Sample records for noncompliance determination manufacturers

  1. Goodman Manufacturing: Noncompliance Determination (2011-SE-4301)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Goodman Manufacturing finding that model CPC180XXX3BXXXAA (CPC180*) of commercial package air conditioner does not comport with the energy conservation standards.

  2. Aspen: Noncompliance Determination (2010-SE-0305)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Aspen Manufacturing finding that a variety of basic models of split-system air conditioning heat pumps do not comport with the energy conservation standards.

  3. Aspen: Noncompliance Determination (2011-SE-1602)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Aspen Manufacturing finding that indoor unit model AEW244 and outdoor unit model NCPC-424-3010 of residential split system central air conditioning system do not comport with the energy conservation standards.

  4. Perlick: Noncompliance Determination (2013-SE-14002) | Department...

    Energy Savers [EERE]

    finding that refrigerator basic model HP48RR does not comport with the energy conservation standards. DOE determined the product was noncompliant based on DOE testing....

  5. Whirlpool: Noncompliance Determination (2013-SE-1420) | Department...

    Office of Environmental Management (EM)

    finding that refrigerator-freezer basic model 8TAR81 does not comport with the energy conservation standards. DOE determined the product was noncompliant based on DOE testing....

  6. Bigwall: Noncompliance Determination (2014-SE-15006) | Department...

    Office of Environmental Management (EM)

    ("Bigwall model PACH8000") of room air conditioners do not comport with the energy conservation standards. DOE determined the product was noncompliant based on DOE testing....

  7. Heat Controller: Noncompliance Determination (2014-SE-15004)...

    Office of Environmental Management (EM)

    a Notice of Noncompliance Determination to Heat Controller, Inc. finding that the room air conditioner distributed in commerce by Heat Controller as Comfort Aire brand models...

  8. Four Central Air Conditioners Determined Noncompliant With Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Four Central Air Conditioners Determined Noncompliant With Energy Efficiency Standard Four Central Air Conditioners Determined Noncompliant With Energy Efficiency Standard October...

  9. Mile High: Noncompliance Determination (2012-SE-4501)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Mile High Equipment, LLC finding that Ice-O-Matic brand automatic commercial ice maker basic model ICE2106 FW, HW does not comport with the energy conservation standards.

  10. Philips: Noncompliance Determination (2012-SE-2605)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Philips Lighting Electronics N. A. finding that basic model VEL-I S40-SC, a fluorescent lamp ballast, does not comport with the energy conservation standards.

  11. Lutron Electronics: Noncompliance Determination (2012-SE-3796)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Lutron Electronics Co., Inc. finding that a variety of Class A external power supply basic models do not comport with the energy conservation standards.

  12. Central Moloney: Noncompliance Determination (2013-SE-4702)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Central Moloney, Inc. finding that liquid-immersed distribution transformer basic models 30300150 and 32500095 do not comport with the energy conservation standards.

  13. Pax Global: Noncompliance Determination (2013-SE-1413)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Pax Global, Inc. finding that freezer basic models (1) Crosley CCF51; (2) Crosley CCF69; (3) Crosley CCF106; and (4) Daewoo DCF-106W do not comport with the energy conservation standards.

  14. Midea: Amended Noncompliance Determination (2010-SE-0110, 2012...

    Broader source: Energy.gov (indexed) [DOE]

    of Noncompliance Determination to Midea America Corp., Hefei Hualing Co., Ltd., and China Refrigeration Industry Co., Ltd. finding that basic model HD-146F, a...

  15. Air-Con International: Noncompliance Determination and Proposed...

    Energy Savers [EERE]

    Notice of Noncompliance Determination to Air-Con International finding that a variety of central air conditioners and air conditioning heat pumps distributed under the Air-Con...

  16. GE Lighting Solutions: Noncompliance Determination (2013-SE-4901)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to General Electric Lighting Solutions finding that various models of traffic signal modules do not comport with the energy conservation standards.

  17. Westinghouse Lighting: Noncompliance Determination (2010-CE-09/1001)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Westinghouse Lighting Corporation finding that various models of incandescent reflector lamps do not comport with the energy conservation standards.

  18. AeroSys: Noncompliance Determination (2010-SE-0302)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to AeroSys, Inc. finding that basic models THHP-24T* and THDC-30T* do not comport with the energy conservation standards.

  19. Westinghouse Lighting: Noncompliance Determination (2010-CE-09/1001)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Westinghouse Lighting Corporation finding that model F40T12/CWE (Westinghouse product code 07521000), a general service fluorescent lamp, and model 15GLOBE/65/2 (Westinghouse product code 3800400), a medium base compact fluorescent lamp, do not comport with the energy conservation standards.

  20. AeroSys: Noncompliance Determination (2010-CE-01/0201 and 2010-SE-0302)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to AeroSys, Inc. finding that basic models THDC-18S, THDC-18T, THDC-24S, and THDC-24T do not comport with the energy conservation standards.

  1. Eur J Cancer Prev. Author manuscript Determinants of non-compliance to recommendations on breast cancer

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Eur J Cancer Prev. Author manuscript Page /1 11 Determinants of non-compliance to recommendations on breast cancer screening among women participating in the French E3N cohort study Flamant Camille , Gauthier Estelle , Clavel-Chapelon Fran oiseç * E3N, Nutrition, hormones et cancer: pid miologie et pr

  2. Sanden Vendo America: Noncompliance Determination (2014-SE-52002...

    Office of Environmental Management (EM)

    bottled or canned beverage vending machine model Vue30 (with 1128127 cassette refrigeration deck) does not comport with the energy conservation standards. DOE determined the...

  3. Manufacturer Voluntarily Reports Noncompliance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy UniversityOversight Inspection

  4. Goodman Manufacturing: Proposed Penalty (2011-SE-4301)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Goodman Manufacturing manufactured and distributed noncompliant basic model CPC180* commercial package air conditioners in the U.S.

  5. Everest Refrigeration: Noncompliance Determination (2015-SE-42001) |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt | Department ofEvaluationof theEnergyDepartment of

  6. Manufacturers of Noncompliant Products Agree to Civil Penalties...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    equipment found in violation included automatic commercial ice makers, distribution transformers, external power supplies, showerheads and lighting products. The companies ceased...

  7. Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmart WindowsDepartment ofEnforcement Actions |

  8. Manufacturers of Noncompliant Products Agree to Civil Penalties to Resolve

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC) Richard Cowart, ChairReactorSolar

  9. A New Approach for Determining Optimal Air Compressor Location in A Manufacturing Facility to Increase Energy Efficiency

    E-Print Network [OSTI]

    Zahlan, J.; Avci, M.; Asfour, S.

    2014-01-01T23:59:59.000Z

    An approach is proposed to determine the optimal air compressor location in a manufacturing facility. The optimization strategy is based on an objective function that minimizes the total energy consumption of the air compressor -thereby decreasing...

  10. MANUFACTURING Manufacturing and Biomanufacturing

    E-Print Network [OSTI]

    Magee, Joseph W.

    process improvements to manufacturing. In addition, the critical national need area of Manufacturing hasMANUFACTURING Manufacturing and Biomanufacturing: Materials Advances and Critical Processes NATIONAL NEED The proposed topics within "Manufacturing and Biomanufacturing: Materials Advances

  11. Appendix E. National Pollutant Discharge Elimination System Noncompliance

    E-Print Network [OSTI]

    Pennycook, Steve

    recurrence. E.2 East Tennessee Technology Park In 2007, there were five Clean Water Act/NPDES noncompliances at the East Tennessee Technology Park. Details are provided in Chap. 3, Sect. 3.5.1.3.2, of this document sources come together. The sources include a remediated coal fly ash pile. On August 30, 2007, a p

  12. YMGI Through-the-Wall Air Conditioner Determined Noncompliant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on October 11, 2012, to YMGI Group, LLC (YMGI) regarding through-the-wall split system central air conditioner basic model TTWC-18K-31B. DOE enforcement testing revealed that...

  13. Four Central Air Conditioners Determined Noncompliant With Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE HydrogenPlansDecades

  14. LG: Noncompliance Determination (2014-SE-15011) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting FactsWashers | Department

  15. Perlick: Noncompliance Determination (2013-SE-14001) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea. Part B 1 PartMarket | DepartmentIron:7,27,

  16. Philips: Noncompliance Determination (2014-SE-48006) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea. Part B 1 PartMarketInvestmentMarch 26,

  17. Haier: Noncompliance Determination (2011-SE-1408) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopmentHEADQUARTERSOutreachApril 23, 2013 DOE8, 2011 DOE

  18. Hydac: Noncompliance Determination (2012-SE-4107) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral Testimony of SecretaryBetweenTheMarchHybridNovember

  19. Sunshine: Noncompliance Determination (2014-SE-54008) | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski -BlueprintThis document details the frequently1 1.69MayEnergy

  20. Air-Con International: Noncompliance Determination and Proposed Penalty

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T,FACT S HEET FACTAgenda: TheAof(2010-SE-0301) |

  1. Sears: Noncompliance Determination (2011-SE-1418) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »Usage »DownloadSolar »MiddleHighHighEnergy Sources »Sears:

  2. Midea: Noncompliance Determination (2014-SW-20001) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official File UnitedToOn4.docThe4Vehicles

  3. Midea America: Noncompliance Determination (2014-SEW-20006) | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLE OF CONTENTS 1of:MicrosoftFinancing Peer

  4. A New Approach for Determining Optimal Air Compressor Location in A Manufacturing Facility to Increase Energy Efficiency

    E-Print Network [OSTI]

    Zahlan, J.; Avci, M.; Asfour, S.

    2014-01-01T23:59:59.000Z

    determines the ideal air compressor horsepower required to meet the facility air demand at the required pressure. Air pressure drops are incorporated using a compressed air pipeline pressure drop table, while air leaks are calculated throughout the system...

  5. Additive Manufacturing: Implications on Research and Manufacturing

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

  6. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Plants Challenge Manufacturing R&D Facilities Manufacturing Demonstration Facility Manufacturing Institutes National Additive Manufacturing Innovation Institute - Pilot Now...

  7. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

  8. AeroSys: Noncompliance Determination (2010-SE-0302) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T,FACT S HEET FACT S

  9. YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters |-- 9:00 AM OpeningWorld's LargestYou |Y-12I

  10. Formal Management Review of the Safety Basis Calculations Noncompliance

    SciTech Connect (OSTI)

    Altenbach, T J

    2008-06-24T23:59:59.000Z

    In Reference 1, LLNL identified a failure to adequately implement an institutional commitment concerning administrative requirements governing the documentation of Safety Basis calculations supporting the Documented Safety Analysis (DSA) process for LLNL Hazard Category 2 and Category 3 nuclear facilities. The AB Section has discovered that the administrative requirements of AB procedure AB-006, 'Safety Basis Calculation Procedure for Category 2 and 3 Nuclear Facilities', have not been uniformly or consistently applied in the preparation of Safety Basis calculations for LLNL Hazard Category 2 and 3 Nuclear Facilities. The SEP Associated Director has directed the AB Section to initiate a formal management review of the issue that includes, but is not necessarily limited to the following topics: (1) the basis establishing Ab-006 as a required internal procedure for Safety Basis calculations; (2) how requirements for Safety Basis calculations flow down in the institutional DSA process; (3) the extent to which affected Laboratory organizations have explicitly complied with the requirements of Procedure AB-006; (4) what alternative approaches LLNL organizations has used for Safety Basis calculations and how these alternate approaches compare with Procedure AB-006 requirements; and (5) how to reconcile Safety Basis calculations that were performed before Procedure AB-006 came into existence (i.e., August 2001). The management review2 also includes an extent-of-condition evaluation to determine how widespread the discovered issue is throughout Laboratory organizations responsible for operating nuclear facilities, and to determine if implementation of AB procedures other than AB-006 has been similarly affected. In Reference 2, Corrective Action 1 was established whereby the SEP Directorate will develop a plan for performing a formal management review of the discovered condition, including an extent-of condition evaluation. In Reference 3, a plan was provided to prepare a formal management review, satisfying Corrective Action 1. An AB-006 Working Group was formed,led by the AB Section, with representatives from the Nuclear Materials Technology Program (NMTP), the Radioactive and Hazardous Waste Management (RHWM) Division, and the Packaging and Transportation Safety (PATS) Program. The key action of this management review was for Working Group members to conduct an assessment of all safety basis calculations referenced in their respective DSAs. Those assessments were tasked to provide the following information: (1) list which safety basis calculations correctly follow AB-006 and therefore require no additional documentation; (2) identify and list which safety basis calculations do not strictly follow AB-006, these include NMTP Engineering Notes, Engineering Safety Notes, and calculations by organizations external to the nuclear facilities (such as Plant Engineering), subcontractor calculations, and other internally generated calculations. Each of these will be reviewed and listed on a memorandum with the facility manager's (or designee's) signature accepting that calculation for use in the DSA. If any of these calculations are lacking the signature of a technical reviewer, they must also be reviewed for technical content and that review documented per AB-006.

  11. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31T23:59:59.000Z

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  12. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30T23:59:59.000Z

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  13. Manufacturing Innovation in the DOE

    Broader source: Energy.gov (indexed) [DOE]

    Robert McEwan GE America Makes The National Accelerator for Additive Manufacturing & 3D Printing Advanced Manufacturing Office (AMO) manufacturing.energy.gov 13 Manufacturing...

  14. Photographic lens manufacturing and production technologies

    E-Print Network [OSTI]

    Kubaczyk, Daniel Mark

    2011-01-01T23:59:59.000Z

    An investigation was conducted to determine the methods and processes required for the manufacture of photographic objective lenses. Production of photographic lenses requires incredible precision in the melting, mixing, ...

  15. RRR Niobium Manufacturing Experience

    SciTech Connect (OSTI)

    Graham, Ronald A. [ATI Wah Chang, An Allegheny Technologies Company, Albany, Oregon 97321 (United States)

    2007-08-09T23:59:59.000Z

    ATI Wah Chang has been manufacturing RRR niobium for more than 30 years using electron beam melting techniques. Fabricated forms include plate, sheet, foil, bar, rod and tubing. This paper provides manufacturing information.

  16. The Advanced Manufacturing Partnership

    E-Print Network [OSTI]

    Das, Suman

    ;ve Manufacturing Technologies (led by Dow, Honeywell and MIT) Manufacturing Ins;tutes (led, Honeywell and MIT GOALS To launch public-private ini:a:ves to advance transforma

  17. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential Application to ARM MeasurementsDetermination of

  18. Manufacturing Battle Creek

    E-Print Network [OSTI]

    de Doncker, Elise

    to the manufacturing sector in Western Michigan. In addition to serving as director of the MRC, Dr. Patten is alsoManufacturing Research Center Kalamazoo Battle Creek The College of Engineering and Applied Sciences The Supporting manufacturing industries by providing opportunities for collaboration with faculty

  19. CX-008582: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-008582: Categorical Exclusion Determination Bay Area Photovoltaics Consortium, Photovoltaic (PV) Manufacturing Initiative - Core Subawards CX(s)...

  20. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  1. Locating Chicago Manufacturing

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Renaissance Council, is among the nation's leading public high schools focused on manufac- turing area's econ- omy, including how important manufacturing is to that economy, which manufac- turing

  2. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing manufacturing industries and result in creative new products. Stronger, more corrosion-resistant and lower cost steel alloys are being developed and commercialized to...

  3. Developing the Manufacturing Process for Hylene MP Curing Agent

    SciTech Connect (OSTI)

    Eastwood, Eric

    2009-02-16T23:59:59.000Z

    This report details efforts to scale-up and re-establish the manufacturing process for the curing agent known as Hylene MP. First, small scale reactions were completed with varying conditions to determine key drivers for yielding high quality product. Once the optimum conditions were determined on the small scale, the scaled-up process conditions were determined. New equipment was incorporated into the manufacturing process to create a closed production system and improve chemical exposure controls and improve worker safety. A safe, efficient manufacturing process was developed to manufacture high quality Hylene MP in large quantities.

  4. Manufacturing Licenses Available | Tech Transfer | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deposition Manufacturing 201303127 Methods and Materials for Room Temperature Polymer Additive Manufacturing 201303140 Reactive Polymer Fused Deposition Manufacturing 201303151...

  5. Manufacturing Demonstration Facility Technology Collaborations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced manufacturing and materials technologies for commercial applications related to additive manufacturing or carbon fiber and composites will have the highest likelihood of...

  6. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  7. CIMplementation: Evaluating Manufacturing Automation

    E-Print Network [OSTI]

    Krakauer, J.

    management and labor. In the new shop, ma~? agers will be unable to succeed unless thet earn the respect and cooperation of their I subordinates. Managers need to address th~ fear and resistance of manufacturing emPlofees before and during a transition.... Managers are becoming more interested in these methods, but they should be aware that implementing them will be a slow, complex task. This technology will require changes in manufacturing organization. This paper discusses changes required...

  8. CX-006751: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination University of Alabama at Birmingham Graduate Automotive Technology Education Center for Lightweight Materials and Manufacturing for...

  9. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Manufacturing Demonstration Facility Workshop Critical Materials Workshop Agenda Innovative Manufacturing Initiatives Recognition Day...

  10. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  11. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  12. ATS materials/manufacturing

    SciTech Connect (OSTI)

    Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

    1997-11-01T23:59:59.000Z

    The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

  13. Manufacturing Success Stories

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartment of EnergyManagementORNL isManufacturingManufacturing6

  14. MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

    E-Print Network [OSTI]

    Chiang, Wei-yu Kevin

    an upstream firm, as a result of charging a wholesale price above the marginal cost, induces its intermediary Dynamics and Channel Efficiency in Durable Product Pricing and Distribution Wei-yu Kevin Chiang College the single-period vertical price interaction in a manufacturer­retailer dyad to a multi- period setting

  15. Bolt Manufacture: Process Selection

    E-Print Network [OSTI]

    Colton, Jonathan S.

    file Selective Laser Sintering (SLS) 3 D P i ti 3-D Printing Light Engineered Net Shaping (LENS Processes and Systems Prof. J.S. Colton GIT 2009 20 #12;3D Printing Process (Soligen) ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton GIT 2009 21 #12;3D Printing Head (Soligen)3D Printing

  16. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

  17. CX-006074: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-006074: Categorical Exclusion Determination Bay Area Photovoltaics Consortium, Photovoltaic Manufacturing Initiative CX(s) Applied: A9 Date: 0628...

  18. CX-001642: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-001642: Categorical Exclusion Determination Wind Turbine Castings Manufacturer CX(s) Applied: B5.1 Date: 04072010 Location(s): Wisconsin...

  19. Additive Manufacturing for Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  20. Climate VISION: Private Sector Initiatives: Automobile Manufacturers...

    Office of Scientific and Technical Information (OSTI)

    of Automobile Manufacturers The Alliance of Automobile Manufacturers, Inc. is a trade association composed of 10 car and light truck manufacturers with about 600,000...

  1. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01T23:59:59.000Z

    Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

  2. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry...

  3. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01T23:59:59.000Z

    Hague, "Sustainability of additive manufacturing: measuringASTM Committee F42 on Additive Manufacturing Technologies,"ASTM Committee F42 on Additive Manufacturing Technologies. -

  4. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy...

  5. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Energy Savers [EERE]

    ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 ITP Nanomanufacturing:...

  6. Design for Reliability: Case Studies in Manufacturing Process Synthesis Y. Lawrence Yao*, and Chao Liu

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Design for Reliability: Case Studies in Manufacturing Process Synthesis Y. Lawrence Yao*, and Chao of manufacturing process design is to determine a set of process parameters for a manufacturing task. The design. Such a methodology is illustrated in case studies involving process design of laser forming of sheet metal, in which

  7. Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components Manufacturing Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive

  8. Posted 10/18/11 MANUFACTURING ENGINEER

    E-Print Network [OSTI]

    Heller, Barbara

    manufacturing processes in our Metal Fabrication and Assembly departments. Additional responsibilities includePosted 10/18/11 MANUFACTURING ENGINEER Kenall Manufacturing Gurnee, IL Kenall, a leading manufacturer of advanced lighting solutions for specialized environments, has exceptional opportunities

  9. Faculty Position in Mechanical Engineering Additive Manufacturing

    E-Print Network [OSTI]

    Faculty Position in Mechanical Engineering Additive Manufacturing University of Kansas of additive manufacturing. Exceptional candidates with outstanding qualifications could be considered using additive manufacturing in applications such as, but not limited to the net shape manufacture of

  10. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing...

  11. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving...

  12. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Office of Environmental Management (EM)

    Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting...

  13. Voluntary Protection Program Onsite Review, Honeywell Federal Manufacturing and Technologies- November 2008

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Honeywell Federal Manufacturing and Technologies' Kansas City Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  14. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with...

  15. Voluntary Protection Program Onsite Review, Honeywell Federal Manufacturing and Technologies- September 2008

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Honeywell Federal Manufacturing and Technologies / New Mexico is continuing to perform at a level deserving DOE-VPP Star recognition.

  16. Manufacturing Demonstration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9Novemberutilities and aHistoricMannManufacturing

  17. Integrating Energy Management and Lean Manufacturing

    E-Print Network [OSTI]

    Stocki, M.

    Reduced Building Energy through Lean Case Study Facility floor space typically must be heated, ventilated, and illuminated. When space runs outs, a facility usually looks to expand by adding floor space. A farm equipment manufacturer was facing just... Procedures to optimize operational and production tasks ? Encouraging energy efficiency through the use of Visual Dashboards (sample in Figure 3). ? Root cause analysis to determine the underlying causes (and possible solutions) of energy wastes in a...

  18. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  19. Sandia National Laboratories: wind manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Wind Energy Manufacturing Laboratory-a joint effort of researchers from TPI Composites, a Scottsdale, Arizona-based company that operates a turbine blade factory in...

  20. Manufacturing Spotlight: Boosting American Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

  1. Manufacturing Demonstration Facility Workshop Videos

    Broader source: Energy.gov [DOE]

    Session recordings from the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois, on March 12, 2012, and simultaneously broadcast as a webinar.

  2. Wireless technology for integrated manufacturing

    SciTech Connect (OSTI)

    Manges, W.W.; Allgood, G.O.; Shourbaji, A.A.

    1996-08-01T23:59:59.000Z

    This paper describes the ground breaking work in Oak Ridge facilities that now leads us to the brink of the wireless revolution in manufacturing. The focus is on solving tough technological problems necessary for success and addressing the critical issues of throughput, security, reliability, and robustness in applying wireless technology to manufacturing processes. Innovative solutions to these problems are highlighted through detailed designs and testbed implementations that demonstrate key concepts. The DOE-Oak Ridge complex represented by the Oak Ridge Centers for Manufacturing Technologies (ORCMT) continues to develop these technologies and will continue to focus on solving tough manufacturing problems.

  3. Solar collector manufacturing activity 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-15T23:59:59.000Z

    The report presents national and State-level data on the U.S. solar thermal collector and photovoltaic cell and module manufacturing industry.

  4. Cost and Energy Consumption Optimization of Product Manufacture in a Flexible Manufacturing System

    E-Print Network [OSTI]

    Diaz, Nancy; Dornfeld, David

    2012-01-01T23:59:59.000Z

    Product Manufacture in a Flexible Manufacturing System Nancypart production under flexible process routings is studiedMachining; Cost; Energy; Flexible Manufacturing INTRODUCTION

  5. Petrick Technology Trends Of Manufacturing

    E-Print Network [OSTI]

    #12;323 Petrick Technology Trends chapter 9 The Future Of Manufacturing Irene Petrick Technology Trends This chapter is a story about the future of manufacturing based on three predictions: that firms sophisticated modeling and simulation of both new products and production processes; that additive

  6. Out of Bounds Additive Manufacturing Christopher

    E-Print Network [OSTI]

    Pennycook, Steve

    #12;Out of Bounds Additive Manufacturing Christopher Holshouser, Clint Newell, and Sid Palas, Tenn. The Big Area Additive Manufacturing system has the potential to manufacture parts completely) are working on an additive manufacturing (AM) system (Big Area Additive Manufacturing, or BAAM) capable

  7. CX-003507: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination State Energy Program American Recovery and Reinvestment Act: Solar Power Incorporated Photovoltaic Panel Manufacturing Facility CX(s) Applied: B1.31,...

  8. CX-004021: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination State Energy Program American Recovery and Reinvestment Act: Solaria Photovoltaic Manufacturing Facility CX(s) Applied: B5.1 Date: 10082010 Location(s): Fremont,...

  9. CX-002572: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Manufacturing and Commercialization of Energy Efficient Generators for Small Wind Turbines CX(s) Applied: A1, B5.1 Date: 05192010...

  10. CX-005547: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Specific Manufacturing Capability (SMC) Incinerator and Propane Tank System Removal CX(s) Applied: B1.23 Date: 03222011 Location(s): Idaho...

  11. MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS

    E-Print Network [OSTI]

    Magee, Joseph W.

    MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS ADVANCES INTO MANUFACTURING PROCESSES NATIONAL NEED The proposed topic "Accelerating the Incorporation of Materials Advances into Manufacturing organizations, leading researchers from academic institutions, and others. Materials performance is often

  12. Engineering and manufacturing of ITER first mirror mock-ups

    SciTech Connect (OSTI)

    Joanny, M.; Travere, J. M.; Salasca, S.; Corre, Y. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Marot, L. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Thellier, C.; Gallay, G.; Cammarata, C.; Passier, B.; Ferme, J. J. [SESO, 305 Rue Louis Armand CS 30504, 13593 Aix-en-Provence Cedex 3 (France)

    2010-10-15T23:59:59.000Z

    Most of the ITER optical diagnostics aiming at viewing and monitoring plasma facing components will use in-vessel metallic mirrors. These mirrors will be exposed to a severe plasma environment and lead to an important tradeoff on their design and manufacturing. As a consequence, investigations are carried out on diagnostic mirrors toward the development of optimal and reliable solutions. The goals are to assess the manufacturing feasibility of the mirror coatings, evaluate the manufacturing capability and associated performances for the mirrors cooling and polishing, and finally determine the costs and delivery time of the first prototypes with a diameter of 200 and 500 mm. Three kinds of ITER candidate mock-ups are being designed and manufactured: rhodium films on stainless steel substrate, molybdenum on TZM substrate, and silver films on stainless steel substrate. The status of the project is presented in this paper.

  13. Advanced Technology Vehicles Manufacturing Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

  14. Additive Manufacturing Cluster Strategy | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Cluster Strategy SHARE Additive Manufacturing Cluster Strategy As the nation's premier research laboratory, ORNL is one of the world's most capable resources...

  15. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors,...

  16. Welcome and Advanced Manufacturing Partnership (Text Version...

    Broader source: Energy.gov (indexed) [DOE]

    200 school aged students go into this manufacturing demonstration facility and make 3D printing or other manufacturing parts. Design and make parts for their robots. For their...

  17. National Electrical Manufacturers Association (NEMA) Response...

    Energy Savers [EERE]

    Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

  18. Technologies Enabling Agile Manufacturing (TEAM) ? an ORCMT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Enabling Agile Manufacturing (TEAM) - An ORCMT success story Technologies Enabling Agile Manufacturing (TEAM) was one of the larger programs to come from the...

  19. Alternative Energy Product Manufacturers Tax Credit | Department...

    Broader source: Energy.gov (indexed) [DOE]

    and Revenue Provider New Mexico Energy, Minerals and Natural Resources Department The Alternative Energy Product Manufacturers tax credit may be claimed for manufacturing...

  20. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials R&D More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Advanced Manufacturing Office Overview Microwave and Radio Frequency Workshop...

  1. Additive Manufacturing Opportunities for Transportation | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Opportunities for Transportation Mar 13 2015 10:00 AM - 11:00 AM Lonnie Love, Manufacturing Systems Research Group Transportation Science Seminar Series...

  2. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Broader source: Energy.gov (indexed) [DOE]

    for a Clean Energy Manufacturing Innovation Institute related to composite materials and structures. The Manufacturing Demonstration Facility at Oak Ridge National...

  3. Vehicle Technologies Office Merit Review 2014: Manufacturability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturability Study and Scale-Up for Large Format Lithium Ion Batteries Vehicle Technologies Office Merit Review 2014: Manufacturability Study and Scale-Up for Large Format...

  4. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

  5. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D...

  6. 2010 Manufacturing Energy and Carbon Footprints: Definitions...

    Broader source: Energy.gov (indexed) [DOE]

    key terms and details assumptions and references used in the Manufacturing Energy and Carbon Footprints (2010 MECS) Definitions and Assumptions for the Manufacturing Energy and...

  7. Understanding Manufacturing Energy and Carbon Footprints, October...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis Cement...

  8. Process systems engineering of continuous pharmaceutical manufacturing

    E-Print Network [OSTI]

    Abel, Matthew J

    2010-01-01T23:59:59.000Z

    Continuous manufacturing offers a number of operational and financial benefits to pharmaceutical companies. This research examines the critical blending step for continuous pharmaceutical manufacturing and the characteristics ...

  9. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger [University of Arizona

    2014-12-17T23:59:59.000Z

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square a unique capability. The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

  10. Deputy Director, Advanced Manufacturing Office

    Broader source: Energy.gov [DOE]

    This position is located in the Advanced Manufacturing Office (AMO), within the Office of Energy Efficiency and Renewable Energy (EERE). EERE leads the U.S. Department of Energy's efforts to...

  11. Wind Energy Manufacturing Tax Incentive

    Broader source: Energy.gov [DOE]

    With the passage of [http://www.arkansasenergy.org/media/261385/act736.pdf HB 2230 (2009)] in April 2009, the Arkansas Legislature expanded a tax incentive for manufacturers of windmill blades or...

  12. Manufacturing System Design Framework Manual

    E-Print Network [OSTI]

    Vaughn, Amanda

    2002-01-01T23:59:59.000Z

    Previous Lean Aerospace Initiative research in factory operations had indicated that the greatest performance gains are realized when the manufacturing system is designed from the top down and from supplier to the customer. ...

  13. CFL Manufacturers: ENERGY STAR Letters

    Broader source: Energy.gov [DOE]

    DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program.

  14. Manufacturing development of low activation vanadium alloys

    SciTech Connect (OSTI)

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01T23:59:59.000Z

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported.

  15. Designing a National Network for Manufacturing Innovation

    E-Print Network [OSTI]

    Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction NNMI principles Public NMMI Design Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material e.g. lightweight, low cost carbon fiber

  16. System level analysis and control of manufacturing process variation

    DOE Patents [OSTI]

    Hamada, Michael S.; Martz, Harry F.; Eleswarpu, Jay K.; Preissler, Michael J.

    2005-05-31T23:59:59.000Z

    A computer-implemented method is implemented for determining the variability of a manufacturing system having a plurality of subsystems. Each subsystem of the plurality of subsystems is characterized by signal factors, noise factors, control factors, and an output response, all having mean and variance values. Response models are then fitted to each subsystem to determine unknown coefficients for use in the response models that characterize the relationship between the signal factors, noise factors, control factors, and the corresponding output response having mean and variance values that are related to the signal factors, noise factors, and control factors. The response models for each subsystem are coupled to model the output of the manufacturing system as a whole. The coefficients of the fitted response models are randomly varied to propagate variances through the plurality of subsystems and values of signal factors and control factors are found to optimize the output of the manufacturing system to meet a specified criterion.

  17. Model-Based Engineering and Manufacturing CAD/CAM Benchmark.

    SciTech Connect (OSTI)

    Domm, T.C.; Underwood, R.S.

    1999-10-13T23:59:59.000Z

    The Benchmark Project was created from a desire to identify best practices and improve the overall efficiency and performance of the Y-12 Plant's systems and personnel supporting the manufacturing mission. The mission of the benchmark team was to search out industry leaders in manufacturing and evaluate their engineering practices and processes to determine direction and focus for Y-12 modernization efforts. The companies visited included several large established companies and a new, small, high-tech machining firm. As a result of this effort, changes are recommended that will enable Y-12 to become a more modern, responsive, cost-effective manufacturing facility capable of supporting the needs of the Nuclear Weapons Complex (NWC) into the 21st century. The benchmark team identified key areas of interest, both focused and general. The focus areas included Human Resources, Information Management, Manufacturing Software Tools, and Standards/Policies and Practices. Areas of general interest included Infrastructure, Computer Platforms and Networking, and Organizational Structure. The results of this benchmark showed that all companies are moving in the direction of model-based engineering and manufacturing. There was evidence that many companies are trying to grasp how to manage current and legacy data. In terms of engineering design software tools, the companies contacted were somewhere between 3-D solid modeling and surfaced wire-frame models. The manufacturing computer tools were varied, with most companies using more than one software product to generate machining data and none currently performing model-based manufacturing (MBM) from a common model. The majority of companies were closer to identifying or using a single computer-aided design (CAD) system than a single computer-aided manufacturing (CAM) system. The Internet was a technology that all companies were looking to either transport information more easily throughout the corporation or as a conduit for business, as the small firm was doing successfully.

  18. Manufacturing Energy and Carbon Footprints (2006 MECS)

    Broader source: Energy.gov [DOE]

    Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lostand where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

  19. Power Quality from the Manufacturers Standpoint

    E-Print Network [OSTI]

    McEachern, A.

    Power quality is an unstable field (if you'll pardon the double meaning). It's in its infancy; there isn't general agreement on much, not even terminology. As an instrument manufacturer in the field, I'm particularly concerned with two philosophical...

  20. Manufacturing for the Hydrogen Economy Manufacturing Research & Development

    E-Print Network [OSTI]

    to coordinate and leverage the current federal efforts focused on manufacturability issues such as low-cost of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high

  1. Manufacturing Energy and Carbon Footprints

    E-Print Network [OSTI]

    Brueske, S.; Lorenz, T.

    2012-01-01T23:59:59.000Z

    Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

  2. Additive manufacturing method of producing

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

  3. Manufacture of finely divided carbon

    SciTech Connect (OSTI)

    Walker, D.G.

    1980-01-22T23:59:59.000Z

    Finely divided carbon is manufactured by a process producing a gaseous stream containing carbon monoxide by reacting coal and air in a slagging ash gasifier, separating carbon monoxide from the gaseous mixture, and disproportionating the carbon monoxide to produce finely divided carbon and carbon dioxide, the latter of which is recycled to the gasifier.

  4. Optimizing Manufactured Housing Energy Use

    E-Print Network [OSTI]

    McGinley, W. M.; Jones, A.; Turner, C.; Chandra, S.; Beal, D.; Parker, D. S.; Moyer, N.; McIlvaine, J.

    2004-01-01T23:59:59.000Z

    In partnership with the Florida Solar Energy Center (FSEC), two manufactured homes were located on North Carolina A&T State University's campus in Greensboro, NC and used in a side-by-side energy consumption comparison. One of the homes was built...

  5. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  6. Manufacturing Energy and Carbon Footprints

    E-Print Network [OSTI]

    Brueske, S.; Lorenz, T.

    2012-01-01T23:59:59.000Z

    Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

  7. Comparing Measured Fluorocarbon Leader Breaking Strength with Manufacturer Claims

    E-Print Network [OSTI]

    Haight, Christine; McQueeney, Kathleen; Courtney, Ya'el

    2012-01-01T23:59:59.000Z

    The experiment reported in this article addresses manufacturer claims of fluorocarbon leader material strength versus experimental tests of leaders strength. Breaking strength of fishing line is the most common specification when marketing fishing line. In this study, eight leaders rated near 15 pounds by their manufacturers were tested. Each leader was tested with a knot in the line and without a knot in the line. The strongest leader tested without a knot was Cabela's Seaguar fluorocarbon and the weakest leader tested without a knot was Cabela's Premier leader. The highest strength of leaders with a knot was the Ande Monofilament Fluorocarbon and the lowest breaking strength of leaders with a knot was the Seaguar Grand Max Fluorocarbon. Few published studies actually test the breaking strength of a leader to determine the accuracy of manufacturers' claims. Tensile strengths are also reported.

  8. Artisan Manufacturing: Order (2010-CW-0712)

    Broader source: Energy.gov [DOE]

    DOE ordered Artisan Manufacturing Company, Inc., to pay a $5,000 civil penalty after finding Artisan Manufacturing had failed to certify that certain models of faucets comply with the applicable water conservation standard.

  9. Solid Oxide Fuel Cell Manufacturing Overview

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Manufacturing Overview Hydrogen and Fuel Cell Technologies Manufacturing R Reserved. 3 The Solid Oxide Fuel Cell Electrochemistry #12;Copyright 2011 Versa Power Systems. All Rights

  10. Manufacturing Metallic Parts with Designed Mesostructure

    E-Print Network [OSTI]

    Additive Manufacturing Laser Engineered Net Shaping Electron Beam Melting Williams, C. B., F. M. Mistree, D Additive Manufacturing © Christopher B. Williams Electron Beam Melting Electron Beam Melting Direct Metal

  11. Mechanics and Design, Manufacturing Professor Hani Naguib

    E-Print Network [OSTI]

    Mechanical and Industrial Engineering Manufacturing What is Manufacturing? The transformation of materials. Apple Canada(Se12), Revenue: $5,067,109 9. CGI Group(Se12), Revenue: $4,786,857 10. Siemens Canada(Se12

  12. Clean Energy Manufacturing Incentive Grant Program

    Broader source: Energy.gov [DOE]

    "Clean energy manufacturer" is defined as a biofuel producer, a manufacturer of renewable energy or nuclear equipment/products, or "products used for energy conservation, storage, or grid efficie...

  13. Clean Energy Manufacturing Incentive Program (Virginia)

    Broader source: Energy.gov [DOE]

    In April 2011, Virginia created the Clean Energy Manufacturing Incentive Grant Program. The program is meant to replace the [http://en.openei.org/wiki/Solar_Manufacturing_Incentive_Grant_%28SMIG%29...

  14. Arnold Schwarzenegger HIGH-VOLUME MANUFACTURING FOR

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor HIGH-VOLUME MANUFACTURING FOR LOW-COST, FLEXIBLE SOLAR CELL Prepared-VOLUME MANUFACTURING FOR LOW-COST, FLEXIBLE SOLAR CELL EISG AWARDEE InterPhases Research 166 N. Moorpark Rd. Suite 204

  15. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  16. Goodman Manufacturing: Order (2012-CE-1509)

    Broader source: Energy.gov [DOE]

    DOE ordered Goodman Manufacturing Company L.P. to pay an $8,000 civil penalty after finding Goodman Manufacturing had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

  17. Mechanical and Manufacturing Engineering Petroleum Engineering Minor

    E-Print Network [OSTI]

    Calgary, University of

    of Chemical and Petroleum Engineering for their petroleum engineering minor. As well, mechanical engineeringMechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major

  18. INFORMATION SYSTEMS SUPPORT FOR MANUFACTURING PROCESSES

    E-Print Network [OSTI]

    activities. The feature overlapping of production planning and quality control between both systems raises and distribution (Merrit1999) and have extend their scope to support quality control and production tracking: Manufacturing Enterprises, Enterprise Resource Planning, Manufacturing Execution Systems, Discrete Processes

  19. Objective assessment of manufacturing technology investments

    E-Print Network [OSTI]

    Rothman, Craig Jeremy

    2012-01-01T23:59:59.000Z

    Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

  20. Refrigerator Manufacturers: Order (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  1. Creation and sustainment of manufacturing technology roadmaps

    E-Print Network [OSTI]

    Grillon, Louis S

    2012-01-01T23:59:59.000Z

    Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

  2. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    shape part, e.g. , additive manufacturing, Transactions offace operations. Additive manufacturing of metal componentsenvironmen- tal merits of additive manufacturing relative to

  3. Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    Analysis May 2013 Additive Manufacturing in China: Aviationan overview of Chinas additive manufacturing industry wasmilitary achievements in additive manufacturing. 2 Initial

  4. Manufacturing Fuel Cell Manhattan Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Fuel Cell Manhattan Project Manufacturing Fuel Cell Manhattan Project The Office of Naval Research recently sponsored and completed the Manufacturing Fuel Cell...

  5. Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    Bulletin Analysis May 2013 Additive Manufacturing in China:an overview of Chinas additive manufacturing industry wasmilitary achievements in additive manufacturing. 2 Initial

  6. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    Open Energy Info (EERE)

    USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place: San Bruno,...

  7. Webinar: Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled "Additive Manufacturing for Fuel Cells," originally presented on February 11, 2014.

  8. FY 2011 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  9. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

  10. FY 2009 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  11. FY 2010 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  12. FY 2007 Honeywell Federal Manufacturing & Technologies, LLC,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  13. FY 2008 Honeywell Federal Manufacturing & Technologies, LLC,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  14. FY 2006 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  15. Clean Energy Manufacturing Innovation Institute for Composite...

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides Fiber Reinforced Polymer Composite Manufacturing Workshop...

  16. Pseudomonas fluorescens -A robust manufacturing platform

    E-Print Network [OSTI]

    Lebendiker, Mario

    Pseudomonas fluorescens -A robust manufacturing platform Reprinted from July/August 2004 Speciality at efficient- ly transporting single chain antibodies and other mammalian-derived proteins. In addition production. Dowpharma, a contract manufacturing services unit of Dow Chemical, has developed a manufacturing

  17. Additive manufacturing of metallic tracks on

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing of metallic tracks on green ceramic/dielectrics Problem this technology (note: may require additional tooling/ set up time) Rapid Prototyping & small scale manufacture microelectronics such as manufacture of LTCC ceramic/ Dielectric antenna and rapid PCB prototyping or repair

  18. ICME & MGI Big Area Additive Manufacturing

    E-Print Network [OSTI]

    ICME & MGI Big Area Additive Manufacturing Neutron Characterization for AM Materials problems in additive manu- facturing (AM). Additive manufacturing, or three-dimensional (3-D) printing of the world's most advanced neu- tron facilities, the HFIR and SNS, to characterize additive manufactured

  19. Energy Manufacturing Matthew Realff and Steven Danyluk

    E-Print Network [OSTI]

    Das, Suman

    Energy Manufacturing Matthew Realff and Steven Danyluk Georgia Institute of Technology This white Foundation and held in Arlington VA, on March 24-25, 2009 on Energy Manufacturing. The workshop attendees participated in discussions and presented their views on energy manufacturing and the presentations

  20. EFFECTIVE STRUCTURAL HEALTH MONITORING WITH ADDITIVE MANUFACTURING

    E-Print Network [OSTI]

    Boyer, Edmond

    will be presented for components that can be processed by additive manufacturing (AM) or 3D printing. The origin structures. KEYWORDS : structural health monitoring methodology, 3D printing, additive manufacturing, fatigue, intelligent structure INTRODUCTION Additive manufacturing (AM), also known as 3D Printing or Rapid

  1. Manufacturing Research & Development for Systems that will

    E-Print Network [OSTI]

    focused on manufacturability issues such as low-cost, high-volume manufacturing systems, advanced to move the United States toward a future hydrogen economy. While many scientific, technical's laboratory-scale fabrication technologies to high-volume commercial manufacturing has been identified as one

  2. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect (OSTI)

    Knapp, Cameron M [Los Alamos National Laboratory

    2012-08-01T23:59:59.000Z

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  3. Manufacturing

    Office of Environmental Management (EM)

    674 Academy Press. Washington, DC. 675 Pre. 2014. SimaPro Database Manual - Methods Library (2.7). Available at: www.pre- 676 sustainability.comdownload...

  4. Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy UniversityOversightFlow of Materials

  5. Research on advanced photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

    1991-11-01T23:59:59.000Z

    This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

  6. Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9Novemberutilities and aHistoricMannManufacturing

  7. Influence of Manufacturing Processes on the Performance of Phantom Lungs

    SciTech Connect (OSTI)

    Traub, Richard J.

    2008-10-01T23:59:59.000Z

    Chest counting is an important tool for estimating the radiation dose to individuals who have inhaled radioactive materials. Chest counting systems are calibrated by counting the activity in the lungs of phantoms where the activity in the phantom lungs is known. In the United States a commonly used calibration phantom was developed at the Lawrence Livermore National Laboratory and is referred to as the Livermore Torso Phantom. An important feature of this phantom is that the phantom lungs can be interchanged so that the counting system can be challenged by different combinations of radionuclides and activity. Phantom lungs are made from lung tissue substitutes whose constituents are foaming plastics and various adjuvants selected to make the lung tissue substitute similar to normal healthy lung tissue. Some of the properties of phantom lungs cannot be readily controlled by phantom lung manufacturers. Some, such as density, are a complex function of the manufacturing process, while others, such as elemental composition of the bulk plastic are controlled by the plastics manufacturer without input, or knowledge of the phantom manufacturer. Despite the fact that some of these items cannot be controlled, they can be measured and accounted for. This report describes how manufacturing processes can influence the performance of phantom lungs. It is proposed that a metric that describes the brightness of the lung be employed by the phantom lung manufacturer to determine how well the phantom lung approximates the characteristics of a human lung. For many purposes, the linear attenuation of the lung tissue substitute is an appropriate surrogate for the brightness.

  8. Manufacturability Study and Scale-Up for Large Format Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    integrators - Original equipment manufacturers * Development of processes, process optimization, manufacturing schemes, materials improvements, diagnostics, and production yield...

  9. Manufacturing Energy and Carbon Footprint Definitions and Assumptions...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Understanding Manufacturing Energy and Carbon Footprints, October 2012 2010 Manufacturing Energy and Carbon Footprints: Definitions...

  10. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30T23:59:59.000Z

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

  11. Manufacturing method of photonic crystal

    DOE Patents [OSTI]

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29T23:59:59.000Z

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  12. Method for manufacturing magnetohydrodynamic electrodes

    DOE Patents [OSTI]

    Killpatrick, D.H.; Thresh, H.R.

    1980-06-24T23:59:59.000Z

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

  13. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  14. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02T23:59:59.000Z

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  15. Sandia Energy - Manufacturing Supply Chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePowerUpdates Techno-EconomicLaunchManufacturing

  16. Manufacturing Innovation in the DOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturing Innovation in the DOE

  17. Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECS 2006)R&D The Manufacturing

  18. U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis

    SciTech Connect (OSTI)

    Fullenkamp, Patrick H; Holody, Diane S

    2014-06-15T23:59:59.000Z

    The goal of the project was to develop a greater understanding of the key factors determining wind energy component manufacturing costs and pricing on a global basis in order to enhance the competitiveness of U.S. manufacturers, and to reduce installed systems cost. Multiple stakeholders including DOE, turbine OEMs, and large component manufactures will all benefit by better understanding the factors determining domestic competitiveness in the emerging offshore and next generation land-based wind industries. Major objectives of this project were to: 1. Carry out global cost and process comparisons for 5MW jacket foundations, blades, towers, and permanent magnet generators; 2. Assess U.S. manufacturers competitiveness and potential for cost reduction; 3. Facilitate informed decision-making on investments in U.S. manufacturing; 4. Develop an industry scorecard representing the readiness of the U.S. manufacturers to produce components for the next generations of wind turbines, nominally 3MW land-based and 5MW offshore; 5. Disseminate results through the GLWN Wind Supply Chain GIS Map, a free website that is the most comprehensive public database of U.S. wind energy suppliers; 6. Identify areas and develop recommendations to DOE on potential R&D areas to target for increasing domestic manufacturing competitiveness, per DOEs Clean Energy Manufacturing Initiative (CEMI). Lists of Deliverables 1. Cost Breakdown Competitive Analyses of four product categories: tower, jacket foundation, blade, and permanent magnet (PM) generator. The cost breakdown for each component includes a complete Bill of Materials with net weights; general process steps for labor; and burden adjusted by each manufacturer for their process categories of SGA (sales general and administrative), engineering, logistics cost to a common U.S. port, and profit. 2. Value Stream Map Competitiveness Analysis: A tool that illustrates both information and material flow from the point of getting a customer order at the manufacturing plant; to the orders being forwarded by the manufacturing plant to the material suppliers; to the material being received at the manufacturing plant and processed through the system; to the final product being shipped to the Customer. 3. Competitiveness Scorecard: GLWN developed a Wind Industry Supply Chain Scorecard that reflects U.S. component manufacturers readiness to supply the next generation wind turbines, 3MW and 5MW, for land-based and offshore applications. 4. Wind Supply Chain Database & Map: Expand the current GLWN GIS Wind Supply Chain Map to include offshore elements. This is an on-line, free access, wind supply chain map that provides a platform for identifying active and emerging suppliers for the land-based and offshore wind industry, including turbine component manufacturers and wind farm construction service suppliers.

  19. Sandia National Laboratories: Advanced Manufacturing Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  20. Welcome and Advanced Manufacturing Partnership (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  1. 2014 Manufacturing Energy and Carbon Footprints: Definitions...

    Broader source: Energy.gov (indexed) [DOE]

    and Assumptions A number of key terms are used to interpret the manufacturing energy and carbon footprints. The terms associated with the energy footprint analysis are...

  2. Green Manufacturing Initiative Annual Report 2010

    E-Print Network [OSTI]

    de Doncker, Elise

    Green Manufacturing Initiative Annual Report 2010 Dr. John Patten Dr. David Meade May 3, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Herman Miller Energy Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

  3. Tank Manufacturing, Testing, Deployment and Field Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010, in Beijing, China. ihfpvnewhouse.pdf More Documents & Publications Fuel Tank Manufacturing, Testing,...

  4. Manufacturing Energy and Carbon Footprints Scope

    Office of Environmental Management (EM)

    involves one or more of the following activities: (1) fractionation; (2) straight distillation of crude oil; and (3) cracking. 325 - Chemical Manufacturing The Chemical...

  5. Solar Manufacturing Incentive Grant (SMIG) Program

    Broader source: Energy.gov [DOE]

    Created in 1995 and administered jointly by the Virginia Department of Mines, Minerals and Energy, and the Virginia Economic Development Partnership, the Solar Manufacturing Incentive Grant (SMIG)...

  6. President Obama's National Network for Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    material, to digital methods that use "additive" technologies. Often referred to as 3D printing, additive manufacturing is a way of making products and components of almost any...

  7. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results...

  8. MANUFACTURING LOGISTICS RESEARCH: TAXONOMY AND DIRECTIONS

    E-Print Network [OSTI]

    Wu, David

    MANUFACTURING LOGISTICS RESEARCH: TAXONOMY AND DIRECTIONS S. DAVID WU Lehigh University, Bethlehem formed in the workshop. To convey this vision we suggest a taxonomy that characterizes research problems

  9. Energy & Manufacturing Workforce Training Topics List - Version...

    Broader source: Energy.gov (indexed) [DOE]

    View this searchable list of the training programs in the areas of energy andor manufacturing. Information provided in this list includes: the subjects being taught, grantee,...

  10. Manufacturing Ecosystems and Keystone Technologies (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  11. American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

  12. Low Energy Ion Implantationin Semiconductor Manufacturing | U...

    Office of Science (SC) Website

    Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  13. Natural Fiber Composites: Retting, Preform Manufacture & Molding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retting, Preform Manufacture & Molding (Start:06.22.07) PI: Jim Holbery Presenter: Mark Smith Pacific Northwest National Laboratory Wednesday, February 27, 2008 This presentation...

  14. Energy-Related Carbon Emissions in Manufacturing

    Reports and Publications (EIA)

    2000-01-01T23:59:59.000Z

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  15. Oak Ridge Centers for Manufacturing Technology ? testimonials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that the program did save jobs and did create opportunities for the American manufac- turing industry to grow and to continue to operate because of the tough manufacturing...

  16. Renewable Energy Manufacturing Tax Credit (South Carolina)

    Broader source: Energy.gov [DOE]

    South Carolina offers a ten percent income tax credit to the manufacturers of renewable energy operations* for tax years 2010 through 2015.

  17. Performance, Market and Manufacturing Constraints relevant to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Constraints relevant to the Industrialization of Thermoelectric Devices Market pricing of thermoelectric raw materials and processing, cost of manufacture of devices and...

  18. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    Thrust Advanced Manufacturing Office Identify timely, high-impact, foundational clean energy technologies with the potential to transform energy use and accelerate their...

  19. New Sensor Network Technology Increases Manufacturing Efficiency...

    Energy Savers [EERE]

    Increases Manufacturing Efficiency April 11, 2013 - 12:00am Addthis EERE supported Eaton Corporation in the development and successful deployment of an electric motor...

  20. Advanced Materials and Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and characterization of ceramic materials for energy-related applications Process Development and Scale-up Program Argonne's Materials Synthesis and Manufacturing Research and...

  1. Company Name Tax Credit* Manufacturing Facility's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    new, distributed, utility-scale hydropower projects, as well as for retrofitting dams and irrigation canals. With more than 2 million in 48C Advanced Energy Manufacturing Tax...

  2. Climate VISION: Private Sector Initiatives: Automobile Manufacturers...

    Office of Scientific and Technical Information (OSTI)

    Resources & Links Software Tools DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's...

  3. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    KEYWORDS: Life Cycle Assessment, LCA, Green manufacturing,cycle phases, Life Cycle Assessment (LCA). The followingimpact. 2.2 Life Cycle Assessment (LCA) and Related Metrics

  4. Project Profile: Improved Large Aperture Collector Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    feasibility demonstrations focused in three main areas: an aggressive manufacturing optimization of the collector sub-structures for lower input material costs & mechanized...

  5. Sandia National Laboratories: Materials & Manufacturing Reliability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials & Manufacturing Reliability Program Biofouling Studies on Sandia's Marine Hydrokinetic Coatings Initiated at PNNL's Sequim Bay On June 26, 2014, in Energy, Materials...

  6. A Vehicle Manufacturers Perspective on Higher-Octane Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 1CFostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturers Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

  7. Combining Representations from Manufacturing, Machine Planning, and Manufacturing Resource Planning (MRP)

    E-Print Network [OSTI]

    Cook, Diane J.

