National Library of Energy BETA

Sample records for non-thermal plasma catalyst

  1. Method and system for the combination of non-thermal plasma and metal/metal oxide doped .gamma.-alumina catalysts for diesel engine exhaust aftertreatment system

    DOE Patents [OSTI]

    Aardahl, Christopher L.; Balmer-Miller, Mari Lou; Chanda, Ashok; Habeger, Craig F.; Koshkarian, Kent A.; Park, Paul W.

    2006-07-25

    The present disclosure pertains to a system and method for treatment of oxygen rich exhaust and more specifically to a method and system that combines non-thermal plasma with a metal doped .gamma.-alumina catalyst. Current catalyst systems for the treatment of oxygen rich exhaust are capable of achieving only approximately 7 to 12% NO.sub.x reduction as a passive system and only 25 40% reduction when a supplemental hydrocarbon reductant is injected into the exhaust stream. It has been found that treatment of an oxygen rich exhaust initially with a non-thermal plasma and followed by subsequent treatment with a metal doped .gamma.-alumina prepared by the sol gel method is capable of increasing the NO.sub.x reduction to a level of approximately 90% in the absence of SO.sub.2 and 80% in the presence of 20 ppm of SO.sub.2. Especially useful metals have been found to be indium, gallium, and tin.

  2. Performance Evaluation of the Delphi Non-Thermal Plasma System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of the Delphi Non-Thermal Plasma System Under Transient and Steady State Conditions Performance Evaluation of the Delphi Non-Thermal Plasma System Under Transient and ...

  3. Non-thermal plasma based technologies for the aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal plasma based technologies for the aftertreatment of diesel exhaust particulates and NOx Non-thermal plasma based technologies for the aftertreatment of diesel exhaust ...

  4. Fuel injector utilizing non-thermal plasma activation

    DOE Patents [OSTI]

    Coates, Don M. (Santa Fe, NM); Rosocha, Louis A. (Los Alamos, NM)

    2009-12-01

    A non-thermal plasma assisted combustion fuel injector that uses an inner and outer electrode to create an electric field from a high voltage power supply. A dielectric material is operatively disposed between the two electrodes to prevent arcing and to promote the formation of a non-thermal plasma. A fuel injector, which converts a liquid fuel into a dispersed mist, vapor, or aerosolized fuel, injects into the non-thermal plasma generating energetic electrons and other highly reactive chemical species.

  5. Single-Step Non-Thermal Plasma Synthesis of 3C-SiC Nanoparticles...

    Office of Scientific and Technical Information (OSTI)

    Single-Step Non-Thermal Plasma Synthesis of 3C-SiC Nanoparticles Citation Details In-Document Search Title: Single-Step Non-Thermal Plasma Synthesis of 3C-SiC Nanoparticles ...

  6. MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 2 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 2 2002_deer_hughes2.pdf (523.79 KB) More Documents & Publications MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 1 MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 4

  7. Non-thermal plasma based technologies for the aftertreatment of diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    exhaust particulates and NOx | Department of Energy thermal plasma based technologies for the aftertreatment of diesel exhaust particulates and NOx Non-thermal plasma based technologies for the aftertreatment of diesel exhaust particulates and NOx 2003 DEER Conference Presentation: Accentus 2003_deer_mcadams.pdf (445.66 KB) More Documents & Publications MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 3 MPS213 - A Non-Thermal Plasma Application for the Royal Navy -

  8. MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 1 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 1 2002 DEER Conference Presentation: Marine Propulsion Systems - Integrated Project Team 2002_deer_hughes1.pdf (1.06 MB) More Documents & Publications MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 4 MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 2

  9. MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 3 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3 MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 3 2002 DEER Conference Presentation: Marine Propulsion Systems - Integrated Project Team 2002_deer_hughes3.pdf (620.67 KB) More Documents & Publications MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 4 MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 2

  10. MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 4 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4 MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 4 2002 DEER Conference Presentation: Marine Propulsion Systems - Integrated Project Team 2002_deer_hughes4.pdf (330.26 KB) More Documents & Publications MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 2 MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 3

  11. Feasibility analysis report for hybrid non-thermal plasma reactors

    SciTech Connect (OSTI)

    Rosocha, L.A.

    1998-01-15

    The purpose of the Strategic Environmental Research and Development Program (SERDP) project CP-1038 is to evaluate and develop non-thermal plasma (NTP) reactor technology for Department of Defense (DoD) air emissions control applications. The primary focus is on oxides of nitrogen (NO{sub x}) and a secondary focus on hazardous air pollutants (HAPs), especially volatile organic compounds (VOCs). Examples of NO{sub x} sources are jet engine test cells (JETCs) and diesel-engine powered electrical generators. Examples of VOCs are organic solvents used in painting, paint-stripping, and parts cleaning. Because pollutant-containing air-emission streams within the Department of Defense (DoD) frequently span a broad range of pollutant concentrations, flow rates, and gas conditions (e.g., temperature, humidity), a single type of NTP reactor is not expected to fit all types of emissions streams. Additionally, stand-alone NTP reactors may provide neither an adequate means of pollutant removal nor an acceptable economic solution. Therefore, hybrid systems (combinations of different NTP reactor types or architectures), which employ adsorbents and/or catalytic media are being examined by researchers in this field. This report is intended to provide a preliminary summary analysis of a few representative hybrid systems as a means of introducing the hybrid or staged-system concept.

  12. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    SciTech Connect (OSTI)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  13. Performance Evaluation of the Delphi Non-Thermal Plasma System Under

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transient and Steady State Conditions | Department of Energy Evaluation of the Delphi Non-Thermal Plasma System Under Transient and Steady State Conditions Performance Evaluation of the Delphi Non-Thermal Plasma System Under Transient and Steady State Conditions 2002 DEER Conference Presentation: Delphi Corporation 2002_deer_bonadies.pdf (430.62 KB) More Documents & Publications A Parametric Study of the Effect of Temperature and Hydrocarbon Species on the Product Distribution from a

  14. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor Company 2003_deer_hoard.pdf (210.07 KB) More Documents & Publications Plasma Assisted Catalysis System for NOx Reduction Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Non-thermal plasma based technologies for the aftertreatment of diesel exhaust particulates

  15. Comparison of non-thermal plasma techniques for abatement of volatile organic compounds and nitrogen oxides

    SciTech Connect (OSTI)

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.

    1996-01-11

    Non-thermal plasma processing is an emerging technology for the abatement of dilute concentrations of volatile organic compounds (VOCs), nitrogen oxides (NO{sub x}) and other hazardous air pollutants (HAPs) in atmospheric-pressure gas streams. Either electrical discharge or electron beam methods can produce these plasmas. Recent laboratory-scale experiments show that the electron beam method is remarkably more energy efficient than competing non-thermal plasma techniques based on pulsed corona and other types of electrical discharge plasma. Preliminary cost analysis based on these data also show that the electron beam method may be cost-competitive to thermal and catalytic methods that employ heat recovery or hybrid techniques.

  16. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    SciTech Connect (OSTI)

    Charles Mones

    2006-12-01

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the

  17. Field-enhanced electrodes for additive-injection non-thermal plasma (NTP) processor

    SciTech Connect (OSTI)

    Rosocha, Louis A.; Ferreri, Vincent; Kim, Yongho

    2009-04-21

    The present invention comprises a field enhanced electrode package for use in a non-thermal plasma processor. The field enhanced electrode package includes a high voltage electrode and a field-enhancing electrode with a dielectric material layer disposed in-between the high voltage electrode and the field-enhancing electrode. The field-enhancing electrode features at least one raised section that includes at least one injection hole that allows plasma discharge streamers to occur primarily within an injected additive gas.

  18. UBIQUITOUS NON-THERMALS IN ASTROPHYSICAL PLASMAS: RESTATING THE DIFFICULTY OF MAINTAINING MAXWELLIANS

    SciTech Connect (OSTI)

    Scudder, J. D.; Karimabadi, H.

    2013-06-10

    This paper outlines the rather narrow conditions on a radiatively decoupled plasma where a Maxwell-Boltzmann (MB) distribution can be assumed with confidence. The complementary non-thermal distribution with non-perturbative kurtosis is argued to have a much broader purview than has previously been accepted. These conditions are expressed in terms of the electron Knudsen number, K{sub e} , the ratio of the electron mean free path to the scale length of electron pressure. Rather generally, f(v < v{sub 2}(K{sub e} )) will be Gaussian, so that MB atomic or wave particle effects controlled by speeds v < v{sub 2} {identical_to} w(15/8K{sub e} ){sup 1/4} will remain defensible, where w is the most probable speed. The sufficient condition for Spitzer-Braginskii plasma fluid closure at the energy equation requires globally K{sub e} (s) {<=} 0.01; this global condition pertains to the maximum value of K{sub e} along the arc length s of the magnetic field (to its extremities) provided that contiguous plasma remains uncoupled from the radiation field. The non-thermal regime K{sub e} > 0.01 is common in all main-sequence stellar atmospheres above approximately 0.05 stellar radii from the surface. The entire solar corona and wind are included in this regime where non-thermal distributions with kurtosis are shown to be ubiquitous, heat flux is not well modeled by Spitzer-Braginskii closure, and fluid modeling is qualitative at best.

  19. Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon

    DOE Patents [OSTI]

    Park, Jaeyoung; Henins, Ivars

    2005-06-21

    The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.

  20. Rarefactive and compressive soliton waves in unmagnetized dusty plasma with non-thermal electron and ion distribution

    SciTech Connect (OSTI)

    Eslami, Esmaeil Baraz, Rasoul

    2014-02-15

    Sagdeev's pseudo potential method is employed to study dust acoustic solitary waves in an unmagnetized plasma containing negatively charged dusts with non-thermal electron and ion. The range of parameters for the existence of solitary waves using the analytical expression of the Sagdeev potential has been found. It is observed that, depending on the values of the plasma parameters like ion to electron temperature ratio σ, non-thermal parameters β and γ, electron to ion density ratio μ, and the value of the Mach number M, both rarefactive and compressive solitary waves may exist.

  1. First report on non-thermal plasma reactor scaling criteria and optimization models

    SciTech Connect (OSTI)

    Rosocha, L.A.; Korzekwa, R.A.

    1998-01-13

    The purpose of SERDP project CP-1038 is to evaluate and develop non-thermal plasma (NTP) reactor technology for Department of Defense (DoD) air emissions control applications. The primary focus is on oxides of nitrogen (NO{sub x}) and a secondary focus on hazardous air pollutants (HAPs), especially volatile organic compounds (VOCs). Example NO{sub x} sources are jet engine test cells (JETCs) and diesel engine powered electrical generators. Example VOCs are organic solvents used in painting, paint stripping, and parts cleaning. To design and build NTP reactors that are optimized for particular DoD applications, one must understand the basic decomposition chemistry of the target compound(s) and how the decomposition of a particular chemical species depends on the air emissions stream parameters and the reactor operating parameters. This report is intended to serve as an overview of the subject of reactor scaling and optimization and will discuss the basic decomposition chemistry of nitric oxide (NO) and two representative VOCs, trichloroethylene and carbon tetrachloride, and the connection between the basic plasma chemistry, the target species properties, and the reactor operating parameters (in particular, the operating plasma energy density). System architecture, that is how NTP reactors can be combined or ganged to achieve higher capacity, will also be briefly discussed.

  2. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma

    SciTech Connect (OSTI)

    Schaefer, J.; Foest, R.; Reuter, S.; Weltmann, K.-D.; Kewitz, T.; Sperka, J.

    2012-10-15

    The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 {+-} 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 {+-} 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable

  3. Non-thermal plasma exhaust aftertreatment: Are all plasmas the same?

    SciTech Connect (OSTI)

    Whealton, J.H.; Hanson, G.R.; Storey, J.M.; Raridon, R.J.; Armfield, J.S.; Bigelow, T.S.; Graves, R.L.

    1997-12-31

    The authors describe initial experiments employing 5.5 GHz pulsed microwave power, which should result in enhanced chemistry compared to present state-of-the-art plasma aftertreatments by; reducing plasma electric field shielding, increasing availability of atomic nitrogen, exploiting surface charging of dielectrics, avoiding (low field) threshold initiated discharges, and achieving a higher high energy tail on the electron distribution function. As an example, the authors decided to test for NO reduction in N{sub 2}. While this reaction is not a complete description of the exhaust issues by any means, they thought it would demonstrate the technology proposed.

  4. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOE Patents [OSTI]

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  5. Dust-acoustic shock formation in dusty plasmas with non-thermal ions

    SciTech Connect (OSTI)

    Asgari, H.; Muniandy, S. V.; Wong, C. S.

    2013-01-15

    In this study, the nonlinear Burgers equation in the presence of the dust charge fluctuation is derived and the shock-like solution is determined. It is well known that in order to have a monotonic or oscillatory shock wave, a source of dissipation is needed. By using the experimental data reported in the laboratory observation of self-excited dust-acoustic shock waves [Heinrich et al., Phys. Rev. Lett. 103, 115002 (2009)], it is shown that dust charge fluctuation can be considered as a candidate for the source of dissipation needed for the dust-acoustic shock formation. By examining the effects of non-thermal ions on dust-acoustic shock's characteristics, a possible theoretical explanation for the discrepancies observed between theory and experiment is proposed.

  6. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction 2003 DEER Conference Presentation: Ford Motor ...

  7. NOVEL COMPOSITE HYDROGEN-PERMEABLE MEMBRANES FOR NON-THERMAL PLASMA REACTORS FOR THE DECOMPOSITION OF HYDROGEN SULFIDE

    SciTech Connect (OSTI)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Ji-Jun Zhang; Guibing Zhao; Robyn J. Alcanzare; Linna Wang; Ovid A. Plumb

    2004-07-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Experiments involving methane conversion reactions were conducted with a preliminary pulsed corona discharge reactor design in order to test and improve the reactor and membrane designs using a non-toxic reactant. This report details the direct methane conversion experiments to produce hydrogen, acetylene, and higher hydrocarbons utilizing a co-axial cylinder (CAC) corona discharge reactor, pulsed with a thyratron switch. The reactor was designed to accommodate relatively high flow rates (655 x 10{sup -6} m{sup 3}/s) representing a pilot scale easily converted to commercial scale. Parameters expected to influence methane conversion including pulse frequency, charge voltage, capacitance, residence time, and electrode material were investigated. Conversion, selectivity and energy consumption were measured or estimated. C{sub 2} and C{sub 3} hydrocarbon products were analyzed with a residual gas analyzer (RGA). In order to obtain quantitative results, the complex sample spectra were de-convoluted via a linear least squares method. Methane conversion as high as 51% was achieved. The products are typically 50%-60% acetylene, 20% propane, 10% ethane and ethylene, and 5% propylene. First Law thermodynamic energy efficiencies for the system (electrical and reactor) were estimated to range from 38% to 6%, with the highest efficiencies occurring at short residence time and low power input (low specific energy) where conversion is the lowest (less than 5%). The highest methane conversion of 51% occurred at a

  8. Electron density measurements of atmospheric-pressure non-thermal N{sub 2} plasma jet by Stark broadening and irradiance intensity methods

    SciTech Connect (OSTI)

    Xiao, Dezhi; Shen, Jie; Lan, Yan; Xie, Hongbing; Shu, Xingsheng; Meng, Yuedong; Li, Jiangang; Cheng, Cheng E-mail: paul.chu@cityu.edu.hk; Chu, Paul K. E-mail: paul.chu@cityu.edu.hk

    2014-05-15

    An atmospheric-pressure non-thermal plasma jet excited by high frequency alternating current using nitrogen is developed and the electron density in the active region of this plasma jet is investigated by two different methods using optical emission spectroscopy, Stark broadening, and irradiance intensity method. The irradiance intensity method shows that the average electron density is about 10{sup 20}/m{sup 3} which is slightly smaller than that by the Stark broadening method. However, the trend of the change in the electron density with input power obtained by these two methods is consistent.

  9. The role of higher-order modes on the electromagnetic whistler-cyclotron wave fluctuations of thermal and non-thermal plasmas

    SciTech Connect (OSTI)

    Vias, Adolfo F.; Moya, Pablo S.; Department of Physics, Catholic University of America, Washington DC, District of Columbia 20064 ; Navarro, Roberto; Araneda, Jaime A.

    2014-01-15

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the ?{sub e} increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electronproton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  10. Characteristics of atmospheric-pressure non-thermal N{sub 2} and N{sub 2}/O{sub 2} gas mixture plasma jet

    SciTech Connect (OSTI)

    Xiao, Dezhi; Shen, Jie; Lan, Yan; Xie, Hongbing; Shu, Xingsheng; Meng, Yuedong; Li, Jiangang; Cheng, Cheng E-mail: paul.chu@cityu.edu.hk; Chu, Paul K. E-mail: paul.chu@cityu.edu.hk

    2014-01-21

    An atmospheric-pressure non-thermal plasma jet driven by high frequency alternating current and operating on N{sub 2} and N{sub 2}/O{sub 2} gas mixture is investigated. The plasma jet can reach 55?mm in length at a gas flow rate of 2500?l/h. The gas temperature at a distance of 4?mm from the nozzle is close to room temperature. Optical emission spectroscopy is employed to investigate the important plasma parameters such as the excited species, rotational temperature, vibrational temperature, and excitation temperature under different discharge conditions. The results show that the plasma source operates under non-equilibrium conditions. The absolute irradiance intensity of the vibrational band N{sub 2}(C-B) in the active region is measured. Taking into account the irradiance intensity of N{sub 2}(C-B,0-0) and N{sub 2}(B-X,0-0) as well as measured current, the electron density, which is determined by considering direct and step-wise electron impact excitation of nitrogen emission, reaches a maximum value of 5.6??10{sup 20}/m{sup 3}.

  11. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOE Patents [OSTI]

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  12. Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth

    SciTech Connect (OSTI)

    Hofmann, S.; Cantoro, M.; Kleinsorge, B.; Casiraghi, C.; Parvez, A.; Robertson, J.; Ducati, C.

    2005-08-01

    A systematic study is presented of the influence of catalyst film thickness on carbon nanostructures grown by plasma-enhanced chemical-vapor deposition from acetylene and ammonia mixtures. We show that reducing the Fe/Co catalyst film thickness below 3 nm causes a transition from larger diameter (>40 nm), bamboolike carbon nanofibers to small diameter ({approx}5 nm) multiwalled nanotubes with two to five walls. This is accompanied by a more than 50 times faster growth rate and a faster catalyst poisoning. Thin Ni catalyst films only trigger such a growth transition when pretreated with an ammonia plasma. We observe a limited correlation between this growth transition and the coarsening of the catalyst film before deposition. For a growth temperature of {<=}550 deg. C, all catalysts showed mainly a tip growth regime and a similar activity on untreated silicon, oxidized silicon, and silicon nitride support.

  13. Plasma/ion-controlled metal catalyst saturation: Enabling simultaneous growth of carbon nanotube/nanocone arrays

    SciTech Connect (OSTI)

    Levchenko, I.; Ostrikov, K.

    2008-02-11

    It is shown that the simultaneous saturation of Ni nanoparticles used as catalyst for vertically aligned carbon nanotube and nanocone arrays can be improved in low-temperature plasma- or ion-assisted processes compared with neutral gas-based routes. The results of hybrid multiscale numerical simulations of the catalyst nanoarrays (particle sizes of 2 and 10 nm) saturation with carbon show the possibility of reducing the difference in catalyst incubation times for smallest and largest catalyst particles by up to a factor of 2. This approach is generic and provides process conditions for simultaneous nucleation and growth of uniform arrays of vertically aligned nanostructures.

  14. Economic assessment of proposed electric-discharge non-thermal plasma field-pilot demonstration units for NO{sub x} removal in jet-engine exhaust: White paper for SERDP Project CP-1038

    SciTech Connect (OSTI)

    Rosocha, L.A.; Chang, J.S.; Urashima, Kuniko; Kim, S.J.; Miziolek, A.W.

    1999-01-05

    This project is currently evaluating non-thermal plasma (NTP) technologies for treating jet-engine exhaust arising from DoD test facilities. In the past, some economic analyses for NTP de-NO{sub x} have shown that it is not economical, compared to other techniques. The main reasons for this conclusion was that the previous analyses examined stand-alone, or less mature electrical-discharge reactors, or electron-beam based systems that incorporated both chemical additives and quite expensive electron accelerators. Also, in contrast to more recent developments, both the discharge and electron-beam techniques of the past did not extensively incorporate methods to increase the yields of active NO{sub x}-decomposing species. In an earlier White paper and a Project Report, the authors have analyzed the costs of more mature NTP systems incorporating chemical additives and new-concept NTP technologies for jet-engine emissions control and have shown lower exhaust-gas treatment costs for NTP systems compared to baseline standard de-NO{sub x} technologies like Selective Catalytic Reduction (SCR) combined with a wet scrubber or SCR combined with an electrostatic precipitator (ESP). In this paper, the authors will examine their most-promising candidate NTP reactor systems for a field-pilot demonstration on jet-engine exhaust and discuss the economic analyses for these hybrid units, which show that the economics of the proposed candidate systems are more favorable than earlier NTP reactor economic-assessment conclusions for NO{sub x} removal.

  15. Temperature Transient Effects in Plasma-Catalysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Transient Effects in Plasma-Catalysis Temperature Transient Effects in Plasma-Catalysis 2002 DEER Conference Presentation: Ford Motor Company 2002_deer_hoard.pdf (481.22 KB) More Documents & Publications Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction A Parametric Study of the Effect of Temperature and Hydrocarbon Species on the Product Distribution from a Non-Thermal Plasma Reactor Development of NOx Adsorber System for Dodge Ram 2007 Heavy duty Pickup Truck

  16. Modeling carbon nanotube growth on the catalyst-substrate surface subjected to reactive plasma [

    SciTech Connect (OSTI)

    Tewari, Aarti; Sharma, Suresh C.

    2014-06-15

    The paper presents a theoretical model to study the growth of the carbon nanotube (CNT) on the catalyst substrate surface subjected to reactive plasma. The charging rate of the CNT, kinetics of electron, ions and neutral atoms, the growth rate of the CNT because of diffusion and accretion of ions on the catalyst nanoparticle inclusion of the issue of the plasma sheath is undertaken in the present model. Numerical calculations on the effect of ion density and temperature and the substrate bias on the growth of the CNT have been carried out for typical glow discharge plasma parameters. It is found that the height of CNT increases with the ion density of carbon ions and radius of CNT decreases with hydrogen ion density. The substrate bias also affects the growth rate of the CNT. The field emission characteristics from the CNTs can be analyzed from the results obtained.

  17. Non-thermal x-ray emission from wire array z-pinches

    SciTech Connect (OSTI)

    Ampleford, David; Hansen, Stephanie B.; Jennings, Christopher Ashley; Webb, Timothy Jay; Harper-Slaboszewicz, V.; Loisel, Guillaume Pascal; Flanagan, Timothy McGuire; Bell, Kate Suzanne; Jones, Brent M.; McPherson, Leroy A.; Rochau, Gregory A.; Chittenden, Jeremy P.; Sherlock, Mark; Appelbe, Brian; Giuliani, John; Ouart, Nicholas; Seely, John

    2015-12-01

    We report on experiments demonstrating the transition from thermally-dominated K-shell line emission to non-thermal, hot-electron-driven inner-shell emission for z pinch plasmas on the Z machine. While x-ray yields from thermal K-shell emission decrease rapidly with increasing atomic number Z, we find that non-thermal emission persists with favorable Z scaling, dominating over thermal emission for Z=42 and higher (hn ≥ 17keV). Initial experiments with Mo (Z=42) and Ag (Z=47) have produced kJ-level emission in the 17-keV and 22-keV Kα lines respectively. We will discuss the electron beam properties that could excite these non - thermal lines. We also report on experiments that have attempted to control non - thermal K - shell line emission by modifying the wire array or load hardware setup.

  18. NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS

    SciTech Connect (OSTI)

    Bhatt, B.

    2000-08-20

    Currently CARB estimates on road diesel vehicles contribute 50% of the NOX and 78% of the particulates being discharged from mobile sources. Diesel emissions obviously must be reduced if future air quality targets are to be met. A critical technological barrier exists because there are no commercial technologies available, which can reduce NOX from diesel (lean), exhaust containing 5-15% O2 concentration. One promising approach to reducing NOX and particulates from diesel exhaust is to use a combination of plasma with catalyst. Plasma can be generated thermally or non-thermally. Thermal plasma is formed by heating the system to an exceedingly high temperature (>2000 C). High temperature requirements for plasma makes thermal plasma inefficient and requires skillful thermal management and hence is considered impractical for mobile applications. Non-thermal plasma directs electrical energy into the creation of free electrons, which in turn react with gaseous species thus creating plasma. A combination of non-thermal plasma with catalysts can be referred to Plasma Assisted Catalysts or PAC. PAC technology has been demonstrated in stationary sources where non-thermal plasma catalysis is carried out in presence of NH3 as a reductant. In stationary applications NO is oxidized to HNO3 and then into ammonium nitrate where it is condensed and removed. This approach is impractical for mobile application because of the ammonia requirement and the ultimate mechanism by which NOX is removed. However, if a suitable catalyst can be found which can use onboard fuel as reductant then the technology holds a considerable promise. NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS Ralph Slone, B. Bhatt and Victor Puchkarev NOXTECH INC. In addition to the development of an effective catalyst, a non-thermal plasma reactor needs be scaled and demonstrated along with a reliable and cost effective plasma power source and onboard HC source needs to be proven. Under the work

  19. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mistry, Hemma; Varela, Ana Sofia; Bonifacio, Cecile S.; Zegkinoglou, Ioannis; Sinev, Ilya; Choi, Yong-Wook; Kisslinger, Kim; Stach, Eric A.; Yang, Judith C.; Strasser, Peter; et al

    2016-06-30

    There is an urgent need to develop technologies that use renewable energy to convert waste products such as carbon dioxide into hydrocarbon fuels. Carbon dioxide can be electrochemically reduced to hydrocarbons over copper catalysts, although higher efficiency is required. We have developed oxidized copper catalysts displaying lower overpotentials for carbon dioxide electroreduction and record selectivity towards ethylene (60%) through facile and tunable plasma treatments. Herein we provide insight into the improved performance of these catalysts by combining electrochemical measurements with microscopic and spectroscopic characterization techniques. Operando X-ray absorption spectroscopy and cross-sectional scanning transmission electron microscopy show that copper oxides aremore » surprisingly resistant to reduction and copper+ species remain on the surface during the reaction. Furthermore, our results demonstrate that the roughness of oxide-derived copper catalysts plays only a partial role in determining the catalytic performance, while the presence of copper+ is key for lowering the onset potential and enhancing ethylene selectivity.« less

  20. DETERMINATION OF NON-THERMAL VELOCITY DISTRIBUTIONS FROM SERTS LINEWIDTH OBSERVATIONS

    SciTech Connect (OSTI)

    Coyner, Aaron J. [Department of Physics, Catholic University of America, 620 Michigan Avenue, Washington, DC 20064 (United States); Davila, Joseph M., E-mail: aaron.j.coyner@nasa.gov [Code 671, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2011-12-01

    Non-thermal velocities obtained from the measurement of coronal Extreme Ultraviolet (EUV) linewidths have been consistently observed in solar EUV spectral observations and have been theorized to result from many plausible scenarios including wave motions, turbulence, or magnetic reconnection. Constraining these velocities can provide a physical limit for the available energy resulting from unresolved motions in the corona. We statistically determine a series of non-thermal velocity distributions from linewidth measurements of 390 emission lines from a wide array of elements and ionization states observed during the Solar Extreme Ultraviolet Research Telescope and Spectrograph 1991-1997 flights covering the spectral range 174-418 A and a temperature range from 80,000 K to 12.6 MK. This sample includes 248 lines from active regions, 101 lines from quiet-Sun regions, and 41 lines were observed from plasma off the solar limb. We find a strongly peaked distribution corresponding to a non-thermal velocity of 19-22 km s{sup -1} in all three of the quiet-Sun, active region, and off-limb distributions. For the possibility of Alfven wave resonance heating, we find that velocities in the core of these distributions do not provide sufficient energy, given typical densities and magnetic field strengths for the coronal plasma, to overcome the estimated coronal energy losses required to maintain the corona at the typical temperatures working as the sole mechanism. We find that at perfect efficiency 50%-60% of the needed energy flux can be produced from the non-thermal velocities measured.

  1. Silicon drift detector based X-ray spectroscopy diagnostic system for the study of non-thermal electrons at Aditya tokamak

    SciTech Connect (OSTI)

    Purohit, S., E-mail: pshishir@ipr.res.in; Joisa, Y. S.; Raval, J. V.; Ghosh, J.; Tanna, R.; Shukla, B. K.; Bhatt, S. B. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2014-11-15

    Silicon drift detector based X-ray spectrometer diagnostic was developed to study the non-thermal electron for Aditya tokamak plasma. The diagnostic was mounted on a radial mid plane port at the Aditya. The objective of diagnostic includes the estimation of the non-thermal electron temperature for the ohmically heated plasma. Bi-Maxwellian plasma model was adopted for the temperature estimation. Along with that the study of high Z impurity line radiation from the ECR pre-ionization experiments was also aimed. The performance and first experimental results from the new X-ray spectrometer system are presented.

  2. Fate of SO{sub 2} During Plasma Treatment of Diesel Engine Exhaust

    SciTech Connect (OSTI)

    Brusasco, R.M.; Merritt, B.T.; Vogtlin, G.E.

    1999-10-25

    Several catalytic aftertreatment technologies rely on the conversion of NO to NO{sub 2} to achieve efficient reduction of NO{sub x} and particulates in diesel engine exhaust. These technologies require low sulfur fuel because the catalyst component that is active in converting NO to NO{sub 2} is also active in converting SO{sub 2} to SO{sub 3}. A non-thermal plasma can be used for the selective partial oxidation of NO to NO{sub 2} in the gas-phase under diesel engine exhaust conditions. This paper discusses how a non-thermal plasma can efficiently oxidize NO to NO{sub 2} without oxidizing SO{sub 2} to SO{sub 3}. It is shown that the presence of hydrocarbons in the plasma is essential for enhancing the selective partial oxidation of NO and suppressing the oxidation of SO{sub 2}.

  3. Plasma-assisted catalytic reduction system

    DOE Patents [OSTI]

    Vogtlin, George E.; Merritt, Bernard T.; Hsiao, Mark C.; Wallman, P. Henrik; Penetrante, Bernardino M.

    1998-01-01

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO.sub.x reduction in oxygen-rich vehicle engine exhausts.

  4. Plasma-assisted catalytic reduction system

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1998-01-27

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  5. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.; Brusasco, Raymond M.

    2000-01-01

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  6. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.; Brusasco, Raymond M.

    2002-01-01

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  7. Oxidation catalyst

    DOE Patents [OSTI]

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  8. Hydrodynamic simulation of non-thermal pressure profiles of galaxy clusters

    SciTech Connect (OSTI)

    Nelson, Kaylea; Nagai, Daisuke; Lau, Erwin T.

    2014-09-01

    Cosmological constraints from X-ray and microwave observations of galaxy clusters are subjected to systematic uncertainties. Non-thermal pressure support due to internal gas motions in galaxy clusters is one of the major sources of astrophysical uncertainties. Using a mass-limited sample of galaxy clusters from a high-resolution hydrodynamical cosmological simulation, we characterize the non-thermal pressure fraction profile and study its dependence on redshift, mass, and mass accretion rate. We find that the non-thermal pressure fraction profile is universal across redshift when galaxy cluster radii are defined with respect to the mean matter density of the universe instead of the commonly used critical density. We also find that the non-thermal pressure is predominantly radial, and the gas velocity anisotropy profile exhibits strong universality when galaxy cluster radii are defined with respect to the mean matter density of the universe. However, we find that the non-thermal pressure fraction is strongly dependent on the mass accretion rate of the galaxy cluster. We provide fitting formulae for the universal non-thermal pressure fraction and velocity anisotropy profiles of gas in galaxy clusters, which should be useful in modeling astrophysical uncertainties pertinent to using galaxy clusters as cosmological probes.

  9. Non-thermal electron acceleration in low Mach number collisionless shocks. I. Particle energy spectra and acceleration mechanism

    SciTech Connect (OSTI)

    Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo

    2014-10-20

    Electron acceleration to non-thermal energies in low Mach number (M{sub s} ? 5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M{sub s} = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ? 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  10. Energetic electron propagation in the decay phase of non-thermal flare emission

    SciTech Connect (OSTI)

    Huang, Jing; Yan, Yihua; Tsap, Yuri T.

    2014-06-01

    On the basis of the trap-plus-precipitation model, the peculiarities of non-thermal emission in the decay phase of solar flares have been considered. The calculation formulas for the escape rate of trapped electrons into the loss cone in terms of time profiles of hard X-ray (HXR) and microwave (MW) emission have been obtained. It has been found that the evolution of the spectral indices of non-thermal emission depend on the regimes of the pitch angle diffusion of trapped particles into the loss cone. The properties of non-thermal electrons related to the HXR and MW emission of the solar flare on 2004 November 3 are studied with Nobeyama Radioheliograph, Nobeyama Radio Polarimeters, RHESSI, and Geostationary Operational Environmental Satellite observations. The spectral indices of non-thermal electrons related to MW and HXR emission remained constant or decreased, while the MW escape rate as distinguished from that of the HXRs increased. This may be associated with different diffusion regimes of trapped electrons into the loss cone. New arguments in favor of an important role of the superstrong diffusion for high-energy electrons in flare coronal loops have been obtained.

  11. AN OBSERVED CORRELATION BETWEEN THERMAL AND NON-THERMAL EMISSION IN GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Michael Burgess, J.; Preece, Robert D. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Ryde, Felix; Axelsson, Magnus [Department of Physics, Royal Institute of Technology (KTH), AlbaNova, SE-106 91 Stockholm (Sweden); Veres, Peter; Mszros, Peter [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Connaughton, Valerie; Briggs, Michael; Bhat, P. N.; Pelassa, Veronique [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Pe'er, Asaf [Physics Department, University College Cork, Cork (Ireland); Iyyani, Shabnam [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden); Goldstein, Adam [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Baring, Matthew G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Byrne, David; Fitzpatrick, Gerard; Foley, Suzanne [University College Dublin, Belfield, Dublin 4 (Ireland); Kocevski, Daniel; Omodei, Nicola [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Paciesas, William S., E-mail: jmichaelburgess@gmail.com, E-mail: rob.preece@nasa.gov, E-mail: felix@particle.kth.se, E-mail: veres@gwu.edu, E-mail: npp@astro.psu.edu [Universities Space Research Association, Huntsville, AL 35805 (United States); and others

    2014-04-01

    Recent observations by the Fermi Gamma-ray Space Telescope have confirmed the existence of thermal and non-thermal components in the prompt photon spectra of some gamma-ray bursts (GRBs). Through an analysis of six bright Fermi GRBs, we have discovered a correlation between the observed photospheric and non-thermal ?-ray emission components of several GRBs using a physical model that has previously been shown to be a good fit to the Fermi data. From the spectral parameters of these fits we find that the characteristic energies, E {sub p} and kT, of these two components are correlated via the relation E {sub p}?T {sup ?} which varies from GRB to GRB. We present an interpretation in which the value of the index ? indicates whether the jet is dominated by kinetic or magnetic energy. To date, this jet composition parameter has been assumed in the modeling of GRB outflows rather than derived from the data.

  12. SOLCOST - Version 3. 0. Solar energy design program for non-thermal specialists

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The SOLCOST solar energy design program is a public domain computerized design tool intended for use by non-thermal specialists to size solar systems with a methodology based on life cycle cost. An overview of SOLCOST capabilities and options is presented. A detailed guide to the SOLCOST input parameters is included. Sample problems showing typical imput decks and resulting SOLCOST output sheets are given. Details of different parts of the analysis are appended. (MHR)

  13. Oxyhydrochlorination catalyst

    DOE Patents [OSTI]

    Taylor, Charles E.; Noceti, Richard P.

    1992-01-01

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  14. Preradiation studies for non-thermal Z-pinch wire load experiments on Saturn

    SciTech Connect (OSTI)

    Sanford, T.W.L.; Humphreys, D.R.; Poukey, J.W.; Marder, B.M.; Halbleib, J.A.; Crow, J.T.; Spielman, R.B.; Mock, R.C.

    1994-06-01

    The implosion dynamics of compact wire arrays on Saturn are explored as a function of wire mass m, wire length {ell}, wire radii R, and radial power-flow feed geometry using the ZORK code. Electron losses and the likelihood of arcing in the radial feed adjacent the wire load are analyzed using the TWOQUICK and CYLTRAN codes. The physical characteristics of the implosion and subsequent thermal radiation production are estimated using the LASNEX code in one dimension. These analyses show that compact tungsten wire arrays with parameters suggested by D. Mosher and with a 21-nH vacuum feed geometry satisfy the empirical scaling criterion I/(M/{ell}) {approximately} 2 MA/(mg/cm) of Mosher for optimizing non-thermal radiation from z pinches, generate low electron losses in the radial feeds, and generate electric fields at the insulator stack below the Charlie Martin flashover limit thereby permitting full power to be delivered to the load. Under such conditions, peak currents of {approximately}5 MA can be delivered to wire loads {approximately}20 ns before the driving voltage reverses at the insulator stack, potentially allowing the m = 0 instability to develop with the subsequent emission of non-thermal radiation as predicted by the Mosher model.

  15. Non-thermal production of minimal dark matter via right-handed neutrino decay

    SciTech Connect (OSTI)

    Aoki, Mayumi; Toma, Takashi; Vicente, Avelino

    2015-09-29

    Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2){sub L} quintuplet and a scalar SU(2){sub L} septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.

  16. Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures

    DOE Patents [OSTI]

    Penetrante, Bernardino M.; Brusasco, Raymond M.; Merritt, Bernard T.; Vogtlin, George E.

    2004-02-03

    A high-surface-area (greater than 600 m2/g), large-pore (pore size diameter greater than 6.5 angstroms), basic zeolite having a structure such as an alkali metal cation-exchanged Y-zeolite is employed to convert NO.sub.x contained in an oxygen-rich engine exhaust to N.sub.2 and O.sub.2. Preferably, the invention relates to a two-stage method and apparatus for NO.sub.x reduction in an oxygen-rich engine exhaust such as diesel engine exhaust that includes a plasma oxidative stage and a selective reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and added hydrocarbons. The second stage employs a lean-NO.sub.x catalyst including the basic zeolite at relatively low temperatures to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O.

  17. Photo-oxidation catalysts

    DOE Patents [OSTI]

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  18. Thermal and Non-thermal Physiochemical Processes in Nanoscale Films of Amorphous Solid Water

    SciTech Connect (OSTI)

    Smith, R. Scott; Petrik, Nikolay G.; Kimmel, Gregory A.; Kay, Bruce D.

    2012-01-17

    Amorphous solid water (ASW) is a metastable form of water created by vapor deposition onto a cold substrate (typically less than 130 K). Since this unusual form of water only exists on earth in laboratories with highly specialized equipment, it is fair to ask why there is any interest in studying this esoteric material. Much of the scientific interest involves using ASW as a model system to explore the physical and reactive properties of liquid water and aqueous solutions. Other researchers are interested in ASW because it is believed to be the predominate form of water in the extreme cold temperatures found in many astrophysical and planetary environments. In addition, ASW is a convenient model system for studying the stability of metastable systems (glasses) and the properties of highly porous materials. A fundamental understanding of such properties has applications in a diverse range of disciplines including cryobiology, food science, pharmaceuticals, astrophysics and nuclear waste storage among others.There exist several excellent reviews on the properties of ASW and supercooled liquid water and a new comprehensive review is beyond the scope of this Account. Instead, we focus on our research over the past 15 years using molecular beams and surface science techniques to probe the thermal and non thermal properties of nanoscale films of ASW. We use molecular beams to precisely control the deposition conditions (flux, incident, energy, incident angle) to create compositionally-tailored, nanoscale films of ASW at low temperatures. To study the transport properties (viscosity, diffusivity), the amorphous films can be heated above their glass transition temperatures, Tg, at which time they transform into deeply supercooled liquids prior to crystallization. The advantage of this approach is that at temperatures near Tg the viscosity is approximately 15 orders of magnitude larger than a normal liquid, and therefore the crystallization kinetics are dramatically slowed

  19. MEASUREMENTS OF ANISOTROPIC ION TEMPERATURES, NON-THERMAL VELOCITIES, AND DOPPLER SHIFTS IN A CORONAL HOLE

    SciTech Connect (OSTI)

    Hahn, M.; Savin, D. W.

    2013-02-15

    We present a new diagnostic allowing one to measure the anisotropy of ion temperatures and non-thermal velocities, as well as Doppler shifts with respect to the ambient magnetic field. This method provides new results, as well as an independent test for previous measurements obtained with other techniques. Our spectral data come from observations of a low-latitude, on-disk coronal hole. A potential field source surface model was used to calculate the angle between the magnetic field lines and the line of sight for each spatial bin of the observation. A fit was performed to determine the line widths and Doppler shifts parallel and perpendicular to the magnetic field. For each line width component we derived ion temperatures T {sub i,} and T {sub i, Parallel-To} and non-thermal velocities v {sub nt,} and v {sub nt, Parallel-To }. T {sub i,} was cooler than off-limb polar coronal hole measurements, suggesting increasing collisional cooling with decreasing height. T {sub i, Parallel-To} is consistent with a uniform temperature of (1.8 {+-} 0.2) Multiplication-Sign 10{sup 6} K for each ion. Since parallel ion heating is expected to be weak, this ion temperature should reflect the proton temperature. A comparison between our results and others implies a large proton temperature gradient around 1.02 R {sub Sun }. The non-thermal velocities are thought to be proportional to the amplitudes of various waves. Our results for v {sub nt,} agree with Alfven wave amplitudes inferred from off-limb polar coronal hole line width measurements. Our v {sub nt, Parallel-To} results are consistent with slow magnetosonic wave amplitudes inferred from Fourier analysis of time-varying intensity fluctuations. Doppler shift measurements yield outflows of Almost-Equal-To 5 km s{sup -1} for ions formed over a broad temperature range. This differs from other studies that found a strong Doppler shift dependence on formation temperature.

  20. Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    confinement by circularly polarized electromagnetic field in toroidal geometry Vladimir A. Svidzinski University of Wisconsin-Madison, Madison, Wisconsin 53706, USA and Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ͑Received 21 May 2007; accepted 2 July 2007; published online 31 October 2007͒ A novel plasma confinement concept based on plasma confinement by electromagnetic pressure of circularly polarized electromagnetic fields is proposed. Practical implementation of this

  1. Hydroprocessing catalyst

    SciTech Connect (OSTI)

    Clark, F.T.; Hensley, A.L. Jr.; Kukes, S.G.; Arters, D.C.

    1993-06-22

    A hydroprocessing catalyst is described comprising at least one hydrogenation metal selected from the group consisting of the Group VIB metals and the Group VIII metals deposited on an inorganic oxide support, said catalyst being characterized by a surface area of greater than about 220 m[sup 2]/g, a pore volume of 0.23-0.30 cc/g in pores greater than about 600 Angstroms, an average pore radius of about 30-70 Angstroms in pores less than about 600 Angstroms, and an incremental pore volume curve with a maximum at about 25-50 Angstroms radius.

  2. Hydroprocessing catalysts

    SciTech Connect (OSTI)

    Alafandi, H.; Stamires, D.

    1980-04-15

    This invention relates to a hydroprocessing catalyst particularly useful in hydrocracking comprising a low sodium faujasite zeolite produced by a high pressure exchange of Na cations with a solution of an ammonium salt as a substrate for incorporation of a hydrogenating metal compound.

  3. Catalyst activator

    DOE Patents [OSTI]

    McAdon, Mark H.; Nickias, Peter N.; Marks, Tobin J.; Schwartz, David J.

    2001-01-01

    A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

  4. EVIDENCE OF NON-THERMAL X-RAY EMISSION FROM HH 80

    SciTech Connect (OSTI)

    Lpez-Santiago, J.; Peri, C. S.; Benaglia, P.; Bonito, R.; Miceli, M.; Albacete-Colombo, J. F.; De Castro, E.

    2013-10-20

    Protostellar jets appear at all stages of star formation when the accretion process is still at work. Jets travel at velocities of hundreds of km s{sup 1}, creating strong shocks when interacting with the interstellar medium. Several cases of jets have been detected in X-rays, typically showing soft emission. For the first time, we report evidence of hard X-ray emission possibly related to non-thermal processes not explained by previous models of the post-shock emission predicted in the jet/ambient interaction scenario. HH 80 is located at the south head of the jet associated with the massive protostar IRAS 18162-2048. It shows soft and hard X-ray emission in regions that are spatially separated, with the soft X-ray emission region situated behind the region of hard X-ray emission. We propose a scenario for HH 80 where soft X-ray emission is associated with thermal processes from the interaction of the jet with denser ambient matter and hard X-ray emission is produced by synchrotron radiation at the front shock.

  5. Selective reduction of NOx in oxygen rich environments with plasma...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    environments with plasma-assisted catalysis: Catalyst development and mechanistic studies Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: ...

  6. Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heating in reversed field pinches at the fundamental ion cyclotron frequency V. A. Svidzinski and S. C. Prager University of Wisconsin-Madison, Madison, Wisconsin 53706 ͑Received 14 November 2001; accepted 29 January 2002͒ The possibility of plasma heating in reversed field pinches ͑RFP͒ by radio-frequency ͑rf͒ waves at ␻Ϸ␻ ci is studied. A simple cylindrical RFP equilibrium which is symmetric in poloidal and axial directions is considered. RF fields are excited with given poloidal

  7. MERCURY REMOVAL IN A NON-THERMAL, PLASMA-BASED MULTI-POLLUTANT CONTROL TECHNOLOGY FOR UTILITY BOILERS

    SciTech Connect (OSTI)

    Matthew B. Loomis

    2004-05-01

    This technical report describes the results from Task 1 of the Cooperative Agreement. Powerspan has installed, tested, and validated Hg SCEMS systems for measuring oxidized and elemental mercury at the pilot facility at R.E. Burger Generating Station in Shadyside, Ohio. When operating properly, these systems are capable of providing near real-time monitoring of inlet and outlet gas flow streams and are capable of extracting samples from different locations to characterize mercury removal at these different ECO process stages. This report discusses the final configuration of the Hg CEM systems and the operating protocols that increase the reliability of the HG SCEM measurements. Documentation on the testing done to verify the operating protocols is also provided. In addition the report provides details on the protocols developed and used for measurement of mercury in process liquid streams and in captured ash.

  8. MERCURY REMOVAL IN A NON-THERMAL, PLASMA-BASED MULTI-POLLUTANT CONTROL TECHNOLOGY FOR UTILITY BOILERS

    SciTech Connect (OSTI)

    Christopher R. McLaron

    2004-12-01

    Powerspan has conducted pilot scale testing of a multi-pollutant control technology at FirstEnergy's Burger Power Plant under a cooperative agreement with the U.S. Department of Energy. The technology, Electro-Catalytic Oxidation (ECO), simultaneously removes sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), fine particulate matter (PM{sub 2.5}) and mercury (Hg) from the flue gas of coal-fired power plants. Powerspan's ECO{reg_sign} pilot test program focused on optimization of Hg removal in a 1-MWe slipstream pilot while maintaining greater than 90% removal of NO{sub x} and 98% removal of SO{sub 2}. This Final Technical Report discusses pilot operations, installation and maintenance of the Hg SCEMS instrumentation, and performance results including component and overall removal efficiencies of SO{sub 2}, NO{sub x}, PM and Hg from the flue gas and removal of captured Hg from the co-product fertilizer stream.

  9. Non-thermal electron acceleration in low Mach number collisionless shocks. II. Firehose-mediated Fermi acceleration and its dependence on pre-shock conditions

    SciTech Connect (OSTI)

    Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo

    2014-12-10

    Electron acceleration to non-thermal energies is known to occur in low Mach number (M{sub s} ? 5) shocks in galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Using two-dimensional (2D) particle-in-cell (PIC) plasma simulations, we showed in Paper I that electrons are efficiently accelerated in low Mach number (M{sub s} = 3) quasi-perpendicular shocks via a Fermi-like process. The electrons bounce between the upstream region and the shock front, with each reflection at the shock resulting in energy gain via shock drift acceleration. The upstream scattering is provided by oblique magnetic waves that are self-generated by the electrons escaping ahead of the shock. In the present work, we employ additional 2D PIC simulations to address the nature of the upstream oblique waves. We find that the waves are generated by the shock-reflected electrons via the firehose instability, which is driven by an anisotropy in the electron velocity distribution. We systematically explore how the efficiency of wave generation and of electron acceleration depend on the magnetic field obliquity, the flow magnetization (or equivalently, the plasma beta), and the upstream electron temperature. We find that the mechanism works for shocks with high plasma beta (? 20) at nearly all magnetic field obliquities, and for electron temperatures in the range relevant for galaxy clusters. Our findings offer a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  10. Electrochemical catalyst recovery method

    SciTech Connect (OSTI)

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  11. Electrochemical catalyst recovery method

    DOE Patents [OSTI]

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  12. Lean-NOx Catalyst Development for Diesel Engine Applications | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Lean-NOx Catalyst Development for Diesel Engine Applications Lean-NOx Catalyst Development for Diesel Engine Applications 2002 DEER Conference Presentation: Caterpillar Inc. 2002_deer_park.pdf (302.37 KB) More Documents & Publications Lean NOx Catalysis Research and Development Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

  13. Hydroprocessing catalyst manufacture

    SciTech Connect (OSTI)

    Lostaglio, V.J.; Carruthers, J.D.

    1985-01-01

    Hydroprocessing catalysts for the oil-refining industry have undergone significant improvements since the oil shortages of the late 1970's. Spurred by the need for refiners to process heavy, sour feeds, catalyst manufacturers have developed technology to meet these changing demands. Current manufacturing techniques in the production of substrate and final catalyst are reviewed. New approach to the production of resid hydrotreatment catalysts are considered.

  14. The extent of non-thermal particle acceleration in relativistic, electron-positron reconnection

    SciTech Connect (OSTI)

    Werner, Greg; Guo, Fan

    2015-07-21

    Reconnection is studied as an explanation for high-energy flares from the Crab Nebula. The production of synchrotron emission >100 MeV challenges classical models of acceleration. 3D simulation shows that reconnection, converting magnetic energy to kinetic energy, can accelerate beyond γrad. The power-law index and high-energy cutoff are important for understanding the radiation spectrum dN/dγ = f(γ) ∝ γ. α and cutoff were measured vs. L and σ, where L is system (simulation) size and σ is upstream magnetization (σ = B2/4πnmc2). α can affect the high-energy cutoff. In conclusion, for collisionless relativistic reconnection in electron-positron plasma, without guide field, nb/nd=0.1: (1) relativistic magnetic reconnection yields power-law particle spectra, (2) the power law index decreases as σ increases, approaching ≈1.2. (3) the power law is cut off at an energy related to acceleration within a single current layer, which is proportional to the current layer length (for small systems, that length is the system length, yielding γc2 ≈ 0.1 L/ρ0; for large systems, the layer length is limited by secondary tearing instability, yielding γc1 ≈ 4σ; the transition from small to large is around L/ρ0 = 40σ.). (4) although the large-system energy cutoff is proportional to the average energy per particle, it is significantly higher than the average energy per particle.

  15. Acceleration of relativistic electrons by magnetohydrodynamic turbulence: Implications for non-thermal emission from black hole accretion disks

    SciTech Connect (OSTI)

    Lynn, Jacob W.; Quataert, Eliot; Chandran, Benjamin D. G.; Parrish, Ian J.

    2014-08-10

    We use analytic estimates and numerical simulations of test particles interacting with magnetohydrodynamic (MHD) turbulence to show that subsonic MHD turbulence produces efficient second-order Fermi acceleration of relativistic particles. This acceleration is not well described by standard quasi-linear theory but is a consequence of resonance broadening of wave-particle interactions in MHD turbulence. We provide momentum diffusion coefficients that can be used for astrophysical and heliospheric applications and discuss the implications of our results for accretion flows onto black holes. In particular, we show that particle acceleration by subsonic turbulence in radiatively inefficient accretion flows can produce a non-thermal tail in the electron distribution function that is likely important for modeling and interpreting the emission from low-luminosity systems such as Sgr A* and M87.

  16. Non-thermal effects on femtosecond laser ablation of polymers extracted from the oscillation of time-resolved reflectivity

    SciTech Connect (OSTI)

    Kumada, Takayuki Akagi, Hiroshi; Itakura, Ryuji; Otobe, Tomohito; Nishikino, Masaharu; Yokoyama, Atsushi

    2015-06-01

    The dynamics of femtosecond laser ablation of transparent polymers were examined using time-resolved reflectivity. When these polymers were irradiated by a pump pulse with fluence above the ablation threshold of 0.8–2.0 J/cm{sup 2}, we observed the oscillation of the reflectivity caused by the interference between the reflected probe pulses from the sample surface and the thin layer due to the non-thermal photomechanical effects of spallation. As the fluence of the pump pulse increased, the separation velocity of the thin layer increased from 6 km/s to the asymptotic value of 11 km/s. It is suggested that the velocities are determined by shock-wave velocities of the photo-excited layer.

  17. System for reactivating catalysts

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  18. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  19. Catalyst by Design - Theoretical, Nanostructural, and Experimental...

    Broader source: Energy.gov (indexed) [DOE]

    Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for Diesel Engine Emission Treatment Catalysts via First Principles Catalysts via ...

  20. Methods of making textured catalysts

    DOE Patents [OSTI]

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  1. Liquefaction with microencapsulated catalysts

    DOE Patents [OSTI]

    Weller, Sol W. (Williamsville, NY)

    1985-01-01

    A method of dispersing a liquefaction catalyst within coal or other carbonaceous solids involves providing a suspension in oil of microcapsules containing the catalyst. An aqueous solution of a catalytic metal salt is emulsified in the water-immiscible oil and the resulting minute droplets microencapsulated in polymeric shells by interfacial polycondensation. The catalyst is subsequently blended and dispersed throughout the powdered carbonaceous material to be liquefied. At liquefaction temperatures the polymeric microcapsules are destroyed and the catalyst converted to minute crystallites in intimate contact with the carbonaceous material.

  2. Tunable Catalysts - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lifetimes, Berkeley Lab Tunable Catalysts, made with affordable metals, utilize graphene to electrically tune the converting rate efficacy and efficiency of catalysts....

  3. Laser Catalyst - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Laser Catalyst Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Laser Catalyst is a method for ...

  4. Reducible oxide based catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  5. Nanostructured catalyst supports

    DOE Patents [OSTI]

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  6. Nanostructured catalyst supports

    SciTech Connect (OSTI)

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  7. Exhaust system with emissions storage device and plasma reactor

    DOE Patents [OSTI]

    Hoard, John W.

    1998-01-01

    An exhaust system for a combustion system, comprising a storage device for collecting NO.sub.x, hydrocarbon, or particulate emissions, or mixture of these emissions, and a plasma reactor for destroying the collected emissions is described. After the emission is collected in by the storage device for a period of time, the emission is then destroyed in a non-thermal plasma generated by the plasma reactor. With respect to the direction of flow of the exhaust stream, the storage device must be located before the terminus of the plasma reactor, and it may be located wholly before, overlap with, or be contained within the plasma reactor.

  8. Increasing FCC regenerator catalyst level

    SciTech Connect (OSTI)

    Wong, R.F. )

    1993-11-01

    A Peruvian FCC unit's operations were improved by increasing the regenerator's catalyst level. This increase resulted in lower stack losses, an improved temperature profile, increased catalyst activity and a lower catalyst consumption rate. A more stable operation saved this Peruvian refiner over $131,000 per year in catalyst alone. These concepts and data may be suitable for your FCC unit as well.

  9. Catalyst for microelectromechanical systems microreactors

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Sopchak, David A.; Upadhye, Ravindra S.; Reynolds, John G.; Satcher, Joseph H.; Gash, Alex E.

    2011-11-15

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  10. Catalyst for microelectromechanical systems microreactors

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Sopchak, David A.; Upadhye, Ravindra S.; Reynolds, John G.; Satcher, Joseph H.; Gash, Alex E.

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  11. BTO Catalyst | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BTO Catalyst BTO Catalyst bto_Catalyst_logo_072216.jpg The Building Technologies Office (BTO) is partnering with the successful SunShot Catalyst crowdsourcing competition to identify and solve problems related to software development, data, and/or automation in buildings. Over $1 million in total prize awards will be available during the different competition stages! The Catalyst competition consists of four phases: Ideation: Those working in the building technology space are invited to submit

  12. Epoxidation catalyst and process

    DOE Patents [OSTI]

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  13. Catalysts and method

    DOE Patents [OSTI]

    Taylor, Charles E.; Noceti, Richard P.

    1991-01-01

    An improved catlayst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HC1 and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  14. DOE Catalyst Demo Day

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy is organizing Catalyst Demo Day at the Franklin Institute in Philadelphia to showcase the next big startups in building energy efficiency and solar energy. Demo Day...

  15. Crystalline titanate catalyst supports

    DOE Patents [OSTI]

    Anthony, Rayford G.; Dosch, Robert G.

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  16. Plasmatron-catalyst system

    DOE Patents [OSTI]

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2004-09-21

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  17. Plasmatron-catalyst system

    DOE Patents [OSTI]

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2007-10-09

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  18. Crystalline titanate catalyst supports

    DOE Patents [OSTI]

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  19. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOE Patents [OSTI]

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  20. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOE Patents [OSTI]

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  1. Novel ebullated bed catalyst regeneration technology improves regenerated catalyst quality

    SciTech Connect (OSTI)

    Neuman, D.J.

    1995-09-01

    Regeneration of spent hydroprocessing catalysts has long been practiced by the refining industry. With increased pressures on refiners to reduce catalyst expenditures and waste generation, refiners are more frequently reusing spent hydroprocessing catalysts after ex-situ regeneration to restore catalytic activity. By reusing regenerated catalyst for at least two cycles, the refiner reduces catalyst waste by at least one-half. As environmental laws become more restrictive, spent hydroprocessing catalyst is more likely to be classified as hazardous waste. Disposal of spent catalyst, which was previously accomplished by landfilling, now requires more expensive reclamation techniques. TRICAT has introduced the TRICAT Regeneration Process (TRP), a novel ebullated bed regeneration plant, to improve the catalyst regeneration process. The ebullated bed design allows for better control of heat release during the regeneration process. As a result, the regeneration can be accomplished in a single-pass, with improved catalyst activity retention. Catalyst losses are also minimized due to reduced catalyst handling. Commercial results from the TRP have demonstrated successful scale-up of the technology from pilot scale. The plant has achieved complete recovery of the available catalyst activity with little or no losses in catalyst yield or extrudate length. The flexibility of the TRP to process a variety of catalysts is also discussed.

  2. Catalyst by Design - Theoretical, Nanostructural, and Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidation Catalyst for Diesel Engine Emission Treatment Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for Diesel Engine Emission ...

  3. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most ...

  4. A Parametric Study of the Effect of Temperature and Hydrocarbon Species on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Product Distribution from a Non-Thermal Plasma Reactor | Department of Energy A Parametric Study of the Effect of Temperature and Hydrocarbon Species on the Product Distribution from a Non-Thermal Plasma Reactor A Parametric Study of the Effect of Temperature and Hydrocarbon Species on the Product Distribution from a Non-Thermal Plasma Reactor 2002 DEER Conference Presentation: Delphi Corporation 2002_deer_fisher.pdf (134.42 KB) More Documents & Publications Lean-NOx Catalyst

  5. Selective reduction of NOx in oxygen rich environments with plasma-assisted

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    catalysis: Catalyst development and mechanistic studies | Department of Energy reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies 2003 DEER Conference Presentation: Pacific Northwest National Laboratory 2003_deer_peden.pdf (867.07 KB) More Documents & Publications Plasma-Activated Lean

  6. Supported organoiridium catalysts for alkane dehydrogenation

    DOE Patents [OSTI]

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  7. Partial oxidation catalyst

    DOE Patents [OSTI]

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  8. Catalyst, Method Of Making, And Reactions Using The Catalyst

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y.; Wang, Yong; Gao, Yufei

    2004-07-13

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  9. Catalyst, method of making, and reactions using the catalyst

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA

    2009-03-03

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  10. Catalyst, method of making, and reactions using the catalyst

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA

    2002-08-27

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  11. Aerogel derived catalysts

    SciTech Connect (OSTI)

    Reynolds, J. G., LLNL

    1996-12-11

    Aerogels area class of colloidal materials which have high surface areas and abundant mesoporous structure. SiO{sub 2} aerogels show unique physical, optical and structural properties. When catalytic metals are incorporated in the aerogel framework, the potential exists for new and very effective catalysts for industrial processes. Three applications of these metal-containing SiO{sub 2} aerogels as catalysts are briefly reviewed in this paper--NO{sub x} reduction, volatile organic compound destruction, and partial oxidation of methane.

  12. THE LACK OF DIFFUSE, NON-THERMAL HARD X-RAY EMISSION IN THE COMA CLUSTER: THE SWIFT BURST ALERT TELESCOPE'S EYE VIEW

    SciTech Connect (OSTI)

    Wik, Daniel R.; Baumgartner, Wayne H.; Okajima, Takashi; Tueller, Jack; Finoguenov, Alexis; Mushotzky, Richard F.; Clarke, Tracy E.

    2011-02-01

    The Coma Cluster of galaxies hosts the brightest radio halo known and has therefore been the target of numerous searches for associated inverse Compton (IC) emission, particularly at hard X-ray energies where the IC signal must eventually dominate over thermal emission. The most recent search with the Suzaku Hard X-ray Detector failed to confirm previous IC detections with RXTE and BeppoSAX, instead setting an upper limit 2.5 times below their non-thermal flux. However, this discrepancy can be resolved if the IC emission is very extended, beyond the scale of the cluster radio halo. Using reconstructed sky images from the 58-month Swift Burst Alert Telescope (BAT) all-sky survey, the feasibility of such a solution is investigated. Building on Renaud et al., we test and implement a method for extracting the fluxes of extended sources, assuming specified spatial distributions. BAT spectra are jointly fit with an XMM-Newton EPIC-pn spectrum derived from mosaic observations. We find no evidence for large-scale IC emission at the level expected from the previously detected non-thermal fluxes. For all non-thermal spatial distributions considered, which span the gamut of physically reasonable IC models, we determine upper limits for which the largest (most conservative) limit is {approx}<4.2 x 10{sup -12} erg s{sup -1} cm{sup -2} (20-80 keV), which corresponds to a lower limit on the magnetic field B > 0.2 {mu} G. A nominal flux upper limit of <2.7 x 10{sup -12} erg s{sup -1} cm{sup -2}, with corresponding B > 0.25 {mu} G, is derived for the most probable IC distribution given the size of the radio halo and likely magnetic field radial profile.

  13. Atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S.

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  14. Final Report: Fiscal Year 1997 demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation of organic solids and liquids using peroxydisulfate

    SciTech Connect (OSTI)

    Cooper, J.F.

    1998-01-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment, chemical demilitarization and decontamination at LLNL since 1992. The process uses solutions of the peroxydisulfate ion (typically sodium or ammonium salts) to completely mineralize the organics to carbon dioxide and water. The expended oxidant may be electrolytically regenerated to minimize secondary waste. The paper briefly describes: free radical and secondary oxidant formation; electrochemical regeneration; offgas stream; and throughput.

  15. Hydrogen evolution reaction catalyst

    DOE Patents [OSTI]

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  16. Zinc sulfide liquefaction catalyst

    DOE Patents [OSTI]

    Garg, Diwakar

    1984-01-01

    A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

  17. Hydroprocessing catalyst composition

    SciTech Connect (OSTI)

    Apelian, M.R.; Degnan, T.F. Jr.; Marler, D.O.; Mazzone, D.N.

    1993-07-13

    A bifunctional hydroprocessing catalyst is described which comprises a metal component having hydrogenation/dehydrogenation functionality and a support component comprising an inorganic, non-layered, porous, crystalline phase material having pores with diameters of at least about 13 [angstrom] and exhibiting, after calcination, an X-ray diffraction pattern with at least one peak with a relative intensity of 100 at a d-spacing greater than about 18 [angstrom], the catalyst having a surface area S, where S, expressed in m[sup 2].g[sup [minus]1], is defined by the equation: S[ge]600-13.3X where X is the total metals loading in weight percent and is least 12 weight percent. A second hydroprocessing catalyst is described according to claim 1 in which the crystalline phase has a composition expressed as follows: M[sub n/q](W[sub a]X[sub b]Y[sub c]Z[sub d]O[sub h]) wherein M is one or more ions; n is the charge of the composition excluding M expressed as oxides; q is the weighted molar average valence of M; n/q is the number of moles or mole fraction of M; W is one or more divalent elements; X is one or more trivalent elements; Y is one or more tetravalent elements; Z is one or more pentavalent elements; a, b, c, and d are mole fraction of W, X, Y, and Z, respectively, h is a number of from 1 to 2.5; and (a+b+c+d) = 1. A third hydroprocessing catalyst is described according to claim 1 in which the catalyst is at least one base metal of Group VIA, VIIA or VIIIA of the Periodic Table.

  18. Molybdenum sulfide/carbide catalysts

    DOE Patents [OSTI]

    Alonso, Gabriel; Chianelli, Russell R.; Fuentes, Sergio; Torres, Brenda

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  19. Plasma-assisted heterogeneous catalysis for NOx reduction in lean-burn engine exhaust

    SciTech Connect (OSTI)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E.; Wan, C.Z.; Rice, G.W.; Voss, K.E.

    1997-12-31

    This paper discusses the combination of a plasma with a catalyst to improve the reduction of NO{sub x} under lean-burn conditions. The authors have been investigating the effects of a plasma on the NO{sub x} reduction activity and temperature operating window of various catalytic materials. One of the goals is to develop a fundamental understanding of the interaction between the gas-phase plasma chemistry and the heterogeneous chemistry on the catalyst surface. The authors have observed that plasma assisted heterogeneous catalysis can facilitate NO{sub x} reduction under conditions that normally make it difficult for either the plasma or the catalyst to function by itself. By systematically varying the plasma electrode and catalyst configuration, they have been able to elucidate the process by which the plasma chemistry affects the chemical reduction of NO{sub x} on the catalyst surface. They have discovered that the main effect of the plasma is to induce the gas-phase oxidation of NO to NO{sub 21}. The reduction of NO{sub x} to N{sub 2} is then accomplished by heterogeneous reaction of O with activated hydrocarbons on the catalyst surface. The use of a plasma opens the opportunity for a new class of catalysts that are potentially more durable, more active, more selective and more sulfur-tolerant compared to conventional lean-NO{sub x} catalysts.

  20. Fluorination process using catalyst

    DOE Patents [OSTI]

    Hochel, Robert C.; Saturday, Kathy A.

    1985-01-01

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  1. Fluorination process using catalysts

    DOE Patents [OSTI]

    Hochel, R.C.; Saturday, K.A.

    1983-08-25

    A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

  2. Binary ferrihydrite catalysts

    DOE Patents [OSTI]

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  3. Binary ferrihydrite catalysts

    DOE Patents [OSTI]

    Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  4. Catalyst rejuvenation technology and economics

    SciTech Connect (OSTI)

    Duddy, J.E.; Hildebrandt, S.J.; Koseoglu, R.O.

    1995-12-31

    One of the major factors in the economics of residue hydroprocessing is the cost of catalyst. Catalyst replacement cost in Hydrocarbon Research, Inc.`s (HRI) H-Oil{reg_sign} Process is set by a number of factors, including the feedrate, processing objectives, and feedstock type. At a given level of process performance, the catalyst replacement rate is primarily set by the rate of catalyst deactivation resulting from contaminant metals in the feedstock depositing on the catalyst surface. This is especially true as the metals content of the feedstock increases. In the recent years, interest in processing high metals feedstock has increased. For example, HRI has recently designed a new H-Oil{reg_sign} Process unit for PEMEX in Mexico, where the metals content of the design feedstock is in excess of 700 wppm. Regeneration of used hydroprocessing catalysts, through controlled oxidation of the coke deposited on the catalyst, is a common practice in the refining industry. Activity can be restored to almost fresh catalyst activity level when the primary contaminant is coke. If there is a significant amount of metal contaminants on the catalyst, regeneration alone is not effective in restoring catalyst activity. Oxidation is unable to remove contaminant metals. HRI has developed and patented a washing procedure to remove the contaminant metals. A dilute acid wash (to remove metals), in conjunction with conventional regeneration (to remove coke), can restore high levels of catalyst activity of spent catalysts with high levels of metal contaminants. The combination of acid washing and controlled oxidation forms the basis of HRI`s Catalyst Rejuvenation Technology.

  5. Steam reforming catalyst

    DOE Patents [OSTI]

    Kramarz, Kurt W.; Bloom, Ira D.; Kumar, Romesh; Ahmed, Shabbir; Wilkenhoener, Rolf; Krumpelt, Michael

    2001-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.

  6. Dispersion enhanced metal/zeolite catalysts

    DOE Patents [OSTI]

    Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

    1987-01-01

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  7. Dispersion enhanced metal/zeolite catalysts

    DOE Patents [OSTI]

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  8. Catalysts for emerging energy applications

    SciTech Connect (OSTI)

    Bruce C. Gates; George W. Huber; Christopher L. Marshall; Phillip N. Ross; Jeffrey Siirola; Yong Wang

    2008-04-15

    Catalysis is the essential technology for chemical transformation, including production of fuels from the fossil resources petroleum, natural gas, and coal. Typical catalysts for these conversions are robust porous solids incorporating metals, metal oxides, and/or metal sulfides. As efforts are stepping up to replace fossil fuels with biomass, new catalysts for the conversion of the components of biomass will be needed. Although the catalysts for biomass conversion might be substantially different from those used in the conversion of fossil feedstocks, the latter catalysts are a starting point in today's research. Major challenges lie ahead in the discovery of efficient biomass conversion catalysts, as well as in the discovery of catalysts for conversion of CO{sub 2} and possibly water into liquid fuels. 16 refs., 6 figs., 1 tab.

  9. Oxygen-reducing catalyst layer

    DOE Patents [OSTI]

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; Yang, Ruizhi; Easton, E. Bradley; Dahn, Jeffrey R.; O'Neill, David G.

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  10. Catalyst systems and uses thereof

    DOE Patents [OSTI]

    Ozkan, Umit S.; Holmgreen, Erik M.; Yung, Matthew M.

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  11. Development of GREET Catalyst Module

    SciTech Connect (OSTI)

    Wang, Zhichao; Benavides, Pahola T.; Dunn, Jennifer B.; Cronauer, Donald C.

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  12. Non-thermal gamma-ray emission from delayed pair breakdown in a magnetized and photon-rich outflow

    SciTech Connect (OSTI)

    Gill, Ramandeep; Thompson, Christopher, E-mail: rgill@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2014-12-01

    We consider delayed, volumetric heating in a magnetized outflow that has broken out of a confining medium and expanded to a high Lorentz factor (? ? 10{sup 2}-10{sup 3}) and low optical depth to scattering (? {sub T} ? 10{sup 3}-10{sup 2}). The energy flux at breakout is dominated by the magnetic field, with a modest contribution from quasi-thermal gamma rays whose spectrum was calculated in Paper I. We focus on the case of extreme baryon depletion in the magnetized material, but allow for a separate baryonic component that is entrained from a confining medium. Dissipation is driven by relativistic motion between these two components, which develops once the photon compactness drops below 4 10{sup 3}(Y{sub e} /0.5){sup 1}. We first calculate the acceleration of the magnetized component following breakout, showing that embedded MHD turbulence provides significant inertia, the neglect of which leads to unrealistically high estimates of flow Lorentz factor. After reheating begins, the pair and photon distributions are evolved self-consistently using a one-zone kinetic code that incorporates an exact treatment of Compton scattering, pair production and annihilation, and Coulomb scattering. Heating leads to a surge in pair creation, and the scattering depth saturates at ? {sub T} ? 1-4. The plasma maintains a very low ratio of particle to magnetic pressure, and can support strong anisotropy in the charged particle distribution, with cooling dominated by Compton scattering. High-energy power-law spectra with photon indices in the range observed in gamma-ray bursts (GRBs; 3 < ? < 3/2) are obtained by varying the ratio of heat input to the seed energy in quasi-thermal photons. We contrast our results with those for continuous heating across an expanding photosphere, and show that the latter model produces soft-to-hard evolution that is inconsistent with observations of GRBs.

  13. Mixed Alcohol Synthesis Catalyst Screening

    SciTech Connect (OSTI)

    Gerber, Mark A.; White, James F.; Stevens, Don J.

    2007-09-03

    National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

  14. High Impact Technology (HIT) Catalyst

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Technology (HIT) Catalyst Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL Commercial ...

  15. Molecular water oxidation catalyst

    DOE Patents [OSTI]

    Gratzel, Michael; Munavalli, Shekhar; Pern, Fu-Jann; Frank, Arthur J.

    1993-01-01

    A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

  16. Exhaust Phosphorous Chemistry and Catalyst Poisoning | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry and Catalyst Poisoning Exhaust Phosphorous Chemistry and Catalyst Poisoning 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Oak Ridge National ...

  17. Refiners Increasingly Employing Catalyst Regeneration as Alternative...

    Open Energy Info (EERE)

    million by the end of 2019. Refiners Benefit from Catalyst Regeneration Technology via Price Reductions and Lower Maintenance Costs The catalyst regeneration technology is the...

  18. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles ...

  19. Oxford Catalysts Group plc | Open Energy Information

    Open Energy Info (EERE)

    Oxford Catalysts Group plc Place: Oxford, United Kingdom Zip: OX2 6UD Sector: Hydro, Hydrogen Product: Developer of catalysts for room-temperature hydrogen production, hot steam...

  20. Doped palladium containing oxidation catalysts

    DOE Patents [OSTI]

    Mohajeri, Nahid

    2014-02-18

    A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

  1. Catalysts for low temperature oxidation

    DOE Patents [OSTI]

    Toops, Todd J.; Parks, III, James E.; Bauer, John C.

    2016-03-01

    The invention provides a composite catalyst containing a first component and a second component. The first component contains nanosized gold particles. The second component contains nanosized platinum group metals. The composite catalyst is useful for catalyzing the oxidation of carbon monoxide, hydrocarbons, oxides of nitrogen, and other pollutants at low temperatures.

  2. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  3. Transition metal sulfide loaded catalyst

    DOE Patents [OSTI]

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  4. Supported molten-metal catalysts

    DOE Patents [OSTI]

    Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  5. Deactivation of methanol synthesis catalysts

    SciTech Connect (OSTI)

    Roberts, G.W.; Brown, D.M.; Hsiung, T.H.; Lewnard, J.J. (Air Products and Chemicals, Inc., Allentown, PA (United States))

    1993-08-01

    A novel methanol synthesis process, the liquid-phase methanol (LPMEOH) process, has been developed and scaled up to a nominal 380 kg/h (10 ton/day) pilot plant. The process is based on a gas-sparged slurry reactor instead of a conventional, fixed-bed reactor. The use of slurry reactors, which are essentially gradientless, greatly facilitated the interpretation and quantification of catalyst deactivation phenomena. With a poison-free, CO-rich feedstream, the rate of deactivation of the Cu/ZnO catalyst increased rapidly with temperature. At constant temperature, in the absence of poisons, the decline with time in the rate constant for methanol synthesis correlated with the loss of BET surface area. Iron carbonyl, nickel carbonyl, and carbonyl sulfide are severe and highly specific poisons for methanol-synthesis catalyst. There was a linear relationship between the catalyst activity loss and the concentration of metal or sulfur on the catalyst.

  6. Stereospecific olefin polymerization catalysts

    DOE Patents [OSTI]

    Bercaw, J.E.; Herzog, T.A.

    1998-01-13

    A metallocene catalyst system is described for the polymerization of {alpha}-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula shown wherein: R{sup 1}, R{sup 2}, and R{sup 3} are independently selected from the group consisting of hydrogen, C{sub 1} to C{sub 10} alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C{sub 1} to C{sub 10} alkyls as a substituent, C{sub 6} to C{sub 15} aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R{sup 8}){sub 3} where R{sup 8} is selected from the group consisting of C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; R{sup 4} and R{sup 6} are substituents both having van der Waals radii larger than the van der Waals radii of groups R{sup 1} and R{sup 3}; R{sup 5} is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E{sup 1}, E{sup 2} are independently selected from the group consisting of Si(R{sup 9}){sub 2}, Si(R{sup 9}){sub 2}--Si(R{sup 9}){sub 2}, Ge(R{sup 9}){sub 2}, Sn(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}--C(R{sup 9}){sub 2}, where R{sup 9} is C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; and the ligand may have C{sub S} or C{sub 1}-symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from {alpha}-olefin monomers.

  7. Stereospecific olefin polymerization catalysts

    DOE Patents [OSTI]

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  8. Chalcogen catalysts for polymer electrolyte fuel cell

    DOE Patents [OSTI]

    Alonso-Vante, Nicolas (Buxerolles, FR); Zelenay, Piotr (Los Alamos, NM); Choi, Jong-Ho (Los Alamos, NM); Wieckowski, Andrzej (Champaign, IL); Cao, Dianxue (Urbana, IL)

    2009-09-15

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  9. Chalcogen catalysts for polymer electrolyte fuel cell

    DOE Patents [OSTI]

    Zelenay, Piotr; Choi, Jong-Ho; Alonso-Vante, Nicolas; Wieckowski, Andrzej; Cao, Dianxue

    2010-08-24

    A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.

  10. Textured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions

    DOE Patents [OSTI]

    Werpy, Todd [West Richland, WA; Wang, Yong [Richland, WA

    2003-12-30

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  11. A DETAILED STUDY OF NON-THERMAL X-RAY PROPERTIES AND INTERSTELLAR GAS TOWARD THE γ-RAY SUPERNOVA REMNANT RX J1713.7–3946

    SciTech Connect (OSTI)

    Sano, H.; Fukuda, T.; Yoshiike, S.; Sato, J.; Horachi, H.; Kuwahara, T.; Torii, K.; Hayakawa, T.; Matsumoto, H.; Inutsuka, S.; Yamamoto, H.; Tachihara, K.; Tanaka, T.; Inoue, T.; Kawamura, A.; Okuda, T.; Mizuno, N.; Yamazaki, R.; Onishi, T.; Mizuno, A.; and others

    2015-02-01

    We have carried out a spectral analysis of the Suzaku X-ray data in the 0.4-12 keV range toward the shell-type very high-energy γ-ray supernova remnant (SNR) RX J1713.7–3946. The aims of this analysis are to estimate detailed X-rays spectral properties at a high angular resolution up to 2 arcmin and to compare them with the interstellar gas. The X-ray spectrum is non-thermal and used to calculate absorbing column density, photon index, and absorption-corrected X-ray flux. The photon index varies significantly from 2.1 to 2.9. It is shown that the X-ray intensity is well correlated with the photon index, especially in the west region, with a correlation coefficient of 0.81. The X-ray intensity tends to increase with the averaged interstellar gas density while the dispersion is relatively large. The hardest spectra, with photon indexes of less than 2.4, are found outside of the central 10 arcmin of the SNR, from the north to the southeast (∼430 arcmin{sup 2}) and from the southwest to the northwest (∼150 arcmin{sup 2}). The former region shows low interstellar gas density, while the latter shows high interstellar gas density. We present a discussion of possible scenarios that explain the distribution of the photon index and its relationship with the interstellar gas.

  12. Large area atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S.; Henins, Ivars; Babayan, Steve E.; Hicks, Robert F.

    2001-01-01

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  13. Secret Lives of Catalysts Revealed

    ScienceCinema (OSTI)

    Miquel Salmeron and Gabor Somorjai

    2010-01-08

    Miquel Salmeron and Gabor Somorjai of Berkeley Lab's Materials Sciences Division discuss the first-ever glimpse of nanoscale catalysts in action. More information: http://newscenter.lbl.gov/press-relea...

  14. SunShot Catalyst Program

    Broader source: Energy.gov [DOE]

    The SunShot Catalyst program is actively reaching out to communities of software and business innovators across the country to find individuals with startup ideas to make solar faster, more...

  15. Clay complexes support HDS catalyst.

    SciTech Connect (OSTI)

    Marshall, C. L.; Carrado, K.; Chemical Engineering

    2000-01-01

    Hydroprocessing represents a crucial component of petroleum refining operations both in terms of environmental and economic considerations. Regulations concerning maximum amount of sulfur content of gasoline and emissions of sulfur-oxide compounds upon combustion are becoming more and more stringent. One 1994-2000 focus of Argonne National Laboratory (ANL) has been the development of catalysts for hydrodesulfurization (HDS). Typical HDS catalysts are comprised of Co-Mo sulfides or Ni-Mo sulfides on an alumina support. Modification of the pore structure of the support has generated great attention among researchers. Most desulfurization test reactions have used dibenzothiophene (DBT) as the model compound to test various configurations of support material with Co-Mo-S and Ni-Mo-S catalysts. In this testing, the desired product would be biphenyl and hydrogen sulfide (H{sub 2}S). A competing reaction creates cyclohexylbenzene by saturating one aromatic ring prior to desulfurization. Ring saturation requires more costly hydrogen and is not desirable. Fortunately, a more effective catalyst for adding hydrogen at the sulfur site with hydrogenating the aromatic rings has been found. However, this has only been tested on DBT. HDS uses various types of catalysts to add hydrogen to reduce unwanted sulfur compounds. Typically this requires expensive, high-pressure, high-temperature equipment to produce the environmentally friendly low-sulfur fuels. ANL scientists identified several new desulfurization catalysts with improved HDS activity and selectivity. From these new catalysts, it may be possible to achieve HDS processing at lower temperature and pressure. The catalysts used for HDS at ANL are various clay complexes. Natural clays have a history of use in the hydroprocessing industry since they are abundant and inexpensive. ANL's approach is to create synthetic organo-clay complexes (SOCC). An advantage of SOCCs is that the pore size and distribution can be controlled by

  16. Hydroprocessing conditions affect catalyst shape selection

    SciTech Connect (OSTI)

    Cooper, B.H.; Donnis, B.B.L.; Moyse, B.

    1986-12-08

    Diffusion characteristics, pressure drop limitations, catalyst pore size, catalyst loading techniques, and catalytic activity requirements all affect the selection of the catalyst shape used in hydroprocessing of heavy distillates. Haldor Topsoe Inc. has studied the effects of these hydroprocessing conditions on various shapes of its TK-551 nickel-molybdenum hydroprocessing catalysts. The studies were carried out using Arabian Heavy vacuum gas oil (VGO). For hydroprocessing heavy distillates, polylobed catalysts and dense loading techniques have obvious advantages. The higher external surface of polylobed catalysts ensures better accessibility to the inner surface of the catalyst, and dense loading allows more catalytic activity in a given reactor volume. However there are drawbacks. Polylobed catalysts tend to pack less densely thus reducing volume activity. And dense loading results in higher pressure through the bed. The philosophy behind the use of polylobed catalysts is to improve the diffusion characteristics.

  17. Catalyst for coal liquefaction process

    DOE Patents [OSTI]

    Huibers, Derk T. A.; Kang, Chia-Chen C.

    1984-01-01

    An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.

  18. LoCuSS: A COMPARISON OF CLUSTER MASS MEASUREMENTS FROM XMM-NEWTON AND SUBARU-TESTING DEVIATION FROM HYDROSTATIC EQUILIBRIUM AND NON-THERMAL PRESSURE SUPPORT

    SciTech Connect (OSTI)

    Zhang, Yu-Ying; Okabe, Nobuhiro; Finoguenov, Alexis; Smith, Graham P.; Sanderson, Alastair J. R.; Piffaretti, Rocco; Valdarnini, Riccardo; Evrard, August E.; Mazzotta, Pasquale; Marrone, Daniel P.

    2010-03-10

    We compare X-ray hydrostatic and weak-lensing mass estimates for a sample of 12 clusters that have been observed with both XMM-Newton and Subaru. At an over-density of DELTA = 500, we obtain 1 - M {sup X}/M {sup WL} = 0.01 +- 0.07 for the whole sample. We also divided the sample into undisturbed and disturbed sub-samples based on quantitative X-ray morphologies using asymmetry and fluctuation parameters, obtaining 1 - M {sup X}/M {sup WL} = 0.09 +- 0.06 and -0.06 +- 0.12 for the undisturbed and disturbed clusters, respectively. In addition to non-thermal pressure support, there may be a competing effect associated with adiabatic compression and/or shock heating which leads to overestimate of X-ray hydrostatic masses for disturbed clusters, for example, in the famous merging cluster A1914. Despite the modest statistical significance of the mass discrepancy, on average, in the undisturbed clusters, we detect a clear trend of improving agreement between M {sup X} and M {sup WL} as a function of increasing over-density, M{sup X}/M{sup WL}=(0.908+-0.004)+(0.187+-0.010){center_dot} log{sub 10}(DELTA/500). We also examine the gas mass fractions, f{sub gas} = M {sup gas}/M {sup WL}, finding that they are an increasing function of cluster radius, with no dependence on dynamical state, in agreement with predictions from numerical simulations. Overall, our results demonstrate that XMM-Newton and Subaru are a powerful combination for calibrating systematic uncertainties in cluster mass measurements.

  19. Catalyst containing oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  20. Catalysts for carbon and coal gasification

    DOE Patents [OSTI]

    McKee, Douglas W.; Spiro, Clifford L.; Kosky, Philip G.

    1985-01-01

    Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

  1. Novel Fischer-Tropsch catalysts. [DOE patent

    DOE Patents [OSTI]

    Vollhardt, K.P.C.; Perkins, P.

    Novel compounds are described which are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO + H/sub 2/ to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  2. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in point. The complex chemistry associated with the iron-based catalyst has made even the identity of the active catalyst at work an unsolved mystery. At the ALS, de Smit et al....

  3. Long term experiences with HDD SCR Catalysts

    Broader source: Energy.gov [DOE]

    Test bench results and on-road experiences of more than 1 million km offer comparisons of fresh and used catalyst activity and NOx conversion capability using appropriate methods of catalyst analysis.

  4. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support,

  5. Biomass Catalyst Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet provides information about Biomass Catalyst Characterization Laboratory (BCCL) capabilities and applications at NREL's National Bioenergy Center.

  6. High Impact Technology Catalyst: Technology Deployment Strategies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. High

  7. Pyrochem Catalysts for Diesel Fuel Reforming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pyrochem Catalysts for Diesel Fuel Reforming Success Story Converting heavy hydrocarbons, such as diesel and coal-based fuels, into hydrogen-rich synthesis gas is a necessary step for fuel cells and other applications. The high sulfur and aromatic content of these fuels poses a major technical challenge since these components can deactivate reforming catalysts. Taking on this challenge, NETL researchers invented a novel fuel-reforming catalyst that overcomes limitations of current catalysts by

  8. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOE Patents [OSTI]

    Gangwal, Santosh; Jothimurugesan, Kandaswamy

    1999-01-01

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption processes, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gasses from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or "passivating" the heavy metals on the spent FCC catalyst as an intermediate step.

  9. Attrition resistant catalysts and sorbents based on heavy metal poisoned FCC catalysts

    DOE Patents [OSTI]

    Gangwal, S.; Jothimurugesan, K.

    1999-07-27

    A heavy metal poisoned, spent FCC catalyst is treated by chemically impregnating the poisoned catalyst with a new catalytic metal or metal salt to provide an attrition resistant catalyst or sorbent for a different catalytic or absorption process, such as catalysts for Fischer-Tropsh Synthesis, and sorbents for removal of sulfur gases from fuel gases and flue-gases. The heavy metal contaminated FCC catalyst is directly used as a support for preparing catalysts having new catalytic properties and sorbents having new sorbent properties, without removing or passivating the heavy metals on the spent FCC catalyst as an intermediate step.

  10. Silver doped catalysts for treatment of exhaust

    DOE Patents [OSTI]

    Park, Paul Worn; Hester, Virgil Raymond; Ragle, Christie Susan; Boyer, Carrie L.

    2009-06-02

    A method of making an exhaust treatment element includes washcoating a substrate with a slurry that includes a catalyst support material. At least some of the catalyst support material from the slurry may be transferred to the substrate, and silver metal (Ag) is dispersed within the catalyst support material.

  11. PLASMA GENERATOR

    DOE Patents [OSTI]

    Foster, J.S. Jr.

    1958-03-11

    This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

  12. Perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  13. Catalysts for coal liquefaction processes

    DOE Patents [OSTI]

    Garg, D.

    1986-10-14

    Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

  14. Catalysts for coal liquefaction processes

    DOE Patents [OSTI]

    Garg, Diwakar (Macungie, PA)

    1986-01-01

    Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

  15. Perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, K.D.

    1991-06-25

    Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  16. Toward Molecular Catalysts by Computer

    SciTech Connect (OSTI)

    Raugei, Simone; DuBois, Daniel L.; Rousseau, Roger J.; Chen, Shentan; Ho, Ming-Hsun; Bullock, R. Morris; Dupuis, Michel

    2015-02-17

    Rational design of molecular catalysts requires a systematic approach to designing ligands with specific functionality and precisely tailored electronic and steric properties. It then becomes possible to devise computer protocols to predict accurately the required properties and ultimately to design catalysts by computer. In this account we first review how thermodynamic properties such as oxidation-reduction potentials (E0), acidities (pKa), and hydride donor abilities (ΔGH-) form the basis for a systematic design of molecular catalysts for reactions that are critical for a secure energy future (hydrogen evolution and oxidation, oxygen and nitrogen reduction, and carbon dioxide reduction). We highlight how density functional theory allows us to determine and predict these properties within “chemical” accuracy (~ 0.06 eV for redox potentials, ~ 1 pKa unit for pKa values, and ~ 1.5 kcal/mol for hydricities). These quantities determine free energy maps and profiles associated with catalytic cycles, i.e. the relative energies of intermediates, and help us distinguish between desirable and high-energy pathways and mechanisms. Good catalysts have flat profiles that avoid high activation barriers due to low and high energy intermediates. We illustrate how the criterion of a flat energy profile lends itself to the prediction of design points by computer for optimum catalysts. This research was carried out in the Center for Molecular Electro-catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle.

  17. Catalyst selection important for residuum hydroprocessing

    SciTech Connect (OSTI)

    Howell, R.L.; Chen, H.C.; Gibson, K.R.; Hung, C.

    1985-07-29

    The authors examine the effective hydro-processing of residuum from heavy crude oils, through proper catalyst selection. Utilizing proper catalyst selection and application can make residuum hydroprocessing an attractive process route to lighter products, allowing flexibility to handle a wide range of feedstock properties. Chevron has analyzed the important catalyst properties and how they affect catalyst selection for, and catalyst application to, different residuum processing routes to transportation fuels. They have also examined the role of hydroprocessing in those routes. Data were obtained from commercial operation in Chevron's Richmond, Calif., and Pascagoula, Miss., refineries.

  18. Hydroprocessing using regenerated spent heavy hydrocarbon catalyst

    SciTech Connect (OSTI)

    Clark, F.T.; Hensley, A.L. Jr.

    1992-10-13

    This patent describes a process for hydroprocessing a hydrocarbon feedstock. It comprises: contacting the feedstock with hydrogen under hydroprocessing conditions with a hydroprocessing catalyst wherein the hydroprocessing catalyst contains a total contaminant metals build-up of greater than about 4 wt. % nickel plus vanadium, a hydrogenation component selected from the group consisting of Group VIB metals and Group VIII metals and is regenerated spent hydroprocessing catalyst regenerated by a process comprising the steps: partially decoking the spent catalyst in an initial coke-burning step; impregnating the partially decoked catalyst with a Group IIA metal-containing impregnation solution; and decoking the impregnated catalyst in a final coke-burning step wherein the impregnated catalyst is contacted with an oxygen-containing gas at a temperature of about 600[degrees]F to about 1400[degrees]F.

  19. Autothermal reforming catalyst having perovskite structure

    DOE Patents [OSTI]

    Krumpel, Michael; Liu, Di-Jia

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  20. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOE Patents [OSTI]

    Kong, Peter C.; Detering, Brent A.

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  1. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOE Patents [OSTI]

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  2. Unique Catalyst System for NOx Reduction in Diesel Exhaust | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Catalyst System for NOx Reduction in Diesel Exhaust Unique Catalyst System for NOx Reduction in Diesel Exhaust Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_slone.pdf (64.66 KB) More Documents & Publications Noxtechs PAC System Development and Demonstration Plasma

  3. High-Throughput Program for the Discovery of NOx Reduction Catalysts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Throughput Program for the Discovery of NOx Reduction Catalysts High-Throughput Program for the Discovery of NOx Reduction Catalysts 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: General Motors Corporation 2004_deer_blint.pdf (357.96 KB) More Documents & Publications WA_02_042_GENERAL_MOTORS_POWER_TRAIN_DIV_Waiver_of_Domestic_.pdf Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Lean-NOx

  4. Advanced Catalysts and MEAs for Reversible Alkaline Membrane Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts and MEAs for Reversible Alkaline Membrane Fuel Cells Hui Xu (PI) Giner Inc Newton, MA This presentation does not contain any proprietary, confidential, or otherwise restricted information DOE Catalyst Work Group Meeting June 8, 2015 2 Barriers Addressed * Activity (catalyst; MEA) * Durability (catalyst; MEA) * Cost (catalyst; MEA) Technical Targets * Design and develop ORR/OER bi-functional oxide catalysts * Integrate ORR/OER bifunctional oxide catalysts and alkaline membranes to

  5. Overcoming Hydrocarbon Inhibition on Pd-based Diesel Oxidation Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Rational Catalyst Design Approach | Department of Energy Overcoming Hydrocarbon Inhibition on Pd-based Diesel Oxidation Catalysts with Rational Catalyst Design Approach Overcoming Hydrocarbon Inhibition on Pd-based Diesel Oxidation Catalysts with Rational Catalyst Design Approach Discusses results of a project focused on overcoming hydrocarbon inhibition on Pd-based diesel oxidation catalysts by using a rational catalyst design approach. deer11_kapur.pdf (745.87 KB) More Documents &

  6. Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plasma physics Plasma Physics Almost all of the observable matter in the universe is in the plasma state. Formed at high temperatures, plasmas consist of freely moving ions and free electrons. They are often called the "fourth state of matter" because their unique physical properties distinguish them from solids, liquids and gases. Plasma densities and temperatures vary widely, from the cold gases of interstellar space to the extraordinarily hot, dense cores of stars and inside a

  7. Catalyst for selective conversion of synthesis gas and method of making the catalyst

    DOE Patents [OSTI]

    Dyer, Paul N.; Pierantozzi, Ronald

    1986-01-01

    A Fischer-Tropsch (F-T) catalyst, a method of making the catalyst and an F-T process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas is selectively converted to higher hydrocarbons of relatively narrow carbon number range. In general, the selective and notably stable catalyst, consists of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of an F-T metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  8. Supported fischer-tropsch catalyst and method of making the catalyst

    DOE Patents [OSTI]

    Dyer, Paul N.; Pierantozzi, Ronald; Withers, Howard P.

    1987-01-01

    A Fischer-Tropsch catalyst and a method of making the catalyst for a Fischer-Tropsch process utilizing the catalyst by which synthesis gas, particularly carbon-monoxide rich synthesis gas, is selectively converted to higher hydrocarbons of relatively narrow carbon number range is disclosed. In general, the selective and notably stable catalyst, consist of an inert carrier first treated with a Group IV B metal compound (such as zirconium or titanium), preferably an alkoxide compound, and subsequently treated with an organic compound of a Fischer-Tropsch metal catalyst, such as cobalt, iron or ruthenium carbonyl. Reactions with air and water and calcination are specifically avoided in the catalyst preparation procedure.

  9. Catalyst for hydrotreating carbonaceous liquids

    DOE Patents [OSTI]

    Berg, Lloyd; McCandless, Frank P.; Ramer, Ronald J.

    1982-01-01

    A catalyst for denitrogenating and desulfurating carbonaceous liquid such as solvent refined coal includes catalytic metal oxides impregnated within a porous base of mostly alumina with relatively large pore diameters, surface area and pore volume. The base material includes pore volumes of 0.7-0.85 ml/g, surface areas of 200-350 m.sup.2 /g and pore diameters of 85-200 Angstroms. The catalytic metals impregnated into these base materials include the oxides of Group VI metals, molybdenum and tungsten, and the oxides of Group VIII metals, nickel and cobalt, in various combinations. These catalysts and bases in combination have effectively promoted the removal of chemically combined sulfur and nitrogen within a continuous flowing mixture of carbonaceous liquid and hydrogen gas.

  10. Supercritical/Solid Catalyst (SSC)

    SciTech Connect (OSTI)

    2010-01-01

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  11. Copper-containing zeolite catalysts

    DOE Patents [OSTI]

    Price, G.L.; Kanazirev, V.

    1996-12-10

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  12. Copper-containing zeolite catalysts

    DOE Patents [OSTI]

    Price, Geoffrey L.; Kanazirev, Vladislav

    1996-01-01

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  13. Supercritical/Solid Catalyst (SSC)

    ScienceCinema (OSTI)

    None

    2013-05-28

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  14. High-Activity Dealloyed Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activity Dealloyed Catalysts 2010 DOE Hydrogen Program Fuel Cell Project Kick-Off Frederick T. Wagner General Motors Research & Development Electrochemical Energy Research Lab Honeoye Falls, NY September 28, 2010 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 * Project start date: 1 Sept 2010 * Project end date: 31 Aug 2013 * Percent complete: 0% * Barriers addressed - B. Cost * Decrease required loading of precious metals including

  15. Catalysts for Fischer-Tropsch

    SciTech Connect (OSTI)

    Srivastava, R.D. ); Rao, V.U.S.; Cinquegrane, G.; Stiegel, G.J. )

    1990-02-01

    The slurry-phase Fischer-Tropsch (F-T) process has attracted considerable attention recently. The process can make liquid fuels by reacting hydrogen-lean synthesis gas produced from modern energy-efficient gasifiers. continuing assessment of Fischer-Tropsch Synthesis (FTS) has a high priority within an indirect liquefaction program, a part of the liquid fuels program sponsored by the U.S. Department of Energy (DOE) and executed by the Pittsburgh Energy Technology Center (PETC). Funding for the indirect liquefaction program in 1990:0090 is anticipated to be about $8.5 million compared to $6.6 million in 1989 and a like amount in the year before. The studies within the program are conducted by industry, universities, national laboratories and in-house PETC research and development. This article reviews preparation and properties of iron-based catalysts, including recent patent activities and in-depth process analysis of slurry-phase FTS. The review provides an analysis of Fischer-Tropsch catalyst research and development trends and describes options to increase selectivity for iron-based catalysts in a slurry phase.

  16. Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge

    SciTech Connect (OSTI)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas; Aldn, Marcus; Li, Zhongshan E-mail: alpers@ma.tum.de; Moseev, Dmitry; Kusano, Yukihiro; Salewski, Mirko; Alpers, Andreas E-mail: alpers@ma.tum.de; Gritzmann, Peter; Schwenk, Martin

    2015-01-26

    A non-thermal gliding arc discharge was generated at atmospheric pressure in an air flow. The dynamics of the plasma column and tracer particles were recorded using two synchronized high-speed cameras. Whereas the data analysis for such systems has previously been performed in 2D (analyzing the single camera image), we provide here a 3D data analysis that includes 3D reconstructions of the plasma column and 3D particle tracking velocimetry based on discrete tomography methods. The 3D analysis, in particular, the determination of the 3D slip velocity between the plasma column and the gas flow, gives more realistic insight into the convection cooling process. Additionally, with the determination of the 3D slip velocity and the 3D length of the plasma column, we give more accurate estimates for the drag force, the electric field strength, the power per unit length, and the radius of the conducting zone of the plasma column.

  17. AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions

    SciTech Connect (OSTI)

    Meeks, E.; Grcar, J.F.; Kee, R.J.; Moffat, H.K.

    1996-02-01

    The AURORA Software is a FORTRAN computer program that predicts the steady-state or time-averaged properties of a well mixed or perfectly stirred reactor for plasma or thermal chemistry systems. The software was based on the previously released software, SURFACE PSR which was written for application to thermal CVD reactor systems. AURORA allows modeling of non-thermal, plasma reactors with the determination of ion and electron concentrations and the electron temperature, in addition to the neutral radical species concentrations. Well stirred reactors are characterized by a reactor volume, residence time or mass flow rate, heat loss or gas temperature, surface area, surface temperature, the incoming temperature and mixture composition, as well as the power deposited into the plasma for non-thermal systems. The model described here accounts for finite-rate elementary chemical reactions both in the gas phase and on the surface. The governing equations are a system of nonlinear algebraic relations. The program solves these equations using a hybrid Newton/time-integration method embodied by the software package TWOPNT. The program runs in conjunction with the new CHEMKIN-III and SURFACE CHEMKIN-III packages, which handle the chemical reaction mechanisms for thermal and non-thermal systems. CHEMKIN-III allows for specification of electron-impact reactions, excitation losses, and elastic-collision losses for electrons.

  18. Low temperature catalysts for methanol production

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-09-30

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1--6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  19. Improvement of microbead cracking catalyst manufacture

    SciTech Connect (OSTI)

    Mirskii, Ya.B.; Kosolapova, A.P.; Meged, N.F.

    1986-11-01

    In order to improve the manufacturing process for KMTsR microbead catalyst for use in new cracking units, the authors consider the method of increasing the content of aluminum oxide in its amorphous part. A microbead catalyst of zeolite, containing rare-earth elements of the KMTsR type was obtained by spray-drying a slurry prepared by mechanical dispersion of hydrogel beads, with the subsequent molding and processing operations the same as in the production of bead catalyst.

  20. Catalyst and process for hydroprocessing heavy oils

    SciTech Connect (OSTI)

    Audeh, C.A.; Yan, T.Y.

    1984-09-04

    Disclosed is a catalyst and process for making same wherein sepiolite is ion exchanged with a Group Ib, IIb, IIIb, IVb, Vb, or VIIa metal, impregnated with VIa metal and exchanged with a magnesium salt with intervening processing steps of calcining. The catalyst composition is useful in removing metals and hydroprocessing of hydrocarbon feedstocks. The catalyst can also be mixed with a high silica/alumina ratio zeolite such as sodium ZSM-5 zeolite.

  1. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  2. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  3. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  4. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  5. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  6. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  7. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  8. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  9. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  10. New Catalyst Converts CO₂ to Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Catalyst Converts CO₂ to Fuel New Catalyst Converts CO₂ to Fuel Calculations run at NERSC help confirm University of Illinois breakthrough September 5, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Scientists from the University of Illinois at Chicago have synthesized a catalyst that improves their system for converting waste carbon dioxide (CO₂) into syngas, a precursor of gasoline and other energy-rich products, bringing the process closer to commercial viability.

  11. Catalysts for Dehydrogenation of ammonia boranes

    SciTech Connect (OSTI)

    Heinekey, Dennis M.

    2014-12-19

    Several effective homogeneous catalysts for the dehydrogenation of amine boranes have been developed. The best catalyst uses an iridium complex, and is capable of dehydrogenating H3NBH3 (AB) and CH3NH2BH3 (MeAB) at comparable rates. Thermodynamic measurements using this catalyst demonstrate that the dehydrogenation of AB and MeAB is substantially exothermic, which has important implications for regeneration.

  12. Solid Catalyst - Alkylation - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Find More Like This Return to Search Solid Catalyst - Alkylation Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary This is a method used to reactivate solid/liquid catalysts used in INL's super critical process to produce alkylates. The method brings the catalyst into contact with the designated fluid that serves as the reactivating agent and has the density to dissolve the impurities. The process reactivates the

  13. High Impact Technology Catalyst | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » High Impact Technology Catalyst High Impact Technology Catalyst High impact technologies (HITs) are cost-effective, underutilized energy-efficient commercial building technologies. Through the High Impact Technology Catalyst program, initiated in 2014, the U.S. Department of Energy (DOE) identifies and guides HITs through their early market introduction phases, ultimately leading them to the broader market through partnerships with the commercial buildings industry via

  14. Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control 2002_deer_aardahl.pdf (7.98 MB) More Documents & Publications Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Selective reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies

  15. Catalyst Support Interactions | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the reactivity of metal catalyst particles. The research team will also study the adhesion properties by simulating the interactions between metal particles of different sizes...

  16. Hydrocarbon synthesis catalyst and method of preparation

    DOE Patents [OSTI]

    Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint.

  17. Hydrocarbon synthesis catalyst and method of preparation

    DOE Patents [OSTI]

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint. 9 figs.

  18. Nitrogen oxides storage catalysts containing cobalt

    DOE Patents [OSTI]

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  19. Characterization of Catalysts for Aftertreatment and Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Aftertreatment and Biomass-derived Fuels: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Catalysts for Aftertreatment...

  20. Developing Intermetallic Catalysts | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Precious metals and metal alloys are important heterogeneous catalysts for renewable energies and materials. However, both of them have their limitations. Precious metals have...

  1. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants...

  2. Polyfunctional catalyst for processiing benzene fractions

    SciTech Connect (OSTI)

    G. Byakov; B.D. Zubitskii; B.G. Tryasunov; I.Ya. Petrov

    2009-05-15

    A by-product of the coke industry is a raw benzene fraction benzene- 1 which may serve as for catalytic processes. The paper reports a study on the influence of the composition and temperatures on the activity and selectivity of NiO-V{sub 2}O{sub 6}-MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} catalysts and the corresponding binary and tertiary subsystems are studied by a pulse method in model reactions; the hydrodealkylating of toluene and the hydrodesulfurizing of thioprhene. The optimal catalyst composition is established. The new catalyst is compared with industrial catalysts.

  3. Breakout Group 1: Catalysts and Supports

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and their potential for fuel cell application * Fundamental understanding - of active sites in non-platinum group metal ... ANODE CATALYSTS FOR ALTERNATIVE FUELS * Fundamental ...

  4. Advanced Cathode Catalysts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Cathode Catalysts and Supports for PEM Fuel Cells CARISMA: A Networking Project for High Temperature PEMFC MEA Activities in Europe Catalysis Working Group Kick-Off ...

  5. Homogeneously dispersed, multimetal oxygen-evolving catalysts...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Homogeneously dispersed, multimetal oxygen-evolving catalysts Citation ... Publication Date: 2016-03-24 OSTI Identifier: 1245398 Report ...

  6. Process for coal liquefaction using electrodeposited catalyst

    DOE Patents [OSTI]

    Moore, Raymond H. (Richland, WA)

    1978-01-01

    A process for the liquefaction of solid hydrocarbonaceous materials is disclosed. Particles of such materials are electroplated with a metal catalyst and are then suspended in a hydrocarbon oil and subjected to hydrogenolysis to liquefy the solid hydrocarbonaceous material. A liquid product oil is separated from residue solid material containing char and the catalyst metal. The catalyst is recovered from the solid material by electrolysis for reuse. A portion of the product oil can be employed as the hydrocarbon oil for suspending additional particles of catalyst coated solid carbonaceous material for hydrogenolysis.

  7. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

  8. Catalyst Assisted Manufacture of Olefins (CAMOL)

    Broader source: Energy.gov (indexed) [DOE]

    oxide and calcium tungstate as catalysts) Project Objective Reduce energy consumption in the radiant section (furnace coils) of an ethane cracker by 15% (6% savings ...

  9. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catalysts for maximum selectivity and efficiency in a wide range of chemical processes. ... The measurements generated chemical contour maps for the species present. Quantitative ...

  10. Nanostructured Water Oxidation Catalysts - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Nanostructured Water Oxidation Catalysts Lawrence ... Berkeley Lab have developed a visible light driven catalytic system for oxidizing water. ...

  11. An Atomic-Level Understanding of Copper-Based Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Atomic-Level Understanding of Copper-Based Catalysts An Atomic-Level Understanding of Copper-Based Catalysts Print Thursday, 05 May 2016 12:20 Copper-based catalysts are widely ...

  12. Understanding the Distributed Intra-Catalyst Impact of Sulfation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Water Gas Shift in a Lean NOx Trap Catalyst Understanding the Distributed Intra-Catalyst Impact of Sulfation on Water Gas Shift in a Lean NOx Trap Catalyst The Lean NOx Trap ...

  13. Formation of alcohol conversion catalysts

    DOE Patents [OSTI]

    Wachs, Israel E.; Cai, Yeping

    2001-01-01

    The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.

  14. Attrition resistant fluidizable reforming catalyst

    DOE Patents [OSTI]

    Parent, Yves O.; Magrini, Kim; Landin, Steven M.; Ritland, Marcus A.

    2011-03-29

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  15. Thermodynamic Properties of Supported Catalysts

    SciTech Connect (OSTI)

    Gorte, Raymond J.

    2014-03-26

    The goals of this work were to develop Coulometric Titration as a method for characterizing the thermodynamic redox properties of oxides and to apply this technique to the characterization of ceria- and vanadia-based catalysts. The redox properties of ceria and vanadia are a major part of what makes these materials catalytically active but their properties are also dependent on their structure and the presence of other oxides. Quantifying these properties through the measurement of oxidation energetics was the goal of this work.

  16. Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Emission Treatment Catalyst | Department of Energy Emission Treatment Catalyst Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Emission Treatment Catalyst Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-08_narula.pdf (495.8 KB) More Documents & Publications Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for

  17. Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Oxidation Catalyst for Diesel Engine Emission Treatment | Department of Energy Oxidation Catalyst for Diesel Engine Emission Treatment Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for Diesel Engine Emission Treatment The overlap among theory, structure, and fully formed catalysts form the foundation of this study deer09_narula.pdf (430.71 KB) More Documents & Publications Catalyst by Design - Theoretical, Nanostructural, and

  18. Cooling of stripped catalyst prior to regeneration in cracking...

    Office of Scientific and Technical Information (OSTI)

    stripped catalyst, prior to passing it into the regenerator vessel; wherein the cooling step comprises passing the stripped catalyst stream to a heat-exchanger located outside the ...

  19. Ordered Nanoparticle Catalysts article is an Energy Focus > Archived...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ordered Nanoparticle Catalysts article is an Energy Focus January 24th, 2013 A Nature Materials paper on ordered nanoparticle catalysts has been highlighted as an "Energy...

  20. Selective ammonia slip catalyst enabling highly efficient NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    slip catalyst enabling highly efficient NOx removal requirements of the future Selective ammonia slip catalyst enabling highly efficient NOx removal requirements of the future A ...

  1. Development of Ultra-low Platinum Alloy Cathode Catalyst for...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications DOE's Fuel Cell Catalyst R&D Activities 2006 Alkaline Membrane Fuel Cell Workshop Final Report Highly Dispersed Alloy Cathode Catalyst for ...

  2. Global kinetics for a commercial diesel oxidation catalyst with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kinetics for a commercial diesel oxidation catalyst with two exhaust hydrocarbons Global kinetics for a commercial diesel oxidation catalyst with two exhaust hydrocarbons ...

  3. Rational Catalyst Design Applied to Development of Advanced Oxidation...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Overcoming Hydrocarbon Inhibition on Pd-based Diesel Oxidation Catalysts with Rational Catalyst Design Approach Vehicle Technologies Office Merit ...

  4. Catalyst functionalized buffer sorbent pebbles for rapid separation...

    Office of Scientific and Technical Information (OSTI)

    Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures Title: Catalyst functionalized buffer sorbent pebbles for rapid separation ...

  5. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Presented at the Department of Energy Fuel Cell ...

  6. Home Improvement Catalyst: Strategies for Ongoing Customer Engagement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Improvement Catalyst: Strategies for Ongoing Customer Engagement (201) Home Improvement Catalyst: Strategies for Ongoing Customer Engagement (201) June 23, 2016 1:00PM to ...

  7. Development of Optimal Catalyst Designs and Operating Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Development of Optimal Catalyst Designs and Operating Strategies ...

  8. Developing an Approach for First-principles Catalyst Design:...

    Office of Scientific and Technical Information (OSTI)

    Catalyst Design: Application to Carbon Capture Catalysis Citation Details In-Document Search Title: Developing an Approach for First-principles Catalyst Design: Application ...

  9. Mapping Metals Incorporation of a Single Catalyst Particle Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this study, researchers from Utrecht University (Netherlands) and SSRL investigated a whole single equilibrium catalyst (E-cat) particle, i.e. a catalyst that had undergone ...

  10. Toward Catalyst Design from Theoretical Calculations (464th Brookhaven...

    Office of Scientific and Technical Information (OSTI)

    Toward Catalyst Design from Theoretical Calculations (464th Brookhaven Lecture) Citation Details In-Document Search Title: Toward Catalyst Design from Theoretical Calculations...