National Library of Energy BETA

Sample records for non-energy intensive processes

  1. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  2. ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key ...

  3. ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Key Energy Challenges Across U.S. Industry | Department of Energy Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry PDF icon eip_report.pdf More Documents & Publications Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy Technology Solutions Energy Technology

  4. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. ...

  5. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Across U.S. Industry | Department of Energy Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry PDF icon eip_report_pg9.pdf More Documents & Publications ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy Technology Solutions Energy Technology Solutions: Public-Private

  6. Best Management Practice #13: Other Water-Intensive Processes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 13: Other Water-Intensive Processes Best Management Practice #13: Other Water-Intensive Processes Many water-intensive processes beyond the Federal Energy Management Program's best management practices (BMPs) for water efficiency are in place at federal facilities, including laundry equipment, vehicle wash systems, evaporative coolers, and water softening systems. When assessing facility water use, it is important to identify and analyze all water-intensive processes for potential

  7. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers PDF icon biomass-firedboilers.pdf More Documents & ...

  8. ARM AOS Processing Status and Aerosol Intensive Properties VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AOS Processing Status and Aerosol Intensive Properties VAP A. S. Koontz and C. J. Flynn Pacific Northwest National Laboratory Richland, Washington J. A. Ogren, E. Andrews, and P. J. Sheridan National Oceanic and Atmospheric Administration Boulder, Colorado Abstract The Atmospheric Radiation Measurement (ARM) Aerosol Observing System (AOS) has been operating at the Southern Great Plains (SGP) Central Facility since 1996. In response to the cross-cutting broad- band heating rate profile value

  9. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers | Department of Energy Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers PDF icon biomass-fired_boilers.pdf More Documents & Publications Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Guide to Low-Emission Boiler and Combustion

  10. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Squibb New Brunswick, NJ ChemProcess Technologies, LLC Bensalem, PA New Jersey Nanotechnology Consortium Murray Hill, NJ Information by Design Hoboken, NJ Frank Shinneman New ...

  11. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

    SciTech Connect (OSTI)

    2011-03-07

    AMO is developing advanced technologies that cut energy use and carbon emissions in some of the most energy-intensive processes within U.S. manufacturing. The brochure describes the AMO R&D projects that address these challenges.

  12. Apparatus and process for active pulse intensity control of laser beam

    DOE Patents [OSTI]

    Wilcox, Russell B.

    1992-01-01

    An optically controlled laser pulse energy control apparatus and process is disclosed wherein variations in the energy of a portion of the laser beam are used to vary the resistance of a photodetector such as a photoresistor through which a control voltage is fed to a light intensity controlling device through which a second portion of the laser beam passes. Light attenuation means are provided to vary the intensity of the laser light used to control the resistance of the photodetector. An optical delay path is provided through which the second portion of the beam travels before reaching the light intensity controlling device. The control voltage is supplied by a variable power supply. The apparatus may be tuned to properly attenuate the laser beam passing through the intensity controlling device by adjusting the power supply, the optical delay path, or the light attenuating means.

  13. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect (OSTI)

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  14. Incorporating Non-energy Benefits into Energy Savings Performance Contracts

    SciTech Connect (OSTI)

    Larsen, Peter; Goldman, Charles; Gilligan, Donald; Singer, Terry

    2012-06-01

    This paper evaluates the issue of non-energy benefits within the context of the U.S. energy services company (ESCO) industry?a growing industry comprised of companies that provide energy savings and other benefits to customers through the use of performance-based contracting. Recent analysis has found that ESCO projects in the public/institutional sector, especially at K-12 schools, are using performance-based contracting, at the behest of the customers, to partially -- but not fully -- offset substantial accumulated deferred maintenance needs (e.g., asbestos removal, wiring) and measures that have very long paybacks (roof replacement). This trend is affecting the traditional economic measures policymakers use to evaluate success on a benefit to cost basis. Moreover, the value of non-energy benefits which can offset some or all of the cost of the non-energy measures -- including operations and maintenance (O&M) savings, avoided capital costs, and tradable pollution emissions allowances-- are not always incorporated into a formal cost-effectiveness analysis of ESCO projects. Nonenergy benefits are clearly important to customers, but state and federal laws that govern the acceptance of these types of benefits for ESCO projects vary widely (i.e., 0-100percent of allowable savings can come from one or more non-energy categories). Clear and consistent guidance on what types of savings are recognized in Energy Savings agreements under performance contracts is necessary, particularly where customers are searching for deep energy efficiency gains in the building sector.

  15. AIJ in the Non-Energy Sector in India: Opportunities and Concerns

    SciTech Connect (OSTI)

    Ravindranath, N.H.; Meili, A.; Anita, R.

    1998-11-01

    Although the U.N. Framework Convention on Climate Change (FCCC) has been signed and ratified by 168 countries, global greenhouse gas (GHG) emissions have increased substantially since the 1992 Rio Summit. In both developing countries (DCs) and industrialized countries (ICs), there has been a need to find mechanisms to facilitate environmentally sound mitigation strategies. This need led to the formation of Activities Implemented Jointly (AIJ) at the first Conference-of the Parties (COP) in 1995. In Article 4A, para 2D, the COP established an AIJ pilot phase in which Annex I (IC) countries would enter into agreements to implement activities jointly with non-Annex I parties. DCs would engage in AIJ on a purely voluntary basis and all AIJ projects should be compatible with and supportive of national environment and development goals. AIJ does not imply GHG reduction commitments by DCs. Neither do all projects undertaken during the pilot phase qualify as a fulfillment of current commitment s of Annex I parties under the COP. The current pilot phase for AIJ ends in the year 2000, a date which may be extended. Current AIJ activities are largely focused on the energy sector. The Nordic countries, for example, feel that the most important potential areas for cooperation in AIJ are fuel conversion, more effective energy production, increased energy efficiency, and reforms in energy-intensive industry (Nordic Council of Ministers, 1995). Denmark does not want to include non-energy sector projects such as carbon sink enhancement projects in the pilot phase (Nordic Council of Ministers, 1995). However, other countries, including the US, have already funded a number of forestry sector projects (Development Alternatives, 1997). Moreover, energy-sector projects involving high technology or capital-intensive technology are often a source of controversy between DCs and ICs regarding the kind of technology transferred and sharing of costs and benefits. Further, the pilot phase provide s an opportunity for capacity-building and learning about methods of planning, implementation, and monitoring of GHG abatement in land-based non-energy sector projects.

  16. Energy Intensity Indicators: Efficiency vs. Intensity | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency vs. Intensity Energy Intensity Indicators: Efficiency vs. Intensity Efficiency improvements in processes and equipment and other explanatory factors can contribute to observed changes in energy intensity. Within the category "other explanatory factors" we can identify two separate effects: structural changes and behavioral factors, which are further discussed in item 2) below. (1) Declines in energy intensity are a proxy for efficiency improvements, provided a)

  17. Variations in embodied energy and carbon emission intensities of construction materials

    SciTech Connect (OSTI)

    Wan Omar, Wan-Mohd-Sabki; Doh, Jeung-Hwan; Panuwatwanich, Kriengsak

    2014-11-15

    Identification of parameter variation allows us to conduct more detailed life cycle assessment (LCA) of energy and carbon emission material over their lifecycle. Previous research studies have demonstrated that hybrid LCA (HLCA) can generally overcome the problems of incompleteness and accuracy of embodied energy (EE) and carbon (EC) emission assessment. Unfortunately, the current interpretation and quantification procedure has not been extensively and empirically studied in a qualitative manner, especially in hybridising between the process LCA and I-O LCA. To determine this weakness, this study empirically demonstrates the changes in EE and EC intensities caused by variations to key parameters in material production. Using Australia and Malaysia as a case study, the results are compared with previous hybrid models to identify key parameters and issues. The parameters considered in this study are technological changes, energy tariffs, primary energy factors, disaggregation constant, emission factors, and material price fluctuation. It was found that changes in technological efficiency, energy tariffs and material prices caused significant variations in the model. Finally, the comparison of hybrid models revealed that non-energy intensive materials greatly influence the variations due to high indirect energy and carbon emission in upstream boundary of material production, and as such, any decision related to these materials should be considered carefully. - Highlights: • We investigate the EE and EC intensity variation in Australia and Malaysia. • The influences of parameter variations on hybrid LCA model were evaluated. • Key significant contribution to the EE and EC intensity variation were identified. • High indirect EE and EC content caused significant variation in hybrid LCA models. • Non-energy intensive material caused variation between hybrid LCA models.

  18. On the study of threshold intensity dependence on the gain and loss processes in laser induced spark ignition of molecular hydrogen

    SciTech Connect (OSTI)

    Omar, M. M. Aboulfotouh, A. M.; Gamal, Y. E. E.

    2015-03-30

    In the present work, a numerical analysis is performed to investigate the comparative contribution of the mechanisms responsible for electron gain and losses in laser spark ignition and plasma formation of H{sub 2}. The analysis considered H{sub 2} over pressure range 150 -3000 torr irradiated by a Nd:YAG laser radiation at wavelengths 1064 and 532?nm with pulse length 5.5?ns. The study based on a modified electron cascade model by one of the authors which solves numerically the time dependent Boltzmann equation as well as a set of rate equations that describe the rate of change of the excited states population. The model includes most of the physical processes that might take place during the interaction. Computations of The threshold intensity are performed for the combined and separate contribution of each of the gain and loss processes. Reasonable agreement with the measured values over the tested pressure range is obtained only for the case of the combined contribution. Basing on the calculation of the electron energy distribution function, the determined relations of the time evolution of the electrons density for selected values of the tested gas pressure region revealed that photo-ionization of the excited states could determine the time of electron generation and hence spark ignition. Collisional ionization contributes to this phenomenon only at the high pressure regime. Loss processes due to electron diffusion, vibrational excitation are found to have significant effect over examined pressure values for the two applied laser wavelengths.

  19. Evaluation of moist processes during intense precipitation in km-scale NWP models using remote sensing and in-situ data: Impact of microphysics size distribution assumptions

    SciTech Connect (OSTI)

    VanWeverberg, K.; vanLipzig, N. P. M.; Delobbe, L.

    2011-02-01

    This study investigates the sensitivity of moist processes and surface precipitation during three extreme precipitation events over Belgium to the representation of rain, snow and hail size distributions in a bulk one-moment microphysics parameterisation scheme. Sensitivities included the use of empirically derived relations to calculate the slope parameter and diagnose the intercept parameter of the exponential snow and rain size distributions and sensitivities to the treatment of hail/graupel. A detailed evaluation of the experiments against various high temporal resolution and spatially distributed observational data was performed to understand how moist processes responded to the implemented size distribution modifications. Net vapor consumption by microphysical processes was found to be unaffected by snow or rain size distribution modifications, while it was reduced replacing formulations for hail by those typical for graupel, mainly due to intense sublimation of graupel. Cloud optical thickness was overestimated in all experiments and all cases, likely due to overestimated snow amounts. The overestimation slightly deteriorated by modifying the rain and snow size distributions due to increased snow depositional growth, while it was reduced by including graupel. The latter was mainly due to enhanced cloud water collection by graupel and reduced snow depositional growth. Radar reflectivity and cloud optical thickness could only be realistically represented by inclusion of graupel during a stratiform case, while hail was found indispensable to simulate the vertical reflectivity profile and the surface precipitation structure. Precipitation amount was not much altered by any of the modifications made and the general overestimation was only decreased slightly during a supercell convective case.

  20. Intense fusion neutron sources

    SciTech Connect (OSTI)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-15

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10{sup 15}-10{sup 21} neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10{sup 20} neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  1. Energy Intensity Indicators: Highlights

    Broader source: Energy.gov [DOE]

    This page highlights the major changes in the overall energy intensity for the U.S., as well as summarizing changes in energy intensity for major sectors.

  2. Intensity Frontier Instrumentation

    SciTech Connect (OSTI)

    Kettell S.; Rameika, R.; Tshirhart, B.

    2013-09-24

    The fundamental origin of flavor in the Standard Model (SM) remains a mystery. Despite the roughly eighty years since Rabi asked Who ordered that? upon learning of the discovery of the muon, we have not understood the reason that there are three generations or, more recently, why the quark and neutrino mixing matrices and masses are so different. The solution to the flavor problem would give profound insights into physics beyond the Standard Model (BSM) and tell us about the couplings and the mass scale at which the next level of insight can be found. The SM fails to explain all observed phenomena: new interactions and yet unseen particles must exist. They may manifest themselves by causing SM reactions to differ from often very precise predictions. The Intensity Frontier (1) explores these fundamental questions by searching for new physics in extremely rare processes or those forbidden in the SM. This often requires massive and/or extremely finely tuned detectors.

  3. Measuring Arithmetic Intensity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » For Users » Application Performance » Measuring Arithmetic Intensity Measuring Arithmetic Intensity Arithmetic intensity is a measure of floating-point operations (FLOPs) performed by a given code (or code section) relative to the amount of memory accesses (Bytes) that are required to support those operations. It is most often defined as a FLOP per Byte ratio (F/B). This application note provides a methodology for determining arithmetic intensity using Intel's Software Development

  4. Role of intensive milling in the processing of barium ferrite/magnetite/iron hybrid magnetic nano-composites via partial reduction of barium ferrite

    SciTech Connect (OSTI)

    Molaei, M.J.; Ataie, A.; Raygan, S.; Picken, S.J.

    2015-03-15

    In this research a mixture of barium ferrite and graphite was milled for different periods of time and then heat treated at different temperatures. The effects of milling time and heat treatment temperature on the phase composition, thermal behavior, morphology and magnetic properties of the samples have been investigated using X-ray diffraction, differential thermal analysis, high resolution transmission electron microscopy and vibrating sample magnetometer techniques, respectively. X-ray diffraction results revealed that BaFe{sub 12}O{sub 19}/Fe{sub 3}O{sub 4} nanocomposites form after a 20 h milling due to the partial reduction of BaFe{sub 12}O{sub 19}. High resolution transmission electron microscope images of a 40 h milled sample showed agglomerated structure consisting of nanoparticles with a mean particle size of 30 nm. Thermal analysis of the samples via differential thermal analysis indicated that for un-milled samples, heat treatment up to 900 °C did not result in α-Fe formation, while for a 20 h milled sample heat treatment at 700 °C resulted in reduction process progress to the formation of α-Fe. Wustite was disappeared in an X-ray diffraction pattern of a heat treated sample at 850 °C, by increasing the milling time from 20 to 40 h. By increasing the milling time, the structure of heat treated samples becomes magnetically softer due to an increase in saturation magnetization and a decrease in coercivity. Saturation magnetization and coercivity of a sample milled for 20 h and heat treated at 850 °C were 126.3 emu/g and 149.5 Oe which by increasing the milling time to 40 h, alter to 169.1 emu/g and 24.3 Oe, respectively. High coercivity values of milled and heat treated samples were attributed to the nano-scale formed iron particles. - Graphical abstract: Display Omitted - Highlights: • Barium ferrite and graphite were treated mechano-thermally. • Increasing milling time increases reduction progress after heat treatment. • Composites including iron nano-crystals forms by milling and heat treatment. • Shorter milling time results in higher H{sub C} of the milled and heat treated samples.

  5. Building-Level Intensities

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  6. Light intensity compressor

    DOE Patents [OSTI]

    Rushford, Michael C.

    1990-01-01

    In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

  7. Energy Intensity and Carbon Intensity by the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intensity and Carbon Intensity by the Numbers Energy Intensity and Carbon Intensity by the Numbers

  8. Energy Intensity Indicators Data

    Broader source: Energy.gov [DOE]

    The files listed below contain energy intensity data and documentation that supports the information presented on this website. The files are in Microsoft® Excel® format (2007 and later versions).

  9. NEUTRON FLUX INTENSITY DETECTION

    DOE Patents [OSTI]

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  10. French intensive truck garden

    SciTech Connect (OSTI)

    Edwards, T D

    1983-01-01

    The French Intensive approach to truck gardening has the potential to provide substantially higher yields and lower per acre costs than do conventional farming techniques. It was the intent of this grant to show that there is the potential to accomplish the gains that the French Intensive method has to offer. It is obvious that locally grown food can greatly reduce transportation energy costs but when there is the consideration of higher efficiencies there will also be energy cost reductions due to lower fertilizer and pesticide useage. As with any farming technique, there is a substantial time interval for complete soil recovery after there have been made substantial soil modifications. There were major crop improvements even though there was such a short time since the soil had been greatly disturbed. It was also the intent of this grant to accomplish two other major objectives: first, the garden was managed under organic techniques which meant that there were no chemical fertilizers or synthetic pesticides to be used. Second, the garden was constructed so that a handicapped person in a wheelchair could manage and have a higher degree of self sufficiency with the garden. As an overall result, I would say that the garden has taken the first step of success and each year should become better.

  11. INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers February 19, 2016 - 11:53am Addthis Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs Watch our CO2 drop dramatically compared to other countries in this interactive Curious about the total amount of carbon we emit into the atmosphere? Compare countries from around the globe using this tool. If

  12. Off-site Intensive Operational Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Participating in Off-site Intensive Operational Period The ARM Program is playing a role in the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) intensive operational period (IOP), under way through July in South Florida. The objective of CRYSTAL-FACE is to investigate the physical properties and formation processes of tropical cirrus clouds. The ARM Program has deployed a suite of ground-based instruments in Florida for CRYSTAL-FACE

  13. ON COMPUTING UPPER LIMITS TO SOURCE INTENSITIES

    SciTech Connect (OSTI)

    Kashyap, Vinay L.; Siemiginowska, Aneta [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Van Dyk, David A.; Xu Jin [Department of Statistics, University of California, Irvine, CA 92697-1250 (United States); Connors, Alanna [Eureka Scientific, 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Freeman, Peter E. [Department of Statistics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Zezas, Andreas, E-mail: vkashyap@cfa.harvard.ed, E-mail: asiemiginowska@cfa.harvard.ed, E-mail: dvd@ics.uci.ed, E-mail: jinx@ics.uci.ed, E-mail: aconnors@eurekabayes.co, E-mail: pfreeman@cmu.ed, E-mail: azezas@cfa.harvard.ed [Physics Department, University of Crete, P.O. Box 2208, GR-710 03, Heraklion, Crete (Greece)

    2010-08-10

    A common problem in astrophysics is determining how bright a source could be and still not be detected in an observation. Despite the simplicity with which the problem can be stated, the solution involves complicated statistical issues that require careful analysis. In contrast to the more familiar confidence bound, this concept has never been formally analyzed, leading to a great variety of often ad hoc solutions. Here we formulate and describe the problem in a self-consistent manner. Detection significance is usually defined by the acceptable proportion of false positives (background fluctuations that are claimed as detections, or Type I error), and we invoke the complementary concept of false negatives (real sources that go undetected, or Type II error), based on the statistical power of a test, to compute an upper limit to the detectable source intensity. To determine the minimum intensity that a source must have for it to be detected, we first define a detection threshold and then compute the probabilities of detecting sources of various intensities at the given threshold. The intensity that corresponds to the specified Type II error probability defines that minimum intensity and is identified as the upper limit. Thus, an upper limit is a characteristic of the detection procedure rather than the strength of any particular source. It should not be confused with confidence intervals or other estimates of source intensity. This is particularly important given the large number of catalogs that are being generated from increasingly sensitive surveys. We discuss, with examples, the differences between these upper limits and confidence bounds. Both measures are useful quantities that should be reported in order to extract the most science from catalogs, though they answer different statistical questions: an upper bound describes an inference range on the source intensity, while an upper limit calibrates the detection process. We provide a recipe for computing upper limits that applies to all detection algorithms.

  14. Fermilab | Science at Fermilab | Experiments & Projects | Intensity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontier NuMI Horn 1 at MI8. NuMI Horn 1 at MI8. Intensity Frontier Particle physics experiments at the Intensity Frontier explore fundamental particles and forces of nature using intense particle beams and highly sensitive detectors. One of the ways that researchers search for signals of new physics is to observe rarely interacting particles, such as neutrinos, and their corresponding antimatter particles. Some of these experiments search for evidence of the process theorists hypothesize

  15. Energy Intensity Baselining and Tracking Guidance | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance Better Plants Energy Intensity Baselining and Tracking Guidance Energy Intensity Baselining and Tracking Guidance The Energy Intensity Baselining and ...

  16. Accelerators for Intensity Frontier Research

    SciTech Connect (OSTI)

    Derwent, Paul; /Fermilab

    2012-05-11

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  17. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  18. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  19. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  20. Data-Intensive Benchmarking Suite

    Energy Science and Technology Software Center (OSTI)

    2008-11-26

    The Data-Intensive Benchmark Suite is a set of programs written for the study of data-or storage-intensive science and engineering problems, The benchmark sets cover: general graph searching (basic and Hadoop Map/Reduce breadth-first search), genome sequence searching, HTTP request classification (basic and Hadoop Map/Reduce), low-level data communication, and storage device micro-beachmarking

  1. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  2. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  3. Energy Intensity Indicators: Overview of Concepts

    Broader source: Energy.gov [DOE]

    The Energy Intensity Indicators website reports changes in energy intensity in the United States since 1970. The website discusses, and presents data for, energy intensity trends by major end-use...

  4. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN)

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  5. Energy Intensity Indicators: Coverage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coverage Energy Intensity Indicators: Coverage This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use ...

  6. Energy Intensity Indicators: Indicators Data | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Energy Intensity Indicators: Indicators Data The files listed below contain energy intensity data and documentation that supports the information presented on this website. ...

  7. 2nd conference on Intense field- Short Wavelength Atomic and Molecular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes - ISWAMP2 nd conference on Intense field- Short Wavelength Atomic and Molecular Processes - ISWAMP2 2nd conference on Intense field- Short Wavelength Atomic and Molecular Processes - ISWAMP2 Print http://iswamp2.jlu.edu.cn/ July 20-22, 2013; Xi'an, China

  8. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    corrosion and improve the life span of boiler superheater tubes exposed to high-temperature biomass exhaust. This improvement in boiler ef ciency will reduce fuel consumption, ...

  9. Intensive Observation Period Projects Scheduled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Intensive Observation Period Projects Scheduled Several IOP projects have been scheduled for the SGP CART site this spring. These projects either have already begun or will begin shortly. Radiosondes The RS-90 Transition IOP is currently under way. The RS-90 model radiosonde is gradually replacing the older RS-80 model. Radiosondes are instrument packages attached to and launched by weather balloons. The instruments measure atmospheric pressure, temperature, and relative humidity as the

  10. High Intensity Polarized Electron Gun

    SciTech Connect (OSTI)

    Redwine, Robert P.

    2012-07-31

    The goal of the project was to investigate the possibility of building a very high intensity polarized electron gun for the Electron-Ion Collider. This development is crucial for the eRHIC project. The gun implements a large area cathode, ring-shaped laser beam and active cathode cooling. A polarized electron gun chamber with a large area cathode and active cathode cooling has been built and tested. A preparation chamber for cathode activation has been built and initial tests have been performed. Major parts for a load-lock chamber, where cathodes are loaded into the vacuum system, have been manufactured.

  11. Beam intensity upgrade at Fermilab

    SciTech Connect (OSTI)

    Marchionni, A.; /Fermilab

    2006-07-01

    The performance of the Fermilab proton accelerator complex is reviewed. The coming into operation of the NuMI neutrino line and the implementation of slip-stacking to increase the anti-proton production rate has pushed the total beam intensity in the Main Injector up to {approx} 3 x 10{sup 13} protons/pulse. A maximum beam power of 270 kW has been delivered on the NuMI target during the first year of operation. A plan is in place to increase it to 350 kW, in parallel with the operation of the Collider program. As more machines of the Fermilab complex become available with the termination of the Collider operation, a set of upgrades are being planned to reach first 700 kW and then 1.2 MW by reducing the Main Injector cycle time and by implementing proton stacking.

  12. 2nd conference on Intense field- Short Wavelength Atomic and Molecular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes - ISWAMP2 nd conference on Intense field- Short Wavelength Atomic and Molecular Processes - ISWAMP2 http://iswamp2.jlu.edu.cn/ July 20-22, 2013; Xi'an, China

  13. Energy Intensity Indicators: Terminology and Definitions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... amount of energy input. (See also Efficiency vs. Intensity.) Energy Intensity. The amount of energy used in producing a given level of output or activity (see also Efficiency vs. ...

  14. Energy Intensity Indicators: Transportation Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Consumption Energy Intensity Indicators: Transportation Energy Consumption This section contains an overview of the aggregate transportation sector, combining ...

  15. ARM - AIP1OGREN: AOS Intensive Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govDataAIP1OGREN: AOS Intensive Properties AIP1OGREN: AOS Intensive Properties The aip1ogren value-added product produces aerosol intensive properties from Aerosol Observing Station data. Information Last Updated: October 2008 General Description The aip1ogren value-added product (VAP) computes several aerosol intensive properties. It requires as input calibrated, corrected, aerosol extensive properties (scattering and absorption coefficients, primarily) from the Aerosol Observing Station (AOS).

  16. Simulation Needs and Priorities of the Fermilab Intensity Frontier

    SciTech Connect (OSTI)

    Elvira, V. D.; Genser, K. L.; Hatcher, R.; Perdue, G.; Wenzel, H. J.; Yarba, J.

    2015-06-11

    Over a two-year period, the Physics and Detector Simulations (PDS) group of the Fermilab Scientific Computing Division (SCD), collected information from Fermilab Intensity Frontier experiments on their simulation needs and concerns. The process and results of these activities are documented here.

  17. PNNL Data-Intensive Computing for a Smarter Energy Grid

    ScienceCinema (OSTI)

    Carol Imhoff; Zhenyu (Henry) Huang; Daniel Chavarria

    2012-12-31

    The Middleware for Data-Intensive Computing (MeDICi) Integration Framework, an integrated platform to solve data analysis and processing needs, supports PNNL research on the U.S. electric power grid. MeDICi is enabling development of visualizations of grid operations and vulnerabilities, with goal of near real-time analysis to aid operators in preventing and mitigating grid failures.

  18. Energy Intensity Indicators | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data & Tools » Energy Intensity Indicators Energy Intensity Indicators Energy efficiency is a vital part of the nation's energy strategy and has been since the first oil crisis in 1973. As part of a national priority for improving energy efficiency, the Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) has established a national system of indicators to track changes in the energy intensity of our economy and economic sectors over time. This system of

  19. Energy Intensity Indicators: Commercial Source Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Source Energy Consumption Energy Intensity Indicators: Commercial Source Energy Consumption Figure C1 below reports as index numbers over the period 1970 through 2011: ...

  20. Energy Intensity Indicators: Residential Source Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Source Energy Consumption Energy Intensity Indicators: Residential Source Energy Consumption Figure R1 below reports as index numbers over the period 1970 through 2011: ...

  1. Energy Intensity Baselining and Tracking Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    those looking to validate their measure of energy intensity with statistical analysis. ... Normalize Data normalization is a statistical technique for removing biases associated ...

  2. Data Intensive Architecture for Scalable Cyber Analytics

    SciTech Connect (OSTI)

    Olsen, Bryan K.; Johnson, John R.; Critchlow, Terence J.

    2011-12-19

    Cyber analysts are tasked with the identification and mitigation of network exploits and threats. These compromises are difficult to identify due to the characteristics of cyber communication, the volume of traffic, and the duration of possible attack. In this paper, we describe a prototype implementation designed to provide cyber analysts an environment where they can interactively explore a months worth of cyber security data. This prototype utilized On-Line Analytical Processing (OLAP) techniques to present a data cube to the analysts. The cube provides a summary of the data, allowing trends to be easily identified as well as the ability to easily pull up the original records comprising an event of interest. The cube was built using SQL Server Analysis Services (SSAS), with the interface to the cube provided by Tableau. This software infrastructure was supported by a novel hardware architecture comprising a Netezza TwinFin for the underlying data warehouse and a cube server with a FusionIO drive hosting the data cube. We evaluated this environment on a months worth of artificial, but realistic, data using multiple queries provided by our cyber analysts. As our results indicate, OLAP technology has progressed to the point where it is in a unique position to provide novel insights to cyber analysts, as long as it is supported by an appropriate data intensive architecture.

  3. Intense Laser - Electron Beam Interactions

    SciTech Connect (OSTI)

    Cowan, T.; Ditmire, T.; LeSage, G.

    2000-02-25

    Applicants seeking a Certificate of Compliance for an Independent Spent Fuel Storage Installation (ISFSI) cask must evaluate the consequences of a handling accident resulting in a drop or tip-over of the cask onto a concrete storage pad. As a result, analytical modeling approaches that might be used to evaluate the impact of cylindrical containers onto concrete pads are needed. One such approach, described and benchmarked in NUREG/CR-6608,{sup 1} consists of a dynamic finite element analysis using a concrete material model available in DYNA3D{sup 2} and in LS-DYNA,{sup 3} together with a method for post-processing the analysis results to calculate the deceleration of a solid steel billet when subjected to a drop or tip-over onto a concrete storage pad. The analysis approach described in NUREG/CR-6608 gives a good correlation of analysis and test results. The material model used for the concrete in the analyses in NUREG/CR-6608 is, however, somewhat troublesome to use, requiring a number of material constants which are difficult to obtain. Because of this a simpler approach, which adequately evaluates the impact of cylindrical containers onto concrete pads, is sought. Since finite element modeling of metals, and in particular carbon and stainless steel, is routinely and accurately accomplished with a number of finite element codes, the current task involves a literature search for and a discussion of available concrete models used in finite element codes. The goal is to find a balance between a concrete material model with a limited number of required material parameters which are readily obtainable, and a more complex model which is capable of accurately representing the complex behavior of the concrete storage pad under impact conditions. The purpose of this effort is to find the simplest possible way to analytically represent the storage cask deceleration during a cask tip-over or a cask drop onto a concrete storage pad. This report is divided into three sections. The Section II provides a summary of the literature search on concrete finite element models. The Section III discusses commercial codes. The Section IV provides recommendations.

  4. Techniques for optically compressing light intensity ranges

    DOE Patents [OSTI]

    Rushford, M.C.

    1989-03-28

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.

  5. Techniques for optically compressing light intensity ranges

    DOE Patents [OSTI]

    Rushford, Michael C.

    1989-01-01

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter.

  6. Efficiency and Intensity in the AEO 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    the sources of efficiency in the AEO 2010? * What is the contribution of energy efficiency to projected U.S. energy intensity? * How do AEO scenarios relate to technical potential? ...

  7. Description of Energy Intensity Tables (12)

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Description of Energy Intensity Data Tables There are 12 data tables used as references for this report. Specifically, these tables are categorized as tables 1 and 2 present...

  8. Applications in Data-Intensive Computing

    SciTech Connect (OSTI)

    Shah, Anuj R.; Adkins, Joshua N.; Baxter, Douglas J.; Cannon, William R.; Chavarra-Miranda, Daniel; Choudhury, Sutanay; Gorton, Ian; Gracio, Deborah K.; Halter, Todd D.; Jaitly, Navdeep; Johnson, John R.; Kouzes, Richard T.; Macduff, Matt C.; Marquez, Andres; Monroe, Matthew E.; Oehmen, Christopher S.; Pike, William A.; Scherrer, Chad; Villa, Oreste; Webb-Robertson, Bobbie-Jo M.; Whitney, Paul D.; Zuljevic, Nino

    2010-04-01

    This book chapter, to be published in Advances in Computers, Volume 78, in 2010 describes applications of data intensive computing (DIC). This is an invited chapter resulting from a previous publication on DIC. This work summarizes efforts coming out of the PNNL's Data Intensive Computing Initiative. Advances in technology have empowered individuals with the ability to generate digital content with mouse clicks and voice commands. Digital pictures, emails, text messages, home videos, audio, and webpages are common examples of digital content that are generated on a regular basis. Data intensive computing facilitates human understanding of complex problems. Data-intensive applications provide timely and meaningful analytical results in response to exponentially growing data complexity and associated analysis requirements through the development of new classes of software, algorithms, and hardware.

  9. Evaluation of steelmaking processes

    SciTech Connect (OSTI)

    Fruehan, R.J.

    1994-01-01

    Objective of the AISI Direct Steelmaking Program is to develop a process for producing steel directly from ore and coal; the process should be less capital intensive, consume less energy, and have higher productivity. A task force was formed to examine available processes: trough, posthearth, IRSID, Electric Arc Furnace, energy optimizing furnace. It is concluded that there is insufficient incentive to replace a working BOF with any of these processes to refine hot metal; however, if new steelmaking capacity is required, IRSID and EOF should be considered. A fully continuous process should not be considered until direct ironmaking and continuous refining are perfected.

  10. Dynamic characteristic of intense short microwave propagation in an atmosphere

    SciTech Connect (OSTI)

    Yee, J.H.; Alvarez, R.A.; Mayhall, D.J.; Madsen, N.K.; Cabayan, H.S.

    1983-07-01

    The dynamic behavior of an intense microwave pulse which propagates through the atmosphere will be presented. Our theoretical results are obtained by solving Maxwell's equations, together with the electron fluid equations. Our calculations show that although large portions of the initial energy are absorbed by the electrons that are created through the avalanche process, a significant amount of energy is still able to reach the earth's surface. The amount of energy that reaches the earth's surface as a function of initial energy and wave shape after having propagated through 100 km in the atmosphere are investigated. Results for the air breakdown threshold intensity as a function of the pressure for different pulse widths and different frequencies will also be presented. In addition, we will present a comparison between the theoretical and the experimental results for the pulse shape of a short microwave pulse after it has traveled through a rectangular wave guide which contains a section of air. 23 references, 9 figures.

  11. What is Data-Intensive Science?

    SciTech Connect (OSTI)

    Critchlow, Terence J.; Kleese van Dam, Kerstin

    2013-06-03

    What is Data Intensive Science? Today we are living in a digital world, where scientists often no longer interact directly with the physical object of their research, but do so via digitally captured, reduced, calibrated, analyzed, synthesized and, at times, visualized data. Advances in experimental and computational technologies have lead to an exponential growth in the volumes, variety and complexity of this data and while the deluge is not happening everywhere in an absolute sense, it is in a relative one. Science today is data intensive. Data intensive science has the potential to transform not only how we do science, but how quickly we can translate scientific progress into complete solutions, policies, decisions and ultimately economic success. Critically, data intensive science touches some of the most important challenges we are facing. Consider a few of the grand challenges outlined by the U.S. National Academy of Engineering: make solar energy economical, provide energy from fusion, develop carbon sequestration methods, advance health informatics, engineer better medicines, secure cyberspace, and engineer the tools of scientific discovery. Arguably, meeting any of these challenges requires the collaborative effort of trans-disciplinary teams, but also significant contributions from enabling data intensive technologies. Indeed for many of them, advances in data intensive research will be the single most important factor in developing successful and timely solutions. Simple extrapolations of how we currently interact with and utilize data and knowledge are not sufficient to meet this need. Given the importance of these challenges, a new, bold vision for the role of data in science, and indeed how research will be conducted in a data intensive environment is evolving.

  12. Fermilab computing at the Intensity Frontier

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Group, Craig; Fuess, S.; Gutsche, O.; Kirby, M.; Kutschke, R.; Lyon, A.; Norman, A.; Perdue, G.; Sexton-Kennedy, E.

    2015-12-23

    The Intensity Frontier refers to a diverse set of particle physics experiments using high- intensity beams. In this paper I will focus the discussion on the computing requirements and solutions of a set of neutrino and muon experiments in progress or planned to take place at the Fermi National Accelerator Laboratory located near Chicago, Illinois. In addition, the experiments face unique challenges, but also have overlapping computational needs. In principle, by exploiting the commonality and utilizing centralized computing tools and resources, requirements can be satisfied efficiently and scientists of individual experiments can focus more on the science and less onmore » the development of tools and infrastructure.« less

  13. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, Craig L.

    1987-01-01

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  14. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, C.L.

    1984-03-16

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  15. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    DOE Patents [OSTI]

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  16. 2014 call for NERSC's Data Intensive Computing Pilot Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC's Data Intensive Computing Pilot Program 2014 call for NERSC's Data Intensive Computing Pilot Program Due December 10 November 18, 2013 by Francesca Verdier (0 Comments)...

  17. Dynamic Potential Intensity: An improved representation of the...

    Office of Scientific and Technical Information (OSTI)

    Dynamic Potential Intensity: An improved representation of the ocean's impact on tropical cyclones Citation Details In-Document Search Title: Dynamic Potential Intensity: An ...

  18. Laboratory Astrophysics Using High Intensity Particle and Photon...

    Office of Scientific and Technical Information (OSTI)

    Laboratory Astrophysics Using High Intensity Particle and Photon Beams Citation Details In-Document Search Title: Laboratory Astrophysics Using High Intensity Particle and Photon ...

  19. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  20. The High Intensity Horizon at Fermilab

    SciTech Connect (OSTI)

    Tschirhart, R.S.; /Fermilab

    2012-05-01

    Fermilab's high intensity horizon is 'Project-X' which is a US led initiative with strong international participation that aims to realize a next generation proton source that will dramatically extend the reach of Intensity Frontier research. The Project-X research program includes world leading sensitivity in long-baseline and short-baseline neutrino experiments, a rich program of ultra-rare muon and kaon decays, opportunities for next-generation electric dipole moment experiments and other nuclear/particle physics probes, and a platform to investigate technologies for next generation energy applications. A wide range of R&D activities has supported mission critical accelerator subsystems, such as high-gradient superconducting RF accelerating structures, efficient RF power systems, cryo-modules and cryogenic refrigeration plants, advanced beam diagnostics and instrumentation, high-power targetry, as well as the related infrastructure and civil construction preparing for a construction start of a staged program as early as 2017.

  1. Intensive Variables & Nanostructuring in Magnetostructural Materials

    SciTech Connect (OSTI)

    Lewis, Laura

    2014-08-13

    Over the course of this project, fundamental inquiry was carried out to investigate, understand and predict the effects of intensive variables, including the structural scale, on magnetostructural phase transitions in the model system of equiatomic FeRh. These transitions comprise simultaneous magnetic and structural phase changes that have their origins in very strong orbital-lattice coupling and thus may be driven by a plurality of effects.

  2. PERI Auto-tuning Memory Intensive Kernels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PERI - Auto-tuning Memory Intensive Kernels for Multicore Samuel Williams † , Kaushik Datta † , Jonathan Carter , Leonid Oliker † , John Shalf , Katherine Yelick † , David Bailey CRD/NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA † Computer Science Division, University of California at Berkeley, Berkeley, CA 94720, USA E-mail: SWWilliams@lbl.gov, kdatta@eecs.berkeley.edu, JTCarter@lbl.gov, LOliker@lbl.gov, JShalf@lbl.gov, KAYelick@lbl.gov, DHBailey@lbl.gov

  3. Correlated-Intensity velocimeter for Arbitrary Reflector

    DOE Patents [OSTI]

    Wang, Zhehui; Luo, Shengnian; Barnes, Cris W.; Paul, Stephen F.

    2008-11-11

    A velocimetry apparatus and method comprising splitting incoming reflected laser light and directing the laser light into first and second arms, filtering the laser light with passband filters in the first and second arms, one having a positive passband slope and the other having a negative passband slope, and detecting the filtered laser light via light intensity detectors following the passband filters in the first and second arms

  4. combines high intensity and short pulse duration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combines high intensity and short pulse duration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  5. Process Intensification with Integrated Water-Gas-Shift Membrane Reactor |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Intensification with Integrated Water-Gas-Shift Membrane Reactor Process Intensification with Integrated Water-Gas-Shift Membrane Reactor PDF icon water-gas-shift.pdf More Documents & Publications ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Gasification Systems 2013 Project Selections

  6. Position, rotation, and intensity invariant recognizing method

    DOE Patents [OSTI]

    Ochoa, E.; Schils, G.F.; Sweeney, D.W.

    1987-09-15

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output plane to determine whether a particular target is present in the field of view. Preferably, a temporal pattern is imaged in the output plane with a optical detector having a plurality of pixels and a correlation coefficient for each pixel is determined by accumulating the intensity and intensity-square of each pixel. The orbiting of the constant response caused by the filter rotation is also preferably eliminated either by the use of two orthogonal mirrors pivoted correspondingly to the rotation of the filter or the attaching of a refracting wedge to the filter to remove the offset angle. Detection is preferably performed of the temporal pattern in the output plane at a plurality of different angles with angular separation sufficient to decorrelate successive frames. 1 fig.

  7. Table 22. Energy Intensity, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / $Billion 2005 Chained GDP)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",10.89145253,10.73335719,10.63428655,10.48440125,10.33479508,10.20669515,10.06546105,9.94541493,9.822393757,9.707148466,9.595465524,9.499032573,9.390723436,9.29474735,9.185496812,9.096176848,9.007677565,8.928276581 "AEO

  8. High intensity, pulsed thermal neutron source

    DOE Patents [OSTI]

    Carpenter, J.M.

    1973-12-11

    This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)

  9. COLLIMATION OPTIMIZATION IN HIGH INTENSITY RINGS.

    SciTech Connect (OSTI)

    CATALAN-LASHERAS,N.

    2001-06-18

    In high intensity proton rings, collimation is needed in order to maintain reasonable levels of residual activation and allow hands-on maintenance. Small acceptance to emittance ratio and restrained longitudinal space become important restrictions when dealing with low energy rings. The constraints and specifications when designing a collimation system for this type of machine will be reviewed. The SNS accumulator ring will serve as an examples long which we will illustrate the optimization path. Experimental studies of collimation with 1.3 GeV proton beams are currently under way in the U-70 machine in Protvino. The first results will be presented.

  10. Intense steady state electron beam generator

    DOE Patents [OSTI]

    Hershcovitch, A.; Kovarik, V.J.; Prelec, K.

    1990-07-17

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.

  11. Intense steady state electron beam generator

    DOE Patents [OSTI]

    Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto

    1990-01-01

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.

  12. Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers

    SciTech Connect (OSTI)

    Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

    2009-08-24

    This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

  13. High intensity discharge device containing oxytrihalides

    DOE Patents [OSTI]

    Lapatovich, Walter P.; Keeffe, William M.; Liebermann, Richard W.; Maya, Jakob

    1987-01-01

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO.sub.2, with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube.

  14. High intensity discharge device containing oxytrihalides

    DOE Patents [OSTI]

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  15. Reconstruction of Intensity From Covered Samples

    SciTech Connect (OSTI)

    Barabash, Rozaliya; Watkins, Thomas R; Meisner, Roberta Ann; Burchell, Timothy D; Rosseel, Thomas M

    2015-01-01

    The safe handling of activated samples requires containment and covering the sample to eliminate any potential for contamination. Subsequent characterization of the surface with x-rays ideally necessitates a thin film. While many films appear visually transparent, they are not necessarily x-ray transparent. Each film material has a unique beam attenuation and sometimes have amorphous peaks that can superimpose with those of the sample. To reconstruct the intensity of the underlying activated sample, the x-ray attenuation and signal due to the film needs to be removed from that of the sample. This requires the calculation of unique deconvolution parameters for the film. The development of a reconstruction procedure for a contained/covered sample is described.

  16. THE CENTER FOR DATA INTENSIVE COMPUTING

    SciTech Connect (OSTI)

    GLIMM,J.

    2002-11-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

  17. THE CENTER FOR DATA INTENSIVE COMPUTING

    SciTech Connect (OSTI)

    GLIMM,J.

    2001-11-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

  18. THE CENTER FOR DATA INTENSIVE COMPUTING

    SciTech Connect (OSTI)

    GLIMM,J.

    2003-11-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

  19. Position, rotation, and intensity invariant recognizing method

    DOE Patents [OSTI]

    Ochoa, Ellen; Schils, George F.; Sweeney, Donald W.

    1989-01-01

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.

  20. Production of high intensity radioactive beams

    SciTech Connect (OSTI)

    Nitschke, J.M.

    1990-04-01

    The production of radioactive nuclear beams world-wide is reviewed. The projectile fragmentation and the ISOL approaches are discussed in detail, and the luminosity parameter is used throughout to compare different production methods. In the ISOL approach a thin and a thick target option are distinguished. The role of storage rings in radioactive beam research is evaluated. It is concluded that radioactive beams produced by the projectile fragmentation and the ISOL methods have complementary characteristics and can serve to answer different scientific questions. The decision which kind of facility to build has to depend on the significance and breadth of these questions. Finally a facility for producing a high intensity radioactive beams near the Coulomb barrier is proposed, with an expected luminosity of {approximately}10{sup 39} cm{sup {minus}2} s{sup {minus}1}, which would yield radioactive beams in excess of 10{sup 11} s{sup {minus}1}. 9 refs., 3 figs., 7 tabs.

  1. Process Intensification with Integrated Water-Gas-Shift Membrane...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Gasification Systems 2013 Project Selections

  2. Beam loading effects on a high intensity H- superconducting linac...

    Office of Scientific and Technical Information (OSTI)

    on a high intensity H- superconducting linac for a beam with ?? < 1* Citation Details In-Document Search Title: Beam loading effects on a high intensity H- superconducting linac ...

  3. Short-term Human Vision Protection from Intense Light Sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Short-term Human Vision Protection from Intense Light Sources The primary objective of this invention is to minimize the sensitivity of the human eye to intense visible light by...

  4. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    lighting intensities per lighted square foot-hour (Figure 23). * Food service and health care buildings had the highest water-heating intensities per square foot--more than...

  5. High intensity beam operation of the Brookhaven AGS (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect beam operation of the Brookhaven AGS Citation Details In-Document Search Title: High intensity beam operation of the Brookhaven AGS For the last few years the Brookhaven AGS has operated at record proton intensities. This high beam intensity allowed for the simultaneous operation of several high precision rare kaon decay experiments. The record beam intensities were achieved after the AGS Booster was commissioned and a transition jump system, a powerful transverse damper, and

  6. SYNCHROTRONS AND ACCUMULATORS FOR HIGH INTENSITY PROTONS: ISSUES AND EXPERIENCES.

    SciTech Connect (OSTI)

    WEI,J.

    2000-06-30

    This paper summarizes physical and engineering issues of high-intensity synchrotrons and accumulators, and discusses future applications and outlook.

  7. Intensity-resolved ionization yields of aniline with femtosecond laser pulses

    SciTech Connect (OSTI)

    Strohaber, J.; Hart, N.; Zhu, F.; Nava, R.; Pham, F.; Kolomenskii, A. A.; Paulus, G. G.; Schuessler, H. A.; Mohamed, T.; Schroeder, H.

    2011-12-15

    We present experimental results for the ionization of aniline and benzene molecules subjected to intense ultrashort laser pulses. Measured parent molecular ions yields were obtained using a recently developed technique capable of three-dimensional imaging of ion distributions within the focus of a laser beam. By selecting ions originating from the central region of the focus, where the spatial intensity distribution is nearly uniform, volumetric-free intensity-dependent ionization yields were obtained. The measured data revealed a previously unseen resonance-enhanced multiphoton ionization (REMPI)-like process. Comparison of benzene, aniline, and Xe ion yields demonstrates that the observed intensity-dependent structures are not due to geometric artifacts in the focus. Finally for intensities greater than {approx}3x10{sup 13} W/cm{sup 2}, we attribute the ionization of aniline to a stepwise process going through the {pi}{sigma}{sup *} state which sits three photons above the ground state and two photons below the continuum.

  8. Glass Strengthening via High-Intensity Plasma-Arc Heating

    SciTech Connect (OSTI)

    Wereszczak, Andrew A; Harper, David C; Duty, Chad E; Patel, P

    2010-01-01

    The use of a high-intensity plasma-arc lamp was used to irradiate the surface of soda-lime silicate glass tiles to determine if an increase in strength could be achieved. The lamp had a power density of 3500 W/cm2, a processing area of 1 cm x 10 cm, irradiated near-infrared heating at a wavelength between 0.2 1.4 m, and was controlled to unidirectionally sweep across 50-mm-square tiles at a constant speed of 8 mm/s. Ring-on-ring (RoR) equibiaxial flexure and 4 pt uni-directional flexure testings of entire tiles were used to measure and compare failure stress distributions of treated and untreated glass. Even with non-optimized processing conditions, RoR failure stress increased by approximately 25% and the 4 pt bend failure stress increased by approximately 65%. Strengthening was due to a fire-polishing-like mechanism. The arc-lamp heat-treatment caused the location of the strength-limiting flaws in the 4-pt-bend tiles to change; namely, failure initiation occurred on the gage section surface for the treated glass whereas it occurred at a gage section edge for the untreated. Arc-lamp heat-treatment is attractive not only because it provides strengthening, but because it can (non-contact) process large amounts of glass quickly and inexpensively, and is a process that either a glass manufacturer or end-user can readily employ.

  9. The Capital Intensity of Photovoltaics Manufacturing

    SciTech Connect (OSTI)

    Basore, Paul

    2015-10-19

    Factory capital expenditure (capex) for photovoltaic (PV) module manufacturing strongly influences the per-unit cost of a c-Si module. This provides a significant opportunity to address the U.S. DOE SunShot module price target through capex innovation. Innovation options to reduce the capex of PV manufacturing include incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches. and financial approaches.

  10. Foreground contamination in Ly? intensity mapping during the epoch of reionization

    SciTech Connect (OSTI)

    Gong, Yan; Cooray, Asantha; Silva, Marta; Santos, Mario G.

    2014-04-10

    The intensity mapping of Ly? emission during the epoch of reionization will be contaminated by foreground emission lines from lower redshifts. We calculate the mean intensity and the power spectrum of Ly? emission at z ? 7 and estimate the uncertainties according to the relevant astrophysical processes. We find that the low-redshift emission lines from 6563 H?, 5007 [O III], and 3727 [O II] will be strong contaminants on the observed Ly? power spectrum. We make use of both the star formation rate and luminosity functions to estimate the mean intensity and power spectra of the three foreground lines at z ? 0.5 for H?, z ? 0.9 for [O III], and z ? 1.6 for [O II], as they will contaminate the Ly? emission at z ? 7. The [O II] line is found to be the strongest. We analyze the masking of the bright survey pixels with a foreground line above some line intensity threshold as a way to reduce the contamination in an intensity mapping survey. We find that the foreground contamination can be neglected if we remove pixels with fluxes above 1.4 10{sup 20} W m{sup 2}.

  11. NERSC Launches Data-intensive Science Pilot Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Launches Data-intensive Science Pilot Program NERSC Launches Data-intensive Science Pilot Program DOE Researchers Eligible to Apply for Resources, Expertise April 12, 2012 magic-hour-panorama.jpg NERSC's new data-intensive science pilot program is aimed at helping scientists capture, analyze and store the increasing stream of scientific data coming out of experiments, simulations and instruments, such as the Advanced Light Source (domed building in photo) at Berkeley Lab. Department of

  12. Calculations Of Damage To Rotating Targets Under Intense Beams For

    Office of Scientific and Technical Information (OSTI)

    Super-Heavy Element Production (Journal Article) | SciTech Connect Calculations Of Damage To Rotating Targets Under Intense Beams For Super-Heavy Element Production Citation Details In-Document Search Title: Calculations Of Damage To Rotating Targets Under Intense Beams For Super-Heavy Element Production In the production of the heaviest elements, the cross-sections for evaporation residues are very small, which, in turn, requires the usage of intense beams. Hence, the targets used tend to

  13. Energy Intensity Indicators: Indicators for Major Sectors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy for Major Sectors Energy Intensity Indicators: Indicators for Major Sectors This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors - transportation, industry, commercial, and residential, as well as the electric power sector. These sectors are shown in Figure 1. Please go to the menu below the figure to see a more detailed discussion of historical trends in the energy intensity indicator for a particular sector.

  14. High intensity x-ray source using liquid gallium target

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL); Knapp, Gordon S. (Cupertino, CA); Westbrook, Edwin M. (Chicago, IL); Forster, George A. (Westmont, IL)

    1990-01-01

    A high intensity x-ray source that uses a flowing stream of liquid gallium as a target with the electron beam impinging directly on the liquid metal.

  15. Intensity Pattern of Diffuse X-Ray Scattering From Thermally...

    Office of Scientific and Technical Information (OSTI)

    Intensity Pattern of Diffuse X-Ray Scattering From Thermally Populated Phonons in Fcc ... Sponsoring Org: DOE - BASIC ENERGY SCIENCESUNIVERSITY Country of Publication: United ...

  16. The Fermilab Main Injector: high intensity operation and beam...

    Office of Scientific and Technical Information (OSTI)

    Title: The Fermilab Main Injector: high intensity operation and beam loss control Authors: ... Sponsoring Org: USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Country of ...

  17. Response of High-Tc Superconductor Metamaterials to High Intensity...

    Office of Scientific and Technical Information (OSTI)

    Title: Response of High-Tc Superconductor Metamaterials to High Intensity THz Radiation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  18. Max Tech and Beyond: High-Intensity Discharge Lamps (Technical...

    Office of Scientific and Technical Information (OSTI)

    High-Intensity Discharge Lamps Citation Details In-Document Search Title: Max Tech and ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  19. Measurements of radiation doses induced by high intensity laser...

    Office of Scientific and Technical Information (OSTI)

    Conference: Measurements of radiation doses induced by high intensity laser between 1016 ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  20. Ionized channel generation of an intense-relativistic electron beam

    DOE Patents [OSTI]

    Frost, Charles A.; Leifeste, Gordon T.; Shope, Steven L.

    1988-01-01

    A foilless intense relativistic electron beam generator uses an ionized cnel to guide electrons from a cathode passed an anode to a remote location.

  1. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Intensities The purpose of this section is to provide information on how energy was used for space conditioning--heating, cooling, and ventilation--in commercial...

  2. Calculations Of Damage To Rotating Targets Under Intense Beams...

    Office of Scientific and Technical Information (OSTI)

    Beams For Super-Heavy Element Production Citation Details In-Document Search Title: Calculations Of Damage To Rotating Targets Under Intense Beams For Super-Heavy Element ...

  3. Energy End-Use Intensities in Commercial Buildings 1989

    U.S. Energy Information Administration (EIA) Indexed Site

    1989 Energy End-Use Intensities Overview Full Report Tables National estimates and analysis of energy consumption by fuel (electricity, natural gas, fuel oil, and district...

  4. Changes in Energy Intensity in the Manufacturing Sector 1985...

    U.S. Energy Information Administration (EIA) Indexed Site

    (34) Machinery (35) El. Equip.(36) Instruments (38) Misc. (39) Appendices Survey Design Quality of Data Sector Description Nonobservation Errors Glossary Intensity Sites...

  5. China-Energy Intensity Reduction Strategy | Open Energy Information

    Open Energy Info (EERE)

    Intensity Reduction Strategy Jump to: navigation, search Name China-ESMAP Low Carbon Growth Country Studies Program AgencyCompany Organization Energy Sector Management Assistance...

  6. High-Intensity Discharge Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. High-intensity discharge (HID) lighting can provide high efficacy and long

  7. Table C10. Electricity Consumption and Expenditure Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Consumption and Expenditure Intensities, 1999" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per Square Foot (kWh)","per...

  8. Energy End-Use Intensities in Commercial Buildings 1989 -- Executive...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Energy End-Use Intensities > Executive Summary Executive Summary Energy End Uses Ranked by Energy Consumption, 1989 Energy End Uses Ranked by Energy Consumption, 1989 Source:...

  9. The Fermilab Main Injector: high intensity operation and beam...

    Office of Scientific and Technical Information (OSTI)

    operation and beam loss control Citation Details In-Document Search Title: The Fermilab Main Injector: high intensity operation and beam loss control You are accessing a ...

  10. Dense plasma heating and Gbar shock formation by a high intensity flux of energetic electrons

    SciTech Connect (OSTI)

    Ribeyre, X.; Feugeas, J.-L.; Nicola, Ph.; Tikhonchuk, V. T.; Gus'kov, S.; P. N. Lebedev Physical Institute RAS, 53, Leninskii Prospect, Moscow 119991

    2013-06-15

    Process of shock ignition in inertial confinement fusion implies creation of a high pressure shock with a laser spike having intensity of the order of a few PW/cm{sup 2}. However, the collisional (Bremsstrahlung) absorption at these intensities is inefficient and a significant part of laser energy is converted in a stream of energetic electrons. The process of shock formation in a dense plasma by an intense electron beam is studied in this paper in a planar geometry. The energy deposition takes place in a fixed mass target layer with the areal density determined by the electron range. A self-similar isothermal rarefaction wave of a fixed mass describes the expanding plasma. Formation of a shock wave in the target under the pressure of expanding plasma is described. The efficiency of electron beam energy conversion into the shock wave energy depends on the fast electron energy and the pulse duration. The model is applied to the laser produced fast electrons. The fast electron energy transport could be the dominant mechanism of ablation pressure creation under the conditions of shock ignition. The shock wave pressure exceeding 1 Gbar during 200300 ps can be generated with the electron pulse intensity in the range of 510 PW/cm{sup 2}. The conclusions of theoretical model are confirmed in numerical simulations with a radiation hydrodynamic code coupled with a fast electron transport module.

  11. Parallel In Situ Indexing for Data-intensive Computing

    SciTech Connect (OSTI)

    Kim, Jinoh; Abbasi, Hasan; Chacon, Luis; Docan, Ciprian; Klasky, Scott; Liu, Qing; Podhorszki, Norbert; Shoshani, Arie; Wu, Kesheng

    2011-09-09

    As computing power increases exponentially, vast amount of data is created by many scientific re- search activities. However, the bandwidth for storing the data to disks and reading the data from disks has been improving at a much slower pace. These two trends produce an ever-widening data access gap. Our work brings together two distinct technologies to address this data access issue: indexing and in situ processing. From decades of database research literature, we know that indexing is an effective way to address the data access issue, particularly for accessing relatively small fraction of data records. As data sets increase in sizes, more and more analysts need to use selective data access, which makes indexing an even more important for improving data access. The challenge is that most implementations of in- dexing technology are embedded in large database management systems (DBMS), but most scientific datasets are not managed by any DBMS. In this work, we choose to include indexes with the scientific data instead of requiring the data to be loaded into a DBMS. We use compressed bitmap indexes from the FastBit software which are known to be highly effective for query-intensive workloads common to scientific data analysis. To use the indexes, we need to build them first. The index building procedure needs to access the whole data set and may also require a significant amount of compute time. In this work, we adapt the in situ processing technology to generate the indexes, thus removing the need of read- ing data from disks and to build indexes in parallel. The in situ data processing system used is ADIOS, a middleware for high-performance I/O. Our experimental results show that the indexes can improve the data access time up to 200 times depending on the fraction of data selected, and using in situ data processing system can effectively reduce the time needed to create the indexes, up to 10 times with our in situ technique when using identical parallel settings.

  12. Changes in Energy Intensity in the Manufacturing Sector 1985...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Introduction Rankeda EI Numbers of Total Inputs of Energy SIC Codeb Intensity for 1985c Intensity for 1994c 29 18.11 25.85 26 17.82 17.71 33 19.57 16.27 32 14.75 14.69 28 11.09...

  13. Wavelength and Intensity Dependence of Short Pulse Laser Xenon Double Ionization between 500 and 2300 nm

    SciTech Connect (OSTI)

    Gingras, G.; Tripathi, A.; Witzel, B.

    2009-10-23

    The wavelength and intensity dependence of xenon ionization with 50 fs laser pulses has been studied using time-of-flight mass spectrometry. We compare the ion yield distribution of singly and doubly charged xenon with the Perelomov-Popov-Terent'ev (PPT) theory, Perelomov, Popov, and Terent'ev, Zh. Eksp. Teor. Fiz. 50, 1393 (1966) [Sov. Phys. JETP 23, 924 (1966)], in the regime between 500 and 2300 nm. The intensity dependence for each wavelength is measured in a range between 1x10{sup 13} and 1x10{sup 15} W/cm{sup 2}. The Xe{sup +}-ion signal is in good agreement with the PPT theory at all used wavelengths. In addition we demonstrate that ionic 5s5p{sup 6} {sup 2}S state is excited by an electron impact excitation process and contributes to the nonsequential double ionization process.

  14. A Comprehensive System of U.S. Energy Intensity Indicators

    Broader source: Energy.gov [DOE]

    This report describes a comprehensive system of energy intensity indicators for the United States that has been developed for the Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) over the past decade. This system of indicators is hierarchical in nature, beginning with detailed indexes of energy intensity for various sectors of the economy, which are ultimately aggregated to an overall energy intensity index for the economy as a whole. The aggregation of energy intensity indexes to higher levels in the hierarchy is performed with a version of the Log Mean Divisia index (LMDI) method. Based upon the data and methods in the system of indicators, the economy-wide energy intensity index shows a decline of about 14% in 2011 relative to a 1985 base year.

  15. Fourth order resonance of a high intensity linear accelerator* (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Fourth order resonance of a high intensity linear accelerator* Citation Details In-Document Search Title: Fourth order resonance of a high intensity linear accelerator* For a high intensity beam, the 4\nu=1 resonance of a linear accelerator is manifested through the octupolar term of space charge potential when the depressed phase advance \sigma is close to and below 90 but no resonance effect is observed when \sigma just above 90 . To verify that this is a

  16. Channeling of intense laser beams in underdense plasmas

    SciTech Connect (OSTI)

    Feit, M.D.; Garrison, J.C.; Rubenchik, A.M.

    1997-09-01

    A hydrodynamic simulation is used to show that intense laser pulses propagating in underdense plasmas create stable, long-lived, and completely evacuated channels. At low intensities, I=10{sup 17} W/cm{sup 2}, self focusing seriously distorts the temporal envelope of the pulse, but channeling still occurs. At high intensities, I=10{sup 19} W/cm{sup 2}, channeling can proceed over many diffraction lengths with significant distortion restricted to the leading edge of the pulse. {copyright} {ital 1997} {ital The American Physical Society}

  17. Fermilab | Science at Fermilab | Experiments & Projects | Intensity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontier | MINERvA In this Section: Energy Frontier Intensity Frontier Experiments at the Intensity Frontier ArgoNeuT MicroBooNE MINERvA MINOS NOvA LBNF/DUNE Cosmic Frontier Proposed Projects and Experiments MINERvA MINERvA Intensity Frontier MINERvA MINERvA is a neutrino-scattering experiment that uses the NuMI beamline at Fermilab to search for low-energy neutrino interactions. It is designed to study neutrino-nucleus interactions with unprecedented detail. The number of neutrinos that

  18. Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Changes by Sector, 1985-2011 - Alternative Measures by Type of Energy Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures by Type of Energy Further insight with ...

  19. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    as buildings of the 1980's. In this section, intensities are based upon the entire building stock, not just those buildings using a particular fuel for a given end use. This...

  20. Examination of Beryllium Under Intense High Energy Proton Beam...

    Office of Scientific and Technical Information (OSTI)

    Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility ... 6th International Particle Accelerator Conference. Richmond, Virginia, USA, 3-8 May 2015.

  1. Joint Facilities User Forum on Data Intensive Computing Lessons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Forum on Data Intensive Computing Lessons Learned - NERSCJGI Partnership Kjiersten Fagnan, NERSC User ServicesJGI --- 1 --- June 1 7, 2 013 Outline * Overview o f N ERSCJGI...

  2. Engineering Strength, Porosity, and Emission Intensity of Nanostructur...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Strength, Porosity, and Emission Intensity of Nanostructured CdSe Networks by Altering the Building-Block Shape Home Author: H. Yu, R. Bellair, R. M. Kannan, S. L....

  3. Experimental evidence of space charge driven resonances in high intensity

    Office of Scientific and Technical Information (OSTI)

    linear accelerators (Journal Article) | SciTech Connect Experimental evidence of space charge driven resonances in high intensity linear accelerators Citation Details In-Document Search Title: Experimental evidence of space charge driven resonances in high intensity linear accelerators Authors: Jeon, Dong-O Publication Date: 2016-01-12 OSTI Identifier: 1235762 Grant/Contract Number: AC05-00OR22725 Type: Published Article Journal Name: Physical Review Accelerators and Beams Additional Journal

  4. Electron dynamics in intense laser fields with Bohmian trajectories |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource Electron dynamics in intense laser fields with Bohmian trajectories Wednesday, March 2, 2016 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Hossein Z. Jooya, University of Kansas Program Description The electron quantum dynamics of atomic hydrogen under intense laser fields is investigated by means of the De Broglie-Bohm framework of Bohmian mechanics. This method is used to explore the sub-cycle multiphoton ionization dynamics of the

  5. Engineering Strength, Porosity, and Emission Intensity of Nanostructured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CdSe Networks by Altering the Building-Block Shape | Energy Frontier Research Centers Engineering Strength, Porosity, and Emission Intensity of Nanostructured CdSe Networks by Altering the Building-Block Shape Home Author: H. Yu, R. Bellair, R. M. Kannan, S. L. Brock Year: 2008 Abstract: The effect of primary particle shape on the porosity, mechanical strength, and luminescence intensity of metal chalcogenide aerogels was probed by comparison of CdSe aerogels prepared from spherical and

  6. Quasi-Direct Optical Transitions in Silicon Nanocrystals with Intensity

    Office of Scientific and Technical Information (OSTI)

    Exceeding the Bulk (Journal Article) | SciTech Connect Quasi-Direct Optical Transitions in Silicon Nanocrystals with Intensity Exceeding the Bulk Citation Details In-Document Search Title: Quasi-Direct Optical Transitions in Silicon Nanocrystals with Intensity Exceeding the Bulk Authors: Lee, Benjamin G. ; Luo, Jun-Wei ; Neale, Nathan R. ; Beard, Matthew C. ; Hiller, Daniel ; Zacharias, Margit ; Stradins, Paul ; Zunger, Alex Publication Date: 2016-02-22 OSTI Identifier: 1242886 Report

  7. Dynamic Potential Intensity: An improved representation of the ocean's

    Office of Scientific and Technical Information (OSTI)

    impact on tropical cyclones (Journal Article) | SciTech Connect Journal Article: Dynamic Potential Intensity: An improved representation of the ocean's impact on tropical cyclones Citation Details In-Document Search Title: Dynamic Potential Intensity: An improved representation of the ocean's impact on tropical cyclones To incorporate the effects of tropical cyclone (TC)-induced upper ocean mixing and sea surface temperature (SST) cooling on TC intensification, a vertical average of

  8. Intensity Frontier| U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intensity Frontier High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Intensity Frontier Experiments Cosmic Frontier Theoretical and Computational Physics Advanced Technology R&D Accelerator Stewardship Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC

  9. Energy Intensity Indicators: Caveats and Cautions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caveats and Cautions Energy Intensity Indicators: Caveats and Cautions This website contains a diverse collection of indicators that track changes in energy intensity at the national and end-use sector levels (after taking into account other explanatory factors). Indicators are based on readily available and publicly accessible data, although some of this data has been interpolated between published years, or extrapolated beyond the last published year. To help facilitate the appropriate

  10. ARM Intensive Operational Period Scheduled to Validate New NASA Satellite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Intensive Operational Period Scheduled to Validate New NASA Satellite Beginning in July, all three ARM sites (Southern Great Plains [SGP], North Slope of Alaska, and Tropical Western Pacific; Figure 1) will participate in the AIRS Validation IOP. This three-month intensive operational period (IOP) will validate data collected by the satellite-based Atmospheric Infrared Sounder (AIRS) recently launched into space. On May 4, the National Aeronautics and Space Administration (NASA) launched

  11. Data Intensive Computing Pilot Program 2012/2013 Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data 2012/2013 Awards Data Intensive Computing Pilot Program 2012/2013 Awards NERSC's new data-intensive science pilot program is aimed at helping scientists capture, analyze and store the increasing stream of scientific data coming out of experiments, simulations and instruments. Projects in this program have been allocated for 2012 and 2013. High Throughput Computational Screening of Energy Materials Gerbrand Ceder, Massachusetts Institute of Technology NERSC Repository: matdat NERSC Resources

  12. Microscopy of photoionisation processes

    SciTech Connect (OSTI)

    Aseyev, S A; Mironov, B N; Minogin, V G; Cherkun, Aleksandr P; Chekalin, Sergei V

    2013-04-30

    A method is demonstrated which combines the ionisation of free molecules by a sharply focused femtosecond laser beam and projection microscopy in a divergent electric field. The electric field is produced in vacuum between a metallic tip and a flat positionsensitive charged particle detector. The method enables investigation of photoionisation processes in low-density gases with a subdiffraction spatial resolution and can be used as well in profile measurements for sharply focused, intense laser beams. In a demonstration experiment, a femtosecond laser beam with a peak intensity of {approx}10{sup 14} W cm{sup -2} was focused to a 40-{mu}m-diameter waist in vacuum near a millimetre-size tip and {approx}2-{mu}m spatial resolution was achieved. According to our estimates, the use of a sharper tip will ensure a submicron spatial resolution, which is a crucial condition for the spatial diagnostics of sharply focused short-wavelength VUV radiation and X-rays. (extreme light fields and their applications)

  13. Process Rule

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) conducted a formal effort between 1995 and 1996 to improve the process it used to develop appliance efficiency standards. This effort involved many different...

  14. Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selection Process Selection Process Fellowships will be awarded based on academic excellence, relevance of candidate's research to the laboratory mission in fundamental nuclear science and relevance to Global Security or Science of Campaign missions. Contacts Director Albert Migliori Deputy Franz Freibert 505 667-6879 Email Professional Staff Assistant Susan Ramsay 505 665 0858 Email The Seaborg internal advisory committee will judge applications based on academic excellence, relevance of the

  15. Energy use and energy intensity of the U.S. chemical industry

    SciTech Connect (OSTI)

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is the main electricity consuming process in the chemical industry, next to oxygen and nitrogen production. We estimate final electricity use at 173 PJ (48 TWh) and fuel use of 38 PJ. Total primary energy consumption is estimated at 526 PJ (including credits for hydrogen export). The energy intensity is estimated at an electricity consumption of 4380 kWh/tonne chlorine and fuel consumption of 3.45 GJ/tonne chlorine, where all energy use is allocated to chlorine production. Assuming an average power generation efficiency of 33% the primary energy consumption is estimated at 47.8 GJ/tonne chlorine (allocating all energy use to chlorine).

  16. Resource intensities of the front end of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Schneider, E.; Phathanapirom, U.; Eggert, R.; Collins, J.

    2013-07-01

    This paper presents resource intensities, including direct and embodied energy consumption, land and water use, associated with the processes comprising the front end of the nuclear fuel cycle. These processes include uranium extraction, conversion, enrichment, fuel fabrication and depleted uranium de-conversion. To the extent feasible, these impacts are calculated based on data reported by operating facilities, with preference given to more recent data based on current technologies and regulations. All impacts are normalized per GWh of electricity produced. Uranium extraction is seen to be the most resource intensive front end process. Combined, the energy consumed by all front end processes is equal to less than 1% of the electricity produced by the uranium in a nuclear reactor. Land transformation and water withdrawals are calculated at 8.07 m{sup 2} /GWh(e) and 1.37x10{sup 5} l/GWh(e), respectively. Both are dominated by the requirements of uranium extraction, which accounts for over 70% of land use and nearly 90% of water use.

  17. 2012 MULTIPHOTON PROCESSES GRC, JUNE 3-8, 2012

    SciTech Connect (OSTI)

    Walker, Barry

    2012-03-08

    The sessions will focus on: ? Attosecond science; ? Strong-field processes in molecules and solids; ? Generation of harmonics and attosecond pulses; ? Free-electron laser experiments and theory; ? Ultrafast imaging; ? Applications of very high intensity lasers; ? Propagation of intense laser fields.

  18. Utilization of Process Off-Gas as a Fuel for Improved Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Project Description The goal of this project is to reduce the energy and carbon intensity of the calcined coke production process. This goal is realized through the increased ...

  19. FHR Process Instruments

    SciTech Connect (OSTI)

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt is a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the most significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both electrochemical techniques and optical spectroscopy are candidate fluoride salt redox measurement methods. Coolant level measurement can be performed using radar-level gauges located in standpipes above the reactor vessel. While substantial technical development remains for most of the instruments, industrially compatible instruments based upon proven technology can be reasonably extrapolated from the current state of the art.

  20. Collaborative, Data-Intensive Science Key to Science & Commerce Challenges

    SciTech Connect (OSTI)

    Kleese van Dam, Kerstin

    2013-05-28

    This article coincides with the release of "Data-Intensive Science," co-edited by Dr. Kerstin Kleese van Dam. In the piece, Dr. Kleese van Dam explains how data-intensive science has the potential to transform not only how we do science but how quickly we can translate scientific progress into complete solutions, policies, decisions and, ultimately, economic success. In the article, she states it is clear that nations that can most effectively transform tons of scientific data into actionable knowledge are going to be the leaders in the future of science and commerce and how creating the required new insights for complex challenges cannot be done without effective collaboration. Because many science domains already are unable to explore all of the data they collect (or which is relevant to their research), progress in collaborative, data-intensive science is crucial toward unlocking the potential of big data.

  1. Intense Muon Beams for Experiments at Project X

    SciTech Connect (OSTI)

    C.M. Ankenbrandt, R.P. Johnson, C. Y. Yoshikawa, V.S. Kashikhin, D.V. Neuffer, J. Miller, R.A. Rimmer

    2011-03-01

    A coherent approach for providing muon beams to several experiments for the intensity-frontier program at Project X is described. Concepts developed for the front end of a muon collider/neutrino factory facility, such as phase rotation and ionization cooling, are applied, but with significant differences. High-intensity experiments typically require high-duty-factor beams pulsed at a time interval commensurate with the muon lifetime. It is challenging to provide large RF voltages at high duty factor, especially in the presence of intense radiation and strong magnetic fields, which may preclude the use of superconducting RF cavities. As an alternative, cavities made of materials such as ultra-pure Al and Be, which become very good but not super conductors at cryogenic temperatures, can be used.

  2. Energy Intensity Trends in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Energy intensity (energy consumption per dollar of real GDP) indicates how much energy a country uses to produce its goods and services. From the early 1950s to the early 1970s, U.S. total primary energy consumption and real GDP increased at nearly the same annual rate. During that period, real oil prices remained virtually flat. In contrast, from the mid-1970s to 2008, the relationship between energy consumption and real GDP growth changed, with primary energy consumption growing at less than one-third the previous average rate and real GDP growth continuing to grow at its historical rate. The decoupling of real GDP growth from energy consumption growth led to a decline in energy intensity that averaged 2.8% per year from 1973 to 2008. In the Annual Energy Outlook 2010 Reference case, energy intensity continues to decline, at an average annual rate of 1.9% from 2008 to 2035.

  3. Forward modeling of gyrosynchrotron intensity perturbations by sausage modes

    SciTech Connect (OSTI)

    Reznikova, V. E.; Van Doorsselaere, T.; Antolin, P.

    2014-04-20

    To determine the observable radio signatures of the fast sausage standing wave, we examine gyrosynchrotron (GS) emission modulation using a linear three-dimensional magnetohydrodynamic model of a plasma cylinder. Effects of the line-of-sight angle and instrumental resolution on perturbations of the GS intensity are analyzed for two models: a base model with strong Razin suppression and a low-density model in which the Razin effect was unimportant. Our finding contradicts previous predictions made with simpler models: an in-phase variation of intensity between low (f < f {sub peak}) and high (f > f {sub peak}) frequencies is found for the low-density model and an anti-phase variation for the base model in the case of a viewing angle of 45. The spatially inhomogeneous character of the oscillating emission source and the spatial resolution of the model are found to have a significant effect on the resulting intensity.

  4. Pump-Intensity- and Shell-Thickness-Dependent Evolution of

    Office of Scientific and Technical Information (OSTI)

    Photoluminescence Blinking in Individual Core/Shell CdSe/CdS Nanocrystals (Journal Article) | SciTech Connect Journal Article: Pump-Intensity- and Shell-Thickness-Dependent Evolution of Photoluminescence Blinking in Individual Core/Shell CdSe/CdS Nanocrystals Citation Details In-Document Search Title: Pump-Intensity- and Shell-Thickness-Dependent Evolution of Photoluminescence Blinking in Individual Core/Shell CdSe/CdS Nanocrystals Authors: Malko, Anton V. ; Park, Young-Shin ; Sampat,

  5. Measurements of radiation doses induced by high intensity laser between

    Office of Scientific and Technical Information (OSTI)

    10^16 and 10^21 w/cm^2 onto solid targets at LCLS MEC instrument (Conference) | SciTech Connect SciTech Connect Search Results Conference: Measurements of radiation doses induced by high intensity laser between 10^16 and 10^21 w/cm^2 onto solid targets at LCLS MEC instrument Citation Details In-Document Search Title: Measurements of radiation doses induced by high intensity laser between 10^16 and 10^21 w/cm^2 onto solid targets at LCLS MEC instrument Authors: Liang, T. ; /SLAC /Georgia Tech

  6. Joint Facilities User Forum on Data-Intensive Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Joint Facilities User Forum on Data-Intensive Computing All logos June 16-18, 2014 Oakland City Center Conference Center 500 12th Street, Suite 105 Oakland, CA Directions and Site Brochure Held in conjunction with DOE HPC Operational Review (HPCOR) June 17-19, 2014 The Joint Facilities User Forum on Data-Intensive Computing will bring together users and HPC center staff to discuss successes, failures, lessons learned, and the future of data-driven scientific discovery. There will also

  7. High intensity proton operation at the Brookhaven AGS accelerator complex

    SciTech Connect (OSTI)

    Ahrens, L.A.; Blaskiewicz, M.; Bleser, E.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Onillon, E.; Reece, R.K.; Roser, T.; Soukas, A.

    1994-08-01

    With the completion of the AGS rf upgrade, and the implementation of a transition {open_quotes}jump{close_quotes}, all of accelerator systems were in place in 1994 to allow acceleration of the proton intensity available from the AGS Booster injector to AGS extraction energy and delivery to the high energy users. Beam commissioning results with these new systems are presented. Progress in identifying and overcoming other obstacles to higher intensity are given. These include a careful exploration of the stopband strengths present on the AGS injection magnetic porch, and implementation of the AGS single bunch transverse dampers throughout the acceleration cycle.

  8. Process Heating Assessment and Survey Tool (PHAST) Introduction

    Broader source: Energy.gov [DOE]

    This presentation provides an introduction to PHAST, shows how to use the tool to survey process heating equipment that uses fuel, steam, or electricity, and helps plant personnel identify the most energy-intensive equipment.

  9. Process Monitor

    Energy Science and Technology Software Center (OSTI)

    2003-12-01

    This library is used to get process information (eg memory and timing). By setting an environment variable, the runtime system loads libprocmon.so while loading your executable. This library causes the SIGPROF signal to be triggered at time intervals. The procmon signal handler calls various system routines (eg clock_gettime, malinfo, getrusage, and ioctl {accessing the /proc filesystem}) to gather information about the process. The information is then printed to a file which can be viewed graphicallymore » via procmon_plot.pl. This information is obtained via a sampling approach. As with any sampling approach, the information it gathers will not be completely accurate. For example, if you are looking at memory high-water mark the memory allocation and freeing could have occurred between samples and thus would not be "seen" by this program. See "Usage" below for environment variables that affect this monitor (eg time between sampling).« less

  10. Process Limits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Records Management » Procedures and Instructions Procedures and Instructions keyboard-886462_960_720.jpg Records Management Processes Procedure for Conducting a Records Inventory (PDF) Procedure for Preparing a Records Inventory and Disposition Schedule (RIDS) (PDF) Instructions/Brochures Managing Social Media Records (PDF) Procedures for Departing Employees (PDF) Reminder for Senior Officials (PDF) Your Records Responsibility Pamphlet (PDF) Vital Records Pamphlet (PDF) Records Management

  11. Hydropyrolysis process

    DOE Patents [OSTI]

    Ullman, Alan Z.; Silverman, Jacob; Friedman, Joseph

    1986-01-01

    An improved process for producing a methane-enriched gas wherein a hydrogen-deficient carbonaceous material is treated with a hydrogen-containing pyrolysis gas at an elevated temperature and pressure to produce a product gas mixture including methane, carbon monoxide and hydrogen. The improvement comprises passing the product gas mixture sequentially through a water-gas shift reaction zone and a gas separation zone to provide separate gas streams of methane and of a recycle gas comprising hydrogen, carbon monoxide and methane for recycle to the process. A controlled amount of steam also is provided which when combined with the recycle gas provides a pyrolysis gas for treatment of additional hydrogen-deficient carbonaceous material. The amount of steam used and the conditions within the water-gas shift reaction zone and gas separation zone are controlled to obtain a steady-state composition of pyrolysis gas which will comprise hydrogen as the principal constituent and a minor amount of carbon monoxide, steam and methane so that no external source of hydrogen is needed to supply the hydrogen requirements of the process. In accordance with a particularly preferred embodiment, conditions are controlled such that there also is produced a significant quantity of benzene as a valuable coproduct.

  12. Energy Intensity of Federal Buildings Slashed 25% in Past Decade

    Broader source: Energy.gov [DOE]

    The U.S. General Services Administration (GSA), which builds and manages federal buildings, recently announced that it cut federal energy spending by $65.5 million in fiscal year (FY) 2012 by reducing the energy use intensity levels in its buildings by nearly 25% since FY 2003.

  13. Explosive photodissociation of methane induced by ultrafast intense laser

    SciTech Connect (OSTI)

    Kong Fanao; Luo Qi; Xu Huailiang; Sharifi, Mehdi; Song Di; Chin, See Leang

    2006-10-07

    A new type of molecular fragmentation induced by femtosecond intense laser at the intensity of 2x10{sup 14} W/cm{sup 2} is reported. For the parent molecule of methane, ethylene, n-butane, and 1-butene, fluorescence from H (n=3{yields}2), CH (A {sup 2}{delta}, B {sup 2}{sigma}{sup -}, and C {sup 2}{sigma}{sup +}{yields}X {sup 2}{pi}), or C{sub 2} (d {sup 3}{pi}{sub g}{yields}a {sup 3}{pi}{sub u}) is observed in the spectrum. It shows that the fragmentation is a universal property of neutral molecule in the intense laser field. Unlike breaking only one or two chemical bonds in conventional UV photodissociation, the fragmentation caused by the intense laser undergoes vigorous changes, breaking most of the bonds in the molecule, like an explosion. The fragments are neutral species and cannot be produced through Coulomb explosion of multiply charged ion. The laser power dependence of CH (A{yields}X) emission of methane on a log-log scale has a slope of 10{+-}1. The fragmentation is thus explained as multiple channel dissociation of the superexcited state of parent molecule, which is created by multiphoton excitation.

  14. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman; Vladimir Romanovsky; William Cable

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  15. Drift tube suspension for high intensity linear accelerators

    DOE Patents [OSTI]

    Liska, Donald J.; Schamaun, Roger G.; Clark, Donald C.; Potter, R. Christopher; Frank, Joseph A.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  16. PNNLs Data Intensive Computing research battles Homeland Security threats

    ScienceCinema (OSTI)

    David Thurman; Joe Kielman; Katherine Wolf; David Atkinson

    2012-12-31

    The Pacific Northwest National Laboratorys (PNNL's) approach to data intensive computing (DIC) is focused on three key research areas: hybrid hardware architecture, software architectures, and analytic algorithms. Advancements in these areas will help to address, and solve, DIC issues associated with capturing, managing, analyzing and understanding, in near real time, data at volumes and rates that push the frontiers of current technologies.

  17. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman; Vladimir Romanovsky; William Cable

    2014-11-06

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  18. PNNL pushing scientific discovery through data intensive computing breakthroughs

    ScienceCinema (OSTI)

    Deborah Gracio; David Koppenaal; Ruby Leung

    2012-12-31

    The Pacific Northwest National Laboratorys approach to data intensive computing (DIC) is focused on three key research areas: hybrid hardware architectures, software architectures, and analytic algorithms. Advancements in these areas will help to address, and solve, DIC issues associated with capturing, managing, analyzing and understanding, in near real time, data at volumes and rates that push the frontiers of current technologies.

  19. Drift tube suspension for high intensity linear accelerators

    DOE Patents [OSTI]

    Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

    1980-03-11

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  20. A high intensity solar cell invention: The edge-illuminated vertical multi-junction (VNJ) solar cell

    SciTech Connect (OSTI)

    Sater, B.L.

    1992-08-07

    This report contains a summary of a High Intensity Solar Cell (HI Cell) development carried out under the NIST/DOE Energy-Related Invention Program. The HI Cell, or Edge-Illuminated vertical Multi-junction Solar Cell, eliminates most major problems encountered with other concentrator solar cell designs. Its high voltage and low series resistance features make it ideally suited for efficient operation at high intensities. Computer modeling shows efficiencies near 30% at 500 suns intensity are possible with state-of-art processing. Development of a working model was largely successful before encountering an unexpected problem during the last fabrication step with the anti-reflection coating. Unfortunately, funding was exhausted before its resolution. Recommendations are made to resolve the AR coating problem and to integrate all the knowledge gained during this development into a viable prototype model. The invention will provide the technical and economic performance needed to make photovoltaic systems cost-effective for wide use.

  1. A high intensity solar cell invention: The edge-illuminated vertical multi-junction (VNJ) solar cell. Final report

    SciTech Connect (OSTI)

    Sater, B.L.

    1992-08-07

    This report contains a summary of a High Intensity Solar Cell (HI Cell) development carried out under the NIST/DOE Energy-Related Invention Program. The HI Cell, or Edge-Illuminated vertical Multi-junction Solar Cell, eliminates most major problems encountered with other concentrator solar cell designs. Its high voltage and low series resistance features make it ideally suited for efficient operation at high intensities. Computer modeling shows efficiencies near 30% at 500 suns intensity are possible with state-of-art processing. Development of a working model was largely successful before encountering an unexpected problem during the last fabrication step with the anti-reflection coating. Unfortunately, funding was exhausted before its resolution. Recommendations are made to resolve the AR coating problem and to integrate all the knowledge gained during this development into a viable prototype model. The invention will provide the technical and economic performance needed to make photovoltaic systems cost-effective for wide use.

  2. Note: {sup 6}Li III light intensity observation for {sup 6}Li{sup 3+} ion beam operation at Hyper-Electron Cyclotron Resonance ion source

    SciTech Connect (OSTI)

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kobayashi, Kiyoshi; Kotaka, Yasuteru; Nishimura, Makoto; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2014-12-15

    The light intensity of {sup 6}Li III line spectrum at λ = 516.7 nm was observed during {sup 6}Li{sup 3+} beam tuning at the Hyper-Electron Cyclotron Resonance (ECR) ion source. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process. However, {sup 6}Li III line intensity observation conducted in this study gives new insights into its simplification of this process. The light intensity of {sup 6}Li III line spectrum from the ECR plasma was found to have a strong correlation with the extracted {sup 6}Li{sup 3+} beam intensity from the RIKEN Azimuthal Varying Field cyclotron.

  3. Ceramic Processing

    SciTech Connect (OSTI)

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  4. A high-resolution imaging X-ray crystal spectrometer for intense...

    Office of Scientific and Technical Information (OSTI)

    for intense laser plasma interaction experiments Citation Details In-Document Search Title: A high-resolution imaging X-ray crystal spectrometer for intense laser plasma ...

  5. A high-resolution imaging X-ray crystal spectrometer for intense...

    Office of Scientific and Technical Information (OSTI)

    intense laser plasma interaction experiments Citation Details In-Document Search Title: A high-resolution imaging X-ray crystal spectrometer for intense laser plasma interaction ...

  6. Improvement of the Lost Foam Casting Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement of the Lost Foam Casting Process Improvement of the Lost Foam Casting Process Improved Process Reduces Energy Use, Waste and Emissions, While Lowering Product Defects and Costs Casting is an energy-intensive manufacturing process within the metal casting and aluminum industries, requiring natural gas to melt aluminum and electricity to run equipment. The higher-than-acceptable faults and scrap rates in the lost foam casting process for the complex L61 engine previously resulted from

  7. Process to Continuously Melt, Refine and Cast High Quality Steel

    SciTech Connect (OSTI)

    2005-09-01

    The purpose of this project is to conduct research and development targeted at designing a revolutionary steelmaking process. This process will deliver high quality steel from scrap to the casting mold in one continuous process and will be safer, more productive, and less capital intensive to build and operate than conventional steelmaking. The new process will produce higher quality steel faster than traditional batch processes while consuming less energy and other resources.

  8. Oligomerization process

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1991-03-26

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled. 2 figures.

  9. Etherification process

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1990-08-21

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled. 2 figs.

  10. Crystallization process

    DOE Patents [OSTI]

    Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  11. Oligomerization process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX); hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

    1991-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  12. Etherification process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Houston, TX); Hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

    1990-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  13. WELDING PROCESS

    DOE Patents [OSTI]

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  14. Space-time contours to treat intense field-dressed molecular states

    SciTech Connect (OSTI)

    Paul, Amit K.; Adhikari, Satrajit; Baer, Michael

    2010-01-21

    In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [A. K. Paul, S. Adhikari, D. Mukhopadhyay et al., J. Phys. Chem. A 113, 7331 (2009)] in which a theory is presented that treats quantum effects due to nonclassical photon states (known also as Fock states). Since these states became recently a subject of intense experimental efforts we thought that they can be treated properly within the existing quantum formulation of dynamical processes. This was achieved by incorporating them in the Born-Oppenheimer (BO) treatment with time-dependent coefficients. The extension of the BO treatment to include the Fock states results in a formidable enhancement in numerical efforts expressed, in particular, in a significant increase in CPU time. In the present article we discuss an approach that yields an efficient and reliable approximation with only negligible losses in accuracy. The approximation is tested in detail for the dissociation process of H{sub 2}{sup +} as caused by a laser field.

  15. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of negative ions

    DOE Patents [OSTI]

    Hershcovitch, Ady

    1987-01-01

    A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.

  16. Energy Department Funding Helping Energy-Intensive Dairy Industry

    Broader source: Energy.gov [DOE]

    Historically, the U.S. dairy industry has been one of the most energy-intensive forms of agriculture. Dairies operate every hour of every day. Milk harvesting and cooling, equipment sterilization, lighting, and ventilation all require energy. With support from the Energy Department's State Energy Program, Colorado has implemented a successful pilot program to help the dairy industry reduce it electricity bill that could be emulated in other states.

  17. High intensity performance and upgrades at the Brookhaven AGS (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect performance and upgrades at the Brookhaven AGS Citation Details In-Document Search Title: High intensity performance and upgrades at the Brookhaven AGS Upgrades to the Brookhaven AGS are described. The AGS Booster which delivers proton beams of 1.5-1.9 GeV and the 200 MeV linac facilities are described. Space charge and beam emittance characteristics are discussed. (AIP) Authors: Roser, Thomas [1] + Show Author Affiliations AGS Department, Brookhaven National

  18. Transverse Focussing of Intense Charged Particle Beams with Chromatic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects for Heavy Ion Fusion Inventors..--.. James M. Mitrani, Igor D, Kaganovich, Ronald C, Davidson. | Princeton Plasma Physics Lab Transverse Focussing of Intense Charged Particle Beams with Chromatic Effects for Heavy Ion Fusion Inventors..--.. James M. Mitrani, Igor D, Kaganovich, Ronald C, Davidson. A two solenoid lens designed has been designed for tranverse focusing of charged particle beams. Solenoids focus the charged particles in the transverse direction, but chromatic effects in

  19. Device for imaging scenes with very large ranges of intensity

    DOE Patents [OSTI]

    Deason, Vance Albert (Idaho Falls, ID)

    2011-11-15

    A device for imaging scenes with a very large range of intensity having a pair of polarizers, a primary lens, an attenuating mask, and an imaging device optically connected along an optical axis. Preferably, a secondary lens, positioned between the attenuating mask and the imaging device is used to focus light on the imaging device. The angle between the first polarization direction and the second polarization direction is adjustable.

  20. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    SciTech Connect (OSTI)

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  1. Fermilab | For Physicists & Engineers | Fellowships | Intensity Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fellows Application Info Applications must include a curriculum vitae, and a selected publication list. In addition we request a two-page proposal describing the major contribution that will be made to the Intensity Frontier during the Fellowship, current compensation, and requested dates of support. Applicants holding postdoctoral positions should supply two letters of reference. Applications for the current round of awards will be accepted until 20 May 2016. It is anticipated that awards

  2. Fermilab | Science at Fermilab | Experiments & Projects | Intensity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontier | MINOS The MINOS Far Detector in the Soudan Mine. The MINOS Far Detector in the Soudan Mine. Intensity Frontier MINOS The Main Injector Neutrino Oscillation Search experiment is a long-baseline neutrino experiment designed to observe the phenomena of neutrino oscillations. MINOS uses two detectors, one located at the source of the neutrinos at Fermilab and the other located 450 miles away in northern Minnesota at the Soudan Mine. Beginning in February, 2005, researchers began

  3. Corrective Measures Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corrective Measures Process Corrective Measures Process We follow a stringent corrective measures process for legacy cleanup. August 1, 2013 Corrective measures process Corrective measures process

  4. High-intensity positron microprobe at Jefferson Lab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-19

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of themore » beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less

  5. High-intensity positron microprobe at Jefferson Lab

    SciTech Connect (OSTI)

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-19

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  6. 2014 call for NERSC's Data Intensive Computing Pilot Program Due December

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 NERSC's Data Intensive Computing Pilot Program 2014 call for NERSC's Data Intensive Computing Pilot Program Due December 10 November 18, 2013 by Francesca Verdier NERSC's Data Intensive Computing Pilot Program is now open for its second round of allocations to projects in data intensive science. This pilot aims to support and enable scientists to tackle their most demanding data intensive challenges. Selected projects will be piloting new methods and technologies targeting data

  7. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    SciTech Connect (OSTI)

    Aronov, Michael A.

    2005-12-21

    Intensive quenching (IQ) process is an alternative way of hardening (quenching) steel parts through the use of highly agitated water and then still air. It was developed by IQ Technologies, Inc. (IQT) of Akron, Ohio. While conventional quenching is usually performed in environmentally unfriendly oil or water/polymer solutions, the IQ process uses highly agitated environmentally friendly water or low concentration water/mineral salt solutions. The IQ method is characterized by extremely high cooling rates of steel parts. In contrast to conventional quenching, where parts cool down to the quenchant temperature and usually have tensile or neutral residual surface stresses at the end of quenching. The IQ process is interrupted when the part core is still hot and when there are maximum compressive stresses deep into the parts, thereby providing hard, ductile, better wear resistant parts. The project goal was to advance the patented IQ process from feasibility to commercialization in the heat-treating and forging industries to reduce significantly energy consumption and environmental impact, to increase productivity and to enhance economic competitiveness of these industries as well as Steel, Metal Casting and Mining industries. To introduce successfully the IQ technology in the U.S. metal working industry, the project team has completed the following work over the course of this project: A total of 33 manufacturers of steel products provided steel parts for IQ trails. IQT conducted IQ demonstrations for 34 different steel parts. Our customers tested intensively quenched parts in actual field conditions to evaluate the product service life and performance improvement. The data obtained from the field showed the following: Service life (number of holes punched) of cold-work punches (provided by EHT customer and made of S5 shock-resisting steel) was improved by two to eight times. Aluminum extrusion dies provided by GAM and made of hot work H-13 steel outperformed the standard dies by at least 50%. Dies provided by an AST customer, made of plain carbon 1045 steel and used for pellet manufacturing outperformed the standard dies by more than 100%. Concrete crusher liner wear plates provided by an EHT customer and made of 1045 steel, had the same surface hardness as the plates made of more expensive, pre-hardened high alloy HARDOX-500 material supplied by a Swedish company and used currently by the EHT customer. The 1045 material intensively quenched wear plates are currently in the field. Concrete block molding machine wear plates provided by an IQT customer and made of 8620 steel were processed at the AST production IQ system using a 40% reduced carburization cycle. An effective case depth in the intensively quenched wear plates was the same as in the standard, oil quenched parts. Base keys provided by an EHT customer and made of 8620 steel were processed using a 40% reduced carburization cycle. The intensively quenched parts showed the same performance as standard parts. IQT introduced the IQ process in heat treat practices of three commercial heat-treating shops: Akron Steel Treating Co., Summit Heat Treating Co. and Euclid Heat Treating Co. CWRU conducted a material characterization study for a variety of steels to develop a database to support changing/modification of recognized standards for quenching steel parts. IQT conducted a series of IQ workshops, published seven technical papers and participated in ASM Heat Treating Society conference and exposition and in Furnace North America Show. IQT designed and built a fully automated new IQ system installed at the Center for Intensive Quenching. This system includes the following major components: a stand-alone 1,900-gallon IQ water system, a 24'' x 24'' atmosphere pit furnace, and an automated load transfer mechanism. IQT established a ''Center for Intensive Quenching'' at the AST facilities. The 4,000 square feet Center includes the following equipment: High-velocity single part quenching IQ unit developed and built previously under EMTEC CT-65 project. The unit is equipped w

  8. NREL Demonstrates Light-Driven Process for Enzymatic Ammonia Production -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Demonstrates Light-Driven Process for Enzymatic Ammonia Production Carbon emissions and energy requirements reduced with new approach April 21, 2016 Image shows tubes of cadmium sulfide nanoparticles dissolved in water. A new process using light to reduce dinitrogen into ammonia, the main ingredient in chemical fertilizers could inspire development of new, more sustainable processes that eliminate the energy-intensive, lengthier processes now commonly in use. According

  9. Fast radiographic film calibration procedure for helical tomotherapy intensity modulated radiation therapy dose verification

    SciTech Connect (OSTI)

    Yan Yulong; Papanikolaou, Nikos; Weng Xuejun; Penagaricano, Jose; Ratanatharathorn, Vaneerat

    2005-06-15

    Film dosimetry offers an advantageous in-phantom planar dose verification tool in terms of spatial resolution and ease of handling for quality assurance (QA) of intensity modulated radiation therapy (IMRT) plans. A critical step in the success of such a technique is that the film calibration be appropriately conducted. This paper presents a fast and efficient film calibration method for a helical tomotherapy unit using a single sheet of film. Considering the unique un-flattened cone shaped profile from a helical tomotherapy beam, a custom leaf control file (sinogram) was created, to produce a valley shaped intensity pattern. There are eleven intensity steps in the valley pattern, representing varying dose values from 38 to 265 cGy. This dose range covers the most commonly prescribed doses in fractionated IMRT treatments. An ion chamber in a solid water phantom was used to measure the dose in each of the eleven steps. For daily film calibration the whole procedure, including film exposure, processing, digitization and analysis, can be completed within 15 min, making it practical to use this technique routinely. This method is applicable to film calibration on a helical tomotherapy unit and is particularly useful in IMRT planar dose verification due to its efficiency and reproducibility. In this work, we characterized the dose response of the KODAK EDR2 ready-pack film which was used to develop the step valley dose maps and the IMRT QA planar doses. A comparison between the step valley technique and multifilm based calibration showed that both calibration methods agreed with less than 0.4% deviation in the clinically useful dose ranges.

  10. Intense transient magnetic-field generation by laser plasma

    SciTech Connect (OSTI)

    Benjamin, R.F.

    1981-08-18

    In a laser system, the return current of a laser generated plasma is conducted near a target to subject that target to the magnetic field thereof. In alternate embodiments the target may be either a small non-fusion object for testing under the magnetic field or a laser-fusion pellet. In the laser-fusion embodiment, the laser-fusion pellet is irradiated during the return current flow and the intense transient magnetic field is used to control the hot electrons thereof to hinder them from striking and heating the core of the irradiated laser-fusion pellet.

  11. Assessing Internet energy intensity: A review of methods and results

    SciTech Connect (OSTI)

    Coroama, Vlad C.; Hilty, Lorenz M.; Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstr. 5, 9014 St. Gallen; Centre for Sustainable Communications, KTH Royal Institute of Technology, Lindstedtsvgen 5, 100 44 Stockholm

    2014-02-15

    Assessing the average energy intensity of Internet transmissions is a complex task that has been a controversial subject of discussion. Estimates published over the last decade diverge by up to four orders of magnitude from 0.0064 kilowatt-hours per gigabyte (kWh/GB) to 136 kWh/GB. This article presents a review of the methodological approaches used so far in such assessments: i) topdown analyses based on estimates of the overall Internet energy consumption and the overall Internet traffic, whereby average energy intensity is calculated by dividing energy by traffic for a given period of time, ii) model-based approaches that model all components needed to sustain an amount of Internet traffic, and iii) bottomup approaches based on case studies and generalization of the results. Our analysis of the existing studies shows that the large spread of results is mainly caused by two factors: a) the year of reference of the analysis, which has significant influence due to efficiency gains in electronic equipment, and b) whether end devices such as personal computers or servers are included within the system boundary or not. For an overall assessment of the energy needed to perform a specific task involving the Internet, it is necessary to account for the types of end devices needed for the task, while the energy needed for data transmission can be added based on a generic estimate of Internet energy intensity for a given year. Separating the Internet as a data transmission system from the end devices leads to more accurate models and to results that are more informative for decision makers, because end devices and the networking equipment of the Internet usually belong to different spheres of control. -- Highlights: Assessments of the energy intensity of the Internet differ by a factor of 20,000. We review topdown, model-based, and bottomup estimates from literature. Main divergence factors are the year studied and the inclusion of end devices. We argue against extending the Internet system boundary beyond data transmission. Decision-makers need data that differentiates between end devices and transmission.

  12. Inertial Fusion Driven by Intense Heavy-Ion Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS * W. M. Sharp # , A. Friedman, D. P. Grote, J. J. Barnard, R. H. Cohen, M. A. Dorf, S. M. Lund, L. J. Perkins, M. R. Terry, LLNL, Livermore, CA, USA B. G. Logan, F. M. Bieniosek, A. Faltens, E. Henestroza, J.-Y. Jung, J. W. Kwan, E. P. Lee, S. M. Lidia, P. A. Ni, L. L. Reginato, P. K. Roy, P. A. Seidl, J. H. Takakuwa, J.-L. Vay, W. L. Waldron, LBNL, Berkeley, CA, USA R. C. Davidson, E. P. Gilson, I. D. Kaganovich, H. Qin, E. Startsev, PPPL,

  13. LED intense headband light source for fingerprint analysis

    DOE Patents [OSTI]

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  14. Joint Facilities User Forum on Data-Intensive Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using the Adaptable I/O System (ADIOS) Joint Facilities User Forum on Data-Intensive Computing June 18, 2014 Norbert Podhorszki Thanks to: H. Abbasi, S. Ahern, C. S. Chang, J. Chen, S. Ethier, B. Geveci, J. Kim, T. Kurc, S. Klasky, J. Logan, Q. Liu, K. Mu, G. Ostrouchov, M. Parashar, D. Pugmire, J. Saltz, N. Samatova, K. Schwan, A. Shoshani, W. Tang, Y. Tian, M. Taufer, W. Xue, M. Wolf + many more Subtle m essage o f t he f orum a genda . . . . . . . . . What i s A DIOS? * ADaptable I /O S ystem

  15. Fermilab | Science at Fermilab | Experiments & Projects | Intensity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontier | ArgoNeuT ArgoNeuT ArgoNeut detector at Proton Assembly Building Intensity Frontier ArgoNeuT The Argon Neutrino Teststand or ArgoNeuT detector, nicknamed for Jason and the Argonauts of Greek mythology, is a liquid argon neutrino detector at Fermilab. Argon is a noble, non-toxic element that in its gaseous form constitutes about 1 percent of air. It exists as a colorless liquid only in the narrow temperature range of minus 186 to minus 189 degrees Celsius. Neutrinos passing through

  16. Fire Intensity Data for Validation of the Radiative Transfer Equation

    SciTech Connect (OSTI)

    Blanchat, Thomas K.; Jernigan, Dann A.

    2016-01-01

    A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.

  17. The phase-lock dynamics of the laser wakefield acceleration with an intensity-decaying laser pulse

    SciTech Connect (OSTI)

    Li, Wentao; Liu, Jiansheng Wang, Wentao; Zhang, Zhijun; Chen, Qiang; Tian, Ye; Qi, Rong; Yu, Changhai; Wang, Cheng; Li, Ruxin Xu, Zhizhan; Tajima, T.

    2014-03-03

    An electron beam with the maximum energy extending up to 1.8?GeV, much higher than the dephasing limit, is experimentally obtained in the laser wakefield acceleration with the plasma density of 3.5??10{sup 18}?cm{sup ?3}. With particle in cell simulations and theoretical analysis, we find that the laser intensity evolution plays a major role in the enhancement of the electron energy gain. While the bubble length decreases due to the intensity-decay of the laser pulse, the phase of the electron beam in the wakefield can be locked, which contributes to the overcoming of the dephasing. Moreover, the laser intensity evolution is described for the phase-lock acceleration of electrons in the uniform plasma, confirmed with our own simulation. Since the decaying of the intensity is unavoidable in the long distance propagation due to the pump depletion, the energy gain of the high energy laser wakefield accelerator can be greatly enhanced if the current process is exploited.

  18. Corrective Measures Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corrective Measures Process Corrective Measures Process We follow a stringent corrective measures process for legacy cleanup. August 1, 2013 Corrective measures process Corrective...

  19. Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios

    SciTech Connect (OSTI)

    Kao, Shih-Chieh; Ganguly, Auroop R

    2011-01-01

    Recent research on the projection of precipitation extremes has either focused on conceptual physical mechanisms that generate heavy precipitation or rigorous statistical methods that extrapolate tail behavior. However, informing both climate prediction and impact assessment requires concurrent physically and statistically oriented analysis. A combined examination of climate model simulations and observation-based reanalysis data sets suggests more intense and frequent precipitation extremes under 21st-century warming scenarios. Utilization of statistical extreme value theory and resampling-based uncertainty quantification combined with consideration of the Clausius-Clapeyron relationship reveals consistently intensifying trends for precipitation extremes at a global-average scale. However, regional and decadal analyses reveal specific discrepancies in the physical mechanisms governing precipitation extremes, as well as their statistical trends, especially in the tropics. The intensifying trend of precipitation extremes has quantifiable impacts on intensity-duration-frequency curves, which in turn have direct implications for hydraulic engineering design and water-resources management. The larger uncertainties at regional and decadal scales suggest the need for caution during regional-scale adaptation or preparedness decisions. Future research needs to explore the possibility of uncertainty reduction through higher resolution global climate models, statistical or dynamical downscaling, as well as improved understanding of precipitation extremes processes.

  20. Influence of Intense Beam in High Pressure Hydrogen Gas Filled RF Cavities

    SciTech Connect (OSTI)

    Yonehara, K.; Chung, M.; Collura, M.G.; Jana, M.R.; Leonova, M.; Moretti, A.; Popovic, M.; Schwarz, T.; Tollestrup, A.; Johnson, R.P.; Franagan, G.; /Muons, Inc. /IIT

    2012-05-01

    The influence of an intense beam in a high-pressure gas filled RF cavity has been measured by using a 400 MeV proton beam in the Mucool Test Area at Fermilab. The ionization process generates dense plasma in the cavity and the resultant power loss to the plasma is determined by measuring the cavity voltage on a sampling oscilloscope. The energy loss has been observed with various peak RF field gradients (E), gas pressures (p), and beam intensities in nitrogen and hydrogen gases. Observed RF energy dissipation in single electron (dw) in N{sub 2} and H{sub 2} gases was 2 10{sup -17} and 3 10{sup -17} Joules/RF cycle at E/p = 8 V/cm/Torr, respectively. More detailed dw measurement have been done in H{sub 2} gas at three different gas pressures. There is a clear discrepancy between the observed dw and analytical one. The discrepancy may be due to the gas density effect that has already been observed in various experiments.

  1. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect (OSTI)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700C and a frequency response up to 150 kHz, the worlds smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700C capability, UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, a single crystal sapphire fiber-based sensor with a temperature capability up to 1600C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  2. ORBIT : BEAM DYNAMICS CALCULATIONS FOR HIGH - INTENSITY RINGS.

    SciTech Connect (OSTI)

    HOLMES,J.A.; DANILOV,V.; GALAMBOS,J.; SHISHLO,A.; COUSINEAU,S.; CHOU,W.; MICHELOTTI,L.; OSTIGUY,F.; WEI,J.

    2002-06-03

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK the introduction of a treatment magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings.

  3. Correlating sampling and intensity statistics in nanoparticle diffraction experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Öztürk, Hande; Yan, Hanfei; Hill, John P.; Noyan, I. Cevdet

    2015-07-28

    It is shown in a previous article [Öztürk, Yan, Hill & Noyan (2014).J. Appl. Cryst.47, 1016–1025] that the sampling statistics of diffracting particle populations within a polycrystalline ensemble depended on the size of the constituent crystallites: broad X-ray peak breadths enabled some nano-sized particles to contribute more than one diffraction spot to Debye–Scherrer rings. Here it is shown that the equations proposed by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] (AKK) to link diffracting particle and diffracted intensity statistics are not applicable if the constituent crystallites of the powder are below 10 nm. In this size range, (i) themore » one-to-one correspondence between diffracting particles and Laue spots assumed in the AKK analysis is not satisfied, and (ii) the crystallographic correlation between Laue spots originating from the same grain invalidates the assumption that all diffracting plane normals are randomly oriented and uncorrelated. Such correlation produces unexpected results in the selection of diffracting grains. For example, three or more Laue spots from a given grain for a particular reflection can only be observed at certain wavelengths. In addition, correcting the diffracted intensity values by the traditional Lorentz term, 1/cos θ, to compensate for the variation of particles sampled within a reflection band does not maintain fidelity to the number of poles contributing to the diffracted signal. A new term, cos θB/cos θ, corrects this problem.« less

  4. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect (OSTI)

    Coverdale, C.A.

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10{sup 16} W/cm{sup 2} laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L{sub plasma} {ge} 2L{sub Rayleigh} > c{tau}. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n{sub o} {le} 0.05n{sub cr}). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in {omega}-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  5. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect (OSTI)

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  6. Improved Planning Time and Plan Quality Through Multicriteria Optimization for Intensity-Modulated Radiotherapy

    SciTech Connect (OSTI)

    Craft, David L.; Hong, Theodore S.; Shih, Helen A.; Bortfeld, Thomas R.

    2012-01-01

    Purpose: To test whether multicriteria optimization (MCO) can reduce treatment planning time and improve plan quality in intensity-modulated radiotherapy (IMRT). Methods and Materials: Ten IMRT patients (5 with glioblastoma and 5 with locally advanced pancreatic cancers) were logged during the standard treatment planning procedure currently in use at Massachusetts General Hospital (MGH). Planning durations and other relevant planning information were recorded. In parallel, the patients were planned using an MCO planning system, and similar planning time data were collected. The patients were treated with the standard plan, but each MCO plan was also approved by the physicians. Plans were then blindly reviewed 3 weeks after planning by the treating physician. Results: In all cases, the treatment planning time was vastly shorter for the MCO planning (average MCO treatment planning time was 12 min; average standard planning time was 135 min). The physician involvement time in the planning process increased from an average of 4.8 min for the standard process to 8.6 min for the MCO process. In all cases, the MCO plan was blindly identified as the superior plan. Conclusions: This provides the first concrete evidence that MCO-based planning is superior in terms of both planning efficiency and dose distribution quality compared with the current trial and error-based IMRT planning approach.

  7. Towards phasing using high X-ray intensity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sébastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; et al

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting schememore » is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.« less

  8. High intensity neutrino source superconducting solenoid cyrostat design

    SciTech Connect (OSTI)

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  9. Working Group Report: Computing for the Intensity Frontier

    SciTech Connect (OSTI)

    Rebel, B.; Sanchez, M.C.; Wolbers, S.

    2013-10-25

    This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.

  10. HIGH INTENSITY LOW-ENERGY POSITRON SOURCE AT JEFFERSON

    SciTech Connect (OSTI)

    Serkan Golge, Bogdan Wojtsekhowski, Branislav Vlahovic

    2012-07-01

    We present a novel concept of a low-energy e{sup +} source with projected intensity on the order of 10{sup 10} slow e{sup +}/s. The key components of this concept are a continuous wave e{sup -} beam, a rotating positron-production target, a synchronized raster/anti-raster, a transport channel, and extraction of e{sup +} into a field-free area through a magnetic plug for moderation in a cryogenic solid. Components were designed in the framework of GEANT4-based (G4beamline) Monte Carlo simulation and TOSCA magnetic field calculation codes. Experimental data to demonstrate the effectiveness of the magnetic plug is presented.

  11. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    SciTech Connect (OSTI)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  12. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    SciTech Connect (OSTI)

    Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystal Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.

  13. Intensity limitations in compact H{sup minus} cyclotrons

    SciTech Connect (OSTI)

    Baartman, R.A.

    1995-12-31

    At TRIUMF, we have demonstrated 2.5 mA in a compact H{sup -} cyclotron. It is worthwhile to explore possibility of going to even higher intensity. In small cyclotrons, vertical focusing vanishes at the center. The space charge tune shift further reduces vertical focusing, thus determining an upper limit on instantaneous current. Limit on average current is of course also dependent upon phase acceptance, but this can be made quite large in an H{sup -} cyclotron. Longitudinal space charge on the first turn can reduce the phase acceptance as well. For finite ion source brightness, another limit comes from bunching efficiency in presence of space charge forces. We present methods of calculating and optimizing these limits. In particular, we show that it is possible to achieve 10mA in a 50 MeV compact H{sup -} cyclotron.

  14. Towards phasing using high X-ray intensity

    SciTech Connect (OSTI)

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sbastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; Nass, Karol; Shoeman, Robert L.; Timneanu, Nicusor; Santra, Robin; Schlichting, Ilme; Chapman, Henry N.

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.

  15. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystalmore » Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.« less

  16. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    SciTech Connect (OSTI)

    Fisch, Nathaniel J

    2014-01-08

    I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-­‐energy-­‐ density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­‐energy-­‐ density plasma the ideas for steady-­‐state current drive developed for low-­‐energy-­‐ density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­‐energy-­‐density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  17. Well Placement Decision Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Well Placement Decision Process Well Placement Decision Process Determining where to place a well is a multi-step process. August 1, 2013 Investigation process for determining where to place a sentinel well Investigation process for determining where

  18. PREDICTION OF 4nu=1 RESONANCE OF A HIGH INTENSITY LINAC (Conference...

    Office of Scientific and Technical Information (OSTI)

    PREDICTION OF 4nu1 RESONANCE OF A HIGH INTENSITY LINAC Citation Details In-Document Search Title: PREDICTION OF 4nu1 RESONANCE OF A HIGH INTENSITY LINAC The 4nu1 resonance of a ...

  19. Nonlinear increase of X-ray intensities from thin foils irradiated...

    Office of Scientific and Technical Information (OSTI)

    increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser Citation Details In-Document Search Title: Nonlinear increase of X-ray intensities...

  20. Intense Super-radiant X-rays from a Compact Source using a Nanocathode...

    Office of Scientific and Technical Information (OSTI)

    Intense Super-radiant X-rays from a Compact Source using a Nanocathode Array and Emittance Exchange Citation Details In-Document Search Title: Intense Super-radiant X-rays from a ...

  1. Steel characteristics measurement system using Barkhausen jump sum rate and magnetic field intensity and method of using same

    DOE Patents [OSTI]

    Kohn, Gabriel; Hicho, George; Swartzendruber, Lydon

    1997-01-01

    A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment.

  2. Steel characteristics measurement system using Barkhausen jump sum rate and magnetic field intensity and method of using same

    DOE Patents [OSTI]

    Kohn, G.; Hicho, G.; Swartzendruber, L.

    1997-04-08

    A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment. 7 figs.

  3. Department of Energy Commercial Building Benchmarks (New Construction): Energy Use Intensities, May 5, 2009

    Broader source: Energy.gov [DOE]

    This file contains the energy use intensities (EUIs) for the benchmark building files by building type and climate zone.

  4. Strategies for the Commercialization & Deployment of GHG Intensity-Reducing Technologies & Practices

    Broader source: Energy.gov [DOE]

    This report looks at the best methods of commercializing and deploying energy technologies that reduce greenhouse gas intensity.

  5. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

    2011-06-15

    Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel industry, and final steel product mix in both countries. The share of lower energy intensity electric arc furnace production in each country was a key determinant of total steel sector energy efficiency. Overall steel sector structure, in terms of average plant vintage and production capacity, is also an important variable though data were not available to quantify this in a scenario. The methodology developed in this report, along with the accompanying quantitative and qualitative analyses, provides a foundation for comparative international assessment of steel sector energy intensity.

  6. ARM - VAP Process - aip

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productsaip Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Aerosol Intensive Properties (AIP) Instrument Categories Aerosols The aip1ogren value-added product (VAP) computes several aerosol intensive properties. It requires as input calibrated, corrected, aerosol extensive properties from the Aerosol Observing Station (AOS). Aerosol

  7. The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste

    SciTech Connect (OSTI)

    Lindmark, Johan Eriksson, Per; Thorin, Eva

    2014-08-15

    Highlights: • Effects of mixing on the anaerobic digestion of municipal solid waste. • Digestion of fresh substrate and post-digestion at three mixing intensities were evaluated. • Mixing performed at 150 RPM, 25 RPM and minimally intermittently. • Increased biogas production rates and yields at lower mixing intensities. - Abstract: Mixing inside an anaerobic digester is often continuous and is not actively controlled. The selected mixing regime can however affect both gas production and the energy efficiency of the biogas plant. This study aims to evaluate these effects and compare three different mixing regimes, 150 RPM and 25 RPM continuous mixing and minimally intermittent mixing for both digestion of fresh substrate and post-digestion of the organic fraction of municipal solid waste. The results show that a lower mixing intensity leads to a higher biogas production rate and higher total biogas production in both cases. 25 RPM continuous mixing and minimally intermittent mixing resulted in similar biogas production after process stabilization, while 150 RPM continuous mixing resulted in lower production throughout the experiment. The lower gas production at 150 RPM could not be explained by the inhibition of volatile fatty acids. Cumulative biogas production until day 31 was 295 ± 2.9, 317 ± 1.9 and 304 ± 2.8 N ml/g VS added during digestion of fresh feed and 113 ± 1.3, 134 ± 1.1 and 130 ± 2.3 N ml/g VS added during post digestion for the 150 RPM, 25 RPM and minimally mixed intensities respectively. As well as increasing gas production, optimal mixing can improve the energy efficiency of the anaerobic digestion process.

  8. Intense Ion Beam for Warm Dense Matter Physics

    SciTech Connect (OSTI)

    Coleman, Joshua Eugene

    2008-05-23

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K{sup +} ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons of improved experimental and calculated axial focus (> 100 x axial compression, < 2 ns pulses) and higher peak energy deposition on target are also presented. These achievements demonstrate the capabilities for near term target heating experiments to T{sub e} {approx} 0.1 eV and for future ion accelerators to heat targets to T{sub e} > 1 eV.

  9. Clinical Implementation of Intensity Modulated Proton Therapy for Thoracic Malignancies

    SciTech Connect (OSTI)

    Chang, Joe Y.; Li, Heng; Zhu, X. Ronald; Liao, Zhongxing; Zhao, Lina; Liu, Amy; Li, Yupeng; Sahoo, Narayan; Poenisch, Falk; Gomez, Daniel R.; Wu, Richard; Gillin, Michael; Zhang, Xiaodong

    2014-11-15

    Purpose: Intensity modulated proton therapy (IMPT) can improve dose conformality and better spare normal tissue over passive scattering techniques, but range uncertainties complicate its use, particularly for moving targets. We report our early experience with IMPT for thoracic malignancies in terms of motion analysis and management, plan optimization and robustness, and quality assurance. Methods and Materials: Thirty-four consecutive patients with lung/mediastinal cancers received IMPT to a median 66 Gy(relative biological equivalence [RBE]). All patients were able to undergo definitive radiation therapy. IMPT was used when the treating physician judged that IMPT conferred a dosimetric advantage; all patients had minimal tumor motion (<5 mm) and underwent individualized tumor-motion dose-uncertainty analysis and 4-dimensional (4D) computed tomographic (CT)-based treatment simulation and motion analysis. Plan robustness was optimized by using a worst-case scenario method. All patients had 4D CT repeated simulation during treatment. Results: IMPT produced lower mean lung dose (MLD), lung V{sub 5} and V{sub 20}, heart V{sub 40}, and esophageal V{sub 60} than did IMRT (P<.05) and lower MLD, lung V{sub 20}, and esophageal V{sub 60} than did passive scattering proton therapy (PSPT) (P<.05). D{sub 5} to the gross tumor volume and clinical target volume was higher with IMPT than with intensity modulated radiation therapy or PSPT (P<.05). All cases were analyzed for beam-angle-specific motion, water-equivalent thickness, and robustness. Beam angles were chosen to minimize the effect of respiratory motion and avoid previously treated regions, and the maximum deviation from the nominal dose-volume histogram values was kept at <5% for the target dose and met the normal tissue constraints under a worst-case scenario. Patient-specific quality assurance measurements showed that a median 99% (range, 95% to 100%) of the pixels met the 3% dose/3 mm distance criteria for the γ index. Adaptive replanning was used for 9 patients (26.5%). Conclusions: IMPT using 4D CT-based planning, motion management, and optimization was implemented successfully and met our quality assurance parameters for treating challenging thoracic cancers.

  10. Extensible packet processing architecture

    DOE Patents [OSTI]

    Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.

    2013-08-20

    A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.

  11. Process for forming retrograde profiles in silicon

    DOE Patents [OSTI]

    Weiner, K.H.; Sigmon, T.W.

    1996-10-15

    A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  12. Process for forming retrograde profiles in silicon

    DOE Patents [OSTI]

    Weiner, Kurt H.; Sigmon, Thomas W.

    1996-01-01

    A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  13. Physical processes in an electron current layer causing intense plasma heating and formation of x-lines

    SciTech Connect (OSTI)

    Singh, Nagendra; Wells, B. E.; Khazanov, Igor

    2015-05-15

    We study the evolution of an electron current layer (ECL) through its several stages by means of three-dimensional particle-in-cell (PIC) simulations with ion to electron mass ratio M/m{sub e}?=?400. An ECL evolves through the following stages: (i) Electrostatic (ES) current-driven instability (CDI) soon after its formation with half width w about 2 electron skin depth (d{sub e}), (ii) current disruption in the central part of the ECL by trapping of electrons and generation of anomalous resistivity, (iii) electron tearing instability (ETI) with significantly large growth rates in the lower end of the whistler frequency range, (iv) widening of the ECL and modulation of its width by the ETI, (v) gradual heating of electrons by the CDI-driven ES ion modes create the condition that the electrons become hotter than the ions, (vi) despite the reduced electron drift associated with the current disruption by the CDI, the enhanced electron temperature continues to favor a slow growth of the ion waves reaching nonlinear amplitudes, (vii) the nonlinear ion waves undergo modulation and collapse into localized density cavities containing spiky electric fields like in double layers (DLs), (viii) such spiky electric fields are very effective in further rapid heating of both electrons and ions. As predicted by the electron magnetohydrodynamic (EMHD) theories, the ETI growth rate maximizes at wave numbers in the range 0.4?

  14. Table 22. Energy Intensity, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / $Billion 2005 Chained GDP) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 10.9 10.7 10.6 10.5 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 AEO 1995 10.5 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 AEO 1996 10.4 10.3 10.1 10.0 9.8 9.7 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.9 8.8 8.7 8.7 8.6 8.5 AEO 1997 10.0 9.9 9.8 9.7 9.6 9.5 9.4

  15. INTENSITY MAPPING OF MOLECULAR GAS DURING COSMIC REIONIZATION

    SciTech Connect (OSTI)

    Carilli, C. L.

    2011-04-01

    I present a simple calculation of the expected mean CO brightness temperature from the large-scale distribution of galaxies during cosmic reionization. The calculation is based on the cosmic star formation rate density required to reionize, and keep ionized, the intergalactic medium, and uses standard relationships between star formation rate, IR luminosity, and CO luminosity derived for star-forming galaxies over a wide range in redshift. I find that the mean CO brightness temperature resulting from the galaxies that could reionize the universe at z = 8 is T{sub B} {approx} 1.1(C/5)(f{sub esc}/0.1){sup -1}{mu}K, where f{sub esc} is the escape fraction of ionizing photons from the first galaxies and C is the IGM clumping factor. Intensity mapping of the CO emission from the large-scale structure of the star-forming galaxies during cosmic reionization on scales of order 10{sup 2} to 10{sup 3} deg{sup 2}, in combination with H I 21 cm imaging of the neutral IGM, will provide a comprehensive study of the earliest epoch of galaxy formation.

  16. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect (OSTI)

    Grote, David P.; Friedman, Alex; Vay, Jean-Luc; Haber, Irving

    2005-03-15

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse 'slice' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{sub s}ummary.html.

  17. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect (OSTI)

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-12-09

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{_}summary.html.

  18. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  19. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  20. Intensive two-photon absorption induced decay pathway in a ZnO crystal: Impact of light-induced defect state

    SciTech Connect (OSTI)

    Li, Zhong-guo; Wei, Tai-Huei; Yang, Jun-yi; Song, Ying-lin; School of Physical Science and Technology, Soochow University, Suzhou 215006

    2013-12-16

    Using the pump-probe with phase object technique with 20 ps laser pulses at 532 nm, we investigated the carrier relaxation process subsequent to two-photon absorption (TPA) in ZnO. As a result, we found that an additional subnanosecond decay pathway is activated when the pump beam intensity surpasses 0.4 GW/cm{sup 2}. We attributed this intensity-dependent pathway to a TPA induced bulk defect state and our results demonstrate that this photo induced defect state has potential applications in ZnO based optoelectronic and spintronic devices.

  1. Total Absorption Gamma-ray Spectrometer (TAGS) Intensity Distributions from INL's Gamma-Ray Spectrometry Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Greenwood, R. E.

