National Library of Energy BETA

Sample records for non-isothermal multiphase reactive

  1. TOURGHREACT: A Simulation Program for Non-isothermal MultiphaseReactiv...

    Office of Scientific and Technical Information (OSTI)

    Authors: Xu, Tianfu ; Sonnenthal, Eric ; Spycher, Nicolas ; Pruess, Karsten Publication Date: 2004-12-07 OSTI Identifier: 877615 Report Number(s): LBNL--56740 R&D Project: G31902; ...

  2. T2Well/ECO2N Version 1.0: Multiphase and Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water

    Energy Science and Technology Software Center (OSTI)

    2011-08-24

    T2Well/ECO2N is a coupled wellbore and reservoir model for simulating the dynamics of CO2 injection and leakage through wellbores. It can be seen as an extension to standard TOUGH/ECO2N V2.0, and can be applied to situations relevant to geologic CO2 storage involving upward flow (e.g., leakage) and downward flow (injection). The new simulator integrates a wellbore-reservoir system by assigning the wellbore and reservoir to two different sub-domains in which flow is controlled by appropriate physicalmore » laws. In the reservoir, we model flow using a standard multiphase Darcy flow approach. In the wellbores, we use the Drift-Flux Model and related conservation equations for describing transient two-phase non-isothermal wellbore flow of CO2-water mixtures. The mass and thermal energy balance equations are solved numerically by a finite difference scheme with wellbore heat transmission to the surrounding rock handled either semi-analytically or numerically. The momentum balance equation for the flow in the wellbore is solved numerically with a semi-explicit scheme.« less

  3. TOUGHREACT: A Simulation Program for Non-isothermal Multiphase...

    Office of Scientific and Technical Information (OSTI)

    ... (moles m -2 s -1 ) E a (KJmol) n Surface area (cm 2 g ) calcite quartz K-feldspar ... 4.3652x10 -12 4.0000x10 -11 4.0000x10 -11 2.5119x10 -12 62.76 18.98 87.50 57.78 51.83 ...

  4. Multiphase flow and multicomponent reactive transport model of the ventilation experiment in Opalinus clay

    SciTech Connect (OSTI)

    Zheng, L.; Samper, J.; Montenegro, L.; Major, J.C.

    2008-10-15

    During the construction and operational phases of a high-level radioactive waste (HLW) repository constructed in a clay formation, ventilation of underground drifts will cause desaturation and oxidation of the rock. The Ventilation Experiment (VE) was performed in a 1.3 m diameter unlined horizontal microtunnel on Opalinus clay at Mont Terri underground research laboratory in Switzerland to evaluate the impact of desaturation on rock properties. A multiphase flow and reactive transport model of VE is presented here. The model accounts for liquid, vapor and air flow, evaporation/condensation and multicomponent reactive solute transport with kinetic dissolution of pyrite and siderite and local-equilibrium dissolution/precipitation of calcite, ferrihydrite, dolomite, gypsum and quartz. Model results reproduce measured vapor flow, liquid pressure and hydrochemical data and capture the trends of measured relative humidities, although such data are slightly overestimated near the rock interface due to uncertainties in the turbulence factor. Rock desaturation allows oxygen to diffuse into the rock and triggers pyrite oxidation, dissolution of calcite and siderite, precipitation of ferrihydrite, dolomite and gypsum and cation exchange. pH in the unsaturated rock varies from 7.8 to 8 and is buffered by calcite. Computed changes in the porosity and the permeability of Opalinus clay in the unsaturated zone caused by oxidation and mineral dissolution/precipitation are smaller than 5%. Therefore, rock properties are not expected to be affected significantly by ventilation of underground drifts during construction and operational phases of a HLW repository in clay.

  5. Subsurface Multiphase Flow and Multicomponent Reactive Transport Modeling using High-Performance Computing

    SciTech Connect (OSTI)

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan

    2007-07-16

    Numerical modeling has become a critical tool to the U.S. Department of Energy for evaluating the environmental impact of alternative energy sources and remediation strategies for legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most state of the art groundwater models. Of particular concern are the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. Clearly, there is a need for higher-resolution modeling (i.e. more spatial, temporal, and chemical degrees of freedom) and increasingly mechanistic descriptions of subsurface physicochemical processes. We present SciDAC-funded research being performed in the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers. We are employing PFLOTRAN in the simulation of uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.

  6. Subsurface Multiphase Flow and Multicomponent Reactive Transport Modeling using High-Performance Computing

    SciTech Connect (OSTI)

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan

    2007-08-01

    Numerical modeling has become a critical tool to the Department of Energy for evaluating the environmental impact of alternative energy sources and remediation strategies for legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most state of the art groundwater models. Of particular concern are the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. Clearly, there is a need for higher-resolution modeling (i.e. more spatial, temporal, and chemical degrees of freedom) and increasingly mechanistic descriptions of subsurface physicochemical processes. We present research being performed in the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers and has exhibited impressive strong scalability on up to 4000 processors on the ORNL Cray XT3. We are employing PFLOTRAN in the simulation of uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies where overly-simplistic historical modeling erroneously predicted decade removal times for uranium by ambient groundwater flow. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.

  7. Geologic Storage of Greenhouse Gases: Multiphase andNon-isothermal Effects, and Implications for Leakage Behavior

    SciTech Connect (OSTI)

    Pruess, Karsten

    2005-08-05

    Storage of greenhouse gases, primarily CO2, in geologic formations has been proposed as a means by which atmospheric emissions of such gases may be reduced (Bachu et al., 1994; Orr, 2004). Possible storage reservoirs currently under consideration include saline aquifers, depleted or depleting oil and gas fields, and unmineable coal seams (Baines and Worden, 2004). The amount of CO2 emitted from fossil-fueled power plants is very large, of the order of 30,000 tons per day (10 million tons per year) for a large 1,000 MW coal-fired plant (Hitchon,1996). In order to make a significant impact on reducing emissions, very large amounts of CO2 would have to be injected into subsurface formations, resulting in CO2 disposal plumes with an areal extent of order 100 km2 or more (Pruess et al., 2003). It appears inevitable, then, that such plumes will encounter imperfections in caprocks, such as fracture zones or faults, that would allow CO2 to leak from the primary storage reservoir. At typical subsurface conditions of temperature and pressure, CO2 is always less dense than aqueous fluids; thus buoyancy forces will tend to drive CO2 upward, towards the land surface, whenever adequate (sub-)vertical permeability is available. Upward migration of CO2 could also occur along wells, including pre-existing wells in sedimentary basins where oil and gas exploration and production may have been conducted (Celia et al., 2004), or along wells drilled as part of a CO2 storage operation. Concerns with leakage of CO2 from a geologic storage reservoir include (1) keeping the CO2 contained and out of the atmosphere, (2) avoiding CO2 entering groundwater aquifers, (3)asphyxiation hazard if CO2 is released at the land surface, and (4) the possibility of a self-enhancing runaway discharge, that may culminate in a ''pneumatic eruption'' (Giggenbach et al., 1991). The manner in which CO2 may leak from storage reservoirs must be understood in order to avoid hazards and design monitoring systems.

  8. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal...

    Office of Scientific and Technical Information (OSTI)

    TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas ... of pressure, temperature, and molecular properties, (4) mineral reactive surface area ...

  9. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    SciTech Connect (OSTI)

    Zhang, Shuo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DePaolo, Donald J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mayer, Bernhard [Univ. of Calgary (Canada). Dept. of Geosciences

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modified to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.

  10. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; Mayer, Bernhard

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modifiedmore » to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less

  11. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect (OSTI)

    R.G. Allis; J. Moore; S. White

    2003-01-30

    Gas reservoirs developed within the Colorado Plateau and Southern Rocky Mountains region are natural laboratories for studying the factors that promote long-term storage of CO{sub 2}. They also provide sites for storing additional CO{sub 2} if it can be separated from the flue gases of coal-fired power plants in this part of the U.S.A. These natural reservoirs are developed primarily in sandstones and dolomites; shales, mudstones and anhydrite form seals. In many fields, stacked reservoirs are present, indicating that the gas has migrated up through the section. There are also geologically young travertine deposits at the surface, and CO{sub 2}-charged groundwater and springs in the vicinity of known CO{sub 2} occurrences. These near-surface geological and hydrological features also provide examples of the environmental effects of leakage of CO{sub 2} from reservoirs, and justify further study. During reporting period covered here (the first quarter of Year 3 of the project, i.e. October 1-December 31, 2002), the main achievements were: (1) Planning workshop for project participants as well as other Utah researchers involved in CO{sub 2} projects (22 October, 2002), and Utah Geological Survey, Salt Lake City; (2) Presentation of paper to special CO{sub 2} sequestration session at the Geological Society of America Annual Meeting, Denver, 29 October, 2002; (3) Presentation of paper to special CO{sub 2} sequestration session at the Fall Meeting of American Geophysical Union, San Francisco, 10 December, 2002; (4) Identification of dawsonite (sodium-aluminum carbonate) as a late stage mineral deposited in CO{sub 2} feedzone at Springerville, Arizona; (5) Successful matching of known physical constraints to flow beneath the Hunter cross section being used to simulate the effects of CO{sub 2} injection. In about 1000 years, most injected CO{sub 2} may be lost to the surface from the three shallowest reservoirs considered, assuming no reactive processes; and (6) Inclusion

  12. Rarefied gas flow in a rectangular enclosure induced by non-isothermal walls

    SciTech Connect (OSTI)

    Vargas, Manuel; Tatsios, Giorgos; Valougeorgis, Dimitris; Stefanov, Stefan

    2014-05-15

    The flow of a rarefied gas in a rectangular enclosure due to the non-isothermal walls with no synergetic contributions from external force fields is investigated. The top and bottom walls are maintained at constant but different temperatures and along the lateral walls a linear temperature profile is assumed. Modeling is based on the direct numerical solution of the Shakhov kinetic equation and the Direct Simulation Monte Carlo (DSMC) method. Solving the problem both deterministically and stochastically allows a systematic comparison and verification of the results as well as the exploitation of the numerical advantages of each approach in the investigation of the involved flow and heat transfer phenomena. The thermally induced flow is simulated in terms of three dimensionless parameters characterizing the problem, namely, the reference Knudsen number, the temperature ratio of the bottom over the top plates, and the enclosure aspect ratio. Their effect on the flow configuration and bulk quantities is thoroughly examined. Along the side walls, the gas flows at small Knudsen numbers from cold-to-hot, while as the Knudsen number is increased the gas flows from hot-to-cold and the thermally induced flow configuration becomes more complex. These flow patterns with the hot-to-cold flow to be extended to the whole length of the non-isothermal side walls may exist even at small temperature differences and then, they are enhanced as the temperature difference between the top and bottom plates is increased. The cavity aspect ratio also influences this flow configuration and the hot-to-cold flow is becoming more dominant as the depth compared to the width of the cavity is increased. To further analyze the flow patterns a novel solution decomposition into ballistic and collision parts is introduced. This is achieved by accordingly modifying the indexing process of the typical DSMC algorithm. The contribution of each part of the solution is separately examined and a physical

  13. Electron temperature measurement in Maxwellian non-isothermal beam plasma of an ion thruster

    SciTech Connect (OSTI)

    Zhang, Zun; Tang, Haibin Kong, Mengdi; Zhang, Zhe; Ren, Junxue

    2015-02-15

    Published electron temperature profiles of the beam plasma from ion thrusters reveal many divergences both in magnitude and radial variation. In order to know exactly the radial distributions of electron temperature and understand the beam plasma characteristics, we applied five different experimental approaches to measure the spatial profiles of electron temperature and compared the agreement and disagreement of the electron temperature profiles obtained from these techniques. Experimental results show that the triple Langmuir probe and adiabatic poly-tropic law methods could provide more accurate space-resolved electron temperature of the beam plasma than other techniques. Radial electron temperature profiles indicate that the electrons in the beam plasma are non-isothermal, which is supported by a radial decrease (∼2 eV) of electron temperature as the plume plasma expands outward. Therefore, the adiabatic “poly-tropic law” is more appropriate than the isothermal “barometric law” to be used in electron temperature calculations. Moreover, the calculation results show that the electron temperature profiles derived from the “poly-tropic law” are in better agreement with the experimental data when the specific heat ratio (γ) lies in the range of 1.2-1.4 instead of 5/3.

  14. Optimizing multiphase aquifer remediation using ITOUGH2

    SciTech Connect (OSTI)

    Finsterle, S.; Pruess, K.

    1994-06-01

    The T2VOC computer model for simulating the transport of organic chemical contaminants in non-isothermal multiphase systems has been coupled to the ITOUGH2 code which solves parameter optimization problems. This allows one to use nonlinear programming and simulated annealing techniques to solve groundwater management problems, i.e. the optimization of multiphase aquifer remediation. This report contains three illustrative examples to demonstrate the optimization of remediation operations by means of simulation-minimization techniques. The code iteratively determines an optimal remediation strategy (e.g. pumping schedule) which minimizes, for instance, pumping and energy costs, the time for cleanup, and residual contamination. While minimizing the objective function is straightforward, the relative weighting of different performance measures--e.g. pumping costs versus cleanup time versus residual contaminant content--is subject to a management decision process. The intended audience of this report is someone who is familiar with numerical modeling of multiphase flow of contaminants, and who might actually use T2VOC in conjunction with ITOUGH2 to optimize the design of aquifer remediation operations.

  15. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  16. Initial precipitation and hardening mechanism during non-isothermal aging in an Al–Mg–Si–Cu 6005A alloy

    SciTech Connect (OSTI)

    Yang, Wenchao; Ji, Shouxun; Huang, Lanping; Sheng, Xiaofei; Li, Zhou; Wang, Mingpu

    2014-08-15

    The characterization of precipitation and hardening mechanism during non-isothermal aging had been investigated using high resolution transmission electron microscopy for an Al–Mg–Si–Cu 6005A alloy. It was proposed that the needle-shaped β″ precipitates with a three-dimension coherency strain-field and an increased number density in the Al matrix provided the maximum strengthening effect for the Al–Mg–Si–Cu 6005A alloy. Simultaneously, it was also found that the formation and evolution of clusters in the early precipitation were associated with the vacancy binding energy, during which Si atoms played an important role in controlling the numbers density of Mg/Si co-clusters, and the excess Si atoms provided the increased number of nucleation sites for the subsequent precipitates to strengthen and improve the precipitation rate. Finally, based on the experimental observation and theoretical analysis, the precipitation sequence during the early precipitation in the Al–Mg–Si–Cu 6005A alloy was proposed as: supersaturated solid solution → Si-vacancy pairs, Mg-vacancy pairs and Mg clusters → Si clusters, and dissolution of Mg clusters → Mg atoms diffusion into the existing Si clusters → Mg/Si co-clusters → GP zone. - Highlights: • β″ precipitates provide the maximum strengthening effect for the 6005A alloy. • Si atoms play an important role in controlling the numbers of Mg/Si co-clusters. • The early aging sequence is deduced based on the solute-vacancy binding energy.

  17. Gullfaks multiphase booster project

    SciTech Connect (OSTI)

    Vangen, G.; Carstensen, C.; Bakken, L.E.

    1995-12-31

    A Poseidon Multiphase Pump has been Installed and is presently running on Statoil`s Gullfaks A platform in the North Sea, giving additional pressure to one of the wells. The main objective of this work has been to qualify the Poseidon Booster Technology, technically and operationally, and to provide a reliable and industrialized tool for multiphase boosting, either sub sea or installed topside a platform. The paper gives a brief summary of the project and describes the Poseidon pump, the platform installation and outlines the experience and results from the ongoing qualification test. The Gullfaks booster, as delivered by Framo Engineering AS, has up to January 1995 accumulated 2,400 running hours. The booster is fully integrated into the production systems on the platform. The daily operations are carried out from the central control room by the ordinary platform staff. The objectives of the test program have so far been successfully fulfilled. Multiphase booster technology combined with progress in multiphase flow technology will have a significant impact on development and production of smaller oil and gas fields that today are assumed to be non-profitable.

  18. Multiphase fluid characterization system

    DOE Patents [OSTI]

    Sinha, Dipen N.

    2014-09-02

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  19. Germanium multiphase equation of state

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Crockett, Scott D.; Lorenzi-Venneri, Giulia De; Kress, Joel D.; Rudin, Sven P.

    2014-05-07

    A new SESAME multiphase germanium equation of state (EOS) has been developed using the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element

  20. Multiphase Flow Analysis in Hydra-TH

    SciTech Connect (OSTI)

    Christon, Mark A.; Bakosi, Jozsef; Francois, Marianne M.; Lowrie, Robert B.; Nourgaliev, Robert

    2012-06-20

    This talk presents an overview of the multiphase flow efforts with Hydra-TH. The presentation begins with a definition of the requirements and design principles for multiphase flow relevant to CASL-centric problems. A brief survey of existing codes and their solution algorithms is presented before turning the model formulation selected for Hydra-TH. The issues of hyperbolicity and wellposedness are outlined, and a three candidate solution algorithms are discussed. The development status of Hydra-TH for multiphase flow is then presented with a brief summary and discussion of future directions for this work.

  1. An update on subsea multiphase pumping

    SciTech Connect (OSTI)

    Colombi, P.; De Donno, S.