    -time controller. The controller uses four matrices: Fv and Sv describe ordering constraints between plan by allowing limited production capacity Inputs to Control System Researchers studying issues in intelligentCombining Representations from Manufacturing, Machine Planning, and Manufacturing Resource Planning

  8. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26T23:59:59.000Z

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  9. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02T23:59:59.000Z

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  10. MANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED MANUFACTURING

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    and an additive process. Manufacturability indexes are calculated at the tool design stage, these indexes provide an accurate view of which areas of the tool will advantageously be machined or manufactured by an additiveMANUFACTURING COMPLEXITY EVALUATION AT THE DESIGN STAGE FOR BOTH MACHINING AND LAYERED

  11. THE EFFECT OF MERCURY CONTROLS ON WALLBOARD MANUFACTURE

    SciTech Connect (OSTI)

    Sandra Meischen

    2004-07-01T23:59:59.000Z

    Pending EPA regulations may mandate 70 to 90% mercury removal efficiency from utility flue gas. A mercury control option is the trapping of oxidized mercury in wet flue gas desulfurization systems (FGD). The potential doubling of mercury in the FGD material and its effect on mercury volatility at temperatures common to wallboard manufacture is a concern that could limit the growing byproduct use of FGD material. Prediction of mercury fate is limited by lack of information on the mercury form in the FGD material. The parts per billion mercury concentrations prevent the identification of mercury compounds by common analytical methods. A sensitive analytical method, cold vapor atomic fluorescence, coupled with leaching and thermodecomposition methods were evaluated for their potential to identify mercury compounds in FGD material. The results of the study suggest that the mercury form is dominated by the calcium sulfate matrix and is probably associated with the sulfate form in the FGD material. Additionally, to determine the effect of high mercury concentration FGD material on wallboard manufacture, a laboratory FGD unit was built to trap the oxidized mercury generated in a simulated flue gas. Although the laboratory prepared FGD material did not contain the mercury concentrations anticipated, further thermal tests determined that mercury begins to evolve from FGD material at 380 to 390 F, consequently dropping the drying temperature should mitigate mercury evolution if necessary. Mercury evolution is also diminished as the weight of the wallboard sample increased. Consequently, mercury evolution may not be a significant problem in wallboard manufacture.

  12. Proceedings: EPRI Manufactured Gas Plants 2003 Forum

    SciTech Connect (OSTI)

    None

    2004-02-01T23:59:59.000Z

    The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

  13. Manufacturing Thomas W. Eagar, Guest Editor

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Materials Manufacturing Thomas W. Eagar, Guest Editor The bth.n-ior of succl'ssful manufac- tunn;imos., tmironment for mate- nab manufacturing changes, so too does our mla~un ol mattrials performance~(vtr. as shown by Figure 1, there are senral additional dimensions to perfor- mann. In particular, successful

  14. Evaluating Energy Efficiency Improvements in Manufacturing Processes

    E-Print Network [OSTI]

    Boyer, Edmond

    Evaluating Energy Efficiency Improvements in Manufacturing Processes Katharina Bunse1 , Julia Sachs kbunse@ethz.ch, sachsj@student.ethz.ch, mvodicka@ethz.ch Abstract. Global warming, rising energy prices and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agenda

  15. Composite Tube Trailer Design/Manufacturing Needs

    E-Print Network [OSTI]

    composite tube trailers and can, therefore, address issues with: ­ Design ­ Materials ­ Manufacturing in the system ­ Lower cost of carbon fiber ($/strength) ­ Identify material with lower net cost ($/strength) ­ Identify lower cost resin system (raw material & manufacture) ­ Reduce carbon fiber safety factor

  16. Duracold Refrigeration Manufacturing: Order (2013-CE-5342)

    Broader source: Energy.gov [DOE]

    DOE ordered Duracold Refrigeration Manufacturing Company, LLC to pay a $8,000 civil penalty after finding Duracold Refrigeration Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  17. Agile manufacturing from a statistical perspective

    SciTech Connect (OSTI)

    Easterling, R.G. [Sandia National Labs., Albuquerque, NM (United States). New Initiatives Dept.

    1995-10-01T23:59:59.000Z

    The objective of agile manufacturing is to provide the ability to quickly realize high-quality, highly-customized, in-demand products at a cost commensurate with mass production. More broadly, agility in manufacturing, or any other endeavor, is defined as change-proficiency; the ability to thrive in an environment of unpredictable change. This report discusses the general direction of the agile manufacturing initiative, including research programs at the National Institute of Standards and Technology (NIST), the Department of Energy, and other government agencies, but focuses on agile manufacturing from a statistical perspective. The role of statistics can be important because agile manufacturing requires the collection and communication of process characterization and capability information, much of which will be data-based. The statistical community should initiate collaborative work in this important area.

  18. Manufacturing fuel-switching capability, 1988

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  19. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    DOE Patents [OSTI]

    Roybal, Lyle Gene

    2010-06-08T23:59:59.000Z

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  20. Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future

    E-Print Network [OSTI]

    Brock, David

    Growth. Every $1.00 in manufactured goods generates an additional $1.43 worth of additional economic ATI 2006 Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future presented to thepresented to the 2006 MIT Manufacturing Summit:2006 MIT Manufacturing Summit

  1. Proceedings of the 1998 NSF Design and Manufacturing Grantees Conferences Manufacturing Logistics Workshop: A Summary of Research Directions

    E-Print Network [OSTI]

    Wu, David

    Proceedings of the 1998 NSF Design and Manufacturing Grantees Conferences Manufacturing Logistics Louis A. Martin-Vega Lehigh University Abstract: A workshop sponsored by NSF on Manufacturing Logistics for Manufacturing Logistics was defined. In this paper, we summarize future research directions in manufacturing

  2. The Federal manufactured home construction and safety standards -- implications for foam panel construction

    SciTech Connect (OSTI)

    Lee, A.D.; Schrock, D.W.; Flintoft, S.A.

    1997-03-01T23:59:59.000Z

    This report reviews the U.S. Department of Housing and Urban Development construction code for (HUD-code) manufactured homes, Part 3280: Manufactured Home Construction and Safety Standards (the HUD Code), to identify sections that might be relevant in determining if insulated foam core panels (or structural insulated panels, SIPs) meet the requirements of Part 3280 for use in manufactured home construction. The U.S. Department of Energy and other parties are interested in the use of SIPs in residential construction, including HUD-Code manufactured homes, because the foam panels can have a higher effective insulation value than standard stud-framed construction and use less dimensional lumber. Although SIPs have not been used in manufactured housing, they may be well suited to the factory production process used to manufacture HUD-Code homes and the fact that they require less virgin timber may reduce the effect of volatile and increasing timber prices. Part 3280 requirements for fire resistance, wind resistance, structural load strength, ventilation, transportation shock, and thermal protection are reviewed. A brief comparison is made between the HUD Code requirements and data collected from foam panel manufacturers. 8 refs.

  3. Rapid prototyping applications for manufacturing

    SciTech Connect (OSTI)

    Atwood, C.L.; Maguire, M.C.; Pardo, B.T.; Bryce, E.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-01-01T23:59:59.000Z

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{sup TM} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. As participants in the Beta test program for QuickCast{sup TM} resin and software, we experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible using this technology to produce highly accurate prototype parts as well as acceptable first article and small lot size production parts. We use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This report will focus on our successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes. 6 refs., 10 figs.

  4. Additive Manufacturing in China: Threats, Opportunities, and Developments (Part I)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    Wang Huaming Laser additive manufacturing (LAM) Huanglaser metal deposition (LMD), a type of additive manufacturing,Manufacturing Center) http://mat.hust.edu.cn:8080/3d/ Wuhan Yu Shengshi Selective laser

  5. MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION

    E-Print Network [OSTI]

    Schumacher, Russ

    MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

  6. Faculty Position in Ultra High Precision Robotics & Manufacturing

    E-Print Network [OSTI]

    Candea, George

    , manipulation and metrology systems targeting additive manufacturing; New kinematics, quasi-perfect guidings, actuators, transmission systems, sensors and methods targeting ultra-high precision additive manufacturingFaculty Position in Ultra High Precision Robotics & Manufacturing at the Ecole Polytechnique

  7. Additive Manufacturing in China: Threats, Opportunities, and Developments (Part I)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    application of additive manufacturing in Chinas aviationAnalysis May 2013 Additive Manufacturing in China: Threats,an overview of Chinas additive manufacturing industry is

  8. Additive Manufacturing in China: Threats, Opportunities, and Developments (Part I)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    examine the application of additive manufacturing in ChinasBulletin Analysis May 2013 Additive Manufacturing in China:an overview of Chinas additive manufacturing industry is

  9. High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell (Phosphoric Acid) Manufacturing R&D High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop...

  10. Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel...

    Office of Environmental Management (EM)

    Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel Cell Manufacturing Methods Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel Cell Manufacturing...

  11. Progress of DOE Materials, Manufacturing Process R&D, and ARRA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants 2011...

  12. DURABILITY EVALUATION AND PRODUCTION OF MANUFACTURED AGGREGATES FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect (OSTI)

    M. M. Wu

    2005-02-01T23:59:59.000Z

    Under the cooperative agreement with DOE, the Research and Development Department of CONSOL Energy (CONSOL R&D), teamed with Universal Aggregates, LLC, to conduct a systematic study of the durability of aggregates manufactured using a variety of flue gas desulfurization (FGD), fluidized-bed combustion (FBC) and fly ash specimens with different chemical and physical properties and under different freeze/thaw, wet/dry and long-term natural weathering conditions. The objectives of the study are to establish the relationships among the durability and characteristics of FGD material, FBC ash and fly ash, and to identify the causes of durability problems, and, ultimately, to increase the utilization of FGD material, FBC ash and fly ash as a construction material. Manufactured aggregates made from FGD material, FBC ash and fly ash, and products made from those manufactured aggregates were used in the study. The project is divided into the following activities: sample collection and characterization; characterization and preparation of manufactured aggregates; determination of durability characteristics of manufactured aggregates; preparation and determination of durability characteristics of manufactured aggregate products; and data evaluation and reporting.

  13. Breaking Barriers in Polymer Additive Manufacturing

    SciTech Connect (OSTI)

    Love, Lonnie J [ORNL; Duty, Chad E [ORNL; Post, Brian K [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Kunc, Vlastimil [ORNL; Peter, William H [ORNL; Blue, Craig A [ORNL

    2015-01-01T23:59:59.000Z

    Additive Manufacturing (AM) enables the creation of complex structures directly from a computer-aided design (CAD). There are limitations that prevent the technology from realizing its full potential. AM has been criticized for being slow and expensive with limited build size. Oak Ridge National Laboratory (ORNL) has developed a large scale AM system that improves upon each of these areas by more than an order of magnitude. The Big Area Additive Manufacturing (BAAM) system directly converts low cost pellets into a large, three-dimensional part at a rate exceeding 25 kg/h. By breaking these traditional barriers, it is possible for polymer AM to penetrate new manufacturing markets.

  14. 2014-07-08 Issuance: ASRAC Manufactured Housing Working Group...

    Energy Savers [EERE]

    4-07-08 Issuance: ASRAC Manufactured Housing Working Group; Notice of Membership 2014-07-08 Issuance: ASRAC Manufactured Housing Working Group; Notice of Membership This document...

  15. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...

    Energy Savers [EERE]

    DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program Presented at the NREL Hydrogen and Fuel Cell...

  16. Unlocking the Potential of Additive Manufacturing in the Fuel...

    Energy Savers [EERE]

    Manufacturing in the Fuel Cells Industry Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Additive Manufacturing for Fuel Cells" held on...

  17. An exploration of materials and methods in manufacturing : shoreline membranes

    E-Print Network [OSTI]

    Chin, Ryan C. C., 1974-

    2000-01-01T23:59:59.000Z

    This thesis is an investigation into the design methodologies and ideologies of manufacturing processes specifically related to automotive design. The conceptualization, prototyping, testing, and manufacturing of cars is ...

  18. AMO Industry Day Workshop on Upcoming Smart Manufacturing FOA

    Broader source: Energy.gov [DOE]

    AMO will host an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing.

  19. Celebrating Two Years of Building America's Clean Energy Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Office to print the car chassis using a new machine called Big Area Additive Manufacturing. We're building collaborative facilities where experts can work...

  20. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Broader source: Energy.gov (indexed) [DOE]

    Technical Assistance 12 Advanced Manufacturing Office (AMO): Purpose Laser Processing for Additive Manufacturing Carbon Fiber from Microwave Assisted Plasma Process AMO's Purpose...

  1. Contact Manufacturing Demonstration Facility Craig Blue, Ph.D...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacity, jobs for American workers and regional economic development. Technology Areas * Additive Manufacturing utilizing a broad range of direct manufacturing technologies,...

  2. Sustainable Manufacturing via Multi-Scale, Physics-Based Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    present opportunities to improve casting, forging, stamping, extrusion, assembly, and additive manufacturing processes. The U.S. manufacturing supply base will benefit from...

  3. Upcoming Webinar February 11: Additive Manufacturing for Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 11: Additive Manufacturing for Fuel Cells Upcoming Webinar February 11: Additive Manufacturing for Fuel Cells February 6, 2014 - 12:00am Addthis On Tuesday, February 11,...

  4. 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials...

    Energy Savers [EERE]

    3: Manufacturing, Materials, and Resources Summary Slides 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials, and Resources Summary Slides Summary Slides for Chapter 3:...

  5. Wind Program Manufacturing Research Advances Processes and Reduces...

    Energy Savers [EERE]

    Wind Program Manufacturing Research Advances Processes and Reduces Costs Wind Program Manufacturing Research Advances Processes and Reduces Costs March 31, 2014 - 11:22am Addthis...

  6. Design for manufacturability with regular fabrics in digital integrated circuits

    E-Print Network [OSTI]

    Gazor, Mehdi (Seyed Mehdi)

    2005-01-01T23:59:59.000Z

    Integrated circuit design is limited by manufacturability. As devices scale down, sensitivity to process variation increases dramatically, making design for manufacturability a critical concern. Designers must identify the ...

  7. Letter from Plumbing Manufacturers Institute to Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Letter from Plumbing Manufacturers Institute to Department of Energy re: Ex Parte Communication More Documents & Publications Supplemental Comments of the Plumbing Manufacturers...

  8. automobile part manufacturers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax applies to the sale of manufacturing aids such as dies, patterns, jigs and tooling used in the manufacturing process notwithstanding the fact that the property used in...

  9. allergenic extract manufacturers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax applies to the sale of manufacturing aids such as dies, patterns, jigs and tooling used in the manufacturing process notwithstanding the fact that the property used in...

  10. alloy pv manufacturing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax applies to the sale of manufacturing aids such as dies, patterns, jigs and tooling used in the manufacturing process notwithstanding the fact that the property used in...

  11. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  12. american manufacturing research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hardships suffered by the unemployed. unknown authors 2003-01-01 4 Manufacturing for the Hydrogen Economy Manufacturing Research & Development Energy Storage, Conversion and...

  13. Electric Drive Component Manufacturing: Magna E-Car Systems of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric Drive Component Manufacturing: Magna E-Car Systems...

  14. 2.852 Manufacturing Systems Analysis, Spring 2004

    E-Print Network [OSTI]

    Gershwin, Stanley

    This course deals with the following topics: Models of manufacturing systems, including transfer lines and flexible manufacturing systems; Calculation of performance measures, including throughput, in-process inventory, ...

  15. DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...

    Energy Savers [EERE]

    Against 4 Showerhead Manufacturers (Notice of Proposed Civil Penalty and Requests for Test Data Issued) DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...

  16. AMO Requests Technical Topics Suitable for a Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Institute AMO Requests Technical Topics Suitable for a Manufacturing Innovation Institute April 17, 2014 - 12:23pm Addthis The Advanced Manufacturing Office...

  17. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

  18. Fiber Reinforced Polymer Composite Manufacturing - RFI Part 2...

    Broader source: Energy.gov (indexed) [DOE]

    1056 More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Fiber Reinforced Polymer Composite Manufacturing - RFI DE-FOA-0000980: Summary of...

  19. DOE - Office of Legacy Management -- Penn Salt Manufacturing...

    Office of Legacy Management (LM)

    Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from...

  20. DOE - Office of Legacy Management -- Titanium Alloys Manufacturing...

    Office of Legacy Management (LM)

    Manufacturing Co Div of National Lead of Ohio - NY 41 FUSRAP Considered Sites Site: TITANIUM ALLOYS MANUFACTURING CO., DIV. OF NATIONAL LEAD OF OHIO (NY.41) Eliminated from...

  1. Join Us for the Clean Energy Manufacturing Initiative's Western...

    Energy Savers [EERE]

    resources, as well as best practices and cutting-edge technologies, to boost energy productivity across the entire U.S. manufacturing supply chain will make our manufacturing...

  2. Energy Use Loss and Opportunities Analysis: U.S. Manufacturing...

    Energy Savers [EERE]

    Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining energyuselossopportunitiesanalysis.pdf...

  3. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Presentation slides from the joint Fuel Cell...

  4. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

  5. Modular Process Equipment for Low Cost Manufacturing of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic...

  6. A feasibility study for a manufacturing technology deployment center

    SciTech Connect (OSTI)

    Not Available

    1994-10-31T23:59:59.000Z

    The Automation & Robotics Research Institute (ARRI) and the Texas Engineering Extension Service (TEEX) were funded by the U.S. Department of Energy to determine the feasibility of a regional industrial technology institute to be located at the Superconducting Super Collider (SSC) Central Facility in Waxahachie, Texas. In response to this opportunity, ARRI and TEEX teamed with the DOE Kansas City Plant (managed by Allied Signal, Inc.), Los Alamos National Laboratory (managed by the University of California), Vought Aircraft Company, National Center for Manufacturing Sciences (NCMS), SSC Laboratory, KPMG Peat Marwick, Dallas County Community College, Navarro Community College, Texas Department of Commerce (TDOC), Texas Manufacturing Assistance Center (TMAC), Oklahoma Center for the Advancement of Science and Technology, Arkansas Science and Technology Authority, Louisiana Productivity Center, and the NASA Mid-Continent Technology Transfer Center (MCTTC) to develop a series of options, perform the feasibility analysis and secure industrial reviews of the selected concepts. The final report for this study is presented in three sections: Executive Summary, Business Plan, and Technical Plan. The results from the analysis of the proposed concept support the recommendation of creating a regional technology alliance formed by the states of Texas, New Mexico, Oklahoma, Arkansas and Louisiana through the conversion of the SSC Central facility into a Manufacturing Technology Deployment Center (MTDC).

  7. Cycle to Cycle Manufacturing Process Control

    E-Print Network [OSTI]

    Hardt, David E.

    Most manufacturing processes produce parts that can only be correctly measured after the process cycle has been completed. Even if in-process measurement and control is possible, it is often too expensive or complex to ...

  8. Cost Effective Cooling Strategies for Manufacturing Facilities

    E-Print Network [OSTI]

    Kumar, R.

    there are many similarities. In addition to the above environmental conditions for the process/machines and workers, cost effective design of manufacturing facilities must also address maintainability, sanitation, durability, energy conservation and budgetary...

  9. Level schedule implementation in unstable manufacturing environments

    E-Print Network [OSTI]

    Lpez de Haro, Santiago

    2008-01-01T23:59:59.000Z

    American Axle & Manufacturing Inc. (AAM), headquartered in Detroit (MI) is one of the major Tier 1 suppliers in the automotive industry. The main challenge in AAM plant 2 is production rate unstability due to downtime, ...

  10. Manufacture of radiopharmaceuticals-recent advances

    SciTech Connect (OSTI)

    Krieger, J.K.

    1996-12-31T23:59:59.000Z

    Trends in radiopharmaceutical manufacturing have been influenced by the demands of the regulatory agencies, the demands of the customers, and the ever-increasing complexity of new products. Process improvements resulting from automation in the production of radionuclides for diagnostic imaging products, {sup 99m}/Tc generators, {sup 67}Ga, and {sup 201}Tl have been introduced to enhance compliance with current good manufacturing practices and to improve worker safety, both by reducing dose in accord with as low as reasonably achievable levels of radiation and by providing an ergonomically sound environment. Tighter process control has resulted in less lot-to-lot variability and ensures reliability of supply. Reduced manufacturing lapse time for {sup 99m}Tc generators minimizes decay and conserves the supply of {sup 99}Mo. Automation has resulted in an even greater degree of remote operation and has led to reductions in dose, improved process control, and faster throughput in the manufacture of radionuclides.

  11. Energy Efficient Manufactured Homes Incentive Tax Credit

    Broader source: Energy.gov [DOE]

    During the 2008 legislative session, South Carolina legislators passed [http://www.scstatehouse.gov/sess117_2007-2008/bills/1141.htm SB 1141], creating the ''Energy Efficient Manufactured Homes...

  12. 4D printing : towards biomimetic additive manufacturing

    E-Print Network [OSTI]

    Tsai, Elizabeth Yinling

    2013-01-01T23:59:59.000Z

    Inherent across all scales in Nature's material systems are multiple design dimensions, the existences of which are products of both evolution and environment. In human manufacturing where design must be preconceived and ...

  13. Climate VISION: Private Sector Initiatives: Automobile Manufacturers

    Office of Scientific and Technical Information (OSTI)

    emissions from their U.S. automotive manufacturing facilities, based on U.S. vehicle production, by 2012 from a base year of 2002. The following documents are available for...

  14. Factory Models for Manufacturing Systems Engineering

    E-Print Network [OSTI]

    Gershwin, Stanley B.

    We review MIT research in manufacturing systems engineering, and we describe current and possible future research activities in this area. This includes advances in decomposition techniques, optimization, token-based control ...

  15. Manufacturing Tech Team | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find...

  16. Climate VISION: Private Sector Initiatives: Automobile Manufacturers...

    Office of Scientific and Technical Information (OSTI)

    GHG Information Energy Footprints DOE developed a series of Energy Footprints to map the flow of energy supply and demand in U.S. manufacturing industries. Identifying the sources...

  17. Climate VISION: Private Sector Initiatives: Chemical Manufacturing...

    Office of Scientific and Technical Information (OSTI)

    Energy Footprints DOE developed a series of Energy Footprints to map the flow of energy supply and demand in U.S. manufacturing industries. Identifying the sources and end uses of...

  18. Supplemental Comments of the Plumbing Manufacturers Instititute...

    Energy Savers [EERE]

    No. EERE-2010-BT-NOA-0016 Letter Response from the Plumbing Manufacturers Institute (PMI), Docket No. EERE-2010-BT-NOA-0016 - Notice of Availability of Interpretive Rule on the...

  19. Energy-Efficient Appliance Manufacturing Tax Credit

    Broader source: Energy.gov [DOE]

    '''''Note: This tax credit expired at the end of 2011. The American Taxpayer Relief Act of 2012 retroactively renewed this tax credit for certain appliances manufactured in 2012 and 2013. '''''

  20. Tax Credit for Renewable Energy Equipment Manufacturers

    Broader source: Energy.gov [DOE]

    The Tax Credit for Renewable Energy Resource Equipment Manufacturing Facilities was enacted as a part of Oregon's Business Energy Tax Credit (BETC) in July 2007, with the passage of HB 3201. The ...

  1. USA Manufacturing: Proposed Penalty (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that USA Manufacturing failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  2. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Office of Environmental Management (EM)

    12:00 pm - 1:30 pm Lunch - On Your Own 1:30pm - 3:45pm Breakout Sessions - 4 Groups Blue Team A (Washington I) - Manufacturing Process Technology Facilitators - Joe Cresko and...

  3. Analyzing sampling methodologies in semiconductor manufacturing

    E-Print Network [OSTI]

    Anthony, Richard M. (Richard Morgan), 1971-

    2004-01-01T23:59:59.000Z

    This thesis describes work completed during an internship assignment at Intel Corporation's process development and wafer fabrication manufacturing facility in Santa Clara, California. At the highest level, this work relates ...

  4. Refrigerator Manufacturers: Proposed Penalty (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Refrigerator Manufacturers, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  5. Diagnosing spatial variation patterns in manufacturing processes

    E-Print Network [OSTI]

    Lee, Ho Young

    2004-09-30T23:59:59.000Z

    This dissertation discusses a method that will aid in diagnosing the root causes of product and process variability in complex manufacturing processes when large quantities of multivariate in-process measurement data are available. As in any data...

  6. Steam System Improvements at a Manufacturing Plant

    E-Print Network [OSTI]

    Compher, J.; Morcom, B.

    BWX Technologies, Naval Nuclear Fuel Division (NNFD) is a manufacturing company with a steam system consisting of two Babcock & Wilcox boilers and approximately 350 steam traps. The steam system is used to produce and distribute steam for space...

  7. Clean Energy Technology Device Manufacturers' Credits (Delaware)

    Broader source: Energy.gov [DOE]

    Qualified manufacturers can apply for a tax break equal to 75% of the corporation income tax. The incentive is an increase from the Investment and Employment Credit Against Corporation Income Tax,...

  8. Manufacturing Environment in the Year 2000

    E-Print Network [OSTI]

    Slautterback, W. H.

    -line simulation of the manufacturing environment. An individual will define privrities and the system will report on an exception basis, what is required to meet the demands. Finite scheduling will replace infinite scheduling. Quality ... Inspection systems...; hundreds of machines have been replaced with several flexible manufacturing systems; large inventories and long lead times have been re laced with small inventories and short lead times that are managable; confusion created by scrap and rework have...

  9. Energetic additive manufacturing process with feed wire

    DOE Patents [OSTI]

    Harwell, Lane D. (Albuquerque, NM); Griffith, Michelle L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Pressly, Gary A. (Sandia Park, NM)

    2000-11-07T23:59:59.000Z

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  10. Utilizing Daylighting Controls in a Manufacturing Facility

    E-Print Network [OSTI]

    Shrestha, S. S.; Maxwell, G. M.

    Utilizing Daylighting Controls in a Manufacturing Facility Som S. Shrestha Dr. Gregory M. Maxwell PhD Candidate Associate Professor som@iastate.edu gmaxwell@iastate.edu Iowa State University Ames, IA ABSTRACT Opportunities exist... to reduce artificial lighting in manufacturing facilities which have skylights and/or fenestration that provide sufficient quantities of daylight to the work space. Using photometric sensors to measure the illuminance in the space, artificial lights can...

  11. MCM-C Multichip Module Manufacturing Guide

    SciTech Connect (OSTI)

    Blazek, R.J.; Kautz, D.R.; Galichia, J.V.

    2000-11-20T23:59:59.000Z

    Honeywell Federal Manufacturing & Technologies (FM&T) provides complete microcircuit capabilities from design layout through manufacturing and final electrical testing. Manufacturing and testing capabilities include design layout, electrical and mechanical computer simulation and modeling, circuit analysis, component analysis, network fabrication, microelectronic assembly, electrical tester design, electrical testing, materials analysis, and environmental evaluation. This document provides manufacturing guidelines for multichip module-ceramic (MCM-C) microcircuits. Figure 1 illustrates an example MCM-C configuration with the parts and processes that are available. The MCM-C technology is used to manufacture microcircuits for electronic systems that require increased performance, reduced volume, and higher density that cannot be achieved by the standard hybrid microcircuit or printed wiring board technologies. The guidelines focus on the manufacturability issues that must be considered for low-temperature cofired ceramic (LTCC) network fabrication and MCM assembly and the impact that process capabilities have on the overall MCM design layout and product yield. Prerequisites that are necessary to initiate the MCM design layout include electrical, mechanical, and environmental requirements. Customer design data can be accepted in many standard electronic file formats. Other requirements include schedule, quantity, cost, classification, and quality level. Design considerations include electrical, network, packaging, and producibility; and deliverables include finished product, drawings, documentation, and electronic files.

  12. Accepted Manuscript Sustainable manufacturing: Evaluation and Modeling of

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    in additive manufacturing Florent Le Bourhisa Olivier Kerbrata Jean-Yves Hascoeta Pascal Mognola Accepted of manufacturing processes where great amounts of energy and materials are being consumed. Nowadays, additive manufacturing technologies such as Direct Additive Laser Manufac- turing allow us to manufacture functional

  13. Faculty Position in Multi-scale Manufacturing Technologies

    E-Print Network [OSTI]

    Psaltis, Demetri

    -precision additive manufacturing technologies; multi-scale micro-precision manufacturing; high throughput. Christian Enz Search Committee Chair E-mail: manufacturing-search@epfl.ch For additional information on EPFLFaculty Position in Multi-scale Manufacturing Technologies at the Ecole polytechnique fdrale de

  14. Simultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial and Manufacturing Systems Engineering

    E-Print Network [OSTI]

    Salustri, Filippo A.

    to component dimension i CT total cost of manufacturing and quality Cpi capability index of last process, and quality, for the sake of achieving a minimal total cost and reducing lead-time. However, in existing workSimultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial

  15. Graduate Programs in Industrial and Manufacturing Engineering The industrial and manufacturing (IME) department at WSU

    E-Print Network [OSTI]

    ; occupational safety and other industrial hygiene issues; and ergonomics and human factors issues in aviationGraduate Programs in Industrial and Manufacturing Engineering The industrial and manufacturing (IME programs in industrial engineering (MSIE and PhDIE, respectively). The department also offers four graduate

  16. Manufacturing Engineering The research activities of the Manufacturing Engineering group are concerned with the

    E-Print Network [OSTI]

    Calgary, University of

    Planning and Control. Research in this area focuses on understanding the tradeoffs and improving of this research is to develop insights into the performance improvement of complex production systems. l Intelligent Manufacturing Systems. Use of advanced computing techniques in manufacturing. l Production

  17. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect (OSTI)

    POORE, ROBERT Z.

    1999-08-01T23:59:59.000Z

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  18. MED-VaL 10, Manufacturing Science and Engineering --1999 Modeling of Gear Bobbing

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    Shifting, Optimization, Coatings I INTRODUCTION The lack o f a universal wear prediction method for gearMED-VaL 10, Manufacturing Science and Engineering -- 1999 ASME 1999 Modeling of Gear Bobbing Part models for gear hobbing were presented in the first pan of this paper. To determine the constants

  19. Photovoltaic Manufacturing Technology, Phase 1, Final report

    SciTech Connect (OSTI)

    Easoz, J.R.; Herlocher, R.H. (Westinghouse Electric Corp., Pittsburgh, PA (United States))

    1991-12-01T23:59:59.000Z

    This report examines the cost-effective manufacture of dendritic-web-based photovoltaic modules. It explains how process changes can increase production and reduce manufacturing costs. Long-range benefits of these improved processes are also discussed. Problems are identified that could impede increasing production and reducing costs; approaches to solve these problems are presented. These approaches involve web growth throughput, cell efficiency, process yield, silicon use, process control, automation, and module efficiency. Also discussed are the benefits of bifacial module design, unique to the dendritic web process.

  20. Manufacturing improvements in the Photovoltaic Manufacturing Technology (PVMaT) Project

    SciTech Connect (OSTI)

    Witt, C.E.; Mitchell, R.L.; Thomas, H.P.; Symko, M.I. [National Renewable Energy Lab., Golden, CO (United States); King, R. [Dept. of Energy, Washington, DC (United States); Ruby, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1998-08-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology Project (PVMaT) is a government/industry research and development (R and D) partnership between the US federal government (through the US Department of Energy [DOE]) and members of the US PV industry. The goals of PVMaT are to help the US PV industry improve module manufacturing processes and equipment; accelerate manufacturing cost reductions for PV modules, balance-of-systems components, and integrated systems; increase commercial product performance and reliability; and enhance the investment opportunities for substantial scale-ups of US-based PV manufacturing plant capacities. The approach for PVMaT has been to cost-share risk taking by industry as it explores new manufacturing options and ideas for improved PV modules and other components, advances system and product integration, and develops new system designs, all of which will lead to overall reduced system life-cycle costs for reliable PV end products. The PVMaT Phase 4A module manufac turing R and D projects are just being completed, and initial results for the work directed primarily to module manufacture are reported in this paper. Fourteen new Phase 5A subcontracts have also just been awarded, and planned R and D areas for the ten focused on module manufacture are described. Finally, government funding, subcontractor cost-sharing, and a comparison of the relative efforts by PV technology throughout the PVMaT project are presented.

  1. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01T23:59:59.000Z

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  2. Temporal pulse tailoring in laser manufacturing technologies

    E-Print Network [OSTI]

    Peinke, Joachim

    5 Temporal pulse tailoring in laser manufacturing technologies Razvan Stoian1 , Matthias. Ultrafast lasers have gained momentum in material processing technolo- gies in response to requirements for quality material processing. 5.1 Introduction The demand for precision in laser material processing

  3. Manufacturability-Aware Physical Layout Optimizations

    E-Print Network [OSTI]

    Pan, David Z.

    design. To really bridge the gap between design and manufacturing, it is important to model and feed As VLSI technology continues to scale down to nanometer dimensions, the semiconductor industry is greatly reason is due to extensive usage of RET. The semiconductor industry is adopting the immersion lithography

  4. DOE's Hydrogen and Fuel Cells Technologies Manufacturing

    E-Print Network [OSTI]

    Advanced fuel cell testing & diagnostics Wet Direct coated Anode #1 Direct coated Anode #2 Control Anode #3DOE's Hydrogen and Fuel Cells Technologies Manufacturing Sub-program Nancy L. Garland, Ph.D. U for fuel cells, and hydrogen production, delivery, and storage; grow the domestic supplier base

  5. College of Engineering MFS Manufacturing Systems Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    ) The topics will include fundamentals of concurrent engineering, product life cycle, product specificationCollege of Engineering MFS Manufacturing Systems Engineering KEY: # = new course * = course changed of these processes. Lecture, two hours; laboratory; two hours. Prereq: EM 302, EM 313, and engineering standing

  6. Manufacturing Fuel Pellets from Biomass Introduction

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Manufacturing Fuel Pellets from Biomass Introduction Wood pellets have increased tremendously pellet stoves or boilers over traditional wood-fired equipment due to their relative ease of use. As a result, the demand for fuel pellets has also grown quickly. However, wood is not the only suitable

  7. Montana Manufacturing Center www.mtmanufacturingcenter.com

    E-Print Network [OSTI]

    Dyer, Bill

    on. A Six Sigma project guided by a Field Engi- neer from the Montana Manufacturing Extension Center with Worrest serving as project lead and Six Sigma Coach. Reid considers Worrest a business coach and has used is much better, the company is carrying less inventory, and it is benefiting in other ways. Six Sigma

  8. REMEDIAT1NG AT MANUFACTURED GAS

    E-Print Network [OSTI]

    Peters, Catherine A.

    , comhusti- hle gas manufactured Pfrom coke, coal, and oil 1 served as the major gas- eous fuel for urban for the three primary gas production meth- ods: coal carbonization, carbureted water gas production, and oil gas, and metals. Tar resid- uals were produced from the vola- tiIe component of bituminous coals in coal

  9. Faculty of Engineering Industrial and Manufacturing

    E-Print Network [OSTI]

    Faculty of Engineering Industrial and Manufacturing Systems Engineering Industrial engineers answer the needs of organizations to operate efficiently and cost effectively. As an industrial engineer, you may of Windsor is one of only a few institutions in Ontario to offer industrial engineering. Your education

  10. Advanced Manufacturing: Using Composites for Clean Energy

    Broader source: Energy.gov [DOE]

    Advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics, are lighter and stronger than steel. These materials could lower overall production costs in U.S. manufacturing and ultimately drive the adoption of a new clean energy way of life.

  11. Optimal Preventive Maintenance Scheduling in Semiconductor Manufacturing

    E-Print Network [OSTI]

    Marcus, Steven I.

    1 Optimal Preventive Maintenance Scheduling in Semiconductor Manufacturing Xiaodong Yao, Emmanuel on Control Applications in 2001. #12;2 Abstract Preventive Maintenance (PM) scheduling is a very challenging schedule with that of a baseline reference schedule are also presented. Index Terms preventive maintenance

  12. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04T23:59:59.000Z

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  13. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28T23:59:59.000Z

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  14. Pollution Prevention and Lean Manufacturing Paper # 360

    E-Print Network [OSTI]

    Pollution Prevention and Lean Manufacturing Paper # 360 Harry W. Edwards and Jason M. Jonkman, the CSU IAC promotes energy conservation, pollution prevention, and productivity improvement. During that generated a total of 467 assessment recommendations (ARs) with pollution prevention benefits. Such benefits

  15. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    E-Print Network [OSTI]

    Advanced Manufacturing Office (Formerly Industrial Technologies Program) Leo Christodoulou Jamie August 11, 2011 #12;Background and Opportunity Background Industry accounts for 30% of energy consumption-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

  16. 8th Global Conference on Sustainable Manufacturing

    E-Print Network [OSTI]

    Berlin,Technische Universität

    8th Global Conference on Sustainable Manufacturing Architecture for Sustainable Engineering to competent partners in the global village. Sustainability engineering has evolved as a means to meet mankind, Germany Co-Chairman Prof. Dr. N. Ibrahim Abu Dhabi University, UAE for a sustainable product and process

  17. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, Kenny C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Falls, ID)

    1996-01-01T23:59:59.000Z

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  18. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.

    1996-12-17T23:59:59.000Z

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  19. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect (OSTI)

    Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)] [ed.; Florida Solar Energy Center, Cocoa, FL (United States)

    1995-11-01T23:59:59.000Z

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  20. Manufacturing Environment in the Year 2000

    E-Print Network [OSTI]

    Slautterback, W. H.

    1985-01-01T23:59:59.000Z

    Manufacturing will change more in the next 15 years than it has in the last 75 years. The reasons are clear ... survival and technology. Unless U.S. companies can compete in a world economy on price, quality, design and delivery, our companies...

  1. Manufacturing buildings in Massachusetts : the legacy and the future

    E-Print Network [OSTI]

    Traynor, Callie

    1983-01-01T23:59:59.000Z

    Manufacturing buildings are found in most towns and cities in Massachusetts. Standing in dominant isolation, or as part of an urban district, their presence is the built testimony to the role manufacturing played in so ...

  2. Lori Garver, NASA Deputy Administrator National Network for Manufacturing Innovation

    E-Print Network [OSTI]

    Lori Garver, NASA Deputy Administrator National Network for Manufacturing Innovation Cuyahoga discussion on the President's recently announced initiative, the National Network for Manufacturing the technologies we need for tomorrow's missions. These include projects to transform space laser communications

  3. EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell...

    Office of Environmental Management (EM)

    EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles April 18, 2013 - 12:00am Addthis The...

  4. Fact #871: May 4, 2015 Most Manufacturers Have Positive CAFE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: May 4, 2015 Most Manufacturers Have Positive CAFE Credit Balances at the End of Model Year 2013 Fact 871: May 4, 2015 Most Manufacturers Have Positive CAFE Credit Balances at...

  5. Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science [AT 15000 Introduction to Human Communication 3 Fulfills Kent Core Additional Kent Core Requirement 3 See #12;Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science [AT

  6. Event Registration Form International Good Manufacturing Practices Conference -#71683

    E-Print Network [OSTI]

    Arnold, Jonathan

    Event Registration Form International Good Manufacturing Practices Conference - #71683 03 No Total $______ Please specify any additional dietary restrictions or allergies-884-1419 -- Credit Card Only Mail: International Good Manufacturing Practices Conference #71683 The Georgia Center

  7. East Penn Manufacturing Keeps Moving Forward After 65 Years

    Broader source: Energy.gov [DOE]

    How East Penn Manufacturing went from a small business, founded by a father and son just after the close of World War II, to an expanding manufacturer of advanced batteries for hybrid electric vehicles.

  8. Exploration of large scale manufacturing of polydimethylsiloxane (PDMS) microfluidic devices

    E-Print Network [OSTI]

    Hum, Philip W. (Philip Wing-Jung)

    2006-01-01T23:59:59.000Z

    Discussion of the current manufacturing process of polydimethylsiloxane (PDMS) parts and the emergence of PDMS use in biomedical microfluidic devices addresses the need to develop large scale manufacturing processes for ...

  9. Manufacturing of Protected Lithium Electrodes for Advanced Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steven J. Visco, CEO & CTO, PolyPlus Battery Company U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 28-29, 2015 Manufacturing of Protected Lithium...

  10. An Interdisciplinary Undergraduate Manufacturing Option for Chemical Engineering, page

    E-Print Network [OSTI]

    Lamancusa, John S.

    institutions: Product Dissection, Concurrent Engineering, and Entrepreneurship. The sequence of coursesAn Interdisciplinary Undergraduate Manufacturing Option for Chemical Engineering, page ASEE Conference Summer 1996 1 An Interdisciplinary Undergraduate Manufacturing Engineering Option for Chemical

  11. Energy Report: U.S. Wind Energy Production and Manufacturing...

    Energy Savers [EERE]

    Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing...

  12. An Energy Conservation Program at a Large Cable Manufacturing Plant

    E-Print Network [OSTI]

    Reale, P. J.

    1983-01-01T23:59:59.000Z

    The Atlanta Works is the largest telephone cable manufacturing plant in the world plus the manufacturing center for fiber optic cable for the Western Electric Company and exemplifies how an effective energy conservation program can work...

  13. Springfield Utility Board- Super Good Cents Manufactured Homes Rebate Program

    Broader source: Energy.gov [DOE]

    The Springfield Utility Board offers a $600 incentive for the purchase of a Super Good Cents Manufactured Home. Super Good Cents Manufactured Homes offer improve comfort and efficiency. The...

  14. New urban manufacturing neo-industrial design in Louisville, Kentucky

    E-Print Network [OSTI]

    Rhie, Christopher

    2014-01-01T23:59:59.000Z

    American manufacturing is experiencing a modest renaissance. U.S. firms are choosing to re-shore manufacturing jobs not out of their sense of patriotism, but because it makes good business sense. The costs of transportation ...

  15. Fiber Reinforced Polymer Composite Manufacturing Workshop Save the Date

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energys Advanced Manufacturing Office plans to host a Fiber Reinforced Polymer Composite Manufacturing Workshop in the Washington D.C. area on Monday January 13, 2014.

  16. Lean manufacturing in a semiconductor environment : production leveling

    E-Print Network [OSTI]

    Subramanian, Nima

    2007-01-01T23:59:59.000Z

    Intel Corporation's Fab17 located at Hudson, MA underwent a large scale manufacturing ramp-up, increasing its production volume by over 50%. As a result of this manufacturing ramp-up, the factory is faced with various ...

  17. Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM)

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM) Mission Statement: The Center for Advanced Design and Manufacturing of Integrated Microfluidics will develop design tools microfluidics targeting costeffective, quick, and easy diagnosis of the environment, agriculture, and human

  18. Commercial assessment of roll to roll manufacturing of electronic displays

    E-Print Network [OSTI]

    Randolph, Michael Aaron

    2006-01-01T23:59:59.000Z

    The cost of manufacturing electronic displays currently limits the range of applications and markets into which it is currently economically feasible to adopt displays. Roll-to-roll manufacturing has been identified by the ...

  19. Inbound freight consolidation for US manufacturers at China

    E-Print Network [OSTI]

    Fang, Yi, M. Eng. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    In recent years, China has become the world factory for a sizable portion of products. Most manufacturing conglomerates in the United States now have contract manufacturing plants in China. Because many of these US companies ...

  20. Posted 5/10/12 Manufacturing /Process Engineer

    E-Print Network [OSTI]

    Heller, Barbara

    . Plymouth Tube Company is committed to providing products and services that meet or exceed customers to improve safety, quality, and manufacturing efficiency throughout the manufacturing area. Utilization, reduce cycle times, improve productivity, create and find capacity, improve process reliability

  1. Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    609 considered manufacturing processes are laser cutting asdie manufacturing comes from its ability to enable laser-of Laser-Based and Conventional Tool and Die Manufacturing.

  2. Comparing Environmental Impacts of Additive Manufacturing vs. Traditional Machining via Life-Cycle Assessment

    E-Print Network [OSTI]

    Faludi, Jeremy; Bayley, Cindy; Bhogal, Suraj; Iribarne, Myles

    2014-01-01T23:59:59.000Z

    Impacts of Additive Manufacturing vs. Traditional MachiningSocial Impacts of Additive Manufacturing vs CNC Machiningcutting! Impacts of Additive Manufacturing in Literature

  3. A Unified Approach for Integrated Computer-Aided Design and Manufacturing

    E-Print Network [OSTI]

    Huang, Bin

    2013-01-01T23:59:59.000Z

    different types of additive manufacturing technologies, suchbe used to model the additive manufacturing process as well.composite manufacturing and 3D printing, are additive. They

  4. The role of lean manufacturing principles and strategic alternatives in achieving business goals

    E-Print Network [OSTI]

    Ramaswamy, Dhananjay

    2006-01-01T23:59:59.000Z

    Lean Manufacturing is widely accepted as a proven method to achieve operational excellence. Many manufacturers undertake lean manufacturing implementations as a strategy to improve competitiveness and realize business ...

  5. Comparing Environmental Impacts of Additive Manufacturing vs. Traditional Machining via Life-Cycle Assessment

    E-Print Network [OSTI]

    Faludi, Jeremy; Bayley, Cindy; Bhogal, Suraj; Iribarne, Myles

    2014-01-01T23:59:59.000Z

    Social Impacts of Additive Manufacturing vs CNC MachiningImpacts of Additive Manufacturing vs. Traditional Machiningcutting! Impacts of Additive Manufacturing in Literature

  6. A Decision-Based Analysis of Compressed Air Usage Patterns in Automotive Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris; Zhang, Teresa; Rangarajan, Arvind; Dornfeld, David; Ziemba, Bill; Whitbeck, Rod

    2006-01-01T23:59:59.000Z

    Air Usage Patterns in Automotive Manufacturing Chris Y. Yuanper vehicle built from automotive manufacturing facilities,2004). Compressed Air in Automotive Manufacturing Compressed

  7. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    manufacturing of metal components suffers from low production rates and high energy intensity due to the use of lasers

  8. 2007 Status of Manufacturing: Polymer Electrolyte Membrane (PEM) Fuel Cells

    SciTech Connect (OSTI)

    Wheeler, D.; Sverdrup, G.

    2008-03-01T23:59:59.000Z

    In this document we assess the North American industry's current ability to manufacture polymer electrolyte membrane (PEM) fuel cells.

  9. Modular Process Equipment for Low Cost Manufacturing of High...

    Broader source: Energy.gov (indexed) [DOE]

    information Energy & Environmental Solutions Alternative Energy Products Overview 2 Cost of manufacturing Cycling lifetime of high capacity materials Prismatic cell...

  10. Quantifying Energy Savings from Lean Manufacturing Productivity Increases

    E-Print Network [OSTI]

    Seryak, J.; Epstein, G.; D'Antonio, M.

    2006-01-01T23:59:59.000Z

    from existing use due to additional equipment or operating hours. Alternately, in the post-event scenario, Lean Manufacturing techniques enable production gains without increasing operating hours or adding manufacturing equipment. Hence.... The Lean Manufacturing techniques listed above improve productivity in several ways, which may or may not have impacts on energy use. Additionally, Lean Manufacturing techniques can also improve energy use in ways that have no relation to productivity...

  11. Manufacture of thermoelectric generator structures by fiber drawing

    DOE Patents [OSTI]

    McIntyre, Timothy J; Simpson, John T; West, David L

    2014-11-18T23:59:59.000Z

    Methods of manufacturing a thermoelectric generator via fiber drawing and corresponding or associated thermoelectric generator devices are provided.

  12. Wellbore manufacturing processes for in situ heat treatment processes

    DOE Patents [OSTI]

    Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

    2012-12-11T23:59:59.000Z

    A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

  13. Structured Reactive Controllers and Transformational Planning for Manufacturing

    E-Print Network [OSTI]

    Cremers, Daniel

    unchen {ruehr,pangerci,beetz}@cs.tum.edu Michael Beetz Abstract While current manufacturing systems are built

  14. Proceedings from the Wind Manufacturing Workshop: Achieving 20...

    Energy Savers [EERE]

    Technology Summary Slides Testing, Manufacturing, and Component Development Projects Offshore Wind Projects Wind Program Home About the Program Research & Development...

  15. Determination of VOC emissions from French wood products Christophe YRIEIX *, Franois MAUPETIT **, Olivier RAMALHO **

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    wood manufacturers to determine IAQ performances of their products and to confront them with other quality (IAQ). Indeed, building products are significant sources of Volatile Organic Compounds (VOCs. This is particularly important for French wood manufacturers to determine IAQ performances of their products

  16. Journal of Manufacturing Processes Vol. 9/No. 1

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    laser thermal forming, is a flexible rapid prototyping and low-vol- ume manufacturing process that usesJournal of Manufacturing Processes Vol. 9/No. 1 2007 1 Journal of Manufacturing Processes Vol. 9/No. 1 2007 Energy-Level Effects on the Deformation Mechanism in Microscale Laser Peen Forming Youneng

  17. Journal of Mechanisms and Robotics Hybrid Deposition Manufacturing: Design

    E-Print Network [OSTI]

    Dollar, Aaron M.

    combines additive manufacturing (AM) processes such as FDM with material deposition and embedded components applications. Additive manufacturing techniques are used to print both permanent components and sacrificial, leveraging the benefits of additive manufacturing and expanding the range of design options for robotic

  18. Advanced Manufacturing Use Cases and Early Results in GENI Infrastructure

    E-Print Network [OSTI]

    Calyam, Prasad

    for controlling remote processes in manufacturing facilities. In addition, there is a need to suitably configureAdvanced Manufacturing Use Cases and Early Results in GENI Infrastructure Alex Berryman, Prasad to advanced manufacturing communities are exciting prospects due to the growth of the global marketplace

  19. MANUFACTURABILITY ANALYSIS TO COMBINE ADDITIVE AND SUBTRACTIVE PROCESSES

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    MANUFACTURABILITY ANALYSIS TO COMBINE ADDITIVE AND SUBTRACTIVE PROCESSES Authors: Olivier Kerbrat of the tool may advantageously be machined or manufactured by an additive process. Originality/value: Nowadays is proposed to combine additive and subtractive processes, for tooling design and manufacturing

  20. Introduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing!

    E-Print Network [OSTI]

    Das, Suman

    mechanical strength and! solar cell integrity! q Silicon wafering (diamond wire sawing)! q Silicon waferIntroduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing! Prof. Shreyes Melkote volume PV manufacturing, therefore to reduce manufacturing cost and accelerate PV use. ! q Silicon wafer

  1. Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling

    E-Print Network [OSTI]

    to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able associated with both the manufacture of carbon fibers themselves as well as their composites. Traditional

  2. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema (OSTI)

    Duoss, Eric

    2014-05-30T23:59:59.000Z

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  3. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect (OSTI)

    Duoss, Eric

    2014-05-28T23:59:59.000Z

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  4. Manufacturing Demonstration Facility Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.EnergyManufacturing

  5. A Unified Approach for Integrated Computer-Aided Design and Manufacturing

    E-Print Network [OSTI]

    Huang, Bin

    2013-01-01T23:59:59.000Z

    composite manufacturing and 3D printing, are additive. Theycomposite manufacturing or 3D-printing. Based on the base

  6. A Unified Approach for Integrated Computer-Aided Design and Manufacturing

    E-Print Network [OSTI]

    Huang, Bin

    2013-01-01T23:59:59.000Z

    composite manufacturing or 3D-printing. Based on the basecomposite manufacturing and 3D printing, are additive. They

  7. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    SciTech Connect (OSTI)

    Hewes, T.; Peeks, B.

    2013-11-01T23:59:59.000Z

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  8. Technology Solutions for New Manufactured Homes: Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  9. Manufacturing Energy and Carbon Footprint - Sector: All Manufacturing (NAICS 31-33), January 2014 (MECS 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.EnergyManufacturingAll Manufacturing (NAICS

  10. Method for manufacture of neutron absorbing articles

    SciTech Connect (OSTI)

    Owens, D.

    1980-07-22T23:59:59.000Z

    A one-step curing method for the manufacture of a neutron absorbing article which comprises irreversibly curing, in desired article form, a form-retaining mixture of boron carbide particles, curable phenolic resin in solid state and in particula te form and a minor proportion of a liquid medium, which boils at a temperature below 200*c., at an elevated temperature so as to obtain bonding of the irreversibly cured phenolic polymer resulting to the boron carbide particles and production of the neutron absorbing article in desired form.

  11. Regulation changes create opportunities for pipeline manufacturers

    SciTech Connect (OSTI)

    Santon, J.

    1999-09-01T23:59:59.000Z

    The US Department of Transportation`s (DOT) Research and Special Programs Administration (RSPA) is proposing to change its safety standards for the repair of corroded or damaged steel pipe in gas and hazardous liquid pipelines. For pipeline operators, the expected revisions will allow new flexibility in approaches to pipeline repair. Less costly and less disruptive procedures will be acceptable. For manufacturers, the changes will open opportunities for development of corrosion repair technology. A highly competitive market in new repair technology can be expected to arise. Current regulations, new technologies, and proposed safety standards are described.

  12. Clean Energy Manufacturing Initiative | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2 PermitClean Energy Manufacturing

  13. Manufacturing Success Stories | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7Processes to TheirEnergy Midwest MIEMakingManagingManufacturing

  14. LightManufacturing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow(RedirectedLightManufacturing Jump to:

  15. Manufacturing Demonstration Facilities Workshop Agenda, March 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy UniversityOversightFlowManufacturing

  16. Manufacturing Demonstration Facilities Workshop, March 12, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.EnergyManufacturing Demonstration Facilities

  17. Manufacturing Demonstration Facilities Workshop, March 12, 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.EnergyManufacturing Demonstration

  18. Advanced Manufacturing Office | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth SitePresentations |State WindEconomicApplicationAdvanced Manufacturing

  19. Additive Manufacturing: Going Mainstream | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001 Energy26.1U.S.-BrazilAdditive Manufacturing: Going

  20. Manufacturing Licenses Available | Tech Transfer | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electronEnergy Manufacturing Energy and

  1. Manufacturing Research and Development | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electronEnergy Manufacturing Energy andYou are here Home

  2. Aurora Photovoltaics Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to:Auriga Energy Jump to:Photovoltaics Manufacturing

  3. Solar Manufacturing Technology | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWorkSunShot Solar Manufacturing Technology (SolarMat)

  4. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect (OSTI)

    Hamilton, Bruce Duncan [Navigant Consulting, Inc.

    2013-02-22T23:59:59.000Z

    The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. Chapter 2: Potential Supply Chain Requirements and Opportunities. Provides an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nations land-based wind market. Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development agencies, to assist in identifying policies with low effort and high impact (Chapter 3). Section 3.3 provides specific policy examples that have been demonstrated to be effective in removing barriers to development. (c) Current and potential domestic suppliers in the offshore wind market, in evaluating areas of opportunity and understanding requirements for participation (Chapter 4). Section 4.4 provides a step-by-step description of the qualification process that suppliers looking to sell components into a future U.S. offshore wind market will need to follow.

  5. Low Cost Lithography Tool for High Brightness LED Manufacturing

    SciTech Connect (OSTI)

    Andrew Hawryluk; Emily True

    2012-06-30T23:59:59.000Z

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  6. Abstract--The increasing competitiveness in manufacturing industry is forcing manufacturers to seek effective processing

    E-Print Network [OSTI]

    Mustakerov, Ivan

    plant problem. Different processing schedules variants for different technological restrictions were, so they must rely on innovative approaches in all aspects of manufacturing technology. As a result existing results in the literature focus on either a single machine or several identical machines [5

  7. NREL Manufacturing R&D Workshop NREL H2/FC Manufacturing R&D Workshop

    E-Print Network [OSTI]

    Trimming Automated Dispensing X-ray Wind PMD has built components for the wind industry focused In the following areas: Blade Manufacturing Tower component design and detailing Tower component machining-part solar assemblies Chip Placement high speed and high precision Curing Flat glass material

  8. Precision replenishable grinding tool and manufacturing process

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Kerns, John A. (Livermore, CA); Blaedel, Kenneth L. (Livermore, CA); Colella, Nicholas J. (Livermore, CA); Davis, Pete J. (Pleasanton, CA); Juntz, Robert S. (Hayward, CA)

    1998-01-01T23:59:59.000Z

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools.

  9. Precision replenishable grinding tool and manufacturing process

    DOE Patents [OSTI]

    Makowiecki, D.M.; Kerns, J.A.; Blaedel, K.L.; Colella, N.J.; Davis, P.J.; Juntz, R.S.

    1998-06-09T23:59:59.000Z

    A reusable grinding tool consisting of a replaceable single layer of abrasive particles intimately bonded to a precisely configured tool substrate, and a process for manufacturing the grinding tool are disclosed. The tool substrate may be ceramic or metal and the abrasive particles are preferably diamond, but may be cubic boron nitride. The manufacturing process involves: coating a configured tool substrate with layers of metals, such as titanium, copper and titanium, by physical vapor deposition (PVD); applying the abrasive particles to the coated surface by a slurry technique; and brazing the abrasive particles to the tool substrate by alloying the metal layers. The precision control of the composition and thickness of the metal layers enables the bonding of a single layer or several layers of micron size abrasive particles to the tool surface. By the incorporation of an easily dissolved metal layer in the composition such allows the removal and replacement of the abrasive particles, thereby providing a process for replenishing a precisely machined grinding tool with fine abrasive particles, thus greatly reducing costs as compared to replacing expensive grinding tools. 11 figs.

  10. Preliminary Characterization and Analysis of the Designs and Research-Manufacturing Approaches

    SciTech Connect (OSTI)

    Scott Swartz; Gwendolyn Cheney; Williams Dawson; Michael Cobb; Kirby Meacham; James Stephan; Bob Remick; Harlan Anderson; Wayne Huebner; Aaron Crumm; John Holloran; Tim Armstrong

    2000-10-30T23:59:59.000Z

    This report summarizes the results of Phase I of a study entitled, Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells. The work was carried out by a group called the Multilayer Fuel Cell Alliance (MLFCA) led by NexTech Materials and including Adaptive Materials, Advanced Materials Technologies (AMT), Cobb & Co., Edison Materials Technology Center, Iowa State University, Gas Technology Institute (GTI), Northwestern University, Oak Ridge National Laboratory (ORNL), Ohio State University, University of Missouri-Rolla (UMR), and Wright-Patterson Air Force Base. The objective of the program is to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. In the Phase I effort, five approaches were considered: two based on NexTech's planar approach using anode and cathode supported variations, one based on UMR's ultra-thin electrolyte approach, and two based on AMI's co-extrusion technology. Based on a detailed manufacturing cost analysis, all of the approaches are projected to result in a significantly reduced production cost. Projected costs range from $139/kW to $179/kW for planar designs. Development risks were assessed for each approach and it was determined that the NexTech and UMR approaches carried the least risk for successful development. Using advanced manufacturing methods and a proprietary high power density design, the team estimated that production costs could be reduced to $94/kW.

  11. Estimated costs of ventilation systems complying with the HUD ventilation standard for manufactured homes

    SciTech Connect (OSTI)

    Miller, J.D.; Conner, C.C.

    1993-11-01T23:59:59.000Z

    At the request of the US Department of Housing and Urban Development (HUD), the Pacific Northwest Laboratory estimated the material, labor, and operating costs for ventilation equipment needed for compliance with HUD`s proposed revision to the ventilation standard for manufactured housing. This was intended to bound the financial impacts of the ventilation standard revision. Researchers evaluated five possible prototype ventilation systems that met the proposed ventilation requirements. Of those five, two systems were determined to be the most likely used by housing manufacturers: System 1 combines a fresh air duct with the existing central forced-air system to supply and circulate fresh air to conditioned spaces. System 2 uses a separate exhaust fan to remove air from the manufactured home. The estimated material and labor costs for these two systems range from $200 to $300 per home. Annual operating costs for the two ventilation systems were estimated for 20 US cities. The estimated operating costs for System 1 ranged from $55/year in Las Vegas, Nevada, to $83/year in Bismarck, North Dakota. Operating costs for System 2 ranged from a low of $35/year in Las Vegas to $63/year in Bismarck. Thus, HUD`s proposed increase in ventilation requirements will add less than $100/year to the energy cost of a manufactured home.

  12. Particle dispersing system and method for testing semiconductor manufacturing equipment

    DOE Patents [OSTI]

    Chandrachood, Madhavi (Sunnyvale, CA); Ghanayem, Steve G. (Sunnyvale, CA); Cantwell, Nancy (Milpitas, CA); Rader, Daniel J. (Albuquerque, NM); Geller, Anthony S. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    The system and method prepare a gas stream comprising particles at a known concentration using a particle disperser for moving particles from a reservoir of particles into a stream of flowing carrier gas. The electrostatic charges on the particles entrained in the carrier gas are then neutralized or otherwise altered, and the resulting particle-laden gas stream is then diluted to provide an acceptable particle concentration. The diluted gas stream is then split into a calibration stream and the desired output stream. The particles in the calibration stream are detected to provide an indication of the actual size distribution and concentration of particles in the output stream that is supplied to a process chamber being analyzed. Particles flowing out of the process chamber within a vacuum pumping system are detected, and the output particle size distribution and concentration are compared with the particle size distribution and concentration of the calibration stream in order to determine the particle transport characteristics of a process chamber, or to determine the number of particles lodged in the process chamber as a function of manufacturing process parameters such as pressure, flowrate, temperature, process chamber geometry, particle size, particle charge, and gas composition.

  13. The inverse problems of wing panel manufacture processes

    SciTech Connect (OSTI)

    Oleinikov, A. I., E-mail: a.i.oleinikov@mail.ru [Komsomolsk-on-Amur State Technical University, Lenina prospect 27, Komsomolsk-on-Amur, 681013, Russian Federation, and Institute of Machinery and Metallurgy Far Eastern Branch of the Russian Academy of Sciences, Metallurgov Street 1, Komsomolsk-on-Am (Russian Federation); Bormotin, K. S., E-mail: cvmi@knastu.ru [Komsomolsk-on-Amur State Technical University, Lenina prospect 27, Komsomolsk-on-Amur, 681013, Russian Federation (Russian Federation)

    2013-12-16T23:59:59.000Z

    It is shown that inverse problems of steady-state creep bending of plates in both the geometrically linear and nonlinear formulations can be represented in a variational formulation. Steady-state values of the obtained functionals corresponding to the solutions of the problems of inelastic deformation and springback are determined by applying a finite element procedure to the functionals. Optimal laws of creep deformation are formulated using the criterion of minimizing damage in the functionals of the inverse problems. The formulated problems are reduced to the problems solved by the finite element method using MSC.Marc software. Currently, forming of light metals poses tremendous challenges due to their low ductility at room temperature and their unusual deformation characteristics at hot-cold work: strong asymmetry between tensile and compressive behavior, and a very pronounced anisotropy. We used the constitutive models of steady-state creep of initially transverse isotropy structural materials the kind of the stress state has influence. The paper gives basics of the developed computer-aided system of design, modeling, and electronic simulation targeting the processes of manufacture of wing integral panels. The modeling results can be used to calculate the die tooling, determine the panel processibility, and control panel rejection in the course of forming.

  14. A new DFM approach to combine machining and additive manufacturing

    E-Print Network [OSTI]

    Kerbrat, Olivier; Hascot, Jean-Yves; 10.1016/j.compind.2011.04.003

    2011-01-01T23:59:59.000Z

    Design For Manufacturing (DFM) approaches aim to integrate manufacturability aspects during the design stage. Most of DFM approaches usually consider only one manufacturing process, but products competitiveness may be improved by designing hybrid modular products, in which products are seen as 3-D puzzles with modules realized aside by the best manufacturing process and further gathered. A new DFM system is created in order to give quantitative information during the product design stage of which modules will benefit in being machined and which ones will advantageously be realized by an additive process (such as Selective Laser Sintering or laser deposition). A methodology for a manufacturability evaluation in case of a subtractive or an additive manufacturing process is developed and implemented in a CAD software. Tests are carried out on industrial products from automotive industry.

  15. Role of the DAPIA in the manufactured housing process

    SciTech Connect (OSTI)

    Balistocky, S.; Lee, A.D.; Onisko, S.A.

    1986-02-01T23:59:59.000Z

    This paper describes the function of Design Approval Primary Inspection Agencies (DAPIAs) and provides some insights into the design approval process for manufacturing housing units. DAPIAs play a key role in assuring that the designs for manufactured housing units are in compliance with HUD's Manufactured Housing Constructing and Safety Standards. There are five DAPIAs performing plan checks and design reviews for the manufacturing operating in the Pacific Northwest region. The costs to a manufacturer for DAPIA services ranges from $100 to $250 to approve modifications to existing designs and $700 to $1200 to approve a totally new design. Each DAPIA indicated that they would be willing to work with BPA in some way to assist manufacturers produce units which can achieve MCS levels. They would be available for energy design consultation on an informal basis. In addition they would be willing to consider formal certifications of MCS designs if BPA develops evaluation criteria which they can apply.

  16. President Obama Announces Two New Public-Private Manufacturing...

    Energy Savers [EERE]

    advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics to cost-effectively manufacture materials that are lighter and stronger than steel....

  17. AMO Issues Request for Information on Clean Energy Manufacturing...

    Energy Savers [EERE]

    AMO Issues Request for Information on Clean Energy Manufacturing Topics, Including Fuel Cell and Hydrogen Applications AMO Issues Request for Information on Clean Energy...

  18. Energy-Saving Homes, Buildings, and Manufacturing Success Stories...

    Broader source: Energy.gov (indexed) [DOE]

    solutions for our nation's buildings and manufacturing supply lines mean large-scale energy and cost savings. Learn how EERE's investments in energy solutions for homes,...

  19. Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Energy-Saving Homes, Buildings, &...

  20. Solid-State Lighting Manufacturing Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and to help define a new DOE manufacturing initiative to reduce the cost of light-emitting diode (LED) products to competitive levels, ensure high product quality and...

  1. Center for Sustainable Industry and Manufacturing | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system design, development, testing, and evaluation. Major R&D areas include large scale additive manufacturing as well as closed loop control; energy efficient and mesoscale...

  2. Clean Energy Manufacturing Initiative: Increasing American Competitiveness Through Innovation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department's Clean Energy Manufacturing Initiative is helping to boost American competitiveness, grow the economy and protect the environment.

  3. Material Design, Selection, and Manufacturing Methods for System Sustainment

    SciTech Connect (OSTI)

    David Sowder, Jim Lula, Curtis Marshall

    2010-02-18T23:59:59.000Z

    This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energys National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

  4. Sandia National Laboratories: reduced the cycle time to manufacture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    time to manufacture a blade Sandia Participated in AMII to Support American-Made Wind-Turbine Blades On December 3, 2014, in Computational Modeling & Simulation, Energy, Materials...

  5. 2009 Solid-State Lighting Vancouver Manufacturing Workshop Highlights

    Broader source: Energy.gov [DOE]

    Well over 150 lighting industry leaders gathered in Vancouver, Washington, on June 24-25, 2009, for the second DOE Solid-State Lighting (SSL) Manufacturing Workshop. The primary purpose was to review and refine a "strawman" roadmap for SSL manufacturing, based on insights and recommendations from the first workshop, which was held in April in Fairfax, Virginia. These insights and recommendations focused on identifying and overcoming the key barriers to developing lower-cost, higher-quality SSL products. The outcome of both workshops will be a working roadmap to guide SSL manufacturing in general and to inform a new DOE manufacturing initiative.

  6. EA-1827: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project...

    Office of Environmental Management (EM)

    ARTisun Photovoltaic Manufacturing Project in Saginaw, MI February 1, 2010 EA-1827: Final Environmental Assessment Suniva Solar Project Site Community Development Block Grant in...

  7. DOE and Federal Energy and Manufacturing Workforce Programs and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cataloged by city and state. This list contains most of the programs included in our Energy & Manufacturing Topics list and Trade Adjustment Assistance Community College and...

  8. DOE Offers Support for Innovative Manufacturing Plant That Will...

    Broader source: Energy.gov (indexed) [DOE]

    of traditional polysilicon purification processes, which will reduce the overall cost of solar modules and panels. At full production, the manufacturing plant is expected to...

  9. Crowdsourcing Wins Manufacturing Leadership 100 | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NY, May 22, 2013 - GE Global Research, the technology development arm of the General Electric Co. (NYSE: GE) today announced that it has won a prestigious Manufacturing Leadership...

  10. advanced ceramic manufacturing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the heating source for a composite part being cured. This approach to self-heated tooling is a potentially enabling technology for manufacturing large composite 45 Finite...

  11. advanced optical manufacturing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the heating source for a composite part being cured. This approach to self-heated tooling is a potentially enabling technology for manufacturing large composite 57 Young...

  12. advanced blade manufacturing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the heating source for a composite part being cured. This approach to self-heated tooling is a potentially enabling technology for manufacturing large composite 39 Sparkr...

  13. aprimed agile manufacturing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesostructure," ASME IDETC Additive Manufacturing Laser Engineered Net Shaping Electron Beam Melting Williams, C. B., F. M. Mistree, D. W. Rosen, 2005, "Investigation of Additive...

  14. Los Alamos names new head of stockpile manufacturing and support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology division and then the engineering division, responsible for high explosive manufacturing and testing operations and engineering support for all weapons assembly and...

  15. Private-Public Partnerships for U.S. Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government Large Manufacturing Companies Small & Medium Enterprise (SMEs) Start-ups Industry Network of IMIs 2013 State of the Union Announcement National Network for...

  16. DOE/EIA-0515(85) Energy Information Administration Manufacturing...

    U.S. Energy Information Administration (EIA) Indexed Site

    5(85) Energy Information Administration Manufacturing Energy Consumption Survey: Fuel Switching, 1985 This publication is available from the Superintendent of Documents, U.S,...

  17. Energy-Saving Homes, Buildings, and Manufacturing Success Stories...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon Read more homes success stories Manufacturing February 4, 2015 Just Plain...

  18. Letter Response from the Plumbing Manufacturers Institute (PMI...

    Office of Environmental Management (EM)

    Manufacturers Institute (PMI), Docket No. EERE-2010-BT-NOA-0016 - Notice of Availability of Interpretive Rule on the Applicability of Current Water Conservation Standards...

  19. Manufactured Home Energy Audit user`s manual

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the US Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA displays a colorful, graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes.

  20. Purdue, GE Collaborate On Advanced Manufacturing | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and democratization in manufacturing, Abhijit Deshmukh, the James J. Solberg Head of Industrial Engineering and the faculty leader for GEPurdue PRIAM, said, "Our...

  1. advanced semiconductor manufacturing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Business and Manufacturing Tohru Ogawa Semiconductor Company Sony Corporation 12;WISE 2000 ContentsContents Paradigm Shift in Semiconductor Business...

  2. Manufacturing R&D for the Hydrogen Economy Workshop Summary

    Broader source: Energy.gov (indexed) [DOE]

    to validate optimal materials and processes * Conduct R&D to manufacture large composite pressure vessels from filament to localized reinforced techniques - localized...

  3. activated carbon manufacture: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of carbon fibers themselves as well as their composites. Traditional to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model 2...

  4. GATE Center of Excellence in Lightweight Materials and Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    materials and manufacturing technologies. Recent developments in low-cost composite materials and lightweight castings and fabrication technologies offer excellent potential for...

  5. airfoil manufacturing technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5:4, 333341, 2003 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. Materials Science Websites Summary: microfabrication technologies to integrate mechanical...

  6. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01T23:59:59.000Z

    modeling method for photovoltaic cells. in Proc. IEEE 35thlosses in solar photovoltaic cell networks. Energy 32:Cell Variability Photovoltaic (PV) cells manufactured with

  7. Fiber Reinforced Polymer Composite Manufacturing - RFI DE-FOA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RFI DE-FOA-0000980: Summary of Responses Fiber Reinforced Polymer Composite Manufacturing - RFI DE-FOA-0000980: Summary of Responses Summary of Responses to Request for Information...

  8. Integrated Design and Manufacturing of Cost-Effective & Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost-Effective & Industrial-Scalable TEG for Vehicle Applications Integrated Design and Manufacturing of Cost-Effective & Industrial-Scalable TEG for Vehicle Applications...

  9. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01T23:59:59.000Z

    process control charts (SPC) for product quality and processstatistical process control (SPC) charts. The concept is toMethods Univariate SPC for semiconductor manufacturing

  10. EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in...

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Assessment Loan Guarantee to Solyndra, Inc. for Construction of A Photovoltaic Manufacturing Facility and Leasing of an Existing Commercial Facility in Fremont,...

  11. Using ordered partial decision diagrams for manufacture test generation

    E-Print Network [OSTI]

    Cobb, Bradley Douglas

    2004-09-30T23:59:59.000Z

    for Manufacture Defects................................................................................1 Stuck-at Fault Testing ................................................................................................3 Exciting, Observing, and Detecting a... Fault ...............................................................4 Multi-Detect Testing ..................................................................................................5 Fault Excitation, Observation, and Detection Probabilities...

  12. Oak Ridge Centers for Manufacturing Technology, part 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    more than 1,600 businesses nationwide. These industries ran the gamut of all types of industry in the nation. Automotive part production, food product manufacturing, ceramic...

  13. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Broader source: Energy.gov (indexed) [DOE]

    Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)...

  14. EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    Dearborn, Inc., for Advanced Technology Vehicles Manufacturing Project in Dearborn, Michigan February 18, 2011 EA-1834: Finding of No Significant Impact Proposed Advanced...

  15. Solder technology in the manufacturing of electronic products

    SciTech Connect (OSTI)

    Vianco, P.T.

    1993-08-01T23:59:59.000Z

    The electronics industry has relied heavily upon the use of soldering for both package construction and circuit assembly. The solder attachment of devices onto printed circuit boards and ceramic microcircuits has supported the high volume manufacturing processes responsible for low cost, high quality consumer products and military hardware. Defects incurred during the manufacturing process are minimized by the proper selection of solder alloys, substrate materials and process parameters. Prototyping efforts are then used to evaluate the manufacturability of the chosen material systems. Once manufacturing feasibility has been established, service reliability of the final product is evaluated through accelerated testing procedures.

  16. A Bold Goal: Boston Manufacturing R&D Workshop Video

    Broader source: Energy.gov [DOE]

    View the video from Jim Brodrick's opening presentation at the April 2011 DOE SSL Manufacturing R&D Workshop in Boston, Massachusetts.

  17. Rare-earth innovation to improve nylon manufacturing | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare-earth innovation to improve nylon manufacturing The Critical Materials Institute, a Department of Energy Innovation Hub led by the Ames Labratory, has created a new chemical...

  18. Upcoming Funding Opportunity for Tower Manufacturing and Installation...

    Energy Savers [EERE]

    intends to support partnerships that lead to innovative designs and processes for wind turbine tower manufacturing and turbine system installation. Supported projects will develop...

  19. Sustainability Indicators for Discrete Manufacturing Processes Applied to Grinding Technology

    E-Print Network [OSTI]

    Linke, Barbara S.; Corman, Gero J.; Dornfeld, David A.; Tnissen, Stefan

    2013-01-01T23:59:59.000Z

    Environmental pillar of sustainability All energy generationsustainability indicators INTRODUCTION Manufacturing has a large impact on worldwide energywith the same energy, E A = E B = E 0 , both sustainability

  20. A Three Dimensional System Approach for Environmentally Sustainable Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris; Zhai, Qiang; Dornfield, David

    2012-01-01T23:59:59.000Z

    the sustainability of manufacturing from energy perspective.and energy consumptions can improve the sustainabilitysustainability performance through improving both material and energy

  1. AMO Industry Day Workshop, February 25th, Targets Smart Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis AMO will host an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute...

  2. Identifying nonlinear variaiton patterns in multivariate manufacturing processes

    E-Print Network [OSTI]

    Zhang, Feng

    2005-02-17T23:59:59.000Z

    with the proposed visualization approach, provides an effective tool to aid in understanding the nature of the root causes of variation that affect a manufacturing process....

  3. A hybrid genetic algorithm for manufacturing cell formation

    E-Print Network [OSTI]

    Jos F. Gonalves

    ... in cellular manufacturing is the formation of product families and machine cells. ... Computational experience with the algorithm on a set of group technology...

  4. Midea: Proposed Penalty (2010-SE-0110, 2012-SE-1402, 2012-SE...

    Broader source: Energy.gov (indexed) [DOE]

    Notice of Proposed Civil Penalty that Midea America Corp., Hefei Hualing Co., Ltd., and China Refrigeration Industry Co., Ltd. manufactured and distributed noncompliant...

  5. GE Lighting Solutions: Proposed Penalty (2013-SE-4901)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that General Electric Lighting Solutions manufactured and distributed noncompliant traffic signal modules in the U.S.

  6. Whirlpool: Proposed Penalty (2013-SE-1420)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Whirlpool Corporation manufactured and distributed noncompliant refrigerator-freezers in the U.S.

  7. Lutron Electronics: Proposed Penalty (2012-SE-3796)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Lutron Electronics Co., Inc. manufactured and distributed noncompliant class A external power supplies in the U.S.

  8. Carbon fiber manufacturing via plasma technology

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Knoxville, TN); Yarborough, Kenneth D. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    2002-01-01T23:59:59.000Z

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  9. Improvements in manufacture of iridium alloy materials

    SciTech Connect (OSTI)

    Ohriner, E.K. (Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6083 (United States))

    1993-01-15T23:59:59.000Z

    Iridium alloys are used as fuel-cladding material in radioisotope thermoelectric generators (RTGs). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyager 1 and 2, Galileo, and Ulysses spacecrafts. This hardware was fabricated from small, 500-g drop-cast ingots. Porosity in these ingots and the resulting defects in the rolled sheets caused rejection of about 30% of the product. An improved manufacturing process was developed with the goal of substantially reducing the level of defects in the rolled sheets. The ingot size is increased to 10 kg and is produced by vacuum arc remelting. In addition, the ingot is hot extruded prior to rolling. Since implementation of the process in 1989, the average rate of rejection of the product has been reduced to below 10%.

  10. Method for manufacturing whisker preforms and composites

    DOE Patents [OSTI]

    Lessing, Paul A. (Idaho Falls, ID)

    1995-01-01T23:59:59.000Z

    A process for manufacturing Si.sub.3 N.sub.4 /SiAlON whiskers by mixing silicon carbide powder with aluminum nitride powder, adding impurities such as calcium oxide or potassium chloride to control whisker characteristics, forming the mixture in a boron nitrogen mold of desired shaped and hot isostatically pressing the formed mixture in a nitrogen environment to produce whiskers comprised substantially of SiAlON at the nucleating end of the whisker and Si.sub.3 N.sub.4 at the other end of the whisker. In one embodiment, reinforced composites are formed by impregnating the Si.sub.3 N.sub.4 /SiAlON whisker preform with a matrix material such as resin binders, liquid metals, intermetallics or ceramic materials.

  11. Method of manufacturing nuclear fuel bundle spacers

    SciTech Connect (OSTI)

    White, D.W.; Muncy, D.G.; Schoenig, F.C. Jr.

    1989-09-26T23:59:59.000Z

    This patent describes a method of manufacturing nuclear fuel bundle spacers on an automated production line basis. It comprises: cutting elongated tubing stock into shorter tubular ferrules; checking the length of each ferrule and rejecting those ferrules of unacceptable lengths; cutting predetermined features in the sidewall of each ferrule; forming the sidewall of each ferrule to impart predetermined surface formations thereto; checking a critical dimension of each sidewall surface formation of each ferrule and rejecting those of unacceptable dimensions; assembling successive pairs of ferrules into subassemblies; assembling successive subassemblies into a spacer assembly fixture; assembling a peripheral band in the spacer assembly fixture; conjoining the ferrules to each other and to the peripheral band to create a structurally rigid, finished spacer; and providing a separate controller for automatically controlling and monitoring the performances of these steps.

  12. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema (OSTI)

    Selldorff, John; Atwell, Monte

    2014-12-03T23:59:59.000Z

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  13. Responses to Questions and Answers Advanced Vehicle Technology Manufacturing Solicitation

    E-Print Network [OSTI]

    1 Responses to Questions and Answers Advanced Vehicle Technology Manufacturing Solicitation PON successful applicants after the Notice of Proposed Awards to confirm this role and obtain any additional definition of "manufacturing equipment?" For example, would purchases of tooling or assembly line equipment

  14. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect (OSTI)

    Selldorff, John; Atwell, Monte

    2014-09-23T23:59:59.000Z

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  15. Manufacturing processes and molding of fiber-reinforced polyetheretherketone

    SciTech Connect (OSTI)

    Kempe, G.; Krauss, H. (DLR, Stuttgart (West Germany))

    1991-04-01T23:59:59.000Z

    The paper presents and discusses cetain procedures for manufacturing components from continuous fiber reinforced thermoplastics using carbon fiber-reinforced polyetheretherketone (PEEK). The manufacturing quality achieved has been examined and compared with the aid of bending tests and micrographs. Some thermal decomposition tests were also done. 5 refs.

  16. Ultratech Develops an Improved Lithography Tool for LED Wafer Manufacturing

    Broader source: Energy.gov [DOE]

    Ultratech modified an existing lithography tool used for semiconductor manufacturing to better meet the cost and performance targets of the high-brightness LED manufacturing industry. The goal was to make the equipment compatible with the wide range of substrate diameters and thicknesses prevalent in the industry while reducing the capital cost and the overall cost of ownership (COO).

  17. Introducing Energy Performances in Production Management: Towards Energy Efficient Manufacturing

    E-Print Network [OSTI]

    Boyer, Edmond

    Introducing Energy Performances in Production Management: Towards Energy Efficient Manufacturing.taisch}@polimi.it Abstract. Energy consumption is one of the main economic, environmental and societal issues. As stated by recent researches, manufacturing plays a major role in energy consumption. To react to this situation

  18. Mechanical Engineering Manufacturing Solid Oxide Fuel Cells for Improved Electro-

    E-Print Network [OSTI]

    Lin, Xi

    for the commercialization of solid oxide fuel cells (SOFCs) are its high manufacturing and material costs expressed in termsUday Pal Mechanical Engineering Manufacturing Solid Oxide Fuel Cells for Improved Electro- chemical of the SOFC system cost per unit power ($/kW). In this work, anode-supported planar SOFCs were fabricated

  19. Review article Components manufacturing for solid oxide fuel cells

    E-Print Network [OSTI]

    Gleixner, Stacy

    of solid oxide fuel cell (SOFC) components is given and the fabrication techniques of ceramic components Elsevier Science B.V. All rights reserved. Keywords: Solid oxide fuel cell (SOFC); Components manufacturingReview article Components manufacturing for solid oxide fuel cells F. Tietz *, H.-P. Buchkremer, D

  20. Energy Conservation Opportunities in Hydrocarbon Resin Manufacturing Facilities

    E-Print Network [OSTI]

    Ganji, A. R.; Hackett, B.; Chow, S.; Lonergan, R.; Wimer, J.

    "The results of a plant-wide assessment of the manufacturing facilities of Neville Chemical Company, a manufacturer of hydrocarbon resins will be presented in this paper. The project was co-funded by US Department of Energy under its Plant...

  1. CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY

    E-Print Network [OSTI]

    CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY Master Thesis Proposal BACKGROUND 3D printing (or additive manufacturing) is not an entirely new phenomenon. First introduced and president of Foxconn, calls it a nice "gimmick" and even Nick Allen, founder of 3D printing company 3D Print

  2. PLC IMPLEMENTATION OF A DES SUPERVISOR FOR A MANUFACTURING

    E-Print Network [OSTI]

    Leduc, Ryan

    PLC IMPLEMENTATION OF A DES SUPERVISOR FOR A MANUFACTURING TESTBED: AN IMPLEMENTATION PERSPECTIVE Copyright by Ryan James Leduc 1996 #12;Title: PLC Implementation of A DES Supervisor for a Manufacturing, and issues involved in implementing DES supervisors on programmable logic controllers (PLC). A PLC based

  3. Centers for manufacturing technology: Industrial Advisory Committee Review

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    An advisory committee, composed of senior managers form industrial- sector companies and major manufacturing trade associations and representatives from appropriate educational institutions, meets semi-annually to review and advise the Oak Ridge Centers for Manufacturing Technology (ORCMT) on its economic security program. Individual papers have been indexed separately for the database.

  4. Solid-State Lighting R&D Manufacturing Roadmap

    Broader source: Energy.gov [DOE]

    This document provides a description of activities the Department plans to undertake to accelerate manufacturing improvements that reduce costs and enhance the quality of SSL products, representing industry consensus on the expected evolution of SSL manufacturing, best practices, and opportunities for improvement and collaboration.

  5. Life Cycle Assessment Practices: Benchmarking Selected European Automobile Manufacturers

    E-Print Network [OSTI]

    Boyer, Edmond

    Life Cycle Assessment Practices: Benchmarking Selected European Automobile Manufacturers Jean in the automobile industry where vehicle manufacturers (OEMs) are launching several new or re- vamped models each year. The automobile industry is therefore a very emblematic sector for best practices of LCA

  6. Clean Energy Manufacturing Initiative Solid-State Lighting

    SciTech Connect (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-09-23T23:59:59.000Z

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  7. Clean Energy Manufacturing Initiative Solid-State Lighting

    ScienceCinema (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-12-03T23:59:59.000Z

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  8. TX-100 manufacturing final project report.

    SciTech Connect (OSTI)

    Ashwill, Thomas D.; Berry, Derek S. (TPI Composites, Inc., Warren, RI)

    2007-11-01T23:59:59.000Z

    This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three testing facilities.

  9. Elastomeric member and method of manufacture therefor

    DOE Patents [OSTI]

    Hoppie, L.O.

    1985-12-10T23:59:59.000Z

    An energy storage device is disclosed consisting of a stretched elongated elastomeric member disposed within a tubular housing, which elastomeric member is adapted to be torsionally stressed to store energy. The elastomeric member is configured in the relaxed state with a uniform diameter body section, and transition end sections, attached to rigid end piece assemblies of a lesser diameter. The profile and deflection characteristic of the transition sections are such that upon stretching of the elastomeric member, a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing. Each of the transition sections are received within and bonded to a woven wire mesh sleeve having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves are forced against a forming surface and bonded to the associated transition section to provide the correct profile and helix angle. 12 figs.

  10. Sol-gel manufactured energetic materials

    DOE Patents [OSTI]

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2003-12-23T23:59:59.000Z

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  11. Elastomeric member and method of manufacture therefor

    DOE Patents [OSTI]

    Hoppie, Lyle O. (Birmingham, MI)

    1985-01-01T23:59:59.000Z

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.

  12. Sol-Gel Manufactured Energetic Materials

    DOE Patents [OSTI]

    Simpson, Randall L. (Livermore, CA); Lee, Ronald S. (Livermore, CA); Tillotson, Thomas M. (Tracy, CA); Hrubesh, Lawrence W. (Pleasanton, CA); Swansiger, Rosalind W. (Livermore, CA); Fox, Glenn A. (Livermore, CA)

    2005-05-17T23:59:59.000Z

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  13. An Environmental and Economic Trade-off Analysis of Manufacturing Process Chains to Inform Decision Making for Sustainability

    E-Print Network [OSTI]

    Robinson, Stefanie L.

    2013-01-01T23:59:59.000Z

    manufacturing processes, taking into account casting, laserFROM DISCRETE MANUFACTURING PROCESSES Figure 6.5: CO 2 laserMANUFACTURING PROCESSES Energy consumption (kWh) = Laser

  14. Research on Subwavelength Microphtonic Sensors for In-situ Monitoring with High Spatial and Temporal Resolution in Manufacturing Environments

    E-Print Network [OSTI]

    Li, Xiaochun; Wong, Chee Wei; Dornfeld, David; Thomas, Brian

    2006-01-01T23:59:59.000Z

    Service, and Manufacturing Grantees and Research Conference,Service, and Manufacturing Grantees and Research Conference,Service, and Manufacturing Grantees and Research Conference,

  15. Reasoning about Policy Noncompliance University of Tulsa

    E-Print Network [OSTI]

    Gamble, R. F.

    . The security certification process ensures the resulting system complies with those controls. A variety-component software systems. The security controls are adopted from NIST SP800-53 and DoD 8500.2 documents. We derive.2 [4] state certification guidelines for security controls that organizations choose to govern system

  16. DOE Issues Noncompliance Notices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartment offor Energy Delivery SystemsofOctober

  17. DOE Issues Noncompliance Notices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartment offor Energy Delivery

  18. Robotics and Manufacturing Automation Laboratory of the MMRI http://robotics.mcmaster.ca

    E-Print Network [OSTI]

    Bone, Gary

    Robotics and Manufacturing Automation Laboratory of the MMRI http://robotics.mcmaster.ca Powered Chan and Matthew Lahey Robotics and Manufacturing Automation Laboratory, McMaster Manufacturing Research Institute (MMRI). The 14th International Conference on Flexible Automation and Intelligent

  19. U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis...

    Broader source: Energy.gov (indexed) [DOE]

    is energy used in U.S. manufacturing? How much greenhouse gas (GHG) is emitted from combustion in manufacturing operations? The U.S. Manufacturing Energy Use and Greenhouse Gas...

  20. Printing 3D Electrical Traces in Additive Manufactured Parts via Low Melting Temperature

    E-Print Network [OSTI]

    Dollar, Aaron M.

    Printing 3D Electrical Traces in Additive Manufactured Parts via Low where commercial Additive Manufacturing (AM) techniques can be used to concurrently construct quality and robustness of systems produced using additive manufacturing (AM) techniques is beginning