Chu to Attend Grand Opening of Recovery...

    Office of Environmental Management (EM)

    to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant...

  2. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    McInerney, M.J.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.

    2003-01-24T23:59:59.000Z

    The overall goal of this research was to develop effective biosurfactant production for enhanced oil recovery in the United States.

  3. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Advanced Natural Gas Reciprocating Engines (ARES) -...

  4. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications...

  5. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct...

  6. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

  7. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat...

  8. Optimization Online - Sparse Recovery on Euclidean Jordan Algebras

    E-Print Network [OSTI]

    Lingchen Kong

    2013-02-03T23:59:59.000Z

    Feb 3, 2013 ... Keywords: Sparse recovery on Euclidean Jordan algebra, nuclear norm minimization, restricted isometry property, null space property,...

  9. 200,000 homes weatherized under the Recovery Act

    Broader source: Energy.gov [DOE]

    Today Vice President Biden announced that the Weatherization Assistance Program has weatherized 200,000 homes under the Recovery Act.

  10. Kraft lignin recovery by ultrafiltration: economic feasibility and impact on the kraft recovery system

    SciTech Connect (OSTI)

    Kirkman, A.G.; Gratzl, J.S.; Edwards, L.L.

    1986-05-01T23:59:59.000Z

    The widespread use of the kraft pulping process could provide a ready supply of lignin materials for many uses. Simulation studies demonstrate that recovery of the high-molecular-weight kraft lignin by ultrafiltration of a fraction of the black liquor flow is attractive from both an economic and an operational standpoint. Benefits are derived from relief of a furnace-limited recovery system and from the marketing of the lignin or modified lignin products. 10 references.

  11. Subterranean barriers including at least one weld

    DOE Patents [OSTI]

    Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.

    2007-01-09T23:59:59.000Z

    A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.

  12. Power generation method including membrane separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01T23:59:59.000Z

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  13. Rotor assembly including superconducting magnetic coil

    DOE Patents [OSTI]

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01T23:59:59.000Z

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  14. Electric power monthly, September 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-12-17T23:59:59.000Z

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  15. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect (OSTI)

    A. Wang; H. Xiao; R. May

    1999-10-29T23:59:59.000Z

    Efficient and complete recovery of petroleum reserves from existing oil wells has proven difficult due to a lack of robust instrumentation that can monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multi-lateral wells. The main objective of the research program is to develop cost-effective, reliable fiber sensor instrumentation for real-time monitoring and /or control of various key parameters crucial to efficient and economical oil production. This report presents the detailed research work and technical progress from October 1, 1998 to September 30, 1999. The research performed over the first year of the program has followed the schedule as proposed, and solid research progress has been made in specification of the technical requirements, design and fabrication of the SCIIB sensor probes, development of the sensor systems, development of DSP-based signal processing techniques, and construction of the test systems. These technical achievements will significantly help to advance continued research on sensor tests and evaluation during the second year of the program.

  16. The development and testing of the HISAC parachute recovery system

    SciTech Connect (OSTI)

    Behr, V.L.

    1989-01-01T23:59:59.000Z

    The High Speed Airdrop Container (HISAC) is currently being developed by Sandia National Laboratories for the US Army. The 825 lb HISAC will be delivered from altitudes as low as 200 ft above ground level and speeds as high as Mach 0.95. The parachute recovery system must produce an impact velocity less than 40 fps, an impact angle greater than 70 deg from horizontal and a maximum deceleration less than 30 g's. Candidates for main parachutes to be used in the recovery systems have included a cluster of three 21-ft-dia ribbon parachutes, a cluster of two 22-ft-dia ringslot cargo parachutes, a single high strength 35-ft-dia T-10 canopy, and a cluster of three standard 35-ft-dia T-10 parachutes. Results from airdrop and ground tests indicate that the use of a reefed and staged drogue in conjunction with a cluster of three standard unreefed T-10 personnel parachutes provides the best combined turnover and impact velocity characteristics. Initial deployment of the drogue parachute is produced by an aerodynamically deployed tailplate which produces no appreciable carriage drag. Results from ground tests indicate that reliable deployment of the tailplate is achievable through the use of aerodynamic drag surfaces which are deployed shortly after the HISAC is released from the carriage aircraft. 5 refs., 3 tabs.

  17. Determining the optimum nanofluid for enhanced oil recovery

    E-Print Network [OSTI]

    Determining the optimum nanofluid for enhanced oil recovery Presented by Katie Aurand katherine and size for EOR applications Determining the optimum nanofluid for enhanced oil recovery Presented = particle modification and testing 3 Determining the optimum nanofluid for enhanced oil recovery Presented

  18. Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect (OSTI)

    Mark B. Murphy

    1998-04-30T23:59:59.000Z

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  19. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01T23:59:59.000Z

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  20. Infiltration Heat Recovery in Building Walls: Computational Fluid Dynamics Investigations Results

    E-Print Network [OSTI]

    LBNL-51324 Infiltration Heat Recovery in Building Walls: Computational Fluid Dynamics leading to partial recovery of heat conducted through the wall. The Infiltration Heat Recovery (IHR) factor was introduced to quantify the heat recovery and correct the conventional calculations

  1. Multiverse rate equation including bubble collisions

    E-Print Network [OSTI]

    Michael P. Salem

    2013-02-19T23:59:59.000Z

    The volume fractions of vacua in an eternally inflating multiverse are described by a coarse-grain rate equation, which accounts for volume expansion and vacuum transitions via bubble formation. We generalize the rate equation to account for bubble collisions, including the possibility of classical transitions. Classical transitions can modify the details of the hierarchical structure among the volume fractions, with potential implications for the staggering and Boltzmann-brain issues. Whether or not our vacuum is likely to have been established by a classical transition depends on the detailed relationships among transition rates in the landscape.

  2. Proposed Guideline Clarifications for American Recovery and Reinvestment Act of 2009

    E-Print Network [OSTI]

    Wilde, Erik; Kansa, Eric C; Yee, Raymond

    2009-01-01T23:59:59.000Z

    th align="right" valign="top">CFDA: Design Recovery> 1642990396473 CFDA>2004031CFDA> CFDA-title>Design Recovery Transparency

  3. Imaging of CO2 injection during an enhanced-oil-recovery experiment

    E-Print Network [OSTI]

    Gritto, Roland; Daley, Thomas M.; Myer, Larry R.

    2003-01-01T23:59:59.000Z

    Injection during an Enhanced-Oil-Recovery Experiment RolandEnergy (DOE) as an enhanced oil recovery (EOR) project, was

  4. Microbial enhancement of oil recovery: Recent advances

    SciTech Connect (OSTI)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. (eds.)

    1992-01-01T23:59:59.000Z

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  5. Recovery Boiler Superheater Ash Corrosion Field Study

    SciTech Connect (OSTI)

    Keiser, James R [ORNL] [ORNL; Kish, Joseph [McMaster University] [McMaster University; Singbeil, Douglas [FPInnovations] [FPInnovations

    2010-01-01T23:59:59.000Z

    With the trend towards increasing the energy efficiency of black liquor recovery boilers operated in North America, there is a need to utilize superheater tubes with increased corrosion resistance that will permit operation at higher temperatures and pressures. In an effort to identify alloys with improved corrosion resistance under more harsh operating conditions, a field exposure was conducted that involved the insertion of an air-cooled probe, containing six candidate alloys, into the superheater section of an operating recovery boiler. A metallographic examination, complete with corrosion scale characterization using EMPA, was conducted after a 1,000 hour exposure period. Based on the results, a ranking of alloys based on corrosion performance was obtained.

  6. Microbial enhanced oil recovery and compositions therefor

    DOE Patents [OSTI]

    Bryant, Rebecca S. (Bartlesville, OK)

    1990-01-01T23:59:59.000Z

    A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

  7. Optical panel system including stackable waveguides

    DOE Patents [OSTI]

    DeSanto, Leonard (Dunkirk, MD); Veligdan, James T. (Manorville, NY)

    2007-11-20T23:59:59.000Z

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  8. Optical panel system including stackable waveguides

    DOE Patents [OSTI]

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06T23:59:59.000Z

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  9. Thermovoltaic semiconductor device including a plasma filter

    DOE Patents [OSTI]

    Baldasaro, Paul F. (Clifton Park, NY)

    1999-01-01T23:59:59.000Z

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  10. Investigations of nonsurgical embryo recovery in swine

    E-Print Network [OSTI]

    Altenhof, Russell Lynn

    1982-01-01T23:59:59.000Z

    Major Subject. : Animal Science INVESTIGATIONS OF NONSURGICAL EMBRYO RECOVERY IN SWINE A Thesis by RUSSELL LYNN ALTENHOF Approved as to style and content by: D C. K ae er (Co-Chairman of Committee) T. D. Tanksle , Jr. (Co-Chairman of Committee... and Krall, 1977). Recent evidence indicates that beta adrenegic agonists stimulate cANP- + + dependent phosphorylation and Na /K transport that + + in turn stimulated Na /Ca exchange at the plasma membrane or in the sarcoplasmic reticulum (Scheid et al...

  11. Improved energy recovery from geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1981-01-01T23:59:59.000Z

    The behavior of a liquid-dominated geothermal reservoir in response to production from different horizons is studied using numerical simulation methods. The Olkaria geothermal field in Kenya is used as an example where a two-phase vapor-dominated zone overlies the main liquid-dominated reservoir. The possibility of improving energy recovery from vapor-dominated reservoirs by tapping deeper horizons is considered.

  12. Financial Recovery: Homeowner's Property Insurance Issues

    E-Print Network [OSTI]

    Granovsky, Nancy L.

    2008-09-23T23:59:59.000Z

    - owner?s property insurance. Does my property insurance cover water damage? Basic property policies do not insure against flood damage. Homeown- ers have to rely on flood coverage purchased separately through FEMA?s National Flood Insurance Program (NFIP... ER-035 9-23 Financial Recovery: Homeowner?s Property Insurance Issues Nancy L. Granovsky, Professor and Extension Family Economics Specialist, The Texas A&M University System People affected by hurricanes have many questions about their home...

  13. Walk, Haydel Approach to Process Heat Recovery

    E-Print Network [OSTI]

    Waldsmith, R. W.; Hendrickson, M. J.

    1983-01-01T23:59:59.000Z

    velocities. In a grass roots design, equipment is designed for specific needs, but in a revamp there are usually several alter nate ways existing equipment can be utilized. A11 of the important alternates must be eva1 uated before selecting... bundles are encountered, methods balance costs against incremental heat recovery. Other logic re duces multiple parallel streams and adjusts arrangements considering both temperature level and overall coefficient. The log ic and eva1uat ion...

  14. Methods for enhancing mapping of thermal fronts in oil recovery

    DOE Patents [OSTI]

    Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Wayland, Jr., James R. (Albuquerque, NM)

    1987-01-01T23:59:59.000Z

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  15. Visual display of reservoir parameters affecting enhanced oil recovery

    SciTech Connect (OSTI)

    Wood, J.R.

    1996-04-30T23:59:59.000Z

    This project consists of two parts. In Part 1, well logs, other well data, drilling, and production data for the Pioneer Field in the southern San Joaquin Valley of California were obtained, assembled, and input to a commercial relational database manager. These data are being used in PC-based geologic mapping, evaluation, and visualization software programs to produce 2-D and 3-D representations of the reservoir geometry, facies and subfacies, stratigraphy, porosity, oil saturation, and other measured and model parameters. Petrographic and petrophysical measurements made on samples from Pioneer Field, including core, cuttings and liquids, are being used to calibrate the log suite. In Part 2, these data sets are being used to develop algorithms to correlate log response to geologic and engineering measurements. Rock alteration due to interactions with hot fluids are being quantitatively modeled and used to predict the reservoir response if the rock were subjected to thermally enhanced oil recovery (TEOR).

  16. Methods for enhancing mapping of thermal fronts in oil recovery

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30T23:59:59.000Z

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  17. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    SciTech Connect (OSTI)

    Unknown

    1998-10-01T23:59:59.000Z

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system have been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.

  18. Doppler-resolved kinetics of saturation recovery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Forthomme, Damien; Hause, Michael L.; Yu, Hua-Gen; Dagdigian, Paul J.; Sears, Trevor J.; Hall, Gregory E.

    2015-04-08T23:59:59.000Z

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Totalmorerecovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. Quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.less

  19. Doppler-resolved kinetics of saturation recovery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Forthomme, Damien [Brookhaven National Lab. (BNL), Upton, NY (United States); Hause, Michael L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, Hua-Gen [Brookhaven National Lab. (BNL), Upton, NY (United States); Dagdigian, Paul J. [John Hopkins Univ., Baltimore, MD (United States); Sears, Trevor J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., Stony Brook, NY (United States); Hall, Gregory E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-04-08T23:59:59.000Z

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Total recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. Quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.

  20. Neutral beamline with improved ion energy recovery

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN); Haselton, Halsey H. (Knoxville, TN); Stirling, William L. (Oak Ridge, TN); Whealton, John H. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  1. Composite tube cracking in kraft recovery boilers: A state-of-the-art review

    SciTech Connect (OSTI)

    Singbeil, D.L.; Prescott, R. [Pulp and Paper Research Inst. of Canada, Vancouver, British Columbia (Canada); Keiser, J.R.; Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-07-01T23:59:59.000Z

    Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

  2. Special Report "The American Recovery and Reinvestment Act and the Department of Energy"

    SciTech Connect (OSTI)

    None

    2009-03-01T23:59:59.000Z

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) was signed into law on February 17, 2009, as a way to jumpstart the U.S. economy, create or save millions of jobs, spur technological advances in science and health, and invest in the Nation's energy future. This national effort will require an unprecedented level of transparency and accountability to ensure that U.S. citizens know where their tax dollars are going and how they are being spent. As part of the Recovery Act, the Department of Energy will receive more than $38 billion to support a number of science, energy, and environmental initiatives. Additionally, the Department's authority to make or guarantee energy-related loans has increased to about $127 billion. The Department plans to disburse the vast majority of the funds it receives through grants, cooperative agreements, contracts, and other financial instruments. The supplemental funding provided to the Department of Energy under the Recovery Act dwarfs the Department's annual budget of about $27 billion. The infusion of these funds and the corresponding increase in effort required to ensure that they are properly controlled and disbursed in a timely manner will, without doubt, strain existing resources. It will also have an equally challenging impact on the inherent risks associated with operating the Department's sizable portfolio of missions and activities and, this is complicated by the fact that, in many respects, the Recovery Act requirements represent a fundamental transformation of the Department's mission. If these challenges are to be met successfully, all levels of the Department's structure and its many constituents, including the existing contractor community; the national laboratory system; state and local governments; community action groups and literally thousands of other contract, grant, loan and cooperative agreement recipients throughout the Nation will have to strengthen existing or design new controls to safeguard Recovery Act funds.

  3. Engine lubrication circuit including two pumps

    DOE Patents [OSTI]

    Lane, William H.

    2006-10-03T23:59:59.000Z

    A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.

  4. Models of Procyon A including seismic constraints

    E-Print Network [OSTI]

    P. Eggenberger; F. Carrier; F. Bouchy

    2005-01-14T23:59:59.000Z

    Detailed models of Procyon A based on new asteroseismic measurements by Eggenberger et al (2004) have been computed using the Geneva evolution code including shellular rotation and atomic diffusion. By combining all non-asteroseismic observables now available for Procyon A with these seismological data, we find that the observed mean large spacing of 55.5 +- 0.5 uHz favours a mass of 1.497 M_sol for Procyon A. We also determine the following global parameters of Procyon A: an age of t=1.72 +- 0.30 Gyr, an initial helium mass fraction Y_i=0.290 +- 0.010, a nearly solar initial metallicity (Z/X)_i=0.0234 +- 0.0015 and a mixing-length parameter alpha=1.75 +- 0.40. Moreover, we show that the effects of rotation on the inner structure of the star may be revealed by asteroseismic observations if frequencies can be determined with a high precision. Existing seismological data of Procyon A are unfortunately not accurate enough to really test these differences in the input physics of our models.

  5. The physical separation and recovery of metals from wastes. Process engineering for the chemical, metals and minerals industries, Volume 1

    SciTech Connect (OSTI)

    Veasey, T.J.; Wilson, R.J. (eds.) (Univ. of Birmingham (United Kingdom). School of Chemical Engineering); Squires, D.M. (ed.) (Newell Engineering Ltd., Redditch (United Kingdom))

    1993-01-01T23:59:59.000Z

    This book deals with the physical processes used for the separation of secondary metals from waste sources. The introduction briefly considers the history of the secondary metals industries, defines the terms used in materials recycling and discusses the potential for resource recovery and improved processing. A comprehensive survey is given of the unit operations employed for metals recovery and reclamation, and this is followed by detailed descriptions of processes used to treat fragmentized metal wastes and granulated metal wastes. The final chapter reviews the processing of urban wastes for metals recovery, and gives details of modern plant and practices. The volume aims to bring together technical information on metals recovery from a wide range of sources in order to give a unified review of an important engineering and environmental topic. Topics include: general definitions used in materials recycling; the potential for resource recovery; secondary metals; ranking of scrap; the potential for improved processing; comminution; physical separation methods; the scrap industry; automobile composition; shredders; non-magnetic processing; metal reclamation processes; waste tire processing; battery processing; thermal processing systems; composition of urban waste; and material recovery.

  6. User data package for implementation of electrolytic recovery technology in Navy electroplating shops. Final report, March 1993-January 1995

    SciTech Connect (OSTI)

    Ford, K.; Koff, J.

    1995-10-01T23:59:59.000Z

    In FY94 the Naval Facilities Engineering Service Center (NFESC) completed tests on three electrolytic recovery systems used for the recovery of metals and destruction of cyanide from electroplating wastewaters. Field testing and evaluation was conducted at NSY Norfolk, NAWC Indianapolis, and NADEP Cherry Pt. for five metal recovery applications: silver cyanide, copper cyanide, acid copper, electroless nickel, and tin-lead fluoborate. Advanced design features for metal recovery, including enhanced fluidized circulation, specialized oxidizing anodes, and high porous surface area cathodes were evaluated to optimize performance. NFESC demonstrated that electrolytic recovery systems can be adapted for effective use in the Navy plating operations where production is often sporadic as contrasted to industrial plating processes. The electrolytic recovery units removed metal ions from the rinsewater to below 1 ppm for each application. Electrowinning, as an alternative technology, can reduce industrial waste treatment costs and hazardous sludge generated from conventional treatment This User Data Package (UDP) covers the design, operational and maintenance requirements for these electrolytic systems. This UDP will be applicable to small Navy plating shops where closed-loop waste recycling and point source minimization is necessary for environmental compliance and cost competitiveness.

  7. Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace

    SciTech Connect (OSTI)

    Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

    2014-01-01T23:59:59.000Z

    This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

  8. Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development

    E-Print Network [OSTI]

    Angenent, Lars T.

    hydrocarbons such as natural gas. Whereas an over- all goal for the century is to achieve a sustainable system to increased use of unconventional gas resources as a result of declining supplies of conventional resources case study of energy transitions we focused on the case of un- conventional natural gas recovery from

  9. Method for controlling exhaust gas heat recovery systems in vehicles

    DOE Patents [OSTI]

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11T23:59:59.000Z

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  10. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOE Patents [OSTI]

    Kychakoff, George; Afromowitz, Martin A; Hugle, Richard E

    2005-06-21T23:59:59.000Z

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions and about 4 or 8.7 microns and directly producing images of the interior of the boiler. An image pre-processing circuit (95) in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. An image segmentation module (105) for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. An image-understanding unit (115) matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system (130) for more efficient operation of the plant pendant tube cleaning and operating systems.

  11. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect (OSTI)

    Seaman, John

    2013-01-14T23:59:59.000Z

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittals Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  12. Batteries: Disposal, recycling and recovery. (Latest citations from Pollution abstracts). NewSearch

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The bibliography contains citations concerning the environmental problems caused by discarded batteries. Citations examine improved collection methods which could enable more batteries to be recycled; recovery of toxic substances such as lead, cadmium, and mercury from scrap batteries; and design of batteries which contain little or no heavy metals. The remediation of contaminated soils, and legislation requiring safe battery disposal or recycling are discussed. (Contains a minimum of 58 citations and includes a subject term index and title list.)

  13. Batteries: Disposal, recycling and recovery. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The bibliography contains citations concerning the environmental problems caused by discarded batteries. Citations examine improved collection methods which could enable more batteries to be recycled; recovery of toxic substances such as lead, cadmium, and mercury from scrap batteries; and design of batteries which contain little or no heavy metals. The remediation of contaminated soils, and legislation requiring safe battery disposal or recycling are discussed. (Contains a minimum of 57 citations and includes a subject term index and title list.)

  14. Batteries: Disposal, recycling and recovery. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The bibliography contains citations concerning the environmental problems caused by discarded batteries. Citations examine improved collection methods which could enable more batteries to be recycled; recovery of toxic substances such as lead, cadmium, and mercury from scrap batteries; and design of batteries which contain little or no heavy metals. The remediation of contaminated soils, and legislation requiring safe battery disposal or recycling are discussed.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Effects of shipment on diffusive dosimetry recovery efficiency for pentane, hexane and heptane

    E-Print Network [OSTI]

    Read, Ronald Bruce

    1981-01-01T23:59:59.000Z

    Sciences College of Pharmacy Chairman of' Advisory Committee: Mr. Charles L. Gilmore The effects of' shipment on recovery was investigated for three aliphatic hydrocarbons adsorbed on the 3M Company's $3500 Organic Vapor Monitor and the Scientific Kit... Combination Vs. Contaminant INTRODUCTION The Occupational Safety and Health Adminsitration (OSHA) has promulgated standards including permissible exposure limits (PEL) for humans based on eight hour time-weighted average (TWA) exposures for approximately...

  16. American Recovery and Reinvestment Act of 2009: Summary of Provisions (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    The American Recovery and Reinvestment Act of 2009 (ARRA), signed into law in mid-February 2009, provides significant new federal funding, loan guarantees, and tax credits to stimulate investments in energy efficiency and renewable energy. The provisions of ARRA were incorporated initially as part of a revision to the Annual Energy Outlook 2009 Reference case that was released in April 2009, and they also are included in Annual Energy Outlook 2010.

  17. The effect of the volume of liquid injected on recovery in solvent slug flooding

    E-Print Network [OSTI]

    Bowman, Charles Hay

    1959-01-01T23:59:59.000Z

    the effect of slug size on oil recovered. A series of verti. cal displacements was performed on a kerosene- and-water saturated core 10 feet in length, using butane as the solvent and methane as the inert dksplacing medium. Breakthrough recovery was fo... screen snd glass wool in the outlet nipple served to retain all sand within the pipe. Fluids used included technical grade methane, technical grade normal butane as the slug material, and kerosene to represent crude oil. Distilled water served...

  18. Environmental regulations handbook for enhanced oil recovery

    SciTech Connect (OSTI)

    Madden, M.P. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States); Blatchford, R.P.; Spears, R.B. [Spears and Associates, Inc., Tulsa, OK (United States)

    1991-12-01T23:59:59.000Z

    This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them.

  19. Industrial Plate Exchangers Heat Recovery and Fouling

    E-Print Network [OSTI]

    Cross, P. H.

    1981-01-01T23:59:59.000Z

    (still)for separation of light oil from the wash oil,which is then returned to absorber tower.The debenzolised wash 0 0 oil is cooled indirectly to 20 C/30 C before returning to the absorber tower. This is toprevent condensation of water from the gas... Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 -- c.O.G. LIGHT OIL SCRUBBER COKE OVEN GAS(C.O.G,J BENZINE COOLING WATER BENZOLISED ~WASH OILSTRIPPER CONVENTIONAL LIGHT OIL RECOVERY PLANT DEBENZOLISED WASH OIL / COOLING WATER...

  20. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24T23:59:59.000Z

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  1. Plutonium recovery from carbonate wash solutions

    SciTech Connect (OSTI)

    Gray, J.H.; Reif, D.J.; Chostner, D.F.; Holcomb, H.P.

    1991-12-31T23:59:59.000Z

    Periodically higher than expected levels of plutonium are found in carbonate solutions used to wash second plutonium cycle solvent. The recent accumulation of plutonium in carbonate wash solutions has led to studies to determine the cause of that plutonium accumulation, to evaluate the quality of all canyon solvents, and to develop additional criteria needed to establish when solvent quality is acceptable. Solvent from three canyon solvent extraction cycles was used to evaluate technology required to measure tributyl phosphate (TBP) degradation products and was used to evaluate solvent quality criteria during the development of plutonium recovery processes. 1 fig.

  2. Enhanced oil recovery projects data base

    SciTech Connect (OSTI)

    Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

    1992-04-01T23:59:59.000Z

    A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

  3. material recovery | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy9 EvaluationWHITE ROCK LOSmarit8recovery |

  4. Recovery Act Reports | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for| Department ofRightsSmartManagement RecordsRecovery

  5. Laboratory awards final Recovery Act demolition contracts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory DirectorsRecovery Act demolition

  6. Lab completes Recovery Act-funded demolition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab SubcontractoractiveLabRecovery

  7. RECOVERY ACT: Geologic Sequestration Training and Research

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Foundenhancer activity than FINAL Progress ReportRECOVERY ACT:

  8. Recovery Act: Demonstrating The Commercial Feasibility Of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8,Past Opportunities » Recovery

  9. Supercritical Recovery Systems LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co Ltd Place: Wuxi,Energy InformationRecovery

  10. The recovery of oil from carbonate reservoirs by fluid injection

    E-Print Network [OSTI]

    Coleman, Dwayne Marvin

    1954-01-01T23:59:59.000Z

    Hole 70 Neasured and Calculated Productivities Obtained on Wells Completed Through Perforations 39 Cumulative Oil Recovery Versus Total Water and Oil Throughf low for Stratified Reservoirs- lj. O Cumulative Oil Recovery Versus Total Water and Oil... index meas- ured on the wells is equal to ths productivity index estimated from cores, In reviewing the published work on the oil recovery by water in]ec- tion to be expected from non-oolitic carbonate formations, dependable methods of prediction...

  11. Disaster Response and Recovery Webinar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Department of Health and Human Services to evaluate, assess, and mitigate the impacts of climate change on their disaster recovery and response programs. Under the Stafford Act,...

  12. Recovery Act Supports Construction of Site's Largest Groundwater...

    Office of Environmental Management (EM)

    June 7, 2011 Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility RICHLAND, Wash. - Construction of the largest ground- water treatment facility at...

  13. RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ann Arbor, Michigan: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...

  14. Vehicle Technologies Office: Materials for Energy Recovery Systems...

    Energy Savers [EERE]

    for Energy Recovery Systems and Controlling Exhaust Gases The typical internal combustion engine wastes about 30 percent of its chemical energy in the form of hot exhaust...

  15. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    State - Updated November 2011 Recovery Act Selections for Smart Grid Investment Grant Awards - By State - Updated November 2011 List of selections for the Smart Grid Investment...

  16. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    Category Updated November 2011 Recovery Act Selections for Smart Grid Investment Grant Awards - By Category Updated November 2011 List of selections for the Smart Grid Investment...

  17. Grant Guidance to Administer the American Recovery and Reinvestment...

    Broader source: Energy.gov (indexed) [DOE]

    PROGRAM NOTICE 10-10: REPROGRAMMING TRAINING AND TECHNICAL ASSISTANCE FUNDS TO PROGRAM OPERATIONS Weatherization Formula Grants - American Recovery and Reinvestment Act (ARRA)...

  18. Idaho Operations Office: American Recovery and Reinvestment Act Update

    ScienceCinema (OSTI)

    Provencher, Rick

    2012-06-14T23:59:59.000Z

    An update from Idaho National Laboratory, Rick Provencher addresses the progress that has been made due to the American Recovery and Reinvestment Act.

  19. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies...

    Energy Savers [EERE]

    Recovery and Reinvestment Act of 2009 funds; the projects accelerate advanced biofuels RD&D, speed the deployment of commercialization of biofuels, and further the U.S....

  20. Recovery Act: Enhancing State Energy Assurance | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancing State Energy Assurance Recovery Act: Enhancing State Energy Assurance States are using these funds to plan for energy supply disruption risks and vulnerabilities to...

  1. Study Shows Significant Economic Impact from Recovery Act

    Office of Environmental Management (EM)

    attended the meeting, where presenters commended the Recovery Act for accelerating Cold War cleanup at SRS and boosting employment and business in the local community. "I go out...

  2. Recovery Act Workers Remediate and Restore Former Waste Sites...

    Office of Environmental Management (EM)

    Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint RICHLAND, Wash. - The Hanford Site is looking greener these days after American...

  3. Geothermal: Sponsored by OSTI -- Recovery Act: Geothermal Data...

    Office of Scientific and Technical Information (OSTI)

    Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014 Geothermal...

  4. Enhanced oil recovery. Progress review, October--December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This document details current research in the area of enhanced recovery of petroleum as sponsored by the DOE. Progress reports are provided for over thirty projects.

  5. Recovery Act:Direct Confirmation of Commercial Geothermal Resources...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act: Direct Confirmation of Commercial Geothermal Resources in Colorado using Remote Sensing and On- Site Exploration, Testing and Analysis F. Lee Robinson - PI Flint...

  6. Successful Sequestration and Enhanced Oil Recovery Project Could...

    Energy Savers [EERE]

    the energy industry, and the general public with reliable information about industrial carbon sequestration and enhanced oil recovery." In the first phase of the research...

  7. LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014...

    Broader source: Energy.gov (indexed) [DOE]

    mineral-webinar.pdf More Documents & Publications LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM Geothermal Play Fairway Analysis Geothermal Play Fairway Analysis...

  8. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency. The microturbine technology will maximize usable exhaust energy and achieve ultra-low emissions levels. High Efficiency Microturbine with Integral Heat Recovery More...

  9. EM Recovery Act Press Releases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    July 1, 2011 DOE Completes Cleanup at New York, California Sites - Recovery Act funds accelerate cleanup; support job creation and footprint reduction WASHINGTON, D.C. - Last...

  10. Energy Secretary Chu Announces $6 Billion in Recovery Act Funding...

    Energy Savers [EERE]

    Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced 6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental...

  11. Sandia Energy - Upcoming Publication on Recovery Strategies for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disruptions during recovery periods instead of the minimizing makespan (time to repair completion) that traditional project scheduling approaches use. This alternative approach...

  12. arachnoid cyst recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R4-Recovery Fehlerklassifikation 12;3 Zweistufige Speicherhierarchie . . . C A D DBMS-Puffer A in der Datenbank (auf Platte) geschrieben werden force - genderte...

  13. affecting molybdenite recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R4-Recovery Fehlerklassifikation 12;3 Zweistufige Speicherhierarchie . . . C A D DBMS-Puffer A in der Datenbank (auf Platte) geschrieben werden force - genderte...

  14. aqueous scrap recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R4-Recovery Fehlerklassifikation 12;3 Zweistufige Speicherhierarchie . . . C A D DBMS-Puffer A in der Datenbank (auf Platte) geschrieben werden force - genderte...

  15. Recovery Act Project Clears Portsmouth Switchyard, Benefits Community...

    Office of Environmental Management (EM)

    million Recovery Act project completed safely and on schedule, workers demolished 160 towers as tall as 120 feet that were used to operate the X-533 Electrical Switchyard....

  16. Air Handler Condensate Recovery at the Environmental Protection...

    Broader source: Energy.gov (indexed) [DOE]

    Air Handler Condensate Recovery at the Environmental Protection Agency's Science and Ecosystem Support Division: Best Management Practice Case Study 14: Alternate Water Sources,...

  17. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caterpillar Inc. 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat...

  18. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003deeralgrain.pdf...

  19. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions. deer09yang2.pdf More Documents & Publications...

  20. Waste Heat Reduction and Recovery for Improving Furnace Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and...

  1. Solid Waste Disposal Resource Recovery Facilities Act (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation authorizes local governing bodies to form joint agencies to advance the collection, transfer, processing of solid waste, recovery of resources, and sales of recovered resources in...

  2. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  3. Willows Aid Flood Recovery in Los Alamos Desert

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. Los Alamos National Laboratorys Associate Directorate of Environmental Programs (ADEP) has been busy with various flood recovery activities since last fall.

  4. Thermal processes for heavy oil recovery

    SciTech Connect (OSTI)

    Sarkar, A.K.; Sarathi, P.S.

    1993-11-01T23:59:59.000Z

    This status report summarizes the project BE11B (Thermal Processes for Heavy Oil Recovery) research activities conducted in FY93 and completes milestone 7 of this project. A major portion of project research during FY93 was concentrated on modeling and reservoir studies to determine the applicability of steam injection oil recovery techniques in Texas Gulf Coast heavy oil reservoirs. In addition, an in-depth evaluation of a steamflood predictive model developed by Mobil Exploration and Production Co. (Mobil E&P) was performed. Details of these two studies are presented. A topical report (NIPER-675) assessing the NIPER Thermal EOR Research Program over the past 10 years was also written during this fiscal year and delivered to DOE. Results of the Gulf Coast heavy oil reservoir simulation studies indicated that though these reservoirs can be successfully steamflooded and could recover more than 50% of oil-in-place, steamflooding may not be economical at current heavy oil prices. Assessment of Mobil E&P`s steamflood predictive model capabilities indicate that the model in its present form gives reasonably good predictions of California steam projects, but fails to predict adequately the performance of non-California steam projects.

  5. CT imaging of enhanced oil recovery experiments

    SciTech Connect (OSTI)

    Gall, B.L.

    1992-12-01T23:59:59.000Z

    X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a good'' surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

  6. CT imaging of enhanced oil recovery experiments

    SciTech Connect (OSTI)

    Gall, B.L.

    1992-12-01T23:59:59.000Z

    X-ray computerized tomography (Cr) has been used to study fluid distributions during chemical enhanced oil recovery experiments. Four CT-monitored corefloods were conducted, and oil saturation distributions were calculated at various stages of the experiments. Results suggested that this technique could add significant information toward interpretation and evaluation of surfactant/polymer EOR recovery methods. CT-monitored tracer tests provided information about flow properties in the core samples. Nonuniform fluid advance could be observed, even in core that appeared uniform by visual inspection. Porosity distribution maps based on CT density calculations also showed the presence of different porosity layers that affected fluid movement through the cores. Several types of CT-monitored corefloods were conducted. Comparisons were made for CT-monitored corefloods using chemical systems that were highly successful in reducing residual oil saturations in laboratory experiments and less successful systems. Changes were made in surfactant formulation and in concentration of the mobility control polymer. Use of a poor mobility control agent failed to move oil that was not initially displaced by the injected surfactant solution; even when a ``good`` surfactant system was used. Use of a less favorable surfactant system with adequate mobility control could produce as much oil as the use of a good surfactant system with inadequate mobility control. The role of mobility control, therefore, becomes a critical parameter for successful application of chemical EOR. Continuation of efforts to use CT imaging in connection with chemical EOR evaluations is recommended.

  7. "Smart" Multifunctional Polymers for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    Charles McCormick; Andrew Lowe

    2007-03-20T23:59:59.000Z

    Recent recommendations made by the Department of Energy, in conjunction with ongoing research at the University of Southern Mississippi, have signified a need for the development of 'smart' multi-functional polymers (SMFPs) for Enhanced Oil Recovery (EOR) processes. Herein we summarize research from the period of September 2003 through March 2007 focusing on both Type I and Type II SMFPs. We have demonstrated the synthesis and behavior of materials that can respond in situ to stimuli (ionic strength, pH, temperature, and shear stress). In particular, Type I SMFPs reversibly form micelles in water and have the potential to be utilized in applications that serve to lower interfacial tension at the oil/water interface, resulting in emulsification of oil. Type II SMFPs, which consist of high molecular weight polymers, have been synthesized and have prospective applications related to the modification of fluid viscosity during the recovery process. Through the utilization of these advanced 'smart' polymers, the ability to recover more of the original oil in place and a larger portion of that by-passed or deemed 'unrecoverable' by conventional chemical flooding should be possible.

  8. Study seeks to boost Appalachian gas recovery

    SciTech Connect (OSTI)

    Not Available

    1992-07-20T23:59:59.000Z

    Ashland Exploration Inc. and the Gas Research Institute (GRI) are trying to find ways to increase gas recovery in the Appalachian basin. They are working together to investigate Mississippian Berea sandstone and Devonian shale in a program designed to achieve better understanding and improved performance of tight natural gas formations in the area. This paper reports that three wells on Ashland Exploration acreage in Pike County, Ky., are involved in the research program. Findings from the first two wells will be used to optimize evaluation and completion of the third well. The first two wells have been drilled. Drilling of the third well was under way at last report. Ashland Exploration has been involved with GRI's Devonian shale research since 1988. GRI's initial focus was on well stimulation because Devonian shale wells it reviewed had much lower recoveries than could be expected, based on estimated gas in place. Research during the past few years was designed to improve the execution and quality control of well stimulation.

  9. Contracts for field projects and supporting research on enhanced oil recovery. Progress review quarter ending September 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    Progress reports are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and field demonstrations in high-priority reservoir classes. A list of available publications is also included.

  10. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    Green, D.W.; McCune, D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite G.P.

    1999-10-29T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

  11. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    Green, Don W.; McCune, A.D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

    1999-11-03T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) Identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

  12. Surface process study for oil recovery using a thermal extraction process

    SciTech Connect (OSTI)

    Sethl, V.K.; Satchwell, R.M.; Johnson, L.A. Jr.

    1994-06-01T23:59:59.000Z

    Geological studies have shown that there are many surface or near-surface deposits in the United States that contain large quantities of petroleum. In the State of Wyoming, a high concentration of such deposits exists in the Wind River, Big Horn, and Powder River Basins. These shallow deposits typically occur as unconsolidated or friable formations that contain millions of barrels of oil. Conventional petroleum production techniques have been attempted in many of these deposits with little or no economic success. In an attempt to improve the production economics, the Western Research Institute was solicited to develop a technique for the recovery of oil from these deposits. WRI, with support from the Economic and Community Development Division of the State of Wyoming, and as a part of the WRI/US Department of Energy, Jointly Sponsored Research program, proposed to develop, test, and demonstrate a viable and economical technology for the recovery of oil using mining and surface recovery processes. Reneau Energy, Inc. of La Quinta, California, agreed to participate in the project in providing a test site and mined materials. The goal of the proposed project to be completed in two phases, was to develop existing energy resources which are not presently being utilized. Phase 1 of the project, consisting of six specific tasks, was conducted to evaluate the suitability of various surface processing schemes. Phase 1 also included gravity drainage tests to determine if recovery techniques such as horizontal drilling could be applied. Phase 1 work was completed, and a final report was prepared and submitted to the funding agencies. Based on the results obtained in Phase 1 of the project, fluidized-bed based thermal recovery appeared to be a viable option. A 100 tons per day pilot plant was designed, constructed, and operated in the field. This report describes the results and experiences of the Phase 2 testing.

  13. Natural gas recovery, storage, and utilization SBIR program

    SciTech Connect (OSTI)

    Shoemaker, H.D.

    1993-12-31T23:59:59.000Z

    A Fossil Energy natural-gas topic has been a part of the DOE Small Business Innovation Research (SBIR) program since 1988. To date, 50 Phase SBIR natural-gas applications have been funded. Of these 50, 24 were successful in obtaining Phase II SBIR funding. The current Phase II natural-gas research projects awarded under the SBIR program and managed by METC are presented by award year. The presented information on these 2-year projects includes project title, awardee, and a project summary. The 1992 Phase II projects are: landfill gas recovery for vehicular natural gas and food grade carbon dioxide; brine disposal process for coalbed gas production; spontaneous natural as oxidative dimerization across mixed conducting ceramic membranes; low-cost offshore drilling system for natural gas hydrates; motorless directional drill for oil and gas wells; and development of a multiple fracture creation process for stimulation of horizontally drilled wells.The 1993 Phase II projects include: process for sweetening sour gas by direct thermolysis of hydrogen sulfide; remote leak survey capability for natural gas transport storage and distribution systems; reinterpretation of existing wellbore log data using neural-based patter recognition processes; and advanced liquid membrane system for natural gas purification.

  14. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    A. Walton; Don W. Green; G. Paul Whillhite; L. Schoeling; L. Watney; M. Michnick; R. Reynolds

    1997-07-15T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are 1) reservoir management and performance evaluation, 2) waterflood optimization, and 3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included 1) reservoir characterization and the development of a reservoir database, 2) volumetric analysis to evaluate production performance, 3) reservoir modeling, 4) laboratory work, 5) identification of operational problems, 6) identification of unrecovered mobile oil and estimation of recovery factors, and 7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were 1) geological and engineering analysis, 2) laboratory testing, and 3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2. Budget Period 2 objectives consisted of the design, construction, and operation of a field-wide waterflood utilizing state-of-the-art, off-the-shelf technologies in an attempt to optimize secondary oil recovery. To accomplish these objectives the second budget period was subdivided into five major tasks. The tasks were 1) design and construction of a waterflood plant, 2) design and construction of a water injection system, 3) design and construction of tank battery consolidation and gathering system, 4) initiation of waterflood operations and reservoir management, and 5) technology transfer. Tasks 1-3 have been completed and water injection began in October 1995. In the Savonburg Project, the reservoir management portion involves performance evaluation. This work included 1) reservoir characterization and the development of a reservoir database, 2) identification of operational problems, 3) identification of near wellbore problems such as plugging caused from poor water quality, 4) identification of unrecovered mobile oil and estimation of recovery factors, and 5) preliminary identification of the most efficient and economical recovery process i.e., polymer augmented waterflooding or infill drilling (vertical or horizontal wells). To accomplish this work the initial budget period was subdivided into four major tasks. The tasks included 1) geological and engineering analysis, 2) waterplant optimization, 3) wellbore cleanup and pattern changes, and 4) field operations. This work was completed and the project has moved into Budget Period 2. The Budget Period 2 objectives consisted of continual optimization of this mature waterflood in an attempt to optimize secondary and tertiary oil recovery. To accomplish these objectives the second budget period is subdivided into six major tasks. The tasks were 1) waterplant development, 2) profile modification treatments, 3) pattern changes, new wells and wellbore cleanups, 4) reservoir development (polymer flooding), 5) field operations, and 6) technology transfer.

  15. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas Near Term

    SciTech Connect (OSTI)

    Green, D.W.; Willhlte, C.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1997-04-15T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period I involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2. Budget Period 2 objectives consisted of the design, construction, and operation of a field-wide waterflood utilizing state-of-the-art, off-the-shelf technologies in an attempt to optimize secondary oil recovery. To accomplish these objectives the second budget period was subdivided into five major tasks. The tasks were (1) design and construction of a waterflood plant, (2) design and construction of a water injection system, (3) design and construction of tank battery consolidation and gathering system, (4) initiation of waterflood operations and reservoir management, and (5) technology transfer. In the Savonburg Project, the reservoir management portion involves performance evaluation. This work included (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems such as plugging caused from poor water quality, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) preliminary identification of the most efficient and economical recovery process i.e., polymer augmented waterflooding or infill drilling (vertical or horizontal wells). To accomplish this work the initial budget period was subdivided into four major tasks. The tasks included (1) geological and engineering analysis, (2) waterplant optimization, (3) wellbore cleanup and pattern changes, and (4) field operations. This work was completed and the project has moved into Budget Period 2. The Budget Period 2 objectives consisted of continual optimization of this mature waterflood in an attempt to optimize secondary and tertiary oil recovery. To accomplish these objectives the second budget period was subdivided into six major tasks. The tasks were (1) waterplant development, (2) profile modification treatments, (3) pattern changes, new wells and wellbore cleanups, (4) reservoir development (polymer flooding), (5) field operations, and (6) technology transfer.

  16. Solar thermal enhanced oil recovery (STEOR). Sections 2-8. Final report, October 1, 1979-June 30, 1980

    SciTech Connect (OSTI)

    Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P. Shaw, H.

    1980-11-01T23:59:59.000Z

    The program objectives were: (1) determine the technical, economic, operational, and environmental feasibility of solar thermal enhanced oil recovery using line focusing distributed collectors at Exxon's Edison Field, and (2) estimate the quantity of solar heat which might be applied to domestic enhanced oil recovery. This volume of the report summarizes all of the work done under the contract Statement of Work. Topics include the selection of the solar system, trade-off studies, preliminary design for steam raising, cost estimate for STEOR at Edison Field, the development plan, and a market and economics analysis. (WHK)

  17. Audit Report on "Management Controls over the Department of Energy's American Recovery and Reinvestment Act - Louisiana State Energy Program"

    SciTech Connect (OSTI)

    None

    2010-05-01T23:59:59.000Z

    The Department of Energy's (Department) Office of Energy Efficiency and Renewable Energy (EERE) provides grants to states, territories and the District of Columbia (states) to support their energy priorities through the State Energy Program (SEP). Federal funding is based on a grant formula that considers the population and energy consumption in each state, and amounted to $25 million for Fiscal Year (FY) 2009. The American Recovery and Reinvestment Act of 2009 (Recovery Act) expanded the SEP by authorizing an additional $3.1 billion to states using the existing grant formula. EERE made grant awards to states after reviewing plans that summarize the activities states will undertake to achieve SEP Recovery Act objectives, including preserving and creating jobs; saving energy; increasing renewable energy sources; and, reducing greenhouse gas emissions. EERE program guidance emphasizes that states are responsible for administering SEP within each state, and requires each state to implement internal controls over the use of Recovery Act funds. The State of Louisiana received $71.6 million in SEP Recovery Act funds; a 164-fold increase over its FY 2009 SEP grant of $437,000. As part of the Office of Inspector General's strategy for reviewing the Department's implementation of the Recovery Act, we initiated this review to determine whether the Louisiana State Energy Office had internal controls in place to efficiently and effectively administer Recovery Act funds provided for its SEP program. Louisiana developed a strategy for SEP Recovery Act funding that focused on improving energy efficiency in state buildings, housing and small businesses; increasing Energy Star appliance rebates; and, expanding the use of alternative fuels and renewable energy. Due to a statewide hiring freeze, Louisiana outsourced management of the majority of its projects ($63.3 million) to one general contractor. Louisiana plans to internally manage one project, Education and Outreach ($2.6 million). The remaining funds are allocated to program specific management expenses, including the contractor's fee, a monitoring contract, and Louisiana's payroll expenses ($5.7 million). Louisiana formally approved the general contractor in February 2010. State officials plan to initiate a separate consulting contract for monitoring, verifying and auditing expenditures, energy savings and other metrics as required by EERE for Recovery Act funding.

  18. A Full Key Recovery Attack on HMAC-AURORA-512

    E-Print Network [OSTI]

    A Full Key Recovery Attack on HMAC-AURORA-512 Yu Sasaki NTT Information Sharing Platform.yu@lab.ntt.co.jp Abstract. In this note, we present a full key recovery attack on HMAC- AURORA-512 when 512-bit secret keys is 2259 AURORA-512 operations, which is significantly less than the complexity of the exhaustive search

  19. Model-Driven Business Process Recovery , Terence C. Lau2

    E-Print Network [OSTI]

    Zou, Ying

    Model-Driven Business Process Recovery Ying Zou1 , Terence C. Lau2 , Kostas Kontogiannis3 , Tack. In this paper, we propose a model-driven business process recovery framework that captures the essential-to-date linkage between business tasks and their implementation in source code, we propose a model-driven business

  20. Homology based algorithm for disaster recovery in wireless networks

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Homology based algorithm for disaster recovery in wireless networks A. Vergne, I. Flint, L for disaster recovery of wireless networks. We consider a damaged wireless network presenting coverage holes the performances between each other and with known methods. I. INTRODUCTION Wireless networks are present

  1. One Classic and Two Classical The Recovery and Transmission

    E-Print Network [OSTI]

    Elman, Benjamin

    #12;One Classic and Two Classical Traditions The Recovery and Transmission of a Lost Edition primary and secondary sources in Japan. Wu Ge , curator of the rare books collection at Fudan University that various ironies attended the process of recovery and transmission. The text in question is Huang Kan

  2. Criticality & Recovery Preparedness: ePHI Systems Criticality Designation

    E-Print Network [OSTI]

    Criticality & Recovery Preparedness: ePHI Systems 5100 EX.A Criticality Designation 1. Primary source of PHI for pre-research; or secondary source of PHI for research/pre-research; secondary source of PHI for treatment, payment or healthcare operations; or teaching Criticality mapped to Recovery

  3. Volunteers hope ORNL technology will speed Haiti's long quake recovery

    E-Print Network [OSTI]

    Pennycook, Steve

    SCIENCE Volunteers hope ORNL technology will speed Haiti's long quake recovery The multi to speed Haiti's recovery from its devastating 2010 earthquake and improve the Haitian population's overall public health by allowing quick, in-the-field diagnoses of diseases. A team of Haiti volunteers

  4. Combined Flue Gas Heat Recovery and Pollution Control Systems

    E-Print Network [OSTI]

    Zbikowski, T.

    1979-01-01T23:59:59.000Z

    in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

  5. Reservoir characterization and enhanced oil recovery research

    SciTech Connect (OSTI)

    Lake, L.W.; Pope, G.A.; Schechter, R.S.

    1992-03-01T23:59:59.000Z

    The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.

  6. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    SciTech Connect (OSTI)

    Joseph Rovani; John Schabron

    2009-02-01T23:59:59.000Z

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  7. Recovery of uranium by immobilized polyhydroxyanthraquinone

    SciTech Connect (OSTI)

    Sakaguchi, T.; Nakajima, A.

    1986-01-01T23:59:59.000Z

    Nine species of polyhydroxyanthraquinone and two of polyhydroxynaphthoquinone were screened to determine which have the greatest ability to accumulate uranium. 1,2-Dihydroxyanthraquinone and 3-amino-1,2-dihydroxyanthraquinone have extremely high accumulation abilities. To improve the adsorbing characteristics of these compounds, the authors tried to immobilize these compounds by coupling with diazotized aminopolystyrene. The immobilized 1,2-dihydroxyanthraquinone has the most favorable features for uranium recovery; high selective adsorption ability to uranium, rapid adsorption rate, and applicability in both column and batch systems. This adsorbent can recover uranium almost quantitatively from natural seawater. Almost all uranium adsorbed is desorbed with a solution of 1 N HCl. Thus, immobilized 1,2-dihydroxyanthraquinone can be used repeatedly in the adsorption-desorption process.

  8. Energy Recovery Linacs for Light Source Applications

    SciTech Connect (OSTI)

    George Neil

    2011-04-01T23:59:59.000Z

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  9. An energy recovery filter for HVDC systems

    SciTech Connect (OSTI)

    Jiang, X.; Gole, A.M. (Univ. of Manitoba, Winnipeg (Canada). Dept. of Electrical and Computer Engineering)

    1994-01-01T23:59:59.000Z

    The paper investigates the use of a novel filter arrangement for eliminating harmonic instability. The CIGRE benchmark model is selected as the base system. Presented in the paper is an example of harmonic instability which is first eliminated using a conventional low Q filter. Subsequently an energy recovery filter (ER-filter) replaces the conventional low Q filter. It is shown that the ER-filter provides similar performance with a fraction of the power loss when compared with a low Q filter. The dynamic performance of the ER-filter is also demonstrated via the simulations of system start-up and faults. The tool used for this investigation is an electromagnetic transient simulation program.

  10. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    SciTech Connect (OSTI)

    Baxter, VAN

    2003-05-19T23:59:59.000Z

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case has its own refrigeration unit; low-charge direct expansion--similar to conventional multiplex refrigeration systems but with improved controls to limit charge. Means to integrate store HVAC systems for space heating/cooling with the refrigeration system have been investigated as well. One approach is to use heat pumps to recover refrigeration waste heat and raise it to a sufficient level to provide for store heating needs. Another involves use of combined heating and power (CHP) or combined cooling, heating, and power (CCHP) systems to integrate the refrigeration, HVAC, and power services in stores. Other methods including direct recovery of refrigeration reject heat for space and water heating have also been examined.

  11. Adsorption calorimetry in enhanced oil recovery

    SciTech Connect (OSTI)

    Noll, L.A.

    1988-05-01T23:59:59.000Z

    Adsorption calorimetry is a technique which has been used at the National Institute for Petroleum and Energy Reserch (NIPER) to help in the understanding of adsorption as it impacts enhanced oil recovery by chemical flooding. Abstraction of chemicals by reservoir minerals comprises a major obstacle to the technical and economic success of this process. Adsorption is also important in other fields such as catalysis, lubrication, ore flotation, and printing. Adsorption calorimetry is useful because it measures both the amount of adsorption and its enthalpy. The enthalpy helps to guide the extrapolation of adsorption to higher temperatures as well as acting as a probe of surface properties such as heterogeneity. Adsorption calorimetry helps to distinguish physical from chemisorption. It is also useful in distinguishing water-wet from oil-wet surfaces. This paper discusses flow adsorption calorimetry. The advantage of using a flowing system over the classic immersion technique is that it is fast and easy to use, and data for the entire isotherm are collected on a single sample of solid. In flow calorimetry the surface excess amount and the thermal data are obtained simultaneously on one and the same sample of solid, thus avoiding some sampling problems. Some disadvantages of the method are somewhat short equilibration times and the cumulative nature of the data. Aspects of adsorption of special interest to enhanced oil recovery such as the nature and charge of minerals, the structure and charge of surfactants, the effects of brine and temperature, and the effects of aqueous or hydrocarbon environment are important parameters of surfactant flooding; they are treated in this paper.

  12. Seeking prospects for enhanced gas recovery

    SciTech Connect (OSTI)

    Doherty, M.G.; Randolph, P.L.

    1982-01-01T23:59:59.000Z

    As part of the Institute of Gas Technology's (IGT) ongoing research on unconventional natural gas sources, a methodology to locate gas wells that had watered-out under over-pressured conditions was developed and implemented. Each year several trillion cubic feet (Tcf) of gas are produced from reservoirs that are basically geopressured aquifers with large gas caps. As the gas is produced, the gas-water interface moves upward in the sandstone body trapping a portion of gas at the producing reservoir pressure. The methodology for identifying such formations consisted of a computer search of a large data base using a series of screening criteria to select or reject wells. The screening criteria consisted of depth cutoff, minimum production volume, minimum pressure gradient, and minimum water production. Wells chosen by the computer search were further screened manually to seek out those wells that exhibited rapid and large increases in water production with an associated quick decline in gas production indicating possible imbibition trapping of gas in the reservoir. The search was performed in an attempt to characterize the watered-out geopressured gas cap resource. Over 475 wells in the Gulf Coast area of Louisiana and Texas were identified as possible candidates representing an estimated potential of up to about 1 Tcf (2.83 x 10/sup 10/ m/sup 3/) of gas production through enhanced recovery operations. A process to determine the suitability of a watered-out geopressured gas cap reservoir for application of enhanced recovery is outlined. This paper addresses the identification of a potential gas source that is considered an unconventional resource. The methodology developed to identify watered-out geopressured gas cap wells can be utilized in seeking other types of watered-out gas reservoirs with the appropriate changes in the screening criteria. 12 references, 2 figures, 5 tables.

  13. Energy balance for uranium recovery from seawater

    SciTech Connect (OSTI)

    Schneider, E.; Lindner, H. [The University of Texas, 1 University Station C2200, Austin, TX 78712 (United States)

    2013-07-01T23:59:59.000Z

    The energy return on investment (EROI) of an energy resource is the ratio of the energy it ultimately produces to the energy used to recover it. EROI is a key viability measure for a new recovery technology, particularly in its early stages of development when financial cost assessment would be premature or highly uncertain. This paper estimates the EROI of uranium recovery from seawater via a braid adsorbent technology. In this paper, the energy cost of obtaining uranium from seawater is assessed by breaking the production chain into three processes: adsorbent production, adsorbent deployment and mooring, and uranium elution and purification. Both direct and embodied energy inputs are considered. Direct energy is the energy used by the processes themselves, while embodied energy is used to fabricate their material, equipment or chemical inputs. If the uranium is used in a once-through fuel cycle, the braid adsorbent technology EROI ranges from 12 to 27, depending on still-uncertain performance and system design parameters. It is highly sensitive to the adsorbent capacity in grams of U captured per kg of adsorbent as well as to potential economies in chemical use. This compares to an EROI of ca. 300 for contemporary terrestrial mining. It is important to note that these figures only consider the mineral extraction step in the fuel cycle. At a reference performance level of 2.76 g U recovered per kg adsorbent immersed, the largest energy consumers are the chemicals used in adsorbent production (63%), anchor chain mooring system fabrication and operations (17%), and unit processes in the adsorbent production step (12%). (authors)

  14. Material and energy recovery in integrated waste management systems: The potential for energy recovery

    SciTech Connect (OSTI)

    Consonni, Stefano [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); LEAP - Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza (Italy); Vigano, Federico, E-mail: federico.vigano@polimi.it [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); LEAP -Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza (Italy)

    2011-09-15T23:59:59.000Z

    Highlights: > The amount of waste available for energy recovery is significantly higher than the Unsorted Residual Waste (URW). > Its energy potential is always higher than the complement to 100% of the Source Separation Level (SSL). > Increasing SSL has marginal effects on the potential for energy recovery. > Variations in the composition of the waste fed to WtE plants affect only marginally their performances. > A large WtE plant with a treatment capacity some times higher than a small plant achieves electric efficiency appreciably higher. - Abstract: This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on 'Material and energy recovery in Integrated Waste Management Systems (IWMS)'. An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa).

  15. Primary and secondary recovery in the Sho-Vel-Tum oilfield, Oklahoma: Topical report

    SciTech Connect (OSTI)

    Johnson, H.R.; Biglarbigi, K.; Schmidt, L.; Ray, R.M.; Kyser, S.C.

    1987-10-01T23:59:59.000Z

    This study was undertaken as part of a comprehensive review of the potential for enhanced oil recovery in Oklahoma. Due to the past production and future potential production from the Sho-Vel-Tum oilfield, the largest producing field in the State of Oklahoma and the eleventh largest in the United States (15), it was subjected to the detailed analyses reported in this document. The original oil in place at Sho-Vel-Tum is estimated in this study to be 3.237 billion barrels of oil. Of this total, 1.235 billion barrels have been produced from the field through 1984 by primary and secondary (waterflood) applications, while reserves are estimated to be an additional 169 million barrels. By subtraction, 1.833 billion barrels still remain as a target for future development, including enhanced oil recovery. 17 refs., 10 figs., 4 tabs.

  16. Fluid Diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes

    SciTech Connect (OSTI)

    Seright, R.S.; Martin, F.D.

    1991-11-01T23:59:59.000Z

    This report describes progress made during the second year of the three-year project, Fluid diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes.'' The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gasfloods. The work examines how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. 93 refs., 39 figs., 43 tabs.

  17. Sampling, preservation, and analytical methods research plan - liquid redox sulfur recovery technologies: Stretford process. Topical report

    SciTech Connect (OSTI)

    Trofe, T.W.

    1986-11-01T23:59:59.000Z

    GRI has developed a sampling, preservation, and analytical (SPandA) methods research plan for developing and validating analytical methodologies for liquid redox sulfur recovery processes (e.g., Stretford process). The document describes the technical approach which will be used to direct research activities to develop SPandA methodologies to analyze gaseous, aqueous, and solid process streams from the Stretford sulfur recovery process. The primary emphasis is on developing and validating methodologies for analyzing vanadium (IV) and vanadium (V), anthraquinone disulphonic acids (ADA), polysulfide-sulfur, sulfide-sulfur, thiosulfate, sulfate, thiocyanate, total soluble sulfur, alkalinity, pH, total dissolved solids, total suspended solids, and dissolved oxygen in aqueous process streams. The document includes descriptions of the process streams and chemical species, selection of candidate analytical methods, and technical approach for methods development and validation.

  18. Phase behavior and oil recovery investigations using mixed and alkaline-enhanced surfactant systems

    SciTech Connect (OSTI)

    Llave, F.M.; Gall, B.L.; French, T.R.; Noll, L.A.; Munden, S.A.

    1992-03-01T23:59:59.000Z

    The results of an evaluation of different mixed surfactant and alkaline-enhanced surfactant systems for enhanced oil recovery are described. Several mixed surfactant systems have been studies to evaluate their oil recovery potential as well as improved adaptability to different ranges of salinity, divalent ion concentrations, and temperature. Several combinations of screening methods were used to help identify potential chemical formulations and determine conditions where particular chemical systems can be applied. The effects of different parameters on the behavior of the overall surfactant system were also studied. Several commercially available surfactants were tested as primary components in the mixtures used in the study. These surfactants were formulated with different secondary as well as tertiary components, including ethoxylated and non-ethoxylated sulfonates and sulfates. Improved salinity and hardness tolerance was achieved for some of these chemical systems. The salinity tolerance of these systems were found to be dependent on the molecular weight, surfactant type, and concentration of the surfactant components.

  19. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- Near term. Quarterly report, June 30--September 30, 1995

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1995-10-15T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. General topics to be addressed will be (1) reservoir management and performance evaluation; (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process on both field demonstration sites.

  20. A Management Tool for Analyzing CHP Natural Gas Liquids Recovery System

    E-Print Network [OSTI]

    Olsen, C.; Kozman, T. A.; Lee, J.

    2008-01-01T23:59:59.000Z

    The objective of this research is to develop a management tool for analyzing combined heat and power (CHP) natural gas liquids (NGL) recovery systems. The methodology is developed around the central ideas of product recovery, possible recovery...