    1996-02-01

    Agip SpA anticipates that subsea multiphase production, based on long-distance transportation of untreated oilwell fluids--namely, oil, water, and gas, will be an efficient tool for the exploitation of deepwater and marginal fields. In 1990, at the Trecate onshore oil field, Agip completed long-term testing of a multiphase screw pump, which confirmed commercial surface applications. Agip then integrated a subsea version of an improved multiphase twin-screw pump into a subsea multiphase boosting unit that was installed at the Prezioso field, offshore Sicily, in 1994 That was the first subsea installation of an electrically driven multi-phase pump operating with live oil. Agip began endurance testing of the pumping system in January 1995 and by last November, the cumulated period of running reached 3,500 hours with no evidence of pump-capacity reduction. Testing focused on boosting at high gas-void fraction and oil viscosity, operation at variable motor speed for pump control, pump control by means of throttling valves, direct interaction of the pumping system with both wells and the multiphase export line, variation of the lube-oil pressure across seals and bearings, and the evaluation of any degradation effect on the pump flow capacity over time. This paper reviews the design and performance of this pump and applicability to other offshore projects.

  2. On-line subsea multiphase flow measurement

    SciTech Connect (OSTI)

    High, G.; Frantzen, K.H.; Marshall, M.

    1995-12-31

    This paper describes the final detailed design, engineering, and installation phase of a Joint Industry Program to qualify a robust subsea multiphase flowmeter module for long-term installation on a North Sea manifold tie-in. Multiphase subsea production has become a common method of hydrocarbon recovery in all areas of offshore E and P. In the North Sea, many developments are subsea satellites with multiphase well-fluids being comingled prior to processing. The system described meets this challenge by offering a cost effective solution to real-time well monitoring as an alternative to the conventional test separator, removing the need for test lines and shutting in wells for testing. The multiphase instrument allows on-line well fluid analysis, and is also an important tool for reservoir management and field analysis, and provides a means of implementing field allocation metering thereby simplifying small marginal field developments. This project is one of the first subsea multiphase flowmeter installations engineered for long-term subsea service, and designed as an integrated component of the subsea production control system.

  3. Error handling strategies in multiphase inverse modeling

    SciTech Connect (OSTI)

    Finsterle, S.; Zhang, Y.

    2010-12-01

    Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.

  4. On the threshold -- Subsea multiphase pumping

    SciTech Connect (OSTI)

    Beran, W.T.

    1995-04-01

    Satellite subsea production systems are attractive as a low-cost approach to field development, particularly for so-called marginal fields in deepwater areas. Development of such fields may be uneconomical, however, if the natural wellhead flowing pressure is too low. This paper presents an update on the state of subsea multiphase-pumping-system technology. The potential production benefits of subsea pressure-boosting systems.

  5. Modified Invasion Percolation Models for Multiphase Processes

    SciTech Connect (OSTI)

    Karpyn, Zuleima

    2015-01-31

    This project extends current understanding and modeling capabilities of pore-scale multiphase flow physics in porous media. High-resolution X-ray computed tomography imaging experiments are used to investigate structural and surface properties of the medium that influence immiscible displacement. Using experimental and computational tools, we investigate the impact of wetting characteristics, as well as radial and axial loading conditions, on the development of percolation pathways, residual phase trapping and fluid-fluid interfacial areas.

  6. Multiphase pumps and flow meters avoid platform construction

    SciTech Connect (OSTI)

    Elde, J.

    1999-02-01

    One of the newest wrinkles in efficiency in BP`s Eastern Trough Area Project (ETAP) is the system for moving multiphase oil, water and gas fluids from the Machar satellite field to the Marnock Central Processing Facility (CPF). Using water-turbine-driven multiphase pumps and multiphase flow meters, the system moves fluid with no need for a production platform. In addition, BP has designed the installation so it reduces and controls water coning, thereby increasing recoverable reserves. Both subsea multiphase booster stations (SMUBS) and meters grew out of extensive development work and experience at Framo Engineering AS (Framo) in multiphase meters and multiphase pump systems for subsea installation. Multiphase meter development began in 1990 and the first subsea multiphase meters were installed in the East Spar Project in Australia in 1996. By September 1998, the meters had been operating successfully for more than 1 year. A single multiphase meter installed in Marathon`s West Brae Project has also successfully operated for more than 1 year. Subsea meters for ETAP were installed and began operating in July 1998.

  7. Computational study of the shock driven instability of a multiphase...

    Office of Scientific and Technical Information (OSTI)

    of the shock driven instability of a multiphase particle-gas system This content will become publicly available on February 1, 2017 Title: Computational study of the shock driven ...

  8. Kinetic Theory of Turbulent Multiphase Flow | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kinetic Theory of Turbulent Multiphase Flow FWP/Project Description: Project Leader(s): Rodney Fox It is proposed to further the present understanding of turbulent gas-solid fluidized-bed reactors from the conceptual standpoint of kinetic theory and turbulence modeling. The primary purpose is to provide a theoretical underpinning for the construction of computer codes to better understand and predict multiphase flow behavior in polydisperse gas-solid fluidized-bed reactors and risers. In

  9. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    SciTech Connect (OSTI)

    Kushner, Mark Jay

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  10. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    SciTech Connect (OSTI)

    Edited by Guenther, Chris; Garg, Rahul

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  11. Quantitative tomographic measurements of opaque multiphase flows

    SciTech Connect (OSTI)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O'HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  12. A Cell-Centered Multiphase ALE Scheme With Structural Coupling

    SciTech Connect (OSTI)

    Dunn, Timothy Alan

    2012-04-16

    A novel computational scheme has been developed for simulating compressible multiphase flows interacting with solid structures. The multiphase fluid is computed using a Godunov-type finite-volume method. This has been extended to allow computations on moving meshes using a direct arbitrary-Eulerian- Lagrangian (ALE) scheme. The method has been implemented within a Lagrangian hydrocode, which allows modeling the interaction with Lagrangian structural regions. Although the above scheme is general enough for use on many applications, the ultimate goal of the research is the simulation of heterogeneous energetic material, such as explosives or propellants. The method is powerful enough for application to all stages of the problem, including the initial burning of the material, the propagation of blast waves, and interaction with surrounding structures. The method has been tested on a number of canonical multiphase tests as well as fluid-structure interaction problems.

  13. CASL-8-2015-0103-000 Multi-Phase Flow: Direct Numerical Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Notre Dame July 8-10, 2013 CASL-U-2015-0103-000 Multi-Phase Flow: Direct ... Laboratories, July 9-10, 2013 CASL-U-2015-0103-000 Multi-Phase Flow: Direct ...

  14. National laboratories` capabilities summaries for the DOE Virtual Center for Multiphase Dynamics (VCMD)

    SciTech Connect (OSTI)

    Joyce, E.L.

    1997-03-01

    The Virtual Center For Multiphase Dynamics (VCMD) integrates and develops the resources of industry, government, academia, and professional societies to enable reliable analysis in multiphase computational fluid dynamics. The primary means of the VCMD focus will be by the creation, support, and validation of a computerized simulation capability for multiphase flow and multiphase flow applications. This paper briefly describes the capabilities of the National Laboratories in this effort.

  15. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect (OSTI)

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant

  16. The experience from field operation of a subsea multiphase booster

    SciTech Connect (OSTI)

    De Donno, S.; Colombi, P.; Chiesa, G.; Ferrari Aggradi, G.

    1995-12-31

    The subsea multiphase production -- based on the transportation over long distance of the untreated oil-well fluids (oil, water and gas) -- is expected to be one of the most efficient tool for economic exploitation of deep offshore and marginal fields. A long term testing campaign on a multiphase screw pump was successfully completed in 1990 at the AGIP Trecate onshore oil field and the results confirmed the industrial viability for such a kind of equipment for surface application. Then, a subsea version of an improved multiphase twin screw pump has been integrated into a Subsea Multiphase Boosting Unit and installed on the Prezioso Field, offshore Sicily, in Summer 1994. Long term testing under real operating conditions were initiated after a successful start-up of the Unit. To the Authors` knowledge, this is the first world-wide subsea installation of an electrically driven multiphase pump operating with live oil. The paper presents first a description of the marine twin screw pump concept adopted for the subsea application including the main features of the complete boosting unit and the adopted solutions to allow it to operate under different conditions. Then, the project implementation activities from the onshore integration through the installation, commissioning and start-up operations are described. Moreover, the results of the initial functional tests are discussed with particular reference to the screw pump hydraulic performance as well as to the behavior of the pump pressure compensation and seal/lube oil systems. Transient and steady state conditions experienced by the system are finally characterized and the early evidences of its long term performance are discussed.

  17. REACTIVE MULTIPHASE BEHAVIOR OF CO{sub 2} IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect (OSTI)

    R.G. Allis; J. Moore; S. White

    2005-02-08

    Soil gas surveys have been carried out on the Colorado Plateau over areas with natural occurrences of CO{sub 2}. At Farnham Dome, Utah, and Springerville-St. Johns, Arizona, proven CO{sub 2} reservoirs occur at 600-800 m depth, but no anomalous soil gas CO{sub 2} flux was detected. Background CO{sub 2} fluxes of up to about 5 g m{sup -2} day{sup -1} were common in arid, poorly vegetated areas, and fluxes up to about 20 g m{sup -2} day{sup -1} were found at Springerville-St. Johns in heavily vegetated, wet ground adjacent to springs. These elevated fluxes are attributed to shallow root zone activity rather than to a deep upflow of CO{sub 2}. Localized areas of anomalously high CO{sub 2} gas flux ({approx} 100 g m{sup -2} day{sup -1}) were documented along the Little Grand Wash Fault Zone near Crystal Geyser, Utah and nearby in Ten Mile Graben, but those in Ten Mile Graben are not directly associated with the major faults. In both areas, features with a visible gas flux are present. Isotopic measurements on the CO{sub 2} gas confirm that it originated at depth. Evidence of widespread vein calcite at the surface at Farnham Dome and travertine deposits in the other areas suggests that there has been an outflow of CO{sub 2}-rich fluids in the past. 14C ages of pollen trapped in the travertine at Springerville-St. Johns record a period of CO{sub 2} leakage to the atmosphere between 887 {+-} 35 and 3219 {+-} 30 years BP. No travertine deposits appear to be currently forming. At Springerville-St. Johns, Crystal Geyser and Ten Mile Graben, there are significant outflows of high-bicarbonate water. Movement of CO{sub 2}-rich groundwaters may be the dominant mechanism controlling the mobility of CO{sub 2} today. The very localized nature of the soil gas anomalies, evidence of large scale discharge of CO{sub 2} over a very short period of time and the outflow of ground water containing dissolved CO{sub 2} will present challenges for effective, long term monitoring of CO{sub 2} leakage.

  18. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect (OSTI)

    R.G. Allis; J. Moore; S. White

    2005-05-16

    Soil CO{sub 2} flux surveys have been conducted over known CO{sub 2} reservoirs at Farnham Dome, Utah, Crystal Geyser-Ten Mile Graben in Utah and Springerville-St. Johns, Arizona. No anomalous CO{sub 2} flux was detected at the Farnham Dome and Springerville-St. Johns. At Crystal Geyser-Ten Mile Graben, localized areas of anomalously high CO{sub 2} flux ({approx}100 g m{sup -2} day{sup -1}) occur along a fault zone near visibly degassing features. Isotopic measurements on CO{sub 2} collected from nearby springs indicate that it originated at depth. Evidence of widespread vein calcite at the surface (Farnham Dome) and travertine deposits at the other two areas suggests that discharge of CO{sub 2}-rich fluids has occurred in the past. Despite the lack of evidence for significant present day leakage of CO{sub 2} to the atmosphere at Springerville-St. Johns and Crystal Geyser-Ten Mile Graben, there are significant outflows of high-bicarbonate water in both areas suggesting continuous migration of CO{sub 2} in the aqueous phase from depth. The very localized nature of the CO{sub 2} flux anomalies, and the outflow of ground water containing dissolved CO{sub 2} present challenges for effective, long term monitoring of CO{sub 2} leakage.

  19. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect (OSTI)

    R.G. Allis; J. Moore; S. White

    2003-06-30

    The six coal-fired power plants located in the Colorado Plateau and southern Rocky Mountain region of the U.S. produce 100 million tons of CO{sub 2} per year. Thick sequences of collocated sedimentary rocks represent potential sites for sequestration of the CO{sub 2}. Field and laboratory investigations of naturally occurring CO{sub 2}-reservoirs are being conducted to determine the characteristics of potential seal and reservoir units and the extent of the interactions that occur between the host rocks and the CO{sub 2} charged fluids. The results are being incorporated into a series of two-dimensional numerical models that represent the major chemical and physical processes induced by injection. During reporting period covered here (March 30 to June 30, 2003), the main achievements were: Presentation of three papers at the Second Annual Conference on Carbon Sequestration (May 5-8, Alexandria, Virginia); Presentation of a poster at the American Association of Petroleum Geologists meeting; Co-PI organized and chaired a special session on Geologic Carbon Dioxide Sequestration at the American Association of Petroleum Geologists annual convention in Salt Lake City (May 12-15).

  20. REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect (OSTI)

    R.G. Allis; J. Moore; S. White

    2003-10-21

    Field and laboratory investigations of naturally occurring CO{sub 2}-reservoirs are being conducted to determine the characteristics of potential seal and reservoir units and the extent of the interactions that occur between the host rocks and the CO{sub 2} charged fluids. Efforts have focused on the Farnham Dome field, located in central Utah, and the Springerville-St. Johns field in Arizona and New Mexico. The Springerville-St. Johns field is particularly significant because of the presence of extensive travertine deposits that document release of CO{sub 2} to the atmosphere. CO{sub 2} accumulations at both fields occur in sedimentary rocks typical of CO{sub 2} reservoirs occurring on the Colorado Plateau. The main achievements during this quarter were: (1) a soil gas flux survey at the Springerville-St Johns field, (2) collection of some soil gas for chemical and isotopic analysis from this field, and (3) collection of travertine samples from an elevation range of over 1000 feet (330 m) for dating the time span of carbonate-saturated spring outflow at this field. Analytical results and interpretations are still in progress. When available they will allow contrast with soil gas measurements from Farnham Dome natural CO{sub 2} field in central Utah, which were reported in the previous quarterly report.

  1. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal...

    Office of Scientific and Technical Information (OSTI)

    Chemical components can also be treated by linear adsorption and radioactive decay. The ... as examples, such as: (1) Supergene copper enrichment (Xu et al., 2001); (2) Mineral ...

  2. Method for producing nanocrystalline multicomponent and multiphase materials

    DOE Patents [OSTI]

    Eastman, J.A.; Rittner, M.N.; Youngdahl, C.J.; Weertman, J.R.

    1998-03-17

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound. 6 figs.

  3. Method for producing nanocrystalline multicomponent and multiphase materials

    DOE Patents [OSTI]

    Eastman, Jeffrey A. (Woodridge, IL); Rittner, Mindy N. (Des Plaines, IL); Youngdahl, Carl J. (Westmont, IL); Weertman, Julia R. (Evanston, IL)

    1998-01-01

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound.

  4. System for measuring multiphase flow using multiple pressure differentials

    DOE Patents [OSTI]

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  5. In-situ formation of multiphase deposited thermal barrier coatings

    DOE Patents [OSTI]

    Subramanian, Ramesh

    2004-01-13

    A multiphase ceramic thermal barrier coating is provided. The coating is adapted for use in high temperature applications in excess of about 1200.degree. C., for coating superalloy components of a combustion turbine engine. The coating comprises a ceramic single or two oxide base layer disposed on the substrate surface; and a ceramic oxide reaction product material disposed on the base layer, the reaction product comprising the reaction product of the base layer with a ceramic single or two oxide overlay layer.

  6. Extreme Scale Unstructured Adaptive CFD: From Multiphase Flow to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerodynamic Flow Control | Argonne Leadership Computing Facility Isosurface of instantaneous Q criterion colored by speed over a vertical tail Isosurface of instantaneous Q criterion colored by speed over a vertical tail at Re=3.5\ 10^5 of a DES simulation with a rudder deflection angle of 30 degrees and 12 unsteady jets active. Kenneth Jansen, University of Colorado at Boulder Extreme Scale Unstructured Adaptive CFD: From Multiphase Flow to Aerodynamic Flow Control PI Name: Kenneth Jansen

  7. Use of multiphase pumps in heavy and extra heavy oil production

    SciTech Connect (OSTI)

    Gonzalez, R.; Guevara, E.M.; Colmenares, J.D.

    1995-12-31

    The main results of a technical and economical feasibility study carried out to analyze the application of multiphase flow technologies in the production of heavy and extra heavy crudes from the Arecuna Field of Corpoven, S.A. in the Orinoco Belt, Venezuela, are presented. It was found that flow stations based on multiphase technologies such as multiphase pumping and metering were the most adequate both technically and economically.

  8. Multi-phase back contacts for CIS solar cells

    DOE Patents [OSTI]

    Rockett, A.A.; Yang, L.C.

    1995-12-19

    Multi-phase, single layer, non-interdiffusing M-Mo back contact metallized films, where M is selected from Cu, Ga, or mixtures thereof, for CIS cells are deposited by a sputtering process on suitable substrates, preferably glass or alumina, to prevent delamination of the CIS from the back contact layer. Typical CIS compositions include CuXSe{sub 2} where X is In or/and Ga. The multi-phase mixture is deposited on the substrate in a manner to provide a columnar microstructure, with micro-vein Cu or/and Ga regions which partially or fully vertically penetrate the entire back contact layer. The CIS semiconductor layer is then deposited by hybrid sputtering and evaporation process. The Cu/Ga-Mo deposition is controlled to produce the single layer two-phase columnar morphology with controllable Cu or Ga vein size less than about 0.01 microns in width. During the subsequent deposition of the CIS layer, the columnar Cu/Ga regions within the molybdenum of the Cu/Ga-Mo back layer tend to partially leach out, and are replaced by columns of CIS. Narrower Cu and/or Ga regions, and those with fewer inner connections between regions, leach out more slowly during the subsequent CIS deposition. This gives a good mechanical and electrical interlock of the CIS layer into the Cu/Ga-Mo back layer. Solar cells employing In-rich CIS semiconductors bonded to the multi-phase columnar microstructure back layer of this invention exhibit vastly improved photo-electrical conversion on the order of 17% greater than Mo alone, improved uniformity of output across the face of the cell, and greater Fill Factor. 15 figs.

  9. Multi-phase back contacts for CIS solar cells

    DOE Patents [OSTI]

    Rockett, Angus A.; Yang, Li-Chung

    1995-01-01

    Multi-phase, single layer, non-interdiffusing M-Mo back contact metallized films, where M is selected from Cu, Ga, or mixtures thereof, for CIS cells are deposited by a sputtering process on suitable substrates, preferably glass or alumina, to prevent delamination of the CIS from the back contact layer. Typical CIS compositions include CuXSe.sub.2 where X is In or/and Ga. The multi-phase mixture is deposited on the substrate in a manner to provide a columnar microstructure, with micro-vein Cu or/and Ga regions which partially or fully vertically penetrate the entire back contact layer. The CIS semiconductor layer is then deposited by hybrid sputtering and evaporation process. The Cu/Ga-Mo deposition is controlled to produce the single layer two-phase columnar morphology with controllable Cu or Ga vein size less than about 0.01 microns in width. During the subsequent deposition of the CIS layer, the columnar Cu/Ga regions within the molybdenum of the Cu/Ga-Mo back layer tend to partially leach out, and are replaced by columns of CIS. Narrower Cu and/or Ga regions, and those with fewer inner connections between regions, leach out more slowly during the subsequent CIS deposition. This gives a good mechanical and electrical interlock of the CIS layer into the Cu/Ga-Mo back layer. Solar cells employing In-rich CIS semiconductors bonded to the multi-phase columnar microstructure back layer of this invention exhibit vastly improved photo-electrical conversion on the order of 17% greater than Mo alone, improved uniformity of output across the face of the cell, and greater Fill Factor.

  10. Mark 22 Reactivity

    SciTech Connect (OSTI)

    Buckner, M.R.

    2001-07-02

    Calculations for reactivity held in control rods have underpredicted the observed Mark 22 reactivity. Reactivity predictions by charge designers have accounted for this by including large biases which change with exposure and reactor region. The purpose of this study was to thoroughly investigate the methods and data used in the reactivity calculations. The goal was to identify errors and improvements and make necessary corrections.

  11. Developing a subsea multiphase-flow pumping system

    SciTech Connect (OSTI)

    1997-08-01

    Since 1995, Petrobras and Westinghouse have been working on a development effort that has resulted in a technological cooperation agreement between the companies and, more importantly, the development of a conceptual design for a subsea multiphase-flow pumping system. SBMS-500 [500-m{sup 3}/hr total flow rate, up to 6,000 KPa of pressure increase, up to 95% gas-void fraction (GVF) at the suction, and approximately 1.2 MW of power on the shaft], adequate for deepwater guidelineless operations. In 1992, having discovered fields in water depths greater than the original 1,000-m limit. Petrobras created a new program named Procap-2000 (technological-innovation program for deepwater exploitation systems). Among the innovative technological endeavors that Procap comprises are the boosting projects, namely the electrical submersible downhole pump in subsea wells; a subsea liquid-separation system; and a subsea multiphase-flow pumping system (SMFPS). Major characteristics and plans for field testing are described.

  12. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect (OSTI)

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

    2005-06-15

    The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studied, and some of the new results are presented in this report. These samples are being scanned in order to

  13. Permeable Reactive Barriers

    Broader source: Energy.gov [DOE]

    A permeable reactive barrier (PRB) is a zone of reactive material placed underground to intercept and react with a contaminant plume in ground water. Typically, PRBs are emplaced by replacing soils...

  14. System for reactivating catalysts

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  15. Analysis of the Multi-Phase Copying Garbage Collection Algorithm

    SciTech Connect (OSTI)

    Podhorszki, Norbert

    2009-01-01

    The multi-phase copying garbage collection was designed to avoid the need for large amount of reserved memory usually required for the copying types of garbage collection algorithms. The collection is performed in multiple phases using the available free memory. This paper proves that the number of phases depends on the size of the reserved memory and the ratio of the garbage and accessible objects. The performance of the implemented algorithm is tested in a fine-grained parallel Prolog system. We find that reserving only 10% of memory for garbage collection is sufficient for good performance in practice. Additionally, an improvement of the generic algorithm specifically for the tested parallel Prolog system is described.

  16. Azo Dyes and Their Interfacial Activity: Implications for Multiphase Flow Experiments

    SciTech Connect (OSTI)

    Tuck, D.M.

    1999-04-21

    Interfacial effects play an important role in governing multiphase fluid behavior in porous media (Neustadter 1984; Tuck et al. 1988). For instance, several dimensionless numbers have been developed to express important force ratios applicable to multiphase flow in porous media (Morrow and Songkran 1981; Chatzis and Morrow 1984; Wardlaw 1988; Pennell et al. 1996; Dawson and Roberts 1997). These force ratios emphasize the importance of interfacial properties. Our objectives are to provide chemical information regarding the dyes commonly used in multiphase flow visualization studies and to show the surface chemistry effects of the most commonly used dye, Sudan IV, in the tetrachloroethylene (PCE)-water-glass system

  17. Multiphase Flow Modeling - Validation and Application CRADA MC94-019, Final Report

    SciTech Connect (OSTI)

    Madhava Syamlal; Philip A. Nicoletti

    1995-08-31

    For the development and validation of multiphase flow modeling capability, a cooperative research and development agreement (CRADA) is in effect between Morgantown Energy Technology Center (METC) and Fluent Inc. To validate the Fluent multiphase model, several simulations were conducted at METC and the results were compared with the results of MFIX, a multiphase flow code developed at METC, and with experimental data. The results of these validation studies will be presented. In addition, the application of multiphase flow modeling will be illustrated by presenting the results of simulations of a filter back- flushing and a fluidized bed coal gasifier. These simulations were conducted only with MFIX, since certain features needed in these simulations will be available only in the next release of Fluent.

  18. A UQ Enabled Aluminum Tabular Multiphase Equation-of-State Model

    Office of Scientific and Technical Information (OSTI)

    1325C A UQ Enabled Aluminum Tabular Multiphase Equation-of-State Model Allen C. Robinson, John H. Carpenter0, Bert J. Debusschere*, Ann E. Mattsson0 t Computational Multiphysics, ...

  19. Multiphase flow modeling based on the hyperbolic thermodynamically compatible systems theory

    SciTech Connect (OSTI)

    Romenski, E.

    2015-03-10

    An application of the theory of thermodynamically compatible hyperbolic systems to design a multiphase compressible flow models is discussed. With the use of such approach the governing equations are derived from the first principles, formulated in a divergent form and can be transformed to a symmetric hyperbolic system in the sense of Friedrichs. A usage of the proposed approach is described for the development of multiphase compressible fluid models, including two-phase flow models.

  20. Experimental characterization of energetic material dynamics for multiphase blast simulation.

    SciTech Connect (OSTI)

    Beresh, Steven Jay; Wagner, Justin L.; Kearney, Sean Patrick; Wright, Elton K.; Baer, Melvin R.; Pruett, Brian Owen Matthew

    2011-09-01

    Currently there is a substantial lack of data for interactions of shock waves with particle fields having volume fractions residing between the dilute and granular regimes, which creates one of the largest sources of uncertainty in the simulation of energetic material detonation. To close this gap, a novel Multiphase Shock Tube has been constructed to drive a planar shock wave into a dense gas-solid field of particles. A nearly spatially isotropic field of particles is generated in the test section by a gravity-fed method that results in a spanwise curtain of spherical 100-micron particles having a volume fraction of about 19%. Interactions with incident shock Mach numbers of 1.66, 1.92, and 2.02 were achieved. High-speed schlieren imaging simultaneous with high-frequency wall pressure measurements are used to reveal the complex wave structure associated with the interaction. Following incident shock impingement, transmitted and reflected shocks are observed, which lead to differences in particle drag across the streamwise dimension of the curtain. Shortly thereafter, the particle field begins to propagate downstream and spread. For all three Mach numbers tested, the energy and momentum fluxes in the induced flow far downstream are reduced about 30-40% by the presence of the particle field. X-Ray diagnostics have been developed to penetrate the opacity of the flow, revealing the concentrations throughout the particle field as it expands and spreads downstream with time. Furthermore, an X-Ray particle tracking velocimetry diagnostic has been demonstrated to be feasible for this flow, which can be used to follow the trajectory of tracer particles seeded into the curtain. Additional experiments on single spherical particles accelerated behind an incident shock wave have shown that elevated particle drag coefficients can be attributed to increased compressibility rather than flow unsteadiness, clarifying confusing results from the historical database of shock tube

  1. Inhibition of slug front corrosion in multiphase flow conditions

    SciTech Connect (OSTI)

    Chen, H.J.; Jepson, W.P.

    1998-12-31

    Corrosion at the slug front at the bottom of a pipeline is identified as one of the worst cases of corrosion occurring in the pipeline which carries unprocessed multiphase production with a high level of CO{sub 2} gas. One objective of the study in recommending a subsea completion to shore was to determine if commercial corrosion inhibitors can control this type of corrosion using carbon steel pipeline. Thus, inhibitors which showed excellent performance in the lab using the Rotating Cylinder Electrode system (RCE) were further evaluated to confirm their performance in a flow loop simulating the test conditions predicted from the flow modeling for the proposed pipeline. The performance profile of two commercial inhibitors were determined in a 4 in. flow loop at 7O C, 100 psig CO{sub 2} partial pressure in corrosive brines with or without ethylene glycol and/or light hydrocarbon. Results showed that the carbon steel pipeline could be adequately protected at low temperature using a commercial corrosion inhibitor to meet the designed life of the pipeline. Ethylene glycol, which is used in the pipeline to prevent hydrate formation, reduces the corrosivity of the brine and gives no effect on inhibitor performance under the slug flow conditions. A good agreement in inhibitor performance was observed between the flow loop and the RCE testing. The uninhibited corrosion rate of the test brine in this study is in good agreement with the predicted value using deWaard and Williams correlation for CO{sub 2} corrosion.

  2. Multicomponent, multiphase flow in porous media with temperature variation

    SciTech Connect (OSTI)

    Wingard, J.S.; Orr, F.M. Jr.

    1990-10-01

    Recovery of hydrocarbons from porous media is an ongoing concern. Advanced techniques augment conventional recovery methods by injecting fluids that favorably interact with the oil. These fluids interact with the oil by energy transfer, in the case of steam injection, or by mass transfer, as in a miscible gas flood. Often both thermal and compositional considerations are important. An understanding of these injection methods requires knowledge of how temperature variations, phase equilibrium and multiphase flow in porous media interact. The material balance for each component and energy balance are cast as a system of non-strictly hyperbolic partial differential equations. This system of equations is solved using the method of characteristics. The model takes into account the phase behavior by using the Peng-Robinson equation of state to partition the individual components into different phases. Temperature effects are accounted for by the energy balance. Flow effects are modelled by using fractional flow curves and a Stone's three phase relative permeability model. Three problems are discussed. The first problem eliminates the phase behavior aspect of the problem by studying the flow of a single component as it undergoes an isothermal phase change. The second couples the effects of temperature and flow behavior by including a second component that is immiscible with the original component. Phase behavior is added by using a set of three partially miscible components that partition into two or three separate phases. 66 refs., 54 figs., 14 tabs.

  3. PArallel Reacting Multiphase FLOw Computational Fluid Dynamic Analysis

    Energy Science and Technology Software Center (OSTI)

    2002-06-01

    PARMFLO is a parallel multiphase reacting flow computational fluid dynamics (CFD) code. It can perform steady or unsteady simulations in three space dimensions. It is intended for use in engineering CFD analysis of industrial flow system components. Its parallel processing capabilities allow it to be applied to problems that use at least an order of magnitude more computational cells than the number that can be used on a typical single processor workstation (about 106 cellsmore » in parallel processing mode versus about io cells in serial processing mode). Alternately, by spreading the work of a CFD problem that could be run on a single workstation over a group of computers on a network, it can bring the runtime down by an order of magnitude or more (typically from many days to less than one day). The software was implemented using the industry standard Message-Passing Interface (MPI) and domain decomposition in one spatial direction. The phases of a flow problem may include an ideal gas mixture with an arbitrary number of chemical species, and dispersed droplet and particle phases. Regions of porous media may also be included within the domain. The porous media may be packed beds, foams, or monolith catalyst supports. With these features, the code is especially suited to analysis of mixing of reactants in the inlet chamber of catalytic reactors coupled to computation of product yields that result from the flow of the mixture through the catalyst coaled support structure.« less

  4. Finite Element Heat & Mass Transfer Code

    Energy Science and Technology Software Center (OSTI)

    1996-10-10

    FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; andmoredouble porosity and double porosity/double permeability capabilities.less

  5. Finite Element Heat & Mass Transfer Code

    Energy Science and Technology Software Center (OSTI)

    1996-10-10

    FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; andmore » double porosity and double porosity/double permeability capabilities.« less

  6. Reactive facies: An approach for parameterizing field-scale reactive...

    Office of Scientific and Technical Information (OSTI)

    transport models using geophysical methods Citation Details In-Document Search Title: Reactive facies: An approach for parameterizing field-scale reactive transport models ...

  7. Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors

    SciTech Connect (OSTI)

    R. A. Berry

    2010-11-01

    Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: • Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. • Models must be mathematically and numerically well-posed. • The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, all-speed multiphase flows spanning: (1) Well-posed general mixture level (true multiphase) models for fast transient situations and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena like flashing and boiling flows, and critical heat flux determination (necessarily including conjugate heat transfer), and (3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon specified mesh resolution, and to couple different flow models (single-phase, multiphase with several velocities and pressures, multiphase with single

  8. Time-resolved quantitative multiphase interferometric imaging of a highly focused ultrasound pulse

    SciTech Connect (OSTI)

    Souris, Fabien; Grucker, Jules; Dupont-Roc, Jacques; Jacquier, Philippe; Arvengas, Arnaud; Caupin, Frederic

    2010-11-01

    Interferometric imaging is a well-established method to image phase objects by mixing the image wavefront with a reference one on a CCD camera. It has also been applied to fast transient phenomena, mostly through the analysis of single interferograms. It is shown that, for repetitive phenomena, multiphase acquisition brings significant advantages. A 1MHz focused sound field emitted by a hemispherical piezotransducer in water is imaged as an example. Quantitative image analysis provides high resolution sound field profiles. Pressure at focus determined by this method agrees with measurements from a fiber-optic probe hydrophone. This confirms that multiphase interferometric imaging can indeed provide quantitative measurements.

  9. Reactive power compensator

    DOE Patents [OSTI]

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  10. Reactive Power Compensator.

    DOE Patents [OSTI]

    El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

    1992-07-28

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

  11. Multiphase boosting: A growing technology for the challenge of economical deepwater developments

    SciTech Connect (OSTI)

    Colombi, P.; Chiesa, G.; Aggradi, G.F.

    1996-12-31

    The current operating success in the subsea prototype testing and the level of development of different pump concepts are promoting multiphase boosting as a reliable technology for the exploitation of subsea fields. From a situation where very basic questions were asked about the expected performance and reliability of this equipment the Industry is now looking at those scenarios showing the greatest potential for the application of this technology like the deep waters. Competitive options to develop subsea fields, however, may be available and, although they may present some disadvantages compared with multiphase boosting, they make use of traditional practices and proven technologies. In the above perspective, the field operational experience plays a key role to prove the suitability of the proposed systems in handling the untreated well fluids under real subsea conditions so giving multiphase boosting a distinct edge over more conventional solutions. To this end, the paper reviews the main results obtained so far by the underwater testing campaign of a prototype multiphase boosting unit at the Agip Prezioso Field, offshore Sicily. In particular, the review addresses the main technological issues encountered during the subsea operation of the boosting unit together with an initial characterization of the experienced unit performance. The above is considered to provide a significant contribution to the evaluation of the current level of maturity of this technology as well as of the present technological gap to meet the requirements posed by real industrial applications, particularly in deep waters.

  12. Reactive Power Compensating System.

    DOE Patents [OSTI]

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  13. Reactive power compensating system

    DOE Patents [OSTI]

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1987-01-01

    The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.

  14. Reactive power pricing and management

    SciTech Connect (OSTI)

    Hao, S.; Papalexopoulos, A.

    1997-02-01

    This paper explores the technical and economic issues of determining reactive power pricing structures in an open-access environment. It is believed that reactive power pricing and management under open-access will depend upon two important developments: (1) the functional unbundling of facilities that support the reactive power and voltage control service, and (2) grid rules to facilitate the coordination between generation and transmission systems for reliable system operation. The paper discusses the characteristics of reactive power that must be considered in order to develop a framework for reactive power pricing and management. Several cost allocation methods for valuing reactive power are presented. Two workable reactive power pricing structures are also proposed. The first is based on performance standards and the second is based on the local reactive power market concept.

  15. Reactive Air Aluminization

    SciTech Connect (OSTI)

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  16. Methods, systems and apparatus for approximation of peak summed fundamental and third harmonic voltages in a multi-phase machine

    DOE Patents [OSTI]

    Ransom, Ray M.; Gallegos-Lopez, Gabriel; Kinoshita, Michael H.

    2012-07-31

    Methods, system and apparatus are provided for quickly approximating a peak summed magnitude (A) of a phase voltage (Vph) waveform in a multi-phase system that implements third harmonic injection.

  17. Permeable Reactive Barriers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeable Reactive Barriers Permeable Reactive Barriers Permeable Reactive Barrier Field Projects Durango, Colorado Durango, Colorado DOE installed a PRB in October 1995 to treat ...

  18. TOUGHREACT-Pitzer V1.21

    Energy Science and Technology Software Center (OSTI)

    2011-12-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program is written in Fortran 77 and was developed by introducing reactive chemistry into the multiphase flow code TOUGH2 V2. Interactions between mineral assemblages and fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically active. Precipitation and dissolution reactions can change formation porosity and permeability, and can also modifymore » the unsaturated flow properties of the rock. The code is distributed with a comprehensive user?s guide that includes sample problems addressing geothermal reservoirs and hydrothermal systems, nuclear waste isolation, groundwater quality, sequestration of carbon dioxide in saline aquifers, and supergene copper enrichment.« less

  19. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    SciTech Connect (OSTI)

    Wardle, K.E.

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.

  20. Isothermal Multiphase Flash Calculations with the PC-SAFT Equation of State

    SciTech Connect (OSTI)

    Justo-Garcia, Daimler N.; Garcia-Sanchez, Fernando; Romero-Martinez, Ascencion

    2008-03-05

    A computational approach for isothermal multiphase flash calculations with the PC-SAFT (Perturbed-Chain Statistical Associating Fluid Theory) equation of state is presented. In the framework of the study of fluid phase equilibria of multicomponent systems, the general multiphase problem is the single most important calculation which consists of finding the correct number and types of phases and their corresponding equilibrium compositions such that the Gibbs energy of the system is a minimum. For solving this problem, the system Gibbs energy was minimized using a rigorous method for thermodynamic stability analysis to find the most stable state of the system. The efficiency and reliability of the approach to predict and calculate complex phase equilibria are illustrated by solving three typical problems encountered in the petroleum industry.

  1. Origin of resistivity anomaly in p-type leads chalcogenide multiphase compounds

    SciTech Connect (OSTI)

    Aminorroaya Yamini, Sima E-mail: jsnyder@caltech.edu; Dou, Shi Xue; Mitchell, David R. G.; Wang, Heng; Gibbs, Zachary M.; Pei, Yanzhong; Snyder, G. Jeffrey E-mail: jsnyder@caltech.edu

    2015-05-15

    The electrical resistivity curves for binary phase compounds of p-type lead chalcogenide (PbTe){sub (0.9−x)}(PbSe){sub 0.1}(PbS){sub x,} (x = 0.15, 0.2, 0.25), which contain PbS-rich secondary phases, show different behaviour on heating and cooling between 500-700 K. This is contrast to single phase compounds which exhibit similar behaviour on heating and cooling. We correlate these anomalies in the electrical resistivities of multiphase compounds to the variation in phase composition at high temperatures. The inhomogeneous distribution of dopants between the matrix and secondary phase is found to be crucial in the electronic transport properties of the multiphase compounds. These results can lead to further advances in designing composite Pb-chalcogenides with high thermoelectric performance.

  2. Sand transport and deposition in horizontal multiphase trunklines of subsea satellite developments

    SciTech Connect (OSTI)

    Oudeman, P. )

    1993-11-01

    Gravel packing is unattractive as a way to protect against the effects of sand production in subsea wells because it involves additional completion costs, loss of productivity, and difficulties in subsequent recompletion/well servicing operations. On the other hand, omitting gravel packs means that subsea developments must be designed and operated so that they can tolerate sand production. An experimental study was carried out on sand transport and deposition in multiphase flow in modeled subsea flowlines to address the problem and sand collection in horizontal trunklines, which could lead to reduced line throughput, pigging problems, enhanced pipe-bottom erosion, or even blockage. This study led to the definition of a new model for sand transport in multiphase flow, which was used to establish the risk of sand deposition in trunklines connecting a subsea development to nearby production platform.

  3. Computational study of the shock driven instability of a multiphase particle-gas system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    None, None

    2016-02-01

    This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability somewhat similar to the Richtmyer-Meshkov instability but with a larger parameter space. Because this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a timemore » leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. In conclusion, depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.« less

  4. Considerations for developing models of multiphase flow in deformable porous media.

    SciTech Connect (OSTI)

    Martinez, Mario J.; Stone, Charles Michael

    2008-09-01

    This document summarizes research and planning for the development of a numerical simulation capability for nonisothermal multiphase, multicomponent transport in heterogeneous deformable porous materials. Particular attention is given to describing a mathematical formulation for flow in deformable media and for numerical techniques for dealing with phase transitions. A development plan is formulated to provide a computational capability motivated by current and future needs in geosystems management for energy security.

  5. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    SciTech Connect (OSTI)

    Lee, Taehun

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations, better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.

  6. Low Cost Non-Reactive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prepared: 10/28/09 Low Cost Non-Reactive Coating for Refractory Metals A non-reactive coating for refractory metals has been developed at The Ames Laboratory. Contamination of rare earth and reactive metals and their alloys has been a chronic problem that results from their interaction with the crucibles or other vessels used in high temperature processing or during other applications. As a consequence, processing and other costs are high due to the need to replace equipment or containers, or

  7. TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows

    SciTech Connect (OSTI)

    Pruess, K.

    1991-06-01

    Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.

  8. Sampling device for withdrawing a representative sample from single and multi-phase flows

    DOE Patents [OSTI]

    Apley, Walter J. (Pasco, WA); Cliff, William C. (Richland, WA); Creer, James M. (Richland, WA)

    1984-01-01

    A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.

  9. Evaluation of multi-phase heat transfer and droplet evaporation in petroleum cracking flows

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Petrick, M.; Zhou, C.Q.

    1996-04-01

    A computer code ICRKFLO was used to simulate the multiphase reacting flow of fluidized catalytic cracking (FCC) riser reactors. The simulation provided a fundamental understanding of the hydrodynamics and heat transfer processes in an FCC riser reactor, critical to the development of a new high performance unit. The code was able to make predictions that are in good agreement with available pilot-scale test data. Computational results indicate that the heat transfer and droplet evaporation processes have a significant impact on the performance of a pilot-scale FCC unit. The impact could become even greater on scale-up units.

  10. Evaluation of multi-phase heat transfer and droplet evaporation in petroleum cracking flows

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Petrick, M.; Zhou, C.Q.

    1996-12-31

    A computer code ICRKFLO was used to simulate the multi-phase reacting flow of fluidized catalytic cracking (FCC) riser reactors. The simulation provided a fundamental understanding of the hydrodynamics and heat transfer processes in an FCC riser reactor, critical to the development of a new high performance unit. The code was able to make predictions that in good agreement with available pilot-scale test data. Computational results indicate that the heat transfer and droplet evaporation processes have a significant impact on the performance of a pilot-scale FCC unit. The impact could become even greater on scale-up units.

  11. A Tariff for Reactive Power

    SciTech Connect (OSTI)

    Kueck, John D; Kirby, Brendan J; Li, Fangxing; Tufon, Christopher; Isemonger, Alan

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce

  12. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    DOE Patents [OSTI]

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  13. L3:THM.CFD.P9.05 Milestone Report Single/Multiphase CFD Assessment, Verification,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Milestone Report Single/Multiphase CFD Assessment, Verification, and Validation Yidong Xia and Hong Luo North Carolina State University September 30, 2014 CASL-8-2014-0210-000 CASL-U-2014-0210-000 L3:THM.CFD.P9.05 Single/Multiphase CFD assessment, verification, and validation L3:THM.CFD.P9.05 milestone report Yidong Xia and Hong Luo Department of Mechanical and Aerospace Engineering North Carolina State University, Raleigh, NC, 27695, USA CASL-U-2014-0210-000 L3:THM.CFD.P9.05 On the performance

  14. Mechanism-based Representative Volume Elements (RVEs) for Predicting Property Degradations in Multiphase Materials

    SciTech Connect (OSTI)

    Xu, Wei; Sun, Xin; Li, Dongsheng; Ryu, Seun; Khaleel, Mohammad A.

    2013-02-01

    Quantitative understanding of the evolving thermal-mechanical properties of a multi-phase material hinges upon the availability of quantitative statistically representative microstructure descriptions. Questions then arise as to whether a two-dimensional (2D) or a three-dimensional (3D) representative volume element (RVE) should be considered as the statistically representative microstructure. Although 3D models are more representative than 2D models in general, they are usually computationally expensive and difficult to be reconstructed. In this paper, we evaluate the accuracy of a 2D RVE in predicting the property degradations induced by different degradation mechanisms with the multiphase solid oxide fuel cell (SOFC) anode material as an example. Both 2D and 3D microstructure RVEs of the anodes are adopted to quantify the effects of two different degradation mechanisms: humidity-induced electrochemical degradation and phosphorus poisoning induced structural degradation. The predictions of the 2D model are then compared with the available experimental measurements and the results from the 3D model. It is found that the 2D model, limited by its inability of reproducing the realistic electrical percolation, is unable to accurately predict the degradation of thermo-electrical properties. On the other hand, for the phosphorus poisoning induced structural degradation, both 2D and 3D microstructures yield similar results, indicating that the 2D model is capable of providing computationally efficient yet accurate results for studying the structural degradation within the anodes.

  15. Radiation stability test on multiphase glass ceramic and crystalline ceramic waste forms

    SciTech Connect (OSTI)

    Tang, Ming; Kossoy, Anna; Jarvinen, G. D.; Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Brinkman, Kyle; Fox, Kevin M.; Amoroso, Jake; Marra, James C.

    2014-02-03

    A radiation stability study was performed on glass ceramic and crystalline ceramic waste forms. These materials are candidate host materials for immobilizing alkali/alkaline earth (Cs/Sr-CS) + lanthanide (LN) + transition metal (TM) fission product waste streams from nuclear fuel reprocessing. In this study, glass ceramics were fabricated using a borosilicate glass as a matrix in which to incorporate CS/LN/TM combined waste streams. The major phases in these multiphase materials are powellite, oxyaptite, pollucite, celsian, and durable residual glass phases. Al2O3 and TiO2 were combined with these waste components to produce multiphase crystalline ceramics containing hollandite-type phases, perovskites, pyrochlores and other minor metal titanate phases. For the radiation stability test, selected glass ceramic and crystalline ceramic samples were exposed to different irradiation environments including low fluxes of high-energy (~1–5 MeV) protons and alpha particles generated by an ion accelerator, high fluxes of low-energy (hundreds of keV) krypton particles generated by an ion implanter, and in-situ electron irradiations in a transmission electron microscope. These irradiation experiments were performed to simulate self-radiation effects in a waste form. Ion irradiation-induced microstructural modifications were examined using X-ray diffraction and transmission electron microscopy. Our preliminary results reveal different radiation tolerance in different crystalline phases under various radiation damage environments. However, their stability may be rate dependent which may limit the waste loading that can be achieved.

  16. Compressible, multiphase semi-implicit method with moment of fluid interface representation

    SciTech Connect (OSTI)

    Jemison, Matthew; Sussman, Mark; Arienti, Marco

    2014-09-16

    A unified method for simulating multiphase flows using an exactly mass, momentum, and energy conserving Cell-Integrated Semi-Lagrangian advection algorithm is presented. The deforming material boundaries are represented using the moment-of-fluid method. Our new algorithm uses a semi-implicit pressure update scheme that asymptotically preserves the standard incompressible pressure projection method in the limit of infinite sound speed. The asymptotically preserving attribute makes the new method applicable to compressible and incompressible flows including stiff materials; enabling large time steps characteristic of incompressible flow algorithms rather than the small time steps required by explicit methods. Moreover, shocks are captured and material discontinuities are tracked, without the aid of any approximate or exact Riemann solvers. As a result, wimulations of underwater explosions and fluid jetting in one, two, and three dimensions are presented which illustrate the effectiveness of the new algorithm at efficiently computing multiphase flows containing shock waves and material discontinuities with large “impedance mismatch.”

  17. Multi-phase CFD modeling of solid sorbent carbon capture system

    SciTech Connect (OSTI)

    Ryan, E. M.; DeCroix, D.; Breault, Ronald W.; Xu, W.; Huckaby, E. David

    2013-01-01

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

  18. Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System

    SciTech Connect (OSTI)

    Ryan, Emily M.; DeCroix, David; Breault, Ronald W.; Xu, Wei; Huckaby, E. D.; Saha, Kringan; Darteville, Sebastien; Sun, Xin

    2013-07-30

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

  19. Compressible, multiphase semi-implicit method with moment of fluid interface representation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jemison, Matthew; Sussman, Mark; Arienti, Marco

    2014-09-16

    A unified method for simulating multiphase flows using an exactly mass, momentum, and energy conserving Cell-Integrated Semi-Lagrangian advection algorithm is presented. The deforming material boundaries are represented using the moment-of-fluid method. Our new algorithm uses a semi-implicit pressure update scheme that asymptotically preserves the standard incompressible pressure projection method in the limit of infinite sound speed. The asymptotically preserving attribute makes the new method applicable to compressible and incompressible flows including stiff materials; enabling large time steps characteristic of incompressible flow algorithms rather than the small time steps required by explicit methods. Moreover, shocks are captured and material discontinuities aremore » tracked, without the aid of any approximate or exact Riemann solvers. As a result, wimulations of underwater explosions and fluid jetting in one, two, and three dimensions are presented which illustrate the effectiveness of the new algorithm at efficiently computing multiphase flows containing shock waves and material discontinuities with large “impedance mismatch.”« less

  20. Practical aspects and uncertainty analysis of biological effective dose (BED) regarding its three-dimensional calculation in multiphase radiotherapy treatment plans

    SciTech Connect (OSTI)

    Kauweloa, Kevin I. Gutierrez, Alonso N.; Bergamo, Angelo; Stathakis, Sotirios; Papanikolaou, Nikos; Mavroidis, Panayiotis

    2014-07-15

    Purpose: There is a growing interest in the radiation oncology community to use the biological effective dose (BED) rather than the physical dose (PD) in treatment plan evaluation and optimization due to its stronger correlation with radiobiological effects. Radiotherapy patients may receive treatments involving a single only phase or multiple phases (e.g., primary and boost). Since most treatment planning systems cannot calculate the analytical BED distribution in multiphase treatments, an approximate multiphase BED expression, which is based on the total physical dose distribution, has been used. The purpose of this paper is to reveal the mathematical properties of the approximate BED formulation, relative to the true BED. Methods: The mathematical properties of the approximate multiphase BED equation are analyzed and evaluated. In order to better understand the accuracy of the approximate multiphase BED equation, the true multiphase BED equation was derived and the mathematical differences between the true and approximate multiphase BED equations were determined. The magnitude of its inaccuracies under common clinical circumstances was also studied. All calculations were performed on a voxel-by-voxel basis using the three-dimensional dose matrices. Results: Results showed that the approximate multiphase BED equation is accurate only when the dose-per-fractions (DPFs) in both the first and second phases are equal, which occur when the dose distribution does not significantly change between the phases. In the case of heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the inaccuracy of the approximate multiphase BED is greater. These characteristics are usually seen in the dose distributions being delivered to organs at risk rather than to targets. Conclusions: The finding of this study indicates that the true multiphase BED equation should be implemented in the treatment planning

  1. Fuel Temperature Coefficient of Reactivity

    SciTech Connect (OSTI)

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  2. AOI 1— COMPUTATIONAL ENERGY SCIENCES:MULTIPHASE FLOW RESEARCH High-fidelity multi-phase radiation module for modern coal combustion systems

    SciTech Connect (OSTI)

    Modest, Michael

    2013-11-15

    The effects of radiation in particle-laden flows were the object of the present research. The presence of particles increases optical thickness substantially, making the use of the “optically thin” approximation in most cases a very poor assumption. However, since radiation fluxes peak at intermediate optical thicknesses, overall radiative effects may not necessarily be stronger than in gas combustion. Also, the spectral behavior of particle radiation properties is much more benign, making spectral models simpler (and making the assumption of a gray radiator halfway acceptable, at least for fluidized beds when gas radiation is not large). On the other hand, particles scatter radiation, making the radiative transfer equation (RTE) much more di fficult to solve. The research carried out in this project encompassed three general areas: (i) assessment of relevant radiation properties of particle clouds encountered in fluidized bed and pulverized coal combustors, (ii) development of proper spectral models for gas–particulate mixtures for various types of two-phase combustion flows, and (iii) development of a Radiative Transfer Equation (RTE) solution module for such applications. The resulting models were validated against artificial cases since open literature experimental data were not available. The final models are in modular form tailored toward maximum portability, and were incorporated into two research codes: (i) the open-source CFD code OpenFOAM, which we have extensively used in our previous work, and (ii) the open-source multi-phase flow code MFIX, which is maintained by NETL.

  3. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    DOE Patents [OSTI]

    Sinha, Dipen N

    2014-02-04

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  4. Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).

    SciTech Connect (OSTI)

    Oelfke, John Barry; Torczynski, John Robert; O'Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish; Trujillo, Steven Mathew

    2006-08-01

    An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

  5. Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium

    DOE Patents [OSTI]

    Beller, L.S.

    1993-01-26

    A method and apparatus are described for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

  6. Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium

    DOE Patents [OSTI]

    Beller, Laurence S.

    1993-01-01

    A method and apparatus for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

  7. Progress in the Development of Compressible, Multiphase Flow Modeling Capability for Nuclear Reactor Flow Applications

    SciTech Connect (OSTI)

    R. A. Berry; R. Saurel; F. Petitpas; E. Daniel; O. Le Metayer; S. Gavrilyuk; N. Dovetta

    2008-10-01

    In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. Within the context of multiphase flows, two bubble-dynamic phenomena boiling (heterogeneous) and flashing or cavitation (homogeneous boiling), with bubble collapse, are technologically very important to nuclear reactor systems. The main difference between boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing is limited primarily by inertial effects in the surrounding liquid. The flashing process tends to be far more explosive (and implosive), and is more violent and damaging (at least in the near term) than the bubble dynamics of boiling. However, other problematic phenomena, such as crud deposition, appear to be intimately connecting with the boiling process. In reality, these two processes share many details.

  8. Numerical Investigation of Vertical Plunging Jet Using a Hybrid Multifluid–VOF Multiphase CFD Solver

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shonibare, Olabanji Y.; Wardle, Kent E.

    2015-01-01

    A novel hybrid multiphase flow solver has been used to conduct simulations of a vertical plunging liquid jet. This solver combines a multifluid methodology with selective interface sharpening to enable simulation of both the initial jet impingement and the long-time entrained bubble plume phenomena. Models are implemented for variable bubble size capturing and dynamic switching of interface sharpened regions to capture transitions between the initially fully segregated flow types into the dispersed bubbly flow regime. It was found that the solver was able to capture the salient features of the flow phenomena under study and areas for quantitative improvement havemore » been explored and identified. In particular, a population balance approach is employed and detailed calibration of the underlying models with experimental data is required to enable quantitative prediction of bubble size and distribution to capture the transition between segregated and dispersed flow types with greater fidelity.« less

  9. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yortsos, Y.C.

    2001-05-29

    This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  10. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yortsos, Yanis C.

    2001-08-07

    This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  11. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    SciTech Connect (OSTI)

    Hou, Xu; Hu, Yuhang; Grinthal, Alison; Khan, Mughees; Aizenberg, Joanna

    2015-03-04

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. In addition, the ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems1-10.But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries6,11–17, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable.Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state.Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold—the pressure needed to open the pores—can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping.These capabilities allow us to dynamically modulate gas–liquid sorting in a microfluidic flow and to separate a three-phase air water–oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.

  12. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    SciTech Connect (OSTI)

    Hou, Xu; Hu, Yuhang; Grinthal, Alison; Khan, Mughees; Aizenberg, Joanna

    2015-03-04

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. In addition, the ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems1-10.But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries6,1117, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable.Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state.Theoretical modelling and experiments demonstrate that for each transport substance, the gating thresholdthe pressure needed to open the porescan be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping.These capabilities allow us to dynamically modulate gasliquid sorting in a microfluidic flow and to separate a three-phase air wateroil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.

  13. DENSE MULTIPHASE FLOW SIMULATION: CONTINUUM MODEL FOR POLY-DISPERSED SYSTEMS USING KINETIC THEORY

    SciTech Connect (OSTI)

    Moses Bogere

    2011-08-31

    The overall objective of the project was to verify the applicability of the FCMOM approach to the kinetic equations describing the particle flow dynamics. For monodispersed systems the fundamental equation governing the particle flow dynamics is the Boltzmann equation. During the project, the FCMOM was successfully applied to several homogeneous and in-homogeneous problems in different flow regimes, demonstrating that the FCMOM has the potential to be used to solve efficiently the Boltzmann equation. However, some relevant issues still need to be resolved, i.e. the homogeneous cooling problem (inelastic particles cases) and the transition between different regimes. In this report, the results obtained in homogeneous conditions are discussed first. Then a discussion of the validation results for in-homogeneous conditions is provided. And finally, a discussion will be provided about the transition between different regimes. Alongside the work on development of FCMOM approach studies were undertaken in order to provide insights into anisotropy or particles kinetics in riser hydrodynamics. This report includes results of studies of multiphase flow with unequal granular temperatures and analysis of momentum re-distribution in risers due to particle-particle and fluid-particle interactions. The study of multiphase flow with unequal granular temperatures entailed both simulation and experimental studies of two particles sizes in a riser and, a brief discussion of what was accomplished will be provided. And finally, a discussion of the analysis done on momentum re-distribution of gas-particles flow in risers will be provided. In particular a discussion of the remaining work needed in order to improve accuracy and predictability of riser hydrodynamics based on two-fluid models and how they can be used to model segregation in risers.

  14. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    SciTech Connect (OSTI)

    Hou, X; Hu, YH; Grinthal, A; Khan, M; Aizenberg, J

    2015-03-04

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. The ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems(1-10). But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries(6,11-17), a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable(11,12). Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state. Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold-the pressure needed to open the pores-can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping. These capabilities allow us to dynamically modulate gas-liquid sorting in a microfluidic flow and to separate a three-phase air-water-oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.

  15. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hou, Xu; Hu, Yuhang; Grinthal, Alison; Khan, Mughees; Aizenberg, Joanna

    2015-03-04

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. In addition, the ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems1-10.But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries6,11–17, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and foulingmore » is nearly inevitable.Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state.Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold—the pressure needed to open the pores—can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping.These capabilities allow us to dynamically modulate gas–liquid sorting in a microfluidic flow and to separate a three-phase air water–oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.« less

  16. Method and system for measuring multiphase flow using multiple pressure differentials

    DOE Patents [OSTI]

    Fincke, James R.

    2001-01-01

    An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

  17. DETERMINATION OF SPECIFIC NEUTRONIC REACTIVITY

    DOE Patents [OSTI]

    Dessauer, G.

    1960-05-10

    A method is given for production-line determination of the specific neutronic reactivity of such objects as individual nuclear fuel or neutron absorber elements and is notable for rapidity and apparatus simplicity. The object is incorporated in a slightly sub-critical chain fission reactive assembly having a discrete neutron source, thereby establishing a K/sub eff/ within the crucial range of 0.95 to 0.995. The range was found to afford, uniquely, flux- transient damped response in a niatter of seconds simultaneously with acceptable analytical sensitivity. The resulting neutron flux measured at a situs spaced from both object and source within the assembly serves as a calibrable indication of said reactivity.

  18. Multi-Phased, Post-Accident Support of the Fukushima Dai-Ichi Nuclear Power Plant - 12246

    SciTech Connect (OSTI)

    Gay, Arnaud; Gillet, Philippe; Ytournel, Bertrand; Varet, Thierry; David, Laurent; Prevost, Thierry; Redonnet, Carol; Piot, Gregoire; Jouaville, Stephane; Pagis, Georges

    2012-07-01

    operation results to date. AREVA's response to the Fukushima Dai-Ichi crisis was multi-phased: emergency aid and relief supply was sent within days after the accident; AREVA-Veolia engineering teams designed and implemented a water treatment solution in record time, only 3 months; and AREVA continues to support TEPCO and propose solutions for waste management, soil remediation and decontamination of the Fukushima Dai-Ichi site. Despite the huge challenges, the Actiflo{sup TM}-Rad project has been a success: the water treatment unit started on time and performed as expected. The performance is the result of many key elements: AREVA expertise in radioactive effluents decontamination, Veolia know-how in water treatment equipments in crisis environment, and of course AREVA and Veolia teams' creativity. The project success is also due to AREVA and Veolia teams' reactivity and high level of commitment with engineering teams working 24/7 in Japan, France and Germany. AREVA and Veolia deep knowledge of the Japanese industry ensured that the multi-cultural exchanges were not an issue. Finally the excellent overall project management and execution by TEPCO and other Japanese stakeholders was very efficient. The emergency water treatment was a key step of the roadmap towards restoration from the accident at Fukushima Dai-Ichi that TEPCO designed and keeps executing with success. (authors)

  19. FINAL PROJECT REPORT DOE Early Career Principal Investigator Program Project Title: Developing New Mathematical Models for Multiphase Flows Based on a Fundamental Probability Density Function Approach

    SciTech Connect (OSTI)

    Shankar Subramaniam

    2009-04-01

    This final project report summarizes progress made towards the objectives described in the proposal entitled “Developing New Mathematical Models for Multiphase Flows Based on a Fundamental Probability Density Function Approach”. Substantial progress has been made in theory, modeling and numerical simulation of turbulent multiphase flows. The consistent mathematical framework based on probability density functions is described. New models are proposed for turbulent particle-laden flows and sprays.

  20. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  1. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  2. Application of a geocentrifuge and sterolithographically fabricated apertures to multiphase flow in complex fracture apertures.

    SciTech Connect (OSTI)

    Glenn E. McCreery; Robert D. Stedtfeld; Alan T. Stadler; Daphne L. Stoner; Paul Meakin

    2005-09-01

    A geotechnical centrifuge was used to investigate unsaturated multiphase fluid flow in synthetic fracture apertures under a variety of flow conditions. The geocentrifuge subjected the fluids to centrifugal forces allowing the Bond number to be systematically changed without adjusting the fracture aperture of the fluids. The fracture models were based on the concept that surfaces generated by the fracture of brittle geomaterials have a self-affine fractal geometry. The synthetic fracture surfaces were fabricated from a transparent epoxy photopolymer using sterolithography, and fluid flow through the transparent fracture models was monitored by an optical image acquisition system. Aperture widths were chosen to be representative of the wide range of geological fractures in the vesicular basalt that lies beneath the Idaho Nation Laboratory (INL). Transitions between different flow regimes were observed as the acceleration was changed under constant flow conditions. The experiments showed the transition between straight and meandering rivulets in smooth walled apertures (aperture width = 0.508 mm), the dependence of the rivulet width on acceleration in rough walled fracture apertures (average aperture width = 0.25 mm), unstable meandering flow in rough walled apertures at high acceleration (20g) and the narrowing of the wetted region with increasing acceleration during the penetration of water into an aperture filled with wetted particles (0.875 mm diameter glass spheres).

  3. Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit

    SciTech Connect (OSTI)

    Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung; Huckaby, E. D.; Sun, Xin

    2014-10-01

    To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD-based flow simulations for the regeneration device responsible for extracting CO2 from CO2-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.

  4. Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows

    SciTech Connect (OSTI)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2013-09-08

    Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an array of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.

  5. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    SciTech Connect (OSTI)

    Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

    2009-01-15

    A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

  6. MODELING COUPLED PROCESSES OF MULTIPHASE FLOW AND HEAT TRANSFER IN UNSATURATED FRACTURED ROCK

    SciTech Connect (OSTI)

    Y. Wu; S. Mukhopadhyay; K. Zhang; G.S. Bodvarsson

    2006-02-28

    A mountain-scale, thermal-hydrologic (TH) numerical model is developed for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository at Yucca Mountain, Nevada, USA. The TH model, consisting of three-dimensional (3-D) representations of the unsaturated zone, is based on the current repository design, drift layout, and thermal loading scenario under estimated current and future climate conditions. More specifically, the TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the most updated, best-estimated input parameters. This mountain-scale TH model simulates the coupled TH processes related to mountain-scale multiphase fluid flow, and evaluates the impact of radioactive waste heat on the hydrogeological system, including thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. For a better description of the ambient geothermal condition of the unsaturated zone system, the TH model is first calibrated against measured borehole temperature data. The ambient temperature calibration provides the necessary surface and water table boundary as well as initial conditions. Then, the TH model is used to obtain scientific understanding of TH processes in the Yucca Mountain unsaturated zone under the designed schedule of repository thermal load.

  7. Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at...

  8. Dynamic modeling of injection-induced fault reactivation and ground motion and impact on surface structures and human perception

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; Godano, Maxime

    2014-12-31

    We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about Mw = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic Mw = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO2 leakage, but would certainly be felt by the local population.

  9. Dynamic modeling of injection-induced fault reactivation and ground motion and impact on surface structures and human perception

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; Godano, Maxime

    2014-12-31

    We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about Mw = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzed themore » ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic Mw = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO2 leakage, but would certainly be felt by the local population.« less

  10. Reactive composite compositions and mat barriers

    SciTech Connect (OSTI)

    Langton, Christine A.; Narasimhan, Rajendran; Karraker, David G.

    2001-01-01

    A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.

  11. An Integrated RELAP5-3D and Multiphase CFD Code System Utilizing a Semi Implicit Coupling Technique

    SciTech Connect (OSTI)

    D.L. Aumiller; E.T. Tomlinson; W.L. Weaver

    2001-06-21

    An integrated code system consisting of RELAP5-3D and a multiphase CFD program has been created through the use of a generic semi-implicit coupling algorithm. Unlike previous CFD coupling work, this coupling scheme is numerically stable provided the material Courant limit is not violated in RELAP5-3D or at the coupling locations. The basis for the coupling scheme and details regarding the unique features associated with the application of this technique to a four-field CFD program are presented. Finally, the results of a verification problem are presented. The coupled code system is shown to yield accurate and numerically stable results.

  12. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOE Patents [OSTI]

    Fritz, Gregory M.; Weihs, Timothy P.; Grzyb, Justin A.

    2016-07-05

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  13. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOE Patents [OSTI]

    Fritz, Gregory M; Knepper, Robert Allen; Weihs, Timothy P; Gash, Alexander E; Sze, John S

    2013-04-30

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  14. Shock Desensitization Experiments and Reactive Flow Modeling...

    Office of Scientific and Technical Information (OSTI)

    Shock Desensitization Experiments and Reactive Flow Modeling on Self-Sustaining LX-17 Detonation Waves Citation Details In-Document Search Title: Shock Desensitization Experiments ...

  15. Interfacial Structure and Reactivity | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a robust, molecular-scale understanding of its structure and reactivity? Research Context The transport of ions across the electrodeelectrolyte interface can lead to kinetic...

  16. Directional Reactive Power Ground Plane Transmission - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marketing SummaryORNL researchers have developed a pioneering power alternative to batteries using directional reactive power. Batteries are currently the primary option for...

  17. Rejuvenating Permeable Reactive Barriers by Chemical Flushing

    Broader source: Energy.gov [DOE]

    Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

  18. Numerical Study of Coal Gasification Using Eulerian-Eulerian Multiphase Model

    SciTech Connect (OSTI)

    Shi, S.; Guenther, C.; Orsino, S.

    2007-09-01

    Gasification converts the carbon-containing material into a synthesis gas (syngas) which can be used as a fuel to generate electricity or used as a basic chemical building block for a large number of uses in the petrochemical and refining industries. Based on the mode of conveyance of the fuel and the gasifying medium, gasification can be classified into fixed or moving bed, fluidized bed, and entrained flow reactors. Entrained flow gasifiers normally feature dilute flow with small particle size and can be successfully modeled with the Discrete Phase Method (DPM). For the other types, the Eulerian-Eulerian (E-E) or the so called two-fluid multiphase model is a more appropriate approach. The E-E model treats the solid phase as a distinct interpenetrating granular fluid and it is the most general-purposed multi-fluid model. This approach provides transient, three-dimensional, detailed information inside the reactor which would otherwise be unobtainable through experiments due to the large scale, high pressure and/or temperature. In this paper, a transient, three-dimensional model of the Power Systems Development Facility (PSDF) transport gasifier will be presented to illustrate how Computational Fluid Dynamics (CFD) can be used for large-scale complicated geometry with detailed physics and chemistry. In the model, eleven species are included in the gas phase while four pseudo-species are assumed in the solid phase. A total of sixteen reactions, both homogeneous (involving only gas phase species) and heterogeneous (involving species in both gas and solid phases), are used to model the coal gasification chemistry. Computational results have been validated against PSDF experimental data from lignite to bituminous coals under both air and oxygen blown conditions. The PSDF gasifier geometry was meshed with about 70,000, hexahedra-dominated cells. A total of six cases with different coal, feed gas, and/or operation conditions have been performed. The predicted and

  19. Method for reactivating catalysts and a method for recycling supercritical fluids used to reactivate the catalysts

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2008-08-05

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  20. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    SciTech Connect (OSTI)

    Chang, Y.C.; Mani, V.; Mohanty, K.K.

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  1. Incorporation of Reaction Kinetics into a Multiphase, Hydrodynamic Model of a Fischer Tropsch Slurry Bubble Column Reactor

    SciTech Connect (OSTI)

    Donna Guillen, PhD; Anastasia Gribik; Daniel Ginosar, PhD; Steven P. Antal, PhD

    2008-11-01

    This paper describes the development of a computational multiphase fluid dynamics (CMFD) model of the Fischer Tropsch (FT) process in a Slurry Bubble Column Reactor (SBCR). The CMFD model is fundamentally based which allows it to be applied to different industrial processes and reactor geometries. The NPHASE CMFD solver [1] is used as the robust computational platform. Results from the CMFD model include gas distribution, species concentration profiles, and local temperatures within the SBCR. This type of model can provide valuable information for process design, operations and troubleshooting of FT plants. An ensemble-averaged, turbulent, multi-fluid solution algorithm for the multiphase, reacting flow with heat transfer was employed. Mechanistic models applicable to churn turbulent flow have been developed to provide a fundamentally based closure set for the equations. In this four-field model formulation, two of the fields are used to track the gas phase (i.e., small spherical and large slug/cap bubbles), and the other two fields are used for the liquid and catalyst particles. Reaction kinetics for a cobalt catalyst is based upon values reported in the published literature. An initial, reaction kinetics model has been developed and exercised to demonstrate viability of the overall solution scheme. The model will continue to be developed with improved physics added in stages.

  2. General Reactive Atomistic Simulation Program

    Energy Science and Technology Software Center (OSTI)

    2004-09-22

    GRASP (General Reactive Atomistic Simulation Program) is primarily intended as a molecular dynamics package for complex force fields, The code is designed to provide good performance for large systems, either in parallel or serial execution mode, The primary purpose of the code is to realistically represent the structural and dynamic properties of large number of atoms on timescales ranging from picoseconds up to a microsecond. Typically the atoms form a representative sample of some material,more » such as an interface between polycrystalline silicon and amorphous silica. GRASP differs from other parallel molecular dynamics codes primarily due to it’s ability to handle relatively complicated interaction potentials and it’s ability to use more than one interaction potential in a single simulation. Most of the computational effort goes into the calculation of interatomic forces, which depend in a complicated way on the positions of all the atoms. The forces are used to integrate the equations of motion forward in time using the so-called velocity Verlet integration scheme. Alternatively, the forces can be used to find a minimum energy configuration, in which case a modified steepest descent algorithm is used.« less

  3. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOE Patents [OSTI]

    Ortiz, M.G.

    1998-02-10

    A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  4. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOE Patents [OSTI]

    Ortiz, Marcos German

    1998-01-01

    A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  5. A summary of methods for approximating salt creep and disposal room closure in numerical models of multiphase flow

    SciTech Connect (OSTI)

    Freeze, G.A.; Larson, K.W.; Davies, P.B.

    1995-10-01

    Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time.

  6. Investigation of long term reactive stability of ceria for use...

    Office of Scientific and Technical Information (OSTI)

    reactive stability of ceria for use in solar thermochemical cycles This content will ... reactive stability of ceria for use in solar thermochemical cycles Authors: Rhodes, ...

  7. Experimental Evidence for Self-Limiting Reactive Flow through...

    Office of Scientific and Technical Information (OSTI)

    Experimental Evidence for Self-Limiting Reactive Flow through a Fractured Cement Core: ... Title: Experimental Evidence for Self-Limiting Reactive Flow through a Fractured Cement ...

  8. The Reactivity of Energetic Materials Under High Pressure and...

    Office of Scientific and Technical Information (OSTI)

    The Reactivity of Energetic Materials Under High Pressure and Temperature Citation Details In-Document Search Title: The Reactivity of Energetic Materials Under High Pressure and ...

  9. Inducing and Quantifying Forbidden Reactivity with Single Molecule...

    Office of Scientific and Technical Information (OSTI)

    Inducing and Quantifying Forbidden Reactivity with Single Molecule Polymer Mechanochemistry Citation Details In-Document Search Title: Inducing and Quantifying Forbidden Reactivity ...

  10. Chemical Imaging and Dynamical Studies of Reactivity and Emergent...

    Office of Scientific and Technical Information (OSTI)

    Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex ... Title: Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in ...

  11. Reactivity of perovskites with water: Role of hydroxylation in...

    Office of Scientific and Technical Information (OSTI)

    Reactivity of perovskites with water: Role of hydroxylation in wetting and implications ... Title: Reactivity of perovskites with water: Role of hydroxylation in wetting and ...

  12. Modeling of fault reactivation and induced seismicity during...

    Office of Scientific and Technical Information (OSTI)

    Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs Citation Details In-Document Search Title: Modeling of fault reactivation ...

  13. Reactivity of Ozone with Solid Potassium Iodide Investigated...

    Office of Scientific and Technical Information (OSTI)

    Reactivity of Ozone with Solid Potassium Iodide Investigated by Atomic Force Microscopy Citation Details In-Document Search Title: Reactivity of Ozone with Solid Potassium...

  14. Reactivity control assembly for nuclear reactor

    DOE Patents [OSTI]

    Bollinger, Lawrence R.

    1984-01-01

    Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

  15. Groundwater well with reactive filter pack

    DOE Patents [OSTI]

    Gilmore, Tyler J.; Holdren, Jr., George R.; Kaplan, Daniel I.

    1998-01-01

    A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

  16. Groundwater well with reactive filter pack

    DOE Patents [OSTI]

    Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

    1998-09-08

    A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

  17. A Tariff for Reactive Power - IEEE

    SciTech Connect (OSTI)

    Kueck, John D; Tufon, Christopher; Isemonger, Alan; Kirby, Brendan J

    2008-11-01

    This paper describes a suggested tariff or payment for the local supply of reactive power from distributed energy resources. The authors consider four sample customers, and estimate the cost of supply of reactive power for each customer. The power system savings from the local supply of reactive power are also estimated for a hypothetical circuit. It is found that reactive power for local voltage regulation could be supplied to the distribution system economically by customers when new inverters are installed. The inverter would be supplied with a power factor of 0.8, and would be capable of local voltage regulation to a schedule supplied by the utility. Inverters are now installed with photovoltaic systems, fuel cells and microturbines, and adjustable-speed motor drives.

  18. Mild coal pretreatment to improve liquefaction reactivity

    SciTech Connect (OSTI)

    Miller, R.L.

    1991-01-01

    This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

  19. EPA/ITRC-RTDF permeable reactive barrier short course. Permeable reactive barriers: Application and deployment

    SciTech Connect (OSTI)

    Not Available

    1999-01-01

    This report focuses on the following: Permeable Reactive Barriers: Application and Deployment; Introduction to Permeable Reactive Barriers (PRBs) for Remediating and Managing Contaminated Groundwater in Situ; Collection and Interpretation of Design Data 1: Site Characterization for PRBs; Reactive Materials: Zero-Valent Iron; Collection and Interpretation of Design Data 2: Laboratory and Pilot Scale Tests; Design Calculations; Compliance Monitoring, Performance Monitoring and Long-Term Maintenance for PRBs; PRB Emplacement Techniques; PRB Permitting and Implementation; Treatment of Metals; Non-Metallic Reactive Materials; Economic Considerations for PRB Deployment; and Bibliography.

  20. EPA/ITRC-RTDF permeable reactive barrier short course. Permeable reactive barriers: Application and deployment

    SciTech Connect (OSTI)

    1999-11-01

    This report focuses on the following: Permeable Reactive Barriers: Application and Deployment; Introduction to Permeable Reactive Barriers (PRBs) for Remediating and Managing Contaminated Groundwater in Situ; Collection and Interpretation of Design Data 1: Site Characterization for PRBs; Reactive Materials: Zero-Valent Iron; Collection and Interpretation of Design Data 2: Laboratory and Pilot Scale Tests; Design Calculations; Compliance Monitoring, Performance Monitoring and Long-Term Maintenance for PRBs; PRB Emplacement Techniques; PRB Permitting and Implementation; Treatment of Metals; Non-Metallic Reactive Materials; Economic Considerations for PRB Deployment; and Bibliography.

  1. Experimental determination of the speciation, partitioning, and release of perrhenate as a chemical surrogate for pertechnetate from a sodalite-bearing multiphase ceramic waste form

    SciTech Connect (OSTI)

    Pierce, Eric M.; Lukens, Wayne W.; Fitts, Jeff. P.; Jantzen, Carol. M.; Tang, G.

    2013-12-01

    A key component to closing the nuclear fuel cycle is the storage and disposition of nuclear waste in geologic systems. Multiphase ceramic waste forms have been studied extensively as a potential host matrix for nuclear waste. Understanding the speciation, partitioning, and release behavior of radionuclides immobilized in multiphase ceramic waste forms is a critical aspect of developing the scientific and technical basis for nuclear waste management. In this study, we evaluated a sodalite-bearing multiphase ceramic waste form (i.e., fluidized-bed steam reform sodium aluminosilicate [FBSR NAS] product) as a potential host matrix for long-lived radionuclides, such as technetium (99Tc). The FBSR NAS material consists primarily of nepheline (ideally NaAlSiO4), anion-bearing sodalites (ideally M8[Al6Si6O24]X2, where M refers to alkali and alkaline earth cations and X refers to monovalent anions), and nosean (ideally Na8[AlSiO4]6SO4). Bulk X-ray absorption fine structure analysis of the multiphase ceramic waste form, suggest rhenium (Re) is in the Re(VII) oxidation state and has partitioned to a Re-bearing sodalite phase (most likely a perrhenate sodalite Na8[Al6Si6O24](ReO4)2). Rhenium was added as a chemical surrogate for 99Tc during the FBSR NAS synthesis process. The weathering behavior of the FBSR NAS material was evaluated under hydraulically unsaturated conditions with deionized water at 90 ?C. The steady-state Al, Na, and Si concentrations suggests the weathering mechanisms are consistent with what has been observed for other aluminosilicate minerals and include a combination of ion exchange, network hydrolysis, and the formation of an enriched-silica surface layer or phase. The steady-state S and Re concentrations are within an order of magnitude of the nosean and perrhenate sodalite solubility, respectively. The order of magnitude difference between the observed and predicted concentration for Re and S may be associated with the fact that the anion

  2. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  3. Water reactive hydrogen fuel cell power system

    SciTech Connect (OSTI)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  4. Nuclear engine flow reactivity shim control

    DOE Patents [OSTI]

    Walsh, J.M.

    1973-12-11

    A nuclear engine control system is provided which automatically compensates for reactor reactivity uncertainties at the start of life and reactivity losses due to core corrosion during the reactor life in gas-cooled reactors. The coolant gas flow is varied automatically by means of specially provided control apparatus so that the reactor control drums maintain a predetermined steady state position throughout the reactor life. This permits the reactor to be designed for a constant drum position and results in a desirable, relatively flat temperature profile across the core. (Official Gazette)

  5. A mixture model for shock compression of porous multi-component reactive materials

    SciTech Connect (OSTI)

    Baer, M.R.

    1993-07-01

    A multiphase mixture model is presented to describe shock compression of highly porous, multi-component powders. Volume fractions are represented as independent kinematic variables and thermodynamically-admissible phase interaction constitutive models are formulated in the context of a three phase system. Numerical solutions of the multiphase flow equations simulated impact on a porous layer of mixed powders of Al and Fe{sub 2}O{sub 3}. The multiphase model predicts dispersive compaction waves which have features similar to observed time-resolved pressure measurements.

  6. TOUGHREACT V2

    Energy Science and Technology Software Center (OSTI)

    2011-12-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program is written in Fortran 77 and was developed by introducing reactive chemistry into the multiphase flow code TOUGH2 V2. Interactions between mineral assemblages and fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically active. Precipitation and dissolution reactions can change formation porosity and permeability, and can also modifymore » the unsaturated flow properties of the rock. The code is distributed with a comprehensive user?s guide that includes sample problems addressing geothermal reservoirs and hydrothermal systems, nuclear waste isolation, groundwater quality, sequestration of carbon dioxide in saline aquifers, and supergene copper enrichment. The TOUGHREACT V2 package supports the following fluid property modules packaged into TOUGH2 V2.0 (CR-1574): EOS1, EOS2, EOS3, EOS4, EOS7, EOS9, and ECO2N. New features in V2 include multi-site surface complexation and ion exchange, aqueous kinetics, restructuring for faster execution, and more flexible input formats.« less

  7. Dual FIB-SEM 3D imaging and lattice boltzmann modeling of porosimetry and multiphase flow in chalk.

    SciTech Connect (OSTI)

    Rinehart, Alex; Petrusak, Robin (Advanced Resources International, Inc., Arlington, VA); Heath, Jason E.; Dewers, Thomas A.; Yoon, Hongkyu

    2010-12-01

    Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage.

  8. Method For Reactivating Solid Catalysts Used For Alklation Reactions

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2005-05-03

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  9. Method for reactivating solid catalysts used in alkylation reactions

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  10. Neutron Radiography Reactor Reactivity -- Focused Lessons Learned

    SciTech Connect (OSTI)

    Eric Woolstenhulme; Randal Damiana; Kenneth Schreck; Ann Marie Phillips; Dana Hewit

    2010-11-01

    As part of the Global Threat Reduction Initiative, the Neutron Radiography Reactor (NRAD) at the Idaho National Laboratory (INL) was converted from using highly enriched uranium (HEU) to low enriched uranium (LEU) fuel. After the conversion, NRAD resumed operations and is meeting operational requirements. Radiography image quality and the number of images that can be produced in a given time frame match pre-conversion capabilities. However, following the conversion, NRADs excess reactivity with the LEU fuel was less than it had been with the HEU fuel. Although some differences between model predictions and actual performance are to be expected, the lack of flexibility in NRADs safety documentation prevented adjusting the reactivity by adding more fuel, until the safety documentation could be modified. To aid future reactor conversions, a reactivity-focused Lessons Learned meeting was held. This report summarizes the findings of the lessons learned meeting and addresses specific questions posed by DOE regarding NRADs conversion and reactivity.

  11. REDUCING UNCERTAINTIES IN MODEL PREDICTIONS VIA HISTORY MATCHING OF CO2 MIGRATION AND REACTIVE TRANSPORT MODELING OF CO2 FATE AT THE SLEIPNER PROJECT

    SciTech Connect (OSTI)

    Zhu, Chen

    2015-03-31

    An important question for the Carbon Capture, Storage, and Utility program is “can we adequately predict the CO2 plume migration?” For tracking CO2 plume development, the Sleipner project in the Norwegian North Sea provides more time-lapse seismic monitoring data than any other sites, but significant uncertainties still exist for some of the reservoir parameters. In Part I, we assessed model uncertainties by applying two multi-phase compositional simulators to the Sleipner Benchmark model for the uppermost layer (Layer 9) of the Utsira Sand and calibrated our model against the time-lapsed seismic monitoring data for the site from 1999 to 2010. Approximate match with the observed plume was achieved by introducing lateral permeability anisotropy, adding CH4 into the CO2 stream, and adjusting the reservoir temperatures. Model-predicted gas saturation, CO2 accumulation thickness, and CO2 solubility in brine—none were used as calibration metrics—were all comparable with the interpretations of the seismic data in the literature. In Part II & III, we evaluated the uncertainties of predicted long-term CO2 fate up to 10,000 years, due to uncertain reaction kinetics. Under four scenarios of the kinetic rate laws, the temporal and spatial evolution of CO2 partitioning into the four trapping mechanisms (hydrodynamic/structural, solubility, residual/capillary, and mineral) was simulated with ToughReact, taking into account the CO2-brine-rock reactions and the multi-phase reactive flow and mass transport. Modeling results show that different rate laws for mineral dissolution and precipitation reactions resulted in different predicted amounts of trapped CO2 by carbonate minerals, with scenarios of the conventional linear rate law for feldspar dissolution having twice as much mineral trapping (21% of the injected CO2) as scenarios with a Burch-type or Alekseyev et al.–type rate law for feldspar dissolution (11%). So far, most reactive transport modeling (RTM) studies for

  12. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    SciTech Connect (OSTI)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  13. Structure and Reactivity of X-ray Amorphous Uranyl Peroxide,...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U 2 O 7 Prev Next Title: Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U 2 O 7 ...

  14. Reactivity control assembly for nuclear reactor. [LMFBR

    DOE Patents [OSTI]

    Bollinger, L.R.

    1982-03-17

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  15. Nuclear reactivity control using laser induced polarization

    DOE Patents [OSTI]

    Bowman, Charles D.

    1991-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  16. Nuclear reactivity control using laser induced polarization

    DOE Patents [OSTI]

    Bowman, Charles D.

    1990-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neturons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  17. Multiscale reactive molecular dynamics | Argonne Leadership Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility reactive molecular dynamics Authors: Chris KnighT, Gerrick E. Lindberg, Gregory A. Voth Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data

  18. Computationally Efficient Multiconfigurational Reactive Molecular Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility Computationally Efficient Multiconfigurational Reactive Molecular Dynamics Authors: Takefumi Yamashita, Yuxing Peng, Chris Knight, Gregory A. Voth It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial

  19. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors

    SciTech Connect (OSTI)

    Cassiède, M.; Shaw, J. M.

    2015-04-15

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [−35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study.

  20. DOE - Office of Legacy Management -- Reactive Metals Inc - OH 10

    Office of Legacy Management (LM)

    Reactive Metals Inc - OH 10 FUSRAP Considered Sites Site: Reactive Metals Inc. (OH.10) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Ashtabula Site Documents Related to Reactive Metals Inc

  1. SU-E-T-510: Mathematical Analysis of Approximate Biological Effective Dose (BED) Calculation for Multi-Phase Radiotherapy Treatment Plans

    SciTech Connect (OSTI)

    Kauweloa, K; Gutierrez, A; Bergamo, A; Stathakis, S; Papanikolaou, N; Mavroidis, P

    2014-06-01

    Purpose: There is growing interest about biological effective dose (BED) and its application in treatment plan evaluation due to its stronger correlation with treatment outcome. An approximate biological effective dose (BEDA) equation was introduced to simplify BED calculations by treatment planning systems in multi-phase treatments. The purpose of this work is to reveal its mathematical properties relative to the true, multi-phase BED (BEDT) equation. Methods: The BEDT equation was derived and used to reveal the mathematical properties of BEDA. MATLAB (MathWorks, Natick, MA) was used to simulate and analyze common and extreme clinical multi-phase cases. In those cases, percent error (Perror) and Bland-Altman analysis were used to study the significance of the inaccuracies of BEDA for different combinations of total doses, numbers of fractions, doses per fractions and ? over ? values. All the calculations were performed on a voxel-basis in order to study how dose distributions would affect the accuracy of BEDA. Results: When the voxel dose-per-fractions (DPF) delivered by both phases are equal, BEDA and BEDT are equal. In heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the imprecision of BEDA is greater. It was shown that as the ? over ? ratio increased the accuracy of BEDA would improve. Examining twenty-four cases, it was shown that the range of DPF ratios for a 3 Perror varied from 0.32 to 7.50Gy, whereas for Perror of 1 the range varied from 0.50 to 2.96Gy. Conclusion: The DPF between the different phases should be equal in order to render BEDA accurate. OARs typically receive heterogeneous dose distributions hence the probability of equal DPFs is low. Consequently, the BEDA equation should only be used for targets or OARs that receive uniform or very similar dose distributions by the different treatment phases.

  2. T2WELL/ECO2N

    Energy Science and Technology Software Center (OSTI)

    002966IBMPC00 T2Well/ECO2N Version 1.0: Multiphase and Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water http:..esd.lbl.gov/tough/licensing.html

  3. iTOUGH2 Command Reference

    SciTech Connect (OSTI)

    Finsterle, Stefan

    2002-06-18

    iTOUGH2 is a program for parameter estimation, sensitivity analysis, and uncertainty propagation analysis. It is based on the TOUGH2 simulator for non-isothermal multiphase flow in fractured and porous media. This report contains a detailed description of all iTOUGH2 commands.

  4. Fossil power plant layup and reactivation

    SciTech Connect (OSTI)

    Tsou, J.L.

    1996-07-01

    In recent years, many utilities have developed excess generation capacity problems during period of low system load growth, particularly with new generation units coming on-line. System load studies may indicate that the situation is temporary and higher generation capacity will be needed in the near future. The objective of layup is to prevent component deterioration during the long shut down periods. This paper discusses equipment preservation practices in use in the industry and the advantages/disadvantages of various layup methods. Other issues related to plant layup and reactivation are also presented.

  5. Preparation of reactive beta-dicalcium silicate

    DOE Patents [OSTI]

    Shen, M.S.; Chen, J.M.; Yang, R.T.

    1980-02-28

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica, and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane, and hydrogen, at a temperature of about 850 to 1000/sup 0/C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  6. Preparation of reactive beta-dicalcium silicate

    DOE Patents [OSTI]

    Shen, Ming-Shing (Laramie, WY, NJ); Chen, James M. (Rahway, NJ); Yang, Ralph T. (Amherst, NY)

    1982-01-01

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane and hydrogen, at a temperature of about 850.degree.-1000.degree. C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  7. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect (OSTI)

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2010-09-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  8. Determining conductivity and mobility values of individual components in multiphase composite Cu{sub 1.97}Ag{sub 0.03}Se

    SciTech Connect (OSTI)

    Day, Tristan W.; Brown, David R.; Snyder, G. Jeffrey; Zeier, Wolfgang G.; Melot, Brent C.

    2014-10-27

    The intense interest in phase segregation in thermoelectrics as a means to reduce the lattice thermal conductivity and to modify the electronic properties from nanoscale size effects has not been met with a method for separately measuring the properties of each phase assuming a classical mixture. Here, we apply effective medium theory for measurements of the in-line and Hall resistivity of a multiphase composite, in this case Cu{sub 1.97}Ag{sub 0.03}Se. The behavior of these properties with magnetic field as analyzed by effective medium theory allows us to separate the conductivity and charge carrier mobility of each phase. This powerful technique can be used to determine the matrix properties in the presence of an unwanted impurity phase, to control each phase in an engineered composite, and to determine the maximum carrier concentration change by a given dopant, making it the first step toward a full optimization of a multiphase thermoelectric material and distinguishing nanoscale effects from those of a classical mixture.

  9. Thermodynamic approach to the stability of multi-phase systems. Application to the Y2O3–Fe system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Samolyuk, German D.; Osetskiy, Yury N.

    2015-07-07

    Oxide-metal systems (OMSs) are important in many practical applications, and therefore, are under extensive studies using a wide range of techniques. The most accurate theoretical approaches are based on density functional theory (DFT), which are limited to ~102 atoms. Multi-scale approaches, e.g., DFT+Monte Carlo, are often used to model OMSs at the atomic level. These approaches can describe qualitatively the kinetics of some processes but not the overall stability of OMSs. In this paper, we propose a thermodynamic approach to study equilibrium in multiphase systems, which can be sequentially enhanced by considering different defects and microstructures. We estimate the thermodynamicmore » equilibrium by minimization the free energy of the whole multiphase system using a limited set of defects and microstructural objects for which the properties are calculated by DFT. As an example, we consider Y2O3+bcc Fe with vacancies in both the Y2O3 and bcc Fe phases, Y substitutions and O interstitials in Fe, Fe impurities and antisite defects in Y2O3. The output of these calculations is the thermal equilibrium concentration of all the defects for a particular temperature and composition. The results obtained confirmed the high temperature stability of yttria in iron. As a result, model development towards more accurate calculations is discussed.« less

  10. Thermodynamic approach to the stability of multi-phase systems. Application to the Y2O3–Fe system

    SciTech Connect (OSTI)

    Samolyuk, German D.; Osetskiy, Yury N.

    2015-07-07

    Oxide-metal systems (OMSs) are important in many practical applications, and therefore, are under extensive studies using a wide range of techniques. The most accurate theoretical approaches are based on density functional theory (DFT), which are limited to ~102 atoms. Multi-scale approaches, e.g., DFT+Monte Carlo, are often used to model OMSs at the atomic level. These approaches can describe qualitatively the kinetics of some processes but not the overall stability of OMSs. In this paper, we propose a thermodynamic approach to study equilibrium in multiphase systems, which can be sequentially enhanced by considering different defects and microstructures. We estimate the thermodynamic equilibrium by minimization the free energy of the whole multiphase system using a limited set of defects and microstructural objects for which the properties are calculated by DFT. As an example, we consider Y2O3+bcc Fe with vacancies in both the Y2O3 and bcc Fe phases, Y substitutions and O interstitials in Fe, Fe impurities and antisite defects in Y2O3. The output of these calculations is the thermal equilibrium concentration of all the defects for a particular temperature and composition. The results obtained confirmed the high temperature stability of yttria in iron. As a result, model development towards more accurate calculations is discussed.

  11. FEHMN 1.0: Finite element heat and mass transfer code

    SciTech Connect (OSTI)

    Zyvoloski, G.; Dash, Z.; Kelkar, S.

    1991-04-01

    A computer code is described which can simulate non-isothermal multiphase multicomponent flow in porous media. It is applicable to natural-state studies of geothermal systems and ground-water flow. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved using the finite element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat and mass transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model and the numerical solution procedure are provided in this report. A user`s guide and sample problems are also included. The main use of FEHMN will be to assist in the understanding of flow fields in the saturated zone below the proposed Yucca Mountain Repository. 33 refs., 27 figs., 12 tabs.

  12. FEHMN 1.0: Finite element heat and mass transfer code; Revision 1

    SciTech Connect (OSTI)

    Zyvoloski, G.; Dash, Z.; Kelkar, S.

    1992-05-01

    A computer code is described which can simulate non-isothermal multi-phase multicomponent flow in porous media. It is applicable to natural-state studies of geothermal systems and groundwater flow. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved sing the finite element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat and mass transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model and the numerical solution procedure are provided in this report. A user`s guide and sample problems are also included. The FEHMN (Finite Element Heat and Mass Nuclear) code, described in this report, is a version of FEHM (Finite Element Heat and Mass, Zyvoloski et al., 1988) developed for the Yucca Mountain Site Characterization Project (YMP). The main use of FEHMN will be to assist in the understanding of flow fields in the saturated zone below the potential Yucca Mountain repository.

  13. Multiphase Dissolution Model

    Energy Science and Technology Software Center (OSTI)

    1999-06-08

    This program simulates the leaching behavior of glass-ceramic monoliths or particles immersed in liquids. The monoliths or particles may be composed of up to 10 separate compounds, each with different densities and forward leach rate constants. Each compound in turn can be composed of up to 10 species (elements, oxides, etc.). A data file is used to store the physical information about the compounds, i.e., density, forward rate constant and the percentages of each speciesmore » making up each compound. Once the program has input the data file and the user has setup the experimental parameters, the program begins a calculation loop for each time interval, :{Delta}t [days]. The time interval is calculated by dividing the duration of the experiment by the number of data points desired by the user. The program can simulate static conditions as would be the case for a standard leach test or under flowing water conditions which might be found in nature. It can also account for precipitation out of solution for various compounds, if the precipitation coefficients are known. An output data file is created showing the amount of each species in solution as a function of time. An accompanying program, LDATA, is used to create and manage data files for input into the MDM program. The files contain physical data about the compounds, and species making up the material.« less

  14. Geopolymer with hierarchically meso-/macroporous structures from reactive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emulsion templating Geopolymer with hierarchically meso-/macroporous structures from reactive emulsion templating Authors: Medpelli, D., Seo, J.-M., and Seo, D.-K. Title: Geopolymer with hierarchically meso-/macroporous structures from reactive emulsion templating Source: J. Amer. Ceram. Soc. Year: 2014 Volume: 97 (1) Pages: 70-73 ABSTRACT: We present a simple synthetic route to hierarchically porous geopolymers using triglyceride oil for a reactive emulsion template. In the new synthetic

  15. Comparison of Conventional Diesel and Reactivity Controlled Compression

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ignition (RCCI) Combustion in a Light-Duty Engine | Department of Energy Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine CFD modeling was used to compare conventional diesel and dual-fuel Reactivity Controlled Compression Ignition combustion at US Tier 2 Bin 5 NOx levels, while accounting for Diesel Exhaust Fluid

  16. Advancing reactive tracer methods for measuring thermal evolution in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO2-and water-based geothermal reservoirs | Department of Energy Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop reactive tracer method for monitoring thermal drawdown in enhanced geothermal systems. tracers_hull_thermal_evolution.pdf (852.51

  17. High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuel Reactivity Controlled Compression Ignition Combustion High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion An optimized dual-fuel PCCI concept, RCCI, is proposed. deer10_reitz.pdf (960.46 KB) More Documents & Publications Effect of Compression Ratio and Piston Geometry on RCCI load limit Optimization of Advanced Diesel Engine Combustion Strategies Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI)

  18. Advancing Reactive Tracer Methods for Measurement of Thermal...

    Office of Scientific and Technical Information (OSTI)

    These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel tracers that would improve ...

  19. Review of Reactivity Experiments for Lithium Ternary Alloys ...

    Office of Scientific and Technical Information (OSTI)

    The plant uses lithium in both the primary coolant and blanket; therefore, lithium related hazards are of primary concern. Reducing chemical reactivity is the primary motivation ...

  20. Persistence of Hydrologic Variables and Reactive Stream Solute...

    Office of Scientific and Technical Information (OSTI)

    Watershed Citation Details In-Document Search Title: Persistence of Hydrologic Variables and Reactive Stream Solute Concentrations in an East Tennessee Watershed Time and ...

  1. Double Shock Experiments and Reactive Flow Modeling of High Pressure...

    Office of Scientific and Technical Information (OSTI)

    Double Shock Experiments and Reactive Flow Modeling of High Pressure LX-17 Detonation Reaction Product States Citation Details In-Document Search Title: Double Shock Experiments ...

  2. Reactivity of the Gold/Water Interface During Selective Oxidation...

    Office of Scientific and Technical Information (OSTI)

    the GoldWater Interface During Selective Oxidation Catalysis Citation Details In-Document Search Title: Reactivity of the GoldWater Interface During Selective Oxidation Catalysis ...

  3. CL-20 Reactivity in the Subsurface Environment and Potential...

    Office of Scientific and Technical Information (OSTI)

    and Potential for Migration Citation Details In-Document Search Title: CL-20 Reactivity in the Subsurface Environment and Potential for Migration Hexanitrohexaazaisowurtzit...

  4. Sample Memorandum to Reactivate a Directive Placed on Hold (NOTE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sample Memorandum to Reactivate a Directive Placed on Hold (NOTE: Per Office of Executive Secretariat procedures, please use Calibri, 12 point font for this memorandum.) (Effective...

  5. Advancing Reactive Tracer Methods for Measuring Thermal Evolution...

    Open Energy Info (EERE)

    and interpret reactive tracer tests - Development of suitable tracers to cover a range of reservoir temperature and residence time conditions - Testing the tools and tracers in a...

  6. WP-07 Reactive Power Supplemental Proposal (wp07/initial)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This modification is necessary in light of recent FERC cases regarding generation input cost for generation supplied reactive power and voltage control. On February 13, BPA...

  7. PFLOTRAN User Manual: A Massively Parallel Reactive Flow and...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: PFLOTRAN User Manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes Citation Details In-Document Search...

  8. PFLOTRAN User Manual: A Massively Parallel Reactive Flow and...

    Office of Scientific and Technical Information (OSTI)

    PFLOTRAN User Manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes Lichtner, Peter OFM Research; Karra, Satish Los...

  9. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ignition Drive Cycle Fuel Economy and Emissions Estimates Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates Vehicle ...

  10. Hydraulic Conductivity of the Monticello Permeable Reactive Barrier...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Caon City, Colorado, Uranium Mill

  11. Comparison of Conventional Diesel and Reactivity Controlled Compressio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Combustion Strategies High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion Effect of Compression Ratio and Piston Geometry on RCCI load limit

  12. Reactive Molecular Simulations of Protonation of Water Clusters...

    Office of Scientific and Technical Information (OSTI)

    of Water Clusters and Depletion of Acidity in H-ZSM-5 Zeolite Citation Details In-Document Search Title: Reactive Molecular Simulations of Protonation of Water Clusters ...

  13. Characterization of Dual-Fuel Reactivity Controlled Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (RCCI) Using Hydrated Ethanol and Diesel Fuel Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel This study ...

  14. Chemically Reactive Working Fluids for the Capture and Transport...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planar Optical Waveguide Coupler Transformers for High-Power Solar Enegy Collection and Transmission Chemically Reactive Working Fluids Low-Cost Light Weigh Thin Film Solar ...

  15. Review of existing reactive transport software

    SciTech Connect (OSTI)

    Glassley, W., LLNL

    1998-02-03

    Simulations of thermal and hydrological evolution following the potential emplacement of a subterranean nuclear waste repository at Yucca Mountain, NV provide data that suggest the inevitability of dependent, simultaneous chemical evolution in this system. These chemical changes will modify significantly both the magnitude and structure of local porosity and permeability; hence, they will have a dynamic feedback effect on the evolving thermal and hydrological regime. Yet, despite this intimate interdependence of transport and chemical processes, a rigorous quantitative analysis of the post- emplacement environment that incorporates this critical feedback mechanism has not been completed to date. As an initial step in this direction, the present document outlines the fundamental chemical and transport processes that must be accounted for in such an analysis, and reviews the inventory of existing software that encodes these processed in explicitly coupled form. A companion report describes the prioritization of specific capabilities that are needed for modeling post-emplacement reactive transport at Yucca Mountain.

  16. A Uranium Bioremediation Reactive Transport Benchmark

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Sengor, Sevinc; Fang, Yilin

    2015-06-01

    A reactive transport benchmark problem set has been developed based on in situ uranium bio-immobilization experiments that have been performed at a former uranium mill tailings site in Rifle, Colorado, USA. Acetate-amended groundwater stimulates indigenous microorganisms to catalyze the reduction of U(VI) to a sparingly soluble U(IV) mineral. The interplay between the flow, acetate loading periods and rates, microbially-mediated and geochemical reactions leads to dynamic behavior in metal- and sulfate-reducing bacteria, pH, alkalinity, and reactive mineral surfaces. The benchmark is based on an 8.5 m long one-dimensional model domain with constant saturated flow and uniform porosity. The 159-day simulation introduces acetate and bromide through the upgradient boundary in 14-day and 85-day pulses separated by a 10 day interruption. Acetate loading is tripled during the second pulse, which is followed by a 50 day recovery period. Terminal electron accepting processes for goethite, phyllosilicate Fe(III), U(VI), and sulfate are modeled using Monod-type rate laws. Major ion geochemistry modeled includes mineral reactions, as well as aqueous and surface complexation reactions for UO2++, Fe++, and H+. In addition to the dynamics imparted by the transport of the acetate pulses, U(VI) behavior involves the interplay between bioreduction, which is dependent on acetate availability, and speciation-controlled surface complexation, which is dependent on pH, alkalinity and available surface complexation sites. The general difficulty of this benchmark is the large number of reactions (74), multiple rate law formulations, a multisite uranium surface complexation model, and the strong interdependency and sensitivity of the reaction processes. Results are presented for three simulators: HYDROGEOCHEM, PHT3D, and PHREEQC.

  17. Flash pyrolysis of biomass with reactive and non-reactive gases

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.

    1982-06-01

    The rapid or flash pyrolysis of wood biomass is being studied in a 1'' downflow entrained tubular reactor with a capacity of approximately 1 lb/hr of wood. The process chemistry data is being obtained with the view of building a data base and ascertaining the value of producing synthetic fuels and chemical feedstocks by the flash pyrolysis method. Data is being obtained on the effect of non-reactive pyrolyzing gases and the effect of reactive gases, hydrogen for the flash hydropyrolysis of wood and methane for flash methanolysis of wood. Preliminary process design and analysis has been made. The yield of ethylene and benzene is especially attractive for the production of chemical feedstocks from the reaction of methane and wood in a flash methanolysis process.

  18. Reactive ion etched substrates and methods of making and using

    DOE Patents [OSTI]

    Rucker, Victor C.; Shediac, Rene; Simmons, Blake A.; Havenstrite, Karen L.

    2007-08-07

    Disclosed herein are substrates comprising reactive ion etched surfaces and specific binding agents immobilized thereon. The substrates may be used in methods and devices for assaying or isolating analytes in a sample. Also disclosed are methods of making the reactive ion etched surfaces.

  19. A Sub-grid Model for an Array of Immersed Cylinders in Coarse-grid Multiphase Flow Simulations of a Carbon Capture Device

    SciTech Connect (OSTI)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2012-12-01

    A post-combustion carbon-capture system utilizing a bubbling fluidized bed of sorbent particles is currently being developed as a part of the Carbon Capture and Simulation Initiative (CCSI) efforts. Adsorption of carbon dioxide (CO2) by these amine based sorbent particles is exothermic and arrays of immersed cylindrical heat transfer tubes are often utilized to maintain the lower temperatures favorable for CO2 capture. In multiphase computational fluid dynamics (CFD) simulations of the full-scale devices, which can be up to 10 m in size, approximately 103 cells are required in each dimension to accurately resolve the cylindrical tubes, which are only a few centimeters in diameter. Since the tubes cannot be resolved explicitly in CFD simulations, alternate methods to account for the influence of these immersed objects need to be developed.

  20. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOE Patents [OSTI]

    Ortiz, M.G.; Boucher, T.J.

    1998-10-27

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  1. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOE Patents [OSTI]

    Ortiz, Marcos German; Boucher, Timothy J.

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  2. Variational reactivity estimates: new analyses and new results

    SciTech Connect (OSTI)

    Favorite, Jeffrey A

    2009-01-01

    A modified form of the variational estimate of the reactivity worth ofa perturbation was previously developed to extend the range of applicability of variational perturbation theory for perturbations leading to negative reactivity worths. Recent numerical results challenged the assumptions behind the modified form. In this paper, more results are obtained, leading to the conclusion that sometimes the modified form extends the range ofapplicability of variational perturbation theory for positive reactivity worths as well, and sometimes the standard variational form is more accurate for negative-reactivity perturbations. In addition, this paper proves that using the exact generalized adjoint function would lead to an inaccurate variational reactivity estimate when the error in the first-order estimate is large; the standard generalized adjoint function, an approximation to the exact one, leads to Lore accurate results. This conclusion is also demonstrated numerically. Transport calculations use the PARTISN multi group discrete ordinates code

  3. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    SciTech Connect (OSTI)

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  4. Coupled multiphase flow and closure analysis of repository response to waste-generated gas at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Freeze, G.A.; Larson, K.W.; Davies, P.B.

    1995-10-01

    A long-term assessment of the Waste Isolation Pilot Plant (WIPP) repository performance must consider the impact of gas generation resulting from the corrosion and microbial degradation of the emplaced waste. A multiphase fluid flow code, TOUGH2/EOS8, was adapted to model the processes of gas generation, disposal room creep closure, and multiphase (brine and gas) fluid flow, as well as the coupling between the three processes. System response to gas generation was simulated with a single, isolated disposal room surrounded by homogeneous halite containing two anhydrite interbeds, one above and one below the room. The interbeds were assumed to have flow connections to the room through high-permeability, excavation-induced fractures. System behavior was evaluated by tracking four performance measures: (1) peak room pressure; (2) maximum brine volume in the room; (3) total mass of gas expelled from the room; and (4) the maximum gas migration distance in an interbed. Baseline simulations used current best estimates of system parameters, selected through an evaluation of available data, to predict system response to gas generation under best-estimate conditions. Sensitivity simulations quantified the effects of parameter uncertainty by evaluating the change in the performance measures in response to parameter variations. In the sensitivity simulations, a single parameter value was varied to its minimum and maximum values, representative of the extreme expected values, with all other parameters held at best-estimate values. Sensitivity simulations identified the following parameters as important to gas expulsion and migration away from a disposal room: interbed porosity; interbed permeability; gas-generation potential; halite permeability; and interbed threshold pressure. Simulations also showed that the inclusion of interbed fracturing and a disturbed rock zone had a significant impact on system performance.

  5. Monitoring CO 2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time lapse electrical resistivity tomography

    SciTech Connect (OSTI)

    Chuan Lu; CHI Zhang; Hai Hanag; Timothy C. Johnson

    2014-04-01

    Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoring the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.

  6. Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fria Reservoir, Poza Rica-Altamira Field, Mexico

    SciTech Connect (OSTI)

    Birkle, P.; Pruess, K.; Xu, T.; Figueroa, R.A. Hernandez; Lopez, M. Diaz; Lopez, E. Contreras

    2008-10-01

    Waterflooding for enhanced oil recovery requires that injected waters must be chemically compatible with connate reservoir waters, in order to avoid mineral dissolution-and-precipitation cycles that could seriously degrade formation permeability and injectivity. Formation plugging is a concern especially in reservoirs with a large content of carbonates, such as calcite and dolomite, as such minerals typically react rapidly with an aqueous phase, and have strongly temperature-dependent solubility. Clay swelling can also pose problems. During a preliminary waterflooding pilot project, the Poza Rica-Altamira oil field, bordering the Gulf coast in the eastern part of Mexico, experienced injectivity loss after five months of reinjection of formation waters into well AF-847 in 1999. Acidizing with HCl restored injectivity. We report on laboratory experiments and reactive chemistry modeling studies that were undertaken in preparation for long-term waterflooding at Agua Frma. Using analogous core plugs obtained from the same reservoir interval, laboratory coreflood experiments were conducted to examine sensitivity of mineral dissolution and precipitation effects to water composition. Native reservoir water, chemically altered waters, and distilled water were used, and temporal changes in core permeability, mineral abundances and aqueous concentrations of solutes were monitored. The experiments were simulated with the multi-phase, nonisothermal reactive transport code TOUGHREACT, and reasonable to good agreement was obtained for changes in solute concentrations. Clay swelling caused an additional impact on permeability behavior during coreflood experiments, whereas the modeled permeability depends exclusively on chemical processes. TOUGHREACT was then used for reservoir-scale simulation of injecting ambient-temperature water (30 C, 86 F) into a reservoir with initial temperature of 80 C (176 F). Untreated native reservoir water was found to cause serious porosity and

  7. Regional respiratory tract absorption of inhaled reactive gases

    SciTech Connect (OSTI)

    Miller, F.J.; Overton, J.H.; Kimbell, J.S.; Russell, M.L.

    1992-06-29

    Highly reactive gases present unique problems due to the number of factors which must be taken into account to determine regional respiratory tract uptake. The authors reviewed some of the physical, chemical, and biological factors that affect dose and that must be understood to interpret toxicological data, to evaluate experimental dosimetry studies, and to develop dosimetry models. Selected dosimetry experiments involving laboratory animals and humans were discussed, showing the variability and uptake according to animal species and respiratory tract region for various reactive gases. New experimental dosimetry approaches, such as those involving isotope ratio mass spectroscopy and cyclotron generation reactive gases, were discussed that offer great promise for improving the ability to study regional respiratory tract absorption of reactive gases. Various dosimetry modeling applications were discussed which demonstrate: the importance of airflow patterns for site-specific dosimetry in the upper respiratory tract, the influence of the anatomical model used to make inter- and intraspecies dosimetric comparisons, the influence of tracheobronchial path length on predicted dose curves, and the implications of ventilatory unit structure and volume on dosimetry and response. Collectively, these examples illustrate important aspects of regional respiratory tract absorption of inhaled reactive gases. Given the complex nature of extent and pattern of injury in the respiratory tract from exposure to reactive gases, understanding interspecies differences in the absorption of reactive gases will continue to be an important area for study.

  8. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOE Patents [OSTI]

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  9. Method for preparing hydride configurations and reactive metal surfaces

    DOE Patents [OSTI]

    Silver, G.L.

    1984-05-18

    A method for preparing reactive metal surfaces, particularly uranium surfaces is disclosed, whereby the metal is immediately reactive to hydrogen gas at room temperature and low pressure. The metal surfaces are first pretreated by exposure to an acid which forms an adherent hydride-bearing composition on the metal surface. Subsequent heating of the pretreated metal at a temperature sufficient to decompose the hydride coating in vacuum or inert gas renders the metal surface instantaneously reactive to hydrogen gas at room temperature and low pressure.

  10. Experimental Observation of Quantum Oscillation of Surface Chemical Reactivities

    SciTech Connect (OSTI)

    Ma, X.; Jiang, P.; Qi, Y.; Jia, J.; Yang, Y.; Duan, W.; Li, W. X.; Bao, X.; Zhang, S. B.

    2007-05-29

    Here we present direct observation of a quantum reactivity with respect to the amounts of O2 adsorbed and the rates of surface oxidation as a function of film thickness on ultrathin (2-6 nm) Pb mesas by scanning tunneling microscopy. Simultaneous spectroscopic measurements on the electronic structures reveal a quantum oscillation that originates from quantum well states of the mesas, as a generalization of the Fabry-P{acute e}rot modes of confined electron waves. We expect the quantum reactivity to be a general phenomenon for most ultrathin metal films with broad implications, such as nanostructure tuning of surface reactivities and rational design of heterogeneous catalysts.

  11. CO2 leakage impacts on shallow groundwater. Field-scale reactive-transport simulations informed by observations at a natural analog site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Keating, Elizabeth H.; Hakala, J. Alexandra; Viswanathan, Hari; Carey, J. William; Pawar, Rajesh; Guthrie, George D.; Fessenden-Rahn, Julianna

    2013-03-01

    It is challenging to predict the degree to which shallow groundwater might be affected by leaks from a CO2 sequestration reservoir, particularly over long time scales and large spatial scales. In this study observations at a CO2 enriched shallow aquifer natural analog were used to develop a predictive model which is then used to simulate leakage scenarios. This natural analog provides the opportunity to make direct field observations of groundwater chemistry in the presence of elevated CO2, to collect aquifer samples and expose them to CO2 under controlled conditions in the laboratory, and to test the ability of multiphase reactivemore » transport models to reproduce measured geochemical trends at the field-scale. The field observations suggest that brackish water entrained with the upwelling CO2 are a more significant source of trace metals than in situ mobilization of metals due to exposure to CO2. The study focuses on a single trace metal of concern at this site: U. Experimental results indicate that cation exchange/adsorption and dissolution/precipitation of calcite containing trace amounts of U are important reactions controlling U in groundwater at this site, and that the amount of U associated with calcite is fairly well constrained. Simulations incorporating these results into a 3-D multi-phase reactive transport model are able to reproduce the measured ranges and trends between pH, pCO2, Ca, total C, U and Cl-at the field site. Although the true fluxes at the natural analog site are unknown, the cumulative CO2 flux inferred from these simulations are approximately equivalent to 37.8E-3 MT, approximately corresponding to a .001% leak rate for injection at a large (750 MW) power plant. The leakage scenario simulations suggest that if the leak only persists for a short time the volume of aquifer contaminated by CO2-induced mobilization of U will be relatively small, yet persistent over 100 a.« less

  12. Flash pyrolysis of biomass with reactive and non-reactive gases

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

    1984-03-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H/sub 2/ and CH/sub 4/ and with the non-reactive gases He and N/sub 2/ is being determined in an 1'' downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000/sup 0/C. With hydrogen, flash hydropyrolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000/sup 0/C and approximately 1 sec residence time, the ethylene yield based on pine wood carbon conversion is 27%, for benzene it is 25% and for CO the yield is 39%, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood. The yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, thus indicating a free radical reaction between CH/sub 4/ and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicate an economically competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 7 references, 13 figures, 1 table.

  13. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High...

    Office of Scientific and Technical Information (OSTI)

    and Reactivity Control for Salt-Cooled High Temperature Reactors Citation Details In-Document Search Title: Pebble Fuel Handling and Reactivity Control for Salt-Cooled High ...

  14. Coupled hydro-mechanical processes and fault reactivation induced...

    Office of Scientific and Technical Information (OSTI)

    Coupled hydro-mechanical processes and fault reactivation induced by Co2 Injection in a three-layer storage formation Citation Details In-Document Search This content will become ...

  15. Laboratory and field scale demonstration of reactive barrier systems

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C.; Cantrell, K.; Stewart, W.

    1996-10-01

    In an effort to devise a cost efficient technology for remediation of uranium contaminated groundwater, the Department of Energy`s Uranium Mill Tailings Remedial Action (DOE-UMTRA) Program through Sandia National Laboratories (SNL) fabricated a pilot scale research project utilizing reactive subsurface barriers at an UMTRA site in Durango, Colorado. A reactive subsurface barrier is produced by placing a reactant material (in this experiment, metallic iron) in the flow path of the contaminated groundwater. The reactive media then removes and/or transforms the contaminant(s) to regulatory acceptable levels. Experimental design and results are discussed with regard to other potential applications of reactive barrier remediation strategies at other sites with contaminated groundwater problems.

  16. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1987-10-27

    AMAX Research Development Center (AMAX R D) has been investigating methods for improving the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hog coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. The reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point in a bench-scale fixed-bed reactor. The durability may be defined as the ability of the sorbent to maintain its reactivity and other important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and regeneration. Two base case sorbents, spherical pellets and cylindrical extrudes used in related METC sponsored projects, are being used to provide a basis for the comparison of physical characteristics and chemical reactivity.

  17. Highly reactive light-dependent monoterpenes in the Amazon

    SciTech Connect (OSTI)

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-06

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissions of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.

  18. Pre-plated reactive diffusion-bonded battery electrode plaques

    DOE Patents [OSTI]

    Maskalick, Nicholas J.

    1984-01-01

    A high strength, metallic fiber battery plaque is made using reactive diffusion bonding techniques, where a substantial amount of the fibers are bonded together by an iron-nickel alloy.

  19. Reactivity of Chromium(III) Nutritional Supplements in Biological...

    Office of Scientific and Technical Information (OSTI)

    Reactivities of Cr(III) complexes used in nutritional formulations, including Cr3O(OCOEt)6(OH2)3+ (A), Cr(pic)3 (pic) 2-pyridinecarboxylato(-) (B), and trans-CrCl2(OH2)4+ ...

  20. Analytical methods for determining the reactivity of pyrochemical salts

    SciTech Connect (OSTI)

    Phillips, A.G.; Stakebake, J.L.

    1994-05-01

    Pyrochemical processes used for the purification of plutonium have generated quantities of residue that contain varying amounts of reactive metals such as potassium, sodium, calcium, and magnesium. These residues are currently considered hazardous and are being managed under RCRA because of the reactivity characteristic. This designation is based solely on process knowledge. Currently there is no approved procedure for determining the reactivity of a solid with water. A method is being developed to rapidly evaluate the reactivity of pyrochemical salts with water by measuring the rate of hydrogen generation. The method was initially tested with a magnesium containing pyrochemical salt. A detection limit of approximately 0.004 g of magnesium was established. A surrogate molten salt extraction residue was also tested. Extrapolation of test data resulted in a hydrogen generation rate of 4.4 mg/(g min).

  1. Reactive MD Simulation of Shock-Induced Cavitation Damage | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Billion atom reactive molecular dynamics simulation of nanobubble collapse in wa Billion atom reactive molecular dynamics simulation of nanobubble collapse in water near a ceramic surface under shock compression. A 2km/sec shock wave compresses the nanobubble and creates high compressive stress and novel chemical reactions (production of hydronium ions) not found under normal conditions. The simulations reveal that high pressure in the shock wave deforms the

  2. (Electronic structure and reactivities of transition metal clusters)

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  3. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOE Patents [OSTI]

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  4. Reactive and Catalytic Air Purification Materials - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Building Energy Efficiency Building Energy Efficiency Advanced Materials Advanced Materials Find More Like This Return to Search Reactive and Catalytic Air Purification Materials Naval Research Laboratory Contact NRL About This Technology Publications: PDF Document Publication AirPurification (546 KB) Technology Marketing SummarySorbents for the removal of toxic in-dustrial gases such as ammonia and phosgene. The materials offer reactive and/or catalytic sites within a high surface

  5. Project Profile: Chemically Reactive Working Fluids | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemically Reactive Working Fluids Project Profile: Chemically Reactive Working Fluids ANL logo -- This project is inactive -- Argonne National Laboratory (ANL), under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is working to identify and test new heat-transfer fluids (HTFs) that store energy chemically for more efficient energy transfer in CSP applications. Approach Chart with an upward curve with ideal power generation efficiency on the

  6. Flash pyrolysis of biomass with reactive and non-reactive gases

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

    1985-03-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H/sub 2/ and CH/sub 4/ and with the non-reactive gases He and N/sub 2/ is being determined in a 1'' downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000/sup 0/C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol fuel production. With methane, flash methanolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000/sup 0/C and approximately 1 sec residence time, the yields based on pine wood carbon conversion are up to 30% for ethylene, 25% for benzene, and 45% for CO, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood; the yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, and for pine, the ratio is 7.5 times higher. The mechanism appears to be a free radical reaction between CH/sub 4/ and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicates an economically competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 8 refs., 18 figs., 1 tab.

  7. April 2013 Most Viewed Documents for Geosciences | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    Multiphase Reactive geochemical Transport in Variable Saturated Geologic Media Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten (2004) 39 Calculation ...

  8. Measuring and monitoring KIPT Neutron Source Facility Reactivity

    SciTech Connect (OSTI)

    Cao, Yan; Gohar, Yousry; Zhong, Zhaopeng

    2015-08-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on developing and constructing a neutron source facility at Kharkov, Ukraine. The facility consists of an accelerator-driven subcritical system. The accelerator has a 100 kW electron beam using 100 MeV electrons. The subcritical assembly has keff less than 0.98. To ensure the safe operation of this neutron source facility, the reactivity of the subcritical core has to be accurately determined and continuously monitored. A technique which combines the area-ratio method and the flux-to-current ratio method is purposed to determine the reactivity of the KIPT subcritical assembly at various conditions. In particular, the area-ratio method can determine the absolute reactivity of the subcritical assembly in units of dollars by performing pulsed-neutron experiments. It provides reference reactivities for the flux-to-current ratio method to track and monitor the reactivity deviations from the reference state while the facility is at other operation modes. Monte Carlo simulations are performed to simulate both methods using the numerical model of the KIPT subcritical assembly. It is found that the reactivities obtained from both the area-ratio method and the flux-to-current ratio method are spatially dependent on the neutron detector locations and types. Numerical simulations also suggest optimal neutron detector locations to minimize the spatial effects in the flux-to-current ratio method. The spatial correction factors are calculated using Monte Carlo methods for both measuring methods at the selected neutron detector locations. Monte Carlo simulations are also performed to verify the accuracy of the flux-to-current ratio method in monitoring the reactivity swing during a fuel burnup cycle.

  9. Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

    Broader source: Energy.gov [DOE]

    Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

  10. Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

    SciTech Connect (OSTI)

    Splitter, Derek A; Reitz, Rolf

    2014-01-01

    Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines