National Library of Energy BETA

Sample records for non-utility generating facilities

  1. 2014 Non-Utility Power Producers- Revenue

    U.S. Energy Information Administration (EIA) Indexed Site

    Revenue (Data from form EIA-861U) Entity State Ownership Residential Commercial Industrial Transportation Total Constellation NewEnergy, Inc AZ Non_Utility 0 296 0 0 296 Constellation NewEnergy, Inc AZ Non_Utility 0 256 0 0 256 Constellation Solar Arizona LLC AZ Non_Utility 0 774 0 0 774 Main Street Power AZ Non_Utility 0 533 0 0 533 Main Street Power AZ Non_Utility 0 265 0 0 265 Main Street Power AZ Non_Utility 0 165 0 0 165 Solar Star Arizona II LLC AZ Non_Utility 0 638 0 0 638 Solar Star

  2. Peoples Generating Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Peoples Generating Station Biomass Facility Jump to: navigation, search Name Peoples Generating Station Biomass Facility Facility Peoples Generating Station Sector Biomass Facility...

  3. Emergency generator facility noise control

    SciTech Connect (OSTI)

    Cass, G.R.

    1982-01-01

    In the past decade, great strides have been made in the adoption of noise control regulations and implementation of noise control measures; however, still prevelant are problems in the interpretation and enforcement of these regulations. Many planning commissions, building departments, and other local government officials are not aware of acoustical nomenclature and principles, although their responsibilities include making binding decisions regarding their community's noise control programs. This paper discusses a project undertaken by Dames and Moore to aid a developer to comply with strict noise regulation. Construction called for a computer/office complex in a light industrial park, located adjacent to an established suburban residential neighborhood. The major noise source consisted of an emergency generating facility including twelve-1200 kw diesel generators, twelve rooftop-mounted radiator units, six rooftop-mounted 20-hp, 50,000 cfm vaneaxial exhaust fans, and four 100-hp cooling towers.

  4. Template:Energy Generation Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Generation Facility template. Includes facility properties table in sidebar. To update the Geothermal facilities display, edit Template:EnergyGenerationFacilityGeothermalFie...

  5. 2014 Non-Utility Power Producers- Customers

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers (Data from form EIA-861U) Entity State Ownership Residential Commercial Industrial Transportation Total Constellation NewEnergy, Inc AZ Non_Utility 0 1 0 0 1 Constellation NewEnergy, Inc AZ Non_Utility 0 1 0 0 1 Constellation Solar Arizona LLC AZ Non_Utility 0 1 0 0 1 Main Street Power AZ Non_Utility 0 1 0 0 1 Main Street Power AZ Non_Utility 0 1 0 0 1 Main Street Power AZ Non_Utility 0 1 0 0 1 Solar Star Arizona II LLC AZ Non_Utility 0 1 0 0 1 Solar Star Arizona II LLC AZ Non_Utility

  6. Brent Run Generating Station Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Brent Run Generating Station Biomass Facility Jump to: navigation, search Name Brent Run Generating Station Biomass Facility Facility Brent Run Generating Station Sector Biomass...

  7. Blackburn Landfill Co-Generation Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation...

  8. Template:Energy Generation Facilities by Sector | Open Energy...

    Open Energy Info (EERE)

    Energy Generation Facilities by Sector Jump to: navigation, search This is the Energy Generation Facilities by Sector template. It will display energy generation facilities for the...

  9. 2014 Non-Utility Power Producers- Sales

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Data from form EIA-861U) Entity State Ownership Residential Commercial Industrial Transportation Total Constellation NewEnergy, Inc AZ Non_Utility 0 2,888 0 0 2,888 Constellation NewEnergy, Inc AZ Non_Utility 0 3,343 0 0 3,343 Constellation Solar Arizona LLC AZ Non_Utility 0 7,397 0 0 7,397 Main Street Power AZ Non_Utility 0 8,017 0 0 8,017 Main Street Power AZ Non_Utility 0 2,195 0 0 2,195 Main Street Power AZ Non_Utility 0 2,654 0 0 2,654 Solar Star Arizona II LLC AZ Non_Utility 0 6,571

  10. Form:Energy Generation Facility | Open Energy Information

    Open Energy Info (EERE)

    Generation Facility below. If the resource already exists, you will be able to edit its information. AddEdit an Energy Generation Facility The text entered into this field...

  11. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Final Environmental ...

  12. WWTP Power Generation Station Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    WWTP Power Generation Station Sector Biomass Facility Type Non-Fossil Waste Location Alameda County, California Coordinates 37.6016892, -121.7195459 Show Map Loading map......

  13. Conceptual Design of an Antiproton Generation and Storage Facility...

    Office of Scientific and Technical Information (OSTI)

    The Antiproton Generation and Storage Facility (AGSF) creates copious quantities of antiprotons, for bottling and transportation to remote cancer therapy centers. The 12;first ...

  14. Cold Vacuum Drying (CVD) Facility Diesel Generator Fire Protection

    SciTech Connect (OSTI)

    SINGH, G.

    2000-04-25

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications.

  15. Generating Facility Rate-Making | Open Energy Information

    Open Energy Info (EERE)

    Generating Facility Rate-Making Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgw...

  16. "2014 Non-Utility Power Producers- Customers"

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers" "(Data from form EIA-861U)" ,,,"Number of Customers" "Entity","State","Ownership","Residential","Commercial","Industrial","Transportation","Total" "Constellation NewEnergy, Inc","AZ","Non_Utility",0,1,0,0,1 "Constellation NewEnergy, Inc","AZ","Non_Utility",0,1,0,0,1 "Constellation Solar Arizona

  17. "2014 Non-Utility Power Producers- Revenue"

    U.S. Energy Information Administration (EIA) Indexed Site

    Revenue" "(Data from form EIA-861U)" ,,,"Revenue (thousand dollars)" "Entity","State","Ownership","Residential","Commercial","Industrial","Transportation","Total" "Constellation NewEnergy, Inc","AZ","Non_Utility",0,296,0,0,296 "Constellation NewEnergy, Inc","AZ","Non_Utility",0,256,0,0,256 "Constellation Solar Arizona

  18. "2014 Non-Utility Power Producers- Sales"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales" "(Data from form EIA-861U)" ,,,"Sales (Megawatthours)" "Entity","State","Ownership","Residential","Commercial","Industrial","Transportation","Total" "Constellation NewEnergy, Inc","AZ","Non_Utility",0,2888,0,0,2888 "Constellation NewEnergy, Inc","AZ","Non_Utility",0,3343,0,0,3343 "Constellation Solar Arizona

  19. Better Buildings Neighborhood Program Business Models Guide: Non-Utility Program Administrator Market

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: Non-Utility Program Administrator Market.

  20. Better Buildings Neighborhood Program Business Models Guide: Non-Utility Program Administrator Business Model

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: Non-Utility Program Administrator Business Model.

  1. Better Buildings Neighborhood Program Business Models Guide: Non-Utility Program Administrator Conclusion

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: Conclusion, Summary of Non-utility Program Administrator Insights.

  2. Better Buildings Neighborhood Program Business Models Guide: Non-Utility Program Administrator Introduction

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: Non-Utility Program Administrator Business Model Introduction.

  3. Green Zia Application Sandia National Laboratories' Neutron Generator Production Facility

    SciTech Connect (OSTI)

    SAAD, MAX P.; RICHARDSON, ANASTASIA DAWN

    2003-03-01

    The Green Zia Environmental Excellence Program is a voluntary program designed to support and assist all New Mexico businesses to achieve environmental excellence through continuous improvement and effective energy management. The program encourages integration of environmental excellence into business operations and management practices through the establishment of a prevention-based environmental management system. The Neutron Generator Production Facility has participated in the Green Zia Environmental Excellence Program for two years. This document is the submittal application for inclusion in the 2003 Green Zia program year.

  4. The New 2nd-Generation SRF R&D Facility at Jefferson Lab: TEDF...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: The New 2nd-Generation SRF R&D Facility at ... The project to accomplish this, the Technical and Engineering Development Facility (TEDF) ...

  5. Thermal vacuum life test facility for radioisotope thermoelectric generators

    SciTech Connect (OSTI)

    Deaton, R.L.; Goebel, C.J.; Amos, W.R.

    1990-01-01

    In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al. (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met. 4 refs., 3 figs.

  6. NMAC 17.9.568 Interconnection of Generating Facilities with a...

    Open Energy Info (EERE)

    a Rated Capacity up to and including 10 MWLegal Abstract These rules outline the procedures for interconnection of generating facilities with a rated capacity up to and...

  7. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawai'i May 13, 2010 Kahuku Wind Power Biological Opinion Kahuku Wind Power, LLC, Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawaii May 27, 2010

  8. Conceptual Design of an Antiproton Generation and Storage Facility...

    Office of Scientific and Technical Information (OSTI)

    for bottling and transportation to remote cancer therapy centers. The 12;first step in the generation and storage process is to accelerate an intense proton beam down the ...

  9. Smith River Rancheria - Wind and Biomass Power Generation Facility...

    Broader source: Energy.gov (indexed) [DOE]

    Greg Retzlaff Strategic Energy Solutions, Inc. Wind & Biomass Power Generation Smith River Rancheria 2 Smith River Rancheria * Coastal Community of 600 in Northern California and ...

  10. Corporate Property Tax Reduction for New/Expanded Generating Facilities

    Broader source: Energy.gov [DOE]

    The taxable value varies, depending on the property ownership. If owned by a utility, an exempt wholesale generator or certain other electricity producers, the property is class 13 property and...

  11. EA-1849-S-1: FONSI and Final Tuscarora Phase II Generating Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-1849-S-1: FONSI and Final Tuscarora Phase II Generating Facility, Elko County, NV DOEEA1849S1FinalTuscaroraPhaseII.pdf (1.62 MB) DOEEA1849S1FONSITuscaroraPhaseII.pdf ...

  12. O.A.R. 245-023 - Need Standard for Non-generating Facilities...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: O.A.R. 245-023 - Need Standard for Non-generating FacilitiesLegal Abstract These...

  13. A facility to remotely assemble radioisotope thermoelectric generators

    SciTech Connect (OSTI)

    Engstrom, J.W.; Goldmann, L.H.; Truitt, R.W.

    1992-07-01

    Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools.

  14. A facility to remotely assemble radioisotope thermoelectric generators

    SciTech Connect (OSTI)

    Engstrom, J.W.; Goldmann, L.H.; Truitt, R.W. )

    1993-01-15

    Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools.

  15. The net utility revenue impact of small power producing facilities operating under spot pricing policies

    SciTech Connect (OSTI)

    MacGregor, P.R.

    1989-01-01

    The National Energy Act, in general, and Section 210 of the Public Utilities Regulatory Policies Act (PURPA) of 1978 in particular, have dramatically stimulated increasing levels of independent non-utility power generation. As these levels of independent non-utility power generation increase, the electric utility is subjected to new and significant operational and financial impacts. One important concern is the net revenue impact on the utility which is the focus of the research discussed in this thesis and which is inextricably intertwined with the operational functions of the utility system. In general, non-utility generation, and specifically, cogeneration, impact utility revenues by affecting the structure and magnitude of the system load, the scheduling of utility generation, and the reliability of the composite system. These effects are examined by developing a comprehensive model non-utility independent power producing facilities, referenced as Small Power Producing Facilities, a cash-flow-based corporate model of the electric utility, a thermal plant based generation scheduling algorithm, and a system reliability evaluation. All of these components are integrated into an iterative closed loop solution algorithm to both assess and enhance the net revenue. In this solution algorithm, the spot pricing policy of the utility is the principal control mechanism in the process and the system reliability is the primary procedural constraint. A key issue in reducing the negative financial impact of non-utility generation is the possibility of shutting down utility generation units given sufficient magnitudes of non-utility generation in the system. A case study simulating the financial and system operations of the Georgia Power Company with representative cogeneration capacity and individual plant characteristics is analyzed in order to demonstrate the solution process.

  16. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    SciTech Connect (OSTI)

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  17. EA-1849-S-1: FONSI and Final Tuscarora Phase II Generating Facility, Elko

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County, NV | Department of Energy EA-1849-S-1: FONSI and Final Tuscarora Phase II Generating Facility, Elko County, NV EA-1849-S-1: FONSI and Final Tuscarora Phase II Generating Facility, Elko County, NV DOE_EA_1849_S1_Final_Tuscarora_PhaseII.pdf (1.62 MB) DOE_EA_1849_S1_FONSI_Tuscarora_PhaseII.pdf (220.63 KB) More Documents & Publications EA-1849-S-1: Draft Supplemental Environmental Assessment EA-1849-S1: Final Supplemental Environmental Assessment EA-1849: Final Environmental

  18. Third International Meeting on Next Generation Safeguards:Safeguards-by-Design at Enrichment Facilities

    SciTech Connect (OSTI)

    Long, Jon D.; McGinnis, Brent R; Morgan, James B; Whitaker, Michael; Lockwood, Mr. Dunbar; Shipwash, Jacqueline L

    2011-01-01

    The Third International Meeting on Next Generation Safeguards (NGS3) was hosted by the U.S. Department of Energy (DOE)/National Nuclear Security Administration's (NNSA) Office of Nonproliferation and International Security (NIS) in Washington, D.C. on 14-15 December 2010; this meeting focused on the Safeguards-by-Design (SBD) concept. There were approximately 100 participants from 13 countries, comprised of safeguards policy and technical experts from government and industry. Representatives also were present from the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), the European Atomic Energy Agency (Euratom), and the International Atomic Energy Agency (IAEA). The primary objective of this meeting was to exchange views and provide recommendations on implementation of the SBD concept for four specific nuclear fuel cycle facility types: gas centrifuge enrichment plants (GCEPs), GEN III and GEN IV reactors, aqueous reprocessing plants, and mixed oxide fuel fabrication facilities. The general and facility-specific SBD documents generated from the four working groups, which were circulated for comment among working group participants, are intended to provide a substantive contribution to the IAEA's efforts to publish SBD guidance for these specific types of nuclear facilities in the near future. The IAEA has described the SBD concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' As part of the Next Generation Safeguards Initiative (NGSI), the DOE is working to establish SBD as a global norm through DOE laboratory studies, international workshops, engagement with industry and the IAEA, and setting an example through its use in new nuclear facilities in the United States. This paper describes the discussion topics and final recommendations of the Enrichment Facilities Working

  19. The Council of Industrial Boiler Owners special project on non-utility fossil fuel ash classification

    SciTech Connect (OSTI)

    Svendsen, R.L.

    1996-12-31

    Information is outlined on the Council of Industrial Boiler Owners (CIBO) special project on non-utility fossil fuel ash classification. Data are presented on; current (1996) regulatory status of fossil-fuel combustion wastes; FBC technology identified for further study; CIBO special project methods; Bevill amendment study factors; data collection; and CIBO special project status.

  20. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support the Lab's security mission

  1. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure and Sustainable Energy Future Mission/Facilities Facilities Tara Camacho-Lopez 2016-04-06T18:06:13+00:00 National Solar Thermal Test Facility (NSTTF) facility_nsttf_slide NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants, which have three generic system architectures: line-focus (trough and continuous linear Fresnel reflector systems), point-focus central

  2. Fourth-generation plasma immersion ion implantation and deposition facility for hybrid surface modification layer fabrication

    SciTech Connect (OSTI)

    Wang Langping; Huang Lei; Xie Zhiwen; Wang Xiaofeng; Tang Baoyin

    2008-02-15

    The fourth-generation plasma immersion ion implantation and deposition (PIIID) facility for hybrid and batch treatment was built in our laboratory recently. Comparing with our previous PIIID facilities, several novel designs are utilized. Two multicathode pulsed cathodic arc plasma sources are fixed on the chamber wall symmetrically, which can increase the steady working time from 6 h (the single cathode source in our previous facilities) to about 18 h. Meanwhile, the inner diameter of the pulsed cathodic arc plasma source is increased from the previous 80 to 209 mm, thus, large area metal plasma can be obtained by the source. Instead of the simple sample holder in our previous facility, a complex revolution-rotation sample holder composed of 24 shafts, which can rotate around its axis and adjust its position through revolving around the center axis of the vacuum chamber, is fixed in the center of the vacuum chamber. In addition, one magnetron sputtering source is set on the chamber wall instead of the top cover in the previous facility. Because of the above characteristic, the PIIID hybrid process involving ion implantation, vacuum arc, and magnetron sputtering deposition can be acquired without breaking vacuum. In addition, the PIIID batch treatment of cylinderlike components can be finished by installing these components on the rotating shafts on the sample holder.

  3. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The the WTGa1 turbine (aka DOE/SNL #1) retuns to power as part of a final series of commissioning tests. Permalink Gallery First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during Recommissioning The Department of Energy's Scaled Wind Farm Technology (SWiFT) Facility reached an exciting milestone with the return to power production of the WTGa1 turbine (aka DOE/SNL #1)

  4. Melting of the metallic wastes generated by dismantling retired nuclear research facilities

    SciTech Connect (OSTI)

    Chong-Hun Jung; Pyung-Seob Song; Byung-Youn Min; Wang-Kyu Choi

    2008-01-15

    The decommissioning of nuclear installations results in considerably large amounts of radioactive metallic wastes such as stainless steel, carbon steel, aluminum, copper etc. It is known that the reference 1,000 MWe PWR and 881 MWe PHWR will generate metal wastes of 24,800 ton and 26,500 ton, respectively. In Korea, the D and D of KRR-2 and a UCP at KAERI have been performed. The amount of metallic wastes from the KRR-1 and UCP was about 160 ton and 45 ton, respectively, up to now. These radioactive metallic wastes will induce problems of handling and storing these materials from environmental and economical aspects. For this reason, prompt countermeasures should be taken to deal with the metal wastes generated by dismantling retired nuclear facilities. The most interesting materials among the radioactive metal wastes are stainless steel (SUS), carbon steel (CS) and aluminum wastes because they are the largest portions of the metallic wastes generated by dismantling retired nuclear research facilities. As most of these steels are slightly contaminated, if they are properly treated they are able to be recycled and reused in the nuclear field. In general, the technology of a metal melting is regarded as one of the most effective methods to treat metallic wastes from nuclear facilities. In conclusion: The melting of metal wastes (Al, SUS, carbon steel) from a decommissioning of research reactor facilities was carried out with the use of a radioisotope such as cobalt and cesium in an electric arc furnace. In the aluminum melting tests, the cobalt was captured at up to 75% into the slag phase. Most of the cesium was completely eliminated from the aluminum ingot phase and moved into the slag and dust phases. In the melting of the stainless steel wastes, the {sup 60}Co could almost be retained uniformly in the ingot phase. However, we found that significant amounts of {sup 60}Co remained in the slag at up to 15%. However the removal of the cobalt from the ingot phase was

  5. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ... A view upwind of SWIS' aerosol-generating system. Permalink Gallery Sandia ...

  6. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 1 presents a general assessment of produced water generation in the San Juan Basin in Four Corners Area of New Mexico. Oil and gas production, produced water handling and disposal, and produced water quantities and chemistry are discussed. Legislative efforts to enable the use of this water at SJGS are also described.

  7. Treatment of Uranium and Plutonium Solutions Generated in the Atalante Facility, France - 12004

    SciTech Connect (OSTI)

    Lagrave, Herve

    2012-07-01

    The Atalante complex operated by the French Alternative Energies and Atomic Energy Commission (CEA) at the Rhone Valley Research Center consolidates research programs on actinide chemistry, especially separation chemistry, processing for recycling spent fuel, and fabrication of actinide targets for innovative concepts in future nuclear systems. The design of future systems (Generation IV reactors, material recycling) will increase the uranium and plutonium flows in the facility, making it important to anticipate the stepped-up activity and provide Atalante with equipment dedicated to processing these solutions to obtain a mixed uranium-plutonium oxide that will be stored pending reuse. Ongoing studies for integral recycling of the actinides have highlighted the need for reserving equipment to produce actinides mixed oxide powder and also minor actinides bearing oxide for R and D purpose. To meet this double objective a new shielded line should be built in the facility and should be operational 6 years after go decision. The main functions of the new unit would be to receive, concentrate and store solutions, purify them, ensure group conversion of actinides and conversion of excess uranium. This new unit will be constructed in a completely refurbished building devoted to subcritical and safe geometry of the process equipments. (author)

  8. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 2 focuses on transportation--the largest obstacle to produced water reuse in the San Juan Basin (the Basin). Most of the produced water in the Basin is stored in tanks at the well head and must be transported by truck to salt water disposal (SWD) facilities prior to injection. Produced water transportation requirements from the well head to SJGS and the availability of existing infrastructure to transport the water are discussed in this deliverable.

  9. Hazardous medical waste generation rates of different categories of health-care facilities

    SciTech Connect (OSTI)

    Komilis, Dimitrios; Fouki, Anastassia; Papadopoulos, Dimitrios

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We calculated hazardous medical waste generation rates (HMWGR) from 132 hospitals. Black-Right-Pointing-Pointer Based on a 22-month study period, HMWGR were highly skewed to the right. Black-Right-Pointing-Pointer The HMWGR varied from 0.00124 to 0.718 kg bed{sup -1} d{sup -1}. Black-Right-Pointing-Pointer A positive correlation existed between the HMWGR and the number of hospital beds. Black-Right-Pointing-Pointer We used non-parametric statistics to compare rates among hospital categories. - Abstract: Goal of this work was to calculate the hazardous medical waste unit generation rates (HMWUGR), in kg bed{sup -1} d{sup -1}, using data from 132 health-care facilities in Greece. The calculations were based on the weights of the hazardous medical wastes that were regularly transferred to the sole medical waste incinerator in Athens over a 22-month period during years 2009 and 2010. The 132 health-care facilities were grouped into public and private ones, and, also, into seven sub-categories, namely: birth, cancer treatment, general, military, pediatric, psychiatric and university hospitals. Results showed that there is a large variability in the HMWUGR, even among hospitals of the same category. Average total HMWUGR varied from 0.012 kg bed{sup -1} d{sup -1}, for the public psychiatric hospitals, to up to 0.72 kg bed{sup -1} d{sup -1}, for the public university hospitals. Within the private hospitals, average HMWUGR ranged from 0.0012 kg bed{sup -1} d{sup -1}, for the psychiatric clinics, to up to 0.49 kg bed{sup -1} d{sup -1}, for the birth clinics. Based on non-parametric statistics, HMWUGR were statistically similar for the birth and general hospitals, in both the public and private sector. The private birth and general hospitals generated statistically more wastes compared to the corresponding public hospitals. The infectious/toxic and toxic medical wastes appear to be 10% and 50% of the total hazardous medical wastes

  10. Use of Produced Water in Recirculating Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    Kent Zammit; Michael N. DiFilippo

    2005-07-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. This deliverable describes possible test configurations for produced water demonstration projects at SJGS. The ability to host demonstration projects would enable the testing and advancement of promising produced water treatment technologies. Testing is described for two scenarios: Scenario 1--PNM builds a produced water treatment system at SJGS and incorporates planned and future demonstration projects into the design of the system. Scenario 2--PNM forestalls or decides not to install a produced water treatment system and would either conduct limited testing at SJGS (produced water would have to be delivered by tanker trucked) or at a salt water disposal facility (SWD). Each scenario would accommodate demonstration projects differently and these differences are discussed in this deliverable. PNM will host a demonstration test of water-conserving cooling technology--Wet Surface Air Cooling (WSAC) using cooling tower blowdown

  11. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Kent Zammit; Michael N. DiFilippo

    2005-01-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Produced water is generated nationally as a byproduct of oil and gas production. Seven states generate 90 percent of the produced water in the continental US. About 37 percent of the sources documented in the US Geological Survey's (USGS) Produced Waters Database have a TDS of less than 30,000 mg/l. This is significant because produced water treatment for reuse in power plants was found to be very costly above 30,000 mg/l TDS. For the purposes of this report, produced water treatment was assessed using the technologies evaluated for the San Juan Generating Station (SJGS) in Deliverable 3, Treatment and Disposal Analysis. Also, a methodology was developed to readily estimate capital and operating costs for produced water treatment. Two examples are presented to show how the cost estimating methodology can be used to evaluate the cost of treatment of produced water at power plants close to oil and gas production.

  12. Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries

    SciTech Connect (OSTI)

    Koopman, D. C.

    2013-01-22

    Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming <25 wt% total solids, or equivalently 2,000 mg nitrite/kg total solids) is sufficient to effectively deactivate the noble metal catalysts at temperatures between room temperature and boiling. This is a potential strategy for eliminating catalytic hydrogen generation from the list of concerns for sludge carried over into the DWPF Slurry Mix Evaporator Condensate Tank (SMECT) or Recycle Collection Tank (RCT). These conclusions are drawn in large part from the various phases of the DWPF catalytic hydrogen generation program conducted between 2005 and 2009. The findings could apply to various situations, including a solids carry-over from either the Sludge Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) into the SMECT with subsequent transfer to the RCT, as well as a spill of formic acid into the sump system and transfer into an RCT that already contains sludge solids. There are other potential mitigating factors for the SMECT and RCT, since these vessels are typically operated at temperatures close to the minimum temperatures that catalytic hydrogen has been observed to occur in either the SRAT or SME (pure slurry case), and these vessels are also likely to be considerably more dilute in both noble metals and formate ion (the two essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the

  13. Effect of steam generator configuration in a loss of the RHR during mid-loop operation at PKL facility

    SciTech Connect (OSTI)

    Villanueva, J. F.; Carlos, S.; Martorell, S.; Sanchez, F.

    2012-07-01

    The loss of the residual heat removal system in mid-loop conditions may occur with a non-negligible contribution to the plant risk, so the analysis of the accidental sequences and the actions to mitigate the accident are of great interest in shutdown conditions. In order to plan the appropriate measures to mitigate the accident is necessary to understand the thermal-hydraulic processes following the loss of the residual heat removal system during shutdown. Thus, transients of this kind have been simulated using best-estimate codes in different integral test facilities and compared with experimental data obtained in different facilities. In PKL (Primaerkreislauf-Versuchsanlage, primary coolant loop test facility) test facility different series of experiments have been undertaken to analyze the plant response in shutdown. In this context, the E3 and F2 series consist of analyzing the loss of the residual heat removal system with a reduced inventory in the primary system. In particular, the experiments were developed to investigate the influence of the steam generators secondary side configuration on the plant response, what involves the consideration of different number of steam generators filled with water and ready for activation, on the heat transfer mechanisms inside the steam generators U-tubes. This work presents the results of such experiments calculated using, RELAP5/Mod 3.3. (authors)

  14. Facility Floorplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility floorplan Facility Floorplan

  15. The potential economic impact of constructing and operating solar power generation facilities in Nevada

    SciTech Connect (OSTI)

    Schwer, R. K.; Riddel, M.

    2004-02-01

    Nevada has a vast potential for electricity generation using solar power. An examination of the stock of renewable resources in Nevada proves that the state has the potential to be a leader in renewable-electric generation--one of the best in the world. This study provides estimates on the economic impact in terms of employment, personal income, and gross state product (GSP) of developing a portion of Nevada's solar energy generation resources.

  16. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    SciTech Connect (OSTI)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water system cost

  17. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    SciTech Connect (OSTI)

    Koopman, D. C.

    2004-12-31

    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a discussion of proposed

  18. Generation and characterization of electron bunches with ramped current profile at the FLASH facility

    SciTech Connect (OSTI)

    Piot, P.; Behrens, C.; Gerth, C.; Lemery, F.; Mihalcea, D.; Vogt, M.; /DESY

    2011-09-01

    We report on the successful generation of electron bunches with current prof les that have a quasi-linear dependency on the longitudinal coordinate. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a linac operating at two frequencies (1.3 and 3.9 GHz) and a bunch compressor. Data taken for various accelerator settings demonstrate the versatility of the method. The produced bunches have parameters well matched to drive high-gradient accelerating field with enhanced transformer ratio in beam-driven accelerators based on sub-mm-sizes dielectric or plasma structures.

  19. Problems and solutions for protective relay applications in petroleum facilities -- Some protection applications for generators and transformers

    SciTech Connect (OSTI)

    Dudor, J.S.; Padden, L.K.

    1995-12-31

    Two areas of medium and high voltage protective relaying for industry applications are addressed: (1) generator backup protection and (2) protection of transformers with relatively high values of available fault currents. The presentation is a series of cases that were studied on electrical power systems at different industry facilities. The first part of this paper discusses the use of voltage controlled or voltage restraint time-overcurrent (51V) relays and distance (21) relays applied as generator backup protection. Actual applications on bus-connected and unit-connected generators are presented with a discussion of the protective relay settings and problems encountered. The second part of this paper discusses the application of proper protective devices, including protective relays and instrument transformers to protect transformers installed on buses with relatively high available primary fault currents. Problems encountered with the instrument transformer and protective relay selection are addressed, including saturation, burden, and protection from failure. Emphasis is placed on routine and special applications, lessons learned on real projects, and trouble spots to avoid.

  20. Sampling and analytical methods development at the HGP-a generator facility

    SciTech Connect (OSTI)

    Thomas, D.M.

    1982-10-01

    During shakedown operations for the HGP-A generator plant sampling and analytical problems were encountered during the process chemistry monitoring effort. Acid-preservation of brine for cation analysis required the use of nitrous oxideacetylene flame for accurate A-A analysis of calcium. Analysis of gases for carbonate and sulfide was by specific ion electrode and alkalinity titration, respectively. Sulfide caused substantial interferences with the alkalinity method and corrections for sulfide were required. Sulfide also interfered with chloride analyses in the steam phase requiring removal of the sulfide by boiling. Analysis of dissolved silica in the brine was complicated by the presence of colloidal silica which produced erratic analytical results. An accurate evaluation of the hydrogen sulfide abatement system was possible only when the hydrogen sulfide concentrations in the treated and untreated steam were compared with a second component in the steam phase that was unaffected by caustic injection.

  1. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC

  2. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    SciTech Connect (OSTI)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 11, 2007 Facility News ARM Mobile Facility Moves to China in 2008 for Study of ... China generates exceptionally high amounts of aerosol particles whose influence on the ...

  4. EA-0995: Drum Storage Facility for Interim Storage of Materials Generated by Environmental Restoration Operations, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to construct and operate a drum storage facility at the U.S. Department of Energy's Rocky Flats Environmental Technology Site in Golden,...

  5. REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198

    SciTech Connect (OSTI)

    Lowry, N.

    2010-11-05

    Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generation of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste

  6. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,15,"NA",17,"NA","NA","NA"," " "Number of retail

  7. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",17,34,"NA",19,"NA","NA","NA"," " "Number of retail

  8. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,"NA","NA","NA","NA",26,1," " "Number of retail

  9. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",11,33,"NA",16,"NA","NA","NA"," " "Number of retail

  10. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",14,"NA","NA",1,2,"NA","NA"," " "Number of retail

  11. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",7,72,"NA",39,"NA","NA","NA"," " "Number of retail

  12. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,137,"NA",42,"NA","NA","NA"," " "Number of retail

  13. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",7,22,"NA",12,"NA","NA","NA"," " "Number of retail

  14. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,86,"NA",42,"NA","NA","NA"," " "Number of retail

  15. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities","NA",148,1,10,"NA","NA","NA"," " "Number of retail

  16. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,22,"NA",21,"NA","NA","NA"," " "Number of retail

  17. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,2,"NA",2,"NA","NA","NA"," " "Number of retail

  18. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    SciTech Connect (OSTI)

    Provenzano, J.J.

    1997-04-01

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  19. An expanded review and comparison of greenhouse gas emissions from fossil fuel and geothermal electrical generating facilities

    SciTech Connect (OSTI)

    Booth, R.B.; Neil, P.E.

    1998-12-31

    This paper provides a review of the greenhouse gas emissions due to fossil fuel and geothermal electrical generation and to the emissions of their respective support activities. These support activities consist of, exploration, development, and transportation aspects of the fuel source, including waste management. These support activities could amount to an additional 6% for coal, 22% for oil, 13% for natural gas and 1% for geothermal. The presented methodologies and underlying principles can be used to better define the resultant emissions, rankings and global impacts of these electrical generating industries.

  20. Middlesex Generating Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    MW 18,800 kW 18,800,000 W 18,800,000,000 mW 0.0188 GW Commercial Online Date 2001 Heat Rate (BTUkWh) 7274.0 References EPA Web Site1 Loading map... "minzoom":false,"map...

  1. US/USSR cooperative program in open-cycle MHD electrical power generation: joint test report No. 3. Tests in the U-25B facility: MHD generator tests No. 4 and 5

    SciTech Connect (OSTI)

    Picologlou, B F; Batenin, V M

    1980-07-01

    A description of the modifications made to improve the plasma parameters of the U-25B Facility is presented. The oxygen enrichment system was modified to allow oxygen enrichment of up to 50% (by volume) ahead of the preheaters. Optimum design and operating conditions of the seed injection system were defined as a result of experimental investigations. An account of the extensive diagnostic studies performed and a description of the measurement techniques and of the new submillimeter laser interferometer are given. The performance of the MHD generator is analyzed for different operating modes. Studies of fluctuations and nonuniformities, current take-off distributions, local electrical analysis, overall heat transfer history of the MHD channel, and an extensive parametric study of the generator are presented. A detailed account of the complete disassembly and inspection of channel No. 1 after more than 100 hours of operation with the combustor, and of the condition of its various elements is also given.

  2. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",1,36,1,24,"NA","NA","NA"," " "Number of retail customers",1450921,538966,11,548029,"NA","NA","NA",2537927

  3. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",23,29,3,9,11,"NA","NA"," " "Number of retail customers",1675038,1078638,16690,187629,12,"NA","NA",2958007 "Retail sales

  4. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    California" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",29,41,2,4,65,17,3," " "Number of retail customers",11676056,3110257,2197,16506,69,185755,"NA",14990840 "Retail sales

  5. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",10,29,1,28,7,"NA","NA"," " "Number of retail customers",1500660,428854,13,632335,7,"NA","NA",2561869 "Retail sales

  6. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",7,8,"NA","NA",3,35,2," " "Number of retail customers",948486,71741,"NA","NA",3,597272,"NA",1617502 "Retail sales

  7. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,9,"NA",1,1,27,1," " "Number of retail customers",267434,66283,"NA",88026,1,38537,"NA",460281 "Retail sales

  8. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,53,"NA",42,1,"NA","NA"," " "Number of retail customers",2410042,333203,"NA",1966788,31,"NA","NA",4710064

  9. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,11,2,17,"NA","NA","NA"," " "Number of retail customers",693393,43895,1,84578,"NA","NA","NA",821867 "Retail

  10. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,41,"NA",26,2,53,3," " "Number of retail customers",1911129,270483,"NA",301219,318,3268220,"NA",5751369 "Retail sales

  11. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,118,1,29,"NA","NA","NA"," " "Number of retail customers",953679,235288,4,292717,"NA","NA","NA",1481688 "Retail

  12. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,30,1,24,2,"NA","NA"," " "Number of retail customers",1220619,210206,17,813201,4,"NA","NA",2244047 "Retail sales

  13. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,4,"NA",2,1,32,6," " "Number of retail customers",39,10603,"NA",2535,1,788335,"NA",801513 "Retail sales

  14. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",10,5,"NA",3,8,52,5," " "Number of retail customers",1638979,28808,"NA",208447,8,610640,"NA",2486882 "Retail sales

  15. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",13,40,"NA","NA",27,40,5," " "Number of retail customers",2182382,399857,"NA","NA",40,544399,"NA",3126678 "Retail

  16. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",8,41,"NA",10,2,12,3," " "Number of retail customers",4177118,306315,"NA",318985,2,6419,"NA",4808839 "Retail sales

  17. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,124,1,46,4,"NA","NA"," " "Number of retail customers",1498737,369257,4,772733,6,"NA","NA",2640737 "Retail sales

  18. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,23,1,25,"NA","NA","NA"," " "Number of retail customers",628656,134500,7,741758,"NA","NA","NA",1504921

  19. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,1,3,29,"NA",2,1," " "Number of retail customers",377770,983,20971,197627,"NA",419,"NA",597770 "Retail sales

  20. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,9,1,8,1,3,3," " "Number of retail customers",1204604,29842,2,37040,1,10,"NA",1271499 "Retail sales

  1. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,5,"NA",1,"NA",20,4," " "Number of retail customers",496060,12226,"NA",78794,"NA",128985,"NA",716065 "Retail sales

  2. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",17,9,"NA",1,35,58,4," " "Number of retail customers",3270179,55120,"NA",11581,39,649669,"NA",3986588 "Retail sales

  3. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",6,8,1,20,6,"NA","NA"," " "Number of retail customers",723562,85741,5,208702,10,"NA","NA",1018020 "Retail sales

  4. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    York" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",19,48,"NA",4,5,69,9," " "Number of retail customers",5052054,1270394,"NA",18139,15,1751992,"NA",8092594 "Retail sales

  5. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,72,1,31,"NA","NA","NA"," " "Number of retail customers",3318839,598354,4,1052477,"NA","NA","NA",4969674

  6. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,12,1,21,"NA","NA","NA"," " "Number of retail customers",238608,11023,21,186997,"NA","NA","NA",436649 "Retail

  7. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",10,85,"NA",25,6,52,6," " "Number of retail customers",2143362,375117,"NA",383167,12,2618989,"NA",5520647 "Retail sales

  8. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,62,1,31,"NA","NA","NA"," " "Number of retail customers",1291253,204450,1,508162,"NA","NA","NA",2003866

  9. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",8,18,1,19,"NA",4,3," " "Number of retail customers",1421279,294747,1,203211,"NA",484,"NA",1919722 "Retail sales

  10. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",15,35,"NA",13,5,73,10," " "Number of retail customers",3554206,83922,"NA",219570,5,2146096,"NA",6003799 "Retail sales

  11. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,1,"NA","NA","NA",17,1," " "Number of retail customers",462381,4658,"NA","NA","NA",32071,"NA",499110

  12. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",6,36,1,31,"NA","NA","NA"," " "Number of retail customers",243148,60553,22,154530,"NA","NA","NA",458253 "Retail

  13. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,61,1,26,1,"NA","NA"," " "Number of retail customers",47264,2213496,23,969214,1,"NA","NA",3229998 "Retail sales

  14. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",89,72,"NA",68,13,"NA","NA"," " "Number of retail customers",7744205,1849743,"NA",2076859,50,"NA","NA",11670857

  15. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",1,40,1,9,1,"NA","NA"," " "Number of retail customers",835233,244217,7,48538,1,"NA","NA",1127996 "Retail sales

  16. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",2,14,"NA",2,1,"NA","NA"," " "Number of retail customers",258928,54912,"NA",49378,1,"NA","NA",363219 "Retail

  17. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",3,16,"NA",13,"NA",1,1," " "Number of retail customers",2934456,166751,"NA",629034,"NA",20,"NA",3730261 "Retail sales

  18. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",4,41,2,18,1,3,1," " "Number of retail customers",1460672,1669068,10,167371,1,17,"NA",3297139 "Retail sales

  19. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",13,82,"NA",24,2,"NA","NA"," " "Number of retail customers",2439647,282258,"NA",260892,2,"NA","NA",2982799

  20. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",5,13,1,18,"NA","NA","NA"," " "Number of retail customers",198292,36318,5,99606,"NA","NA","NA",334221 "Retail

  1. Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total"

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" ,"Full service providers",,,,,"Other providers",, "Item","Investor Owned","Public","Federal","Cooperative","Non-utility","Energy","Delivery","Total" "Number of entities",256,1948,6,810,144,188,67," " "Number of retail customers",93329397,21335809,40029,19096482,656,13411030,"NA",147213403 "Retail sales

  2. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Argonne maintains two state-of-the-art facilities for high-energy physics research. The Argonne Wakefield Accelerator Facility is home to technology that produces high accelerating gradients that could form the basis of the next generation of particle accelerators. Additionally, the 4 Tesla Magnet Facility reuses hospital MRI magnets to provide benchmarking for new muon experiments that will be performed at Fermilab. 4 Tesla Magnet Facility Learn More » Argonne Wakefield Accelerator

  3. Characterization of a Thermo Scientific D711 D-T Neutron Generator Located in a Low-Scatter Facility

    SciTech Connect (OSTI)

    Hayes, John W.; Finn, Erin C.; Greenwood, Lawrence R.; Wittman, Richard S.

    2014-03-21

    A dosimetry experiment used to measure the neutron flux and spectrum of a D-T neutron generator is presented. The D-T generator at Pacific Northwest National Laboratory is installed in the middle of a large room to minimize scatter of neutrons back to the sample. The efficacy of maintaining a pure fast neutron field for the sample is investigated. Twenty-one positions within 13 cm of the neutron source contained foils or wires of Fe, Ni, Al with additional Au, and In monitors at some locations. Spectral adjustment of the neutron flux at each position based on measured reaction rates and theoretical Monte Carlo calculations show that at least 99.1% of the spectrum lies above 110 keV for all measured positions, and neutrons above 14 MeV can account for as much as 91% at locations along the axis of the generator and close to the source. The 14 MeV component drops to 77% in radial positions far from the source. The largest total flux observed was 8.29E+08 n/cm2-s (±1.4%) in the center of the cooling cap, although additional experiments have shown this value could be as high as 1.20E+09 n/cm2-s.

  4. Characterization of a Thermo Scientific D711 D-T Neutron Generator Located in a Low-Scatter Facility

    SciTech Connect (OSTI)

    Hayes, John W.; Finn, Erin C.; Greenwood, Lawrence R.; Wittman, Richard S.

    2014-03-21

    Pacific Northwest National Laboratory (PNNL) purchased and installed a D711 D-T neutron generator (“D-T”) from Thermo Scientific in August 2011. The D-T nominally produces 14 MeV neutrons which are important for research in matters of national security. Fast neutrons provide the capability of harnessing threshold reactions for the production of rare isotopes, which are of interest to radiochemistry groups at PNNL concerned with validating radioanalytical techniques for the separation of these isotopes. Rare fission product isotopes from fast fission of 235U, 238U, and 239Pu are also desired to further develop these techniques. Experiments with 14 MeV neutrons are also of interest because nuclear data for fast fission has not been researched as extensively as it has been for thermal fission. Analyses of these applications require first that the source spectrum be well characterized. Neutron fluences in Fe, Ni, Al, In, and Au were measured in 21 locations near the generator head. STAYSL PNNL and MCNP codes were used to produce flux spectra based on experimental fluences.

  5. Facilities, Partnerships, and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models for Integrating EnergyWater Facilities Atmospheric Radiation Measurement Climate ... cells, reciprocating engine-generators, and electrical energy storage systems. ...

  6. Program for certification of waste from contained firing facility: Establishment of waste as non-reactive and discussion of potential waste generation problems

    SciTech Connect (OSTI)

    Green, L.; Garza, R.; Maienschein, J.; Pruneda, C.

    1997-09-30

    Debris from explosives testing in a shot tank that contains 4 weight percent or less of explosive is shown to be non-reactive under the specified testing protocol in the Code of Federal Regulations. This debris can then be regarded as a non-hazardous waste on the basis of reactivity, when collected and packaged in a specified manner. If it is contaminated with radioactive components (e.g. depleted uranium), it can therefore be disposed of as radioactive waste or mixed waste, as appropriate (note that debris may contain other materials that render it hazardous, such as beryllium). We also discuss potential waste generation issues in contained firing operations that are applicable to the planned new Contained Firing Facility (CFF). The goal of this program is to develop and document conditions under which shot debris from the planned Contained Firing Facility (CFF) can be handled, shipped, and accepted for waste disposal as non-reactive radioactive or mixed waste. This report fulfills the following requirements as established at the outset of the program: 1. Establish through testing the maximum level of explosive that can be in a waste and still have it certified as non-reactive. 2. Develop the procedure to confirm the acceptability of radioactive-contaminated debris as non-reactive waste at radioactive waste disposal sites. 3. Outline potential disposal protocols for different CFF scenarios (e.g. misfires with scattered explosive).

  7. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    SciTech Connect (OSTI)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  8. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  9. Energy Replacement Generation Tax Exemption

    Broader source: Energy.gov [DOE]

    Under the Energy Replacement Generation Tax Exemption, the following facilities are exempt from the replacement tax:

  10. Generation Facility Corporate Tax Exemptions

    Broader source: Energy.gov [DOE]

    "Alternative renewable energy source" includes energy sources such as solar energy, wind energy, geothermal energy, conversion of biomass, fuel cells that do not require hydrocarbon fuel, small...

  11. Rocklin Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    References USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleRocklinBiomassFacility&oldid398013" Categories: Energy Generation Facilities Stubs...

  12. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  13. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  14. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  15. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  16. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  17. Microsoft PowerPoint - AECC Hydroelectric Generation 2010.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AECC H d l i AECC Hydroelectric Generation Facilities Generation Facilities Arkansas ... E i ti H d l t i Existing Hydroelectric Generating Resources g * Ellis Hydroelectric ...

  18. Loranger Power Generation Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Loranger Power Generation Wind Farm Jump to: navigation, search Name Loranger Power Generation Wind Farm Facility Loranger Power Generation Sector Wind energy Facility Type...

  19. Solana Generating Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solana Generating Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type...

  20. Ashton Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ashton Extended Facility Map

  1. Byron Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Byron Extended Facility Map

  2. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  3. {sup 99m}Tc generators for clinical use based on zirconium molybdate gel and (n, gamma) produced {sup 99}Mo: Indian experience in the development and deployment of indigenous technology and processing facilities

    SciTech Connect (OSTI)

    Saraswathy, P.; Dey, A.C.; Sarkar, S.K.; Kothalkar, C.; Naskar, P.; Arjun, G.; Arora, S.S.; Kohli, A.K.; Meera, V.; Venugopal, V.; Ramamoorthy, N.

    2008-07-15

    The Indian pursuit of gel generator technology for {sup 99m}Tc was driven mainly by three considerations, namely, (i) well-established and ease of reliable production of (n, gamma)-based {sup 99}Mo in several tens of GBq quantities in the research reactors in Trombay/Mumbai, India, (ii) need for relatively low-cost alternate technology to replace the solvent (MEK) extraction generator system in use in India since 1970s and (iii) minimize dependency on weekly import of fission-produced {sup 99}Mo raw material required for alumina column generator. Extensive investigations on process standardisation for zirconium molybdate gel (ZMG) led to a steady progress, achieved both in terms of process technology and final performance of {sup 99m}Tc gel generators. The {sup 99m}Tc final product purity from the Indian gel system was comparable to that obtained from the gold-standard alumina column generators. Based on the feasibility established for reliable small-scale production, as well as satisfactory clinical experience with a number of gel generators used in collaborating hospital radiopharmacies, full-fledged mechanised processing facilities for handling up to 150 g of ZMG were set up. The indigenous design and development included setting up of shielded plant facilities with pneumatic-driven as well as manual controls and special gadgets such as, microwave heating of the zirconium molybdate cake, dispenser for gel granules, loading of gel columns into pre-assembled generator housing etc. Formal review of the safety features was carried out by the regulatory body and stage-wise clearance for processing low and medium level {sup 99}Mo activity was granted. Starting from around 70 GBq {sup 99}Mo handling, the processing facilities have since been successfully operated at a level of 740 GBq {sup 99}Mo, twice a month. In all 18 batches of gel have been processed and 156 generators produced. The individual generator capacity was 15 to 30 GBq with an elution yield of nearly 75

  4. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-03-01

    This standard, DOE-STD-1063, Facility Representatives, defines the duties, responsibilities and qualifications for Department of Energy (DOE) Facility Representatives, based on facility hazard classification; risks to workers, the public, and the environment; and the operational activity level. This standard provides the guidance necessary to ensure that DOE’s hazardous nuclear and non-nuclear facilities have sufficient staffing of technically qualified facility representatives (FRs) to provide day-to-day oversight of contractor operations.

  5. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities A new research frontier awaits! Our door is open, and we thrive on mutually beneficial partnerships and collaborations that drive innovations and new technologies. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, Los Alamos National Laboratory can implement user facility agreements that allow its partners and other entities to conduct research at many of its unique facilities. While our largest user

  6. The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation

    SciTech Connect (OSTI)

    Price, Lynn; Marnay, Chris; Sathaye, Jayant; Muritshaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

    2002-08-01

    The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We find that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

  7. ORISE: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE Facilities Unique laboratories and training centers among the assets managed on behalf of the U.S. Department of Energy The Oak Ridge Institute for Science and Education (ORISE) is home to a number of on- and off-site facilities that support the U.S. Department of Energy's (DOE) science education and research mission. From on-site medical laboratories to radiation emergency medicine training facilities, ORISE facilities are helping to address national needs in the following areas:

  8. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center» Lujan Center» Matter-Radiation Interactions in

  9. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  11. Final Report: Detection and Characterization of Underground Facilities by Stochastic Inversion and Modeling of Data from the New Generation of Synthetic Aperture Satellites

    SciTech Connect (OSTI)

    Foxall, W; Cunningham, C; Mellors, R; Templeton, D; Dyer, K; White, J

    2012-02-27

    Many clandestine development and production activities can be conducted underground to evade surveillance. The purpose of the study reported here was to develop a technique to detect underground facilities by broad-area search and then to characterize the facilities by inversion of the collected data. This would enable constraints to be placed on the types of activities that would be feasible at each underground site, providing a basis the design of targeted surveillance and analysis for more complete characterization. Excavation of underground cavities causes deformation in the host material and overburden that produces displacements at the ground surface. Such displacements are often measurable by a variety of surveying or geodetic techniques. One measurement technique, Interferometric Synthetic Aperture Radar (InSAR), uses data from satellite-borne (or airborne) synthetic aperture radars (SARs) and so is ideal for detecting and measuring surface displacements in denied access regions. Depending on the radar frequency and the acquisition mode and the surface conditions, displacement maps derived from SAR interferograms can provide millimeter- to centimeter-level measurement accuracy on regional and local scales at spatial resolution of {approx}1-10 m. Relatively low-resolution ({approx}20 m, say) maps covering large regions can be used for broad-area detection, while finer resolutions ({approx}1 m) can be used to image details of displacement fields over targeted small areas. Surface displacements are generally expected to be largest during or a relatively short time after active excavation, but, depending on the material properties, measurable displacement may continue at a decreasing rate for a considerable time after completion. For a given excavated volume in a given geological setting, the amplitude of the surface displacements decreases as the depth of excavation increases, while the area of the discernable displacement pattern increases. Therefore, the

  12. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H

    SciTech Connect (OSTI)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.

    1995-04-01

    This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

  13. Wheelabrator Millbury Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528, -71.8571331...

  14. Nuclear Power Facilities (2008) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) (408.42 KB) More Documents & Publications Front-end Nuclear Facilities (2008) Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Transmission Infrastructure Investment Projects (2009)

  15. Development of methodologies for calculating greenhouse gas emissions from electricity generation for the California climate action registry

    SciTech Connect (OSTI)

    Price, Lynn; Marnay, Chris; Sathaye, Jayant; Murtishaw, Scott; Fisher, Diane; Phadke, Amol; Franco, Guido

    2002-04-01

    The California Climate Action Registry, which will begin operation in Fall 2002, is a voluntary registry for California businesses and organizations to record annual greenhouse gas emissions. Reporting of emissions in the Registry by a participant involves documentation of both ''direct'' emissions from sources that are under the entity's control and ''indirect'' emissions controlled by others. Electricity generated by an off-site power source is considered to be an indirect emission and must be included in the entity's report. Published electricity emissions factors for the State of California vary considerably due to differences in whether utility-owned out-of-state generation, non-utility generation, and electricity imports from other states are included. This paper describes the development of three methods for estimating electricity emissions factors for calculating the combined net carbon dioxide emissions from all generating facilities that provide electricity to Californians. We fi nd that use of a statewide average electricity emissions factor could drastically under- or over-estimate an entity's emissions due to the differences in generating resources among the utility service areas and seasonal variations. In addition, differentiating between marginal and average emissions is essential to accurately estimate the carbon dioxide savings from reducing electricity use. Results of this work will be taken into consideration by the Registry when finalizing its guidance for use of electricity emissions factors in calculating an entity's greenhouse gas emissions.

  16. Beamlines & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Group: Beamlines The X-ray Micrscopy and Imaging Group operates several beamlines and facilities. The bending magnet beamline (2-BM) entertaines 2 general user programs in...

  17. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – A facile method for encapsulation of diverse cell types in silica matrices

    SciTech Connect (OSTI)

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Furthermore, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.

  18. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – A facile method for encapsulation of diverse cell types in silica matrices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cellsmore » are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Furthermore, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.« less

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  20. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-06

    REPLACED BY DOE-STD-1063 | SUPERSEDING DOE-STD-1063-2000 (MARCH 2000) The purpose of the DOE Facility Representative Program is to ensure that competent DOE staff personnel are assigned to oversee the day-to-day contractor operations at DOE’s hazardous nuclear and non-nuclear facilities.

  1. A conceptual advanced pyroprocess recycle facility.

    SciTech Connect (OSTI)

    Frigo, A. A.; Wahlquist, D. R.; Willit, J. L.

    2003-01-01

    Our efforts during the past year focused on the development of a detailed process flowsheet with mass balances, the generation of facility and equipment conceptual designs, and the determination of step-by-step operational details for an operational model of the facility. One of the key results has been the reduction in the floor-space-area requirements for the process cell within the facility of more than 50% compared with an earlier informal conceptual facility design generated in 2002.

  2. Argonne Wakefield Accelerator Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities 4 Tesla Magnet Facility Argonne Wakefield Accelerator Facility Argonne Wakefield Accelerator Facility Argonne Wakefield Accelerator Facility In order to achieve the high accelerating gradients needed to produce the tremendous energies required by a future particle accelerator, scientists have been looking for new ideas and solutions. Wakefield acceleration offers a potentially bold new path for the construction of the next generation of particle accelerators. The Argonne Wakefield

  3. Orientation to pollution prevention for facility design

    SciTech Connect (OSTI)

    Raney, E.A.; Whitehead, J.K.; Encke, D.B.; Dorsey, J.A.

    1994-01-01

    This material was developed to assist engineers in incorporating pollution prevention into the design of new or modified facilities within the U.S. Department of Energy (DOE). The material demonstrates how the design of a facility can affect the generation of waste throughout a facility`s entire life and it offers guidance on how to prevent the generation of waste during design. Contents include: Orientation to pollution prevention for facility design training course booklet; Pollution prevention design guideline; Orientation to pollution prevention for facility design lesson plan; Training participant survey and pretest; and Training facilitator`s guide and schedule.

  4. Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

    SciTech Connect (OSTI)

    Barrera, C A; Moran, M J

    2007-08-21

    The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS

  5. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, supersedes DOE O 420.1C.

  6. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  7. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  9. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  12. Working with SRNL - Our Facilities - Glovebox Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRNL Our Facilities - Glovebox Facilities Govebox Facilities are sealed, protectively-lined compartments with attached gloves, allowing workers to safely handle dangerous materials...

  13. SLAC Accelerator Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  14. Canastota Renewable Energy Facility Project

    SciTech Connect (OSTI)

    Blake, Jillian; Hunt, Allen

    2013-12-13

    The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

  15. Information related to low-level mixed waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    Wilkins, B.D.; Dolak, D.A.; Wang, Y.Y.; Meshkov, N.K.

    1996-12-01

    This report was prepared to support the analysis of risks and costs associated with the proposed treatment of low-level mixed waste (LLMW) under management of the US Department of Energy (DOE). The various waste management alternatives for treatment of LLMW have been defined in the DOE`s Office of Waste Management Programmatic Environmental Impact Statement. This technical memorandum estimates the waste material throughput expected at each proposed LLMW treatment facility and analyzes potential radiological and chemical releases at each DOE site resulting from treatment of these wastes. Models have been developed to generate site-dependent radiological profiles and waste-stream-dependent chemical profiles for these wastes. Current site-dependent inventories and estimates for future generation of LLMW have been obtained from DOE`s 1994 Mixed Waste Inventory Report (MWIR-2). Using treatment procedures developed by the Mixed Waste Treatment Project, the MWIR-2 database was analyzed to provide waste throughput and emission estimates for each of the different waste types assessed in this report. Uncertainties in the estimates at each site are discussed for waste material throughputs and radiological and chemical releases.

  16. Microsoft Word - Accommodates All Generation Storage Options...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... will increase rapidly all along the value chain, from suppliers to marketers to consumers. ... The U.S. is dominated by big, centralized generating facilities. Large generators (coal, ...

  17. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 1: Sections 1-9

    SciTech Connect (OSTI)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.

    1995-04-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. The methodology is in compliance with the most recent guidance from DOE. It considers the spectrum of accident sequences that could occur in activities covered by the WM PEIS and uses a graded approach emphasizing the risk-dominant scenarios to facilitate discrimination among the various WM PEIS alternatives. Although it allows reasonable estimates of the risk impacts associated with each alternative, the main goal of the accident analysis methodology is to allow reliable estimates of the relative risks among the alternatives. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 14, 2007 [Facility News] Field Campaigns Generate Interest from Aviation Aficionados in Oklahoma Bookmark and Share Dr. Pete Lamb On November 13, Dr. Pete Lamb attended a meeting of the Norman Chamber of Commerce to talk about the field campaigns that occurred at the ARM Southern Great Plains site in June 2007. Pete was invited to address the chamber's Aviation Committee, which was particularly intrigued by the use of nine airplanes operating simultaneously during the CLASIC and CHAPS

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18, 2015 [Facility News] ARM Data Developers Prepare for Next Generation of ARM Bookmark and Share Around 40 ARM staff attended the 2015 Data Developer's Meeting at the National Weather Center in Oklahoma to discuss current activities and the reconfiguration of ARM sites. Around 40 ARM staff attended the 2015 Data Developer's Meeting at the National Weather Center in Oklahoma to discuss current activities and the reconfiguration of ARM sites. About 40 ARM staff members gathered at the National

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 6, 2009 [Facility News] Research Team Publishes Results from In-Depth Study of Sahel Climate System Bookmark and Share The Sahel region of West Africa has experienced long-term drought accompanied by profound socioeconomic consequences over the past 30 years. It is a favored location for the development of tropical easterly waves that may generate hurricanes. The Sahel region of West Africa has experienced long-term drought accompanied by profound socioeconomic consequences over the past

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  2. Nuclear Facilities

    Broader source: Energy.gov [DOE]

    The nuclear sites list and map shows how DOE nuclear operations are mostly divided between nuclear weapons stockpile maintenance, research and environmental cleanup. The operations are performed within several different facilities supporting nuclear reactor operations, nuclear research, weapons disassembly, maintenance and testing, hot cell operations, nuclear material storage and processing and waste disposal.

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  4. Beam Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Test Facility Beam Test Facility Print Tuesday, 20 October 2009 09:36 Coming Soon

  5. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  6. Martin Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Martin Next Generation Solar Energy Center Solar Power Plant Facility Martin Next Generation...

  7. Facility Clearance Program | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Facility Clearance Program The Facility Clearance (FCL) Program regulates DOE approval of a Federal or contractor facility's eligibility to access, receive, generate, reproduce, store, transmit, or destroy classified information or matter, special nuclear material (SNM), other hazardous material presenting a potential radiological, chemical, or biological sabotage threat, and/or DOE property of significant monetary value, exclusive of facilities and land values (hereinafter referred

  8. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govSitesMobile Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 MAOS AMF Fact Sheet Images Contacts AMF Deployments McMurdo Station, Antarctica, 2015-2016 Pearl Harbor, Hawaii, to San Francisco, California, 2015 Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010

  9. Facility Type!

    Office of Legacy Management (LM)

    ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR

  10. Research Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facilities Our state-of-the-art facilities are available to industry entrepreneurs, engineers, scientists, and universities for researching and developing their energy technologies. Our researchers and technicians who operate these labs and facilities are ready to work with you and share their expertise. Alphabetical Listings Laboratories Test and User Facilities Popular Facilities Energy Systems Integration Facility Integrated Biorefinery Research Facility Process Development

  11. NREL: Research Facilities - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Your name: Your email address: Your message: Send Message Printable Version Research Facilities Home Laboratories Test & User Facilities Laboratories & Facilities by Technology...

  12. Facilities | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities At NREL's state-of-the-art bioenergy research facilities, researchers design ... facility to develop, test, evaluate, and demonstrate bioenergy processes and technologies. ...

  13. Research Facility,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delivering the Data As a general condition for use of the ARM Climate Research Facility, users are required to include their data in the ARM Data Archive. All data acquired must be of sufficient quality to be useful and must be documented such that users will be able to clearly understand the meaning and organization of the data. Final, quality-assured data sets are stored in the Data Archive and are freely accessible to the general scientific community. Upon conclusion of the field campaign,

  14. Harrisburg Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleHarrisburgFacilityBiomassFacility&oldid397545" Feedback Contact needs updating Image needs updating...

  15. Brookhaven Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleBrookhavenFacilityBiomassFacility&oldid397235" Feedback Contact needs updating Image needs updating...

  16. Support - Facilities - Radiation Effects Facility / Cyclotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    During experiments at the Radiation Effects Facility users are assisted by the experienced ... shops are available to the users of the Radiation Effects Facility for design, ...

  17. Radiation Effects Facility - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Effects Facility Typical DUT(device under test) set-up at the end of the Radiation Effects beamline. The Radiation Effects Facility is available for commercial, ...

  18. Front-end Nuclear Facilities (2008) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Front-end Nuclear Facilities (2008) Front-end Nuclear Facilities (2008) Front-end Nuclear Facilities (2008) (399.4 KB) More Documents & Publications Nuclear Power Facilities (2008) Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Transmission Infrastructure Investment Projects (2009)

  19. Kent County Waste to Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy...

  20. Stockton Regional Water Control Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Stockton Regional Water Control Facility Biomass Facility Jump to: navigation, search Name Stockton Regional Water Control Facility Biomass Facility Facility Stockton Regional...

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 4, 2010 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of the ARM mobile facilities, aerial facility, and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility. Facility availability is as follows: ARM Mobile Facility 2 (AMF2) available FY2013 ARM Mobile Facility 1 (AMF1) available March 2015

  2. Manufacturing Demonstration Facility

    Energy Savers [EERE]

    of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and ...

  3. Facility effluent monitoring plan for the 325 Facility

    SciTech Connect (OSTI)

    1998-12-31

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  4. Heritage Park Facilities PV Project

    SciTech Connect (OSTI)

    Hobaica, Mark

    2013-09-26

    Project Objective: To procure a photovoltaic array (PV) system which will generate approximately 256kW of power to be used for the operations of the Aquatic Complex and the adjacent Senior Facility at the Heritage Park. This project complies with the EERE’s work and objectives by promoting the development and deployment of an energy system that will provide current and future generations with clean, efficient, affordable, and reliable energy.

  5. EIS-0343: COB Energy Facility

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to support the COB Energy Facility, a subsidiary of Peoples Energy Resources Corporation (PERC), to construct a 1,160-megawatt (MW) natural gas-fired, combined-cycle electric generating plant in Klamath County, Oregon, near the city of Bonanza.

  6. Advanced Powertrain Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Powertrain Research Facility Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles. APRF engineers use the facility's two-wheel drive (2WD) and four-wheel drive (4WD) dynamometers and state-of-the-art instrumentation to reveal important information on performance, fuel economy, energy consumption and emissions output.

  7. Tax Credits for Renewable Energy Facilities

    Broader source: Energy.gov [DOE]

    A renewable energy facility is defined as one that generates at least 50 kilowatts (kW) of electricity from solar power or at least 1 megawatt (MW) from wind power, biomass resources, landfill ga...

  8. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Facilities Electromagnetic Environments Simulator (EMES) Mode Stirred Chamber Lightning Facility Electrostatic Discharge (ESD) Laboratory Other Facilities and Capabilities Programs & Capabilities Partnership Opportunities EM News & Reports Contact Information Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities

  9. Geothermal Testing Facilities in an Oil Field

    Broader source: Energy.gov [DOE]

    Engineered Geothermal Systems, Low Temp, Exploration Demonstration. The proposed project is to develop a long term testing facility and test geothermal power units for the evaluation of electrical power generation from low-temperature and co-produced fluids. The facility will provide the ability to conduct both long and short term testing of different power generation configurations to determine reliability, efficiency and to provide economic evaluation data.

  10. CMI Unique Facility: Ferromagnetic Materials Characterization Facility |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute Ferromagnetic Materials Characterization Facility The Ferromagnetic Materials Characterization Facility is one of more than a dozen unique facilities developed by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy. CMI ferromagnetic materials characterization facility at The Ames Laboratory. In the search for substitute materials to replace rare earths in permanent magnets, whenever promising materials are identified,

  11. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  12. Space Coast Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Coast Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Space Coast Next Generation Solar Energy Center Solar Power Plant Facility Space Coast...

  13. Uranium Processing Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Uranium Processing Facility

  14. Distributed Generation Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Colorado Zip: 80228 Region: Rockies Area Sector: Wind energy Product: Developer of electricity generation wind power facilities Website: www.disgenonline.com Coordinates:...

  15. CalEnergy Generation | Open Energy Information

    Open Energy Info (EERE)

    electric power and steam-producing facilities in the United States and the Philippines. Worldwide, CalEnergy Generation focuses on growth through acquisition and fuel source...

  16. explicit representation of uncertainty in solar generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar generation - Sandia Energy Energy Search Icon Sandia ... Secure & Sustainable Energy Future Stationary Power Energy ... National Solar Thermal Test Facility Nuclear ...

  17. explicit representation of uncertainty in wind generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind generation - Sandia Energy Energy Search Icon Sandia ... Secure & Sustainable Energy Future Stationary Power Energy ... National Solar Thermal Test Facility Nuclear ...

  18. McKay Bay Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  19. Tandem mirror technology demonstration facility

    SciTech Connect (OSTI)

    Not Available

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  20. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated research facilities. As a U.S. Department of Energy national laboratory, Argonne offers access to the facilities listed below through a variety of arrangements. Advanced Powertrain Research Facility Center for Transportation Research Materials Engineering Research Facility Distributed Energy Research Center

  1. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National User Facilities Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Berkeley Lab's User Facilities-Engines of Discovery Berkeley Lab's User Facilities provide state-of-the-art resources for scientists across the nation and around the world. About 10,000 researchers a year use these facilities, representing nearly one third of the total for all Department of Energy

  2. OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE

    Broader source: Energy.gov [DOE]

    Oak Ridge, TN - The Environmental Management Waste Management Facility (EMWMF) provides the onsite disposal capability for the majority of cleanup-generated wastes on the Oak Ridge Reservation....

  3. Requirements for Petitions to Construct Electric and Gas Facilities...

    Open Energy Info (EERE)

    requirements for petitions to construct electric generation, electric transmission, and natural gas facilities pursuant to 30 V.S.A. 248. In addition, the rule clarifies...

  4. Property:Specializations, Capabilities, and Key Facility Attributes...

    Open Energy Info (EERE)

    biologists are highly experienced in assessing the impacts of generation devices on fish and the facilities allow for accurate testing with fish in a highly controlled...

  5. Advances in Ion Accelerators Boost Argonne's ATLAS User Facility...

    Office of Science (SC) Website

    generation, high-current accelerator-based isotope production facilities, and compact high-intensity proton accelerators for medical, industrial and homeland security applications. ...

  6. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-14-003 ARM Climate Research Facility Quarterly Ingest Report First Quarter: ...

  7. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-14-028 ARM Climate Research Facility Quarterly Ingest Report Fourth Quarter: ...

  8. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-15-003 ARM Climate Research Facility Quarterly Ingest Report First Quarter: ...

  9. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOESC-ARM-15-019 ARM Climate Research Facility Quarterly Value-Added Product Report ... implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. ...

  10. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOESC-ARM-15-020 ARM Climate Research Facility Quarterly Ingest Report Second Quarter: ... maintained by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. ...

  11. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman April ... DOESC-ARM-14-014 ARM Climate Research Facility Quarterly Ingest Report Second Quarter: ...

  12. ARM - NSA Barrow Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA...

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2009 Facility News ARM Aerial Facility Leads International Discussions on Aircraft Research Bookmark and Share Five research aircraft participated in the VAMOS...

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (BERAC) published findings and recommendations from their assessment of the effectiveness of ARM Climate Research Facility as a national scientific user facility. Based on...

  15. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that...

  16. NREL: Biomass Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interferometers Compared for ARM Mobile Facility Deployment in China Bookmark and Share ... Mobile Facility in 2008 for a field campaign to study Aerosol Indirect Effects in China. ...

  18. Central Receiver Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receiver Test Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Applications National Solar Thermal Test Facility Nuclear Energy Systems ...

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13, 2014 Facility News Characterizing Ice Nuclei Over Southern Great Plains Bookmark and Share Placed on the upper platform of the SGP Guest Instrument Facility, this filter...

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility use by total visitor days and facility to track actual visitors and active user research computer accounts. Historical data show an apparent relationship between the...

  1. Next Generation Light Source Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the...

  2. High-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy eenvironmental management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Folga, S.M.; Conzelmann, G.; Gillette, J.L.; Kier, P.H.; Poch, L.A.

    1996-12-01

    This report provides data and information needed to support the risk and impact assessments of high-level waste (HLW) management alternatives in the U.S. Department of Energy Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). Available data on the physical form, chemical and isotopic composition, storage locations, and other waste characteristics of interest are presented. High-level waste management follows six implementation phases: current storage, retrieval, pretreatment, treatment, interim canister storage, and geologic repository disposal; pretreatment, treatment, and repository disposal are outside the scope of the WM PEIS. Brief descriptions of current and planned HLW management facilities are provided, including information on the type of waste managed in the facility, costs, product form, resource requirements, emissions, and current and future status. Data sources and technical and regulatory assumptions are identified. The range of HLW management alternatives (including decentralized, regionalized, and centralized approaches) is described. The required waste management facilities include expanded interim storage facilities under the various alternatives. Resource requirements for construction (e.g., land and materials) and operation (e.g., energy and process chemicals), work force, costs, effluents, design capacities, and emissions are presented for each alternative.

  3. ARM - SGP Radiometric Calibration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiometric Calibration Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Radiometric Calibration Facility The Radiometric Calibration Facility (RCF) provides shortwave radiometer

  4. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  5. Lead Coolant Test Facility Development Workshop

    SciTech Connect (OSTI)

    Paul A. Demkowicz

    2005-06-01

    A workshop was held at the Idaho National Laboratory on May 25, 2005, to discuss the development of a next generation lead or lead-alloy coolant test facility. Attendees included representatives from the Generation IV lead-cooled fast reactor (LFR) program, Advanced Fuel Cycle Initiative, and several universities. Several participants gave presentations on coolant technology, existing experimental facilities for lead and lead-alloy research, the current LFR design concept, and a design by Argonne National Laboratory for an integral heavy liquid metal test facility. Discussions were focused on the critical research and development requirements for deployment of an LFR demonstration test reactor, the experimental scope of the proposed coolant test facility, a review of the Argonne National Laboratory test facility design, and a brief assessment of the necessary path forward and schedule for the initial stages of this development project. This report provides a summary of the presentations and roundtable discussions.

  6. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  7. Design criteria for Waste Coolant Processing Facility and preliminary proposal 722 for Waste Coolant Processing Facility

    SciTech Connect (OSTI)

    Not Available

    1991-09-27

    This document contains the design criteria to be used by the architect-engineer (A-E) in the performance of Titles 1 and 2 design for the construction of a facility to treat the biodegradable, water soluble, waste machine coolant generated at the Y-12 plant. The purpose of this facility is to reduce the organic loading of coolants prior to final treatment at the proposed West Tank Farm Treatment Facility.

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 28, 2010 [Facility News] Footprint Adjustments Underway at Southern Great Plains Site Bookmark and Share Upon completion of the SGP footprint reduction, extended facilities 9, 11, 12, 15 and 21 will remain intact, along with the Central Facility (C1) near Lamont. Instrumentation at the remaining sites will be consolidated into the new, smaller footprint. Facilities closed thus far are colored black. Upon completion of the SGP footprint reduction, extended facilities 9, 11, 12, 15 and 21

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 15, 2008 [Facility News] New Ceilometer Evaluated at Southern Great Plains Site Bookmark and Share Dan Nelson, SGP facilities manager, inspects the new ceilometer during its evaluation period on the platform of the SGP Guest Instrument Facility between June and July 2008. Dan Nelson, SGP facilities manager, inspects the new ceilometer during its evaluation period on the platform of the SGP Guest Instrument Facility between June and July 2008. To analyze cloud properties, ARM scientists

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2011 [Facility News, Publications] Journal Special Issue Includes Mobile Facility Data from Germany Bookmark and Share The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. In 2007, the ARM Mobile Facility participated in one of the most ambitious field studies ever conducted in Europe-the Convective and Orographically Induced Precipitation Study (COPS). Now, 21