    A 252Cf fission-product source and the INL on-line isotope separator were used to supply isotope-separated fission-product nuclides to a total absorption -ray spectrometer. This spectrometer consisted of a large (25.4-cm diameter x 30.5-cm long) NaI(Tl) detector with a 20.3-cm deep axial well in which is placed a 300-mm2 x 1.0-mm Si detector. The spectra from the NaI(Tl) detector are collected both in the singles mode and in coincidence with the B-events detected in the Si detector. Ideally, this detector would sum all the energy of the B- rays in each cascade following the population of daughter level by B- decay, so that the event could be directly associated with a particular daughter level. However, there are losses of energy from attenuation of the rays before they reach the detector, transmission of rays through the detector, escape of secondary photons from Compton scattering, escape of rays through the detector well, internal conversion, etc., and the measured spectra are thus more complicated than the ideal case and the analysis is more complex. Analysis methods have been developed to simulate all of these processes and thus provide a direct measure of the B- intensity distribution as a function of the excitation energy in the daughter nucleus. These data yield more accurate information on the B- distribution than conventional decay-scheme studies for complex decay schemes with large decay energies, because in the latter there are generally many unobserved and observed but unplaced rays. The TAGS data have been analyzed and published [R. E. Greenwood et al., Nucl Instr. and metho. A390(1997)] for 40 fission product-nuclides to determine the B- intensity distributions. [Copied from the TAGS page at http://www.inl.gov/gammaray/spectrometry/tags.shtml]. Those values are listed on this page for quick reference.

  2. Development and pilot test of an intensive municipal solid waste recycling system for the Town of East Hampton

    SciTech Connect (OSTI)

    Commoner, B.; Frisch, M.; Pitot, H.A.; Quigley, J.; Stege, A.; Wallace, D.; Webster, T.

    1990-02-01

    This report presents the results of a project to design and test a new type of trash disposal system for the Town of East Hampton, Long Island: the Intensive Recycling System. The system is intended to serve as the Town's primary means of regular trash disposal. The Intensive Recycling System is based on separation of regular trash, by household and commercial establishments, into four fractions: (1) food garbage and soiled paper; (2) paper/cardboard; (3) metal cans/glass bottles; (4) non-recyclables. Fraction 1, together with yard waste, is processed at a compost facility, yielding marketable compost. Fractions 2 and 3 are processed by a materials recovery facility (MRF) into marketable products: several grades of paper and cardboard; aluminum cans; tin cans; scrap metal; and color-sorted crushed glass (cullet). The non-recyclable components (fraction 4) and misclassified components rejected during processing are consigned to a landfill. This document is Volume 2 of two volumes and contains the appendix for Volume 1.

  3. Development and pilot test of an intensive municipal solid waste recycling system for the Town of East Hampton

    SciTech Connect (OSTI)

    Commoner, B.; Frisch, M.; Pitot, H.A.; Quigley, J.; Stege, A.; Wallace, D.; Webster, T.

    1990-02-01

    This report presents the results of a project to design and test a new type of trash disposal system for the Town of East Hampton, Long Island: the Intensive Recycling System. The system is intended to serve as the Town's primary means of regular trash disposal. The Intensive Recycling System is based on separation of regular trash, by households and commercial establishments, into four fractions: (1) food garbage and soiled paper; (2) paper/cardboard; (3) metal cans/glass bottles; (4) non-recyclables. Fraction 1, together with yard waste, is processed at a compost facility, yielding marketable compost. Fractions 2 and 3 are processed by a materials recovery facility (MRF) into marketable products: several grades of paper and cardboard; aluminum cans; tin cans; scrap metal; and color-sorted crushed glass (cullet). The non-recyclable components (fraction 4) and misclassified components rejected during processing are consigned to a landfill. This document is Volume 1 of two volumes. 75 refs., 24 figs., 81 tabs.

  4. EEO Complaint Process EEO Complaint Process INFORMAL PROCESS-COUNSELING

    National Nuclear Security Administration (NNSA)

    Complaint Process EEO Complaint Process INFORMAL PROCESS-COUNSELING National Nuclear Security Administration Office of Civil Rights Equal Employment Opportunity: Collaborating For Mission Success EEO POLICY The Department of Energy (DOE) does not discriminate on the basis of age, color, race, disability (physical or mental), national origin, reprisal, religion, sex (including sexual harassment), sexual orientation, genetic information or any other non-merit factor. DOE is committed to equal

  5. Coal liquefaction process with enhanced process solvent

    DOE Patents [OSTI]

    Givens, Edwin N.; Kang, Dohee

    1984-01-01

    In an improved coal liquefaction process, including a critical solvent deashing stage, high value product recovery is improved and enhanced process-derived solvent is provided by recycling second separator underflow in the critical solvent deashing stage to the coal slurry mix, for inclusion in the process solvent pool.

  6. Intense x-ray machine for penetrating radiography

    SciTech Connect (OSTI)

    Lucht, R.A.; Eckhouse, S.

    1989-01-01

    Penetrating radiography has been used for many years in the nuclear weapons research programs. In frequently penetrating radiography has been used in conventional weapons research programs. For example the Los Alamos PHERMEX machine was used to view uranium rods penetrating steel for the GAU-8 program, and the Ector machine was used to see low-density regions in forming metal jets. The armor/anti-armor program at Los Alamos has created a need for an intense flash x-ray machine that can be dedicated to conventional weapons research. The Balanced Technology Initiative, through DARPA, has funded the design and construction of such a machine at Los Alamos. It will be an 8- to 10-MeV diode machine capable of delivering a dose of 500 R at 1 m with a spot size of less than 5 mm. The machine used an 87.5-stage low-inductance Marx generator that charges up a 7.4-/Omega/, 32-ns water line. The water line is discharged through a self-breakdown oil switch into a 12.4-/Omega/ water line that rings up the voltage into the high-impendance x-ray diode. A long (233-cm) vacuum drift tube is used to separate the large-diameter oil-insulated diode region from the x-ray source area that may be exposed to high overpressures by the explosive experiments. The electron beam is self-focused at the target area using a low-pressure background gas. 15 refs., 11 figs.

  7. Production of intense beams of singly charged radioactive ions

    SciTech Connect (OSTI)

    Kuznetsov, G.; Batazova, M.; Gubin, K.; Logachev, P.; Martyshkin, P.

    2006-03-15

    An apparatus for the production of intense beams of singly charged radioactive ions operating in on-line regime is proposed. The radioactive atoms are produced in a uranium-graphite (UC) target bombarded with neutrons. The neutron flux is generated by a graphite neutron converter, which is bombarded with protons. The atoms of the produced isotopes are ionized in the electron beam generated with the electron gun and the ions of interest are extracted in a separator. The apparatus consists of the following parts. (1) Rotating converter dissipating a substantial power of proton beam. (2) UC target placed in a graphite container at high temperature. The atoms of radioactive isotopes can be extracted with a flow of noble gas. (3) Triode electron gun with ionization channel is placed inside the solenoid forming a focusing magnetic field. The cathode of the electron gun is a spout of the graphite container. The atoms of radioactive isotopes are carried with gas flow through the spout into the electron beam. (4) Correction coil located near the gun matches the electron beam with the ionization channel. (5) The first anode has a potential of 1-4 kV with respect to the cathode, and the second anode has some lower potential than the first anode and it is the tube of ionization channel. (6) Electron collector dissipates the electron-beam power. (7) Uranium-graphite target, the gun, the ionization channel as well as solenoid are located on an isolated platform with potential of 30-60 kV with respect to ground. The beam of singly charged ions from the ionization channel passes the collector, goes through the extractor, acquires energy of 30-60 keV, and gets transported to the separator where the required species are selected.

  8. Energy end-use intensities in commercial buildings

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

  9. Prostate Bed Motion During Intensity-Modulated Radiotherapy Treatment

    SciTech Connect (OSTI)

    Klayton, Tracy; Price, Robert; Buyyounouski, Mark K.; Sobczak, Mark; Greenberg, Richard; Li, Jinsheng; Keller, Lanea; Sopka, Dennis; Kutikov, Alexander; Horwitz, Eric M.

    2012-09-01

    Purpose: Conformal radiation therapy in the postprostatectomy setting requires accurate setup and localization of the prostatic fossa. In this series, we report prostate bed localization and motion characteristics, using data collected from implanted radiofrequency transponders. Methods and Materials: The Calypso four-dimensional localization system uses three implanted radiofrequency transponders for daily target localization and real-time tracking throughout a course of radiation therapy. We reviewed the localization and tracking reports for 20 patients who received ultrasonography-guided placement of Calypso transponders within the prostate bed prior to a course of intensity-modulated radiation therapy at Fox Chase Cancer Center. Results: At localization, prostate bed displacement relative to bony anatomy exceeded 5 mm in 9% of fractions in the anterior-posterior (A-P) direction and 21% of fractions in the superior-inferior (S-I) direction. The three-dimensional vector length from skin marks to Calypso alignment exceeded 1 cm in 24% of all 652 fractions with available setup data. During treatment, the target exceeded the 5-mm tracking limit for at least 30 sec in 11% of all fractions, generally in the A-P or S-I direction. In the A-P direction, target motion was twice as likely to move posteriorly, toward the rectum, than anteriorly. Fifteen percent of all treatments were interrupted for repositioning, and 70% of patients were repositioned at least once during their treatment course. Conclusion: Set-up errors and motion of the prostatic fossa during radiotherapy are nontrivial, leading to potential undertreatment of target and excess normal tissue toxicity if not taken into account during treatment planning. Localization and real-time tracking of the prostate bed via implanted Calypso transponders can be used to improve the accuracy of plan delivery.

  10. SU-E-T-409: Intensity Modulated Robotic Radiotherapy

    SciTech Connect (OSTI)

    Wang, B; Jin, L; Li, J; Chen, L; Ma, C; Fan, J; Zhang, C

    2014-06-01

    Purpose: As compared with the IRIS-based models, the MLC-based CyberKnife system allows more efficient treatment delivery due to its improved coverage of large lesions and intensity modulation. The treatment delivery efficiency is mainly determined by the number of selected nodes. This study aimed to demonstrate that relatively small sets of optimally selected nodes could produce high-quality plans. Methods: The full body path of the CyberKnife system consists of 110 nodes, from which we selected various sets for 4 prostate cancer cases using our in-house beamselection software. With the selected nodes we generated IMRT plans using our in-house beamlet-based inverse-planning optimization program. We also produced IMRT plans using the MultiPlan treatment planning system (version 5.0) for the same cases. Furthermore, the nodes selected by MultiPlan were used to produce plans with our own optimization software so that we could compare the quality of the selected sets of nodes. Results: Our beam-selection program selected one node-set for each case, with the number of nodes ranging from 23 to 34. The IMRT plans based on the selected nodes and our in-house optimization program showed adequate target coverage, with favorable critical structure sparing for the cases investigated. Compared with the plans using the nodes selected by MultiPlan, the plans generated with our selected beams provided superior rectum/bladder sparing for 75% of the cases. The plans produced by MultiPlan with various numbers of nodes also suggested that the plan quality was not compromised significantly when the number of nodes was reduced. Conclusion: Our preliminary results showed that with beamletbased planning optimization, one could produce high-quality plans with an optimal set of nodes for MLC-based robotic radiotherapy. Furthermore, our beam-selection strategy could help further improve critical structure sparing.

  11. Dosimetrically Triggered Adaptive Intensity Modulated Radiation Therapy for Cervical Cancer

    SciTech Connect (OSTI)

    Lim, Karen; Stewart, James; Kelly, Valerie; Xie, Jason; Brock, Kristy K.; Moseley, Joanne; Cho, Young-Bin; Fyles, Anthony; Lundin, Anna; Rehbinder, Henrik; Lf, Johan; Jaffray, David A.; Milosevic, Michael

    2014-09-01

    Purpose: The widespread use of intensity modulated radiation therapy (IMRT) for cervical cancer has been limited by internal target and normal tissue motion. Such motion increases the risk of underdosing the target, especially as planning margins are reduced in an effort to reduce toxicity. This study explored 2 adaptive strategies to mitigate this risk and proposes a new, automated method that minimizes replanning workload. Methods and Materials: Thirty patients with cervical cancer participated in a prospective clinical study and underwent pretreatment and weekly magnetic resonance (MR) scans over a 5-week course of daily external beam radiation therapy. Target volumes and organs at risk (OARs) were contoured on each of the scans. Deformable image registration was used to model the accumulated dose (the real dose delivered to the target and OARs) for 2 adaptive replanning scenarios that assumed a very small PTV margin of only 3mm to account for setup and internal interfractional motion: (1)a preprogrammed, anatomy-driven midtreatment replan (A-IMRT); and (2) a dosimetry-triggered replan driven by target dose accumulation over time (D-IMRT). Results: Across all 30 patients, clinically relevant target dose thresholds failed for 8 patients (27%) if 3-mm margins were used without replanning. A-IMRT failed in only 3 patients and also yielded an additional small reduction in OAR doses at the cost of 30 replans. D-IMRT assured adequate target coverage in all patients, with only 23 replans in 16 patients. Conclusions: A novel, dosimetry-triggered adaptive IMRT strategy for patients with cervical cancer can minimize the risk of target underdosing in the setting of very small margins and substantial interfractional motion while minimizing programmatic workload and cost.

  12. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    SciTech Connect (OSTI)

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-11-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  13. Data-intensive management and analysis for scientifc simulations.

    SciTech Connect (OSTI)

    Hudson, R.; Norris, J.; Reid, L. B.; Cal Jordan IV, G.; Weide, K.; Papka, M. E.

    2011-01-01

    Scientific simulations can produce enormous amounts of data, making the analysis of results and management of files a difficult task for scientists. The simulation management and analysis system (Smaash) described here is designed to allow scientists to easily capture, store, organize, monitor, and analyze simulation results. The system is automatic, standardized, and secure. Smaash was built using open-source tools and modularized to be independent of the scientific simulation. The web-based front-end allows the scientist to easily interact with the data, and has proved its usefulness in improving the efficiency of a scientific team's workflow. High performance parallel computing allows scientists to solve complex physical problems through computer simulation. However, the massive amounts of data generated and the complex computing environment can create additional complications. A recent review by Ludaescher et al.(2009) describes how scientific workflows can assist scientists in extracting knowledge from these data-intensive operations by automating components within pipelines. Within the fusion community, Klasky et al.(2008) and colleagues have developed a system that handles the storage management, data movement, metadata generation and management, and a means to analyze the results. In response to scientists needs, a simulation management and analysis system (Smaash) was developed at the University of Chicago and Argonne National Laboratory (USA). Smaash provides an integrated way to monitor simulations and analyze computational results; catalog, store, and retrieve simulations; and prepare output for publications. The system is independent of the particular simulation code, accessible from many HPC and browser-based platforms, and built around open-source software tools. Data security and provenance is considered throughout. The analysis components are hidden behind a web-based front end, enabling scientists to focus on their results and not get bogged down by information overload.

  14. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  15. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  16. Fundamental physics at the intensity frontier. Report of the workshop held December 2011 in Rockville, MD.

    SciTech Connect (OSTI)

    Hewett, J.L.; Weerts, H.; Brock, R.; Butler, J.N.; Casey, B.C.K.; Lu, Z.T.; Wagner, C.E.M.; Dietrich, M.R.; Djurcic, Z.; Goodman, M.; Green, J.P.; Holt, R.J.; Mueller, P.; Paley, J.; Reimer, P.; Singh, J.; Upadhye, A.

    2012-06-05

    Particle physics aims to understand the universe around us. The Standard Model of particle physics describes the basic structure of matter and forces, to the extent we have been able to probe thus far. However, it leaves some big questions unanswered. Some are within the Standard Model itself, such as why there are so many fundamental particles and why they have different masses. In other cases, the Standard Model simply fails to explain some phenomena, such as the observed matter-antimatter asymmetry in the universe, the existence of dark matter and dark energy, and the mechanism that reconciles gravity with quantum mechanics. These gaps lead us to conclude that the universe must contain new and unexplored elements of Nature. Most of particle and nuclear physics is directed towards discovering and understanding these new laws of physics. These questions are best pursued with a variety of approaches, rather than with a single experiment or technique. Particle physics uses three basic approaches, often characterized as exploration along the cosmic, energy, and intensity frontiers. Each employs different tools and techniques, but they ultimately address the same fundamental questions. This allows a multi-pronged approach where attacking basic questions from different angles furthers knowledge and provides deeper answers, so that the whole is more than a sum of the parts. A coherent picture or underlying theoretical model can more easily emerge, to be proven correct or not. The intensity frontier explores fundamental physics with intense sources and ultra-sensitive, sometimes massive detectors. It encompasses searches for extremely rare processes and for tiny deviations from Standard Model expectations. Intensity frontier experiments use precision measurements to probe quantum effects. They typically investigate very large energy scales, even higher than the kinematic reach of high energy particle accelerators. The science addresses basic questions, such as: Are there new sources of CP violation? Is there CP violation in the leptonic sector? Are neutrinos their own antiparticles? Do the forces unify? Is there a weakly coupled hidden sector that is related to dark matter? Do new symmetries exist at very high energy scales? To identify the most compelling science opportunities in this area, the workshop Fundamental Physics at the Intensity Frontier was held in December 2011, sponsored by the Office of High Energy Physics in the US Department of Energy Office of Science. Participants investigated the most promising experiments to exploit these opportunities and described the knowledge that can be gained from such a program. The workshop generated much interest in the community, as witnessed by the large and energetic participation by a broad spectrum of scientists. This document chronicles the activities of the workshop, with contributions by more than 450 authors. The workshop organized the intensity frontier science program along six topics that formed the basis for working groups: experiments that probe (i) heavy quarks, (ii) charged leptons, (iii) neutrinos, (iv) proton decay, (v) light, weakly interacting particles, and (vi) nucleons, nuclei, and atoms. The conveners for each working group included an experimenter and a theorist working in the field and an observer from the community at large. The working groups began their efforts well in advance of the workshop, holding regular meetings and soliciting written contributions. Specific avenues of exploration were identified by each working group. Experiments that study rare strange, charm, and bottom meson decays provide a broad program of measurements that are sensitive to new interactions. Charged leptons, particularly muons and taus, provide a precise probe for new physics because the Standard Model predictions for their properties are very accurate. Research at the intensity frontier can reveal CP violation in the lepton sector, and elucidate whether neutrinos are their own antiparticles. A very weakly coupled hidden-sector that may comprise the dark matter in the universe could be discovered. The search for proton decay can probe the unification of the forces with unprecedented reach and test sacrosanct symmetries to very high scales. Detecting an electric dipole moment for the neutron, or neutral atoms, could establish a clear signal for new physics, while limits on such a measurement would place severe constraints on many new theories. This workshop marked the first instance where discussion of these diverse programs was held under one roof. As a result, it was realized that this broad effort has many connections; a large degree of synergy exists between the different areas and they address similar questions. Results from one area were found to be pertinent to experiments in another domain.

  17. H- Ion Sources for High Intensity Proton Drivers

    SciTech Connect (OSTI)

    Johnson, Rolland Paul; Dudnikov, Vadim

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  18. Changes in energy intensity in the manufacturing sector 1985--1991

    SciTech Connect (OSTI)

    1995-09-15

    In this report, energy intensity is defined as the ratio of energy consumption per unit of output. Output is measured as the constant dollar of value of shipments and receipts, and two measures of energy consumption are presented in British thermal units (Btu): Offsite-Produced Energy and Total Inputs of Energy. A decrease in energy intensity from one period to another suggests an increase in energy efficiency, and vice versa. Energy efficiency can be defined and measured in various ways. Certain concepts of energy efficiency, especially those limited to equipment efficiencies, cannot be measured over time using changes in energy-intensity ratios. While improved energy efficiency will tend to reduce energy intensity, it is also true that a change in energy intensity can be due to factors unrelated to energy efficiency. For this report, energy intensity is used as a surrogate measure for energy efficiency, based on industry knowledge and current methodological analyses.

  19. Intense Super-radiant X-rays from a Compact Source using a Nanocathode

    Office of Scientific and Technical Information (OSTI)

    Array and Emittance Exchange (Journal Article) | SciTech Connect Intense Super-radiant X-rays from a Compact Source using a Nanocathode Array and Emittance Exchange Citation Details In-Document Search Title: Intense Super-radiant X-rays from a Compact Source using a Nanocathode Array and Emittance Exchange A novel method of producing intense short wavelength radiation from relativistic electrons is described. The electrons are periodically bunched at the wavelength of interest enabling

  20. Process Development for Nanostructured Photovoltaics

    SciTech Connect (OSTI)

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  1. 2014-05-05 Issuance: Test Procedures for High-Intensity Discharge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Procedures for High-Intensity Discharge Lamps; Supplemental Notice of Proposed ... by the Deputy Assistant Secretary for Energy Efficiency on May 5, 2014. Though it is ...

  2. Intense Super-radiant X-rays from a Compact Source using a Nanocathode...

    Office of Scientific and Technical Information (OSTI)

    This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and ... A novel method of producing intense short wavelength radiation from relativistic electrons ...

  3. Table 8. Carbon intensity of the economy by State (2000-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon intensity of the economy by State (2000-2011)" "metric tons energy-related carbon dioxide per million dollars of GDP" ,,,"Change" ,,,"2000 to 2011"...

  4. Table 7. Carbon intensity of the energy supply by State (2000...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon intensity of the energy supply by State (2000-2011)" "kilograms of energy-related carbon dioxide per million Btu" ,,,"Change" ,,,"2000 to 2011"...

  5. Special parallel processing workshop

    SciTech Connect (OSTI)

    1994-12-01

    This report contains viewgraphs from the Special Parallel Processing Workshop. These viewgraphs deal with topics such as parallel processing performance, message passing, queue structure, and other basic concept detailing with parallel processing.

  6. Chemical Processing Qualification Standard

    Office of Environmental Management (EM)

    6-2010 February 2010 DOE STANDARD CHEMICAL PROCESSING QUALIFICATION STANDARD DOE Defense ... River Operations Office is the sponsor for the Chemical Processing Qualification Standard. ...

  7. Next Generation Manufacturing Processes

    Broader source: Energy.gov [DOE]

    New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high...

  8. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 ...

  9. Photosensitive response of azobenzene containing films towards pure intensity or polarization interference patterns

    SciTech Connect (OSTI)

    Yadavalli, Nataraja Sekhar; Santer, Svetlana; Saphiannikova, Marina

    2014-08-04

    In this paper, we report on differences in the response of photosensitive azobenzene containing films upon irradiation with the intensity or polarization interference patterns. Two materials are studied differing in the molecular weight: an azobenzene-containing polymer and a molecular glass formed from a much smaller molecule consisting of three connected azobenzene units. Topography changes occurring along with the changes in irradiation conditions are recorded using a homemade set-up combining an optical part for generation and shaping of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. In this way, we could reveal the unique behavior of photosensitive materials during the first few minutes of irradiation: the change in topography is initially driven by an increase in the azobenzene free volume along with the trans-cis isomerization, followed by the mass transport finally resulting in the surface relief grating. This study demonstrates the great potential of our setup to experimentally highlight puzzling processes governing the formation of surface relief gratings.

  10. Hardware Architectures for Data-Intensive Computing Problems: A Case Study for String Matching

    SciTech Connect (OSTI)

    Tumeo, Antonino; Villa, Oreste; Chavarría-Miranda, Daniel

    2012-12-28

    DNA analysis is an emerging application of high performance bioinformatic. Modern sequencing machinery are able to provide, in few hours, large input streams of data, which needs to be matched against exponentially growing databases of known fragments. The ability to recognize these patterns effectively and fastly may allow extending the scale and the reach of the investigations performed by biology scientists. Aho-Corasick is an exact, multiple pattern matching algorithm often at the base of this application. High performance systems are a promising platform to accelerate this algorithm, which is computationally intensive but also inherently parallel. Nowadays, high performance systems also include heterogeneous processing elements, such as Graphic Processing Units (GPUs), to further accelerate parallel algorithms. Unfortunately, the Aho-Corasick algorithm exhibits large performance variability, depending on the size of the input streams, on the number of patterns to search and on the number of matches, and poses significant challenges on current high performance software and hardware implementations. An adequate mapping of the algorithm on the target architecture, coping with the limit of the underlining hardware, is required to reach the desired high throughputs. In this paper, we discuss the implementation of the Aho-Corasick algorithm for GPU-accelerated high performance systems. We present an optimized implementation of Aho-Corasick for GPUs and discuss its tradeoffs on the Tesla T10 and he new Tesla T20 (codename Fermi) GPUs. We then integrate the optimized GPU code, respectively, in a MPI-based and in a pthreads-based load balancer to enable execution of the algorithm on clusters and large sharedmemory multiprocessors (SMPs) accelerated with multiple GPUs.

  11. Idaho Chemical Processing Plant Process Efficiency improvements

    SciTech Connect (OSTI)

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  12. ISSUANCE 2015-12-02: Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps, Final Determination

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps, Final Determination

  13. Biochemical Processes | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biochemical Processes NREL is developing biochemical conversion processes to generate sugars and sugars-derived intermediates for upgrading to biofuels and bioproducts. We develop hydrolytic and related deconstruction processes; improve enzymes, microbes, and catalysts; integrate and scale up process steps across the biochemical conversion pathway; and facilitate deployment and commercialization with our partners in the Integrated Biorefinery Research Facility. Enzyme and Microbial Development

  14. Measurement of proton and anti-proton intensities in the Tevatron Collider

    SciTech Connect (OSTI)

    Stephen Pordes et al.

    2003-06-04

    This paper describes the techniques used to measure the intensities of the proton (p) and anti-proton ({bar p}) beams in the Tevatron collider. The systems provide simultaneous measurements of the intensity of the 36 proton and 36 antiproton bunches and their longitudinal profiles.

  15. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas intensity by 18% over the 2002 to 2012 time frame. For the purposes of the initiative, greenhouse gas intensity is defined as the ratio of total U.S. greenhouse gas emissions to economic output.

  16. Specific features of microheterogeneous plasma produced by irradiation of a polymer aerogel target with an intense 500-ps-long laser pulse

    SciTech Connect (OSTI)

    Borisenko, N. G.; Merkul’ev, Yu. A.; Orekhov, A. S.; Chaurasia, S.; Tripathi, S.; Munda, D. S.; Dhareshwar, L. J.; Pimenov, V. G.; Sheveleva, E. E.

    2013-08-15

    The properties of microheterogeneous plasma produced by irradiation of a polymer aerogel target with an intense (10{sup 14} W/cm{sup 3}) short (0.5 ps) 1.064-μm laser pulse were studied. It is found that, even at plasma densities exceeding the critical density, a small fraction of the incident laser radiation penetrates through the plasma in which the processes of density and temperature equalization still take place. The intensification (as compared to plasmas produced from denser foams and solid films) of transport processes in such plasma along and across the laser beam can be caused by the initial microheterogeneity of the solid target. The replacement of a small (10% by mass) part of the polymer with copper nanoparticles leads to a nearly twofold increase in the intensity of the plasma X-ray emission.

  17. Process of .sup.196 Hg enrichment

    DOE Patents [OSTI]

    Grossman, Mark W.; Mellor, Charles E.

    1993-01-01

    A simple rate equation model shows that by increasing the length of the photochemical reactor and/or by increasing the photon intensity in said reactor, the feedstock utilization of .sup.196 Hg will be increased. Two preferred embodiments of the present invention are described, namely (1) long reactors using long photochemical lamps and vapor filters; and (2) quartz reactors with external UV reflecting films. These embodiments have each been constructed and operated, demonstrating the enhanced utilization process dictated by the mathematical model (also provided).

  18. Process of [sup 196]Hg enrichment

    DOE Patents [OSTI]

    Grossman, M.W.; Mellor, C.E.

    1993-04-27

    A simple rate equation model shows that by increasing the length of the photochemical reactor and/or by increasing the photon intensity in said reactor, the feedstock utilization of [sup 196]Hg will be increased. Two preferred embodiments of the present invention are described, namely (1) long reactors using long photochemical lamps and vapor filters; and (2) quartz reactors with external UV reflecting films. These embodiments have each been constructed and operated, demonstrating the enhanced utilization process dictated by the mathematical model (also provided).

  19. Manhattan Project: Processes

    Office of Scientific and Technical Information (OSTI)

    Processes Uranium Mining, Milling, and Refining Uranium Isotope Separation Plutonium Production Bomb Design, Development, and Production Bomb Testing and Weapon Effects Processes PLEASE NOTE: The Processes pages are not yet available. Links to the pages listed below and to the left will be activated as content is developed. Select topics relating to the industrial processes of the Manhattan Project have been grouped into the categories listed to the left. A quick overview of processes involved

  20. Measuring galaxy clustering and the evolution of [C II] mean intensity with far-IR line intensity mapping during 0.5 < z < 1.5

    SciTech Connect (OSTI)

    Uzgil, B. D.; Aguirre, J. E.; Lidz, A.; Bradford, C. M.

    2014-10-01

    Infrared fine-structure emission lines from trace metals are powerful diagnostics of the interstellar medium in galaxies. We explore the possibility of studying the redshifted far-IR fine-structure line emission using the three-dimensional (3D) power spectra obtained with an imaging spectrometer. The intensity mapping approach measures the spatio-spectral fluctuations due to line emission from all galaxies, including those below the individual detection threshold. The technique provides 3D measurements of galaxy clustering and moments of the galaxy luminosity function. Furthermore, the linear portion of the power spectrum can be used to measure the total line emission intensity including all sources through cosmic time with redshift information naturally encoded. Total line emission, when compared to the total star formation activity and/or other line intensities, reveals evolution of the interstellar conditions of galaxies in aggregate. As a case study, we consider measurement of [C II] autocorrelation in the 0.5 < z < 1.5 epoch, where interloper lines are minimized, using far-IR/submillimeter balloon-borne and future space-borne instruments with moderate and high sensitivity, respectively. In this context, we compare the intensity mapping approach to blind galaxy surveys based on individual detections. We find that intensity mapping is nearly always the best way to obtain the total line emission because blind, wide-field galaxy surveys lack sufficient depth and deep pencil beams do not observe enough galaxies in the requisite luminosity and redshift bins. Also, intensity mapping is often the most efficient way to measure the power spectrum shape, depending on the details of the luminosity function and the telescope aperture.

  1. High-Intensity Plasma Glass Melter Final Technical Report

    SciTech Connect (OSTI)

    Gonterman, J. Ronald; Weinstein, Michael A.

    2006-10-27

    The purpose of this project was to demonstrate the energy efficiency and reduced emissions that can be obtained with a dual torch DC plasma transferred arc-melting system. Plasmelt Glass Technologies, LLC was formed to solicit and execute the project, which utilize a full-scale test melter system. The system is similar to the one that was originally constructed by Johns Manville, but Plasmelt has added significant improvements to the torch design and melter system that has extended the original JM short torch lives. The original JM design has been shown to achieve melt rates 5 to 10 times faster than conventional gas or electric melting, with improved energy efficiency and reduced emissions. This project began on 7/28/2003 and ended 7/27/06. A laboratory scale melter was designed, constructed, and operated to conduct multiple experimental melting trials on various glass compositions. Glass quality was assessed. Although the melter design is generic and equally applicable to all sectors within the glass industry, the development of this melter has focused primarily on fiberglass with additional exploratory melting trials of frits, specialty, and minerals-melting applications. Throughput, energy efficiency, and glass quality have been shown to be heavily dependent on the selected glass composition. During this project, Plasmelt completed the proof-of-concept work in our Boulder, CO Lab to show the technical feasibility of this transferred-arc plasma melter. Late in the project, the work was focused on developing the processes and evaluating the economic viability of plasma melting aimed at the specific glasses of interest to specific client companies. Post project work is on going with client companies to address broader non-glass materials such as refractories and industrial minerals. Exploratory melting trials have been conducted on several glasses of commercial interest including: C-glass, E-glass, S-Glass, AR-Glass, B-glass, Lighting Glass, NE-Glass, and various frits. Exploratory melts of non-glassy materials, such as wollastonite, zirconium silicate, and alumino-silicate melts were successfully done indicating that plasma melting has potential application beyond glass. Experimental results were generated that show the high quality of plasma-melted fiberglass compositions, such as E-glass, can result in good fiberizing performance. Fiberizing performance and tensile strength data were achieved during the project to support this conclusion. High seed counts are a feature of the current lab scale melter and must be dealt with via other means, since fining work was outside the scope of this project.

  2. FINAL FOCUS ION BEAM INTENSITY FROM TUNGSTEN FOIL CALORIMETER AND SCINTILLATOR IN NDCX-I

    SciTech Connect (OSTI)

    Lidia, S.M.; Bieniosek, F.; Henestroza, E.; Ni, P.; Seidl, P.

    2010-04-30

    Laboratory high energy density experiments using ion beam drivers rely upon the delivery of high-current, high-brightness ion beams with high peak intensity onto targets. Solid-state scintillators are typically used to measure the ion beam spatial profile but they display dose-dependent degradation and aging effects. These effects produce uncertainties and limit the accuracy of measuring peak beam intensities delivered to the target. For beam tuning and characterizing the incident beam intensity, we have developed a cross-calibrating diagnostic suite that extends the upper limit of measurable peak intensity dynamic range. Absolute intensity calibration is obtained with a 3 {micro}m thick tungsten foil calorimeter and streak spectrometer. We present experimental evidence for peak intensity measures in excess of 400 kW/cm{sup 2} using a 0.3 MV, 25 mA, 5-20 {micro}sec K{sup +1} beam. Radiative models and thermal diffusion effects are discussed because they affect temporal and spatial resolution of beam intensity profiles.

  3. A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming

    SciTech Connect (OSTI)

    Shen, W.; Tuleya, R.E.; Ginis, I.

    2000-01-01

    In this study, the effect of thermodynamic environmental changes on hurricane intensity is extensively investigated with the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model for a suite of experiments with different initial upper-tropospheric temperature anomalies up to {+-}4 C and sea surface temperatures ranging from 26 to 31 C given the same relative humidity profile. The results indicate that stabilization in the environmental atmosphere and sea surface temperature (SST) increase cause opposing effects on hurricane intensity. The offsetting relationship between the effects of atmospheric stability increase (decrease) and SST increase (decrease) is monotonic and systematic in the parameter space. This implies that hurricane intensity increase due to a possible global warming associated with increased CO{sub 2} is considerably smaller than that expected from warming of the oceanic waters alone. The results also indicate that the intensity of stronger (weaker) hurricanes is more (less) sensitive to atmospheric stability and SST changes. The model-attained hurricane intensity is found to be well correlated with the maximum surface evaporation and the large-scale environmental convective available potential energy. The model-attained hurricane intensity if highly correlated with the energy available from wet-adiabatic ascent near the eyewall relative to a reference sounding in the undisturbed environment for all the experiments. Coupled hurricane-ocean experiments show that hurricane intensity becomes less sensitive to atmospheric stability and SST changes since the ocean coupling causes larger (smaller) intensity reduction for stronger (weaker) hurricanes. This implies less increase of hurricane intensity related to a possible global warming due to increased CO{sub 2}.

  4. Risk Management Process Overview

    Broader source: Energy.gov [DOE]

    The cybersecurity risk management process explained in the Electricity Sector Cybersecurity Risk Management Process (RMP) Guideline has two primary components: the risk management model and the the risk management cycle.

  5. TITLE XVII APPLICATION PROCESS

    Broader source: Energy.gov [DOE]

    The Title XVII application process is a two-part process.  Eligible applicants receive an invitation to submit Part II of their application after meeting basic eligibility requirements referred to...

  6. Gas-separation process

    DOE Patents [OSTI]

    Toy, Lora G.; Pinnau, Ingo; Baker, Richard W.

    1994-01-01

    A process for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material.

  7. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  8. Direct process for explosives

    DOE Patents [OSTI]

    Akst, I.B.; Stinecipher, M.M.

    1982-10-12

    A direct process of making ethylenediamine dinitrate through the reaction of ethylenediamine and ammonium nitrate is described.

  9. Corrective Actions Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community, Environment » Environmental Stewardship » Environmental Cleanup » Corrective Actions Corrective Actions Process The general process for evaluating and remediating potential release sites is called the corrective action process. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Corrective actions The Laboratory's corrective actions process refers to the way in which the Laboratory investigates, stabilizes,

  10. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  11. Max Tech and Beyond: High-Intensity Discharge Lamps (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect High-Intensity Discharge Lamps Citation Details In-Document Search Title: Max Tech and Beyond: High-Intensity Discharge Lamps High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light

  12. Semisolid Metal Processing Consortium

    SciTech Connect (OSTI)

    Apelian,Diran

    2002-01-10

    Mathematical modeling and simulations of semisolid filling processes remains a critical issue in understanding and optimizing the process. Semisolid slurries are non-Newtonian materials that exhibit complex rheological behavior. There the way these slurries flow in cavities is very different from the way liquid in classical casting fills cavities. Actually filling in semisolid processing is often counter intuitive

  13. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; Zhidkov, A.; Pikuz, T. A.; Nishiuchi, M.; Pikuz, S. A.; Skobelev, I. Yu.; Abdallah, J.; Sakaki, H.; et al

    2015-09-02

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 1021 W/cm2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery, changing in thismore » regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~1017 W/cm2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. As a result, femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems.« less

  14. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser

    SciTech Connect (OSTI)

    Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; Zhidkov, A.; Pikuz, T. A.; Nishiuchi, M.; Pikuz, S. A.; Skobelev, I. Yu.; Abdallah, J.; Sakaki, H.; Sagisaka, A.; Pirozhkov, A. S.; Ogura, K.; Fukuda, Y.; Kanasaki, M.; Hasegawa, N.; Nishikino, M.; Kando, M.; Watanabe, Y.; Kawachi, T.; Masuda, S.; Hosokai, T.; Kodama, R.; Kondo, K.

    2015-09-02

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 1021 W/cm2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery, changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~1017 W/cm2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. As a result, femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems.

  15. Large-Scale Compute-Intensive Analysis via a Combined In-situ and Co-scheduling Workflow Approach

    SciTech Connect (OSTI)

    Messer, Bronson; Sewell, Christopher; Heitmann, Katrin; Finkel, Dr. Hal J; Fasel, Patricia; Zagaris, George; Pope, Adrian; Habib, Salman; Parete-Koon, Suzanne T

    2015-01-01

    Large-scale simulations can produce tens of terabytes of data per analysis cycle, complicating and limiting the efficiency of workflows. Traditionally, outputs are stored on the file system and analyzed in post-processing. With the rapidly increasing size and complexity of simulations, this approach faces an uncertain future. Trending techniques consist of performing the analysis in situ, utilizing the same resources as the simulation, and/or off-loading subsets of the data to a compute-intensive analysis system. We introduce an analysis framework developed for HACC, a cosmological N-body code, that uses both in situ and co-scheduling approaches for handling Petabyte-size outputs. An initial in situ step is used to reduce the amount of data to be analyzed, and to separate out the data-intensive tasks handled off-line. The analysis routines are implemented using the PISTON/VTK-m framework, allowing a single implementation of an algorithm that simultaneously targets a variety of GPU, multi-core, and many-core architectures.

  16. Diamonds in the rough: a strong case for the inclusion of weak-intensity X-ray diffraction data

    SciTech Connect (OSTI)

    Wang, Jimin; Wing, Richard A.

    2014-05-01

    Here, new evidence is provided to show that the inclusion of weak-intensity, high-resolution X-ray diffraction data helps to improve the quality of experimental phases by imposing proper constraints on electron-density models during noncrystallographic symmetry averaging. Overwhelming evidence exists to show that the inclusion of weak-intensity, high-resolution X-ray diffraction data helps improve the refinement of atomic models by imposing strong constraints on individual and overall temperature B factors and thus the quality of crystal structures. Some researchers consider these data to be of little value and opt to discard them during data processing, particularly at medium and low resolution, at which individual B factors of atomic models cannot be refined. Here, new evidence is provided to show that the inclusion of these data helps to improve the quality of experimental phases by imposing proper constraints on electron-density models during noncrystallographic symmetry (NCS) averaging. Using electron-density correlation coefficients as criteria, the resolution of data has successfully been extended from 3.1 to 2.5 Å resolution with redundancy-independent merging R factors from below 100% to about 310%. It is further demonstrated that phase information can be fully extracted from observed amplitudes through de novo NCS averaging. Averaging starts with uniform density inside double-shelled spherical masks and NCS matrices that are derived from bound heavy-atom clusters at the vertices of cuboctahedrally symmetric protein particles.

  17. Department of Energy Support of Energy Intensive Manufacturing Related to Refractory Research

    SciTech Connect (OSTI)

    Hemrick, James Gordon

    2013-01-01

    For many years, the United States Department of Energy (DOE) richly supported refractory related research to enable greater energy efficiency processes in energy intensive manufacturing industries such as iron and steel, glass, aluminum and other non-ferrous metal production, petrochemical, and pulp and paper. Much of this support came through research projects funded by the former DOE Energy Efficiency and Renewable Energy (EERE) Office of Industrial Technologies (OIT) under programs such as Advanced Industrial Materials (AIM), Industrial Materials of the Future (IMF), and the Industrial Technologies Program (ITP). Under such initiatives, work was funded at government national laboratories such as Oak Ridge National Laboratory (ORNL), at universities such as West Virginia University (WVU) and the Missouri University of Science and Technology (MS&T) which was formerly the University of Missouri Rolla, and at private companies engaged in these manufacturing areas once labeled industries of the future by DOE due to their strategic and economic importance to American industry. Examples of such projects are summarized below with information on the scope, funding level, duration, and impact. This is only a sampling of representative efforts funded by the DOE in which ORNL was involved over the period extending from 1996 to 2011. Other efforts were also funded during this time at various other national laboratories, universities and private companies under the various programs mentioned above. Discussion of the projects below was chosen because I was an active participant in them and it is meant to give a sampling of the magnitude and scope of investments made by DOE in refractory related research over this time period.

  18. Biomass process handbook

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    Descriptions are given of 42 processes which use biomass to produce chemical products. Marketing and economic background, process description, flow sheets, costs, major equipment, and availability of technology are given for each of the 42 processes. Some of the chemicals discussed are: ethanol, ethylene, acetaldehyde, butanol, butadiene, acetone, citric acid, gluconates, itaconic acid, lactic acid, xanthan gum, sorbitol, starch polymers, fatty acids, fatty alcohols, glycerol, soap, azelaic acid, perlargonic acid, nylon-11, jojoba oil, furfural, furfural alcohol, tetrahydrofuran, cellulose polymers, products from pulping wastes, and methane. Processes include acid hydrolysis, enzymatic hydrolysis, fermentation, distillation, Purox process, and anaerobic digestion.

  19. Optical processing furnace with quartz muffle and diffuser plate

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1995-01-01

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

  20. Fact #554: January 19, 2009 Energy Intensity of Light Rail Transit Systems

    Broader source: Energy.gov [DOE]

    According to the 2007 National Transit Databases, the energy intensity of light transit rail systems in the U.S. ranges from about 2,000 Btu per passenger-mile to about 31,000 Btu per passenger...

  1. Intense X-rays expose tiny flaws in 3-D printed titanium that...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intense X-rays expose tiny flaws in 3-D printed titanium that can lead to breakage over time By Katie Elyce Jones * March 4, 2016 Tweet EmailPrint Titanium is strong but light - a ...

  2. Vehicle Technologies Office Merit Review 2015: Magnesium-Intensive Front End Sub-Structure Development

    Broader source: Energy.gov [DOE]

    Presentation given by USAMP at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about magnesium-intensive front end sub...

  3. Flexible pulse delay control up to picosecond for high-intensity...

    Office of Scientific and Technical Information (OSTI)

    Flexible pulse delay control up to picosecond for high-intensity twin electron bunches Citation Details In-Document Search Title: Flexible pulse delay control up to picosecond for ...

  4. EIA Energy Efficiency-Iron and Steel Energy Intensity, 1998-2002

    Gasoline and Diesel Fuel Update (EIA)

    Energy Intensity Table 5a. Consumption of Energy for All Purposes per Value of Production html table 5a. excel table 5a. pdf table 5. Table 5b. Consumption of Energy for All...

  5. The Radiation Reaction Effect on Electrons at Super-High Laser Intensities with Application to Ion Acceleration

    SciTech Connect (OSTI)

    Naumova, N. M.; Sokolov, I. V.; Tikhonchuk, V. T.; Schlegel, T.; Nees, J. A.; Yanovsky, V. P.; Labaune, C.; Mourou, G. A.

    2009-07-25

    At super-high laser intensities the radiation back reaction on electrons becomes so significant that its influence on laser-plasma interaction cannot be neglected while simulating these processes with particle-in-cell (PIC) codes. We discuss a way of taking the radiation effect on electrons into account and extracting spatial and frequency distributions of the generated high-frequency radiation. We also examine ponderomotive acceleration of ions in the double layer created by strong laser pulses and we compare an analytical description with PIC simulations as well. We discuss: (1) non-stationary features found in simulations, (2) electron cooling effect due to radiation losses, and (3) the limits of the analytical model.

  6. Flexible pulse delay control up to picosecond for high-intensity twin

    Office of Scientific and Technical Information (OSTI)

    electron bunches (Journal Article) | SciTech Connect Flexible pulse delay control up to picosecond for high-intensity twin electron bunches Citation Details In-Document Search Title: Flexible pulse delay control up to picosecond for high-intensity twin electron bunches Authors: Zhang, Zhen ; Ding, Yuantao ; Emma, Paul ; Huang, Zhirong ; Marinelli, Agostino ; Tang, Chuanxiang Publication Date: 2015-09-10 OSTI Identifier: 1233964 Grant/Contract Number: AC02-76SF00515 Type: Published Article

  7. Long path-length experimental studies of longitudinal phenomena in intense

    Office of Scientific and Technical Information (OSTI)

    beams (Journal Article) | DOE PAGES Long path-length experimental studies of longitudinal phenomena in intense beams This content will become publicly available on March 22, 2017 Title: Long path-length experimental studies of longitudinal phenomena in intense beams Authors: Beaudoin, B. L. [1] ; Haber, I. [1] Search DOE PAGES for author "Haber, I." Search DOE PAGES for ORCID "0000000297978958" Search orcid.org for ORCID "0000000297978958" ; Kishek, R. A. [1] ;

  8. Operation of the intensity monitors in beam transport lines at Fermilab during Run II¹

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Crisp, J.; Fellenz, B.; Fitzgerald, J.; Heikkinen, D.; Ibrahim, M. A.

    2011-10-06

    The intensity of charged particle beams at Fermilab must be kept within pre-determined safety and operational envelopes in part by assuring all beam within a few percent has been transported from any source to destination. Beam instensity monitors with toroidial pickups provide such beam intensity measurements in the transport lines between accelerators at FNAL. With Run II, much effort was made to continually improve the resolution and accuracy of the system.

  9. Sixth-Order Resonance of High-Intensity Linear Accelerators (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Sixth-Order Resonance of High-Intensity Linear Accelerators Citation Details In-Document Search Title: Sixth-Order Resonance of High-Intensity Linear Accelerators Authors: Jeon, Dong-O ; Hwang, Kyung Ryun ; Jang, Ji-Ho ; Jin, Hyunchang ; Jang, Hyojae Publication Date: 2015-05-06 OSTI Identifier: 1179719 Grant/Contract Number: FG02-12ER41800 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume:

  10. A high-resolution imaging X-ray crystal spectrometer for intense laser

    Office of Scientific and Technical Information (OSTI)

    plasma interaction experiments (Conference) | SciTech Connect Conference: A high-resolution imaging X-ray crystal spectrometer for intense laser plasma interaction experiments Citation Details In-Document Search Title: A high-resolution imaging X-ray crystal spectrometer for intense laser plasma interaction experiments Authors: Chen, H ; Bitter, M ; Hazi, A ; Hill, K ; Kerr, S ; Magee, E ; Nagel, S ; Park, J ; Schneider, M ; Stone, G ; Williams, G ; Beiersdorfer, P Publication Date:

  11. Note: On the wavelength dependence of the intensity calibration factor of

    Office of Scientific and Technical Information (OSTI)

    extreme ultraviolet spectrometer determined with profile measurement of bremsstrahlung continuum (Journal Article) | SciTech Connect Note: On the wavelength dependence of the intensity calibration factor of extreme ultraviolet spectrometer determined with profile measurement of bremsstrahlung continuum Citation Details In-Document Search Title: Note: On the wavelength dependence of the intensity calibration factor of extreme ultraviolet spectrometer determined with profile measurement of

  12. Accommodations for Joint Facilities User Forum on Data-Intensive Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & HPCOR Accommodations Accommodations for Joint Facilities User Forum on Data-Intensive Computing & HPCOR Both the Joint Facilities User Forum on Data-Intensive Computing and the DOE HPCOR meetings are being held in downtown Oakland, CA. We have reserved room blocks at two locations in Berkeley, CA. We recommend making your reservations as soon as possible because hotel rooms in the San Francisco Bay Area are in great demand. Hotel Shattuck Plaza Reservation cutoff date is May 23,

  13. Response of High-Tc Superconductor Metamaterials to High Intensity THz

    Office of Scientific and Technical Information (OSTI)

    Radiation (Conference) | SciTech Connect SciTech Connect Search Results Conference: Response of High-Tc Superconductor Metamaterials to High Intensity THz Radiation Citation Details In-Document Search Title: Response of High-Tc Superconductor Metamaterials to High Intensity THz Radiation Authors: Grady, Nathaniel [1] ; Perkins Jr., Bradford G. [2] ; Hwang, Harold Y. [2] ; Brandt, Nate [2] ; Torchinsky, Darius [2] ; Singh, Ranjan [1] ; Yan, Li [3] ; Jia, Quanxi [1] ; Trugman, Stuart A. [1] ;

  14. Response of High-Tc Superconductor Metamaterials to High Intensity THz

    Office of Scientific and Technical Information (OSTI)

    Radiation (Conference) | SciTech Connect Conference: Response of High-Tc Superconductor Metamaterials to High Intensity THz Radiation Citation Details In-Document Search Title: Response of High-Tc Superconductor Metamaterials to High Intensity THz Radiation No abstract prepared. Authors: Grady, Nathaniel [1] ; Perkins, Bradford G. Jr. [2] ; Hwang, Harold Y. [2] ; Singh, Ranjan [1] ; Yang, Hao [3] ; Xiong, Jie [3] ; Yan, Li [3] ; Jia, Quanxi [1] ; Trugman, Stuart A. [1] ; Taylor, Antoinette

  15. Gregorian optical system with non-linear optical technology for protection against intense optical transients

    DOE Patents [OSTI]

    Ackermann, Mark R.; Diels, Jean-Claude M.

    2007-06-26

    An optical system comprising a concave primary mirror reflects light through an intermediate focus to a secondary mirror. The secondary mirror re-focuses the image to a final image plane. Optical limiter material is placed near the intermediate focus to optically limit the intensity of light so that downstream components of the optical system are protected from intense optical transients. Additional lenses before and/or after the intermediate focus correct optical aberrations.

  16. Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Type of Energy | Department of Energy Changes by Sector, 1985-2011 - Alternative Measures by Type of Energy Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures by Type of Energy Further insight with regard to the comparison of intensity changes by sector can be gained by looking at how they differ with respect to different definitions of energy use. Source energy attributes all the energy used for electricity generation and transmission to the specific end-use sector,

  17. The Fermilab Main Injector: high intensity operation and beam loss control

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: The Fermilab Main Injector: high intensity operation and beam loss control Citation Details In-Document Search Title: The Fermilab Main Injector: high intensity operation and beam loss control Authors: Brown, Bruce C. ; Adamson, Philip ; Capista, David ; Chou, Weiren ; Kourbanis, Ioanis ; Morris, Denton K ; Seiya, Kiyomi ; Wu, Guan Hong ; Yang, Ming-Jen Publication Date: 2013-07-10 OSTI Identifier: 1128064 Report Number(s):

  18. 2014-05-05 Issuance: Test Procedures for High-Intensity Discharge Lamps;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplemental Notice of Proposed Rulemaking | Department of Energy Test Procedures for High-Intensity Discharge Lamps; Supplemental Notice of Proposed Rulemaking 2014-05-05 Issuance: Test Procedures for High-Intensity Discharge Lamps; Supplemental Notice of Proposed Rulemaking This document is a pre-publication Federal Register supplemental notice of proposed rulemaking regarding test procedures for high-intesity discharge lamps, as issued by the Deputy Assistant Secretary for Energy

  19. Future Steelmaking Processes

    SciTech Connect (OSTI)

    Prof. R. J. Fruehan

    2004-09-20

    There is an increasing demand for an ironmaking process with lower capital cost, energy consumption and emissions than a blast furnace. It is the hypothesis of the present work that an optimized combination of two reasonable proven technologies will greatly enhance the overall process. An example is a rotary hearth furnace (RHF) linked to a smelter (e.g., AISI, HIsmelt). The objective of this research is to select promising process combinations, develop energy, materials balance and productivity models for the individual processes, conduct a limited amount of basic research on the processes and evaluate the process combinations. Three process combinations were selected with input from the industrial partners. The energy-materials and productivity models for the RHF, smelter, submerged arc furnace and CIRCOFER were developed. Since utilization of volatiles in coal is critical for energy and CO{sub 2} emission reduction, basic research on this topic was also conducted. The process models developed are a major product developed in this research. These models can be used for process evaluation by the industry. The process combinations of an RHF-Smelter and a simplified CIRCOFER-Smelter appear to be promising. Energy consumption is reduced and productivity increased. Work on this project is continuing using funds from other sources.

  20. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOE Patents [OSTI]

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  1. Laser diffraction process and apparatus for width measurement of elongated objects

    DOE Patents [OSTI]

    Naqwi, Amir A.; Fandrey, Christopher W.

    2006-07-04

    Size distribution of elongated objects is measured by forward scattering radiation from the objects at a range of scatter angles. The scattered radiation is refracted to locations on a scatter detector based on the scatter angles and independent of the location of the objects along the radiation axis. The intensity of radiation is sensed at each position on the scatter detector, and signals representative of the intensities at the positions are processed and compared to masks to identify a size distribution. The scatter detector may include individual radiation detectors arranged to receive refracted radiation representing respective ranges of scatter angles to thereby compensate for lower radiation intensities scattered from smaller objects.

  2. Non-filamentated ultra-intense and ultra-short pulse fronts in three-dimensional Raman seed amplification

    SciTech Connect (OSTI)

    Lehmann, G.; Spatschek, K. H.

    2014-05-15

    Ultra-intense and ultra-short laser pulses may be generated up to the exawatt-zetawatt regime due to parametric processes in plasmas. The minimization of unwanted plasma processes leads to operational limits which are discussed here with respect to filamentation. Transverse filamentation, which originally was derived for plane waves, is being investigated for seed pulse propagation in the so called ?-pulse limit. A three-dimensional (3D) three-wave-interaction model is the basis of the present investigation. To demonstrate the applicability of the three-wave-interaction model, the 1D pulse forms are compared with those obtained from 1D particle in cell and Vlasov simulations. Although wave-breaking may occur, the kinetic simulations show that the leading pumped pulse develops a form similar to that obtained from the three-wave-interaction model. In the main part, 2D and 3D filamentation processes of (localized) pulses are investigated with the three-wave-interaction model. It is shown that the leading pulse front can stay filamentation-free, whereas the rear parts show transverse modulations.

  3. Thermochemical Processes | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes NREL is developing gasification and pyrolysis processes for the cost effective thermochemical conversion of biomass to biofuels and biofuel intermediaries. In our Thermochemical User Facility, we work with partners to test and scale processes from bench to those that are industrially relevant. Photo of an engineer in a hardhat working in a facility among a series of metal tubes, pipes, and hoses, pouring a liquid from a large hose into a bucket. Integration, Scale-Up, and Piloting 3-D

  4. Energy Process Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy Energy Policy Energy Policy Offices of the Deputy General Counsel for Energy Policy Civilian Nuclear Programs (GC-72) Office of Standard Contract (GC-73) Electricity and Fossil Energy (GC-76)

    Energy Process Innovation Energy Process Innovation involves developing and evaluating prototypes of advanced multiphase reactor concepts and designs and performing validation studies. Research includes the areas of hydrodynamics and kinetics as well as reactor and process development,

  5. TEP process flow diagram

    SciTech Connect (OSTI)

    Wilms, R Scott; Carlson, Bryan; Coons, James; Kubic, William

    2008-01-01

    This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

  6. Process for LPG recovery

    SciTech Connect (OSTI)

    Khan, Sh. A.; Haliburton, J.

    1985-03-26

    An improved process is described for the separation and recovery of substantially all the propane and heavier hydrocarbon components in a hydrocarbon gaseous feedstream. In this process, the vapor stream from a deethanizer is cooled to liquefaction and contacted with a vapor phase from the hydrocarbon gaseous feedstream. The contact takes place within a direct heat exchanger, and the resulting vapor fraction, which is essentially ethane and methane, is the gaseous product of the process.

  7. Graduate Program Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selection Process Graduate Program Selection Process Point your career towards Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Student Programs (505) 665-0987 Email The student hiring process Thank you for your interest in Los Alamos National Laboratory's Student Programs. Once an application is submitted online, it is available for all interested Laboratory hiring officials to view.

  8. Undergraduate Program Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selection Process Undergraduate Program Selection Process Point your career towards Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Student Programs (505) 665-0987 Email Student hiring process Once an application is submitted online, it is made available for all interested Laboratory hiring officials to view. Hiring officials are Laboratory employees who have the funding and work

  9. Colorado, Processing Sites

    Office of Legacy Management (LM)

    Old and New Rifle, Colorado, Processing Sites September 2014 LMS/RFO-RFN/S11940 This page intentionally left blank LMS/RFO-RFN/S11940 2014 Verification Monitoring Report for the Old and New Rifle, Colorado, Processing Sites September 2014 This page intentionally left blank U.S. Department of Energy 2014 Verification Monitoring Report for the Old and New Rifle, Colorado, Processing Sites September 2014 Doc. No. S11940 Page i Contents Abbreviations

  10. NNMCAB Processes and Procedures

    Broader source: Energy.gov [DOE]

    At the January 8, 2014 Committee meeting NNMCAB Staff, Covered the Procedures and Processes that are used in Running the Board.

  11. Silica Scaling Removal Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scaling Removal Process Scientists at Los Alamos National Laboratory have developed a novel technology to remove both dissolved and colloidal silica using small gel particles....

  12. Living olefin polymerization processes

    DOE Patents [OSTI]

    Schrock, R.R.; Baumann, R.

    1999-03-30

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  13. ARM Mentor Selection Process

    Office of Scientific and Technical Information (OSTI)

    ... based on Atmospheric System Research (ASR) Working ... the ARM instrument mentorship of a given instrument class. ... through the Engineering Change Request (ECR) process. ...

  14. ARM - Engineering Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes Workflow Graphic Engineering Workflow Document Tools for Workflow ECR ECO BCR Ingests Value-Added Products Reprocessing Instruments Data System Elements Field...

  15. Undergraduate Program Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for growth. Contact Student Programs (505) 665-8899 Email Student hiring process Once an application is submitted online, it is made available for all interested Laboratory...

  16. Electro-Chemical Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electro-Chemical Processes - Sandia Energy Energy Search Icon Sandia Home Locations ... ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ...

  17. Living olefin polymerization processes

    DOE Patents [OSTI]

    Schrock, Richard R.; Bauman, Robert

    2006-11-14

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  18. Living olefin polymerization processes

    DOE Patents [OSTI]

    Schrock, Richard R.; Baumann, Robert

    2003-08-26

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  19. Living olefin polymerization processes

    DOE Patents [OSTI]

    Schrock, Richard R. (Winchester, MA); Baumann, Robert (Cambridge, MA)

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  20. Graduate Program Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and opportunities for growth. Contact Student Programs (505) 665-8899 Email The student hiring process Thank you for your interest in Los Alamos National Laboratory's Student...

  1. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  2. Industrial Process Surveillance System

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  3. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W.; Singer, Ralph M.; Mott, Jack E.

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  4. Chemical process hazards analysis

    SciTech Connect (OSTI)

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  5. HEPA filter dissolution process

    DOE Patents [OSTI]

    Brewer, K.N.; Murphy, J.A.

    1994-02-22

    A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.

  6. Hepa filter dissolution process

    DOE Patents [OSTI]

    Brewer, Ken N. (Arco, ID); Murphy, James A. (Idaho Falls, ID)

    1994-01-01

    A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

  7. Microsystem process networks

    DOE Patents [OSTI]

    Wegeng, Robert S. (Richland, WA); TeGrotenhuis, Ward E. (Kennewick, WA); Whyatt, Greg A. (West Richland, WA)

    2007-09-18

    Various aspects and applications of microsystem process networks are described. The design of many types of Microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

  8. Microsystem process networks

    DOE Patents [OSTI]

    Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA

    2010-01-26

    Various aspects and applications or microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

  9. Microsystem process networks

    DOE Patents [OSTI]

    Wegeng, Robert S. (Richland, WA); TeGrotenhuis, Ward E. (Kennewick, WA); Whyatt, Greg A. (West Richland, WA)

    2006-10-24

    Various aspects and applications of microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having exergetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

  10. Novel wastewater treatment processes

    SciTech Connect (OSTI)

    Saber, D.L.

    1996-12-31

    Few fermentation processes are as versatile as anaerobic digestion in terms of utility, application and capability to handle feeds of varied chemical complexity and physical characteristics. The anaerobic digestion process has served the pollution control industry in the US for over 100 years in stabilizing organic sludges and wastewaters; treatment of these high-moisture-content and high-strength aqueous wastes by alternative thermal or aerobic biological processes requires much higher energy inputs than that needed to conduct anaerobic digestion. The anaerobic digestion process has taken on new importance and emphasis in recent years because of its potential application for energy and chemical production from various types of renewable-carbon resources, and because it can be coupled with certain electrochemical, thermochemical and biochemical processes to generate electric power, hydrocarbons, methanol and other high-value products. A number of initiatives have been taken to improve the anaerobic digestion process in keeping with the increasing appreciation for its utility and versatility of application in municipal, industrial and rural settings. Using processes based upon the anaerobic digestion of organic wastes, the Institute of Gas Technology has developed technologies applicable for the treatment of a wide variety of organic wastes. Increased methane gas production and enhanced waste reduction can be achieved through the ACIMET, SOLCON and HIMET Processes, depending upon concentration and characteristics of the incoming organic waste stream. These proprietary IGT waste treatment systems are described.

  11. Gas-separation process

    DOE Patents [OSTI]

    Toy, L.G.; Pinnau, I.; Baker, R.W.

    1994-01-25

    A process is described for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material. 6 figures.

  12. Associative list processing unit

    DOE Patents [OSTI]

    Hemmert, Karl Scott; Underwood, Keith D.

    2013-01-29

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full. Also, an associative list processing unit and method comprising employing a plurality of prioritized cell blocks and using a tree of prioritized multiplexers descending from the plurality of cell blocks.

  13. METAL PLATING PROCESS

    DOE Patents [OSTI]

    Walker, D.E.; Noland, R.A.

    1958-08-12

    A process ts described for obtaining a closely bonded coating of steel or iron on uranium. The process consists of providing, between the steel and uramium. a layer of silver. amd then pressure rolling tbe assembly at about 600 deg C until a reduction of from l0 to 50% has been obtained.

  14. Process for preparing radiopharmaceuticals

    DOE Patents [OSTI]

    Barak, Morton; Winchell, Harry S.

    1977-01-04

    A process for the preparation of technetium-99m labeled pharmaceuticals is disclosed. The process comprises initially isolating technetium-99m pertechnetate by adsorption upon an adsorbent packing in a chromatographic column. The technetium-99m is then eluted from the packing with a biological compound to form a radiopharmaceutical.

  15. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  16. Formed HIP Can Processing

    SciTech Connect (OSTI)

    Clarke, Kester Diederik

    2015-07-27

    The intent of this report is to document a procedure used at LANL for HIP bonding aluminum cladding to U-10Mo fuel foils using a formed HIP can for the Domestic Reactor Conversion program in the NNSA Office of Material, Management and Minimization, and provide some details that may not have been published elsewhere. The HIP process is based on the procedures that have been used to develop the formed HIP can process, including the baseline process developed at Idaho National Laboratory (INL). The HIP bonding cladding process development is summarized in the listed references. Further iterations with Babcock & Wilcox (B&W) to refine the process to meet production and facility requirements is expected.

  17. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  18. Laser Processing of Metals and Polymers

    SciTech Connect (OSTI)

    Senthilraja Singaravelu

    2012-05-31

    A laser offers a unique set of opportunities for precise delivery of high quality coherent energy. This energy can be tailored to alter the properties of material allowing a very flexible adjustment of the interaction that can lead to melting, vaporization, or just surface modification. Nowadays laser systems can be found in nearly all branches of research and industry for numerous applications. Sufficient evidence exists in the literature to suggest that further advancements in the field of laser material processing will rely significantly on the development of new process schemes. As a result they can be applied in various applications starting from fundamental research on systems, materials and processes performed on a scientific and technical basis for the industrial needs. The interaction of intense laser radiation with solid surfaces has extensively been studied for many years, in part, for development of possible applications. In this thesis, I present several applications of laser processing of metals and polymers including polishing niobium surface, producing a superconducting phase niobium nitride and depositing thin films of niobium nitride and organic material (cyclic olefin copolymer). The treated materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), atomic force microscopy (AFM), high resolution optical microscopy, surface profilometry, Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD). Power spectral density (PSD) spectra computed from AFM data gives further insight into the effect of laser melting on the topography of the treated niobium.

  19. Hierarchical Nanoceramics for Industrial Process Sensors

    SciTech Connect (OSTI)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  20. Glassy carbon as an absolute intensity calibration standard for small-angle scattering.

    SciTech Connect (OSTI)

    Zhang, F.; Ilavsky, J.; Long, G.; Allen, A.; Quintana, J.; Jemian, P.; NIST

    2010-05-01

    Absolute calibration of small-angle scattering (SAS) intensity data (measured in terms of the differential scattering cross section per unit sample volume per unit solid angle) is essential for many important aspects of quantitative SAS analysis, such as obtaining the number density, volume fraction, and specific surface area of the scatterers. It also enables scattering data from different instruments (light, X-ray, or neutron scattering) to be combined, and it can even be useful to detect the existence of artifacts in the experimental data. Different primary or secondary calibration methods are available. In the latter case, absolute intensity calibration requires a stable artifact with the necessary scattering profile. Glassy carbon has sometimes been selected as this intensity calibration standard. Here we review the spatial homogeneity and temporal stability of one type of commercially available glassy carbon that is being used as an intensity calibration standard at a number of SAS facilities. We demonstrate that glassy carbon is sufficiently homogeneous and stable during routine use to be relied upon as a suitable standard for absolute intensity calibration of SAS data.

  1. Advanced Hydrogen Liquefaction Process

    SciTech Connect (OSTI)

    Schwartz, Joseph; Kromer, Brian; Neu, Ben; Jankowiak, Jerome; Barrett, Philip; Drnevich, Raymond

    2011-09-28

    The project identified and quantified ways to reduce the cost of hydrogen liquefaction, and reduce the cost of hydrogen distribution. The goal was to reduce the power consumption by 20% and then to reduce the capital cost. Optimizing the process, improving process equipment, and improving ortho-para conversion significantly reduced the power consumption of liquefaction, but by less than 20%. Because the efficiency improvement was less than the target, the program was stopped before the capital cost was addressed. These efficiency improvements could provide a benefit to the public to improve the design of future hydrogen liquefiers. The project increased the understanding of hydrogen liquefaction by modeling different processes and thoroughly examining ortho-para separation and conversion. The process modeling provided a benefit to the public because the project incorporated para hydrogen into the process modeling software, so liquefaction processes can be modeled more accurately than using only normal hydrogen. Adding catalyst to the first heat exchanger, a simple method to reduce liquefaction power, was identified, analyzed, and quantified. The demonstrated performance of ortho-para separation is sufficient for at least one identified process concept to show reduced power cost when compared to hydrogen liquefaction processes using conventional ortho-para conversion. The impact of improved ortho-para conversion can be significant because ortho para conversion uses about 20-25% of the total liquefaction power, but performance improvement is necessary to realize a substantial benefit. Most of the energy used in liquefaction is for gas compression. Improvements in hydrogen compression will have a significant impact on overall liquefier efficiency. Improvements to turbines, heat exchangers, and other process equipment will have less impact.

  2. Coal liquefaction quenching process

    DOE Patents [OSTI]

    Thorogood, Robert M.; Yeh, Chung-Liang; Donath, Ernest E.

    1983-01-01

    There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

  3. Ultrasonic Processing of Materials

    SciTech Connect (OSTI)

    Meek, Thomas T.; Han, Qingyou; Jian, Xiaogang; Xu, Hanbing

    2005-06-30

    The purpose of this project was to determine the impact of a new breakthrough technology, ultrasonic processing, on various industries, including steel, aluminum, metal casting, and forging. The specific goals of the project were to evaluate core principles and establish quantitative bases for the ultrasonc processing of materials, and to demonstrate key applications in the areas of grain refinement of alloys during solidification and degassing of alloy melts. This study focussed on two classes of materials - aluminum alloys and steels - and demonstrated the application of ultrasonic processing during ingot casting.

  4. Measuring Process Safety Management

    SciTech Connect (OSTI)

    Sweeney, J.C. (ARCO Chemical Co., Newtown Square, PA (United States))

    1992-04-01

    Many companies are developing and implementing Process Safety Management (PSM) systems. Various PSM models, including those by the Center for Chemical Process Safety (CCPS), the American Petroleum Institute (API), the Chemical Manufacturers Association (CMA) and OSHA have emerged to guide the design, development and installation of these systems. These models represent distillations of the practices, methods and procedures successfully used by those who believed that a strong correlation exists between sound PSM practices and achieving reductions in the frequency and severity of process incidents. This paper describes the progress of CCPS research toward developing a PSM performance measurement model. It also provides a vision for future CCPS research to define effectiveness indices.

  5. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  6. Apparatus and method for monitoring the intensities of charged particle beams

    DOE Patents [OSTI]

    Varma, Matesh N.; Baum, John W.

    1982-11-02

    Charged particle beam monitoring means (40) are disposed in the path of a charged particle beam (44) in an experimental device (10). The monitoring means comprise a beam monitoring component (42) which is operable to prevent passage of a portion of beam (44), while concomitantly permitting passage of another portion thereof (46) for incidence in an experimental chamber (18), and providing a signal (I.sub.m) indicative of the intensity of the beam portion which is not passed. Calibration means (36) are disposed in the experimental chamber in the path of the said another beam portion and are operable to provide a signal (I.sub.f) indicative of the intensity thereof. Means (41 and 43) are provided to determine the ratio (R) between said signals whereby, after suitable calibration, the calibration means may be removed from the experimental chamber and the intensity of the said another beam portion determined by monitoring of the monitoring means signal, per se.

  7. Technique for compressing light intensity ranges utilizing a specifically designed liquid crystal notch filter

    DOE Patents [OSTI]

    Rushford, Michael C.

    1988-01-01

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten metal in an atomic vapor laser isotope separation (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. To accomplish this, the assembly utilizes the combination of interference filter and a liquid crystal notch filter. The latter which preferably includes a cholesteric liquid crystal arrangement is configured to pass light at all wavelengths, except a relatively narrow wavelength band which defines the filter's notch, and includes means for causing the notch to vary to at least a limited extent with the intensity of light at its light incidence surface.

  8. New and improved apparatus and method for monitoring the intensities of charged-particle beams

    DOE Patents [OSTI]

    Varma, M.N.; Baum, J.W.

    1981-01-16

    Charged particle beam monitoring means are disposed in the path of a charged particle beam in an experimental device. The monitoring means comprise a beam monitoring component which is operable to prevent passage of a portion of beam, while concomitantly permitting passage of another portion thereof for incidence in an experimental chamber, and providing a signal (I/sub m/) indicative of the intensity of the beam portion which is not passed. Caibration means are disposed in the experimental chamber in the path of the said another beam portion and are operable to provide a signal (I/sub f/) indicative of the intensity thereof. Means are provided to determine the ratio (R) between said signals whereby, after suitable calibration, the calibration means may be removed from the experimental chamber and the intensity of the said another beam portion determined by monitoring of the monitoring means signal, per se.

  9. Overview of the High Intensity Neutrino Source Linac R&D program at Fermilab

    SciTech Connect (OSTI)

    Webber, R.C.; Appollinari, G.; Carneiro, J.P.; Gonin, I.; Hanna, B.; Hays, S.; Khabiboulline, T.; Lanfranco, G.; Madrak, R.L.; Moretti, A.; Nicol, T.; /Fermilab /Argonne

    2008-09-01

    The Fermilab High Intensity Neutrino Source (HINS) Linac R&D program is building a first-of-a-kind 60 MeV superconducting H- linac. The HINS Linac incorporates superconducting solenoids for transverse focusing, high power RF vector modulators for independent control of multiple cavities powered from a single klystron, and superconducting spoke-type accelerating cavities starting at 10 MeV. This will be the first application and demonstration of any of these technologies in a low-energy, high-intensity proton/H- linear accelerator. The HINS effort is relevant to a high intensity, superconducting H- linac that might serve the next generation of neutrino physics and muon storage ring/collider experiments. An overview of the HINS program, machine design, status, and outlook is presented.

  10. Analysis of stress intensity factors for a new mechanical-corrosion specimen

    SciTech Connect (OSTI)

    Rassineux, B.; Crouzet, D.; Le Hong, S.

    1996-12-01

    Electricite de France is conducting a research program to determine stress corrosion cracking rates (CSC) in the Alloy 600 steam generators tubes of the PWR primary system. The objective is to correlate the cracking rates with the specimen stress intensity factor K{sub I}. One of the samples selected for the purpose of this study is the longitudinal notched specimen (TEL). This paper presents the analysis of the stress intensity factor and its experimental validation. The stress intensity factor has been evaluated for different loads using 3D finite element calculations with the Hellen-Parks and G(q) methods. Only crack propagation are considered. As an assessment of the method, the numerical simulations are in good agreement with the fatigue crack growth rates measured experimentally for TEL and compact tension (CT) specimens.

  11. Phenol removal pretreatment process

    DOE Patents [OSTI]

    Hames, Bonnie R.

    2004-04-13

    A process for removing phenols from an aqueous solution is provided, which comprises the steps of contacting a mixture comprising the solution and a metal oxide, forming a phenol metal oxide complex, and removing the complex from the mixture.

  12. Direct coal liquefaction process

    DOE Patents [OSTI]

    Rindt, John R. (Grand Forks, ND); Hetland, Melanie D. (Grand Forks, ND)

    1993-01-01

    An improved multistep liquefaction process for organic carbonaceous mater which produces a virtually completely solvent-soluble carbonaceous liquid product. The solubilized product may be more amenable to further processing than liquid products produced by current methods. In the initial processing step, the finely divided organic carbonaceous material is treated with a hydrocarbonaceous pasting solvent containing from 10% and 100% by weight process-derived phenolic species at a temperature within the range of 300.degree. C. to 400.degree. C. for typically from 2 minutes to 120 minutes in the presence of a carbon monoxide reductant and an optional hydrogen sulfide reaction promoter in an amount ranging from 0 to 10% by weight of the moisture- and ash-free organic carbonaceous material fed to the system. As a result, hydrogen is generated via the water/gas shift reaction at a rate necessary to prevent condensation reactions. In a second step, the reaction product of the first step is hydrogenated.

  13. Continuous sulfur removal process

    DOE Patents [OSTI]

    Jalan, V.; Ryu, J.

    1994-04-26

    A continuous process for the removal of hydrogen sulfide from a gas stream using a membrane comprising a metal oxide deposited on a porous support is disclosed. 4 figures.

  14. Associative list processing unit

    DOE Patents [OSTI]

    Hemmert, Karl Scott; Underwood, Keith D

    2014-04-01

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full.

  15. Direct coal liquefaction process

    DOE Patents [OSTI]

    Rindt, J.R.; Hetland, M.D.

    1993-10-26

    An improved multistep liquefaction process for organic carbonaceous mater which produces a virtually completely solvent-soluble carbonaceous liquid product. The solubilized product may be more amenable to further processing than liquid products produced by current methods. In the initial processing step, the finely divided organic carbonaceous material is treated with a hydrocarbonaceous pasting solvent containing from 10% and 100% by weight process-derived phenolic species at a temperature within the range of 300 C to 400 C for typically from 2 minutes to 120 minutes in the presence of a carbon monoxide reductant and an optional hydrogen sulfide reaction promoter in an amount ranging from 0 to 10% by weight of the moisture- and ash-free organic carbonaceous material fed to the system. As a result, hydrogen is generated via the water/gas shift reaction at a rate necessary to prevent condensation reactions. In a second step, the reaction product of the first step is hydrogenated.

  16. Hydrogen recovery process

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2000-01-01

    A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

  17. Coal liquefaction process

    DOE Patents [OSTI]

    Skinner, Ronald W.; Tao, John C.; Znaimer, Samuel

    1985-01-01

    This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

  18. Postdoc Application Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program » Application Process Postdoc Application Process Point your career towards LANL: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Postdoc Program Office Email Submit general application or apply for specific posted position For initial consideration, you can submit a general application to the Postdoctoral Research program and/or for a specific posted position. Access the general application

  19. Materials processing with light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials processing with light, plasmas and other sources of energy At the ARC various processing technologies are used to create materials, struc- tures, and devices that play an increasingly important role in high value-added manufacturing of computer and communications equipment, physical and chemical sensors, biomedical instruments and treatments, semiconductors, thin films, photovoltaics, electronic components and optical components. For example, making coatings, including paint, chrome,

  20. ARM Mentor Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Mentor Selection Process Revision 1 DL Sisterson October 2015 DOE/SC-ARM-13-003 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

  1. ARM Mentor Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 ARM Mentor Selection Process DL Sisterson October 2015 DOE/SC-ARM-TR-171 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

  2. Retrofitting heavy oil processes

    SciTech Connect (OSTI)

    Hamilton, G.L.; Fitzgerald, M.; D'Amico, V.

    1986-01-01

    Refiners, faced with the need to process the bottom end of the heavy high sulfur crude oil barrel in today's uncertain economic environment, are reluctant to commit large amounts of money to expensive upgrading processes. In order to conserve scarce capital while improving operating margins, additional valuable products can be produced by retrofits such as conversion of an idle crude unit to visbreaking, delayed coking or deasphalting service, or conversion of hydrodesulfurizers to mild hydrocracking.

  3. Appraisal Process Protocols

    Energy Savers [EERE]

    INDEPENDENT OVERSIGHT PROGRAM APPRAISAL PROCESS PROTOCOLS December 2015 Office of Enterprise Assessments U.S. Department of Energy Independent Oversight Program Appraisal Process Protocols Preface December 2015 i Preface The U.S. Department of Energy's (DOE) Office of Enterprise Assessments (EA) is responsible for implementing an Independent Oversight Program for safety and security within the Department in accordance with DOE Policy 226.1B, Department of Energy Oversight Policy, and DOE Orders

  4. Spherical nitroguanidine process

    DOE Patents [OSTI]

    Sanchez, John A.; Roemer, Edward L.; Stretz, Lawrence A.

    1990-01-01

    A process of preparing spherical high bulk density nitroguanidine by dissing low bulk density nitroguanidine in N-methyl pyrrolidone at elevated temperatures and then cooling the solution to lower temperatures as a liquid characterized as a nonsolvent for the nitroguanidine is provided. The process is enhanced by inclusion in the solution of from about 1 ppm up to about 250 ppm of a metal salt such as nickel nitrate, zinc nitrate or chromium nitrate, preferably from about 20 to about 50 ppm.

  5. Licensing Process | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Process Through licensing of its intellectual property rights, NREL provides industry with an opportunity to commercialize NREL-developed energy technologies and products. Our licensing opportunities are available to both small and large businesses-from start-ups to Fortune 500 companies. Step-by-Step Process 1. Identify and Qualify Opportunity To identify a licensing opportunity, a company can browse the Energy Innovation Portal. From the Portal, the company can review publically

  6. Advanced Polymer Processing Facility

    SciTech Connect (OSTI)

    Muenchausen, Ross E.

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  7. Abstract Submission Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract Submission Process Abstract Submission Process Focusing on methods and computational tools used to help sequence, assemble, and finish genomes, including new sequencing technologies. Contact Shannon Johnson (505) 606-2201 Email Abstract submission deadline: March 28, 2016. Participants are invited to submit abstracts for posters or oral presentations. Abstracts should be 500 words or less; selections will be made by the organizing committee. Submit an abstract or get more information

  8. Coal liquefaction process

    DOE Patents [OSTI]

    Karr, Jr., Clarence

    1977-04-19

    An improved coal liquefaction process is provided which enables conversion of a coal-oil slurry to a synthetic crude refinable to produce larger yields of gasoline and diesel oil. The process is characterized by a two-step operation applied to the slurry prior to catalytic desulfurization and hydrogenation in which the slurry undergoes partial hydrogenation to crack and hydrogenate asphaltenes and the partially hydrogenated slurry is filtered to remove minerals prior to subsequent catalytic hydrogenation.

  9. Application Process and Eligibility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program » Application Process and Eligibility Application Process and Eligibility Both US and non-US citizens are eligible to apply, but US citizenship may be required for some research. Contacts Director Albert Migliori Deputy Franz Freibert 505 667-6879 Email Professional Staff Assistant Susan Ramsay 505 665 0858 Email Applications for the program shall consist of a clearly defined research proposal of up to 300 words, written by the sponsor, describing the candidate's proposed research in

  10. Polycrystalline semiconductor processing

    DOE Patents [OSTI]

    Glaeser, A.M.; Haggerty, J.S.; Danforth, S.C.

    1983-04-05

    A process is described for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by impingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step. 10 figs.

  11. Helium process cycle

    DOE Patents [OSTI]

    Ganni, Venkatarao

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  12. Helium process cycle

    DOE Patents [OSTI]

    Ganni, Venkatarao

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  13. Polycrystalline semiconductor processing

    DOE Patents [OSTI]

    Glaeser, Andreas M. (Scituate, MA); Haggerty, John S. (Lincoln, MA); Danforth, Stephen C. (Winchester, MA)

    1983-01-01

    A process for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by imgingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step.

  14. Studsvik Processing Facility Update

    SciTech Connect (OSTI)

    Mason, J. B.; Oliver, T. W.; Hill, G. M.; Davin, P. F.; Ping, M. R.

    2003-02-25

    Studsvik has completed over four years of operation at its Erwin, TN facility. During this time period Studsvik processed over 3.3 million pounds (1.5 million kgs) of radioactive ion exchange bead resin, powdered filter media, and activated carbon, which comprised a cumulative total activity of 18,852.5 Ci (6.98E+08 MBq). To date, the highest radiation level for an incoming resin container has been 395 R/hr (3.95 Sv/h). The Studsvik Processing Facility (SPF) has the capability to safely and efficiently receive and process a wide variety of solid and liquid Low Level Radioactive Waste (LLRW) streams including: Ion Exchange Resins (IER), activated carbon (charcoal), graphite, oils, solvents, and cleaning solutions with contact radiation levels of up to 400 R/hr (4.0 Sv/h). The licensed and heavily shielded SPF can receive and process liquid and solid LLRWs with high water and/or organic content. This paper provides an overview of the last four years of commercial operations processing radioactive LLRW from commercial nuclear power plants. Process improvements and lessons learned will be discussed.

  15. A Secure Web Application Providing Public Access to High-Performance Data Intensive Scientific Resources - ScalaBLAST Web Application

    SciTech Connect (OSTI)

    Curtis, Darren S.; Peterson, Elena S.; Oehmen, Chris S.

    2008-05-04

    This work presents the ScalaBLAST Web Application (SWA), a web based application implemented using the PHP script language, MySQL DBMS, and Apache web server under a GNU/Linux platform. SWA is an application built as part of the Data Intensive Computer for Complex Biological Systems (DICCBS) project at the Pacific Northwest National Laboratory (PNNL). SWA delivers accelerated throughput of bioinformatics analysis via high-performance computing through a convenient, easy-to-use web interface. This approach greatly enhances emerging fields of study in biology such as ontology-based homology, and multiple whole genome comparisons which, in the absence of a tool like SWA, require a heroic effort to overcome the computational bottleneck associated with genome analysis. The current version of SWA includes a user account management system, a web based user interface, and a backend process that generates the files necessary for the Internet scientific community to submit a ScalaBLAST parallel processing job on a dedicated cluster.

  16. Intensity Pattern of Diffuse X-Ray Scattering From Thermally Populated

    Office of Scientific and Technical Information (OSTI)

    Phonons in Fcc d-Pu-Ga (Conference) | SciTech Connect Intensity Pattern of Diffuse X-Ray Scattering From Thermally Populated Phonons in Fcc d-Pu-Ga Citation Details In-Document Search Title: Intensity Pattern of Diffuse X-Ray Scattering From Thermally Populated Phonons in Fcc d-Pu-Ga Authors: Wong, J. ; Holt, M. ; Hong, H. ; Wall, M. ; Schwartz, A. ; Zschack, P. ; Chiang, T.-C. Publication Date: 2016-01-20 OSTI Identifier: 1235452 Resource Type: Conference Resource Relation: Conference:

  17. Protons acceleration in thin CH foils by ultra-intense femtosecond laser pulses

    SciTech Connect (OSTI)

    Kosarev, I. N.

    2015-03-15

    Interaction of femtosecond laser pulses with the intensities 10{sup 21}, 10{sup 22 }W/cm{sup 2} with CH plastic foils is studied in the framework of kinetic theory of laser plasma based on the construction of propagators (in classical limit) for electron and ion distribution functions in plasmas. The calculations have been performed for real densities and charges of plasma ions. Protons are accelerated both in the direction of laser pulse (up to 1 GeV) and in the opposite direction (more than 5 GeV). The mechanisms of forward acceleration are different for various intensities.

  18. A FOURTH ORDER RESONANCE OF A HIGH INTENSITY LINAC (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect A FOURTH ORDER RESONANCE OF A HIGH INTENSITY LINAC Citation Details In-Document Search Title: A FOURTH ORDER RESONANCE OF A HIGH INTENSITY LINAC The 4sigma=360 (or 4nu=1) resonance of a linac is manifested when the depressed tune sigma is close to and below 90 . It is observed that this fourth order resonance is dominating over the better known envelope instability and practically replacing it. Simulation study shows a clear emittance growth by this resonance and its stopband.

  19. Single bunch intensity monitoring system using an improved wall current monitor

    SciTech Connect (OSTI)

    Moore, C.D.; Crisp, J.; Howard, D.; Kerns, Q.; Martin, P.; McConnell, D.; Michals, P.; Payne, J.; Tawzer, S.; Webber, R.

    1989-03-01

    Important parameters in collider operations are the length and intensity of individual beam bunches. A system to automatically measure these parameters has been developed using a wall current monitor signal digitized by a 1 GHz sampling oscilloscope under microprocessor control. Bunch length and intensity are computed by the microprocessor and presented to the host computer. To verify the required accuracy, attention has been paid to the calibration and frequency response of the system. Design and performance of a new wall current monitor with improved bandwidth is presented. 4 refs., 3 figs.

  20. Long path-length experimental studies of longitudinal phenomena in intense

    Office of Scientific and Technical Information (OSTI)

    beams (Journal Article) | SciTech Connect Journal Article: Long path-length experimental studies of longitudinal phenomena in intense beams Citation Details In-Document Search This content will become publicly available on March 22, 2017 Title: Long path-length experimental studies of longitudinal phenomena in intense beams Authors: Beaudoin, B. L. [1] ; Haber, I. [1] Search SciTech Connect for author "Haber, I." Search SciTech Connect for ORCID "0000000297978958" Search

  1. Beam loading effects on a high intensity H- superconducting linac for a

    Office of Scientific and Technical Information (OSTI)

    beam with ?? < 1* (Journal Article) | SciTech Connect Beam loading effects on a high intensity H- superconducting linac for a beam with ?? < 1* Citation Details In-Document Search Title: Beam loading effects on a high intensity H- superconducting linac for a beam with ?? < 1* When the beam passes through superconducting cavities, it excites beam induced field in the cavities. A systematic study is performed to study the beam loading effects with < 1 beam on the = 0.81

  2. Deflection of MeV electrons by self-generated magnetic fields in intense

    Office of Scientific and Technical Information (OSTI)

    laser-solid interaction (Journal Article) | SciTech Connect Deflection of MeV electrons by self-generated magnetic fields in intense laser-solid interaction Citation Details In-Document Search Title: Deflection of MeV electrons by self-generated magnetic fields in intense laser-solid interaction Authors: Perez, F ; Kemp, A J ; Divol, L ; Chen, C D ; Patel, P K Publication Date: 2013-04-25 OSTI Identifier: 1116958 Report Number(s): LLNL-JRNL-635901 DOE Contract Number: W-7405-ENG-48 Resource

  3. Utilizing gas-filled cavities for the generation of an intense muon source

    SciTech Connect (OSTI)

    Stratakis, Diktys; Neuffer, David V.

    2015-05-03

    A key requirement for designing intense muon sources is operating rf cavities in multi-tesla magnetic fields. Recently, a proof-of-principle experiment demonstrated that an rf cavity filed with high pressure hydrogen gas could meet this goal. In this study, rigorous simulation is used to design and evaluate the performance of an intense muon source with gas filled cavities. We present a new lattice design and compare our results with conventional schemes. We detail the influence of gas pressure on the muon production rate.

  4. The CP-Violating pMSSM at the Intensity Frontier (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Conference: The CP-Violating pMSSM at the Intensity Frontier Citation Details In-Document Search Title: The CP-Violating pMSSM at the Intensity Frontier Authors: Berger, Joshua ; Cahill-Rowley, Matthew W. ; Ghosh, Diptimoy ; Hewett, JoAnne L. ; Ismail, Ahmed ; Rizzo, Thomas G. Publication Date: 2013-10-07 OSTI Identifier: 1096197 Report Number(s): SLAC-PUB-15747 arXiv:1309.7653 DOE Contract Number: AC02-76SF00515 Resource Type: Conference Resource Relation: Journal Name:

  5. Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dorf, Mikhail A.; Davidson, Ronald C.; Kaganovich, Igor D.; Startsev, Edward A.

    2012-05-31

    In this study, the design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ionmore » driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B~100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasmaelectrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electrondynamics strongly affected by a weak applied magnetic field.« less

  6. QoS support for end users of I/O-intensive applications using shared storage systems

    SciTech Connect (OSTI)

    Davis, Marion Kei; Zhang, Xuechen; Jiang, Song

    2011-01-19

    I/O-intensive applications are becoming increasingly common on today's high-performance computing systems. While performance of compute-bound applications can be effectively guaranteed with techniques such as space sharing or QoS-aware process scheduling, it remains a challenge to meet QoS requirements for end users of I/O-intensive applications using shared storage systems because it is difficult to differentiate I/O services for different applications with individual quality requirements. Furthermore, it is difficult for end users to accurately specify performance goals to the storage system using I/O-related metrics such as request latency or throughput. As access patterns, request rates, and the system workload change in time, a fixed I/O performance goal, such as bounds on throughput or latency, can be expensive to achieve and may not lead to a meaningful performance guarantees such as bounded program execution time. We propose a scheme supporting end-users QoS goals, specified in terms of program execution time, in shared storage environments. We automatically translate the users performance goals into instantaneous I/O throughput bounds using a machine learning technique, and use dynamically determined service time windows to efficiently meet the throughput bounds. We have implemented this scheme in the PVFS2 parallel file system and have conducted an extensive evaluation. Our results show that this scheme can satisfy realistic end-user QoS requirements by making highly efficient use of the I/O resources. The scheme seeks to balance programs attainment of QoS requirements, and saves as much of the remaining I/O capacity as possible for best-effort programs.

  7. Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields

    SciTech Connect (OSTI)

    Dorf, Mikhail A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Davidson, Ronald C.; Kaganovich, Igor D.; Startsev, Edward A. [Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2012-05-15

    The design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ion driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B {approx} 100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasma electrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electron dynamics strongly affected by a weak applied magnetic field.

  8. Friction Stir Processing for Efficient Manufacturing

    SciTech Connect (OSTI)

    Mr. Christopher B. Smith; Dr. Oyelayo Ajayi

    2012-01-31

    Friction at contacting surfaces in relative motion is a major source of parasitic energy loss in machine systems and manufacturing processes. Consequently, friction reduction usually translates to efficiency gain and reduction in energy consumption. Furthermore, friction at surfaces eventually leads to wear and failure of the components thereby compromising reliability and durability. In order to reduce friction and wear in tribological components, material surfaces are often hardened by a variety of methods, including conventional heat treatment, laser surface hardening, and thin-film coatings. While these surface treatments are effective when used in conjunction with lubrication to prevent failure, they are all energy intensive and could potentially add significant cost. A new concept for surface hardening of metallic materials and components is Friction Stir Processing (FSP). Compared to the current surface hardening technologies, FSP is more energy efficient has no emission or waste by products and may result in better tribological performance. FSP involves plunging a rotating tool to a predetermined depth (case layer thickness) and translating the FSP tool along the area to be processed. This action of the tool produces heating and severe plastic deformation of the processed area. For steel the temperature is high enough to cause phase transformation, ultimately forming hard martensitic phase. Indeed, FSP has been used for surface modification of several metals and alloys so as to homogenize the microstructure and refine the grain size, both of which led to improved fatigue and corrosion resistance. Based on the effect of FSP on near-surface layer material, it was expected to have beneficial effects on friction and wear performance of metallic materials. However, little or no knowledge existed on the impact of FSP concerning friction and wear performance the subject of the this project and final report. Specifically for steel, which is the most dominant tribological material, FSP can replace the current conventional surface hardening techniques used for friction and wear performance. Friction Stir Link Inc. (FSL) is teamed with Argonne National Laboratory (ANL) to develop and optimize FSP for friction and wear performance enhancement. The ultimate goal is to offer FSP and an effective alternative to some of the current energy intensive and high-cost surface hardening processes.

  9. SU-E-T-174: Evaluation of the Optimal Intensity Modulated Radiation Therapy Plans Done On the Maximum and Average Intensity Projection CTs

    SciTech Connect (OSTI)

    Jurkovic, I; Stathakis, S; Li, Y; Patel, A; Vincent, J; Papanikolaou, N; Mavroidis, P

    2014-06-01

    Purpose: To determine the difference in coverage between plans done on average intensity projection and maximum intensity projection CT data sets for lung patients and to establish correlations between different factors influencing the coverage. Methods: For six lung cancer patients, 10 phases of equal duration through the respiratory cycle, the maximum and average intensity projections (MIP and AIP) from their 4DCT datasets were obtained. MIP and AIP datasets had three GTVs delineated (GTVaip delineated on AIP, GTVmip delineated on MIP and GTVfus delineated on each of the 10 phases and summed up). From the each GTV, planning target volumes (PTV) were then created by adding additional margins. For each of the PTVs an IMRT plan was developed on the AIP dataset. The plans were then copied to the MIP data set and were recalculated. Results: The effective depths in AIP cases were significantly smaller than in MIP (p < 0.001). The Pearson correlation coefficient of r = 0.839 indicates strong degree of positive linear relationship between the average percentage difference in effective depths and average PTV coverage on the MIP data set. The V2 0 Gy of involved lung depends on the PTV coverage. The relationship between PTVaip mean CT number difference and PTVaip coverage on MIP data set gives r = 0.830. When the plans are produced on MIP and copied to AIP, r equals ?0.756. Conclusion: The correlation between the AIP and MIP data sets indicates that the selection of the data set for developing the treatment plan affects the final outcome (cases with high average percentage difference in effective depths between AIP and MIP should be calculated on AIP). The percentage of the lung volume receiving higher dose depends on how well PTV is covered, regardless of on which set plan is done.

  10. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  11. Assumptions to the Annual Energy Outlook 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    47 Industrial Demand Module The NEMS Industrial Demand Module (IDM) estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are subdivided further into the energy-intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure. The non-manufacturing

  12. NREL: Process Development and Integration Laboratory - Processing in the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Processing Platform Processing in the Atmospheric Processing Platform This page provides details on processing in the Atmospheric Processing platform. Photo of a window of a glove box, showing four rubber gloves extending outward. Sample preparation glove box in the Atmospheric Processing platform. Sample Preparation Box The sample preparation box allows samples to be loaded into platens and prepared for further processing. Large-Area Rapid Thermal Processing This rapid thermal

  13. Rapid sintering of TiO{sub 2} photoelectrodes using intense pulsed white light for flexible dye-sensitized solar cells

    SciTech Connect (OSTI)

    Jin, Hwa-Young; Kim, Jae-Yup; Ah Lee, Jin; Lee, Kwangsoo; Yoo, Kicheon; Lee, Doh-Kwon; Kim, BongSoo; Young Kim, Jin; Kim, Honggon; Jung Son, Hae; Kim, Jihyun; Ah Lim, Jung E-mail: mjko@kist.re.kr; Jae Ko, Min E-mail: mjko@kist.re.kr

    2014-04-07

    Intense pulsed white light (IPWL) sintering was carried out at room temperature, which is suitable dye-sensitized solar cells (DSSCs) fabrication process on plastic substrates for the mass production. Five seconds irradiation of IPWL on TiO{sub 2} electrode significantly improves the photocurrent density and power conversion efficiency of DSSCs by more than 110% and 115%, respectively, compared to the DSSCs without IPWL treatment. These improvements were mainly attributed to the enhanced interconnection between the TiO{sub 2} nanoparticles induced by IPWL illumination, which is confirmed by the impedance spectra analysis.

  14. NEPTUNIUM OXIDE PROCESSING

    SciTech Connect (OSTI)

    Jordan, J; Watkins, R; Hensel, S

    2009-05-27

    The Savannah River Site's HB-Line Facility completed a campaign in which fifty nine cans of neptunium oxide were produced and shipped to the Idaho National Laboratory in the 9975 shipping container. The neptunium campaign was divided into two parts: Part 1 which consisted of oxide made from H-Canyon neptunium solution which did not require any processing prior to conversion into an oxide, and Part 2 which consisted of oxide made from additional H-Canyon neptunium solutions which required processing to purify the solution prior to conversion into an oxide. The neptunium was received as a nitrate solution and converted to oxide through ion-exchange column extraction, precipitation, and calcination. Numerous processing challenges were encountered in order make a final neptunium oxide product that could be shipped in a 9975 shipping container. Among the challenges overcome was the issue of scale: translating lab scale production into full facility production. The balance between processing efficiency and product quality assurance was addressed during this campaign. Lessons learned from these challenges are applicable to other processing projects.

  15. Radiolysis Process Model

    SciTech Connect (OSTI)

    Buck, Edgar C.; Wittman, Richard S.; Skomurski, Frances N.; Cantrell, Kirk J.; McNamara, Bruce K.; Soderquist, Chuck Z.

    2012-07-17

    Assessing the performance of spent (used) nuclear fuel in geological repository requires quantification of time-dependent phenomena that may influence its behavior on a time-scale up to millions of years. A high-level waste repository environment will be a dynamic redox system because of the time-dependent generation of radiolytic oxidants and reductants and the corrosion of Fe-bearing canister materials. One major difference between used fuel and natural analogues, including unirradiated UO2, is the intense radiolytic field. The radiation emitted by used fuel can produce radiolysis products in the presence of water vapor or a thin-film of water (including OH and H radicals, O2-, eaq, H2O2, H2, and O2) that may increase the waste form degradation rate and change radionuclide behavior. H2O2 is the dominant oxidant for spent nuclear fuel in an O2 depleted water environment, the most sensitive parameters have been identified with respect to predictions of a radiolysis model under typical conditions. As compared with the full model with about 100 reactions it was found that only 30-40 of the reactions are required to determine [H2O2] to one part in 105 and to preserve most of the predictions for major species. This allows a systematic approach for model simplification and offers guidance in designing experiments for validation.

  16. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    SciTech Connect (OSTI)

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-11-29

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL).

  17. Systems for controlling the intensity variations in a laser beam and for frequency conversion thereof

    DOE Patents [OSTI]

    Skupsky, S.; Craxton, R.S.; Soures, J.

    1990-10-02

    In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temporal oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation. 16 figs.

  18. Novel high-energy physics studies using intense lasers and plasmas

    SciTech Connect (OSTI)

    Leemans, Wim P.; Bulanov, Stepan; Esarey, Eric; Schroeder, Carl

    2015-06-29

    In the framework of the project “Novel high-energy physics studies using intense lasers and plasmas” we conducted the study of ion acceleration and “flying mirrors” with high intensity lasers in order to develop sources of ion beams and high frequency radiation for different applications. Since some schemes of laser ion acceleration are also considered a good source of “flying mirrors”, we proposed to investigate the mechanisms of “mirror” formation. As a result we were able to study the laser ion acceleration from thin foils and near critical density targets. We identified several fundamental factors limiting the acceleration in the RPA regime and proposed the target design to compensate these limitations. In the case of near critical density targets, we developed a concept for the laser driven ion source for the hadron therapy. Also we studied the mechanism of “flying mirror” generation during the intense laser interaction with thin solid density targets. As for the laser-based positron creation and capture we initially proposed to study different regimes of positron beam generation and positron beam cooling. Since the for some of these schemes a good quality electron beam is required, we studied the generation of ultra-low emittance electron beams. In order to understand the fundamental physics of high energy electron beam interaction with high intensity laser pulses, which may affect the efficient generation of positron beams, we studied the radiation reaction effects.

  19. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    SciTech Connect (OSTI)

    Nibur, Kevin A.

    2010-11-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  20. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    SciTech Connect (OSTI)

    Dadfarnia, Mohsen; Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros; Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A.

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  1. INTENSITY ENHANCEMENT OF OVI ULTRAVIOLET EMISSION LINES IN SOLAR SPECTRA DUE TO OPACITY

    SciTech Connect (OSTI)

    Keenan, F. P.; Mathioudakis, M.; Doyle, J. G.; Madjarska, M. S.; Rose, S. J.; Bowler, L. A.; Britton, J.; McCrink, L.

    2014-04-01

    Opacity is a property of many plasmas. It is normally expected that if an emission line in a plasma becomes optically thick, then its intensity ratio to that of another transition that remains optically thin should decrease. However, radiative transfer calculations undertaken both by ourselves and others predict that under certain conditions the intensity ratio of an optically thick to an optically thin line can show an increase over the optically thin value, indicating an enhancement in the former. These conditions include the geometry of the emitting plasma and its orientation to the observer. A similar effect can take place between lines of differing optical depths. While previous observational studies have focused on stellar point sources, here we investigate the spatially resolved solar atmosphere using measurements of the I(1032 )/I(1038 ) intensity ratio of OVI in several regions obtained with the Solar Ultraviolet Measurements of Emitted Radiation instrument on board the Solar and Heliospheric Observatory satellite. We find several I(1032 )/I(1038 ) ratios observed on the disk to be significantly larger than the optically thin value of 2.0, providing the first detection (to our knowledge) of intensity enhancement in the ratio arising from opacity effects in the solar atmosphere. The agreement between observation and theory is excellent and confirms that the OVI emission originates from a slab-like geometry in the solar atmosphere, rather than from cylindrical structures.

  2. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas (GHG) intensity-defined as the ratio of total U.S. GHG emissions to economic output-by 18% over the 2002 to 2012 time frame.

  3. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect (OSTI)

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  4. Operation of the DC current transformer intensity monitors at FNAL during run II

    SciTech Connect (OSTI)

    Crisp, J.; Fellenz, B.; Heikkinen, D.; Ibrahim, M.A.; Meyer, T.; Vogel, G.; /Fermilab

    2012-01-01

    Circulating beam intensity measurements at FNAL are provided by five DC current transformers (DCCT), one per machine. With the exception of the DCCT in the Recycler, all DCCT systems were designed and built at FNAL. This paper presents an overview of both DCCT systems, including the sensor, the electronics, and the front-end instrumentation software, as well as their performance during Run II.

  5. Systems for controlling the intensity variations in a laser beam and for frequency conversion thereof

    DOE Patents [OSTI]

    Skupsky, Stanley (Rochester, NY); Craxton, R. Stephen (Rochester, NY); Soures, John (Pittsford, NY)

    1990-01-01

    In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temoral oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation.

  6. A comparison of energy intensity in the United States and Japan

    SciTech Connect (OSTI)

    McDonald, S.C.

    1990-12-01

    This report compares energy intensity in the US and Japan in 1985. Energy intensity is examined for each of the following end-use energy consuming sectors: residential and commercial, transportation, and industrial (manufacturing). In each sector, comparative measures of the relative energy intensity are developed. The comparison indicates that when adjustments are made for certain differences between the two countries, energy intensity in the US compares more favorably with Japan than when just the aggregate energy-to-gross-domestic-product ratio is used. For instance, climate and residential floor space explain a good portion of the difference between residential energy consumption in the US and Japan. Likewise, although the US requires about twice as much energy for passenger travel, it requires about half the energy for freight movement (when normalized for distance and vehicle capacity) compared with Japan. Finally, the US manufacturing sector, as a whole, is about equal to Japan in terms of the amount of energy consumed in producing a dollar's worth of goods, in current dollars and using 1985 exchange rates. 53 refs.

  7. Derivation of Building Energy Use Intensity Targets for ASHRAE Standard 100

    SciTech Connect (OSTI)

    Sharp, Terry R

    2014-06-01

    The steps to develop the building energy use intensity targets for American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 100, Energy Efficiency in Existing Buildings are outlined in this report. The analyses were conducted by Oak Ridge National Laboratory (ORNL) in collaboration with the ASHRAE Standard 100 committee and Dr. Alexander Zhivov, the subcommittee chair responsible for targets development.

  8. Degree of polarization and source counts of faint radio sources from Stacking Polarized intensity

    SciTech Connect (OSTI)

    Stil, J. M.; George, S. J.; Keller, B. W.; Taylor, A. R.

    2014-06-01

    We present stacking polarized intensity as a means to study the polarization of sources that are too faint to be detected individually in surveys of polarized radio sources. Stacking offers not only high sensitivity to the median signal of a class of radio sources, but also avoids a detection threshold in polarized intensity, and therefore an arbitrary exclusion of sources with a low percentage of polarization. Correction for polarization bias is done through a Monte Carlo analysis and tested on a simulated survey. We show that the nonlinear relation between the real polarized signal and the detected signal requires knowledge of the shape of the distribution of fractional polarization, which we constrain using the ratio of the upper quartile to the lower quartile of the distribution of stacked polarized intensities. Stacking polarized intensity for NRAO VLA Sky Survey (NVSS) sources down to the detection limit in Stokes I, we find a gradual increase in median fractional polarization that is consistent with a trend that was noticed before for bright NVSS sources, but is much more gradual than found by previous deep surveys of radio polarization. Consequently, the polarized radio source counts derived from our stacking experiment predict fewer polarized radio sources for future surveys with the Square Kilometre Array and its pathfinders.

  9. Mediation Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mediation Process Mediation Process This document generally discusses the DOE HQ mediation process. PDF icon OCPR-HQ-003 Final - Mediation Process.pdf More Documents & Publications Employee Reminders Management Reminders Agreement to Mediate

  10. Powder treatment process

    DOE Patents [OSTI]

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  11. URANIUM PRECIPITATION PROCESS

    DOE Patents [OSTI]

    Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

    1957-12-01

    A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

  12. Quartz resonator processing system

    DOE Patents [OSTI]

    Peters, Roswell D. M.

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  13. Cantilever epitaxial process

    DOE Patents [OSTI]

    Ashby, Carol I.; Follstaedt, David M.; Mitchell, Christine C.; Han, Jung

    2003-07-29

    A process of growing a material on a substrate, particularly growing a Group II-VI or Group III-V material, by a vapor-phase growth technique where the growth process eliminates the need for utilization of a mask or removal of the substrate from the reactor at any time during the processing. A nucleation layer is first grown upon which a middle layer is grown to provide surfaces for subsequent lateral cantilever growth. The lateral growth rate is controlled by altering the reactor temperature, pressure, reactant concentrations or reactant flow rates. Semiconductor materials, such as GaN, can be produced with dislocation densities less than 10.sup.7 /cm.sup.2.

  14. A lube hydrodearomatization process

    SciTech Connect (OSTI)

    Ramos, R.Z. )

    1988-06-01

    The current worldwide demand of lubricating oils has increased the research for new technologies to obtain products with better quality, using processes less complicated than the current ones and at the same time decrease the process costs. The most familiar general process to obtain lubricating oils is by means of aromatic extraction with solvent. However, this stage represents elevated cost by raw materials consumptions; for that reason, it has increased the study of new catalytic technologies to substitute this step. In this work we are showing the last advances obtained by IMP developments about the application of the catalytic hydrogenation of aromatic compounds in lubricating oils, using a catalyst containing molybdenum as active metal and nickel and/or phosporous as promoters, - supported on gamma alumina with different concentration of metals. These catalysts have been evaluated in a pilot plant unit using several feeds of lubricating oils at different operating conditions, obtaining products with better quality than those produced by solvent extraction.

  15. Powder treatment process

    DOE Patents [OSTI]

    Weyand, John D. (Greensburg, PA)

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  16. PROCESSING OF RADIOACTIVE WASTE

    DOE Patents [OSTI]

    Allemann, R.T.; Johnson, B.M. Jr.

    1961-10-31

    A process for concentrating fission-product-containing waste solutions from fuel element processing is described. The process comprises the addition of sugar to the solution, preferably after it is made alkaline; spraying the solution into a heated space whereby a dry powder is formed; heating the powder to at least 220 deg C in the presence of oxygen whereby the powder ignites, the sugar is converted to carbon, and the salts are decomposed by the carbon; melting the powder at between 800 and 900 deg C; and cooling the melt. (AEC) antidiuretic hormone from the blood by the liver. Data are summarized from the following: tracer studies on cardiovascular functions; the determination of serum protein-bound iodine; urinary estrogen excretion in patients with arvanced metastatic mammary carcinoma; the relationship between alheroclerosis aad lipoproteins; the physical chemistry of lipoproteins; and factors that modify the effects of densely ionizing radia

  17. Reversible brazing process

    DOE Patents [OSTI]

    Pierce, Jim D.; Stephens, John J.; Walker, Charles A.

    1999-01-01

    A method of reversibly brazing surfaces together. An interface is affixed to each surface. The interfaces can be affixed by processes such as mechanical joining, welding, or brazing. The two interfaces are then brazed together using a brazing process that does not defeat the surface to interface joint. Interfaces of materials such as Ni-200 can be affixed to metallic surfaces by welding or by brazing with a first braze alloy. The Ni-200 interfaces can then be brazed together using a second braze alloy. The second braze alloy can be chosen so that it minimally alters the properties of the interfaces to allow multiple braze, heat and disassemble, rebraze cycles.

  18. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, Nancy N. (Los Alamos, NM); Watkin, John G. (Los Alamos, NM)

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  19. Coking and gasification process

    DOE Patents [OSTI]

    Billimoria, Rustom M.; Tao, Frank F.

    1986-01-01

    An improved coking process for normally solid carbonaceous materials wherein the yield of liquid product from the coker is increased by adding ammonia or an ammonia precursor to the coker. The invention is particularly useful in a process wherein coal liquefaction bottoms are coked to produce both a liquid and a gaseous product. Broadly, ammonia or an ammonia precursor is added to the coker ranging from about 1 to about 60 weight percent based on normally solid carbonaceous material and is preferably added in an amount from about 2 to about 15 weight percent.

  20. Lasers in materials processing

    SciTech Connect (OSTI)

    Davis, J.I.; Rockower, E.B.

    1981-01-01

    A status report on the uranium Laser Isotope Separation (LIS) Program at the Lawrence Livermore National Laboratory is presented. Prior to this status report, process economic analysis is presented so as to understand how the unique properties of laser photons can be best utilized in the production of materials and components despite the high cost of laser energy. The characteristics of potential applications that are necessary for success are identified, and those factors that have up to now frustrated attempts to find commercially viable laser induced chemical and physical process for the production of new or existing materials are pointed out.

  1. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Yeager, J.H.

    1958-08-12

    In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.

  2. Cyclic membrane separation process

    DOE Patents [OSTI]

    Bowser, John

    2004-04-13

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  3. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  4. Plasma Processing Of Hydrocarbon

    SciTech Connect (OSTI)

    Grandy, Jon D; Peter C. Kong; Brent A. Detering; Larry D. Zuck

    2007-05-01

    The Idaho National Laboratory (INL) developed several patented plasma technologies for hydrocarbon processing. The INL patents include nonthermal and thermal plasma technologies for direct natural gas to liquid conversion, upgrading low value heavy oil to synthetic light crude, and to convert refinery bottom heavy streams directly to transportation fuel products. Proof of concepts has been demonstrated with bench scale plasma processes and systems to convert heavy and light hydrocarbons to higher market value products. This paper provides an overview of three selected INL patented plasma technologies for hydrocarbon conversion or upgrade.

  5. Biomass Processing Photolibrary

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

  6. PROCESS OF RECOVERING URANIUM

    DOE Patents [OSTI]

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  7. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  8. Cyclic membrane separation process

    DOE Patents [OSTI]

    Nemser, Stuart M.

    2005-05-03

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  9. Sequential elution process

    DOE Patents [OSTI]

    Kingsley, I.S.

    1987-01-06

    A process and apparatus are disclosed for the separation of complex mixtures of carbonaceous material by sequential elution with successively stronger solvents. In the process, a column containing glass beads is maintained in a fluidized state by a rapidly flowing stream of a weak solvent, and the sample is injected into this flowing stream such that a portion of the sample is dissolved therein and the remainder of the sample is precipitated therein and collected as a uniform deposit on the glass beads. Successively stronger solvents are then passed through the column to sequentially elute less soluble materials. 1 fig.

  10. Allocation Year Rollover process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Allocatio Year Rollover process Allocation Year Rollover process December 23, 2013 by Francesca Verdier Allocation Year 2013 (AY13) ends at 23:59:59 on Monday, January 13, 2014. AY14 runs from Tuesday, January 14, 2014 through Monday, January 12, 2015. The major features of the rollover are: charging acroess the AY boundary: All batch jobs will continue running during the rollover. Time accrued before midnight will be charged to AY13 repos; time accrued after midnight will be charged to AY14

  11. Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Center’s Cask Processing Enclosure. Workers process and repackage waste at the Transuranic Waste Processing Center's Cask Processing Enclosure. Transuranic waste, or TRU, is one of several types of waste handled by Oak Ridge's EM program. This waste contains manmade elements heavier than uranium, hence the name "trans" or "beyond" uranium. Transuranic waste material

  12. Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan

    SciTech Connect (OSTI)

    Ohshita, Stephanie; Price, Lynn

    2011-03-21

    Experience with China's 20% energy intensity improvement target during the 11th Five-Year Plan (FYP) (2006-2010) has shown the challenges of rapidly setting targets and implementing measures to meet them. For the 12th FYP (2011-2015), there is an urgent need for a more scientific methodology to allocate targets among the provinces and to track physical and economic indicators of energy and carbon saving progress. This report provides a sectoral methodology for allocating a national energy intensity target - expressed as percent change in energy per unit gross domestic product (GDP) - among China's provinces in the 12th FYP. Drawing on international experience - especially the European Union (EU) Triptych approach for allocating Kyoto carbon targets among EU member states - the methodology here makes important modifications to the EU approach to address an energy intensity rather than a CO{sub 2} emissions target, and for the wider variation in provincial energy and economic structure in China. The methodology combines top-down national target projections and bottom-up provincial and sectoral projections of energy and GDP to determine target allocation of energy intensity targets. Total primary energy consumption is separated into three end-use sectors - industrial, residential, and other energy. Sectoral indicators are used to differentiate the potential for energy saving among the provinces. This sectoral methodology is utilized to allocate provincial-level targets for a national target of 20% energy intensity improvement during the 12th FYP; the official target is determined by the National Development and Reform Commission. Energy and GDP projections used in the allocations were compared with other models, and several allocation scenarios were run to test sensitivity. The resulting allocations for the 12th FYP offer insight on past performance and offer somewhat different distributions of provincial targets compared to the 11th FYP. Recommendations for reporting and monitoring progress on the targets, and methodology improvements, are included.

  13. Examinations of the new direct smelting processes for iron and steelmaking. [ELRED process, INRED process, SKF Plasmasmelt process, McDowell-Wellman process, the direct converter smelting process

    SciTech Connect (OSTI)

    Moore, J.T.

    1982-06-01

    This paper discusses the need for a radical technological change in the production of iron and steel and suggests the salient features that should be addressed. Five new direct smelting steelmaking systems have been compared with blast furnace/basic oxygen furnace route. These are the ELRED process the INRED process, the SKF Plasmasmelt process, the McDowell-Wellman process, and a converter smelting process. 20 refs.

  14. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  15. URANIUM SEPARATION PROCESS

    DOE Patents [OSTI]

    McVey, W.H.; Reas, W.H.

    1959-03-10

    The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

  16. Laser material processing system

    SciTech Connect (OSTI)

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  17. Catalytic coal liquefaction process

    DOE Patents [OSTI]

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  18. Process for functionalizing alkanes

    DOE Patents [OSTI]

    Bergman, R.G.; Janowicz, A.H.; Periana, R.A.

    1988-05-24

    Process for functionalizing saturated hydrocarbons comprises: (a) reacting said saturated hydrocarbons of the formula: R[sub 1]H wherein H represents a hydrogen atom; and R[sub 1] represents a saturated hydrocarbon radical, with a metal complex of the formula: CpRh[P(R[sub 2])[sub 3

  19. Pervaporation process and assembly

    DOE Patents [OSTI]

    Wynn, Nicholas P.; Huang, Yu; Aldajani, Tiem; Fulton, Donald A.

    2010-07-20

    The invention is a pervaporation process and pervaporation equipment, using a series of membrane modules, and including inter-module reheating of the feed solution under treatment. The inter-module heating is achieved within the tube or vessel in which the modules are housed, thereby avoiding the need to repeatedly extract the feed solution from the membrane module train.

  20. Catalytic oxidative dehydrogenation process

    DOE Patents [OSTI]

    Schmidt, Lanny D.; Huff, Marylin

    2002-01-01

    A process for the production of a mono-olefin from a gaseous paraffinic hydrocarbon having at least two carbon atoms or mixtures thereof comprising reacting said hydrocarbons and molecular oxygen in the presence of a platinum catalyst. The catalyst consist essentially of platinum supported on alumina or zirconia monolith, preferably zirconia and more preferably in the absence of palladium, rhodium and gold.

  1. Biochemical Platform Processing Integration

    SciTech Connect (OSTI)

    2006-06-01

    The objective of this project is to facilitate deployment of enzyme-based biomass conversion technology. The immediate goal is to explore integration issues that impact process performance and to demonstrate improved performance of the lower-cost enzymes being developed by Genencor and Novozymes.

  2. Catalytic cracking process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.; Baker, Richard W.

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  3. Coal liquefaction process

    DOE Patents [OSTI]

    Carr, Norman L.; Moon, William G.; Prudich, Michael E.

    1983-01-01

    A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

  4. Catalytic coal hydroliquefaction process

    DOE Patents [OSTI]

    Garg, Diwakar (Macungie, PA)

    1984-01-01

    A process is described for the liquefaction of coal in a hydrogen donor solvent in the presence of hydrogen and a co-catalyst combination of iron and a Group VI or Group VIII non-ferrous metal or compounds of the catalysts.

  5. Catalytic coal liquefaction process

    DOE Patents [OSTI]

    Garg, Diwakar (Macungie, PA); Sunder, Swaminathan (Allentown, PA)

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  6. Actinide recovery process

    DOE Patents [OSTI]

    Muscatello, Anthony C. (Arvada, CO); Navratil, James D. (Arvada, CO); Saba, Mark T. (Arvada, CO)

    1987-07-28

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrenedivinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like.

  7. Crystallographic data processing for free-electron laser sources

    SciTech Connect (OSTI)

    White, Thomas A. Barty, Anton; Stellato, Francesco; Holton, James M.; Kirian, Richard A.; Zatsepin, Nadia A.; Chapman, Henry N.

    2013-07-01

    A processing pipeline for diffraction data acquired using the serial crystallography methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the serial crystallography methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show that the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.

  8. Biosphere Process Model Report

    SciTech Connect (OSTI)

    J. Schmitt

    2000-05-25

    To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor. Collectively, the potential human receptor and exposure pathways form the biosphere model. More detailed technical information and data about potential human receptor groups and the characteristics of exposure pathways have been developed in a series of AMRs and Calculation Reports.

  9. Plutonium dissolution process

    DOE Patents [OSTI]

    Vest, Michael A.; Fink, Samuel D.; Karraker, David G.; Moore, Edwin N.; Holcomb, H. Perry

    1996-01-01

    A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

  10. Coated substrates and process

    DOE Patents [OSTI]

    Chu, Wei-kan; Childs, Charles B.

    1991-01-01

    Disclosed herein is a coated substrate and a process for forming films on substrates and for providing a particularly smooth film on a substrate. The method of this invention involves subjecting a surface of a substrate to contact with a stream of ions of an inert gas having sufficient force and energy to substantially change the surface characteristics of said substrate, and then exposing a film-forming material to a stream of ions of an inert gas having sufficient energy to vaporize the atoms of said film-forming material and to transmit the vaporized atoms to the substrate surface with sufficient force to form a film bonded to the substrate. This process is particularly useful commercially because it forms strong bonds at room temperature. This invention is particularly useful for adhering a gold film to diamond and forming ohmic electrodes on diamond, but also can be used to bond other films to substrates.

  11. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, R.W.; Shell, T.E.

    1979-10-04

    It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  12. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, Robert W.; Shell, Thomas E.

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  13. URANIUM PURIFICATION PROCESS

    DOE Patents [OSTI]

    Ruhoff, J.R.; Winters, C.E.

    1957-11-12

    A process is described for the purification of uranyl nitrate by an extraction process. A solution is formed consisting of uranyl nitrate, together with the associated impurities arising from the HNO/sub 3/ leaching of the ore, in an organic solvent such as ether. If this were back extracted with water to remove the impurities, large quantities of uranyl nitrate will also be extracted and lost. To prevent this, the impure organic solution is extracted with small amounts of saturated aqueous solutions of uranyl nitrate thereby effectively accomplishing the removal of impurities while not allowing any further extraction of the uranyl nitrate from the organic solvent. After the impurities have been removed, the uranium values are extracted with large quantities of water.

  14. Soft Pion Processes

    DOE R&D Accomplishments [OSTI]

    Nambu, Y.

    1968-01-01

    My talk is concerned with a review, not necessarily of the latest theoretical developments, but rather of an old idea which has contributed to recent theoretical activities. By soft pion processes I mean processes in which low energy pions are emitted or absorbed or scattered, just as we use the word soft photon in a similar context. Speaking more quantitatively, we may call a pion soft if its energy is small compared to a natural scale in the reaction. This scale is determined by the particular dynamics of pion interaction, and one may roughly say that a pion is soft if its energy is small compared to the energies of the other individual particles that participate in the reaction. It is important to note at this point that pion is by far the lightest member of all the hadrons, and much of the success of the soft pion formulas depends on this fact.

  15. Nucleic acid isolation process

    DOE Patents [OSTI]

    Longmire, Jonathan L.; Lewis, Annette K.; Hildebrand, Carl E.

    1990-01-01

    A method is provided for isolating DNA from eukaryotic cell and flow sorted chromosomes. When DNA is removed from chromosome and cell structure, detergent and proteolytic digestion products remain with the DNA. These products can be removed with organic extraction, but the process steps associated with organic extraction reduce the size of DNA fragments available for experimental use. The present process removes the waste products by dialyzing a solution containing the DNA against a solution containing polyethylene glycol (PEG). The waste products dialyze into the PEG leaving isolated DNA. The remaining DNA has been prepared with fragments containing more than 160 kb. The isolated DNA has been used in conventional protocols without affect on the protocol.

  16. Exposure Evaluation Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exposure Evaluation Process for Tank Farm Workers L.B. Sandy Rock, MD, MPH Risk Communication HPMC Occupational Medical Services An increase in the number of tank farm vapor exposures has led to many questions and concerns among workers and management. * During regular clinic hours, HPMC OMS is responsible for the medical evaluation of workers reporting exposure to vapors. * At other times, workers are taken to Kadlec Hospital which has an arrangement with DOE/HPMC OMS to evaluate, treat, refer

  17. Coal Liquefaction desulfurization process

    DOE Patents [OSTI]

    Givens, Edwin N. (Bethlehem, PA)

    1983-01-01

    In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

  18. Integrated coal liquefaction process

    DOE Patents [OSTI]

    Effron, Edward

    1978-01-01

    In a process for the liquefaction of coal in which coal liquids containing phenols and other oxygenated compounds are produced during the liquefaction step and later hydrogenated, oxygenated compounds are removed from at least part of the coal liquids in the naphtha and gas oil boiling range prior to the hydrogenation step and employed as a feed stream for the manufacture of a synthesis gas or for other purposes.

  19. Gas-absorption process

    DOE Patents [OSTI]

    Stephenson, Michael J.; Eby, Robert S.

    1978-01-01

    This invention is an improved gas-absorption process for the recovery of a desired component from a feed-gas mixture containing the same. In the preferred form of the invention, the process operations are conducted in a closed-loop system including a gas-liquid contacting column having upper, intermediate, and lower contacting zones. A liquid absorbent for the desired component is circulated through the loop, being passed downwardly through the column, regenerated, withdrawn from a reboiler, and then recycled to the column. A novel technique is employed to concentrate the desired component in a narrow section of the intermediate zone. This technique comprises maintaining the temperature of the liquid-phase input to the intermediate zone at a sufficiently lower value than that of the gas-phase input to the zone to effect condensation of a major part of the absorbent-vapor upflow to the section. This establishes a steep temperature gradient in the section. The stripping factors below this section are selected to ensure that virtually all of the gases in the downflowing absorbent from the section are desorbed. The stripping factors above the section are selected to ensure re-dissolution of the desired component but not the less-soluble diluent gases. As a result, a peak concentration of the desired component is established in the section, and gas rich in that component can be withdrawn therefrom. The new process provides important advantages. The chief advantage is that the process operations can be conducted in a single column in which the contacting zones operate at essentially the same pressure.

  20. Electro-Chemical Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electro-Chemical Processes - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs