National Library of Energy BETA

Sample records for non-oecd transportation sector

  1. Energy Use and Carbon Emissions: Non-OECD Countries

    Reports and Publications (EIA)

    1994-01-01

    Presents world energy use and carbon emissions patterns, with particular emphasis on the non-OECD (Organization for Economic Cooperation and Development) countries (including the current and former centrally planned economies).

  2. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum...

  3. Transitioning the Transportation Sector: Exploring the Intersection...

    Broader source: Energy.gov (indexed) [DOE]

    held the Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles workshop in Washington, D.C., on September 9, 2014....

  4. Land Transport Sector in Bangladesh: An Analysis Toward Motivating...

    Open Energy Info (EERE)

    Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An...

  5. ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS

    E-Print Network [OSTI]

    ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS EMISSIONS IN CANADA by Rose: Analysis of Measures for Reducing Transportation Sector Greenhouse Gas Emissions in Canada Project Number the problem of reducing greenhouse gas (GHG) emissions from the Canadian transportation sector. Reductions

  6. Cross-sector policy research: insights from the UK energy and transport sectors

    E-Print Network [OSTI]

    Peake, Stephen Robert

    1993-10-26

    : Insights from the UK energy and transport sectors Stephen Robert Peake Darwin College, Cambridge UNIVERSITY I ltBRARY J CAMBRIDGE A dissertation submitted to the University of Cambridge for the Degree of Doctor of Philosophy. June 1993 Dedication... . To Sarah and Charlie, for all their love and support. Declaration. I declare that except for commonly understood and accepted ideas, or where specific reference is made, the work reported in this dissertation is my own. It includes nothing which...

  7. Transportation Sector Energy Use by Mode from EIA AEO 2011 Early...

    Open Energy Info (EERE)

    dataset is an excerpt from the spreadsheet Supplemental Tables to the Annual Energy Outlook 2011, isolating Transportation Sector energy use by Mode. Data and Resources...

  8. Transportation Sector Energy Use by Type from EIA AEO 2011 Early...

    Open Energy Info (EERE)

    dataset is an excerpt from the spreadsheet Supplemental Tables to the Annual Energy Outlook 2011, isolating Transportation Sector energy use by Type. Data and Resources...

  9. The role of private participation in enhancing the Indian transport sector

    E-Print Network [OSTI]

    Sharma, Nand, 1979-

    2004-01-01

    The Indian transport sector, one of the largest transport networks in the world, faces some serious issues. These may be identified as follows: * Unmet demand for service and infrastructure * Conflicting responsibilities ...

  10. Integration of renewable energy into the transport and electricity sectors through V2G

    E-Print Network [OSTI]

    Firestone, Jeremy

    Integration of renewable energy into the transport and electricity sectors through V2G Henrik Lund Renewable energy Wind powerQ1 a b s t r a c t Large-scale sustainable energy systems will be necessary replace oil in the transportation sector, and (2) since today's inexpensive and abundant renewable energy

  11. Reducing GHG emissions in the United States' transportation sector

    SciTech Connect (OSTI)

    Das, Sujit [ORNL; Andress, David A [ORNL; Nguyen, Tien [U.S. DOE

    2011-01-01

    Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions in GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.

  12. Ris Energy Report 5 New and emerging technologies for renewable energy 51 in the transport sector

    E-Print Network [OSTI]

    of energy, rising oil prices and future security of supply have created strong efforts to find new transportRisř Energy Report 5 New and emerging technologies for renewable energy 51 in the transport sector 8 Energy consumption for transport accounts for approxi- mately 20% of all energy used worldwide [1

  13. Modeling the Transport Sector: The Role of Existing Fuel Taxes in Climate Policy

    E-Print Network [OSTI]

    Paltsev, Sergey.

    Existing fuel taxes play a major role in determining the welfare effects of exempting the transportation sector from measures to control greenhouse gases. To study this phenomenon we modify the MIT Emissions Prediction and ...

  14. Technology detail in a multi-sector CGE model : transport under climate policy

    E-Print Network [OSTI]

    Schafer, Andreas.

    A set of three analytical models is used to study the imbedding of specific transport technologies within a multi-sector, multi-region evaluation of constraints on greenhouse emissions. Key parameters of a computable general ...

  15. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    1998-01-01

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  16. Energy Outlook for the Transport Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outlook for Energy: A View to 2030 The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios Algae Biofuels Technology...

  17. Accounting for Co-benefits in Asia's Transportation Sector: Methods...

    Open Energy Info (EERE)

    modeling tools User Interface: Spreadsheet Website: www.iges.or.jpencpactivity20101108.html UN Region: Eastern Asia Accounting for Co-benefits in Asia's Transportation...

  18. The Practice of Cost Benefit Analysis in the Transport Sector...

    Open Energy Info (EERE)

    and greenhouse gas emissions. References Retrieved from "http:en.openei.orgwindex.php?titleThePracticeofCostBenefitAnalysisintheTransportSectoraMexicanPe...

  19. High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

    2012-06-01

    Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

  20. Integration of renewable energy into the transport and electricity sectors through V2G

    E-Print Network [OSTI]

    Firestone, Jeremy

    Integration of renewable energy into the transport and electricity sectors through V2G Henrik Lund, DE 19716, USA a r t i c l e i n f o Article history: Received 18 March 2008 Accepted 2 June 2008 Keywords: V2G Vehicle to grid Energy system analysis Sustainable energy systems Electric vehicle EV

  1. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    SciTech Connect (OSTI)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  2. Biofuels in the U.S. Transportation Sector (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Sustained high world oil prices and the passage of the Energy Policy Act 2005 (EPACT) have encouraged the use of agriculture-based ethanol and biodiesel in the transportation sector; however, both the continued growth of the biofuels industry and the long-term market potential for biofuels depend on the resolution of critical issues that influence the supply of and demand for biofuels. For each of the major biofuelscorn-based ethanol, cellulosic ethanol, and biodieselresolution of technical, economic, and regulatory issues remains critical to further development of biofuels in the United States.

  3. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  4. Corn Ethanol: The Surprisingly Effective Route for Natural Gas Consumption in the Transportation Sector

    SciTech Connect (OSTI)

    Szybist, James P.; Curran, Scott

    2015-05-01

    Proven reserves and production of natural gas (NG) in the United States have increased dramatically in the last decade, due largely to the commercialization of hydraulic fracturing. This has led to a plentiful supply of NG, resulting in a significantly lower cost on a gallon of gasoline-equivalent (GGE) basis. Additionally, NG is a domestic, non-petroleum source of energy that is less carbon-intensive than coal or petroleum products, and thus can lead to lower greenhouse gas emissions. Because of these factors, there is a desire to increase the use of NG in the transportation sector in the United States (U.S.). However, using NG directly in the transportation sector requires that several non-trivial challenges be overcome. One of these issues is the fueling infrastructure. There are currently only 1,375 NG fueling stations in the U.S. compared to 152,995 fueling stations for gasoline in 2014. Additionally, there are very few light-duty vehicles that can consume this fuel directly as dedicated or bi-fuel options. For example, in model year 2013Honda was the only OEM to offer a dedicated CNG sedan while a number of others offered CNG options as a preparation package for LD trucks and vans. In total, there were a total of 11 vehicle models in 2013 that could be purchased that could use natural gas directly. There are additional potential issues associated with NG vehicles as well. Compared to commercial refueling stations, the at-home refueling time for NG vehicles is substantial – a result of the small compressors used for home refilling. Additionally, the methane emissions from both refueling (leakage) and from tailpipe emissions (slip) from these vehicles can add to their GHG footprint, and while these emissions are not currently regulated it could be a barrier in the future, especially in scenarios with broad scale adoption of CNG vehicles. However, NG consumption already plays a large role in other sectors of the economy, including some that are important to the transportation sector. Examples include steam reforming of natural gas to provide hydrogen for hydrotreating unit operations within the refinery and production of urea for use as a reductant for diesel after treatment in selective catalytic reduction (SCR). This discussion focuses on the consumption of natural gas in the production pathway of conventional ethanol (non-cellulosic) from corn through fermentation. Though it is clear that NG would also play a significant role in the cellulosic production pathways, those cases are not considered in this analysis.

  5. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect (OSTI)

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

  6. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 2: Part 4, Transportation sector; Part 5, Forestry sector; Part 6, Agricultural sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This volume, the second of two such volumes, contains sector-specific guidance in support of the General Guidelines for the voluntary reporting of greenhouse gas emissions and carbon sequestration. This voluntary reporting program was authorized by Congress in Section 1605(b) of the Energy Policy Act of 1992. The General Guidelines, bound separately from this volume, provide the overall rationale for the program, discuss in general how to analyze emissions and emission reduction/carbon sequestration projects, and address programmatic issues such as minimum reporting requirements, time parameters, international projects, confidentiality, and certification. Together, the General Guidelines and the guidance in these supporting documents will provide concepts and approaches needed to prepare the reporting forms. This second volume of sector-specific guidance covers the transportation sector, the forestry sector, and the agricultural sector.

  7. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    extraction, processing, refining, transport, and distribution of fossil fuels into useful energy products such as natural

  8. A historical view and proposal analysis of the strategic role of the transportation sector in the economic development of post-war Liberia

    E-Print Network [OSTI]

    Kwame Corkrum, Ellen

    2010-01-01

    This thesis examines the proposals for building and improving the transportation sector in Liberia, primarily the roads while providing immediate social opportunities and employment for many of the poor in Liberia. As ...

  9. The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector

    SciTech Connect (OSTI)

    Greene, D.L.

    1997-07-01

    The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

  10. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    within fossil fuel electricity generation are (1) to shiftin electricity generation and transportation fuels. The GHGfossil fuel-based electricity generation, is assumed. After

  11. conf. International Society of Exposure Analysis, Stresa, Italy, 21-25 Sept. 2003 The stakes of air pollution in the transport sector

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of air pollution in the transport sector Robert JOUMARD French National Institute for Transport@inrets.fr Abstract The main pollutants are listed for today and the future according to the progression of air of public concern regarding air pollution and environment. These pollutants are headed by carbon dioxide

  12. The U. S. transportation sector in the year 2030: results of a two-part Delphi survey.

    SciTech Connect (OSTI)

    Morrison, G.; Stephens, T.S.

    2011-10-11

    A two-part Delphi Survey was given to transportation experts attending the Asilomar Conference on Transportation and Energy in August, 2011. The survey asked respondents about trends in the US transportation sector in 2030. Topics included: alternative vehicles, high speed rail construction, rail freight transportation, average vehicle miles traveled, truck versus passenger car shares, vehicle fuel economy, and biofuels in different modes. The survey consisted of two rounds -- both asked the same set of seven questions. In the first round, respondents were given a short introductory paragraph about the topic and asked to use their own judgment in their responses. In the second round, the respondents were asked the same questions, but were also given results from the first round as guidance. The survey was sponsored by Argonne National Lab (ANL), the National Renewable Energy Lab (NREL), and implemented by University of California at Davis, Institute of Transportation Studies. The survey was part of the larger Transportation Energy Futures (TEF) project run by the Department of Energy, Office of Energy Efficiency and Renewable Energy. Of the 206 invitation letters sent, 94 answered all questions in the first round (105 answered at least one question), and 23 of those answered all questions in the second round. 10 of the 23 second round responses were at a discussion section at Asilomar, while the remaining were online. Means and standard deviations of responses from Round One and Two are given in Table 1 below. One main purpose of Delphi surveys is to reduce the variance in opinions through successive rounds of questioning. As shown in Table 1, the standard deviations of 25 of the 30 individual sub-questions decreased between Round One and Round Two, but the decrease was slight in most cases.

  13. Title: Innovation of the Surface Transportation Sector Organizers: Rick Geddes and Al George

    E-Print Network [OSTI]

    Walter, M.Todd

    of transportation that achieves significant improvements in the following areas: · energy efficiency, fossil fuel and security · equitable access · urban design and land use · financial sustainability #12; and Aerospace Engineering, Computer Science, Materials Science, City and Regional Planning, Policy Analysis

  14. Towards a low carbon transport sector: electricity or hydrogen?y y g

    E-Print Network [OSTI]

    ! Development market Initial high cost of vehicle Success of alternatives (lock-in) 10 Success of alternatives · Substantial GHG emission reductions needed to limit global warming 2 1 2 needed to limit global warming · We and new actors 8 consumerand new actors #12;Sustainable innovation in road transport: Dutch case study

  15. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  16. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  17. The Practice of Cost Benefit Analysis in the Transport Sector a Mexican

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe Needles Geothermal AreaTransportThe

  18. GIZ Sourcebook Module 5d: The CDM in the Transport Sector | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtcSilicon Co LtdGEOGHD

  19. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    1993-01-01

    The primary objective of this report is to provide estimates of volumes and development costs of known nonassociated gas reserves in selected, potentially important supplier nations, using a standard set of costing algorithms and conventions. Estimates of undeveloped nonassociated gas reserves and the cost of drilling development wells, production equipment, gas processing facilities, and pipeline construction are made at the individual field level. A discounted cash-flow model of production, investment, and expenses is used to estimate the present value cost of developing each field on a per-thousand-cubic-foot (Mcf) basis. These gas resource cost estimates for individual accumulations (that is, fields or groups of fields) then were aggregated into country-specific price-quantity curves. These curves represent the cost of developing and transporting natural gas to an export point suitable for tanker shipments or to a junction with a transmission line. The additional costs of LNG or methanol conversion are not included. A brief summary of the cost of conversion to methanol and transportation to the United States is contained in Appendix D: Implications of Gas Development Costs for Methanol Conversion.

  20. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  1. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2

    SciTech Connect (OSTI)

    1998-01-01

    The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

  2. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    reported in IEA India transportation energy data. DifferentKeywords: India, transport, energy demand, decomposition,balance for India, transport energy consumption represents

  3. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-02-01

    Over the past year, several modifications have been made to the NEMS Transportation Model, incorporating greater levels of detail and analysis in modules previously represented in the aggregate or under a profusion of simplifying assumptions. This document is intended to amend those sections of the Model Documentation Report (MDR) which describe these superseded modules. Significant changes have been implemented in the LDV Fuel Economy Model, the Alternative Fuel Vehicle Model, the LDV Fleet Module, and the Highway Freight Model. The relevant sections of the MDR have been extracted from the original document, amended, and are presented in the following pages. A brief summary of the modifications follows: In the Fuel Economy Model, modifications have been made which permit the user to employ more optimistic assumptions about the commercial viability and impact of selected technological improvements. This model also explicitly calculates the fuel economy of an array of alternative fuel vehicles (AFV`s) which are subsequently used in the estimation of vehicle sales. In the Alternative Fuel Vehicle Model, the results of the Fuel Economy Model have been incorporated, and the program flows have been modified to reflect that fact. In the Light Duty Vehicle Fleet Module, the sales of vehicles to fleets of various size are endogenously calculated in order to provide a more detailed estimate of the impacts of EPACT legislation on the sales of AFV`s to fleets. In the Highway Freight Model, the previous aggregate estimation has been replaced by a detailed Freight Truck Stock Model, where travel patterns, efficiencies, and energy intensities are estimated by industrial grouping. Several appendices are provided at the end of this document, containing data tables and supplementary descriptions of the model development process which are not integral to an understanding of the overall model structure.

  4. Transportation Sector Module

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of the National Energy Modeling System: Model Documentation7)

  5. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    institute TERI. (2001) TERI Energy Data Directory & Yearbookdesigned. Unfortunately, existing energy data do not provideIndia transportation energy data. Different scenarios were

  6. Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy

    SciTech Connect (OSTI)

    Brown, E.

    2008-08-01

    This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

  7. End-Use Sector Flowchart

    Broader source: Energy.gov [DOE]

    This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors—transportation, industry, commercial and residential—identified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector.

  8. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    consumption. As in the statistic from India Ministry ofTransport In India Ministry of Statistics (MOS), India. (Statistics 4.2 Comparison with IEA data The energy consumption estimates described above were compared with IEA India

  9. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    consumption reported in IEA India transportation energyin mobility, while the IEA data only shows a 1.7% growthWB, 2004). According to the IEA energy balance for India,

  10. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

  11. Energy Intensity Indicators: Transportation Energy Consumption

    Broader source: Energy.gov [DOE]

    This section contains an overview of the aggregate transportation sector, combining both passenger and freight segments of this sector. The specific energy intensity indicators for passenger and freight can be obtained from the links, passenger transportation, or freight transportation. For further detail within the transportation sector, download the appropriate Trend Data worksheet containing detailed data and graphics for specific transportation modes.

  12. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01

    natural gas and liquefied petroleum gas have continued to make small contributions to transportation,transportation actions include electric power sector actions, eg coal to natural gas

  13. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01

    22, (4), 10. EIA Annual Energy Outlook 2006 with Projections4. EIA Annual Energy Outlook 2007 with Projections to 2030.to the Annual Energy Outlook 2007. Transportation Demand

  14. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01

    leg/leginx.asp 4. EIA Annual Energy Outlook 2007 with22, (4), 10. EIA Annual Energy Outlook 2006 with Projectionsto the Annual Energy Outlook 2007. Transportation Demand

  15. Climate forcing by the on-road transportation and power generation sectors Nadine Unger a,b,*, Drew T. Shindell a

    E-Print Network [OSTI]

    generation (PG) sectors are major contributors to carbon dioxide (CO2) emissions and a host of short-lived well-mixed greenhouse gas (WMGHG) carbon dioxide (CO2). In addition, these human activities influence energy change options to date have neglected non- CO2 air pollutant impacts on radiative forcing (RF

  16. Fact #561: March 9, 2009 All Sectors' Petroleum Gap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial,...

  17. Fact #610: February 15, 2010 All Sectors' Petroleum Gap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial,...

  18. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / Transforming Y-12Capacity-Forum Sign InTransportation

  19. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source:...

  20. Toledo Regional Economic PlanToledo Regional Economic Plan Transportation and LogisticsTransportation and Logistics

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    Toledo Regional Economic PlanToledo Regional Economic Plan Transportation and LogisticsTransportation and Logistics Industry SectorIndustry Sector Submitted by:Submitted by: Transportation and Logistics Working GroupTransportation and Logistics Working Group September 2009September 2009 #12;22 Transportation

  1. Fact #582: August 3, 2009 Energy Shares by Sector and Source

    Office of Energy Efficiency and Renewable Energy (EERE)

    The transportation sector consumed about 28% of U.S. energy in 2008, nearly all of it (95%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The electric...

  2. Fact #689: August 22, 2011 Energy Use by Sector and Source

    Broader source: Energy.gov [DOE]

    The transportation sector consumed 28% of U.S. energy in 2010, nearly all of it (93.5%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The electric utility...

  3. Advanced Vehicle Electrification and Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Broader source: Energy.gov (indexed) [DOE]

    1 6 44 0 3 4 41 11 1 14 8 47 16 7 5 0 480 78 195 2 0 2 Conventional Boilers 10 CHP Cogeneration Nonprocess Energy Process Cooling and Refrigeration Machine Drive Electro-Chemical...

  5. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Export 1 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy (TBtu ...

  6. Restructuring our Transportation Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7,Breakout SessionsEnergy ResponsesRestructuring our

  7. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced PetroleumDepartment

  8. Advanced Vehicle Electrification and Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced PetroleumDepartment| Department of

  9. Advanced Vehicle Electrification and Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NREL Advanced PetroleumDepartment| Department of|

  10. Vehicle Technologies Office: Transitioning the Transportation Sector -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvanced EngineFebruaryVehicle

  11. Optimization of Maritime Transportation

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    and Technology Management Norwegian University of Science and Technology, Trondheim, Norway Enterprise and D. Ronen (2007). Maritime transportation. Handbooks in Operations Research and Management Science (consolidation in the manufacturing sector, increasing competition, profit margins reduced, mergers and pooling

  12. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-owned",4295605,1556518,1560705,1178382,0 2,"Vermont Electric...

  13. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"South Carolina Electric&Gas Company","Investor-owne...

  14. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",49437270...

  15. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Carolinas, LLC","Investor-owned",553018...

  16. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total sales, top five providers" "Nevada" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Nevada Power...

  17. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Kentucky Utilities Co","Investor-owned",18527337,61...

  18. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned...

  19. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Oklahoma Gas & Electric Co","Investor-owned",242030...

  20. Fundamentals of public-private partnerships in the transportation sector : international methodologies of highway public-private partnerships and a framework to increase the probability of success and allocate risk

    E-Print Network [OSTI]

    Butler, Ryan, S.M. Massachusetts Institute of Technology

    2013-01-01

    In 2009 the American Society of Civil Engineers (ASCE) gave the US infrastructure sector a grade D, based on the current and future needs of the nation's infrastructure and estimates that by year 2020, the US surface ...

  1. Reducing Emissions Through Sustainable Transport: Proposal for...

    Open Energy Info (EERE)

    Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Reducing Emissions Through Sustainable...

  2. 35 Alternative Transportation Fuels in California ALTERNATIVE TRANSPORTATION

    E-Print Network [OSTI]

    potential means for diversifying an energy resource base for the transportation sector. Largely as a result, there is a potential for the entrance of an estimated one million alternative fuel vehicles (AFVs) into the California35 Alternative Transportation Fuels in California Chapter 4 ALTERNATIVE TRANSPORTATION FUELS

  3. Modeling regional transportation demand in China and the impacts of a national carbon constraint

    E-Print Network [OSTI]

    Kishimoto, Paul

    2015-01-30

    Climate and energy policy in China will have important and uneven impacts on the country’s regionally heterogeneous transport system. In order to simulate these impacts, transport sector detail is added to a multi-sector, ...

  4. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Agency, 2003. “Cool Appliances”, IEA/OECD, Paris, France.of Non-OECD Countries 2004- 2005”, IEA/OECD, Paris, France.Use in the New Millenium”, IEA/OECD, Paris, France. Indian

  5. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    the demand for energy from the supply. Vehicle efficiency isreductions in energy demand, rather than the supply of low-supply of low-carbon biofuels available for use in the transportation sector and other sectors of the energy

  6. Estimated United States Transportation Energy Use 2005

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  7. Hepp and Speer Sectors within Modern Strategies of Sector Decomposition

    E-Print Network [OSTI]

    A. V. Smirnov; V. A. Smirnov

    2008-12-26

    Hepp and Speer sectors were successfully used in the sixties and seventies for proving mathematical theorems on analytically or/and dimensionally regularized and renormalized Feynman integrals at Euclidean external momenta. We describe them within recently developed strategies of introducing iterative sector decompositions. We show that Speer sectors are reproduced within one of the existing strategies.

  8. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  9. Energy Department Awards $45 Million to Deploy Advanced Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is helping to build a strong 21st century transportation sector that cuts harmful pollution, creates jobs and leads to a more sustainable energy future," said Energy Secretary...

  10. Technology Mapping of the Renewable Energy, Buildings and Transport...

    Open Energy Info (EERE)

    Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Jump to: navigation, search Tool Summary LAUNCH TOOL...

  11. Mainstreaming Transport Co-benefits Approach: A Guide to Evaluating...

    Open Energy Info (EERE)

    Focus Area: Multi-sector Impact Evaluation Topics: Best Practices Website: pub.iges.or.jpmodulesenvirolibupload3209attachtransport%20co-ben Transport Toolkit Region(s):...

  12. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    aviation, marine and rail sectors. Energy use, broken out bysuch as aviation and marine. California’s Energy Future -and marine. We believe that the CEF transportation energy

  13. Chemical Sector Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclear SecurityChattan ooga EagNISACChemical Sector

  14. Searching for Dark Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcomingmagnetoresistance |Komlov,Search / Search Search EnterDark Sector

  15. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of Contents...

  16. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

  17. Cross-Sector Impact Analysis of Industrial Efficiency Measures

    SciTech Connect (OSTI)

    Morrow, William [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); CreskoEngineering, Joe [Oak Ridge Institute for Science and Education (ORISE); Carpenter, Alberta [National Renewable Energy Laboratory (NREL)] [National Renewable Energy Laboratory (NREL); Masanet, Eric [Northwestern University, Evanston] [Northwestern University, Evanston; Nimbalkar, Sachin U [ORNL] [ORNL; Shehabi, Arman [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL)

    2013-01-01

    The industrial or manufacturing sector is a foundational component to all economic activity. In addition to being a large direct consumer of energy, the manufacturing sector also produces materials, products, and technologies that influence the energy use of other economic sectors. For example, the manufacturing of a lighter-weight vehicle component affects the energy required to ship that component as well as the fuel efficiency of the assembled vehicle. Many energy efficiency opportunities exist to improve manufacturing energy consumption, however comparisons of manufacturing sector energy efficiency investment opportunities tend to exclude any impacts that occur once the product leaves the factory. Expanding the scope of analysis to include energy impacts across different stages of product life-cycle can highlight less obvious opportunities and inform actions that create the greatest economy-wide benefits. We present a methodology and associated analysis tool (LIGHTEnUP Lifecycle Industry GHgas, Technology and Energy through the Use Phase) that aims to capture both the manufacturing sector energy consumption and product life-cycle energy consumption implications of manufacturing innovation measures. The tool architecture incorporates U.S. national energy use data associated with manufacturing, building operations, and transportation. Inputs for technology assessment, both direct energy saving to the manufacturing sector, and indirect energy impacts to additional sectors are estimated through extensive literature review and engineering methods. The result is a transparent and uniform system of comparing manufacturing and use-phase impacts of technologies.

  18. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  19. Quantitative analysis of alternative transportation under environmental constraints

    E-Print Network [OSTI]

    Sandoval López, Reynaldo

    2006-01-01

    This thesis focuses on the transportation sector and its role in emissions of carbon dioxide (CO2) and conventional pollutant emissions. Specifically, it analyzes the potential for hydrogen based transportation, introducing ...

  20. Climate Action Plans and Long-Range Transportation

    E-Print Network [OSTI]

    Bertini, Robert L.

    Climate Action Plans and Long-Range Transportation Plans in the Pacific Northwest: A Review Climate Change and Impacts Mitigation versus Adaptation Impacts of Climate Change: Nation & the Pacific Northwest Climate Change Planning Efforts Transportation Sector Response - Survey Recommendations Continued

  1. Preliminary Analysis Framework for State Sustainable Transportation system

    E-Print Network [OSTI]

    Naganathan, Hariharan

    2013-12-31

    Sustainable practices have become the cornerstone of the transportation sector, and widely adopted by many states' transportation agencies. The nerve center of the economic development today circles around resource utilization and energy use...

  2. FEATURED SECTOR The New Zealand Sectors Report 2013

    E-Print Network [OSTI]

    Report consists of the Main Report covering all sectors in the economy and six additional, separate) 3 High technology manufacturing 4 Construction 5 Petroleum and minerals 6 Tourism (this report) 7 emerging high-value sectors such as information technology services and high- technology manufacturing

  3. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

  4. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

  5. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by Robert...

  6. Sustainable Transport

    E-Print Network [OSTI]

    Webber, Melvin

    2006-01-01

    THOUGHT PIECE Sustainable Transport by Melvin M. Webberwant to sustain any mode of transport only if we judge it todraconian in rejecting transport modes that have failed in

  7. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  8. Cross-sector policy research: insights from the UK energy and transport sectors

    E-Print Network [OSTI]

    Peake, Stephen Robert

    1993-10-26

    , to agricultural policy, imbuing their development with whatever dominant political and social culture characterises them. Yet from another point of view, penal reform, arms technology development, and farmers' agricultural subsidies have very little in common... ). 4. Policy as decisio1lS of govemment. In 'moments of choice' governments embody certain 'decisions' in legislation. For example, the British Government's early policy for nuclear power is embodied in the White Paper 'A Programme for Nuclear Power...

  9. FY 2016 EERE Budget Webinar—Sustainable Transportation Sector

    Broader source: Energy.gov [DOE]

    The Energy Department’s Office of Energy Efficiency and Renewable Energy (EERE) hosted a webinar series featuring our deputy assistant secretaries and the technology office directors as they dove deep into EERE’s fiscal year (FY) 2016 budget request

  10. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Post-2012 Climate Instruments in the transport sector | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas: EnergyOklahoma:Ewen,RiskInformation Post-2012

  12. Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergyRedfield Campus GeothermalApproach | Open Energy

  13. Annual Energy Outlook 2015 Modeling updates in the Transportation sector

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements)Grossc.:OctoberElectricity1

  14. Rail Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic Feet)698 1.873 -CoalRail

  15. Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948CaliforniaFeet) (Million

  16. DOE/EIA-M070(2010) Transportation Sector

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions1 0 0 0 09)6)8)10)

  17. Copenhagen Accord NAMA Submissions Implications for the Transport Sector |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,CoalConcordiaConsumer Connection JumpCooperbioOpen Energy

  18. Policies to Reduce Emissions from the Transportation Sector | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono SolarPlexus Sol JumpLowLow

  19. Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar HydroElectricColorado: EnergyLamartine Navarro

  20. Technologies for Climate Change Mitigation: Transport Sector | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLC Jump

  1. Transitioning the Transportation Sector: Exploring the Intersection of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternational Affairs,Department ofARPA-E Top 10Hydrogen Fuel Cell and Natural Gas

  2. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs SearchWater-Saving Projects | DepartmentProgram |

  3. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs SearchWater-Saving Projects | DepartmentProgram |Program

  4. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs SearchWater-Saving Projects | DepartmentProgram

  5. The Transportation Sector Model of the National Energy Modeling System

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet) Oil4) The

  6. The Transportation Sector Model of the National Energy Modeling System

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672(MillionFeet) Oil4) The5) The

  7. Transportation Sector Module of the National Energy Modeling System

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of the National Energy Modeling System: Model

  8. Water Impacts of the Electricity Sector (Presentation)

    SciTech Connect (OSTI)

    Macknick, J.

    2012-06-01

    This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

  9. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications (EIA)

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  10. SEP Special Projects Report: Buildings Sector

    SciTech Connect (OSTI)

    2009-01-18

    The buildings section of this Sharing Success document describes SEP special projects in the buildings sector including funding.

  11. Sector Profiles of Significant Large CHP Markets, March 2004...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Profiles of Significant Large CHP Markets, March 2004 Sector Profiles of Significant Large CHP Markets, March 2004 In this 2004 report, three sectors were identified as...

  12. Making Africa's Power Sector Sustainable: An Analysis of Power...

    Open Energy Info (EERE)

    Making Africa's Power Sector Sustainable: An Analysis of Power Sector Reforms in Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Making Africa's Power Sector...

  13. Workforce Training for the Electric Power Sector: Awards | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Training for the Electric Power Sector: Awards Workforce Training for the Electric Power Sector: Awards List of Workforce Training Awards for the Electric Power Sector...

  14. Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave

    E-Print Network [OSTI]

    Politčcnica de Catalunya, Universitat

    Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

  15. Fact #560: March 2, 2009 The Transportation Petroleum Gap

    Broader source: Energy.gov [DOE]

    In 1989 the transportation sector petroleum consumption surpassed U.S. petroleum production for the first time, creating a gap that must be met with imports of petroleum. By the year 2030,...

  16. Fact #687: August 8, 2011 The Transportation Petroleum Gap

    Broader source: Energy.gov [DOE]

    In 1989 the transportation sector petroleum consumption surpassed U.S. petroleum production for the first time, creating a gap that must be met with imports of petroleum. By the year 2035,...

  17. Fact #609: February 8, 2010 The Transportation Petroleum Gap

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 1989 the transportation sector petroleum consumption surpassed U.S. petroleum production for the first time, creating a gap that must be met with imports of petroleum. By the year 2035,...

  18. The role of natural gas as a vehicle transportation fuel

    E-Print Network [OSTI]

    Murphy, Paul Jarod

    2010-01-01

    This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

  19. Singlet Portal to the Hidden Sector

    E-Print Network [OSTI]

    Clifford Cheung; Yasunori Nomura

    2010-08-30

    Ultraviolet physics typically induces a kinetic mixing between gauge singlets which is marginal and hence non-decoupling in the infrared. In singlet extensions of the minimal supersymmetric standard model, e.g. the next-to-minimal supersymmetric standard model, this furnishes a well motivated and distinctive portal connecting the visible sector to any hidden sector which contains a singlet chiral superfield. In the presence of singlet kinetic mixing, the hidden sector automatically acquires a light mass scale in the range 0.1 - 100 GeV induced by electroweak symmetry breaking. In theories with R-parity conservation, superparticles produced at the LHC invariably cascade decay into hidden sector particles. Since the hidden sector singlet couples to the visible sector via the Higgs sector, these cascades necessarily produce a Higgs boson in an order 0.01 - 1 fraction of events. Furthermore, supersymmetric cascades typically produce highly boosted, low-mass hidden sector singlets decaying visibly, albeit with displacement, into the heaviest standard model particles which are kinematically accessible. We study experimental constraints on this broad class of theories, as well as the role of singlet kinetic mixing in direct detection of hidden sector dark matter. We also present related theories in which a hidden sector singlet interacts with the visible sector through kinetic mixing with right-handed neutrinos.

  20. Dissipative hidden sector dark matter

    E-Print Network [OSTI]

    R. Foot; S. Vagnozzi

    2014-12-15

    A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken $U(1)^{'}$ gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength $\\epsilon \\sim 10 ^{-9}$ appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on Big Bang Nucleosynthesis and its contribution to the relativistic energy density at Hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focussing on spiral and irregular galaxies. For these galaxies we modelled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.

  1. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding in Actinide SandwichCray eraSkillsCross-Sector Sign In

  2. Private Sector | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy Technology JumpWilliam County,| OpenEIPrism SolarSector

  3. WINDExchange: Wind Energy Market Sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA|UpcomingVisit UsNews This pageMarket Sectors

  4. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01

    Electricity Sector in Russia: Regional Aspects " In Economics EducationElectricity Sector in Russia: Regional Aspects " in Economics Education

  5. Non-Tracial Free Transport and Applications

    E-Print Network [OSTI]

    Nelson, Brent Andrew

    2015-01-01

    tracial transport . . . . . . . . . . . . . . . . . . . .the transport element . . . . . . . . . . . . . .Free Transport . . . . . . . . . . . .

  6. Table 24. Productivity and related data, business and nonfarm business sectors, 1947-2000 (Index, 1992=100)

    E-Print Network [OSTI]

    Rauch, Erik

    - Non- Busi- Non- Busi- Non- Busi- Non- Busi- Non- ness farm ness farm ness farm ness farm ness farm ness farm ness farm sector busi- sector busi- sector busi- sector busi- sector busi- sector busi- sector busi- ness ness ness ness ness ness ness sector sector sector sector sector sector sector 1947

  7. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    Accelerating Investments in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating...

  8. Energy Sector Cybersecurity Framework Implementation Guidance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework released by...

  9. DOE Issues Energy Sector Cyber Organization NOI

    Energy Savers [EERE]

    between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the...

  10. Tennessee's Manufacturing Sector Before and After the

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Tennessee's Manufacturing Sector Before and After the Great Recession Prepared by Matthew N. Murray....................................................................................................................................... 1 Manufacturing in the Post Great Recession Era............................................................................... 2 Manufacturing Employment Trends

  11. Decoupling limits in multi-sector supergravities

    SciTech Connect (OSTI)

    Achúcarro, Ana; Hardeman, Sjoerd; Schalm, Koenraad; Aalst, Ted van der [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden (Netherlands); Oberreuter, Johannes M., E-mail: achucar@lorentz.leidenuniv.nl, E-mail: j.m.oberreuter@uva.nl, E-mail: kschalm@lorentz.leidenuniv.nl, E-mail: vdaalst@lorentz.leidenuniv.nl [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Science Park 904, Amsterdam (Netherlands)

    2013-03-01

    Conventional approaches to cosmology in supergravity assume the existence of multiple sectors that only communicate gravitationally. In principle these sectors decouple in the limit M{sub pl}??. In practice such a limit is delicate: for generic supergravities, where sectors are combined by adding their Kähler functions, the separate superpotentials must contain non-vanishing vacuum expectation values supplementing the naďve global superpotential. We show that this requires non-canonical scaling in the naďve supergravity superpotential couplings to recover independent sectors of globally supersymmetric field theory in the decoupling limit M{sub pl} ? ?.

  12. Guam Transportation Petroleum-Use Reduction Plan

    SciTech Connect (OSTI)

    Johnson, C.

    2013-04-01

    The island of Guam has set a goal to reduce petroleum use 20% by 2020. Because transportation is responsible for one-third of on-island petroleum use, the Guam Energy Task Force (GETF), a collaboration between the U.S. Department of Energy and numerous Guam-based agencies and organizations, devised a specific plan by which to meet the 20% goal within the transportation sector. This report lays out GETF's plan.

  13. Why is energy use rising in the freight sector

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-01-01

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  14. Why is energy use rising in the freight sector?

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-12-31

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  15. Institute of Public Sector Accounting Research

    E-Print Network [OSTI]

    Edinburgh, University of

    Institute of Public Sector Accounting Research I·P·S·A·R In Government, Public Services and Charities http://www.business-school.ed.ac.uk/research/centres/public-sector-accounting-research CALL FOR PAPERS for a RESEARCH WORKSHOP and a special issue of QUALITATIVE RESEARCH IN ACCOUNTING & MANAGEMENT

  16. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    energy demand along with the potential for technologies in different transportation sectors to reduce fuelpotential for reductions in energy demand, rather than the supply of low-carbon transportation fuel.potential for reductions in fuel use is provided. California’s Energy

  17. Research in transportation: the shape of the future

    SciTech Connect (OSTI)

    Chenea, P.F.

    1981-01-01

    The individual mobility now enjoyed due to advancements in the transportation sector is being threatened by higher fuel costs and declining petroleum resources. Transportation research approaches must address these problems. Automotive engineers must redesign existing vehicles to make them smaller, lighter, and so more fuel efficient. Alternatives to the gasoline engine, such as gas turbine and stratified charge engines, must be commercialized.

  18. Stuck with the bill, but why? : an analysis of the Portuguese public finance system with respect to surface transportation policy and investments

    E-Print Network [OSTI]

    Nelson, Joshua S

    2008-01-01

    Despite decentralization progress in other sectors, the Portuguese central government maintains significant administrative and fiscal power over national and sub-national surface transportation operations and infrastructure. ...

  19. Interaction in the dark sector

    E-Print Network [OSTI]

    Sergio del Campo; Ramon Herrera; Diego Pavon

    2015-07-01

    It may well happen that the two main components of the dark sector of the Universe, dark matter and dark energy, do not evolve separately but interact nongravitationally with one another. However, given our current lack of knowledge on the microscopic nature of these two components there is no clear theoretical path to determine their interaction. Yet, over the years, phenomenological interaction terms have been proposed on mathematical simplicity and heuristic arguments. In this paper, based on the likely evolution of the ratio between the energy densities of these dark components, we lay down reasonable criteria to obtain phenomenological, useful, expressions of the said term independent of any gravity theory. We illustrate this with different proposals which seem compatible with the known evolution of the Universe at the background level. Likewise, we show that two possible degeneracies with noninteracting models are only apparent as they can be readily broken at the background level. Further, we analyze some interaction terms that appear in the literature.

  20. AN ASSESSMENT OF DATA ON OUTPUT INDUSTRIAL SUB-SECTORS

    E-Print Network [OSTI]

    of that sub-sector. This typically includes the "resource" sub-sectors (chemicals, metals, pulp and paper of industry was considered a "sector" of the overall group known as Industry. Thus we spoke of the pulp and paper sector or the petroleum refining sector within industry. Because of increasing references

  1. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  2. IMF sector behavior deduced from geomagnetic data

    SciTech Connect (OSTI)

    Matsushita, S.; Trotter, D.E.

    1980-05-01

    Interplanetary magnetic field (IMF) sector structures, such as 'toward' the sun and 'away' from the sun on each day, have been objectivly estimated from daily and monthly mean values of the horizontal component of the geomagnetic variation field at Godhavn during the period 1926--1970. The agreement between this estimation and actual satellite observations of the sector structures of the interval 1964--1970 is 88, 79, and 58% in summer, equinox, and winter, respectively. A remarkable agreement (more than 95%) is obtained for the summers of 1964, 1969, and 1970. Various types of IMF sector behavior are examined by taking this seasonal factor into consideration. Approximately 27-day recurrences of the same structure are often found, and 5- to 14-day consecutive occurrences of the same sector are frequently noted. Furthermore, the total number of occurrences for each estimated sector in each year shows an apparently good correlation with smoothed sunspot numbers and geomagnetic aa index. After a brief introduction of the production mechanism of sector effects on polar geomagnetic fields the limitations and merits of IMF sector inference from geomagnetic data are emphasized.

  3. On the Road to Transportation Efficiency (Video)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01

    Reducing emissions and oil consumption are crucial worldwide goals. Reducing transportation emissions, in particular, is key to reducing overall emissions. Electric vehicles driving on electrified roadways could be a significant part of the solution. E-roadways offer a variety of benefits: reduce petroleum consumption (electricity is used instead of gasoline), decrease vehicular operating costs (from about 12 cents per mile to 4 cents per mile), and extend the operational range of electric vehicles. Plus, e-roadway power can come from renewable sources. This animation was sponsored by the Clean Transportation Sector Initiative, and interagency effort between the U.S. Department of Transportation and the U.S. Department of Energy.

  4. Cosmology of hidden sector with Higgs portal

    E-Print Network [OSTI]

    Cabi, Serkan

    2009-01-01

    In this thesis, we are investigating cosmological implications of hidden sector models which involve scalar fields that do not interact with the Standard Model gauge interactions, but couple directly to the Higgs field. ...

  5. Top partner probes of extended Higgs sectors

    E-Print Network [OSTI]

    Kearney, John

    Natural theories of the weak scale often include fermionic partners of the top quark. If the electroweak symmetry breaking sector contains scalars beyond a single Higgs doublet, then top partners can have sizable branching ...

  6. Electricity sector restructuring and competition : lessons learned

    E-Print Network [OSTI]

    Joskow, Paul L.

    2003-01-01

    We now have over a decade of experience with the privatization, restructuring, regulatory reform, and wholesale and retail competition in electricity sectors around the world. The objectives and design attributes of these ...

  7. Market Report for the Industrial Sector, 2009

    SciTech Connect (OSTI)

    Sastri, Bhima; Brueske, Sabine; de los Reyes, Pamela; Jamison, Keith; Justiniano, Mauricio; Margolis, Nancy; Monfort, Joe; Raghunathan, Anand; Sabouni, Ridah

    2009-07-01

    This report provides an overview of trends in industrial-sector energy use. It focuses on some of the largest and most energy-intensive industrial subsectors and several emerging technologies that could transform key segments of industry.

  8. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate...

  9. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects October 9,...

  10. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01

    across regions. Up-stream energy conglomerates and down-the electricity sector: “up-stream” energy conglomerates areother energy sectors – for example the Nord-Stream pipeline

  11. Climate Change and the Transporation Sector - Challenges and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change and the Transporation Sector - Challenges and Mitigation Options Climate Change and the Transporation Sector - Challenges and Mitigation Options 2003 DEER Conference...

  12. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  13. Combined Heat & Power Technology Overview and Federal Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Technology Overview and Federal Sector Deployment Combined Heat & Power Technology Overview and Federal Sector Deployment Presentation covers the Combined...

  14. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    11 Calibration of the Energy Consumption Data forSectoral energy consumption data are available in publishedof the sectoral energy consumption data in the statistics

  15. Climate Change and China's Agricultural Sector: An Overview of...

    Open Energy Info (EERE)

    Climate Change and China's Agricultural Sector: An Overview of Impacts, Adaptation and Mitigation Jump to: navigation, search Name Climate Change and China's Agricultural Sector:...

  16. Workforce Training for the Electric Power Sector: Map of Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Training for the Electric Power Sector: Map of Projects Workforce Training for the Electric Power Sector: Map of Projects Map showing the number of projects awarded in...

  17. Roadmap to Secure Control Systems in the Energy Sector - January...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to Secure Control Systems in the Energy Sector - January 2006 Roadmap to Secure Control Systems in the Energy Sector - January 2006 This document, the Roadmap to Secure...

  18. Overcoming Multifamily Sector Barriers in Austin, Texas | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overcoming Multifamily Sector Barriers in Austin, Texas Overcoming Multifamily Sector Barriers in Austin, Texas Presents techniques on overcoming the barriers of multifamily energy...

  19. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01

    Private Participation in the Electricity Sector World BankTelecommunications and Electricity Sectors." Governance 19,Power Struggle: Reforming the Electricity Industry." In The

  20. Sectoral trends in global energy use and greenhouse gasemissions

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

    2006-07-24

    In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

  1. ImSET: Impact of Sector Energy Technologies

    SciTech Connect (OSTI)

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

  2. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2010-05-01

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

  3. Transportation Plan 

    E-Print Network [OSTI]

    Boreo, Andrea; Li, Wei; Wunnenbuger, Douglas; Giusti, Cecilia; Cooper, John T.; Masterson, Jaimie

    2015-01-01

    Mobility throughout a community ensures freedom of movement and enhances quality of life. Traffic congestion, pollution, urban sprawl, social exclusion, safety and health can decrease mobility and should be a part of a sustainable transportation...

  4. electrifyingthefuture transportation

    E-Print Network [OSTI]

    Birmingham, University of

    programme of electrification and the potential introduction of diesel hybrids. The Department for Transport vehicles Wind turbine systems Industrial equipment The lab has full ethernet capability which will enable

  5. The climate impacts of high-speed rail and air transportation : a global comparative analysis

    E-Print Network [OSTI]

    Clewlow, Regina Ruby Lee

    2012-01-01

    Growing concerns about the energy use and climate impacts of the transportation sector have prompted policymakers to consider a variety of options to meet the future mobility needs of the world's population, while ...

  6. Fact #699: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009

    Broader source: Energy.gov [DOE]

    Highway vehicles are responsible for most of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in med/heavy trucks...

  7. Integrating regional strategic transportation planning and supply chain management : along the path to sustainability

    E-Print Network [OSTI]

    Sgouridis, Sgouris P

    2005-01-01

    A systems perspective for regional strategic transportation planning (RSTP) for freight movements involves an understanding of Supply Chain Management (SCM). This thesis argues that private sector freight shippers and ...

  8. Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries

    E-Print Network [OSTI]

    Kim, Hyunho, S.M. Massachusetts Institute of Technology

    2014-01-01

    Thermal energy storage has received significant interest for delivering heating and cooling in both transportation and building sectors. It can minimize the use of on-board electric batteries for heating, ventilation and ...

  9. Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by State, 2010

    Broader source: Energy.gov [DOE]

    The map below shows the amount of petroleum and natural gas consumed in the transportation sector by state for 2010. The pie charts for each state are scaled based on total consumption of petroleum...

  10. Delivering the Green: The Future of California's Freight Transportation System Summary and Reading List

    E-Print Network [OSTI]

    California at Davis, University of

    Delivering the Green: The Future of California's Freight Transportation System Summary and Reading List California's freight sector is a critical part of California's economic engine, generating. California's freight sector, including trucks, trains, and ships is also the largest contributor to ozone

  11. Energy efficiency in building sector in India through Heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Energy efficiency in building sector in India through Heat Pump Technology By Mr Pradeep Kumar sector in India · Residential building sector in India · HVAC growth in residential sector. · Heat Pump, Sustainable habitat, Biotechnology, Renewable energy, Water technology, Industrial research, Social

  12. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    number of themes about the structure of the energy efficiency services sector (EESS). For some companies

  13. Philippines' downstream sector poised for growth

    SciTech Connect (OSTI)

    Not Available

    1992-05-11

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector.

  14. More visible effects of the hidden sector

    SciTech Connect (OSTI)

    Murayama, Hitoshi; Murayama, Hitoshi; Nomura, Yasunori; Poland, David

    2007-09-06

    There is a growing appreciation that hidden sector dynamics may affect the supersymmetry breaking parameters in the visible sector (supersymmetric standard model), especially when the dynamics is strong and superconformal. We point out that there are effects that have not been previously discussed in the literature. For example, the gaugino masses are suppressed relative to the gravitino mass. We discuss their implications in the context of various mediation mechanisms. The issues discussed include anomaly mediation with singlets, the mu (B mu) problem in gauge and gaugino mediation, and distinct mass spectra for the superparticles that have not been previously considered.

  15. The North American Forest Sector Outlook Study

    E-Print Network [OSTI]

    to consumption patterns for wood products and bioenergy. Markets for wood products, which mainly are destined in the forest sector of North America 21 3.1 Forest inventory 21 3.2 Aggregate production, consumption, Canada, carbon sequestration, climate change, consumption, demand, econometric, EFSOS, export, fellings

  16. WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE

    E-Print Network [OSTI]

    WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE WARMING IN THE SIERRA NEVADA: Water Year explores the sensitivity of water indexing methods to climate change scenarios to better understand how water management decisions and allocations will be affected by climate change. Many water management

  17. NATURAL GAS ADVISORY COMMITTEE Name Affiliation Sector

    E-Print Network [OSTI]

    NATURAL GAS ADVISORY COMMITTEE 2011-2013 Name Affiliation Sector Dernovsek, David Bonneville Power Defenbach, Byron Intermountain Gas Distribution Dragoon, Ken NWPCC Council Friedman, Randy NW Natural Gas Distribution Gopal, Jairam Southern CA Edison Electric Utility Hamilton, Linda Shell Trading Gas & Power

  18. Retail competition in the UK electricity sector

    E-Print Network [OSTI]

    Rudnick, Hugh

    retail market #12;Schedule for UK market opening · 1990 large users (above 1 MW max demand) · about 30Retail competition in the UK electricity sector Stephen Littlechild Workshops on Retail Competition that in electricity · but agreed need to have further separation · Now require separate legal entities & licenses

  19. Economic Impact of the Texas Forest Sector

    E-Print Network [OSTI]

    and paper products. The Texas forest sector also produces many value-added forest products such as millwork, wood kitchen cabinets, prefabricated wood buildings, wood furniture, and various paper products in terms of total industry output, value-added, employment, and labor income. Total industry output

  20. ECONOMIC IMPACT OF THE CLEANTECH SECTOR

    E-Print Network [OSTI]

    Ghosh, Joydeep

    ! ECONOMIC IMPACT OF THE CLEANTECH SECTOR In the Austin-Round Rock-San Marcos MSA Prepared by: #12 Manufacturing $2.5 Billion Cleantech contributes $2.5 Billion to Austin's regional GDP. 20,000 Jobs Cleantech directly employs 20,000 people in the Austin MSA. Rapid Growth Employment in cleantech is projected to grow

  1. Testing Higgs sector of 2HDM

    E-Print Network [OSTI]

    Maria Krawczyk

    2005-12-30

    Properties of the Higgs sector of Two Higgs Doublet Model (2HDM) and existing constraints on its parameters are discussed. Potential of the Photon Linear Collider in testing various Higgs scenarios of 2HDM, including the MSSM, based on the realistic simulations is also presented.

  2. Industry Sector Case Study Building Technologies Division

    E-Print Network [OSTI]

    Fischlin, Andreas

    energy supply is based on solar thermal collectors, a photovoltaic system, as well as building technologyIndustry Sector Case Study Building Technologies Division Zug (Switzerland), September 14, 2011,000 m, the New Monte Rosa Hut showcases the latest developments in the building technology field

  3. China's industrial sector in an international context

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

    2000-05-01

    The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

  4. Preface: Nonclassical Transport

    E-Print Network [OSTI]

    Bolshov, L.

    2010-01-01

    models of solute transport in highly heterogeneous geologicSemenov. 2008b. Nonclassical transport processes in geologicand L. Matveev. 2008. Transport regimes and concentration

  5. Intelligent Transport Systems

    E-Print Network [OSTI]

    Deakin, Elizabeth; Frick, Karen Trapenberg; Skabardonis, Alexander

    2009-01-01

    in Sustainable Urban Transport: City Interview Synthesis (of Leeds, Institute for Transport Studies, forthcoming.I NTELLIGENT TRANSPORT SYSTEMS LINKING TECHNOLOGY AND

  6. Sustainability and Transport

    E-Print Network [OSTI]

    Gilbert, Richard

    2006-01-01

    Gilbert is a Toronto-based transport and energy consultantof the forthcoming book Transport Revolutions: Making theand substantial transition to transport systems based on

  7. Sandia Energy - Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Safety Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Risk and Safety Assessment Transportation Safety Transportation SafetyTara...

  8. The Lepton Sector of a Fourth Generation

    E-Print Network [OSTI]

    Gustavo Burdman; Leandro Da Rold; Ricardo D. Matheus

    2010-05-10

    In extensions of the standard model with a heavy fourth generation one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

  9. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

    E-Print Network [OSTI]

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS #12;SUSTAINABLE;6 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS ACKNOWLEDGEMENTS #12;1 SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

  10. Roadmap to Secure Control Systems in the Energy Sector 2006 ...

    Energy Savers [EERE]

    Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation to the 2008 ieRoadmap Workshop Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation...

  11. The Changing US Electric Sector Business Model 

    E-Print Network [OSTI]

    Aliff, G.

    2013-01-01

    uneconomical for electricity generation • Renewable portfolio standards (29 states and DC) put priority on solar, wind and energy efficiency regardless of associated economics • Forecasts of future electricity demand are debatable, and in some cases expected... on the Future and Conclusions Presentation overview 2 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Copyright © 2013 Deloitte Development LLC. All rights reserved. Fundamentals of the US electric sector...

  12. Financing Energy Efficiency Retrofits in the Commercial Sector Webinar

    Broader source: Energy.gov [DOE]

    Financing Energy Efficiency Retrofits in the Commercial Sector Webinar, from the U.S. Department of Energy's Better Buildings program.

  13. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01

    Consumption iii iv Sectoral Trends in Global Energy Use andenergy consumption scenarios. In applying this approach to global

  14. Regional Power Sector Integration: Lessons from Global Case Studies...

    Open Energy Info (EERE)

    the World Bank Sector: Energy Focus Area: Conventional Energy Topics: Implementation, Market analysis, Policiesdeployment programs, Background analysis Resource Type: Lessons...

  15. Sales Tax Distribution by NAICS Commodity Sectors and

    E-Print Network [OSTI]

    Arnold, Jonathan

    Sales Tax Distribution by NAICS Commodity Sectors and TAVT Distributions by County Analysis FIGURES #12;Sales Tax Distributions by NAICS Sectors* 2011-2012 Period 2013-2014 Period *Broken down Sales Tax Distributions by NAICS Major Commodity Sector - 50,000,000 100,000,000 150,000,000 200

  16. BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES

    E-Print Network [OSTI]

    ........................................................................... 59 End-Use: Water Heating Sector: Residential Author: Jim Lutz VIII. Heat Pump Water Heaters) ................................................................ 5 End-Use: Lighting, HVAC Sector: Commercial, Industrial, Residential Author: Kristin Heinemeier II End-Use: Interior Lighting Sector: Commercial, Industrial Author: Ellen Franconi III. Compact

  17. Paper Submitted to 2002 Annual Conference of the Transportation Association of

    E-Print Network [OSTI]

    Hellinga, Bruce

    of this energy derived from petroleum-based fuels. Road transportation accounts for almost 80percent of petroleum. Introduction The transportation sector consumes 30 percent of all energy used in Canada, with the vast majority's dependence on non-renewable petroleum, there is increasing concern regarding the pollution generated

  18. Fact #834: August 18, 2014 About Two-Thirds of Transportation Energy Use is Gasoline for Light Vehicles

    Broader source: Energy.gov [DOE]

    Highway vehicles are responsible for the majority of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in medium and...

  19. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & Inspections AuditsBarbara McClintockSecurityBeam Transport Beam

  20. Stochastic Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays3 Prepared by:'!Transport in PPCD Discharges by

  1. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSC GettingGraphene's 3DGreenGreenTransportation

  2. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  3. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Fuel Oil Natural Gas Electricity Total Transportation FuelHeavy Oil Natural Gas Electricity Heat Total Transportation

  4. DOE Issues Energy Sector Cyber Organization NOI

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal Aviation Professional|CertifyNational Energy Sector

  5. Potential for Energy Efficiency Improvement Beyond the Light-Duty Sector

    Broader source: Energy.gov [DOE]

    While there has been considerable research focusing on energy efficiency and fuel substitution options for LDVs, much less attention has been given to non-LDV modes, even though they constitute close to half of the energy used in the transportation sector. We conducted an extensive literature review of the non-LDV modes, and in this report we bring together the salient findings concerning future energy efficiency options in the time period up to 2050. The studies reviewed provided potential energy savings for individual technologies within each mode, as well as an overall energy savings representing the case where all possible improvements are implemented.

  6. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  7. Lepton sector of a fourth generation

    SciTech Connect (OSTI)

    Burdman, G. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil); Da Rold, L. [Centro Atomico Bariloche, Bariloche (Argentina); Matheus, R. D. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2010-09-01

    In extensions of the standard model with a heavy fourth generation, one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by choosing the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth-generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

  8. Hidden sector DM models and Higgs physics

    SciTech Connect (OSTI)

    Ko, P.

    2014-06-24

    We present an extension of the standard model to dark sector with an unbroken local dark U(1){sub X} symmetry. Including various singlet portal interactions provided by the standard model Higgs, right-handed neutrinos and kinetic mixing, we show that the model can address most of phenomenological issues (inflation, neutrino mass and mixing, baryon number asymmetry, dark matter, direct/indirect dark matter searches, some scale scale puzzles of the standard collisionless cold dark matter, vacuum stability of the standard model Higgs potential, dark radiation) and be regarded as an alternative to the standard model. The Higgs signal strength is equal to one as in the standard model for unbroken U(1){sub X} case with a scalar dark matter, but it could be less than one independent of decay channels if the dark matter is a dark sector fermion or if U(1){sub X} is spontaneously broken, because of a mixing with a new neutral scalar boson in the models.

  9. Transportation Data Programs:Transportation Energy Data Book...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Data Programs:Transportation Energy Data Book,Vehicle Technologies Market Report, and VT Fact of the Week Transportation Data Programs:Transportation Energy Data...

  10. Erosion and Optimal Transport

    E-Print Network [OSTI]

    Birnir, Bjorn; Rowlett, Julie

    2010-01-01

    383 pp. EROSION AND OPTIMAL TRANSPORT [23] I. Ekeland and T.and D. Simons, Sediment transport capacity of overland ?ow,measure spaces via optimal transport, Ann. of Math. (2),

  11. Source sector and region contributions to BC and PM2.5 in Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; et al

    2015-02-18

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM2.5 concentrations (annual mean value ~10 ?g m-3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly valuesmore »from 2 to 90 ?g m-3). Surface concentrations of black carbon (BC) (mean value ~0.1 ?g m-3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM2.5, PM10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants. Aerosols at these sites are shown to reflect dust, biomass burning, and anthropogenic sources from Europe; South, East, and Central Asia; and Russia depending on the time period. Simulations for a reference 2030 emission scenario based on pollution abatement measures already committed to in current legislation show that PM2.5 and BC concentrations in the region increase, with BC growing more than PM2.5 on a relative basis. This suggests that both the health impacts and the climate warming associated with these particles may increase over the next decades unless additional control measures are taken. The importance of observations in CA to help characterize the changes that are rapidly taking place in the region are discussed.« less

  12. Source sector and region contributions to BC and PM??? in Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; et al

    2015-01-01

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM??? concentrations (annual mean value ~10 ?g m?ł) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly valuesmore »from 2 to 90 ?g m?ł). Surface concentrations of black carbon (BC) (mean value ~0.1 ?g m?ł) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM???, PM??, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM???. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants. Aerosols at these sites are shown to reflect dust, biomass burning, and anthropogenic sources from Europe; South, East, and Central Asia; and Russia depending on the time period. Simulations for a reference 2030 emission scenario based on pollution abatement measures already committed to in current legislation show that PM??? and BC concentrations in the region increase, with BC growing more than PM??? on a relative basis. This suggests that both the health impacts and the climate warming associated with these particles may increase over the next decades unless additional control measures are taken. The importance of observations in CA to help characterize the changes that are rapidly taking place in the region are discussed.« less

  13. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  14. Sustainability and Transport

    E-Print Network [OSTI]

    Gilbert, Richard

    2006-01-01

    2005. Integrating Sustainability into the Trans- portationTHOUGHT PIECE Sustainability and Transport by Richardof the concept of sustainability to transport planning. In

  15. Spain's marketing sector seeing more changes

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    This paper reports that Spain's petroleum marketing sector continues to restructure. Partly state owned Repsol SA and Royal Dutch/Shell Group are discussing supplying each other's retail outlets in the UK and Spain. And Portugal's state owned Petroleos de Portugal (Petrogal), seeking to sharply expand retail operations in Spain, complains of government interference with foreign investment in Spanish marketing. Meantime, Conoco Inc. Has agreed with Saras SpA Raffinerie Sarde, Milan, to set up a network of service stations in northern Spain and Portugal at a cost of 100 billion pesetas (%972 million). The two are considering building an oil terminal at the port city of Gijon in Asturias, Spain, and the Exxon Corp., Total, and Shell are interested in participating in the project.

  16. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  17. Interacting vacuum energy in the dark sector

    SciTech Connect (OSTI)

    Chimento, L. P.; Carneiro, S.

    2015-03-26

    We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

  18. Solar Photovoltaic Financing: Residential Sector Deployment

    SciTech Connect (OSTI)

    Coughlin, J.; Cory, K.

    2009-03-01

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  19. CP nonconservation in the leptonic sector

    E-Print Network [OSTI]

    Petre Dita

    2006-09-22

    In this paper we use an exact method to impose unitarity on moduli of the neutrino PMNS matrix recently determined, and show how one could obtain information on CP non-conservation from a limited experimental information. One suggests a novel type of global fit by expressing all the theoretical quantities in terms of convention independent parameters: the Jarlskog invariant $J$ and the moduli $|U_{\\alpha i}|$, able to resolve the positivity problem of $|U_{e 3}|$. In this way the fit will directly provide a value for $J$, and if it is different from zero it will prove the existence of CP violation in the available experimental data. If the best fit result, $|U_{e3}|^2<0$, from M. Maltoni {\\em et al}, New J.Phys. {\\bf 6} (2004) 122 is confirmed, it will imply a new physics in the leptonic sector.

  20. CP nonconservation in the leptonic sector

    E-Print Network [OSTI]

    Petre Dita

    2011-01-21

    In this paper we use an exact method to impose unitarity on moduli of neutrino PMNS matrix recently determined, and show how one could obtain information on CP nonconservation from a limited experimental information. One suggests a novel type of global fit by expressing all theoretical quantities in terms of convention independent parameters: the Jarlskog invariant $J$ and the moduli $|U_{\\alpha i}|$, able to resolve the positivity problem of $|U_{e 3}|$. In this way the fit will directly provide a value for $J$, and if it is different from zero it will prove the existence of CP violation in the available experimental data. If the best fit result, $|U_{e3}|^2<0$, from M. Maltoni {\\em et al}, [New J.Phys. {\\bf 6} (2004) 122] is confirmed, it will imply a new physics in the leptonic sector.

  1. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

  2. Notice of Public Comment on Electricity Sector Cybersecurity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Comment on Electricity Sector Cybersecurity Risk Management Process Guideline: Federal Register Notice Volume 76, No. 180 - Sep. 16, 2011 Notice of Public Comment on...

  3. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Sectoral Trends in Global Energy Use and Greenhouse Gasto Development of Long-Term Energy Demand Scenarios forto Development of Long-Term Energy Demand Scenarios for

  4. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Sectoral Trends and Future Outlook Nan Zhou, Michael A.2001, International Energy Outlook 2001 , Report No. DOE/The International Energy Outlook 2006 (IEO2006) , Washington

  5. Private Sector Outreach and Partnerships | Department of Energy

    Office of Environmental Management (EM)

    the sector, including electricity, oil, and natural gas. Specific mission areas, such as risk and system analysis, modeling and visualization across subsectors, and incident...

  6. Mexico Sectoral Study on Climate and Refrigeration Technology...

    Open Energy Info (EERE)

    Mexico Sectoral Study on Climate and Refrigeration Technology in Developing Countries and the Development of Methods and Instruments for Identifying Reduction Potential and...

  7. Photonic portal to the hidden sector and the electroweak symmetry

    E-Print Network [OSTI]

    Wojciech Krolikowski

    2009-05-25

    A weak photon interaction with the hidden sector of the Universe, introduced recently to realize a "photonic portal", (to such a hypothetic sector responsible for cold dark matter), is conjectured to be embedded in a more extended weak interaction displaying electroweak symmetry spontaneously broken by the Standard-Model Higgs mechanism. This is a hypothetic new weak interaction between hidden and Standard-Model sectors of the Universe, appearing in our model in addition to the conventional electroweak interaction acting in the Standard-Model sector.

  8. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    of Labor Statistics. Energy Efficiency Services Sector:DC. American Council for an Energy Efficient Economy. EnergyAmerican Council for an Energy-Efficient Economy. Eto, J. ,

  9. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    of Labor Statistics. Energy Efficiency Services Sector:Renewable Energy and Energy Efficiency: Economic Drivers forStatewide Long Term Energy Efficiency Strategic Plan. ” San

  10. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    of Labor Statistics. Energy Efficiency Services Sector:of Energy Engineers 2009a. “Energy Independence and MarketTrends: AEE Survey of the Energy Industry 2009. ” http://

  11. Energy Data Sourcebook for the U.S. Residential Sector

    E-Print Network [OSTI]

    Wenzel, T.P.

    2010-01-01

    1987b). 2.1. Unit Energy Consumptions Data on end-use unitresidential sector energy consumption data, and typicallyNational Interim Energy Consumption Survey Data, prepared

  12. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    for nuclear energy (Prelaw 2008). Energy Efficiency ServicesEnergy Efficiency Services Sector: Workforce Size Two implementation contractor respondents mentioned defense, semiconductor, nuclear, and

  13. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    Statistics. Energy Efficiency Services Sector: WorkforceRenewable Energy and Energy Efficiency: Economic Drivers forStatewide Long Term Energy Efficiency Strategic Plan. ” San

  14. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    of Elco Technologies that provides AMI meter device managment services in the energy efficiency sector Acorn Technology Corporation Acorn Technology Corporation Miles Road...

  15. DOE Encourages Utility Sector Nominations to the Federal Communication...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Sector Nominations to the Federal Communications Commission's Communications, Security, Reliability, and Interoperability Council March 29, 2011 - 5:22pm Addthis...

  16. Climate Change Mitigation in the Energy and Forestry Sectors...

    Open Energy Info (EERE)

    Climate Change Mitigation in the Energy and Forestry Sectors of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation in the...

  17. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01

    of Labor Statistics. Energy Efficiency Services Sector:Renewable Energy and Energy Efficiency: Economic Drivers forFace of Energy Efficiency and Market Transformation. ”

  18. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Energy Savers [EERE]

    the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution Controlling Methane Emissions in the...

  19. Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to different definitions of energy use. Source energy attributes all the energy used for electricity generation and transmission to the specific end-use sector, addition to the...

  20. Not planning a sustainable transport system

    SciTech Connect (OSTI)

    Finnveden, Göran Ĺkerman, Jonas

    2014-04-01

    The overall objective of the Swedish transport policy is to ensure the economically efficient and sustainable provision of transport services for people and business throughout the country. More specifically, the transport sector shall, among other things, contribute to the achievement of environmental quality objectives in which the development of the transport system plays an important role in the achievement of the objectives. The aim of this study is to analyse if current transport planning supports this policy. This is done by analysing two recent cases: the National Infrastructure Plan 2010–2021, and the planning of Bypass Stockholm, a major road investment. Our results show that the plans are in conflict with several of the environmental quality objectives. Another interesting aspect of the planning processes is that the long-term climate goals are not included in the planning processes, neither as a clear goal nor as factor that will influence future transport systems. In this way, the long-term sustainability aspects are not present in the planning. We conclude that the two cases do not contribute to a sustainable transport system. Thus, several changes must be made in the processes, including putting up clear targets for emissions. Also, the methodology for the environmental assessments needs to be further developed and discussed. - Highlights: • Two cases are studied to analyse if current planning supports a sustainable transport system. • Results show that the plans are in conflict with several of the environmental quality objectives. • Long-term climate goals are not included in the planning processes. • Current practices do not contribute to a sustainable planning processes. • Methodology and process for environmental assessments must be further developed and discussed.

  1. Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

    2005-01-01

    and Stationary Power: Hydrogen Energy Stations and theirand Stationary Power: Hydrogen Energy Stations and their2004) for power parks & energy stations. (10) DESIGNS/

  2. Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

    2005-01-01

    Economic Analysis of Hydrogen Energy Station Concepts,E 2 Four Potential Types of Hydrogen Energy Stations VehicleOperational Toronto Hydrogen Energy Station Stationary PEMFC

  3. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  4. Transport Equations Thomas Hillen

    E-Print Network [OSTI]

    Hillen, Thomas

    Transport Equations Thomas Hillen supported by NSERC University of Alberta, Edmonton Transport V , V compact and symmetric. Transport Equations ­ p.2/33 #12;Directed Movement The equation pt(t, x of v. Transport Equations ­ p.3/33 #12;With Directional Changes µ: turning rate. T(v, v ): probability

  5. Motor Transport Co. 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    METROPOLITAN TRANSPORTATION PLAN Prepared by: The Longview Metropolitan Planning Organization In cooperation with: o City of Longview o City of White Oak o Gregg County o Harrison County o Texas Department of Transportation o U.S. Department... of Transportation o Federal Highway Administration o Federal Transit Administration Adopted November 12, 2009 TRANSPORTATION 2035 TABLE OF CONTENTS INTRODUCTION...

  6. ISSN 1745-9648 Electricity Sector Reform in Greece

    E-Print Network [OSTI]

    Feigon, Brooke

    ISSN 1745-9648 Electricity Sector Reform in Greece by Ekaterini Iliadou Lawyer - Legal Department of the electricity market reform in Greece which started in 2001 and is still developing slowly. This is related to the persisting dominance of the incumbent company and the specificities of the electricity sector of Greece

  7. Limited Sectoral Trading between the EU ETS and China

    E-Print Network [OSTI]

    Limited Sectoral Trading between the EU ETS and China Claire Gavard, Niven Winchester and Sergey established research centers at MIT: the Center for Global Change Science (CGCS) and the Center for Energy://globalchange.mit.edu/ Printed on recycled paper #12;1 Limited Sectoral Trading between the EU ETS and China Claire Gavard

  8. Butterflies of Egypt Prepared for the Nature Conservation Sector

    E-Print Network [OSTI]

    Nottingham, University of

    #12;#12;#12;Butterflies of Egypt ii Prepared for the Nature Conservation Sector Egyptian, Cairo, Egypt Supervisor: Dr Moustafa Fouda, Director, Nature Conservation Sector Financial Support of Zoology, Faculty of Science, Suez Canal Univer- sity, Egypt. Mapping: Ahmed El-Gabbas Paintings by: Ahmed

  9. Planning Report 05-1 Measuring Service-Sector

    E-Print Network [OSTI]

    Planning Report 05-1 Measuring Service-Sector Research and Development Prepared by: RTI.S Department of Commerce Technology Administration #12;*RTI International is a trade name of Research Triangle Institute. RTI Project Number 08236.002.004 Measuring Service-Sector Research and Development Final Report

  10. Introduction Transport in disordered graphene

    E-Print Network [OSTI]

    Fominov, Yakov

    Introduction Transport in disordered graphene Summary Ballistic transport in disordered graphene P, Gornyi, Mirlin Ballistic transport in disordered graphene #12;Introduction Transport in disordered graphene Summary Outline 1 Introduction Model Experimental motivation Transport in clean graphene 2

  11. NREL: Energy Analysis: Electric Sector Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14Recent PublicationsNicholasTransportationWesleyElectric

  12. Antineutrino Oscillations in the Atmospheric Sector

    SciTech Connect (OSTI)

    Himmel, Alexander I.; /Caltech

    2011-05-01

    This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neutrinos, as well as a search for {nu}{sub {mu}} {yields} {bar {nu}}{sub {mu}} transitions. Differences between neutrino and antineutrino oscillations could be a sign of physics beyond the Standard Model, including non-standard matter interactions or the violation of CPT symmetry. These measurements leverage the sign-selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. Antineutrino oscillations are observed at |{Delta}{bar m}{sub atm}{sup 2}| = (3.36{sub -0.40}{sup +0.46}(stat) {+-} 0.06(syst)) x 10{sup -3} eV{sup 2} and sin{sup 2}(2{bar {theta}}{sub 23}) = 0.860{sub -0.12}{sup +0.11}(stat) {+-} 0.01(syst). The oscillation parameters measured for antineutrinos and those measured by MINOS for neutrinos differ by a large enough margin that the chance of obtaining two values as discrepant as those observed is only 2%, assuming the two measurements arise from the same underlying mechanism, with the same parameter values. No evidence is seen for neutrino-to-antineutrino transitions.

  13. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    of US Cars and Light Trucks by 2010-2015. Washington, D.C. :NHTSA), 2003. Light Truck Average Fuel Economy Standardsthat new cars and light trucks be averaged together for

  14. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    Shipley, and E. Brown, 2003. CHP Five Years Later: Federaland Paper Industries by Applying CHP Technologies. Lawrence112 Table 27. Potential GHG mitigation from CHP

  15. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    Update of States’ Combined Heat and Power Activities. ”Combined Heat and Power.M. Spurr, 1999. Combined Heat and Power: Capturing Wasted

  16. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    that still use motor gasoline and ethanol-mixing in motorstrategies. Mixing ethanol into motor gasoline in blendedAEO2007), corn-based Ethanol in motor gasoline (million

  17. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    rebound effect,” whereby a household could, after installing energymore energy. Furthermore, incorporating this rebound, or “

  18. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    C. Calwell, 2003. LED Lighting Technologies and PotentialISL) Commercial LED lighting General service halogen IRuse of more efficient LED task lighting and the installation

  19. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    develop renewable energy credit-tracking and trading systemCO 2 emissions trading scheme, and an energy-based fee wouldenergy and emissions technologies, and development of emissions trading

  20. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    and developing emissions trading mechanisms to connect andand development of emissions trading or cap-and-tradesector market-based emissions trading system in the Western

  1. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    natural gas-powered combined cycle power plants. The most recent federal energy legislation, the Energy Independence and Security

  2. Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

  3. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    Arlington, Va. : Arthur D Little, Inc. Khrushch, M. , E.Change Action Plan. Arthur D. Little (ADL), 2000. "Studycited in Lee, 2000). Arthur D. Little, (ADL), 2002. Guidance

  4. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    2003; Meier et al. , 2005; IEA/NEA, 2005; Williams, 2001et al. , 2005; Weissner 2007; IEA/NEA, 2005 Meier et al. ,2005; IEA/NEA, 2005; Beurskens et al. , 2005; Awerbuch et

  5. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    Technology Support Unit (ETSU), 1994. "An Appraisal of UKNRC, 1992; IPCC, 1999; ETSU, 1994; CAEP, 1995; DCAD, 1997;Baseline NRC, 1992 IPCC, 1999 ETSU, 1994 (low) ETSU, 1994 (

  6. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    basis. Cost-effectiveness ($/tonne CO2 eq) Greenhouse gasperspective. Cost-effectiveness ($/tonne CO2 eq) GreenhouseAll measures Cost-effectiveness ($/tonne CO2 eq) Greenhouse

  7. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    industrial processes For 2007, the percentages of industry GHG emissions by category are industry energy use, 71%; chemical and manufacturing, 18%; waste management,

  8. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    Natural gas Technology Dry Seals on Centrifugal Compressors (P&T) Fuel Gas Retrofit for Blowdown Valve

  9. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    Developments in the Pulp and Paper Industry,” Energy PolicyUS Chemicals and Pulp and Paper Industries by Applying CHPin the U.S. Pulp and Paper Industry. ” LBNL-46141. July.

  10. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    and its ease of blending into gasoline fuel for use invehicles’ gasoline), increased ethanol blending hasgasoline in blended proportions of up to 10% or 15% can be done without vehicle modifications. Blending

  11. Environmental implications of trade liberalization on North American transport services: the case of the trucking sector

    E-Print Network [OSTI]

    Fernandez, Linda

    2010-01-01

    requires the use of ultra low-sulfur diesel, now required inthe shift toward ultra low-sulfur fuel. The nationwide plan

  12. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    CCGT ) shift With nuclear expansion (and above measure) WithCCGT ) shift With nuclear expansion (and above measure) Withforecasts small expansions in nuclear and renewable sources,

  13. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    crops Full HEV (regenerative braking, battery-electricidle-off and limited regenerative braking Closing/covering

  14. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    with Commercial Ground-Source Heat Pump Systems. SpecialSources based upon Efficient residential furnaces and boilers Ground-coupled heat pumps –

  15. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    air-conditioning units, the conventional Energy Efficiencyenergy use reductions from the deployment of improved insulation and higher-efficiency air conditioningenergy efficiency technologies over those that do not result in fuel savings (e.g. low-GWP air conditioning

  16. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    2000. “Estimating the Ancillary Benefits of Greenhouse GasToman, and C. Bloyd, 1999: Ancillary Benefits of Reduced Airinteractions; quantify ancillary impacts if possible New

  17. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    aerodynamics, and high-strength/lightweight technologies; for diesel trucks,trucks with incremental technologies (e.g. engine, transmission, aerodynamics)

  18. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    in the Pulp and Paper Industry,” Energy Policy 25 (7-9):US Chemicals and Pulp and Paper Industries by Applying CHPin the U.S. Pulp and Paper Industry. ” LBNL-46141. July.

  19. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    of natural gas-powered combined cycle power plants. The mostintegrated gasification combined cycle (IGCC) coal plants,integrated gasification combined cycle (IGCC) technology for

  20. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    Future Potential of Hybrid and Diesel Powertrains in theas advanced parallel hybrid (gas or diesel) electric vehiclee.g. hybrid gasoline-electric vs. diesel vehicles). Dealing

  1. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    Academy Press. National Biodiesel Board (NBB), 2007.U.S. Biodiesel Production. June 6. National Highway TrafficD.C. Radich, A. 2004. Biodiesel Performance, Costs, and Use.

  2. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    timing, gasoline direct injection, cylinder deactivation),spd auto, AMT), Gasoline direct injection (GDI), Tires (lowtechnologies are gasoline direct injection, lower rolling

  3. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    to the Annual Energy Outlook 2000. U.S. Department ofEIA), 2005. Annual Energy Outlook 2005: With Projections toU.S. EIA), 2007. Annual Energy Outlook 2007. U.S. Department

  4. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 3

    SciTech Connect (OSTI)

    NONE

    1998-01-01

    This Appendix consists of two unpublished reports produced by Energy and Environmental Analysis, Inc., under contract to Oak Ridge National Laboratory. These two reports formed the basis for the subsequent development of the Fuel Economy Model described in Volume 1. They are included in order to document more completely the efforts undertaken to construct a comprehensive model of automobile fuel economy. The supplemental reports are as follows: Supplement 1--Documentation Attributes of Technologies to Improve Automotive Fuel Economy; Supplement 2--Analysis of the Fuel Economy Boundary for 2010 and Comparison to Prototypes.

  5. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    Inc. (EEA). 2001. Technology and Cost of Future Fuel Economyproduction leads to lower technology costs. In the case ofpollution control technology costs. As a result, the cost-

  6. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    ethanol (with the remaining 15% gasoline). Up to now, few of these E85-ethanol’s somewhat lower energy content per volume. Increasingly so-called “flex-fuel” E85E85 vehicles would otherwise face. The reference case forecasts for the US include increases in ethanol

  7. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    large conventional hydroelectric power, municipal solidconventional large hydroelectric power in the percentage).large conventional hydroelectric power is not included (this

  8. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    Anderson, J. (Ambien Climate Technologies), 2003. Personalon climate change mitigation technology alternatives fromregrets” climate change mitigation technologies – where the

  9. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    2000. Assumptions to the Annual Energy Outlook 2000. U.S.EIA), 2005. Annual Energy Outlook 2005: With Projections toU.S. EIA), 2007. Annual Energy Outlook 2007. U.S. Department

  10. Global Climate Change, Developing Countries and Transport Sector Options in South Africa

    E-Print Network [OSTI]

    2000-01-01

    to the fuel consumption data published by DME. This servesrecommended via the DME. At present, the fuel tax componentfuel use characteristics of new vehicles (a cross-cutting issue) will be provided by DME;

  11. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    curve analysis for biofuel production. The study is not yetThis level of biofuel production would supply approximatelynullify some biofuel production methods as viable mitigation

  12. Session 5: ÂŤRenewable Energy in the Transportation and Power SectorsÂŽ

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7, 2013 MEMORANDUM FOR:5:

  13. Accounting for Co-benefits in Asia's Transportation Sector: Methods and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo NewYanbu,InformationAbakusLLCApplications | Open

  14. Transportation Sector Demand Module of the National Energy Modeling System: Model Documentation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,

  15. Transportation Sector Demand Module of the National Energy Modeling System: Model Documentation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of the National Energy Modeling System: Model Documentation

  16. Transportation Sector Module of the National Energy Modeling System: Model Documentation

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of the National Energy Modeling System: ModelModule of the

  17. Secure Transportation Management

    SciTech Connect (OSTI)

    Gibbs, P. W.

    2014-10-15

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  18. A New Probe of Dark Sector Dynamics at the LHC

    E-Print Network [OSTI]

    Arpit Gupta; Reinard Primulando; Prashant Saraswat

    2015-04-06

    We propose a LHC search for dilepton resonances in association with large missing energy as a generic probe of TeV dark sector models. Such resonances can occur if the dark sector includes a U(1) gauge boson, or Z', which kinetically mixes with the Standard Model U(1). For small mixing, direct 2 to 1 production of the Z' is not visible in standard resonance searches due to the large Drell-Yan background. However, there may be significant production of the Z' boson in processes involving other dark sector particles, resulting in final states with a Z' resonance and missing transverse momentum. Examples of such processes include cascade decays within the dark sector and radiation of the Z' off of final state dark sector particles. Even when the rate to produce a Z' boson in a dark sector process is suppressed, this channel can provide better sensitivity than traditional collider probes of dark sectors such as monojet searches. We find that data from the 8 TeV LHC run can be interpreted to give bounds on such processes; more optimized searches could extend the sensitivity and continue to probe these models in the Run II data.

  19. Risk analysis for truck transportation of high consequence cargo.

    SciTech Connect (OSTI)

    Waters, Robert David

    2010-09-01

    The fixed facilities control everything they can to drive down risk. They control the environment, work processes, work pace and workers. The transportation sector drive the State and US highways with high kinetic energy and less-controllable risks such as: (1) other drivers (beginners, impaired, distracted, etc.); (2) other vehicles (tankers, hazmat, super-heavies); (3) road environments (bridges/tunnels/abutments/construction); and (4) degraded weather.

  20. U.S. Virgin Islands Transportation Petroleum Reduction Plan

    SciTech Connect (OSTI)

    Johnson, C.

    2011-09-01

    This NREL technical report determines a way for USVI to meet its petroleum reduction goal in the transportation sector. It does so first by estimating current petroleum use and key statistics and characteristics of USVI transportation. It then breaks the goal down into subordinate goals and estimates the petroleum impacts of these goals with a wedge analysis. These goals focus on reducing vehicle miles, improving fuel economy, improving traffic flow, using electric vehicles, using biodiesel and renewable diesel, and using 10% ethanol in gasoline. The final section of the report suggests specific projects to achieve the goals, and ranks the projects according to cost, petroleum reduction, time frame, and popularity.

  1. Possible Pathways for Increasing Natural Gas Use for Transportation (Presentation)

    SciTech Connect (OSTI)

    Zigler, B.

    2014-10-01

    A collaborative partnership of DOE National Laboratories is working with DOE to identify critical RD&D needs to significantly increase the speed and breadth of NG uptake into the transportation sector. Drivers for increased utilization of natural gas for transportation are discussed. Key needs in research, development, and deployment are proposed, as well as possible pathways to address those needs. This presentation is intended to serve as a catalyst to solicit input from stakeholders regarding what technical areas they deem the most important.

  2. Water Transport Within the STack: Water Transport Exploratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE...

  3. Macomb College Transportation and Energy Technology 126.09

    SciTech Connect (OSTI)

    2010-12-31

    The objectives for this project were to create the laboratory facilities to deliver recently created and amended curriculum in the areas of energy creation, storage, and delivery in the transportation and stationary power sectors. The project scope was to define the modules, courses and programs in the emerging energy sectors of the stationary power and transportation industries, and then to determine the best equipment to support instruction, and procure it and install it in the laboratories where courses will be taught. Macomb Community College had a curriculum development grant through the Department of Education that ran parallel to this one where the energy curriculum at the school was revised to better permit students to gain comprehensive education in a targeted area of the renewable energy realm, as well as enhance the breadth of jobs addressed by curriculum in the transportation sector. The curriculum development and experiment and equipment definition ran in parallel, and resulted in what we believe to be a cogent and comprehensive curriculum supported with great hands-on experiments in modern labs. The project has been completed, and this report will show how the equipment purchases under the Department of Energy Grant support the courses and programs developed and amended under the Department of Education Grant. Also completed is the tagging documentation and audit tracking process required by the DOE. All materials are tagged, and the documentation is complete as required.

  4. Midwestern Radioactive Materials Transportation Committee Agenda...

    Office of Environmental Management (EM)

    Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation...

  5. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  6. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Supersedes DOE O 460.1B.

  7. Sustainability and Transport

    E-Print Network [OSTI]

    Gilbert, Richard

    2006-01-01

    also known there as sustainable mobility. This de?nition wasfor De?ning Sustainable Transport and Mobility. [cited 13Sustainable transporta- tion is de?ned as a means to satisfy current transport and mobility

  8. Transportation Management Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

  9. Linear Motor Powered Transportation

    E-Print Network [OSTI]

    Thornton, Richard D.

    This special issue on linear-motor powered transportation covers both supporting technologies and innovative transport systems in various parts of the World, as this technology moves from the lab to commercial operations. ...

  10. Transportation Conference Speakers - 4 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Laboratory experiments were performed to study and improve longshore sediment transport rate predictions. Measured total longshore transport in the laboratory was approximately three times greater for plunging breakers than spilling breakers. Three...

  11. Transportation Energy Futures Study

    Office of Energy Efficiency and Renewable Energy (EERE)

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  12. Transportation Market Distortions

    E-Print Network [OSTI]

    Litman, Todd

    2006-01-01

    roads and parking facilities is exempt from rent and taxes,road transport relative to rail (which pays rent and taxesroad tolls, parking fees, and Litman, Transportation Market Distortions higher fuel taxes

  13. Introduction to Transportation Planning

    E-Print Network [OSTI]

    Tipple, Brett

    Introduction to Transportation Planning CMP 4710/6710 Fall 2012 3 Credit Hours Room: ARCH 229 of City & Metropolitan Planning; Associate Dean, College of Architecture + Planning; former associate, social equity, fiscal health, and public health. Unfortunately, most transportation planning processes

  14. Transportation Conference Speakers - 1 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Thiamin transport in Escherichia coli is a model system to establish the tolerance of derivatives for transport into the cell. Since little is known about what types of thiamin derivatives may be successfully taken into the cell through...

  15. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  16. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  17. Biofuels and Transportation

    E-Print Network [OSTI]

    Minnesota, University of

    Biofuels and Transportation Impacts and Uncertainties Some Observations of a Reformed Ethanol and Logistics Symposium 3 Topics · Why Biofuels · Ethanol Economics · Ethanol Transportation Equipment Biofuels? · National Security · Reduce Imports of oil · Peak Oil · Replace Fossil Resources

  18. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    SciTech Connect (OSTI)

    1995-08-01

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  19. Indianapolis Public Transportation Corporation

    SciTech Connect (OSTI)

    Not Available

    2004-12-01

    Fact sheet describes the National Renewable Energy Laboratory's evaluation of Indianapolis Public Transportation Corporation's (IndyGo's) hybrid electric buses.

  20. Parking & Transportation Services Sustainability &

    E-Print Network [OSTI]

    Minnesota, University of

    : 2011 #12;As a long-time leader in the areas of waste abatement, pollution reduction, energy management Metro Commuter Services Infinity Award ­ in recognition of alternative transportation programs. · 1996 to maintaining impressive and viable alternative transportation programs. TRANSPORTATION SYSTEM DESIGNS

  1. Short-term CO? abatement in the European power sector

    E-Print Network [OSTI]

    Delarue, Erik D.

    2008-01-01

    This paper focuses on the possibilities for short term abatement in response to a CO2 price through fuel switching in the European power sector. The model E-Simulate is used to simulate the electricity generation in Europe ...

  2. Energy intensity in China's iron and steel sector

    E-Print Network [OSTI]

    Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

    2011-01-01

    In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

  3. Challenges and opportunities in the Tunisian private equity sector

    E-Print Network [OSTI]

    Gharbi, Moez, S.M. Massachusetts Institute of Technology

    2012-01-01

    Most of the studies and research analyzing the private equity ("PE") sector in the Middle East North Africa ("MENA") region tend to focus more on the Middle East and less on North Africa. The case of Tunisia is probably ...

  4. Strategies for reducing energy demand in the materials sector

    E-Print Network [OSTI]

    Sahni, Sahil

    2013-01-01

    This research answers a key question - can the materials sector reduce its energy demand by 50% by 2050? Five primary materials of steel, cement, aluminum, paper, and plastic, contribute to 50% or more of the final energy ...

  5. Introduction to the Buildings Sector Module of SEDS

    E-Print Network [OSTI]

    DeForest, Nicholas

    2011-01-01

    from historical PV price and adoption data. In the cases ofperformance favor the adoption of PV). First, it is assumedon the sector). The adoption level of PV throughout the

  6. Combined Heat & Power Technology Overview and Federal Sector Deployment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation covers the Combined Heat & Power Technology Overview and Federal Sector Deployment from Oakridge National Laboratory. The presentation is from the FUPWG Spring Meeting, held on May 22, 2013 in San Francisco, California.

  7. City of San Jose- Private Sector Green Building Policy

    Broader source: Energy.gov [DOE]

    In October 2008, the City of San Jose enacted the Private Sector Green Building Policy (Policy No. 6-32). The policy was adopted in Ordinance No. 28622 in June, 2009. All new buildings must meet...

  8. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01

    on Energy-Efficient and Clean-Energy Technologies. 2000.Scenarios for a Clean Energy Future. Oak Ridge, TN andSector: Results from the Clean Energy Futures Study. Energy

  9. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01

    sector is based on a useful energy demand analysis 1 andif a household has a useful energy need of 700 MJ per yearIt is assumed that the useful energy requirement of Chinese

  10. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Broader source: Energy.gov (indexed) [DOE]

    from this sector have typically occurred as a co-benefit of policies that target air pollution (such as smog) and improve safety. In general, policy strategies that reduce...

  11. The Economic Development Potential of the Green Sector

    E-Print Network [OSTI]

    Ong, Paul M.; Patraporn, Rita Varisa

    2006-01-01

    Green Power 2004 Annual Report,” Los Angeles Department ofGreen Technology Sector 2006”, Prepared by the Economic Roundtable, Los Angeles Los Angeles Department of Water and Power, “Green Business” include alternative fuel vehicles, biomass/waste-to energy power,

  12. Depreciation bias, financial-sector fragility and currency risk

    E-Print Network [OSTI]

    Tambakis, Demosthenes N

    2002-01-01

    , focussing on illiquidity in the banking system and adverse spillovers from the ?nancial sector to currency markets. 1 Financial fragility is manifest in the high observed correlation between exchange rate collapses and banking crises. Liquidity problems...

  13. DOE Seeks Public-Private Sector Expressions of Interest for Global...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public-Private Sector Expressions of Interest for Global Nuclear Energy Partnership Initiative DOE Seeks Public-Private Sector Expressions of Interest for Global Nuclear Energy...

  14. Climate Change and the U.S. Energy Sector: Regional Vulnerabilities...

    Energy Savers [EERE]

    Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience...

  15. A Strategy to Engage the Private Sector in Climate Change Adaptation...

    Open Energy Info (EERE)

    A Strategy to Engage the Private Sector in Climate Change Adaptation in Bangladesh Jump to: navigation, search Name A Strategy to Engage the Private Sector in Climate Change...

  16. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01

    Policies In The Solar Electricity Sector: Lessons for Indiaissues in the energy and electricity sectors. Activitiesand improve access to electricity where the electric grid is

  17. Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.

    SciTech Connect (OSTI)

    Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

    2008-02-28

    Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associated with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for addressing the various energy and environmental concerns. The work presented in this report builds on earlier analyses presented at the COP 6 conference in Bonn.

  18. Forest sector: A world bank policy paper. Sector forestal: Documento de politica del banco mundial

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Forests are the most extensive terrestrial ecosystem, and nearly 500 million people depend on forests for their livelihood. Since the World Bank issued its forestry sector policy paper in 1978, there has been growing concern about the accelerated rate of destruction of the remaining primary forests in various parts of the world. The policy paper identifies two key challenges: to slow the alarmingly rapid rates of deforestation, especially (although not exclusively) in the tropical moist forests, and to ensure adequate planting of new trees to meet the rapidly growing demand for fuelwood in developing countries. The Bank intends to move vigorously to promote the conservation of natural forests and the sustainable development of managed forestry resources.

  19. United States Industrial Sector Energy End Use Analysis

    SciTech Connect (OSTI)

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energy’s (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a completed table of energy end use by sector with mechanical drives broken down by pumps, fans, compressed air, and drives.

  20. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  1. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  2. Issues in Energy Economics Led by Emerging Linkages between the Natural Gas and Power Sectors

    SciTech Connect (OSTI)

    Platt, Jeremy B.

    2007-09-15

    Fuel prices in 2006 continued at record levels, with uranium continuing upward unabated and coal, SO{sub 2} emission allowances, and natural gas all softening. This softening did not continue for natural gas, however, whose prices rose, fell and rose again, first following weather influences and, by the second quarter of 2007, continuing at high levels without any support from fundamentals. This article reviews these trends and describes the remarkable increases in fuel expenses for power generation. By the end of 2005, natural gas claimed 55% of annual power sector fuel expenses, even though it was used for only 19% of electric generation. Although natural gas is enormously important to the power sector, the sector also is an important driver of the natural gas market-growing to over 28% of the market even as total use has declined. The article proceeds to discuss globalization, natural gas price risk, and technology developments. Forces of globalization are poised to affect the energy markets in new ways-new in not being only about oil. Of particular interest in the growth of intermodal traffic and its a little-understood impacts on rail traffic patterns and transportation costs, and expected rapidly expanding LNG imports toward the end of the decade. Two aspects of natural gas price risk are discussed: how understanding the use of gas in the power sector helps define price ceilings and floors for natural gas, and how the recent increase in the natural gas production after years of record drilling could alter the supply-demand balance for the better. The article cautions, however, that escalation in natural gas finding and development costs is countering the more positive developments that emerged during 2006. Regarding technology, the exploitation of unconventional natural gas was one highlight. So too was the queuing up of coal-fired power plants for the post-2010 period, a phenomenon that has come under great pressure with many consequences including increased pressures in the natural gas market. The most significant illustration of these forces was the early 2007 suspension of development plans by a large power company, well before the Supreme Court's ruling on CO{sub 2} as a tailpipe pollutant and President Bush's call for global goals on CO{sub 2} emissions.

  3. Regional Transportation Coordination Study 

    E-Print Network [OSTI]

    Golden Crescent Regional Planning Commission

    2006-01-01

    stream_source_info Golden Crescent Regional Transportation Coordination Study.pdf.txt stream_content_type text/plain stream_size 357268 Content-Encoding ISO-8859-1 stream_name Golden Crescent Regional Transportation Coordination... Study.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Golden Crescent Regional Transit i Regional Transportation Coordination Study: 7-County Golden Crescent Region Regional...

  4. FUEL CELLS FOR TRANSPORTATION

    E-Print Network [OSTI]

    for Fuel Cells for Transportation Energy Efficiency and Renewable Energy Office of Transportation............................................................................................. 101 A. R&D of a 50-kW, High-Efficiency, High-Power-Density, CO-Tolerant PEM Fuel Cell Stack SystemFUEL CELLS FOR TRANSPORTATION 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department

  5. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    E-Print Network [OSTI]

    Cairns, Elton J.

    2012-01-01

    of the Fuel Cell in Transportation Applications Workshop,practical fuel cell for commercial or consumer applicationfuel cell system engineer- ing is made, vehicle applications

  6. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    Nuclear Fuel Grand BC and High-Level Radioactive Waste - Jeff Williams, Director, Nuclear Fuel Storage and Transportation Planning Project, DOEOffice of Nuclear Energy National...

  7. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  8. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE)

    This snapshot is a summary of the EERE reports that provide a detailed analysis of opportunities and challenges along the path to a more sustainable transportation energy future.

  9. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01

    gas vehicles Annual road tax differentiated by vintageand charges for road transport Tax/pricing measure Optimalannual circulation taxes, tolls and road charges and parking

  10. Transportation Energy Futures

    E-Print Network [OSTI]

    Sperling, Daniel

    1989-01-01

    TRANSPORTATION ment of Oil Shale Technology. Washing- ton,interest and investments in oil shale, ethanol, coal liquidsbiomass materials, coal, oil shale, tar sands, natural gas,

  11. UZ Colloid Transport Model

    SciTech Connect (OSTI)

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  12. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01

    of reduction options/ AERO. Ministry of Transport, Publicfrom aviation with the AERO modeling system Part I.from aviation with the AERO modeling system. Montreal,

  13. Natural Gas Transportation Resiliency

    Broader source: Energy.gov (indexed) [DOE]

    Transportation Resiliency Anders Johnson Director Pipeline System Design April 29, 2014 Confidential and Illustrative for discussion purposes only. The views expressed in this...

  14. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    modes, manage the demand for transportation, and shift the fuel mix to more sustainable sources necessary to reach these significant outcomes. Coordinating a...

  15. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect (OSTI)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  16. Sustainable Transportation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  17. Dark Matter Antibaryons from a Supersymmetric Hidden Sector

    E-Print Network [OSTI]

    Nikita Blinov; David E. Morrissey; Kris Sigurdson; Sean Tulin

    2012-12-03

    The cosmological origin of both dark and baryonic matter can be explained through a unified mechanism called hylogenesis where baryon and antibaryon number are divided between the visible sector and a GeV-scale hidden sector, while the Universe remains net baryon symmetric. The "missing" antibaryons, in the form of exotic hidden states, are the dark matter. We study model-building, cosmological, and phenomenological aspects of this scenario within the framework of supersymmetry, which naturally stabilizes the light hidden sector and electroweak mass scales. Inelastic dark matter scattering on visible matter destroys nucleons, and nucleon decay searches offer a novel avenue for the direct detection of the hidden antibaryonic dark matter sea.

  18. Dark Matter Antibaryons from a Supersymmetric Hidden Sector

    E-Print Network [OSTI]

    Blinov, Nikita; Sigurdson, Kris; Tulin, Sean

    2012-01-01

    The cosmological origin of both dark and baryonic matter can be explained through a unified mechanism called hylogenesis where baryon and antibaryon number are divided between the visible sector and a GeV-scale hidden sector, while the Universe remains net baryon symmetric. The "missing" antibaryons, in the form of exotic hidden states, are the dark matter. We study model-building, cosmological, and phenomenological aspects of this scenario within the framework of supersymmetry, which naturally stabilizes the light hidden sector and electroweak mass scales. Inelastic dark matter scattering on visible matter destroys nucleons, and nucleon decay searches offer a novel avenue for the direct detection of the hidden antibaryonic dark matter sea.

  19. Transportation Electrification Load Development For a Renewable Future Analysis

    SciTech Connect (OSTI)

    Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

    2010-09-30

    Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

  20. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect (OSTI)

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  1. CALIFORNIA CENTER FOR INNOVATIVE TRANSPORTATION INSTITUTE OF TRANSPORTATION STUDIES

    E-Print Network [OSTI]

    CALIFORNIA CENTER FOR INNOVATIVE TRANSPORTATION INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY Investigator CCIT Research Report UCB-ITS-CWP-2011-2 The California Center for Innovative Transportation works;CALIFORNIA CENTER FOR INNOVATIVE TRANSPORTATION INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA

  2. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect (OSTI)

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  3. Methodology for Modeling Building Energy Performance across the Commercial Sector

    SciTech Connect (OSTI)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  4. Private Sector Initiative Between the U.S. and Japan

    SciTech Connect (OSTI)

    1998-09-30

    OAK-A258 Private Sector Initiative Between the U.S. and Japan. This report for calendar years 1993 through September 1998 describes efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract. The development of a pyrochemical process, called TRUMP-S, for partitioning actinides from PUREX waste, is described in this report. This effort is funded by the Central Research Institute of Electric Power Industry (CRIEPI), KHI, the United States Department of Energy, and Boeing.

  5. The Role of Cellulosic Ethanol in Transportation

    SciTech Connect (OSTI)

    Robert M. Neilson, Jr.

    2007-10-01

    Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

  6. Transportation Todd Litman

    E-Print Network [OSTI]

    consumer cost savings. #12;11 Per Capita Transport EnergyPer Capita Transport Energy 0 0.5 1 1.5 2 2.5 D Problem? · Traffic congestion? · Road construction costs? · Parking congestion or costs? · Excessive costs to consumers? · Government costs? · Traffic crashes? · Lack of mobility for non-drivers? · Poor freight

  7. Expert systems in transportation

    SciTech Connect (OSTI)

    O'Leary, K.P.

    1988-01-01

    The 5 papers in the report deal with the following areas: Knowledge representation and software selection for expert-systems design; Expert-system architecture for retaining-wall design; Development of expert-systems technology in the California Department of Transportation; Development of an expert system to assist in the interactive graphic transit system design process; Expert systems development for contingency transportation planing.

  8. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-04

    To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

  9. Transport Layer Cornell University

    E-Print Network [OSTI]

    Low, Steven H.

    Transport Layer Ao Tang Cornell University Ithaca, NY 14853 Lachlan L. H. Andrew California. Low California Institute of Technology Pasadena, CA 91125 I. INTRODUCTION The Internet has evolved of the physical layer, the link layer, the network layer, the transport layer and the application layer1 . See

  10. TRANSPORTATION ENERGY RESEARCH PIER Transportation Research

    E-Print Network [OSTI]

    . The project also tested a Caterpillar C15 engine certified to 2007 U.S. Environmental Protection Agency.energy.ca.gov/research/ transportation/ January 2011 Heavy-Duty Vehicle Emissions and Fuel Consumption Improvement Illustration of a heavy-duty tractor-trailer modified to meet the SmartWayTM Equipment Standards for lower fuel

  11. STRUCTURAL REQUIREMENTS OF ORGANIC ANION TRANSPORTING POLYPEPTIDE MEDIATED TRANSPORT

    E-Print Network [OSTI]

    Weaver, Yi Miao

    2010-04-12

    The organic anion transporting polypeptides (human: OATP; other: Oatp) form a mammalian transporter superfamily that mediates the transport of structurally unrelated compounds across the cell membrane. Members in this superfamily participate...

  12. Essays on Urban Transportation and Transportation Energy Policy

    E-Print Network [OSTI]

    Kim, Chun Kon

    2008-01-01

    and Transportation Energy Policy Chun Kon Kim University of California,California Goyang, KOREA viii P???????????? ??? W?????? P????? The Impacts of Transportation EnergyCalifornia Transportation Center (UCTC) Regents’ Dissertation Fellowship University of California, Irvine California Energy

  13. Impacts of urban transportation mode split on CO{sub 2} emissions in Jinan, China.

    SciTech Connect (OSTI)

    He, D.; Meng, F.; Wang, M.; He, K.

    2011-04-01

    As the world's largest developing country, China currently is undergoing rapid urbanization and motorization, which will result in far-reaching impacts on energy and the environment. According to estimates, energy use and carbon emissions in the transportation sector will comprise roughly 30% of total emissions by 2030. Since the late 1990s, transportation-related issues such as energy, consumption, and carbon emissions have become a policy focus in China. To date, most research and policies have centered on vehicle technologies that promote vehicle efficiency and reduced emissions. Limited research exists on the control of greenhouse gases through mode shifts in urban transportation - in particular, through the promotion of public transit. The purpose of this study is to establish a methodology to analyze carbon emissions from the urban transportation sector at the Chinese city level. By using Jinan, the capital of China's Shandong Province, as an example, we have developed an analytical model to simulate energy consumption and carbon emissions based on the number of trips, the transportation mode split, and the trip distance. This model has enabled us to assess the impacts of the transportation mode split on energy consumption and carbon emissions. Furthermore, this paper reviews a set of methods for data collection, estimation, and processing for situations where statistical data are scarce in China. This paper also describes the simulation of three transportation system development scenarios. The results of this study illustrate that if no policy intervention is implemented for the transportation mode split (the business-as-usual (BAU) case), then emissions from Chinese urban transportation systems will quadruple by 2030. However, a dense, mixed land-use pattern, as well as transportation policies that encourage public transportation, would result in the elimination of 1.93 million tons of carbon emissions - approximately 50% of the BAU scenario emissions.

  14. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Natural Gas Electricity Total Transportation Fuel Consumption Petroleum as % Total ChinaChina’s energy. Primary Energy Consumption (EJ) nuclear natural gas

  15. Illegal Logging and Illegal Activites in the Forestry Sector

    E-Print Network [OSTI]

    illegal activities in the forestry sector Definition of illegal logging : · "Timber harvesting harvesting procedure itself may be illegal, including corrupt means to gain access to forests(....)." (Fern, riverbanks and water catchments · Removing under/oversized trees from public forests · Extracting more timber

  16. MISCELLANEOUS ELECTRICITY USE IN THE U.S. RESIDENTIAL SECTOR

    E-Print Network [OSTI]

    LBNL-40295 UC-1600 MISCELLANEOUS ELECTRICITY USE IN THE U.S. RESIDENTIAL SECTOR M. C. Sanchez, J. G-up model of the miscellaneous electricity end use. Using shipment data and a consistent stock accounting-2010). Our study has two components: a historical analysis of miscellaneous electricity use (1976- 1995

  17. DRAFT DRAFT Electricity and Natural Gas Sector Description

    E-Print Network [OSTI]

    DRAFT DRAFT Electricity and Natural Gas Sector Description For Public Distribution AB 32 Scoping of electricity and natural gas; including electricity generation, combined heat and power, and electricity and natural gas end uses for residential and commercial purposes. Use of electricity and/or gas for industrial

  18. "Market Watch 2010" The Timber Sector in Malaysia

    E-Print Network [OSTI]

    sectors are palm oil & palm oil-based products, crude petroleum, liquefied natural gas and timber countries by the "Global Enabling Trade Report 2009", published by the World Economic Forum. Malaysia. But the weak global markets also affected Malaysian trade in 2009. In the first 6 months of 2009, total trade

  19. Statewide and Electricity-Sector Models for Economic Assessments of

    E-Print Network [OSTI]

    is an Assistant Professor of Urban and Regional Planning, University of Hawaii at Manoa. She teaches graduate/Pacific Region; energy policy; planning methods; and environmental valuation. She specializes in economicStatewide and Electricity-Sector Models for Economic Assessments of Hawai`i Clean Energy Policies

  20. Fluid Model of the Outage Probability in Sectored Wireless Networks

    E-Print Network [OSTI]

    Coupechoux, Marceau

    Fluid Model of the Outage Probability in Sectored Wireless Networks Jean-Marc Kelif France Telecom to derive the global outage probability and the spatial outage probability, which depends on the location the derivation of outage probabilities, capacity evaluation and then, the definition of Call Admission Control

  1. Standard and non standard ideas for the Higgs boson sector

    E-Print Network [OSTI]

    Abbondandolo, Alberto

    Standard and non standard ideas for the Higgs boson sector Riccardo Barbieri Johns Hopkins Workshop as the Higgs boson is in their low-energy spectrum We only know of approximate symmetries that can explain synoptic table Supersymmetric The SM Higgs boson TC-like Minimally extended Higgsless "Composite" 5

  2. Allowance Allocation and Effects on the Electricity Sector

    E-Print Network [OSTI]

    on electricity markets depends on CO2 emissions rates · Different regional effect of GF on electricity marketsAppalachia Indiana CO2EmissionsRate(tons/MWh) ElectricityPrice Baseline (BL) EmissionsRate Policy % Increase from BLAllowance Allocation and Effects on the Electricity Sector Karen Palmer Resources for the Future

  3. Space Systems Finland 1 Deployment in the Space Sector

    E-Print Network [OSTI]

    Southampton, University of

    © Space Systems Finland 1 Deployment in the Space Sector #12;© Space Systems Finland 2 SW Constraints Design Requirements User Requirements SW Requirements #12;© Space Systems Finland 3 The space, but there is no viable alternative · Many requirements are not testable #12;© Space Systems Finland 4 SSF OBJECTIVES

  4. Recent Action-Research and future course in Water Sector.

    E-Print Network [OSTI]

    Sohoni, Milind

    -soil, water, energy end-user defined or demand-driven-drinking water. Towards change-deliver technology Block 380 Thakar people. 200 animals. 40 households. And an acute shortage of water for 5 monthsRecent Action-Research and future course in Water Sector. Milind Sohoni, CTARA, IIT

  5. Why did the solar power sector develop quickly in Japan?

    E-Print Network [OSTI]

    Rogol, Michael G

    2007-01-01

    The solar power sector grew quickly in Japan during the decade 1994 to 2003. During this period, annual installations increased 32-fold from 7MW in 1994 to 223MW in 2003, and annual production increased 22-fold, from 16MW ...

  6. First Generation Indian External Sector Reforms in Context

    E-Print Network [OSTI]

    Bhala, Raj

    2013-01-01

    India's first generation external sector reforms are a fascinating case study of emergence from a post-Independence socialist-style economy to the world’s largest free market democracy. Part I of this article reviews the Indian license Raj system...

  7. Responsible Investment in the Forest Sector Recommendations for Institutional Investors

    E-Print Network [OSTI]

    May 2012 Responsible Investment in the Forest Sector Recommendations for Institutional Investors by New Forests Asset Management Pty Limited ("New Forests"). The material in this report is from sources believed by New Forests to be reliable, but the information is not warranted and may contain errors

  8. Energy Use and Savings in the Canadian Industrial Sector 

    E-Print Network [OSTI]

    James, B.

    1982-01-01

    The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements...

  9. CLIMATE CHANGE AND THE AGRICULTURAL SECTOR IN THE

    E-Print Network [OSTI]

    CLIMATE CHANGE AND THE AGRICULTURAL SECTOR IN THE SAN FRANCISCO BAY AREA Changes A White Paper from the California Energy Commission's California Climate Change Center JULY 2012 CEC-needed technical assistance, and Mary Tyree at Scripps was extremely helpful in formatting the climate data

  10. Water Sector -Aid Funded Business with the World Bank

    E-Print Network [OSTI]

    Glasgow, University of

    Pipeline Pr 16 - Projects Completed by UK Companies 19 1 #12;Water Sector Overview The World Bank has Projects nnexes: World Bank Water Contacts 16 ojects - - Water Supply and Sanita 3 - Water Resources-Saharan Africa are the largest recipients of Bank financing for WSS and WRM. Many developing countries face

  11. Japan-Brazil Space Sector Workshop August 26 27, 2010

    E-Print Network [OSTI]

    Japan-Brazil Space Sector Workshop August 26 ­ 27, 2010 Sergio Sobral de Oliveira Auditorium (IAI building) INPE's headquarters - Săo José dos Campos, SP, Brazil Satellite Applications on Agricultural;NDVI Desertification process ­ NE Brazil Surface Albedo Surface Temperature #12;Perfil temporal do NDVI

  12. Promoting Green Jobs in the Building and Construction Sector

    E-Print Network [OSTI]

    Promoting Green Jobs in the Building and Construction Sector BUILDING FOR ECOLOGICALLY RESPONSIVE of effective green building policy for legislators; · skills upgrade for construction workers; · green building to 40% of greenhouse gas (GHG) emission, 30 to 40% of solid waste generation, 25 to 40% of total energy

  13. An Alternative Baseline Methodology for the Power Sector

    E-Print Network [OSTI]

    An Alternative Baseline Methodology for the Power Sector - Taking a Systemic Approach Jakob Asger in August 2005 to discuss the international future strategy of climate policies. Both events put our work process from idea to final thesis. Further we would like to express our warm thanks to Senior Energy

  14. Implementing Advances in Transport Security Technologies | Department...

    Office of Environmental Management (EM)

    Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies Implementing Advances in Transport Security Technologies More...

  15. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface More Documents & Publications Gap...

  16. Automated Transportation Logistics and Analysis System (ATLAS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Packaging and Transportation Automated Transportation Logistics and Analysis System (ATLAS) Automated Transportation Logistics and Analysis System (ATLAS) The Department of...

  17. Transport Services (TAPS) BOF plan

    E-Print Network [OSTI]

    Welzl, Michael

    Transport Services (TAPS) BOF plan T. Moncaster, M. Welzl, D. Ros: dra5-moncaster-tsvwg-transport-services-00 h Reducing Internet Transport Latency Michael Welzl, with help from (alphabe/cal): Anna

  18. A Hidden Dark Matter Sector, Dark Radiation, and the CMB

    E-Print Network [OSTI]

    Zackaria Chacko; Yanou Cui; Sungwoo Hong; Takemichi Okui

    2015-05-15

    We consider theories where dark matter is composed of a thermal relic of weak scale mass, whose couplings to the Standard Model (SM) are however too small to give rise to the observed abundance. Instead, the abundance is set by annihilation to light hidden sector states that carry no charges under the SM gauge interactions. In such a scenario the constraints from direct and indirect detection, and from collider searches for dark matter, can easily be satisfied. The masses of such light hidden states can be protected by symmetry if they are Nambu-Goldstone bosons, fermions, or gauge bosons. These states can then contribute to the cosmic energy density as dark radiation, leading to observable signals in the cosmic microwave background (CMB). Furthermore, depending on whether or not the light hidden sector states self-interact, the fraction of the total energy density that free-streams is either decreased or increased, leading to characteristic effects on both the scalar and tensor components of the CMB anisotropy that allows these two cases to be distinguished. The magnitude of these signals depends on the number of light degrees of freedom in the hidden sector, and on the temperature at which it kinetically decouples from the SM. We consider a simple model that realizes this scenario, based on a framework in which the SM and hidden sector are initially in thermal equilibrium through the Higgs portal, and show that the resulting signals are compatible with recent Planck results, while large enough to be detected in upcoming experiments such as CMBPol and CMB Stage-IV. Invisible decays of the Higgs into hidden sector states at colliders can offer a complementary probe of this model.

  19. Improving Efficiency and Equity in Transportation Finance

    E-Print Network [OSTI]

    Watts, Michael

    2006-01-01

    Fueling Transportation Finance. ” Ian W. H. Parry andFueling Transportation Finance. ” Transportation ResearchFueling Transportation Finance: A Primer on the Gas Tax •

  20. Superconnections and Parallel Transport

    E-Print Network [OSTI]

    Dumitrescu, Florin

    2007-01-01

    This note addresses the construction of a notion of parallel transport along superpaths arising from the concept of a superconnection on a vector bundle over a manifold $M$. A superpath in $M$ is, loosely speaking, a path in $M$ together with an odd vector field in $M$ along the path. We also develop a notion of parallel transport associated with a connection (a.k.a. covariant derivative) on a vector bundle over a \\emph{supermanifold} which is a direct generalization of the classical notion of parallel transport for connections over manifolds.

  1. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  2. Office of Secure Transportation Activities

    Office of Environmental Management (EM)

    6th, 2012 WIPP Knoxville, TN OFFICE OF SECURE TRANSPORTATION Agency Integration Briefing Our Mission To provide safe and secure ground and air transportation of nuclear weapons,...

  3. Spent Fuel Transportation Risk Assessment

    Office of Environmental Management (EM)

    Spent Fuel Transportation Risk Assessment (SFTRA) Draft NUREG-2125 Overview for National Transportation Stakeholders Forum John Cook Division of Spent Fuel Storage and...

  4. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01

    IEA personnel (WBCSD, 2004b), the WEO 2004 and Mobility 2030are quite similar. The WEO 2006 (IEA, 2006b) includes higherwhile the IEA’s more recent WEO 2006 projects transport

  5. Accident resistant transport container

    DOE Patents [OSTI]

    Andersen, John A. (Albuquerque, NM); Cole, James K. (Albuquerque, NM)

    1980-01-01

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  6. Transportation Baseline Report

    SciTech Connect (OSTI)

    Fawcett, Ricky Lee; Kramer, George Leroy Jr.

    1999-12-01

    The National Transportation Program 1999 Transportation Baseline Report presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste and materials transportation. In addition, this Report provides a summary overview of DOE’s projected quantities of waste and materials for transportation. Data presented in this report were gathered as a part of the IPABS Spring 1999 update of the EM Corporate Database and are current as of July 30, 1999. These data were input and compiled using the Analysis and Visualization System (AVS) which is used to update all stream-level components of the EM Corporate Database, as well as TSD System and programmatic risk (disposition barrier) information. Project (PBS) and site-level IPABS data are being collected through the Interim Data Management System (IDMS). The data are presented in appendices to this report.

  7. Atmospheric Transport of Radionuclides

    SciTech Connect (OSTI)

    Crawford, T.V.

    2003-03-03

    The purpose of atmospheric transport and diffusion calculations is to provide estimates of concentration and surface deposition from routine and accidental releases of pollutants to the atmosphere. This paper discusses this topic.

  8. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    next webinar is scheduled to occur in June 2013 TRIBAL NATIONS CAUCUS UPDATE WIKI AND NTSF WEB SITES ntsf.wikidot.com www.em.doe.govPagesNationalTransportationForum.aspx...

  9. Transport in granular systems

    E-Print Network [OSTI]

    Wendell, Dawn M. (Dawn Marie), 1983-

    2011-01-01

    There are many situations in which a continuum view of granular systems does not fully capture the relevant mechanics. In order for engineers to be able to design systems for transporting granular materials, there needs ...

  10. Transportation Storage Interface

    Office of Environmental Management (EM)

    in above- ground bunkers, each of which is about the size of a one-car garage. Spent Fuel Storage: Dual Purpose Cask Systems 8 Spent Fuel Storage and Transportation: Framework...

  11. PBA Transportation Websites

    Broader source: Energy.gov [DOE]

    PBA Transportation Websites presented to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  12. Transportation legislative data base: State radioactive materials transportation statute compilation, 1989--1993

    SciTech Connect (OSTI)

    NONE

    1994-04-01

    The Transportation Legislative Data Base (TLDB) is a computer-based information service containing summaries of federal, state and certain local government statutes and regulations relating to the transportation of radioactive materials in the United States. The TLDB has been operated by the National Conference of State Legislatures (NCSL) under cooperative agreement with the US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management since 1992. The data base system serves the legislative and regulatory information needs of federal, state, tribal and local governments, the affected private sector and interested members of the general public. Users must be approved by DOE and NCSL. This report is a state statute compilation that updates the 1989 compilation produced by Battelle Memorial Institute, the previous manager of the data base. This compilation includes statutes not included in the prior compilation, as well as newly enacted laws. Statutes not included in the prior compilation show an enactment date prior to 1989. Statutes that deal with low-level radioactive waste transportation are included in the data base as are statutes from the states of Alaska and Hawaii. Over 155 new entries to the data base are summarized in this compilation.

  13. Fluid transport container

    DOE Patents [OSTI]

    DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

    1995-11-14

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

  14. Transportation fuels from wood

    SciTech Connect (OSTI)

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  15. Membrane Transport Chloride Transport Across Vesicle and Cell

    E-Print Network [OSTI]

    Smith, Bradley D.

    Membrane Transport Chloride Transport Across Vesicle and Cell Membranes by Steroid-Based Receptors-established that molecules which transport cations across cell membranes (cationophores) can have potent biological effects of biological activity. Indeed, chloride transporters have direct medical potential as treatments for cystic

  16. Parking and Transport Policy Page 1 Parking and Transport Policy

    E-Print Network [OSTI]

    Mucina, Ladislav

    Parking and Transport Policy Page 1 Parking and Transport Policy Category: Facilities, Campus Life 1. PURPOSE To standardise and manage parking and transport on the Curtin Bentley campus including that support both State Government and University objectives in a manner that encourages public transport use

  17. CALIFORNIA CENTER FOR INNOVATIVE TRANSPORTATION INSTITUTE OF TRANSPORTATION STUDIES

    E-Print Network [OSTI]

    CALIFORNIA CENTER FOR INNOVATIVE TRANSPORTATION INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY-ITS-CWP-2010-4 This work was performed by the California Center for Innovative Transportation, a research group at the University of California, Berkeley, in cooperation with the State of California Business, Transportation

  18. CALIFORNIA CENTER FOR INNOVATIVE TRANSPORTATION INSTITUTE OF TRANSPORTATION STUDIES

    E-Print Network [OSTI]

    CALIFORNIA CENTER FOR INNOVATIVE TRANSPORTATION INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY-ITS-CWP-2011-6 ISSN 1557-2269 The California Center for Innovative Transportation works with researchers that improve the efficiency, safety, and security of the transportation system. #12;#12;CALIFORNIA CENTER

  19. Ultra-weak sector, Higgs boson mass, and the dilaton

    SciTech Connect (OSTI)

    Allison, Kyle; Hill, Christopher T.; Ross, Graham G.

    2014-09-26

    The Higgs boson mass may arise from a portal coupling to a singlet field $\\sigma$ which has a very large VEV $f \\gg m_\\text{Higgs}$. This requires a sector of "ultra-weak" couplings $\\zeta_i$, where $\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $\\sigma$ in the $\\zeta_i \\rightarrow 0$ limit. The singlet field $\\sigma$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.

  20. Policies to encourage private sector responses to potential climate change

    SciTech Connect (OSTI)

    Cantor, R.A.; Jones, D.W.; Leiby, P.N.; Rayner, S. )

    1989-01-01

    The Oak Ridge National Laboratory recently completed work on a report commissioned by the US Congress from the Department of Energy entitled A Compendium of Options for Government Policy to Encourage Private Sector Responses to Potential Climate Change'' (US DOE 1989). Four classes of incentives (regulatory, fiscal, informational, and RD D) were surveyed in the context of greenhouse-related activities in five economic sectors as depicted in Figure 1. As the example shows, for each activity general policies and specific options were considered. The paper presented here does not summarize the DOE study but identifies some of the lessons ORNL staff learned during the study about policies to deal with potential global warming. 21 refs., 1 fig.

  1. Ultra-weak sector, Higgs boson mass, and the dilaton

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Allison, Kyle; Hill, Christopher T.; Ross, Graham G.

    2014-11-01

    The Higgs boson mass may arise from a portal coupling to a singlet field $\\sigma$ which has a very large VEV $f \\gg m_\\text{Higgs}$. This requires a sector of "ultra-weak" couplings $\\zeta_i$, where $\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $\\sigma$ in the $\\zeta_i \\rightarrow 0$ limit. The singlet field $\\sigma$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.

  2. Holographic vortices in the presence of dark matter sector

    E-Print Network [OSTI]

    Marek Rogatko; Karol I. Wysokinski

    2015-10-21

    The {\\it dark matter} seem to be an inevitable ingredient of the total matter configuration in the Universe and the knowledge how the {\\it dark matter} affects the properties of superconductors is of vital importance for the experiments aimed at its direct detection. The homogeneous magnetic field acting perpendicularly to the surface of (2+1) dimensional s-wave holographic superconductor in the theory with {\\it dark matter} sector has been modeled by the additional $U(1)$-gauge field representing dark matter and coupled to the Maxwell one. As expected the free energy for the vortex configuration turns out to be negative. Importantly its value is lower in the presence of {\\it dark matter} sector. This feature can explain why in the Early Universe first the web of {\\it dark matter} appeared and next on these gratings the ordinary matter forming cluster of galaxies has formed.

  3. Cosmic strings in hidden sectors: 2. Cosmological and astrophysical signatures

    SciTech Connect (OSTI)

    Long, Andrew J.; Vachaspati, Tanmay, E-mail: andrewjlong@asu.edu, E-mail: tvachasp@asu.edu [Physics Department, Arizona State University, Tempe, Arizona 85287 (United States)

    2014-12-01

    Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of dark strings in our universe with an emphasis on low-scale models, perhaps TeV . Specifically, we consider constraints from nucleosynthesis and CMB spectral distortions, and we calculate the predicted fluxes of diffuse gamma ray cascade photons and cosmic rays. For strings as light as TeV, we find that the predicted level of these signatures is well below the sensitivity of the current experiments, and therefore low scale cosmic strings in hidden sectors remain unconstrained. Heavier strings with a mass scale in the range 10{sup 13} GeV to 10{sup 15} GeV are at tension with nucleosynthesis constraints.

  4. Energy Sector-Specific Plan: An Annex to the National Infrastructure...

    Energy Savers [EERE]

    Plan: An Annex to the National Infrastructure Protection Plan In its role as the lead Sector-Specific Agency for the Energy Sector, the Department of Energy has worked...

  5. Competition in the U.S. electric power sector : some recent developments

    E-Print Network [OSTI]

    Joskow, Paul L.

    1994-01-01

    This paper examines recent efforts to expand competitive opportunities in the electric power sector in the US. I start with a brief overview of the structure and regulation of the US electricity sector as it existed in the ...

  6. End-use electrification in the residential sector : a general equilibrium analysis of technology advancements

    E-Print Network [OSTI]

    Madan, Tanvir Singh

    2012-01-01

    The residential sector in the U.S. is responsible for about 20% of the country's primary energy use (EIA, 2011). Studies estimate that efficiency improvements in this sector can reduce household energy consumption by over ...

  7. U.S. Energy Sector Vulnerabilities to Climate Change and Extreme...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather This report-part of the...

  8. Fact #792: August 12, 2013 Energy Consumption by Sector and Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 Fact 792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 In the...

  9. AIJ in the Non-Energy Sector in India: Opportunities and Concerns

    E-Print Network [OSTI]

    Ravindranath, N.H.; Meili, Anandi; Anita, R.

    1998-01-01

    and Land use in India; Some Energy Issues, Ambio, 24, 420-these problems. In the energy sector, India aims to initiateAIJ in the Non-Energy Sector in India: Opportunities and

  10. Climate change adaptation in the U.S. electric utility sector

    E-Print Network [OSTI]

    Higbee, Melissa (Melissa Aura)

    2013-01-01

    The electric utility sector has been a focus of policy efforts to reduce greenhouse gas emissions, but even if these efforts are successful, the sector will need to adapt to the impacts of climate change. These are likely ...

  11. Design and analysis of financial statements for the farm sector 

    E-Print Network [OSTI]

    Alexander, Catheryn Ricketts

    1986-01-01

    to equity financing and ability to cover fixed charges, (4) profitability ratios which measure the overall performance of the sector and its efficiency in the manage- ment of assets, liabilities, and equity, and (5) efficiency ratios, which measure... did not include unrealized capital gains. Second, the calculation of the return on farm business assets required the deduction of an imputed return to labor and management. Finally, many farm operators were willing to accept a lower return to main...

  12. Institutional change in the forest sector : the Russian experience

    E-Print Network [OSTI]

    Ulybina, Olga

    In 1987, the share of forestry, mechanical wood industry, and the pulp and paper industry was seventh of all sectors in Russia with 5.62% of total industrial output (Nilsson and Shvidenko, 1997: 33). By 1993, domestic production of wood products (the... of Forest Certification schemes SGS Société Générale de Surveillance, an inspection, verification, testing and certification company SPOK An environmental NGO in Karelia UPM UPM-Kymmene Oyj, a pulp, paper and timber manufacturer VLTP Validation...

  13. Reforming the Power Sector in Transition: Do Institutions Matter?

    E-Print Network [OSTI]

    Nepal, Rabindra; Jamasb, Tooraj

    and Uzbekistan. Besides these countries, Turkey and Mongolia are also included in the group of transition economies as per European Bank of Reconstruction and Development (EBRD) areas of operation. 2 For instance, the oil and gas exports for Turkmenistan... ). Stiglitz (1999) argues that the enforcement mechanisms of reforms (including  power  sector  reforms) were weak  as  the  state’s  legal  and  judicial  capacities were  limited during the transition process brewing inefficient rent...

  14. Solar energy research and development: federal and private sector roles

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    The Energy Research Advisory Board convened a Solar R and D Panel to determine the status of the solar industry and solar R and D in the United States and to recommend to DOE appropriate roles for the Federal and private sectors. The Panel's report acknowledges the new Administration policy reorienting the Federal role in energy development to long-term, high-risk, high-payoff R and D, and leaving commercialization to the private sector. The Panel's recommendations are further predicated on an assumption of continued, substantially reduced funding in the near-term. The Panel found that solar energy technologies have progressed significantly in the past 10 years and represent a group of highly promising energy options for the United States. However, it also found the solar industry to be in a precarious condition, fluctuating energy demand and prices, and uncertain Federal tax and regulatory policies. The Business Energy and Residential Tax Credits are essential to the near-term health of the solar industry. Commercialization has already begun for some solar technologies; for others, decreases in Federal funding will result in a slowdown or termination. The primary Federal roles in solar R and D should be in support of basic and applied research, high-risk, high-payoff technology development and other necessary research for which there are insufficient market incentives. The Federal Government should also move strongly to transfer technology to the private sector for near-commerical technologies. Large demonstration and commercialization projects cannot be justified for Federal funding under current economic conditions. These should be pursued by the private sector. The Panel examined seven technology areas and made specific findings and recommendations for each.

  15. Partnership for Energy Sector Climate Resilience | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnership for Energy Sector Climate Resilience

  16. NREL: Transportation Research - Transportation Deployment Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking WithSuccess StoriesTransportation

  17. NREL: Transportation Research - Transportation Secure Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking WithSuccessTransportation Secure Data

  18. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking WithSuccessTransportation Secure

  19. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking WithSuccessTransportation

  20. Energy and water sector policy strategies for drought mitigation.

    SciTech Connect (OSTI)

    Kelic, Andjelka; Vugrin, Eric D.; Loose, Verne W.; Vargas, Vanessa N.

    2009-03-01

    Tensions between the energy and water sectors occur when demand for electric power is high and water supply levels are low. There are several regions of the country, such as the western and southwestern states, where the confluence of energy and water is always strained due to population growth. However, for much of the country, this tension occurs at particular times of year (e.g., summer) or when a region is suffering from drought conditions. This report discusses prior work on the interdependencies between energy and water. It identifies the types of power plants that are most likely to be susceptible to water shortages, the regions of the country where this is most likely to occur, and policy options that can be applied in both the energy and water sectors to address the issue. The policy options are designed to be applied in the near term, applicable to all areas of the country, and to ease the tension between the energy and water sectors by addressing peak power demand or decreased water supply.

  1. The Market and Technical Potential for Combined Heat and Power in the Industrial Sector, January 2000

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report of an analysis of the market and technical potential for combined heat and power in the industrial sector

  2. Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down

    E-Print Network [OSTI]

    Van Wie McGrory, Laura; Coleman, Philip; Fridley, David; Harris, Jeffrey; Villasenor Franco, Edgar

    2006-01-01

    public sector energy spending reached roughly US$10 billion and that figure has been rising as total built space

  3. Manufacturing Energy and Carbon Footprint- Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Iron and Steel Sector (NAICS 3311, 3312) with Total Energy Input

  4. Thermal and Electrical Transport in Oxide Heterostructures

    E-Print Network [OSTI]

    Ravichandran, Jayakanth

    2011-01-01

    of thermal conductivity . . . . . . . . . . . . . . . .4.4 Thermal transport in2.3.2 Thermal transport . . . . . . . . . . . . . . . .

  5. Hidden-sector correction to Coulomb potential through the photonic portal

    E-Print Network [OSTI]

    Wojciech Krolikowski

    2011-01-03

    We show that in the model of hidden sector of the Universe, interacting with the Standard-Model sector through the photonic portal, the Standard-Model Coulomb potential gets a tiny hidden-sector additive correction that might turn out to be either exciting or fatal for the verification of this model.

  6. STATIC SECTORIZATION APPROACH TO DYNAMIC AIRSPACE CONFIGURATION USING APPROXIMATE DYNAMIC PROGRAMMING

    E-Print Network [OSTI]

    1 STATIC SECTORIZATION APPROACH TO DYNAMIC AIRSPACE CONFIGURATION USING APPROXIMATE DYNAMIC to Dynamic Airspace Configuration (DAC) by static sectorization. The objective of this paper is to address the issue of static sectorization by partitioning airspace based on controller workload i.e. airspace

  7. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    CFL Electricity Natural gas LPG Coal Coal gas Other AirFuels. A small volume of LPG and crude oil are recorded fortransportation use. LPG is used in transport is primarily in

  8. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Statistics in Japan , he Energy Data and Modeling Center,Wang, Q, 2005. 2005 Energy Data for Fiscal and EconomicWhat do India’s transport energy data tell us? Residential

  9. The efficient use of natural gas in transportation

    SciTech Connect (OSTI)

    Stodolsky, F.; Santini, D.J.

    1992-04-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  10. The efficient use of natural gas in transportation

    SciTech Connect (OSTI)

    Stodolsky, F.; Santini, D.J.

    1992-01-01

    Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

  11. Transportation fuels from biomass via fast pyrolysis and hydroprocessing

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2013-09-21

    Biomass is a renewable source of carbon, which could provide a means to reduce the greenhouse gas impact from fossil fuels in the transportation sector. Biomass is the only renewable source of liquid fuels, which could displace petroleum-derived products. Fast pyrolysis is a method of direct thermochemical conversion (non-bioconversion) of biomass to a liquid product. Although the direct conversion product, called bio-oil, is liquid; it is not compatible with the fuel handling systems currently used for transportation. Upgrading the product via catalytic processing with hydrogen gas, hydroprocessing, is a means that has been demonstrated in the laboratory. By this processing the bio-oil can be deoxygenated to hydrocarbons, which can be useful replacements of the hydrocarbon distillates in petroleum. While the fast pyrolysis of biomass is presently commercial, the upgrading of the liquid product by hydroprocessing remains in development, although it is moving out of the laboratory into scaled-up process demonstration systems.

  12. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    Reports and Publications (EIA)

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  13. Attoheat transport phenomena

    E-Print Network [OSTI]

    J. Marciak-Kozlowska; M. Pelc; M. A. Kozlowski

    2009-06-09

    Fascinating developments in optical pulse engineering over the last 20 years lead to the generation of laser pulses as short as few femtosecond, providing a unique tool for high resolution time domain spectroscopy. However, a number of the processes in nature evolve with characteristic times of the order of 1 fs or even shorter. Time domain studies of such processes require at first place sub-fs resolution, offered by pulse depicting attosecond localization. The generation, characterization and proof of principle applications of such pulses is the target of the attoscience. In the paper the thermal processes on the attosecond scale are described. The Klein-Gordon and Proca equations are developed. The relativistic effects in the heat transport on nanoscale are discussed. It is shown that the standard Fourier equation can not be valid for the transport phenomena induced by attosecond laser pulses. The heat transport in nanoparticles and nanotubules is investigated.

  14. Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedes

    E-Print Network [OSTI]

    and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operat and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operations pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian

  15. Heavy-flavor transport

    E-Print Network [OSTI]

    Andrea Beraudo

    2015-10-29

    The formation of a hot deconfined medium (Quark-Gluon Plasma) in high-energy nuclear collisions affects heavy-flavor observables. In the low/moderate-pT range transport calculations allow one to simulate the propagation of heavy quarks in the plasma and to evaluate the effect of the medium on the final hadronic spectra: results obtained with transport coefficients arising from different theoretical approaches can be compared to experimental data. Finally, a discussion of possible effects on heavy-flavor observables due to the possible formation of a hot-medium in small systems (like in p-A collisions) is presented.

  16. Mass Transport within Soils

    SciTech Connect (OSTI)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone with three major horizons, the saturated zone can be further divided into other zones based on hydraulic and geologic conditions. Wetland soils are a special and important class in which near-saturation conditions exist most of the time. When a contaminant is added to or formed in a soil column, there are several mechanisms by which it can be dispersed, transported out of the soil column to other parts of the environment, destroyed, or transformed into some other species. Thus, to evaluate or manage any contaminant introduced to the soil column, one must determine whether and how that substance will (1) remain or accumulate within the soil column, (2) be transported by dispersion or advection within the soil column, (3) be physically, chemically, or biologically transformed within the soil (i.e., by hydrolysis, oxidation, etc.), or (4) be transported out of the soil column to another part of the environment through a cross-media transfer (i.e., volatilization, runoff, ground water infiltration, etc.). These competing processes impact the fate of physical, chemical, or biological contaminants found in soils. In order to capture these mechanisms in mass transfer models, we must develop mass-transfer coefficients (MTCs) specific to soil layers. That is the goal of this chapter. The reader is referred to other chapters in this Handbook that address related transport processes, namely Chapter 13 on bioturbation, Chapter 15 on transport in near-surface geological formations, and Chapter 17 on soil resuspention. This chapter addresses the following issues: the nature of soil pollution, composition of soil, transport processes and transport parameters in soil, transformation processes in soil, mass-balance models, and MTCs in soils. We show that to address vertical heterogeneity in soils in is necessary to define a characteristic scaling depth and use this to establish process-based expressions for soil MTCs. The scaling depth in soil and the corresponding MTCs depend strongly on (1) the composition of the soil and physical state of the soil, (2) the chemical and physic

  17. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  18. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira

    2000-10-30

    This is the first quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between July 14, 2000 and September 30, 2000. This report presents information on the following specific tasks: (a) Progress in Advanced Cuttings Transport Facility design and development (Task 2), (b) Progress on research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress on research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress on research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress on research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Initiate research on project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Progress on instrumentation tasks to measure: Cuttings concentration and distribution (Tasks 11), and Foam properties (Task 12), (h) Initiate a comprehensive safety review of all flow-loop components and operational procedures. Since the previous Task 1 has been completed, we will now designate this new task as: (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  19. Spin Transport Shingo Katsumoto

    E-Print Network [OSTI]

    Iye, Yasuhiro

    -1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan According to DARPA's definition, "Spintronics"[1] means "Spin Transport Electronics". The issue "Spin Trans- port" thus covers all the fields of spintronics and one devices. In semiconductor spintronics devices, we therefore utilize the differences in n, , m for up

  20. EPAct Transportation Regulatory Activities

    SciTech Connect (OSTI)

    2011-11-21

    The U.S. Department of Energy's (DOE) Vehicle Technologies Program manages several transportation regulatory activities established by the Energy Policy Act of 1992 (EPAct), as amended by the Energy Conservation Reauthorization Act of 1998, EPAct 2005, and the Energy Independence and Security Act of 2007 (EISA).

  1. Artificial oxygen transport protein

    DOE Patents [OSTI]

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  2. Storing and transporting energy

    DOE Patents [OSTI]

    McClaine, Andrew W. (Lexington, MA); Brown, Kenneth (Reading, MA)

    2010-09-07

    Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

  3. "Educating transportation professionals."

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    @virginia.edu http://cts.virginia.edu/Demetsky.htm Dept. of Civil and Environmental Engineering University of Virginia Charlottesville, VA 434.924.7464 Transportation Engineering & Management Research Our group works and Operations The mobility of freight is vital to the national economy. The growth in demand for freight

  4. Ionic (Proton) Transport Hydrogen

    E-Print Network [OSTI]

    environments - #12;Technology Options -- Ionic Transport Separation Systems Central, Semi-Central (coal/Semi-Central Systems Coal is the cheapest fuel, but requires the greatest pre-conditioning Clean-up of syngas requires Energy Systems ChevronTexaco SRI Consulting SAIC ChevronTexaco Technology Ventures #12;Performance

  5. Climate Change and Transportation

    E-Print Network [OSTI]

    Minnesota, University of

    1 Climate Change and Transportation Addressing Climate Change in the Absence of Federal Guidelines;6 WSDOT Efforts · Climate Change Team · Project Level GHG Approach · Planning Level GHG Approach · Alternative Fuels Corridor · Recent legislation and research #12;7 WSDOT Efforts: Climate Change Team

  6. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    SciTech Connect (OSTI)

    Goldman, Charles; Fuller, Merrian C.; Stuart, Elizabeth; Peters, Jane S.; McRae, Marjorie; Albers, Nathaniel; Lutzenhiser, Susan; Spahic, Mersiha

    2010-03-22

    The energy efficiency services sector (EESS) is poised to become an increasingly important part of the U.S. economy. Climate change and energy supply concerns, volatile and increasing energy prices, and a desire for greater energy independence have led many state and national leaders to support an increasingly prominent role for energy efficiency in U.S. energy policy. The national economic recession has also helped to boost the visibility of energy efficiency, as part of a strategy to support economic recovery. We expect investment in energy efficiency to increase dramatically both in the near-term and through 2020 and beyond. This increase will come both from public support, such as the American Recovery and Reinvestment Act (ARRA) and significant increases in utility ratepayer funds directed toward efficiency, and also from increased private spending due to codes and standards, increasing energy prices, and voluntary standards for industry. Given the growing attention on energy efficiency, there is a concern among policy makers, program administrators, and others that there is an insufficiently trained workforce in place to meet the energy efficiency goals being put in place by local, state, and federal policy. To understand the likelihood of a potential workforce gap and appropriate response strategies, one needs to understand the size, composition, and potential for growth of the EESS. We use a bottom-up approach based upon almost 300 interviews with program administrators, education and training providers, and a variety of EESS employers and trade associations; communications with over 50 sector experts; as well as an extensive literature review. We attempt to provide insight into key aspects of the EESS by describing the current job composition, the current workforce size, our projections for sector growth through 2020, and key issues that may limit this growth.

  7. Saturated Zone Colloid Transport

    SciTech Connect (OSTI)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly sorbed onto this fraction of colloids also transport without retardation. The transport times for these radionuclides will be the same as those for nonsorbing radionuclides. The fraction of nonretarding colloids developed in this analysis report is used in the abstraction of SZ and UZ transport models in support of the total system performance assessment (TSPA) for the license application (LA). This analysis report uses input from two Yucca Mountain Project (YMP) analysis reports. This analysis uses the assumption from ''Waste Form and In-Drift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary'' that plutonium and americium are irreversibly sorbed to colloids generated by the waste degradation processes (BSC 2004 [DIRS 170025]). In addition, interpretations from RELAP analyses from ''Saturated Zone In-Situ Testing'' (BSC 2004 [DIRS 170010]) are used to develop the retardation factor distributions in this analysis.

  8. A Transport Synthetic Acceleration method for transport iterations 

    E-Print Network [OSTI]

    Ramone, Gilles Lionel

    1996-01-01

    We present a family of Transport Synthetic Acceleration (TSA) methods to iteratively solve within-group scattering problems. A single iteration in these schemes consists of a transport sweep followed by a low-order calculation ...

  9. User:GregZiebold/Sector test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNew York: Energy ResourcesCalpakGatewaySector

  10. Tests of the Electroweak Sector of the Standard Model

    E-Print Network [OSTI]

    Sijbrand de Jong

    2005-12-19

    The Electroweak sector of the Standard Model is reviewed and best fits are presented for its free parameters based on currently available experimental tests. The Standard Model remains an excellent descriptions of the available experimental data. The preferred mass range of the still elusive Higgs boson in the Standard Model is $114

  11. Energy Efficiency and the Finance Sector | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of theClimateElgin,Wind UKEnergiefeld1and the Finance Sector

  12. South Africa-Danish Government Sector Programmes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfin Jump to:SolkarSector Programmes Jump to: navigation,

  13. Climate Change: Risks and Opportunities for the Finance Sector Online

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:NewMinnesota: EnergyVirginia:Forestry Sectors |

  14. Integrated transportation system design optimization

    E-Print Network [OSTI]

    Taylor, Christine P. (Christine Pia), 1979-

    2007-01-01

    Traditionally, the design of a transportation system has focused on either the vehicle design or the network flow, assuming the other as given. However, to define a system level architecture for a transportation system, ...

  15. (Findings of the Costa Rica power sector efficiency study)

    SciTech Connect (OSTI)

    Waddle, D.B.

    1990-10-08

    To present findings of the Costa Rica Power Sector Efficiency Study to the Instituto Costarricense de Electridad, and to the Ministry of Energy, Natural Resources and Mining. To discuss the progress and plans for the Central American Rural Electrification Project with US Agency for International Development (USAID)/Regional Office Central American Program (ROCAP). I traveled to San Jose, Costa Rica to present the findings of the Costa Rica Power Sector Efficiency Study to our counterparts in the utility and the Ministry of Energy. Discussions were held with line level managers at Instituto Costarricensede Electricidad (ICE) and Ministry of Energy Mines and Natural Resources (MIRENEM), as well as a plan of action set for the final stage of the project. Discussions were held for a one day period with both the bilateral Agency for International Development (AID) and the regional AID mission regarding the need for a similar study in Guatemala and matters directly pertaining to the Central American Rural Electrification Study (CARES) project.

  16. A Hidden Dark Matter Sector, Dark Radiation, and the CMB

    E-Print Network [OSTI]

    Chacko, Zackaria; Hong, Sungwoo; Okui, Takemichi

    2015-01-01

    We consider theories where dark matter is composed of a thermal relic of weak scale mass, whose couplings to the Standard Model (SM) are however too small to give rise to the observed abundance. Instead, the abundance is set by annihilation to light hidden sector states that carry no charges under the SM gauge interactions. In such a scenario the constraints from direct and indirect detection, and from collider searches for dark matter, can easily be satisfied. The masses of such light hidden states can be protected by symmetry if they are Nambu-Goldstone bosons, fermions, or gauge bosons. These states can then contribute to the cosmic energy density as dark radiation, leading to observable signals in the cosmic microwave background (CMB). Furthermore, depending on whether or not the light hidden sector states self-interact, the fraction of the total energy density that free-streams is either decreased or increased, leading to characteristic effects on both the scalar and tensor components of the CMB anisotro...

  17. Energy Efficiency Services Sector: Workforce Education and Training Needs

    SciTech Connect (OSTI)

    Goldman, Charles A.; Peters, Jane S.; Albers, Nathaniel; Stuart, Elizabeth; Fuller, Merrian C.

    2010-03-19

    This report provides a baseline assessment of the current state of energy efficiency-related education and training programs and analyzes training and education needs to support expected growth in the energy efficiency services workforce. In the last year, there has been a significant increase in funding for 'green job' training and workforce development (including energy efficiency), through the American Recovery and Reinvestment Act (ARRA). Key segments of the energy efficiency services sector (EESS) have experienced significant growth during the past several years, and this growth is projected to continue and accelerate over the next decade. In a companion study (Goldman et al. 2009), our research team estimated that the EESS will increase two- to four-fold by 2020, to 220,000 person-years of employment (PYE) (low-growth scenario) or up to 380,000 PYE (high-growth scenario), which may represent as many as 1.3 million individuals. In assessing energy efficiency workforce education and training needs, we focus on energy-efficiency services-related jobs that are required to improve the efficiency of residential and nonresidential buildings. Figure ES-1 shows the market value chain for the EESS, sub-sectors included in this study, as well as the types of market players and specific occupations. Our assessment does not include the manufacturing, wholesale, and retail distribution subsectors, or energy efficiency-focused operations and maintenance performed by facility managers.

  18. Transport Properties of Bilayer Graphene Nanoribbons

    E-Print Network [OSTI]

    Wang, Minsheng

    2013-01-01

    Electrical spin injection and transport in germanium”. Phys.P. , Temperature- Dependent Transport in Suspended Graphene.Y. M. , Quantum Transport: Introduction to Nanoscience.

  19. Contaminant Transport in the Southern California Bight

    E-Print Network [OSTI]

    Idica, Eileen Y.

    2010-01-01

    1987). The California Current transports Pacific Subarctic1987). The California Current transports Pacific Subarcticthe dynamics and transport of Southern California stormwater

  20. Source sector and region contributions to BC and PM2.5 in Central Asia

    SciTech Connect (OSTI)

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; Lu, Z.; Streets, D. G.; Janssens-Maenhout, G.; Wiedinmyer, C.; Lantz, J.; Artamonova, M.; Chen, B.; Imashev, S.; Sverdlik, L.; Deminter, J. T.; Adhikary, B.; D'Allura, A.; Wei, C.; Carmichael, G. R.

    2015-02-18

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM2.5 concentrations (annual mean value ~10 ?g m-3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly values from 2 to 90 ?g m-3). Surface concentrations of black carbon (BC) (mean value ~0.1 ?g m-3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM2.5, PM10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants. Aerosols at these sites are shown to reflect dust, biomass burning, and anthropogenic sources from Europe; South, East, and Central Asia; and Russia depending on the time period. Simulations for a reference 2030 emission scenario based on pollution abatement measures already committed to in current legislation show that PM2.5 and BC concentrations in the region increase, with BC growing more than PM2.5 on a relative basis. This suggests that both the health impacts and the climate warming associated with these particles may increase over the next decades unless additional control measures are taken. The importance of observations in CA to help characterize the changes that are rapidly taking place in the region are discussed.