Powered by Deep Web Technologies
Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Cryogenics  

Science Conference Proceedings (OSTI)

In the future, some components of the Electric Power System will require cryogenic systems to maintain operating temperatures. The most likely contingent of technologies will be based on the phenomenon of superconductivity. Specific applications will include cables, transformers, rotating machinery, and fault current limiters. Each superconducting device installed will require some form of cryogenic support system. This Primer is intended to provide a sense of cryogenic technology, why it is needed, how ...

2006-03-31T23:59:59.000Z

2

About Cryogenics  

Science Conference Proceedings (OSTI)

... Such secondary thermometers are calibrated against primary thermometers that utilize fundamental laws of ... Handbook of Cryogenic Engineering. ...

2012-10-01T23:59:59.000Z

3

Cryogenics safety  

DOE Green Energy (OSTI)

The safety hazards associated with handling cryogenic fluids are discussed in detail. These hazards include pressure buildup when a cryogenic fluid is heated and becomes a gas, potential damage to body tissues due to surface contact, toxic risk from breathing air altered by cryogenic fluids, dangers of air solidification, and hazards of combustible cryogens such as liquified oxygen, hydrogen, or natural gas or of combustible mixtures. Safe operating procedures and emergency planning are described. (LCL)

Reider, R.

1977-01-01T23:59:59.000Z

4

Cryogenic Technologies Project  

Science Conference Proceedings (OSTI)

... processes and products involving cryogenic technologies. ... Develop mathematical models for cryogenic ... Assist in development of bibliographic ...

2013-02-04T23:59:59.000Z

5

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Development of Non-Contaminating Cryogenic Fracturing Technology CX(s) Applied: B3.6 Date: 12202011 Location(s): California Offices(s):...

6

Categorical Exclusion (CX) Determinations By Date | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Development of Non-Contaminating Cryogenic Fracturing Technology CX(s) Applied: B3.6 Date: 12202011 Location(s): Colorado Offices(s):...

7

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Development of Non-Contaminating Cryogenic Fracturing Technology CX(s) Applied: B3.6 Date: 12202011 Location(s): Colorado Offices(s):...

8

CRYOGENIC DEWAR  

DOE Patents (OSTI)

This patent relates to a dewar for storing cryogenic gase and is of the type having aii inner flask surrounded by a vacuum jacket and having a vent spout through which evaporating gas escapes. Heretofore substantial gas loss has resulted from the radiation of heat towards the flask from the warmer outer elements of the dewar. In this invention, the mask is surrounded by a thermally conducting shield which is disposed in the vacuum space between the flask and the outer elements of the dewar. The shield contacts only the vent spout, which is cooled by the evaporating gas, and thus is maintained at a temperature very close to that of the flask itself. Accordingly, heat radiated toward the flask is intercepted and conducted to the evaporating gas rather than being re-radiated towards the hask. In a liquid helium dewar of typical configniration the mention reduces the boil-off rate by approximately one-half.(AEC)

Chamberlain, W.H.; Maseck, H.E.

1964-01-28T23:59:59.000Z

9

Eden Cryogenics LLC formerly Brehon Cryogenics | Open Energy Information  

Open Energy Info (EERE)

Cryogenics LLC formerly Brehon Cryogenics Cryogenics LLC formerly Brehon Cryogenics Jump to: navigation, search Name Eden Cryogenics, LLC. (formerly Brehon Cryogenics) Place Plain City, Ohio Zip 43064 Sector Vehicles Product Will fabricate cryogenic hardware for use in alternative fueled vehicles, fueling stations, aerospace, energy, and industrial applications. References Eden Cryogenics, LLC. (formerly Brehon Cryogenics)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Eden Cryogenics, LLC. (formerly Brehon Cryogenics) is a company located in Plain City, Ohio . References ↑ "[ Eden Cryogenics, LLC. (formerly Brehon Cryogenics)]" Retrieved from "http://en.openei.org/w/index.php?title=Eden_Cryogenics_LLC_formerly_Brehon_Cryogenics&oldid=344531

10

CRYOGENIC DATA BOOK  

E-Print Network (OSTI)

eng-48 CRYOGENIC DATA BOOK Dudley B. Chelton and Douglas B.purpose of the Cryogenic Data Book is to provide a condensedtheir aid in compiling this book, the authors wish to thank

Chelton, Dudley B.

2010-01-01T23:59:59.000Z

11

Guidance Document Cryogenic Liquids  

E-Print Network (OSTI)

liquefies them. Cryogenic liquids are kept in the liquid state at very low temperatures. Cryogenic liquids are liquid nitrogen, liquid argon and liquid helium. The different cryogens become liquids under different. In addition, when they vaporize the liquids expand to enormous volumes. For example, liquid nitrogen

12

CRYOGENICS IN BEPCII UPGRADE.  

SciTech Connect

THIS PAPER PRESENTS A CRYOGENIC DESIGN FOR UPGRADING THE BEIJING ELECTRON POSITRON COLLIDER AT THE INSTITUTE OF HIGH ENERGY PHYSICS IN BEIJING. THE UPGRADE INVOLVES 3 NEW SUPERCONDUCTING FACILITIES, THE INTERACTION REGION QUADRUPOLE MAGNETS, THE DETECTOR SOLENOID MAGNETS AND THE SRF CAVITIES. FOR COOLING OF THESE DEVICES, A NEW CRYPLANT WITH A TOTAL CAPACITY OF 1.0KW AT 4.5K IS TO BE BUILT AT IHEP. AN INTEGRATED CRYOGENIC DESIGN TO FIT THE BEPCII CRYOGENIC LOADS WITH HIGH EFFICIENCY IS CARRIEDOUT USING COMPUTATIONAL PROCESS ANALYSIS SOFTWARE WITH THE EMPHASES ON ECONOMICS AND SAFETY IN BOTH CONSTRUCTION AND OPERATION OF THE PLANT. THIS PAPER DESCRIBES THE CRYOGENIC CHARACTERISTICS OF EACH SUPERCONDUCTING DEVICE, THEIR COOLING SCHEMES AND THE OVERALL CRYOPLANT.

JIA,L.; WANG,L.; LI,S.

2002-07-22T23:59:59.000Z

13

CEBAF cryogenic system  

SciTech Connect

The CEBAF cryogenic system consists of 3 refrigeration systems: Cryogenic Test Facility (CTF), Central Helium Liquefier (CHL), and End Station Refrigerator (ESR). CHL is the main cryogenic system for CEBAF, consisting of a 4.8 kW, 2.0 K refrigerator and transfer line system to supply 2.0 K and 12 kW of 50 K shield refrigeration for the Linac cavity cryostats and 10 g/s of liquid for the end stations. This paper describes the 9-year effort to commission these systems, concentrating on CHL with the cold compressors. The cold compressors are a cold vacuum pump with an inlet temperature of 3 K which use magnetic bearings, thereby eliminating the possibility of air leaks into the subatmospheric He.

NONE

1995-12-31T23:59:59.000Z

14

Valve for cryogenic service  

DOE Patents (OSTI)

This patent relates to a valve for use with a liquefied gas at cryogenic temperatures in which a pair of joined knife edges are bellows controlled to contact an indium alloy seat in an annular slot when flow is to be stopped. The sealing alloy may be renewed by heating in situ. (auth)

Worwetz, H.A.

1975-09-02T23:59:59.000Z

15

Cryogenic structural support  

SciTech Connect

A tensile support member is provided for use in a cryogenic environment. The member is in the form of a link formed of an epoxy glass laminate with at least one ply of the laminate having its fibers aligned circumferentially about the link.

Niemann, Ralph C. (Downers Grove, IL); Mataya, Karl F. (Lemont, IL); Gonczy, John D. (Oak Lawn, IL)

1982-01-01T23:59:59.000Z

16

Cryogenic Fuel Tank Draining  

E-Print Network (OSTI)

One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection inside a horizontal cylinder are compared with model results. Finally, cryogenic tank draining calculations are performed with three different wall heat fluxes to demonstrate the effect of wall heat flux on the internal tank flow field.

Analysis Model Donald; Donald Greer

1999-01-01T23:59:59.000Z

17

Cryogenic treatment of gas  

SciTech Connect

Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

Bravo, Jose Luis (Houston, TX); Harvey, III, Albert Destrehan (Kingwood, TX); Vinegar, Harold J. (Bellaire, TX)

2012-04-03T23:59:59.000Z

18

Cryogenic support system  

DOE Patents (OSTI)

A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.

Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

1988-11-01T23:59:59.000Z

19

Cryogenic support member  

DOE Patents (OSTI)

A cryogenic support member is comprised of a nonmetallic rod having a depression in at least one end and a metallic end connection assembled to the rod. The metallic end connection comprises a metallic plug which conforms to the shape and is disposed in the depression and a metallic sleeve is disposed over the rod and plug. The plug and the sleeve are shrink-fitted to the depression in the rod to form a connection good in compression, tension and bending.

Niemann, R.C.; Gonczy, J.D.; Nicol, T.H.

1986-05-15T23:59:59.000Z

20

HYDRAULIC FRACTURING  

NLE Websites -- All DOE Office Websites (Extended Search)

HYDRAULIC FRACTURING In addition to the recovery processes featured in this series of drawings, hydraulic fracturing is included as an example of technologies that contribute to...

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cryogenic Treatment of Metal Parts  

SciTech Connect

Cryogenic treatment and its variables have been described. Results of eight engineering tests carried out on cryotreated parts have been presented. Cryogenic treatment of metal parts enhances useful properties which in turn, improves various strengths. Our tests viz. Abrasion, Torsion, Fatigue, Tensile, Shear, Hardness and Impact on Mild steel, Cast Iron, Brass and Copper show that the cryogenic treatment improved useful properties of mild steel parts appreciably but did not show promise with brass and copper parts.

Chillar, Rahul [S. P. College of Engineering, Andheri (W), Mumbai - 400 058 (India); Agrawal, S. C. [Tata Institute of Fundamental Research, Colaba, Mumbai - 400 005 (India)

2006-03-31T23:59:59.000Z

22

Experiments on Cryogenic Complex Plasma  

SciTech Connect

Experiments on a cryogenic complex plasma have been performed. Preliminary experiments include production of a plasma in a liquid helium or in a cryogenic helium gas by a pulsed discharge. The extended production of a plasma has been realized in a vapor of liquid helium or in a cryogenic helium gas by rf discharge. The charge of dust particles injected in such a plasma has been studied in detail.

Ishihara, O.; Sekine, W.; Kubota, J.; Uotani, N.; Chikasue, M.; Shindo, M. [Faculty of Engineering, Yokohama National University Yokohama, 240-8501 (Japan)

2009-11-10T23:59:59.000Z

23

CX-007460: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Development of Non-Contaminating Cryogenic Fracturing Technology CX(s) Applied: B3.6 Date: 12/20/2011 Location(s): Colorado Offices(s): National Energy Technology Laboratory

24

CX-007449: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Development of Non-Contaminating Cryogenic Fracturing Technology CX(s) Applied: B3.6 Date: 12/20/2011 Location(s): California Offices(s): National Energy Technology Laboratory

25

Refrigerated cryogenic envelope  

DOE Patents (OSTI)

An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

Loudon, John D. (Boulder, CO)

1976-11-16T23:59:59.000Z

26

Cryogenic cooler apparatus  

DOE Patents (OSTI)

A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. .sup.4 He, .sup.3 He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3-4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel.

Wheatley, John C. (Del Mar, CA); Paulson, Douglas N. (Del Mar, CA); Allen, Paul C. (Sunnyvale, CA)

1983-01-01T23:59:59.000Z

27

Cryogenic cooler apparatus  

DOE Patents (OSTI)

A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.

Wheatley, J.C.; Paulson, D.N.; Allen, P.C.

1983-01-04T23:59:59.000Z

28

Cryogenic Safety This course will provide basic information concerning cryogens and  

E-Print Network (OSTI)

handles two cryogenic liquids, helium and nitrogen. Liquefied nitrogen has a boiling point, at atmospheric, thermal stress, air condensation, and cold embrittlement. n Identify liquid nitrogen and helium and incidents. #12;What is a cryogen? A cryogen is an extremely cold element or compound. Cryogens are liquefied

Weston, Ken

29

Experiment Hazard Class 2 - Cryogenic Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

2 - Cryogenic Systems 2 - Cryogenic Systems Applicability This hazard classification applies to all experiments involving the use of cryogenic systems. Experiment Hazard Control Verification Statements General requirements The use of detectors/alarms, warning signs, and adequate ventilation are recommended for areas where release of a cryogen can result in an oxygen-deficient atmosphere. Cryogenic systems and vessels are always insulated to reduce heat exchange and are labeled with the common name of the cryogen. Cryogenic systems are pressure protected and equipment are insptected and maintained. The use of flammable cryogens requires technical consultation. Initial consultation may be obtained from the divisional ESH Coordinator. A written emergency evacuation response plan must be available

30

NIST Posts Online Database of Cryogenic Materials ...  

Science Conference Proceedings (OSTI)

... Cryogenic temperatures place extreme demands on materials. ... eg, thermal mapping and imaging of oceans), weather forecasting (eg, infrared ...

2012-10-02T23:59:59.000Z

31

Hydraulic Fracturing (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

Vermont prohibits hydraulic fracturing or the collection, storage, or treatment of wastewater from hydraulic fracturing

32

ILC cryogenic systems reference design  

SciTech Connect

A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

Peterson, T.J.; Geynisman, M.; Klebaner, A.; Theilacker, J.; /Fermilab; Parma, V.; Tavian, L.; /CERN

2008-01-01T23:59:59.000Z

33

Foam shell cryogenic ICF target  

SciTech Connect

A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.

Darling, Dale H. (Pleasanton, CA)

1987-01-01T23:59:59.000Z

34

A process control system for cryogenic CNC elastomer machining  

Science Conference Proceedings (OSTI)

The application of cryogenics in manufacturing has previously received significant attention in supporting manufacturing processes. This paper explores the continued application of cryogenic manufacturing for producing personalised products. This paper ... Keywords: CNC, Cryogenic, Elastomer

V. G. Dhokia; S. T. Newman; P. Crabtree; M. P. Ansell

2011-08-01T23:59:59.000Z

35

Cryogenic slurry for extinguishing underground fires  

DOE Patents (OSTI)

A cryogenic slurry comprising a mixture of solid carbon dioxide particles suspended in liquid nitrogen is provided which is useful in extinguishing underground fires.

Chaiken, Robert F. (Pittsburgh, PA); Kim, Ann G. (Pittsburgh, PA); Kociban, Andrew M. (Wheeling, WV); Slivon, Jr., Joseph P. (Tarentum, PA)

1994-01-01T23:59:59.000Z

36

Cryogenic Pressure Vessels: Progress and Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Pressure Vessel workshop, LLNL, February 15, 2011, p. 1 Cryogenic Pressure Vessels: Progress and Plans Salvador Aceves, Gene Berry, Francisco Espinosa, Ibo Matthews, Guillaume...

37

Transporting & Shipping Hazardous Materials at LBNL: Cryogens  

NLE Websites -- All DOE Office Websites (Extended Search)

applicable guidance. Controls & Limits required for Self-Transporting Cryogens by Vehicle flow chart General Requirements General requirements are designed to minimize the...

38

Hydraulic fracturing-1  

Science Conference Proceedings (OSTI)

This book contains papers on hydraulic fracturing. Topics covered include: An overview of recent advances in hydraulic fracturing technology; Containment of massive hydraulic fracture; and Fracturing with a high-strength proppant.

Not Available

1990-01-01T23:59:59.000Z

39

Corporation Commission Hydraulic FracturingHydraulic Fracturing  

E-Print Network (OSTI)

Corporation Commission Hydraulic FracturingHydraulic Fracturing Joint Committee on Energy Commission What is Hydraulic Fracturing d H D It W k?and How Does It Work? · Stimulates a well to increase by Stanolind Oil Company. 2 #12;Kansas Corporation Commission Are Hydraulic Fracture Jobs Performed in Kansas

Peterson, Blake R.

40

Fracture characterization study  

DOE Green Energy (OSTI)

First, the origin, nature, and significance of fractures in general are discussed. Next, discussions are directed toward the designation and classification of fractures. Some typical fracture measurement techniques are discussed. Finally, geothermal fracture systems are investigated and correlations made to determine which fracture technologies from oil field work are applicable to geothermal systems. (MHR)

Kehrman, R.F.

1978-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Cryogenic system for the Tevatron  

SciTech Connect

Supporting the world`s highest energy proton/antiproton collider in high energy physics research, the Fermilab Tevatron cryogenic system consists of a hybrid system of a Central Helium Liquefier feeding twenty-four 1 kW satellite refrigerators through a 6.5 km transfer line and supplying the liquid helium for the superconducting magnets of the accelerator and liquid nitrogen for the thermal shielding. Tevatron upgrades have been completed by 1996 and resulted in more than doubling the CHL liquefaction capacity, potential decrease of magnet operating temperatures from 4.9 K to 3.9 K and proven increase of Tevatron energy from 900 GeV to 990 GeV without losing operational stability.

Geynisman, M.G.; Norris, B.L.; Makara, J.N.; Theilacker, J.C.

1996-09-01T23:59:59.000Z

42

Cryogenic target formation using cold gas jets  

DOE Patents (OSTI)

A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.

Hendricks, C.D.

1980-02-26T23:59:59.000Z

43

Linear Elastic Fracture Mechanics  

Science Conference Proceedings (OSTI)

..., ASM International, 1996, p 371??380ASM Handbook, Vol 19, Fatigue And FractureS.D. Antolovich and B.F. Antolovich, An Introduction to Fracture

44

Interactive fracture design model  

DOE Green Energy (OSTI)

A computer program is described that can be used to design a fracture stimulation treatment for a geothermal reservoir. The program uses state-of-the-art methods to calculate the temperature of the fracture fluid as a function of time and distance in the fracture. This information is used to determine the temperature dependent properties of the fracture fluid. These fluid properties are utilized to calculate the fracture geometry as a function of time. The fracture geometry and temperature distribution of the fracture fluid are coupled so the subroutines that calculate these distributions have been made interactive.

Not Available

1980-05-01T23:59:59.000Z

45

Advanced cryogenics for cutting tools. Final report  

SciTech Connect

The purpose of the investigation was to determine if cryogenic treatment improved the life and cost effectiveness of perishable cutting tools over other treatments or coatings. Test results showed that in five of seven of the perishable cutting tools tested there was no improvement in tool life. The other two tools showed a small gain in tool life, but not as much as when switching manufacturers of the cutting tool. The following conclusions were drawn from this study: (1) titanium nitride coatings are more effective than cryogenic treatment in increasing the life of perishable cutting tools made from all cutting tool materials, (2) cryogenic treatment may increase tool life if the cutting tool is improperly heat treated during its origination, and (3) cryogenic treatment was only effective on those tools made from less sophisticated high speed tool steels. As a part of a recent detailed investigation, four cutting tool manufacturers and two cutting tool laboratories were queried and none could supply any data to substantiate cryogenic treatment of perishable cutting tools.

Lazarus, L.J.

1996-10-01T23:59:59.000Z

46

Cryogenic Technology Development For The MEG Liquid Xenon Calorimeter  

Science Conference Proceedings (OSTI)

Cryogenic key technologies have been developed for the muon rare decay experiment (MEG) at the Paul Scherrer Institute

Tomiyoshi Haruyama; MEG Calorimeter Group

2008-01-01T23:59:59.000Z

47

The Management of Cryogens at CERN  

E-Print Network (OSTI)

CERN is a large user of industrially procured cryogens essentially liquid helium and nitrogen. Recent contracts have been placed by the Organization for the delivery of quantities up to 280tons of liquid helium over four years and up to 50000 tons of liquid nitrogen over three years. Main users are the very large cryogenic system of the LHC accelerator complex, the physics experiments using superconducting magnets and liquefied gases and all the related test facilities whether industrial or laboratory scale. With the commissioning of LHC, the need of cryogens at CERN will considerably increase and the procurement policy must be adapted accordingly. In this paper, we discuss procurement strategy for liquid helium and nitrogen, including delivery rates, distribution methods and adopted safety standards. Global turnover, on site re-liquefaction capacity, operational consumption, accidental losses, purification means and storage capacity will be described. Finally, the short to medium term evolution of the Orga...

Delikaris, D; Passardi, Giorgio; Serio, L; Tavian, L

2005-01-01T23:59:59.000Z

48

Cryogenic Hydrogen Storage Systems Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

Tuesday, February 15, 2011 - Cryogenic Hydrogen Storage Systems Tuesday, February 15, 2011 - Cryogenic Hydrogen Storage Systems Purpose: Identify R&D needs and technical pathways associated with the continued development and validation of cryo-compressed and cryo-sorption hydrogen storage technologies, highlighting those aspects common to both technologies as well as identifying their unique requirements and issues that should be addressed. 8:30 Welcome/Introductions/Workshop objectives/Recap of previous day Ned Stetson, DOE 9:00 OEM Perspective on Cryogenic H 2 Storage (20 min presentation/20 min discussion) Tobias Brunner, BMW 9:40 Performance Comparison and Cost Review (20 min presentation/20 min discussion) Rajesh Ahluwalia, ANL 10:20 Break (10 minutes) 10:30 Expert Panel Discussion (Members will each have 15 minutes for presentations)

49

Conceptual design of the FRIB cryogenic system  

SciTech Connect

The Facility for Rare Isotope Beams (FRIB) is a new nuclear science facility funded by the DOE Office of Science and Michigan State University (MSU). FRIB is currently under design and will be located on the MSU campus. The centerpiece of FRIB is a heavy ion linac utilizing superconducting RF cavities and magnets which in turn requires a large cryogenic system. The cryogenic system consists of a commercially produced helium refrigeration plant and an extensive distribution system. Superconducting components will operate at both 4.5 K and 2 K. This paper describes the conceptual design of the system including the expected heat loads and operating modes. The strategy for procuring a custom turnkey helium refrigeration plant from industry, an overview of the distribution system, the interface of the cryogenic system to the conventional facilities and the project schedule are also described.

Weisend II, J G; Bull, Brad; Burns, Chris; Fila, Adam; Kelley, Patrick; Laumer, Helmut; Mann, Thomas; McCartney, Allyn; Jones, S

2012-06-01T23:59:59.000Z

50

Cryogenic Fuel Tank Draining Analysis Model  

E-Print Network (OSTI)

One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection i...

Donald Greer Research; Donald Greer

1999-01-01T23:59:59.000Z

51

Modeling of cryogen leakage through composite laminates  

E-Print Network (OSTI)

Cryogenic composites ?nd critical application in the manufacture of fuel tanks for reusable launch vehicles due to signi?cant reduction in overall structural weight of the tank. These fuel tanks contain pressurized cryogen such as hydrogen at cryogenic temperatures. Exposure to varying temperatures and mechanical loads resulting from ?ight cycle, containment of pressurized cryogen causes thermo-mechanical loading of the composite. The thermo-mechanical loading cycles combined with anisotropy of the composite and mismatch in the thermal and mechanical properties of ?bers and matrix lead to transverse matrix cracks (TMC) in each ply. TMC in adjacent plies intersect in localized regions at ply interfaces called crack junctions, which open up due to delamination on application of thermo-mechanical load. TMC and crack junctions usually form a network of leakage paths that assists leakage of cryogen through the composite. In this study, the volumetric ?ow rate of cryogen leaking through a damaged cross-ply composite with ?ve plies is determined by estimating the effective conductance of the leakage paths. For a given damage state and applied load, crack junction and TMC openings are obtained by ?nite element analysis. A computational ?uid dynamics model is ?rst used to estimate the effective conductance of a leakage path to hydrogen leakage and then a simplified analytical model is used to compute the effective conductance from individual conductances of each crack junction and TMC through a series-parallel combination. A single phase ?ow model is considered for the numerical analysis of hydrogen ?ow through TMC and crack junctions. The simulations are carried out using a commercial computational ?uid dynamics software, FLUENT. Parametric studies are carried out to investigate the dependence of leak rate of hydrogen on the irregularities of the TMC geometry and TMC, crack junction openings. The simpli?ed model predictions of the effective conductance for the ?ve ply composite show good comparison with numerical simulations.

Peddiraju, Naga Venkata Satya Pravin Kumar

2004-12-01T23:59:59.000Z

52

Method of measuring heat influx of a cryogenic transfer system  

DOE Patents (OSTI)

A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.

Niemann, Ralph C. (Downers Grove, IL); Zelipsky, Steven A. (Tinley Park, IL); Rezmer, Ronald R. (Lisle, IL); Smelser, Peter (Bruner, MO)

1981-01-01T23:59:59.000Z

53

High velocity impact fracture  

E-Print Network (OSTI)

An in-depth understanding of dynamic ductile fracture is one of the most important steps to improve the survivability of critical structures such as the lost Twin Towers. In the present thesis, the macroscopic fracture ...

Teng, Xiaoqing

2005-01-01T23:59:59.000Z

54

DIII-D cryogenics control system status  

SciTech Connect

The DIII-D cryogenics system provides liquid helium for various auxiliary systems at the DIII-D tokamak facility. The system described here executes control and supervision of the cryogenics plant and associated load systems which include four neutral beam injectors, superconducting magnets, and an in-vessel tokamak cryocondensation pump. The recent addition of this divertor cryopump represented a major increase in the scope of the control system and greater need for reliable and automatic operation. The pump must be precooled, cooled and regenerated in a relatively short period of time under automatic control. Since the pump is located in the tokamak primary vacuum, coordination with the machine vacuum control system and consideration for the requirements of physics operations and vessel wall conditioning are required. A programmable logic controller is the central element in the cryogenics control system and exercises direct or supervisory control over the liquefier, gas management and loads. In the time since the control system was built during 1989, additions and improvements have been made to simplify operation and support upgrades. Cryogenics system capacity has been upgraded by the purchase of a new 150 {ell}/hr helium liquefier, a second 400 hp helium compressor and additional gas storage. The new liquefier incorporates a controller of its own which exchanges information with the cryogenics control system. This independent controller relieved the main system of liquefier process control tasks but necessitates much finer control of the system high and low pressures. The control system upgrades and automation are discussed with emphasis on the divertor cryocondensation pump control.

Campbell, G.L.; Harris, J.J.; Schaubel, K.M.

1993-09-01T23:59:59.000Z

55

Absorber Materials at Room and Cryogenic Temperatures  

Science Conference Proceedings (OSTI)

We recently reported on investigations of RF absorber materials at cryogenic temperatures conducted at Jefferson Laboratory (JLab). The work was initiated to find a replacement material for the 2 Kelvin low power waveguide Higher Order Mode (HOM) absorbers employed within the original cavity cryomodules of the Continuous Electron Beam Accelerator Facility (CEBAF). This effort eventually led to suitable candidates as reported in this paper. Furthermore, though constrained by small funds for labor and resources, we have analyzed a variety of lossy ceramic materials, several of which could be usable as HOM absorbers for both normal conducting and superconducting RF structures, e.g. as loads in cavity waveguides and beam tubes either at room or cryogenic temperatures and, depending on cooling measures, low to high operational power levels.

F. Marhauser, T.S. Elliott, A.T. Wu, E.P. Chojnacki, E. Savrun

2011-09-01T23:59:59.000Z

56

Thermal Performance of Insulating Cryogenic Pin Spacers  

E-Print Network (OSTI)

Following the proposal to introduce an actively cooled radiation screen (5-10 K) for the LHC machine, the design of the LHC cryostat foresees the need for spacers between the cold mass and the radiati on screen. The thermal impedance of the chosen material should be very high and the shape selected to withstrand the contact stress due to the displacements induced by the coll-down and warm-up transi ent. A cryogenic experiment dedicated to studying the thermal behaviour of several proposed spacers was performed at the cryogenics laboratory of CERN before choosing the one to be used for further i nvestigation on the LHC full-scale Cryostat Thermal Model [1] [2]. This paper describes a quantitative analysis leading to the choice of the spacer.

Darve, C

1998-01-01T23:59:59.000Z

57

Cryogenic Technical Services Inc | Open Energy Information  

Open Energy Info (EERE)

Services Inc Services Inc Jump to: navigation, search Name Cryogenic Technical Services Inc Place Longmont, Colorado Zip 805016036 Sector Hydro, Hydrogen Product Focused on cryogenic storage capability including hydrogen. Coordinates 40.16394°, -105.100504° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.16394,"lon":-105.100504,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

58

Valve for controlling flow of cryogenic fluid  

DOE Patents (OSTI)

A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.

Knapp, P.A.

1995-12-31T23:59:59.000Z

59

Method and apparatus for producing cryogenic targets  

DOE Patents (OSTI)

An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers. 6 figs.

Murphy, J.T.; Miller, J.R.

1984-08-07T23:59:59.000Z

60

Method and apparatus for producing cryogenic targets  

DOE Patents (OSTI)

An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers.

Murphy, James T. (Los Alamos, NM); Miller, John R. (Penfield, NY)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Method and apparatus for producing cryogenic targets  

DOE Patents (OSTI)

An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers.

Murphy, J.T.; Miller, J.R.

1981-08-28T23:59:59.000Z

62

Self-potential observations during hydraulic fracturing  

E-Print Network (OSTI)

potential measurements during hydraulic fracturing of BunterMonitoring during hydraulic fracturing using the TG-2 well,fracture processes in hydraulic fracturing, Quarterly Report

Moore, Jeffrey R.; Glaser, Steven D.

2008-01-01T23:59:59.000Z

63

Design Tool for Cryogenic Thermal Insulation Systems  

Science Conference Proceedings (OSTI)

Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

Demko, Jonathan A [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida; Augustynowicz, S. D. [Sierra Lobo Inc., Kennedy Space Center, Florida

2008-01-01T23:59:59.000Z

64

Development of cryogenic instruments and equipment for SSC magnet cryogenic tests at the MTL  

SciTech Connect

The Magnet Test Laboratory (MTL) will test a considerable portion of the total SSC superconducting magnet production in order to control the manufacturing process and verify magnet performance requirements. With ten cryogenic test stands, MTL is capable of housing tests of 30 dipoles and 5 quadrupoles per month. For further understanding and improving the performance of the SSC magnets, there will be two R&D test stands for extensively instruments were allocated and installed inside the prototype and first production magnets, as well as in the feed and end cans. A data acquisition and control system is developed. A comprehensive cryogenic system (including refrigerator, cryogenic distribution box and, feed/end cans), vapor-cooled power leads, anti-cryostats (warm bore), and other associated systems, have been designed, developed and tested. This paper will briefly discuss the progress to date.

Shu, Q.S.; Coles, M.; Dorman, R.; Franclin, C.; Fuzesy, R.; Gabert, G.; Hatfield, D.; Syromyatnikov, I.; Tompkins, J.; Trekell, R.; Weisend, J.; Zolotov, A.

1993-05-01T23:59:59.000Z

65

(ns) Al-2024 Alloy Obtained via Cryogenic Milling  

Science Conference Proceedings (OSTI)

Milling Al-2024 powder of big particle size (>100 microns) in cryogenic regime resulted in nanostructured powder of 46 nm grain size after 18h. Furthermore...

66

COMPUTER DESIGN AND OPTIMIZATION OF CRYOGENIC REFRIGERATION SYSTEMS  

E-Print Network (OSTI)

be used to design and optimize refrigeration cycles as wellCOMPUTER DESIGN AND OPTIMIZATION OF CRYOGENIC REFRIGERATIONTrial Design Fixed state parameters (bar) Refrigeration

green, M.A.

2011-01-01T23:59:59.000Z

67

Measuring Thermal Conductivity of Powder Insulation at Cryogenic Temperatures.  

E-Print Network (OSTI)

?? A device to measure bulk effective thermal conductivity of powder insulation at cryogenic temperatures has been designed and tested. The design consists of two (more)

Barrios, Matthew Nicklas

2006-01-01T23:59:59.000Z

68

A Rare Isolated Trapezoid Fracture  

E-Print Network (OSTI)

Toh S, Tsubo K, et al. An occult fracture of the trapezoiddue to concern for an occult fracture revealed a comminuted

Afifi, Negean; Lu, Jenny J

2011-01-01T23:59:59.000Z

69

Hydraulic Fracturing in Particulate Materials .  

E-Print Network (OSTI)

??For more than five decades, hydraulic fracturing has been widely used to enhance oil and gas production. Hydraulic fracturing in solid materials (e.g., rock) has (more)

Chang, Hong

2004-01-01T23:59:59.000Z

70

R&D ERL: Cryogenic System  

SciTech Connect

The ERL cryogenic system will supply cooling to a super-conducting RF (SCRF) gun and the 5-cell super-conducting RF cavity system that need to be held cold at 2K. The engineering of the cavity cryomodules were carried out by AES in collaboration with BNL. The 2K superfluid bath is produced by pumping on the bath using a sub-atmospheric warm compression system. The cryogenic system makes use of mainly existing equipment relocated from other facilities: a 300W 4.5K coldbox, an 45 g/s screw compressor, a 3800 liter liquid helium storage dewar, a 170 m{sup 3} warm gas storage tank, and a 40,000 liter vertical low pressure liquid nitrogen storage dewar. An existing wet expander obtained from another facility has been added to increase the plant capacity. In order to deliver the required 3 to 4 bar helium to the cryomodules while using up stored liquid capacity at low pressure, a new subcooler will be installed to function as the capacity transfer device. A 2K to 4K recovery heat exchanger is also implemented for each cryomodule to recover refrigeration below 4K, thus maximizing 2K cooling capacity with the given sub-atmospheric pump. No 4K-300K refrigeration recovery is implemented at this time of the returning sub-atmospheric cold vapor, hence the 2K load appears as a liquefaction1 load on the cryogenic plant. A separate LN2 cooling loop supplies liquid nitrogen to the superconducting gun's cathode tip.

Than, R.

2010-01-01T23:59:59.000Z

71

Polyamide 66 as a Cryogenic Dielectric  

SciTech Connect

Improvements in superconductor and cryogenic technologies enable novel power apparatus, \\eg, cables, transformers, fault current limiters, generators, \\etc, with better device characteristics than their conventional counterparts. In these applications electrical insulation materials play an important role in system weight, footprint (size), and voltage level. The trend in the electrical insulation material selection has been to adapt or to employ conventional insulation materials to these new systems. However, at low temperatures, thermal contraction and loss of mechanical strength in many materials make them unsuitable for superconducting power applications. In this paper, a widely used commercial material was characterized as a potential cryogenic dielectric. The material is used in ``oven bag'' a heat-resistant polyamide (nylon) used in cooking (produced by Reynolds\\textregistered, Richmond, VA, USA). It is first characterized by Fourier transform infrared and x-ray diffraction techniques and determined to be composed of polyamide 66 (PA66) polymer. Secondly the complex dielectric permittivity and dielectric breakdown strength of the PA66 films are investigated. The dielectric data are then compared with data reported in the literature. A comparison of dielectric strength with a widely used high-temperature superconductor electrical insulation material, polypropylene-laminated paper (PPLP\\texttrademark\\ a product of Sumitomo Electric Industries, Japan), is provided. It is observed that the statistical analysis of the PA66 films yields 1\\% failure probability at $127\\ \\kilo\\volt\\milli\\meter^{-1}$; this value is approximately $46\\ \\kilo\\volt\\milli\\meter^{-1}$ higher than PPLP\\texttrademark. It is concluded that PA66 may be a good candidate for cryogenic applications. Finally, a summary of dielectric properties of some of the commercial tape insulation materials and various polymers is also provided.

Tuncer, Enis [ORNL; Polyzos, Georgios [ORNL; Sauers, Isidor [ORNL; James, David Randy [ORNL; Ellis, Alvin R [ORNL; Messman, Jamie M [ORNL; Aytug, Tolga [ORNL

2009-01-01T23:59:59.000Z

72

Low heat-leak cryogenic envelope  

DOE Patents (OSTI)

A plurality of cryogenic envelope sections are joined together to form a power transmission line. Each of the sections is comprised of inner and outer tubes having multilayer metalized plastic spirally wrapped within a vacuum chamber formed between the inner and outer tubes. A refrigeration tube traverses the vacuum chamber, but exits one section and enters another through thermal standoffs for reducing heat-leak from the outer tube to the refrigeration tube. The refrigeration tube passes through a spirally wrapped shield within each section's vacuum chamber in a manner so that the refrigeration tube is in close thermal contact with the shield, but is nevertheless slideable with respect thereto.

DeHaan, James R. (Boulder, CO)

1976-10-19T23:59:59.000Z

73

Fold Catastrophe Model of Fracture Propagation of Hydraulic Fracturing  

Science Conference Proceedings (OSTI)

According to energy conservation from the destruction of rock catastrophe, a new calculation method of the length of fracture propagation in hydraulic fracturing is proposed, and assuming the crack extends to approximate ellipse, the width calculation ... Keywords: hydraulic fracture, fold catastrophe, fracture parameters

Zhaowan Chun; Wan Tingting; Ai Chi; Ju Guoshuai

2010-05-01T23:59:59.000Z

74

Evaluation of the relationship between fracture conductivity, fracture fluid production, and effective fracture length  

E-Print Network (OSTI)

Low-permeability gas wells often produce less than predicted after a fracture treatment. One of the reasons for this is that fracture lengths calculated after stimulation are often less than designed lengths. While actual fracture lengths may be shorter due to fracture growth out of zone, improper proppant settling, or proppant flowback, short calculated fracture lengths can also result from incorrect analysis techniques. It is known that fracturing fluid that remains in the fracture and formation after a hydraulic fracture treatment can decrease the productivity of a gas well by reducing the relative permeability to gas in the region invaded by this fluid. However, the relationships between fracture fluid cleanup, effective fracture length, and well productivity are not fully understood. In this work I used reservoir simulation to determine the relationship between fracture conductivity, fracture fluid production, effective fracture length, and well productivity. I simulated water saturation and pressure profiles around a propped fracture, tracked gas production along the length of the propped fracture, and quantified the effective fracture length (i.e., the fracture length under single-phase flow conditions that gives similar performance as for multiphase flow conditions), the "cleanup" fracture length (i.e., the fracture length corresponding to 90% cumulative gas flow rate into the fracture), and the "apparent" fracture length (i.e., the fracture length where the ratio of multiphase to single-phase gas entry rate profiles is unity). This study shows that the proppant pack is generally cleaned up and the cleanup lengths are close to designed lengths in relatively short times. Although gas is entering along entire fracture, fracturing fluid remains in the formation near the fracture. The water saturation distribution affects the gas entry rate profile, which determines the effective fracture length. Subtle changes in the gas rate entry profile can result in significant changes in effective fracture length. The results I derived from this work are consistent with prior work, namely that greater fracture conductivity results in more effective well cleanup and longer effective fracture lengths versus time. This study provides better explanation of mechanisms that affect fracturing fluid cleanup, effective fracture length, and well productivity than previous work.

Lolon, Elyezer P.

2004-12-01T23:59:59.000Z

75

Development of a cryogenic heat pipe  

SciTech Connect

Heat pipe operating characteristics can be used to advantage in cryogenic systems. Diode operation of the heat pipe, the ability to conduct heat in one direction only, is useful in protecting the heat load if the heat sink temperature rises above the load temperature. Because of this, the heat pipe can be made to act as a thermal switch. A screened-wick, inverted-artery, cryogenic heat pipe was designed, fabricated, and tested. The tests were first conducted with hydrogen and then with oxygen as the working fluid. Heat pipe performance limits were measured as a function of operating temperature, and startup from both the supercritical and the frozen state was demonstrated. The heat pipe was designed to operate as a thermal diode, and transient tests were used to determine the turndown ratio. The heat pipe test results were correlated with the Los Alamos heat pipe computer code and good agreement was obtained between the predicted and measured performance. The heat pipe was developed for spacecraft sensor cooling applications. Test results show significant performance advantages over solid conductors.

Prenger, F.C.; Stewart, W.F.; Runyan, J.E.

1993-08-01T23:59:59.000Z

76

Cryogenic Silicon Microstrip Detector Modules for LHC  

E-Print Network (OSTI)

CERN is presently constructing the LHC, which will produce collisions of 7 TeV protons in 4 interaction points at a design luminosity of 1034 cm-2 s-1. The radiation dose resulting from the operation at high luminosity will cause a serious deterioration of the silicon tracker performance. The state-of-art silicon microstrip detectors can tolerate a fluence of about 3 1014 cm-2 of hadrons or charged leptons. This is insufficient, however, for long-term operation in the central parts of the LHC trackers, in particular after the possible luminosity upgrade of the LHC. By operating the detectors at cryogenic temperatures the radiation hardness can be improved by a factor 10. This work proposes a cryogenic microstrip detector module concept which has the features required for the microstrip trackers of the upgraded LHC experiments at CERN. The module can hold an edgeless sensor, being a good candidate for improved luminosity and total cross-section measurements in the ATLAS, CMS and TOTEM experiments. The design o...

Perea-Solano, B

2004-01-01T23:59:59.000Z

77

Transient Behaviour and Helium Discharge in Cryogenic Distribution Line (QRL) Headers Following Breakdown of Insulation Vacuum  

E-Print Network (OSTI)

Transient Behaviour and Helium Discharge in Cryogenic Distribution Line (QRL) Headers Following Breakdown of Insulation Vacuum

Chorowski, M

1997-01-01T23:59:59.000Z

78

Fracturing fluids -- then and now  

Science Conference Proceedings (OSTI)

Fracturing fluid provides the means by which the hydraulic fracturing process can take place. All applications of well stimulation by fracturing must include selection of fracturing fluid in the initial phases of fracture design and treatment planning. Fracturing fluid has two important purposes: (1) to provide sufficient viscosity to suspend and transport proppant deep into the created fracture system and (2) to decompose, or break, chemically to a low viscosity to allow flowback of a major part of the fluid to the surface for fracture cleanup after the treatment is completed. Because of the importance of its rheological properties and behavior in the fracture under reservoir conditions during (and immediately after) the treatment, service company research laboratories have spent millions of dollars on R and D of fracturing fluids.

Jennings, A.R. Jr. [Enhanced Well Stimulation Inc., Plano, TX (United States)

1996-07-01T23:59:59.000Z

79

Suspensions in hydraulic fracturing  

Science Conference Proceedings (OSTI)

Suspensions or slurries are widely used in well stimulation and hydraulic fracturing processes to enhance the production of oil and gas from the underground hydrocarbon-bearing formation. The success of these processes depends significantly upon having a thorough understanding of the behavior of suspensions used. Therefore, the characterization of suspensions under realistic conditions, for their rheological and hydraulic properties, is very important. This chapter deals with the state-of-the-art hydraulic fracturing suspension technology. Specifically it deals with various types of suspensions used in well stimulation and fracturing processes, their rheological characterization and hydraulic properties, behavior of suspensions in horizontal wells, review of proppant settling velocity and proppant transport in the fracture, and presently available measurement techniques for suspensions and their merits. Future industry needs for better understanding of the complex behavior of suspensions are also addressed. 74 refs., 21 figs., 1 tab.

Shah, S.N. [Univ. of Oklahoma, Norman, OK (United States)

1996-12-31T23:59:59.000Z

80

Relative permeability through fractures  

DOE Green Energy (OSTI)

The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.

Diomampo, Gracel, P.

2001-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

FRACTURING FLUID CHARACTERIZATION FACILITY  

SciTech Connect

Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

Subhash Shah

2000-08-01T23:59:59.000Z

82

First Experience with the LHC Cryogenic Instrumentation  

E-Print Network (OSTI)

The LHC under commissioning at CERN will be the world's largest superconducting accelerator and therefore makes extensive use of cryogenic instruments. These instruments are installed in the tunnel and therefore have to withstand the LHC environment that imposes radiation-tolerant design and construction. Most of the instruments require individual calibration; some of them exhibit several variants as concerns measuring span; all relevant data are therefore stored in an Oracle® database. Those data are used for the various quality assurance procedures defined for installation and commissioning, as well as for generating tables used by the control system to configure automatically the input/output channels. This paper describes the commissioning of the sensors and the corresponding electronics, the first measurement results during the cool-down of one machine sector; it discusses the different encountered problems and their corresponding solutions.

Vauthier, N; Balle, Ch; Casas-Cubillos, J; Ciechanowski, M; Fernandez-Penacoba, G; Fortescue-Beck, E; Gomes, P; Jeanmonod, N; Lopez-Lorente, A; Suraci, A

2008-01-01T23:59:59.000Z

83

Dissipative Cryogenic Filters with Zero DC Resistance  

SciTech Connect

The authors designed, implemented and tested cryogenic RF filters with zero DC resistance, based on wires with a superconducting core inside a resistive sheath. The superconducting core allows low frequency currents to pass with negligible dissipation. Signals above the cutoff frequency are dissipated in the resistive part due to their small skin depth. The filters consist of twisted wire pairs shielded with copper tape. Above approximately 1 GHz, the attenuation is exponential in {radical}{omega}, as typical for skin depth based RF filters. By using additional capacitors of 10 nF per line, an attenuation of at least 45 dB above 10 MHz can be obtained. Thus, one single filter stage kept at mixing chamber temperature in a dilution refrigerator is sufficient to attenuate room temperature black body radiation to levels corresponding to 10 mK above about 10 MHz.

Bluhm, Hendrik; Moler, Kathryn A.; /Stanford U., Appl. Phys. Dept

2008-04-22T23:59:59.000Z

84

The DIII-D cryogenic system upgrade  

SciTech Connect

The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 {ell}/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed.

Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

1993-10-01T23:59:59.000Z

85

Self-potential observations during hydraulic fracturing  

E-Print Network (OSTI)

potential measurements during hydraulic fracturing of BunterSP response during hydraulic fracturing. Citation: Moore, J.observations during hydraulic fracturing, J. Geophys. Res. ,

Moore, J R; Glaser, Steven D

2007-01-01T23:59:59.000Z

86

Self-potential observations during hydraulic fracturing  

E-Print Network (OSTI)

and T. W. Keech (1977), Hydraulic fracture mapping usingpotential measurements during hydraulic fracturing of BunterSP Monitoring during hydraulic fracturing using the TG-2

Moore, Jeffrey R.; Glaser, Steven D.

2008-01-01T23:59:59.000Z

87

Hydraulic Fracturing Poster | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Fracturing Poster Hydraulic Fracturing Poster Educational poster graphically displaying the key components of hydraulic fracturing. Teachers: If you would like hard...

88

Simple, robust cryogenic propellant depot for near term applications  

Science Conference Proceedings (OSTI)

The ability to refuel cryogenic propulsion stages on-orbit provides an innovative paradigm shift for space transportation supporting National Aeronautics and Space Administration's (NASA) Exploration program as well as deep space robotic, national security ...

Christopher McLean; Shuvo Mustafi; Laurie Walls; Brian Pitchford; Mark Wollen; Jeff Schmidt

2011-03-01T23:59:59.000Z

89

Towards a cryogenic planar ion trap for Sr-88  

E-Print Network (OSTI)

This thesis describes experiments with ion traps constructed with electrodes in a single two-dimensional plane, and ion traps operated in a cryogenic environment at 77K and 4K temperatures. These two technologies address ...

Bakr, Waseem (Waseem S.)

2006-01-01T23:59:59.000Z

90

THE USE OF MODERATELY HIGH PRESSURES AT CRYOGENIC TEMPERATURES  

SciTech Connect

The application of moderately high pressures to work at low temperatures is described. The problems involved in the merging of these two disciplines are discussed as they relate to laboratory research as well as to large scale nuclear rocket testing facility usage. The equipment used to determine some physical properties of liquid cryogens up to 50000 lb/in./sup 2/ are also described. The methods of obtaining and applying the low temperature to the high pressure volume will be mentioned. The use of a reciprocating piston pump to pump cryogenic liquids to high pressures is described. Consideration is also given to the problems of cryogenic seals for large size vacuum jacketed cryogenic piping. Safety requirements are also mentioned. (P.C.H.)

Edeskuty, F.J.; Mills, R.L.

1963-01-01T23:59:59.000Z

91

Membrane-augmented cryogenic methane/nitrogen separation  

DOE Patents (OSTI)

A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

Lokhandwala, Kaaeid (Menlo Park, CA)

1997-01-01T23:59:59.000Z

92

Membrane-augmented cryogenic methane/nitrogen separation  

DOE Patents (OSTI)

A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

Lokhandwala, K.

1997-07-15T23:59:59.000Z

93

High-resolution, cryogenic, side-entry type specimen stage  

DOE Patents (OSTI)

A high-resolution, cryogenic side-entry type specimen stage includes a copper block within which a specimen can be positioned in the electron beam of an electron microscope, one end of the copper block constituting a specimen heat exchanger, means for directing a flow of helium at cryogenic temperature into the heat exchanger, and electrical leads running from the specimen to the exterior of the microscope for four point D.C. electrical resistivity measurements.

King, Wayne E. (Woodridge, IL); Merkle, Karl L. (Clarendon Hills, IL)

1979-01-01T23:59:59.000Z

94

In situ freeze-capturing of fracture water using cryogenic coring  

E-Print Network (OSTI)

liquid nitrogen as the drilling fluid, which can freeze theor contaminated by the drilling fluid used during coring.sources since the drilling fluid is liquid nitrogen. The

Su, Grace W.; Wang, Joseph S.Y.; Zacny, Kris

2004-01-01T23:59:59.000Z

95

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE  

Open Energy Info (EERE)

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Details Activities (1) Areas (1) Regions (0) Abstract: This project aims to improve understanding of the subsurface fracture system in the Coso geothermal field, located in the east central California. We applied shear-wave splitting technique on a set of high quality, locally recorded microearthquake (MEQ) data. Four major fracture directions have been identified from the seismograms recorded by the permanent sixteen-station down-hole array: N10- 20W, NS, N20E, and N40-45E,

96

Breakthrough in fracture mechanics  

SciTech Connect

Fracture mechanics, the science of calculating material characteristics, stress, and flaws in plant equipment to evaluate structural integrity, usually spares the owners of nuclear power plants unnecessary expense. Instead of replacing equipment prematurely or waiting for costly, unscheduled materials failures that can take months to repair and cost thousands of dollars a day for replacement power, utilities use fracture mechanics techniques to carefully consider their options. If analyses show repair is unnecessary, plant operation can confidently be resumed. If repair is required, it can either be done immediately or, if deferrable, be scheduled for a later, more convenient outage.

Lihach, N.

1981-05-01T23:59:59.000Z

97

Fracture characterization of multilayered reservoirs  

Science Conference Proceedings (OSTI)

Fracture treatment optimization techniques have been developed using Long-Spaced-Digital-Sonic (LSDS) log, pumpin-flowback, mini-frac, and downhole treating pressure data. These analysis techniques have been successfully applied in massive hydraulic fracturing (MHF) of ''tight gas'' wells. Massive hydraulic fracture stimulations have been used to make many tight gas reservoirs commercially attractive. However, studies have shown that short highly conductive fractures are optimum for the successful stimulation of wells in moderate permeability reservoirs. As a result, the ability to design and place optimal fractures in these reservoirs is critical. This paper illustrates the application of fracture analysis techniques to a moderate permeability multi-layered reservoir. These techniques were used to identify large zonal variations in rock properties and pore pressure which result from the complex geology. The inclusion of geologic factors in fracture treatment design allowed the placement of short highly conductive fractures which were used to improve injectivity and vertical sweep, and therefore, ultimate recovery.

Britt, L.K.; Larsen, M.J.

1986-01-01T23:59:59.000Z

98

Investigation of Created Fracture Geometry through Hydraulic Fracture Treatment Analysis  

E-Print Network (OSTI)

Successful development of shale gas reservoirs is highly dependent on hydraulic fracture treatments. Many questions remain in regards to the geometry of the created fractures. Production data analysis from some shale gas wells quantifies a much smaller stimulated pore volume than what would be expected from microseismic evidence and reports of fracturing fluids reaching distant wells. In addition, claims that hydraulic fracturing may open or reopen a network of natural fractures is of particular interest. This study examines hydraulic fracturing of shale gas formations with specific interest in fracture geometry. Several field cases are analyzed using microseismic analysis as well as net pressure analysis of the fracture treatment. Fracture half lengths implied by microseismic events for some of the stages are several thousand feet in length. The resulting dimensions from microseismic analysis are used for calibration of the treatment model. The fracture profile showing created and propped fracture geometry illustrates that it is not possible to reach the full fracture geometry implied by microseismic given the finite amount of fluid and proppant that was pumped. The model does show however that the created geometry appears to be much larger than half the well spacing. From a productivity standpoint, the fracture will not drain a volume more than that contained in half of the well spacing. This suggests that for the case of closely spaced wells, the treatment size should be reduced to a maximum of half the well spacing. This study will provide a framework for understanding hydraulic fracture treatments in shale formations. In addition, the results from this study can be used to optimize hydraulic fracture treatment design. Excessively large treatments may represent a less than optimal approach for developing these resources.

Ahmed, Ibraheem 1987-

2012-12-01T23:59:59.000Z

99

Rigid Body Simulation with Local Fracturing Effects  

Science Conference Proceedings (OSTI)

Focusing on the real-time and interactive ability features in the Virtual Reality application, we propose a fracture pattern based on local fracture mechanism. Taking advantage of the experience analysis or the offline computation verified fracture characteristic, ... Keywords: Rigid Body, pre-fracture, fracture pattern, local fracture, dynamics

Wu Bo; Zeng Liang; Wu Yagang

2011-05-01T23:59:59.000Z

100

LNG cascading damage study. Volume I, fracture testing report.  

SciTech Connect

As part of the liquefied natural gas (LNG) Cascading Damage Study, a series of structural tests were conducted to investigate the thermal induced fracture of steel plate structures. The thermal stresses were achieved by applying liquid nitrogen (LN{sub 2}) onto sections of each steel plate. In addition to inducing large thermal stresses, the lowering of the steel temperature simultaneously reduced the fracture toughness. Liquid nitrogen was used as a surrogate for LNG due to safety concerns and since the temperature of LN{sub 2} is similar (-190 C) to LNG (-161 C). The use of LN{sub 2} ensured that the tests could achieve cryogenic temperatures in the range an actual vessel would encounter during a LNG spill. There were four phases to this test series. Phase I was the initial exploratory stage, which was used to develop the testing process. In the Phase II series of tests, larger plates were used and tested until fracture. The plate sizes ranged from 4 ft square pieces to 6 ft square sections with thicknesses from 1/4 inches to 3/4 inches. This phase investigated the cooling rates on larger plates and the effect of different notch geometries (stress concentrations used to initiate brittle fracture). Phase II was divided into two sections, Phase II-A and Phase II-B. Phase II-A used standard A36 steel, while Phase II-B used marine grade steels. In Phase III, the test structures were significantly larger, in the range of 12 ft by 12 ft by 3 ft high. These structures were designed with more complex geometries to include features similar to those on LNG vessels. The final test phase, Phase IV, investigated differences in the heat transfer (cooling rates) between LNG and LN{sub 2}. All of the tests conducted in this study are used in subsequent parts of the LNG Cascading Damage Study, specifically the computational analyses.

Petti, Jason P.; Kalan, Robert J.

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A Physically Based Approach for Modeling Multiphase Fracture-Matrix Interaction in Fractured Porous Media  

E-Print Network (OSTI)

in modeling multiphase flow in porous and fractured media,multiphase tracer transport in heterogeneous fractured porousof multiphase flow through fractured or porous media.

Wu, Yu-Shu; Pan, Lehua; Pruess, Karsten

2004-01-01T23:59:59.000Z

102

A physically based numerical approach for modeling fracture-matrix interaction in fractured reservoirs  

E-Print Network (OSTI)

in modeling multiphase flow in porous and fractured media,multiphase tracer transport in heterogeneous fractured porousof multiphase flow through fractured or porous media. 3.

Wu, Yu-Shu; Pruess, Karsten

2004-01-01T23:59:59.000Z

103

Cryogenic Storage (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

Cryogenic Storage (Smart Grid Project) Cryogenic Storage (Smart Grid Project) Jump to: navigation, search Project Name Cryogenic Storage Country United Kingdom Coordinates 55.378052°, -3.435973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.378052,"lon":-3.435973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

The CEBAF cryogenic system: Continuous Electron Beam Accelerator Facility  

SciTech Connect

The CEBAF superconducting linear accelerator incorporates cryogenic refrigeration equipment at three locations within the site: the Central Helium Liquefier, located in the center of the accelerator; the experimental end station refrigerator; and the test laboratory refrigerator located in the Cryogenic Test Facility (CTF) adjacent to the test laboratory. The CEBAF cryogenic system will provide 2K refrigeration to the linacs of the accelerator and test laboratory and 4.5K refrigeration for the end station experimental halls. The Central Helium Liquefier and the test laboratory systems will produce 45K supercritical gaseous helium for shield refrigeration. Liquid nitrogen shields will also be incorporated in the test laboratory and end stations. 6 refs., 5 figs.

Chronis, W.C.; Arenius, D.; Kashy, D.; Keesee, M.; Rode, C.H.

1989-01-01T23:59:59.000Z

105

Design alternatives for cryogenic beryllium windows in an ICF cryostat  

SciTech Connect

We propose three backup design options for the cryogenic beryllium windows in a cryostat. The first, a beryllium flange option, reduces peak tensile stresses to 1/3 of that in the original design. The second, a fiberglass flange option, reduces peak tensile stresses to 1/2 of that in the original design and is also low cost. A third option, replacing the beryllium windows with spherical Mylar caps, would require a development program. Even though Mylar has been used previously at cryogenic temperature, this option is still considered unreliable. The near-zero ductility of beryllium at cryogenic temperature makes the reduction of peak tensile stresses particularly desirable. The orginal window design did function satisfactorily and the backup options were not needed. However, these options remain open for possible incorporation in future cryostat designs.

Pitts, J.H.; Landon, P.R.; Gerhard, M.A.

1984-11-01T23:59:59.000Z

106

Cryogenic distribution for the Facility for Rare Isotope Beams  

SciTech Connect

The Facility for Rare Isotope Beams (FRIB) is a new National User Facility for nuclear science funded by the Department of Energy Office of Science and operated by Michigan State University. The FRIB accelerator linac consists of superconducting radio-frequency (SCRF) cavities operating at 2 K and SC magnets operating at 4.5 K all cooled by a large scale cryogenic refrigeration system. A major subsystem of the cryogenic system will be the distribution system whose primary components will include a distribution box, the transfer lines and the interconnect valve boxes at each cryogenic device. An overview of the conceptual design of the distribution system including engineering details, capabilities and schedule is described.

S. Jones, Dana Arenius, Adam Fila, P. Geutschow, Helmut Laumer, Matt Johnson, Cory S. Waltz, J. G. Weisend II

2012-06-01T23:59:59.000Z

107

SRF Test Areas Cryogenic System Controls Graphical User Interface  

SciTech Connect

Fermi National Accelerator Laboratory has constructed a superconducting 1.3 GHz cavity test facility at Meson Detector Building (MDB) and a superconducting 1.3 GHz cryomodule test facility located at the New Muon Lab Building (NML). The control of these 2K cryogenic systems is accomplished by using a Synoptic graphical user interface (GUI) to interact with the underlying Fermilab Accelerator Control System. The design, testing and operational experience of employing the Synoptic client-server system for graphical representation will be discussed. Details on the Synoptic deployment to the MDB and NML cryogenic sub-systems will also be discussed. The implementation of the Synoptic as the GUI for both NML and MDB has been a success. Both facilities are currently fulfilling their individual roles in SCRF testing as a result of successful availability of the cryogenic systems. The tools available for creating Synoptic pages will continue to be developed to serve the evolving needs of users.

DeGraff, B.D.; Ganster, G.; Klebaner, A.; Petrov, A.D.; Soyars, W.M.; /Fermilab

2011-06-09T23:59:59.000Z

108

Numerical Investigation of Interaction Between Hydraulic Fractures and Natural Fractures  

E-Print Network (OSTI)

Hydraulic fracturing of a naturally-fractured reservoir is a challenge for industry, as fractures can have complex growth patterns when propagating in systems of natural fractures in the reservoir. Fracture propagation near a natural fracture (NF) considering interaction between a hydraulic fracture (HF) and a pre-existing NF, has been investigated comprehensively using a two dimensional Displacement Discontinuity Method (DDM) Model in this thesis. The rock is first considered as an elastic impermeable medium (with no leakoff), and then the effects of pore pressure change as a result of leakoff of fracturing fluid are considered. A uniform pressure fluid model and a Newtonian fluid flow model are used to calculate the fluid flow, fluid pressure and width distribution along the fracture. Joint elements are implemented to describe different NF contact modes (stick, slip, and open mode). The structural criterion is used for predicting the direction and mode of fracture propagation. The numerical model was used to first examine the mechanical response of the NF to predict potential reactivation of the NF and the resultant probable location for fracture re-initiation. Results demonstrate that: 1) Before the HF reaches a NF, the possibility of fracture re-initiation across the NF and with an offset is enhanced when the NF has weaker interfaces; 2) During the stage of fluid infiltration along the NF, a maximum tensile stress peak can be generated at the end of the opening zone along the NF ahead of the fluid front; 3) Poroelastic effects, arising from fluid diffusion into the rock deformation can induce closure and compressive stress at the center of the NF ahead of the HF tip before HF arrival. Upon coalescence when fluid flows along the NF, the poroelastic effects tend to reduce the value of the HF aperture and this decreases the tension peak and the possibility of fracture re-initiation with time. Next, HF trajectories near a NF were examined prior to coalesce with the NF using different joint, rock and fluid properties. Our analysis shows that: 1) Hydraulic fracture trajectories near a NF may bend and deviate from the direction of the maximum horizontal stress when using a joint model that includes initial joint deformation; 2) Hydraulic fractures propagating with higher injection rate or fracturing fluid of higher viscosity propagate longer distance when turning to the direction of maximum horizontal stress; 3) Fracture trajectories are less dependent on injection rate or fluid viscosity when using a joint model that includes initial joint deformation; whereas, they are more dominated by injection rate and fluid viscosity when using a joint model that excludes initial joint deformation.

Xue, Wenxu

2010-12-01T23:59:59.000Z

109

Process of making cryogenically cooled high thermal performance crystal optics  

DOE Patents (OSTI)

A method for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N{sub 2} is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation.

Kuzay, T.M.

1990-06-29T23:59:59.000Z

110

Commissioning of the cryogenics of the LHC long straight sections  

Science Conference Proceedings (OSTI)

The LHC is made of eight circular arcs interspaced with eight Long Straight Sections (LSS). Most powering interfaces to the LHC are located in these sections where the particle beams are focused and shaped for collision, cleaning and acceleration. The LSSs are constituted of several unique cryogenic devices and systems like electrical feed-boxes, standalone superconducting magnets, superconducting links, RF cavities and final focusing superconducting magnets. This paper presents the cryogenic commissioning and the main results obtained during the first operation of the LHC Long Straight Sections.

Perin, A.; Casas-Cubillos, J.; Claudet, S.; /CERN; Darve, C.; /Fermilab; Ferlin, G.; Millet, F.; Parente, C.; /CERN; Rabehl, R.; /Fermilab; Soubiran, M.; van Weelderen, R.; Wagner, U.; /CERN

2010-01-01T23:59:59.000Z

111

Process of making cryogenically cooled high thermal performance crystal optics  

DOE Patents (OSTI)

A method is disclosed for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N[sub 2] is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation. 7 figs.

Kuzay, T.M.

1992-06-23T23:59:59.000Z

112

Procedure for estimating fracture energy from fracture surface roughness  

DOE Patents (OSTI)

The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.

Williford, Ralph E. (Kennewick, WA)

1989-01-01T23:59:59.000Z

113

Uncertainty in the maximum principal stress estimated from hydraulic fracturing Measurements due to the presence of the induced fracture  

E-Print Network (OSTI)

Laboratory study of hydraulic fracturing pressure data?Howevaluation of hydraulic fracturing stress measurementreopening during hydraulic fracturing stress determinations.

Rutqvist, Jonny; Tsang, Chin-fu; Stephansson, Ove

2000-01-01T23:59:59.000Z

114

Method of measuring heat influx of a cryogenic transfer system. [Patent application  

DOE Patents (OSTI)

A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.

Niemann, R.C.; Zelipsky, S.A.; Rezmer, R.R.; Smelser, P.

1980-10-29T23:59:59.000Z

115

Practical simulation of hierarchical brittle fracture  

Science Conference Proceedings (OSTI)

A novel practical method for brittle fracture simulation is presented. Our fracture model is represented by a tree structure, and all elementary fracture pieces are hierarchically connected. Each node in a fracture tree has a glue table to define connections ... Keywords: fluid, fracture, rigid body

Seungtaik Oh; Seunghyup Shin; Hyeryeong Jun

2012-05-01T23:59:59.000Z

116

Wormhole formation in dissolving fractures  

E-Print Network (OSTI)

We investigate the dissolution of artificial fractures with three-dimensional, pore-scale numerical simulations. The fluid velocity in the fracture space was determined from a lattice-Boltzmann method, and a stochastic solver was used for the transport of dissolved species. Numerical simulations were used to study conditions under which long conduits (wormholes) form in an initially rough but spatially homogeneous fracture. The effects of flow rate, mineral dissolution rate and geometrical properties of the fracture were investigated, and the optimal conditions for wormhole formation determined.

Szymczak, P

2009-01-01T23:59:59.000Z

117

Validation and performance of the LHC cryogenic system through commissioning of the first sector  

Science Conference Proceedings (OSTI)

The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was established and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented.

Serio, L.; Bouillot, A.; Casas-Cubillos, J.; /CERN; Chakravarty, A.; /Tata Inst.; Claudet, S.; /CERN; Gicquel, F.; /LBL, Berkeley; Gomes, P.; /CERN; Kumar, M.; Kush, P.K.; /Indore, Ctr. for Advanced Tech.; Millet, F.; Perin, A.; /CERN /Fermilab /Tata Inst. /CERN

2007-12-01T23:59:59.000Z

118

Cryogenic controls for Fermilab's SRF cavities and test facility  

Science Conference Proceedings (OSTI)

A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The facility is supplied cryogens from the Cryogenic Test Facility (CTF) located in a separate building 500-m away. The design incorporates ambient temperature pumping for super-fluid helium production, as well as three 0.6-kW at 4.5-K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+{trademark}, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+{trademark} allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+{trademark} nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLC's by KOYO{reg_sign} are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.; /Fermilab

2007-07-01T23:59:59.000Z

119

Cryogenics for the MuCool Test Area (MTA)  

DOE Green Energy (OSTI)

MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R&D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH{sub 2}) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN{sub 2} and LH{sub 2}. The latter dictates stringent system design for hazardous locations. The cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R&D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner.

Darve, Christine; Norris, Barry; Pei, Liu-Jin; /Fermilab

2005-09-01T23:59:59.000Z

120

OPERATIONAL EXPERIENCE OF THE UPGRADED CRYOGENIC SYSTEMS AT THE NSCL  

Science Conference Proceedings (OSTI)

The National Superconducting Cyclotron Laboratory (NSCL) is a NSF-supported facility, with additional support from Michigan State University (MSU) for conducting research in nuclear and accelerator science. The facility consists of two superconducting cyclotrons and over fifty individual cryostats, each containing several superconducting magnets that are used in the beam transport system. Beginning in 1999 a major facility upgrade was started. New, larger magnets were added, increasing the total 4.5 K loads, necessitating an increase of the cryogenic capacity. A helium plant (nominal 1750-Watt at 4.5 K) was acquired from the United States Bureau of Mines where it had been operating as a pure liquefier since the early 1980's. It was refurbished for the NSCL with extensive support from the cryogenics group at Thomas Jefferson National Laboratory. The new cryogenic system came online early in 2001. The cold-mass is relatively high in relation to the installed capacity, presenting challenges during cool downs. Reliability over the last five years has been greater than 99%. An overview of the last seven years of operations of our cryogenic systems is presented that includes normal operations, testing of new equipment, noteworthy breakdowns, routine maintenance, and system reliability.

McCartney, A. H.; Laumer, H. L.; Jones, S. A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, 48824 (United States)

2010-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Dynamic Cryogenic Seals to Support Fueling of Fusion Tokomaks  

E-Print Network (OSTI)

) / s Chemical Process Equipment 10-1 to 1 Torque Converter 10-3 to 10-4 Beverage Can End 10-5 to 10-7 IC Package of Mechanical and Materials Engineering Introduction / Motivation Sealing failures cost billions of dollars temperatures but not while being rotated at cryogenic temperatures. The estimated leak rate agrees

Collins, Gary S.

122

Ferritic Fe-Mn alloy for cryogenic applications  

DOE Patents (OSTI)

A ferritic, nickel-free alloy steel composition, suitable for cryogenic applications, which consists essentially of about 10-13% manganese, 0.002-0.01% boron, 0.1-0.5% titanium, 0-0.05% aluminum, and the remainder iron and incidental impurities normally associated therewith.

Hwang, Sun-Keun (Rockypoint, NY); Morris, Jr., John W. (Berkeley, CA)

1979-01-01T23:59:59.000Z

123

Structured SiN membranes as platform for cryogenic bolometers  

Science Conference Proceedings (OSTI)

Cryogenic bolometers detect radiation by measuring the temperature increase in an appropriate absorber. To achieve sufficient detector sensitivity, we place the bolometer on a SiN membrane. Thermal coupling is further decreased by patterning the membrane ... Keywords: Bolometer, Microtechnology, Silicon nitride membranes

Solveig Anders; Torsten May; Viatcheslav Zakosarenko; Michael Starkloff; Gabriel Zieger; Hans-Georg Meyer

2009-04-01T23:59:59.000Z

124

Interferometric hydrofracture microseism localization using neighboring fracture  

E-Print Network (OSTI)

Hydraulic fracturing is the process of injecting high-pressure fluids into a reservoir to induce fractures and thus improve reservoir productivity. Microseismic event localization is used to locate created fractures. ...

Poliannikov, Oleg V.

125

Fracture detection and mapping  

DOE Green Energy (OSTI)

Because the costs of drilling, completing, and testing a well can be extremely high, it is important to develop better tools and methods for locating high permeability zones prior to drilling, and to develop better tools and methods for identifying and characterizing major fracture zones during the drilling and well testing stages. At the recommendation of the LBL Industry Review Panel on Geothermal Reservoir Technology, we organized and convened a one-day workshop this past July to discuss various aspects of DOE's current and planned activities in fracture detection, to review the geothermal industry's near-term and long-term research needs, to determine the priority of those needs, to disseminate to industry the status of research in progress, and to discuss the possibility of future joint research between industry and DOE. In this paper we present a brief overview of the workshop from the perspective of those who participated in it and provided us with written comments to a questionnaire that was distributed.

Goldstein, N.E.; Iovenitti, J.L.

1986-03-01T23:59:59.000Z

126

Meshless animation of fracturing solids  

Science Conference Proceedings (OSTI)

We present a new meshless animation framework for elastic and plastic materials that fracture. Central to our method is a highly dynamic surface and volume sampling method that supports arbitrary crack initiation, propagation, and termination, while ... Keywords: elasticity, fracture, meshless methods, physics-based animation, plasticity

Mark Pauly; Richard Keiser; Bart Adams; Philip Dutr; Markus Gross; Leonidas J. Guibas

2005-07-01T23:59:59.000Z

127

NETL: Discrete Fracture Reservoir Simulation Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Discrete Fracture Reservoir Simulation FRACGENNFFLOW Shale Gas Flow Simulation Shale Gas Flow Simulation FRACGENNFFLOW, a fractured reservoir modeling software developed by the...

128

Self-potential observations during hydraulic fracturing  

E-Print Network (OSTI)

and T. W. Keech (1977), Hydraulic fracture mapping usingpotential measurements during hydraulic fracturing of Bunterbetween electrical and hydraulic flow patterns from rock

Moore, J R; Glaser, Steven D

2007-01-01T23:59:59.000Z

129

Some Fundamental Mechanisms of Hydraulic Fracturing .  

E-Print Network (OSTI)

??This dissertation focuses mainly on three topics: (1) mixed-mode branching and segmentation of hydraulic fractures in brittle materials, (2) hydraulic fracture propagation in particulate materials, (more)

Wu, Ruiting

2006-01-01T23:59:59.000Z

130

Shale Gas Development Challenges: Fracture Fluids | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Development Challenges: Fracture Fluids Shale Gas Development Challenges: Fracture...

131

Hanging Pelvic Gallbladder Simulating Occult Hip Fracture Versus Appendicitis  

E-Print Network (OSTI)

Pelvic Gallbladder Simulating Occult Hip Fracture Versuspossibility of either an occult hip fracture or a subacute

Dolbec, Katherine W D; Higgins, George L; Jung, Michale W

2010-01-01T23:59:59.000Z

132

Downhole tool sniffs out fractures  

SciTech Connect

This article reports that a new tool has been designed and successfully tested that can designate which direction from a borehole a particular fracture is located. Albuquerque-based Sandia National Laboratories tested the new tool. The prototype was built by Southwest Research Institute of San Antonio. During field tests, the tool detected simulated fractures more than 30 ft away from a test borehole. It determines fracture direction by transmitting highly directional and powerful radar pulses in a known direction. The pulses last eight billionths of a second and their frequency spectrum range up to the VHF (very high frequency) band. Discontinuities in the rock interrupt and reflect radar signals so that a signal's return to the tool indicates the presence of fractures. The return signal's time delay translates into distance from the borehole. The transmitter and receiver rotate in place, permitting the tool to scan for fractures in all directions.

Not Available

1987-05-01T23:59:59.000Z

133

Dynamic fracture behavior of Ti-6Al-4V alloy with various stabilities of [beta] phase  

Science Conference Proceedings (OSTI)

The effect of stability of the body-centered cubic (bcc) [beta] phase on the dynamic fracture behavior of Ti-6Al-4V alloy at room temperature and 77 K has been studied. The presence of a highly unstable [beta] phase in the quenched alloy leads to a decrease in both the dynamic fracture toughness and the crack propagation energy, and this decrease becomes more pronounced when test temperature is reduced to 77 K. Somewhat improved fracture characteristics were obtained by applying anneal procedure to receive a fully stable [beta] phase. The highest fracture toughness as well as the greatest crack propagation resistance were observed in the air-cooled grade, where the lattice parameter of the bcc phase was intermediate between those pertaining to quenched and annealed Ti-6Al-4V alloys. The effect is attributed to the vanadium content in the [beta] phase, which is sufficiently high to suppress deformation-induced transformation. On the other hand, the V content should be low enough to retard ductile-brittle transition, typical for the bcc metals at cryogenic temperatures. As a result, marked toughening can be achieved, so that the lowest application temperature of high-strength titanium alloys containing the bcc phase can be decreased significantly.

Akmoulin, I.A.; Niinomi, M.; Kobayashi, T. (Toyohashi Univ. of Technology (Japan). Dept. of Production Systems Engineering)

1994-08-01T23:59:59.000Z

134

Lisburne Formation fracture characterization and flow modeling  

E-Print Network (OSTI)

Evaluation of fractured reservoirs for fluid flow and optimal well placement is often very complicated. In general, fractures enhance permeability and increase access to matrix surface, but their random aspects create difficulties for analysis and performance prediction. Each reservoir has unique aspects which require individual assessment. This study examined fracture properties in a part of the Carboniferous Lisburne Formation. Field study of outcrops yielded information on two sets of large-scale fractures (NNW and ENE orientations) from the lower Wahoo Limestone in the eastern Sadlerochit Mountains. Several statistical methods were used on these data to find appropriate models describing the megafracture properties. For NNW fracture height and ENE fracture spacing, the gamma model appears to adequately describe the distribution. NNW fracture spacing and ENE fracture height are lognormally distributed. Results of the statistical analyses were used as input for fracture set generation and modeling using "FracMan". Modeling different borehole orientations in the fractured domain revealed that horizontal wells with 60? azimuth have an optimal trajectory, resulting in the maximum number and area of fracture connections. The orientation maximizing the number of fracture connections did not necessarily give the maximum area. Conductivity analysis showed that the fracture network is weakly anisotropic and above the percolation threshold. The fracture conductance is strongly dependent on the NNW fracture set; larger fractures influence fluid flow more than smaller fractures. Fracture strike and dip variability increased the system interconnectivity, but did not affect the optimal wellbore orientation. Incorporating ENE fracture termination against the NNW fractures decreased the system conductance and shifted the optimal wellbore trajectory towards the direction perpendicular to the NNW set. Reservoir engineering implications of this study include: guidelines for optimal wellbore orientations, the relative placement of injectors and producers along the bisectors between the two fracture sets, and the importance of including fracture terminations. Further work should investigate the influence of variations in fracture aperture and transmissivities, and drainage area, and extend the analysis to additional units of the Lisburne Group.

Karpov, Alexandre Valerievich

2001-01-01T23:59:59.000Z

135

Relative Permeability of Fractured Rock  

DOE Green Energy (OSTI)

Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

Mark D. Habana

2002-06-30T23:59:59.000Z

136

Fracturing Fluid Characterization Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Documentation Page Documentation Page 1. Report No. DE - FC 21 - 92MC29077 2. 3. Recipient's Accession No. 5. Report Date August 31, 2000 4. Title and Subtitle Fracturing Fluid Characterization Facility 6. 7. Author(s) The University of Oklahoma 8. Performing Organization Rept. No. 10. Project/Task/Work Unit No. 9. Performing Organization Name and Address The University of Oklahoma Sarkeys Energy Center T301 100 E Boyd St Norman, OK 73019 11. Contract (C) or Grant (G) No. DOE:DE FC21 92 MC29077 13. Type of Report & Period Covered Final Report 09 30 92 - 03 31 00 12. Sponsoring Organization Name and Address US Dept of Energy - FETL 3610 Collins Ferry Road Morgantown, WV 26505 14. 15. Supplementary Notes Several technical papers were prepared and presented at various Society of Petroleum Engineers Conferences and US

137

Explosive fracturing method  

SciTech Connect

A method of inducing a fracture system and multiple cavities in earthen formations is described. A first explosive, preferably nuclear, is buried at a sufficient depth so that its subsequent detonation is fully contained within the earth. Thereafter a second explosive, also preferably nuclear, is buried a predetermined distance from the situs of the first explosive. After detonation of the first explosive, time is allowed to elapse during which the cavity formed by the first explosive collapses to form a rubblized chimney. Thereafter, the second explosive is detonated to create a second chimney parallel to that of the first explosive together with a zone of enhanced permeability between the first and second. (10 claims)

Boardman, C.R.; Knutson, C.F.

1973-12-11T23:59:59.000Z

138

Cryogenic expansion joint for large superconducting magnet structures  

DOE Patents (OSTI)

An expansion joint is provided that accommodates dimensional changes occurring during the cooldown and warm-up of large cryogenic devices such as superconducting magnet coils. Flattened tubes containing a refrigerant such as gaseous nitrogen (N.sub.2) are inserted into expansion spaces in the structure. The gaseous N.sub.2 is circulated under pressure and aids in the cooldown process while providing its primary function of accommodating differential thermal contraction and expansion in the structure. After lower temperatures are reached and the greater part of the contraction has occured, the N.sub.2 liquefies then solidifies to provide a completely rigid structure at the cryogenic operating temperatures of the device.

Brown, Robert L. (Kingston, TN)

1978-01-01T23:59:59.000Z

139

The Control System for the Cryogenics in the LHC Tunnel  

E-Print Network (OSTI)

The Large Hadron Collider makes extensive use of superconductors, in magnets for bending and focusing the particles, and in RF cavities for accelerating them, which are operated at 1.9 K and 4.5 K. The process automation for the cryogenic distribution around the accelerator circumference is based on 16 Programmable Logic Controllers, each running 250 control loops, 500 alarms and interlocks, and a phase sequencer. Spread along 27 km and under ionizing radiation, 15 000 cryogenic sensors and actuators are accessed through industrial field networks. We describe the main hardware and software components of the control system, their deployment and commissioning, together with the project organization, challenges faced, and solutions found.

Gomes, P; Antoniotti, F; Avramidou, R; Balle, Ch; Blanco-Viuela, E; Carminati, Ch; Casas-Cubillos, J; Ciechanowski, M; Dragoneas, A; Dubert, P; Fampris, X; Fluder, C; Fortescue, E; Gaj, W; Gousiou, E; Jeanmonod, N; Jod?owski, P; Karagiannis, F; Klisch, M; Lpez, A; Macuda, P; Malinowski, P; Molina, E; Paiva, S; Patsouli, A; Penacoba, G; Sosin, M; Soubiran, M; Suraci, A; Tovar, A; Vauthier, N; Wolak, T; Zwalinski, L

2008-01-01T23:59:59.000Z

140

Cryogenics for superconductors: Refrigeration, delivery, and preservation of the cold  

SciTech Connect

Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-user with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.

Venkatarao Ganni, James Fesmire

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

SPALL FRACTURE AND SPALL FRACTURE AND COMPACTION COMPACTION  

National Nuclear Security Administration (NNSA)

SPALL FRACTURE AND SPALL FRACTURE AND SPALL FRACTURE AND SPALL FRACTURE AND COMPACTION COMPACTION IN NATURAL URANIUM IN NATURAL URANIUM UNDER SHOCK UNDER SHOCK - - WAVE LOADING WAVE LOADING O.A. O.A. Tyupanova Tyupanova , S.S. , S.S. Nadezhin Nadezhin , A.N. , A.N. Malyshev Malyshev , , O.N. O.N. Ignatova Ignatova , V.I. , V.I. Skokov Skokov , V.N. , V.N. Knyazev Knyazev , , V.A. V.A. Raevsky Raevsky , N.A. , N.A. Yukina Yukina Russian Federal Nuclear Center Russian Federal Nuclear Center - - VNIIEF, VNIIEF, Sarov Sarov , Russia , Russia Introduction Introduction  Nucleation and growth of defects inside a solid under pulse tensile stresses signify a necessity to consider it as a damaged medium.  A certain volume of experimental data, obtained in correct tests, which are sensitive to a characteristic under study, is necessary

142

Resistive coating for current conductors in cryogenic applications  

DOE Patents (OSTI)

This invention relates to a resistive or semiconducting coating for use on current conductors in cryogenic applications. This includes copper-clad superconductor wire, copper wire used for stabilizing superconductor magnets, and for hyperconductors. The coating is a film of cuprous sulfide (Cu.sub.2 S) that has been found not to degrade the properties of the conductors. It is very adherent to the respective conductors and satisfies the mechanical, thermal and electrical requirements of coatings for the conductors.

Hirayama, Chikara (Murrysville, PA); Wagner, George R. (Murrysville, PA)

1982-05-18T23:59:59.000Z

143

Apparatus for producing cryogenic inertially driven fusion targets  

SciTech Connect

A new technique for producing uniform layers of solid DT on microballoon surfaces. Local heating of the target, typically by means of a focused laser, within an isothermal freezing cell containing a low pressure cryogenic exchange gas such as helium, vaporizes the DT fuel contained within the microballoon. Removal of the laser heating source causes the DT gas to rapidly condense and freeze in a layer which exhibits a good degree of uniformity.

Miller, John R. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

144

Methods and apparatus for producing cryogenic inertially driven fusion targets  

SciTech Connect

A new technique for producing uniform layers of solid DT on microballoon surfaces. Local heating of the target, typically by means of a focused laser, within an isothermal freezing cell containing a low pressure cryogenic exchange gas such as helium, vaporizes the DT fuel. Removal of the laser heating source causes the DT gas to rapidly condense and freeze in a layer which exhibits a good degree of uniformity.

Miller, John R. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

145

Cryogenics Safety Review of the ATLAS Experiment at CERN  

E-Print Network (OSTI)

The ATLAS detector at CERN to be installed at 90 m depth in a 50,000 m3 underground cavern is of unprecedented size and complexity. This is reflected in the helium and nitrogen cryogenic systems required respectively by the magnets (three large superconducting toroids and the central solenoid with 1.6 GJ stored energy) and by the argon calorimeters containing 82 m3 of liquid which can be drained into two 50 m3 dewars in case of emergency. Further coolants of 11m3 of liquid helium and 15 m3 of liquid nitrogen are stored underground. The potential hazards of the large quantities of cryogens in underground areas require specific attention. Design, construction and quality assurance strictly follow applicable safety rules and the cryogenic process and controls are conceived to actively cope with a number of faults. In severe cases of accidental coolant loss (helium, nitrogen) or argon, detection systems produce alarms which result in the activation of emergency gas extraction. Reviews with international experts...

Haug, F

2005-01-01T23:59:59.000Z

146

Termination for a superconducting power transmission line including a horizontal cryogenic bushing  

DOE Patents (OSTI)

A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

Minati, Kurt F. (Northport, NY); Morgan, Gerry H. (Patchogue, NY); McNerney, Andrew J. (Shoreham, NY); Schauer, Felix (Upton, NY)

1984-01-01T23:59:59.000Z

147

Horizontal cryogenic bushing for the termination of a superconducting power-transmission line  

DOE Patents (OSTI)

A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminated the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

Minati, K.F.; Morgan, G.H.; McNerney, A.J.; Schauer, F.

1982-07-29T23:59:59.000Z

148

Failing Drop CO2 Deposition (Desublimation) Heat Exchanger for the Cryogenic Carbon Capture Process.  

E-Print Network (OSTI)

??Cryogenic carbon capture removes CO2 and other pollutants from flue and waste stream gases produced from the combustion of fossil fuels such as coal, natural (more)

James, David William

2011-01-01T23:59:59.000Z

149

Fracture of aluminum naval structures  

E-Print Network (OSTI)

Structural catastrophic failure of naval vessels due to extreme loads such as underwater or air explosion, high velocity impact (torpedoes), or hydrodynamic loads (high speed vessels) is primarily caused by fracture. ...

Galanis, Konstantinos, 1970-

2007-01-01T23:59:59.000Z

150

Temporary Sealing of Fractures | Open Energy Information  

Open Energy Info (EERE)

Temporary Sealing of Fractures Temporary Sealing of Fractures Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Temporary Sealing of Fractures 2 Geothermal ARRA Funded Projects for Temporary Sealing of Fractures Geothermal Lab Call Projects for Temporary Sealing of Fractures Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

151

Ductile Fracture Handbook: Volume 2  

Science Conference Proceedings (OSTI)

The three-volume Ductile Fracture Handbook provides the structural analyst with computational methods for evaluating the integrity of flawed structures that are fabricated from ductile materials or have loads that may produce significant plasticity, specifically easy-to-use fracture mechanics solutions for a wide range of problems dealing with cylinders subjected to several types of elastic-plastic loading. Volume 2 presents new solutions and significant expansion of previous solutions, typically in the ...

1990-09-01T23:59:59.000Z

152

Ductile Fracture Handbook: Volume 3  

Science Conference Proceedings (OSTI)

The three-volume Ductile Fracture Handbook provides the structural analyst with computational methods for evaluating the integrity of flawed structures that are fabricated from ductile materials or have loads that may produce significant plasticity, specifically easy-to-use fracture mechanics solutions for a wide range of problems dealing with cylinders subjected to several types of elastic-plastic loading. Volume 3 presents solutions for axial part-throughwall cracks, cracks in elbows, tees, and nozzles...

1990-09-01T23:59:59.000Z

153

PRELIMINARY ANALYSIS OF WISE/NEOWISE 3-BAND CRYOGENIC AND POST-CRYOGENIC OBSERVATIONS OF MAIN BELT ASTEROIDS  

Science Conference Proceedings (OSTI)

We present preliminary diameters and albedos for 13511 Main Belt asteroids (MBAs) that were observed during the 3-Band Cryo phase of the Wide-field Infrared Survey Explorer (WISE; after the outer cryogen tank was exhausted) and as part of the NEOWISE Post-Cryo Survey (after the inner cryogen tank was exhausted). With a reduced or complete loss of sensitivity in the two long wavelength channels of WISE, the uncertainty in our fitted diameters and albedos is increased to {approx}20% for diameter and {approx}40% for albedo. Diameter fits using only the 3.4 and 4.6 {mu}m channels are shown to be dependent on the literature optical H absolute magnitudes. These data allow us to increase the number of size estimates for large MBAs which have been identified as members of dynamical families. We present thermal fits for 14 asteroids previously identified as the parents of a dynamical family that were not observed during the fully cryogenic mission.

Masiero, Joseph R.; Mainzer, A. K.; Bauer, J. M.; Cabrera, M. S. [Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Dr., MS 321-520, Pasadena, CA 91109 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ 85719 (United States); Cutri, R. M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Nugent, C., E-mail: Joseph.Masiero@jpl.nasa.gov [Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095 (United States)

2012-11-01T23:59:59.000Z

154

A physically based numerical approach for modeling fracture-matrix interaction in fractured reservoirs  

E-Print Network (OSTI)

modeling fluid and heat flow in fractured porous media, Soc.flow through unsaturated fractured porous media, Proceedings of the Second International Symposium on Dynamics of Fluids

Wu, Yu-Shu; Pruess, Karsten

2004-01-01T23:59:59.000Z

155

A Physically Based Approach for Modeling Multiphase Fracture-Matrix Interaction in Fractured Porous Media  

E-Print Network (OSTI)

modeling fluid and heat flow in fractured porous media, Soc.flow through unsaturated fractured porous media, Proceedings of the Second International Symposium on Dynamics of Fluids

Wu, Yu-Shu; Pan, Lehua; Pruess, Karsten

2004-01-01T23:59:59.000Z

156

The Essential Work of Fracture Method Applied to Mode II Interlaminar Fracture in Fiber Reinforced Polymers.  

E-Print Network (OSTI)

??This thesis presents a new method for determining mode II interlaminar fracture toughness in fiber reinforced polymers (FRP) using the essential work of fracture (EWF) (more)

McKinney, Scott D

2013-01-01T23:59:59.000Z

157

Hydraulic fracture optimization using hydraulic fracture and reservoir modeling in the Piceance Basin, Colorado.  

E-Print Network (OSTI)

??Hydraulic fracturing is an important stimulation method for producing unconventional gas reserves. Natural fractures are present in many low-permeability gas environments and often provide important (more)

Reynolds, Harris Allen

2012-01-01T23:59:59.000Z

158

Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen-Assisted Fracture: Materials Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture Brian Somerday, Chris San Marchi, and Dorian Balch Sandia National Laboratories Livermore, CA Hydrogen Pipeline Working Group Workshop Augusta, GA August 30-31, 2005 SNL has 40+ years experience with effects of high-pressure hydrogen gas on materials * Design and maintenance of welded stainless steel pressure vessels for containment of high-pressure H 2 isotopes - Extensive testing of stainless steels exposed to high-pressure H 2 gas * Six-year program in 1970s focused on feasibility of using natural gas pipeline network for H 2 gas - Materials testing in high-pressure H 2 gas using laboratory specimens and model pipeline - Examined fusion zone and heat affected zones of welds * Active SNL staff have authored 70+ papers and organized 6

159

Baseline Configuration of the Cryogenic System for the International Linear Collider  

SciTech Connect

The paper discusses the main constraints and boundary conditions and describes the baseline configuration of the International Linear Collider (ILC) cryogenic system. The cryogenic layout, architecture and the cooling principle are presented. The paper addresses a plan for study and development required to demonstrate and improve the performance, to reduce cost and to attain the desired reliability.

Casas-Cubillos, J.; Claudet, S.; Parma, V.; Riddone, G.; Serio, L.; Tavian, L.; Vullierme, B.; van Weelderen, R.; /CERN; Chorowski, M.; /Wroclaw Tech. U.; Ganni, R.; Rode, C.; /Jefferson Lab; Klebaner, A.; Peterson, T.; Theilacker, J.; /Fermilab; Rousset, B.; /Grenoble, CEN; Weisend, J.; /SLAC

2007-06-18T23:59:59.000Z

160

First results from cryogenic target implosions on OMEGAa... C. Stoeckl,b)  

E-Print Network (OSTI)

Ignition Facility NIF W. J. Hogan, E. I. Moses, B. E. Warner et al., Nucl. Fusion 41, 567 2001 . Polymer. These initial results are encouraging for future cryogenic implosions on OMEGA and the NIF. © 2002 American design for the National Ignition Facility NIF 1 is a thick cryogenic DT-ice layer enclosed in a thin CH

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nonisothermal injection tests in fractured reservoirs  

DOE Green Energy (OSTI)

The paper extends the analysis of nonisothermal pressure transient data to fractured reservoirs. Two cases are considered: reservoirs with predominantly horzontal fractures and reservoirs with predominantly vertical fractures. Effects of conductive heat transfer between the fractures and the rock matrix are modeled, and the resulting pressure transients evaluated. Thermal conduction tends to retard the movement of the thermal front in the fractures, which significantly affects the pressure transient data. The purpose of the numerical simulation studies is to provide methods for analyzing nonisothermal injection/falloff data for fractured reservoirs.

Cox, B.L.; Bodvarsson, G.S.

1985-01-01T23:59:59.000Z

162

Monitoring hydraulic fracture growth: Laboratory experiments  

Science Conference Proceedings (OSTI)

The authors carry out small-scale hydraulic fracture experiments to investigate the physics of hydraulic fracturing. The laboratory experiments are combined with time-lapse ultrasonic measurements with active sources using both compressional and shear-wave transducers. For the time-lapse measurements they focus on ultrasonic measurement changes during fracture growth. As a consequence they can detect the hydraulic fracture and characterize its shape and geometry during growth. Hence, this paper deals with fracture characterization using time-lapse acoustic data. Hydraulic fracturing is used in the oil and gas industry to stimulate reservoir production.

Groenenboom, J.; Dam, D.B. van

2000-04-01T23:59:59.000Z

163

IMPROVEMENTS TO THE CRYOGENIC CONTROL SYSTEM ON DIII-D  

Science Conference Proceedings (OSTI)

OAK-B135 The cryogenic facility that is part of the DIII-D tokamak system supplies liquid nitrogen and liquid helium to the superconducting magnets used for electron cyclotron heating, the D{sub 2} pellet injection system, cryopumps in the DIII-D vessel, and cryopanels in the neutral beam injection system. The liquid helium is liquefied on site using a Sulzer liquefier that has a 150 l/h liquefaction rate. Control of the cryogenic facility at DIII-D was initially accomplished through the use of three different programmable logic controllers (PLCs). Recently, two of those three PLCs, a Sattcon PLC controlling the Sulzer liquefier and a Westinghouse PLC, were removed and all their control logic was merged into the remaining PLC, a Siemens T1555. This replacement was originally undertaken because the removed PLCs were obsolete and unsupported. However, there have been additional benefits from the replacement. The replacement of the RS-232 serial links between the graphical user interface and the PLCs with a high speed Ethernet link allows for real-time display and historical trending of nearly all the cryosystem's data. this has greatly increased the ability to troubleshoot problems with the system, and has permitted optimization of the cryogenic system's performance because of the increased system integration. To move the control logic of the Sattcon control loops into the T1555, an extensive modification of the basic PID control was required. These modifications allow for better control of the control loops and are now being incorporated in other control loops in the system.

HOLTROP,K.L; ANDERSON,P.M; MAUZEY,P.S

2003-10-01T23:59:59.000Z

164

IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 10, OCTOBER 2005 3823 Design of a Superhigh-Speed Cryogenic Permanent  

E-Print Network (OSTI)

-Speed Cryogenic Permanent Magnet Synchronous Motor Liping Zheng1, Thomas X. Wu1, Dipjyoti Acharya2, Kalpathy B and simulation of a superhigh-speed permanent magnet synchronous motor (PMSM) that operates in the cryogenic Terms--Cryogenics, permanent magnet synchronous motor (PMSM), superhigh speed, V/f control. I

Wu, Shin-Tson

165

Performance of the MFTF magnet cryogenic power leads  

Science Conference Proceedings (OSTI)

The cryogenic power lead system for the MFTF superconducting magnets has been acceptance tested and operated with the magnets. This system, which includes 5-m-long superconducting buses, 1.5-m-long vapor-cooled transition leads, external warm buses, and a cryostack, can conduct up to 6000 A (dc) and operate adiabatically for long periods. We present both design details and performance data; our MFTF version is an example of a reliable lead system for large superconducting magnets contained in a much larger vacuum vessel.

VanSant, J.H.

1983-11-30T23:59:59.000Z

166

Novel Approaches and Alternative Cryogens for Cooling a Superconducting Cable  

Science Conference Proceedings (OSTI)

EPRI has been a pioneer in the development of a long-distance superconducting dc cable, which is described in EPRI report 1020458. There is now worldwide interest in the technology, much of which is based on EPRIs concept. This report extends one aspect of the EPRI design to improve performance and reduce costs. It addresses the issue of using liquid air as the cryogenic fluid that is used to cool the cable. The use of air instead of liquid nitrogen eliminates the potential hazard of oxygen ...

2012-12-12T23:59:59.000Z

167

Cryogenic method for measuring nuclides and fission gases  

DOE Patents (OSTI)

A cryogenic method is provided for determining airborne gases and particulates from which gamma rays are emitted. A special dewar counting vessel is filled with the contents of the sampling flask which is immersed in liquid nitrogen. A vertically placed sodium-iodide or germanium-lithium gamma-ray detector is used. The device and method are of particular use in measuring and identifying the radioactive noble gases including emissions from coal-fired power plants, as well as fission gases released or escaping from nuclear power plants.

Perdue, P.T.; Haywood, F.F.

1980-05-02T23:59:59.000Z

168

Quality Assurance of LHC Cryogenic Instrumentation during Installation and Commissioning  

E-Print Network (OSTI)

The operation and monitoring of the LHC requires a cryogenic instrumentation system of an unprecedented size (800 instrumentation crates, holding 15000 sensors and actuators), with strict constraints on temperature measurement uncertainty and radiation hardness for all sensors and actuators. This paper presents the applied procedures of quality assurance and the specific hard- & software tools used to meet and track the mentioned requirements during its lifetime (fabrication, installation, commissioning, operation and maintenance); within the given constraints of time schedule, accessibility and coordination with other teams.

Lopez Lorente, A; Casas-Cubillos, J; Fortescue, E; Gomes, P; Jeanmonod, N; Peacoba, G; Vauthier, N

2008-01-01T23:59:59.000Z

169

FABRICATION OF WINDOW SADDLES FOR NIF CRYOGENIC HOHLRAUMS  

Science Conference Proceedings (OSTI)

OAK-B135 A planar diagnostic viewing port attached to the cylindrical wall of the NIF cryogenic hohlraum requires a saddle-like transition piece. While the basic design of this window saddle is straightforward, its fabrication is not, given the scale and precision of the component. They solved the problem through the use of a two segment copper mandrel to electroform the gold window saddle. The segments were micro-machined using a combination of single-point diamond turning and single point diamond milling. These processes as well as the electroplating conditions, final machining and mandrel removal are described in this paper.

GIRALDEZ,E; KAAE,J.L

2003-06-01T23:59:59.000Z

170

Analysis of hydrogen vehicles with cryogenic high pressure storage  

DOE Green Energy (OSTI)

Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LIQ) or ambient-temperature compressed hydrogen (CH2). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

Aceves, S. M.; Berry, G. D.

1998-06-19T23:59:59.000Z

171

Electrical Insulation Paper and Its Physical Properties at Cryogenic Temperatures  

Science Conference Proceedings (OSTI)

Paper is widely used in various engineering applications due to its physical properties and ease of manufacture. As a result paper has been selected or designed as an electrical insulation material for parts and components in high voltage technology. In the current study we select a paper employed in conventional transformers as the electrical insulation material. The potential of this paper is investigated at cryogenic temperatures to determine its physical properties for high temperature superconducting power applications. Dielectric measurements were performed using impedance spectroscopy at a constant frequency. Dielectric breakdown tests were performed on samples at 77 K using a liquid nitrogen bath.

Tuncer, Enis [ORNL; Polyzos, Georgios [ORNL; Sauers, Isidor [ORNL; James, David Randy [ORNL

2011-01-01T23:59:59.000Z

172

Energy Efficiency in Cryogenic Fractionation Through Distributive Distillation  

E-Print Network (OSTI)

The Advanced Recovery System (ARS) is a patented process that uses the principle of distributed distillation to achieve energy efficiency in the olefins process. This paper describes the concept of ARS and how, by integrating the chill-down and cryogenic fractionation steps, the technology can significantly reduce refrigeration power requirements. ARS technology can be applied to revamps of existing plants as well as new plant designs. Additional applications are now being considered in the integration of refinery off-gas streams with other olefins process.

Carradine, C. R.; McCue, R. H.

1992-04-01T23:59:59.000Z

173

Hydraulic Fracturing | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Fracturing Hydraulic Fracturing Jump to: navigation, search More info on OpenEI Oil and Gas Gateway Federal Environmental Statues Federal Oil and Gas Statutes Oil and Gas Companies United States Oil and Gas Boards International Oil and Gas Boards Other Information Fracking Regulations by State Wells by State Fracking Chemicals Groundwater Protection Related Reports A Perspective on Health and Natural Gas Operations: A Report for Denton City Council Just the Fracking Facts The Politics of 'Fracking': Regulating Natural Gas Drilling Practices in Colorado and Texas Addressing the Environmental Risks from Shale Gas Development Water Management Technologies Used by Marcellus Shale Gas Producers Methane contamination of drinking wateraccompanying gas-well drilling and hydraulic fracturing

174

Method for directional hydraulic fracturing  

DOE Patents (OSTI)

A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

Swanson, David E. (West St. Paul, MN); Daly, Daniel W. (Crystal, MN)

1994-01-01T23:59:59.000Z

175

Acoustic Character Of Hydraulic Fractures In Granite  

E-Print Network (OSTI)

Hydraulic fractures in homogeneous granitic rocks were logged with conventional acoustic-transit-time, acoustic-waveform, and acoustic-televiewer logging systems. Fractured intervals ranged in depth from 45 to 570m. and ...

Paillet, Frederick I.

1983-01-01T23:59:59.000Z

176

ATLAS magnet common cryogenic, vacuum, electrical and control systems  

E-Print Network (OSTI)

The superconducting Magnet System for the ATLAS detector at the LHC at CERN comprises a Barrel Toroid, two End Cap Toroids and a Central Solenoid with overall dimensions of 20 m diameter by 26 m length and a stored energy of 1.6 GJ. Common proximity cryogenic and electrical systems for the toroids are implemented. The Cryogenic System provides the cooling power for the 3 toroid magnets considered as a single cold mass (600 tons) and for the CS. The 21 kA toroid and the 8 kA solenoid electrical circuits comprise both a switch-mode power supply, two circuit breakers, water cooled bus bars, He cooled current leads and the diode resistor ramp-down unit. The Vacuum System consists of a group of primary rotary pumps and sets of high vacuum diffusion pumps connected to each individual cryostat. The Magnet Safety System guarantees the magnet protection and human safety through slow and fast dump treatment. The Magnet Control System ensures control, regulation and monitoring of the operation of the magnets. The update...

Miele, P; Delruelle, N; Geich-Gimbel, C; Haug, F; Olesen, G; Pengo, R; Sbrissa, E; Tyrvainen, H; ten Kate, H H J

2004-01-01T23:59:59.000Z

177

Cryogenic methane separation/catalytic hydrogasification process analysis. Quarterly report  

Science Conference Proceedings (OSTI)

The objective of this coordinated research program is to obtain the most attractive combinations of acid gas removal, methane separation for the Exxon Catalytic Coal Gasification (CCG) and the Rockwell/Cities Service Hydrogasification processes. The program is divided into nine subtasks with each subtask studying the effect of variation of a key design parameter on the treatment cost of the SNG produced. Progress reports of 8 subtasks are presented. The following are some of the highlights. Subtask 1 - Heat and material balance and equipment sizing was completed for the cryogenic methane separation. The overall material balance is presented in a table. Subtask 2 - Preliminary designs for MEA and DEA gas removal systems were established. Subtasks 3 to 5 - Economic evaluation is in proress. Subtask 6 - The SNG product compressor train was simulated for the case where sufficient SNG fuel is withdrawn from the product compressors to fire the dryer reactivation heater. Subtask 7 - Acid gas removal and cryogenic separation equipment was resized to accommodate Exxon's request for a two-train plant design. Subtask 8 - The Benfield and Selexol systems will be evaluated for acid gas removal.

Klosek, J.

1981-02-13T23:59:59.000Z

178

The Cryogenic System for the SLAC E158 Experiment  

DOE Green Energy (OSTI)

E158 is a fixed target experiment at SLAC in which high energy (up to 48 GeV) polarized electrons are scattered off the unpolarized electrons in a 1.5 m long liquid hydrogen target. The total volume of liquid hydrogen in the system is 55 l. The beam can deposit as much as 700 W into the liquid hydrogen. Among the requirements for the system are: that density fluctuations in the liquid hydrogen be kept to a minimum, that the target can be moved out of the beam line while cold and replaced to within 2 mm and that the target survive lifetime radiation doses of up to 1 x 10{sup 6} GY. The cryogenic system for the experiment consists of the target itself, the cryostat containing the target, a refurbished CTI 4000 refrigerator providing more than 1 kW of cooling at 20 K and associated transfer lines and valve boxes. This paper discusses the requirements, design, construction, testing and operation of the cryogenic system. The unique features of the design associated with hydrogen safety and the high radiation field in which the target resides are also covered.

Weisend, John G

2001-07-12T23:59:59.000Z

179

Thermal Infrared Exposure of Cryogenic Indirect Drive ICF Targets  

DOE Green Energy (OSTI)

Cryogenic inertial confinement fusion targets at the National Ignition Facility and the Laser Megajoule will be protected from thermal infrared radiation by a cold shroud. As the shroud is removed just before the laser pulse, infrared radiation will heat and possibly degrade the symmetry of the solid hydrogen fuel layer. A lumped component mathematical model has been constructed to calculate how long an indirect drive target can be exposed to thermal radiation before the fuel layer degrades. The allowed exposure time sets the maximum shroud removal time and therefore has important implications for the design of the cryogenic shroud systems. The model predicts that the maximum exposure time is approximately 0.18 s for plastic capsules inside hohlraums with transparent laser entrance holes. By covering the laser entrance holes with a partially reflective coating, the exposure time can be increased to approximately 1 s. The exposure time can be increased to about 2 s by using beryllium capsules. Several other design concepts could increase the exposure time even further. Lengthening of the allowed exposure time to 1 s or longer could allow a significant cost savings for the shroud system.

London, R A; Moody, J D; Sanchez, J J; Sater, J D; Haid, B J; Bittner, D N

2005-07-08T23:59:59.000Z

180

APPROACHING CRYOGENIC GE PERFORMANCE WITH PELTIER COOLED CDTE  

Science Conference Proceedings (OSTI)

A new class of hand-held, portable spectrometers based on large area (lcm2) CdTe detectors of thickness up to 3mm has been demonstrated to produce energy resolution of between 0.3 and 0.5% FWHM at 662 keV. The system uses a charge loss correction circuit for improved efficiency, and detector temperature stabilization to ensure consistent operation of the detector during field measurements over a wide range of ambient temperature. The system can operate continuously for up to 8hrs on rechargeable batteries. The signal output from the charge loss corrector is compatible with most analog and digital spectroscopy amplifiers and multi channel analyzers. Using a detector measuring 11.2 by 9.1 by 2.13 mm3, we have recently been able to obtain the first wide-range plutonium gamma-ray isotopic analysis with other than a cryogenically cooled germanium spectrometer. The CdTe spectrometer is capable of measuring small plutonium reference samples in about one hour, covering the range from low to high burnup. The isotopic analysis software used to obtain these results was FRAM, Version 4 from LANL. The new spectrometer is expected to be useful for low-grade assay, as well as for some in-situ plutonium gamma-ray isotopics in lieu of cryogenically cooled Ge.

Khusainov, A. K. (A. Kh.); Iwanczyk, J. S. (Jan S.); Patt, B. E. (Bradley E.); Prirogov, A. M. (Alexandre M.); Vo, Duc T.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Investigation related to hydrogen isotopes separation by cryogenic distillation  

Science Conference Proceedings (OSTI)

Research conducted in the last fifty years has shown that one of the most efficient techniques of removing tritium from the heavy water used as moderator and coolant in CANDU reactors (as that operated at Cernavoda (Romania)) is hydrogen cryogenic distillation. Designing and implementing the concept of cryogenic distillation columns require experiments to be conducted as well as computer simulations. Particularly, computer simulations are of great importance when designing and evaluating the performances of a column or a series of columns. Experimental data collected from laboratory work will be used as input for computer simulations run at larger scale (for The Pilot Plant for Tritium and Deuterium Separation) in order to increase the confidence in the simulated results. Studies carried out were focused on the following: - Quantitative analyses of important parameters such as the number of theoretical plates, inlet area, reflux flow, flow-rates extraction, working pressure, etc. - Columns connected in series in such a way to fulfil the separation requirements. Experiments were carried out on a laboratory-scale installation to investigate the performance of contact elements with continuous packing. The packing was manufactured in our institute. (authors)

Bornea, A.; Zamfirache, M.; Stefanescu, I.; Preda, A.; Balteanu, O.; Stefan, I. [INC-DTCI-ICSI Rm. Valcea, str.Uzinei, Nr.4, 240050 (Romania)

2008-07-15T23:59:59.000Z

182

Effects of dry fractures on matrix diffusion in unsaturated fractured rocks  

E-Print Network (OSTI)

Symposium on Multiphase Transport in Porous Media, ASMEmultiphase heat and mass flow in unsaturated fractured porous

Seol, Yongkoo; Liu, Hui Hai; Bodvarsson, Gudmundur S.

2002-01-01T23:59:59.000Z

183

Dissipative particle dynamics simulation of fluid motion through an unsaturated fracture and fracture junction  

Science Conference Proceedings (OSTI)

Multiphase fluid motion in unsaturated fractures and fracture networks involves complicated fluid dynamics, which is difficult to model using grid-based continuum methods. In this paper, the application of dissipative particle dynamics (DPD), a relatively ... Keywords: Dissipative particle dynamics (DPD), Fracture, Fracture flow, Smoothed particle hydrodynamics (SPH), Weight functions

Moubin Liu; Paul Meakin; Hai Huang

2007-03-01T23:59:59.000Z

184

Summary of Linear Elastic Fracture Mechanics Concepts  

Science Conference Proceedings (OSTI)

...in this Volume."Stress Intensity Factors"A brief summary of linear elastic fracture mechanics (LEFM) concepts

185

Development of a fixation device for robot assisted fracture reduction of femoral shaft fractures: A biomechanical study  

Science Conference Proceedings (OSTI)

Robot assisted fracture reduction of femoral shaft fractures provides precise alignment while reducing the amount of intraoperative imaging. The connection between the robot and the fracture fragment should allow conventional intramedullary nailing, ... Keywords: Robot, femur shaft, fracture reduction, interface

T. S. Weber-Spickschen; M. Oszwald; R. Westphal; C. Krettek; F. Wahl; T. Gosling

2010-08-01T23:59:59.000Z

186

Optimizing fracture stimulation using treatment-well tiltmeters and integrated fracture modeling  

Science Conference Proceedings (OSTI)

This paper covers the optimization of hydraulic fracture treatments in a new coalbed methane (CBM) reservoir in Wyoming. A multiwell pilot project was conducted in the Copper Ridge (CR) field to assess future development potential. Hydraulic fracture mapping was successfully performed with treatment-well tiltmeters on six wells including the first-ever used on propped treatments. The mapped fracture height was then used to calibrate the fracture model, perform on-site fracture-design changes, and optimize future fracture treatments. This paper shows how early use of fracture diagnostics can assist in the development of a new reservoir.

Mayerhofer, M.; Stutz, L.; Davis, E.; Wolhart, S. [Pinnacle Technology Houston, Houston, TX (United States)

2006-05-15T23:59:59.000Z

187

Fractured shale reservoirs: Towards a realistic model  

Science Conference Proceedings (OSTI)

Fractured shale reservoirs are fundamentally unconventional, which is to say that their behavior is qualitatively different from reservoirs characterized by intergranular pore space. Attempts to analyze fractured shale reservoirs are essentially misleading. Reliance on such models can have only negative results for fractured shale oil and gas exploration and development. A realistic model of fractured shale reservoirs begins with the history of the shale as a hydrocarbon source rock. Minimum levels of both kerogen concentration and thermal maturity are required for effective hydrocarbon generation. Hydrocarbon generation results in overpressuring of the shale. At some critical level of repressuring, the shale fractures in the ambient stress field. This primary natural fracture system is fundamental to the future behavior of the fractured shale gas reservoir. The fractures facilitate primary migration of oil and gas out of the shale and into the basin. In this process, all connate water is expelled, leaving the fractured shale oil-wet and saturated with oil and gas. What fluids are eventually produced from the fractured shale depends on the consequent structural and geochemical history. As long as the shale remains hot, oil production may be obtained. (e.g. Bakken Shale, Green River Shale). If the shale is significantly cooled, mainly gas will be produced (e.g. Antrim Shale, Ohio Shale, New Albany Shale). Where secondary natural fracture systems are developed and connect the shale to aquifers or to surface recharge, the fractured shale will also produce water (e.g. Antrim Shale, Indiana New Albany Shale).

Hamilton-Smith, T. [Applied Earth Science, Lexington, KY (United States)

1996-09-01T23:59:59.000Z

188

Geomechanical Simulation of Fluid-Driven Fractures  

SciTech Connect

The project supported graduate students working on experimental and numerical modeling of rock fracture, with the following objectives: (a) perform laboratory testing of fluid-saturated rock; (b) develop predictive models for simulation of fracture; and (c) establish educational frameworks for geologic sequestration issues related to rock fracture. These objectives were achieved through (i) using a novel apparatus to produce faulting in a fluid-saturated rock; (ii) modeling fracture with a boundary element method; and (iii) developing curricula for training geoengineers in experimental mechanics, numerical modeling of fracture, and poroelasticity.

Makhnenko, R.; Nikolskiy, D.; Mogilevskaya, S.; Labuz, J.

2012-11-30T23:59:59.000Z

189

Structural Settings Of Hydrothermal Outflow- Fracture Permeability  

Open Energy Info (EERE)

Settings Of Hydrothermal Outflow- Fracture Permeability Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structural Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Details Activities (1) Areas (1) Regions (0) Abstract: Hydrothermal outflow occurs most commonly at the terminations of individual faults and where multiple faults interact. These areas of fault propagation and interaction are sites of elevated stress termed breakdown regions. Here, stress concentrations cause active fracturing and continual re-opening of fluid-flow conduits, permitting long-lived hydrothermal flow despite potential clogging of fractures due to mineral precipitation. As

190

Pressurized Items and Cryogens Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pressurized Systems and Cryogens Pressurized Systems and Cryogens Performance Objective: Assure personnel health and safety through regularly scheduled inspections and maintenance on pressure vessels and equipment, compressed gases and gas cylinders, vacuum equipment and systems, hydraulics, and cryogenic materials and systems. Performance Criteria: BN inspects, operates and safely stores unmodified compressed-gas or liquid cylinders approved by the Department of Transportation (DOT) and the appropriate regulators. BN inspects, operates and maintains refrigeration systems that comply with the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Codes, and applicable Air Conditioning and Refrigeration Institute (ARI) standards. BN inspects, operates and maintains pressure systems that operate at an

191

Performance characterization of photonic links in cryogenic environments for advanced signal processing applications. Revision 1  

Science Conference Proceedings (OSTI)

Low temperature experiments have been conducted to characterize the performance of high speed photodetectors and LiNbO{sub 3} optical modulators in cryogenic environments down to 4.2 K. Metal-semiconductor-metal (MSM) photodiodes fabricated from GaAs and InGaAs have been characterized. Results demonstrate that both the responsivity and bandwidth depend on temperature. Specific modulator parameters quantified at cryogenic temperatures include bandwidth, V{pi} (half wave voltage), optical loss and package stability. The successful operation of MSM photodiodes and LiNbO{sub 3} modulators at cryogenic temperatures enables a high sensitivity fiber optic approach to superconducting circuit interfaces.

McCammon, K.; Morse, J.; Masquelier, D.; McConaghey, C.; Garrett, H.; Hugenberg, K.; Lowry, M. [Lawrence Livermore National Lab., CA (United States); Track, E.; Bunz, L. [HYPRES, Inc., Elmsford, NY (United States)

1994-01-01T23:59:59.000Z

192

Method for enhancement of sequential hydraulic fracturing using control pulse fracturing  

Science Conference Proceedings (OSTI)

A method is described for creating multiple sequential hydraulic fractures via hydraulic fracturing combined with controlled pulse fracturing where two wells are utilized comprising: (a) drilling and completing a first and second well so that the wells will be in fluid communication with each other after subsequent fracturing in each well; (b) creating more than two simultaneous multiple vertical fractures via a controlled pulse fracturing method in the second well; (c) thereafter hydraulically fracturing the reservoir via the first well thereby creating fractures in the reservoir and afterwards shutting-in the first well without any induced pressure; (d) applying thereafter hydraulic pressure to the reservoir via the second well in an amount sufficient to fracture the reservoir thereby forming a first hydraulic fracture perpendicular to the least principal in-situ stress; (e) maintaining the hydraulic pressure on the reservoir while pumping via the second well alternate slugs of a thin-fluid spacer and a temporary blocking agent having a proppant therein whereupon a second hydraulic fracture is initiated; (f) maintaining the hydraulic pressure on the second well while pumping alternate slugs of spacer and blocking agent into the second hydraulic fracture thereby causing the second hydraulic fracture to propagate away from the first hydraulic fracture in step (e) in a curved trajectory which intersects a fracture created in the first well; (g) maintaining the hydraulic pressure while pumping as in step (f) whereupon another hydraulic fracture initiates causing another curved fracture trajectory to form and intersect the fracture created in the first well; and (h) repeated steps (f) and (g) until a desired number of hydraulic fractures are created which allows a substantial improvement in removing a natural resource from the reservoir.

Jennings, A.R. Jr.; Strubhar, M.K.

1993-07-20T23:59:59.000Z

193

RESEARCH PROGRAM ON FRACTURED PETROLEUM RESERVOIRS  

Science Conference Proceedings (OSTI)

Numerical simulation of water injection in discrete fractured media with capillary pressure is a challenge. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, they use a discrete-fracture model in which the fractures are discretized as one dimensional entities to account for fracture thickness by an integral form of the flow equations. This simple step greatly improves the numerical solution. Then the discrete-fracture model is implemented using a Galerkin finite element method. The robustness and the accuracy of the approach are shown through several examples. First they consider a single fracture in a rock matrix and compare the results of the discrete-fracture model with a single-porosity model. Then, they use the discrete-fracture model in more complex configurations. Numerical simulations are carried out in water-wet media as well as in mixed-wet media to study the effect of matrix and fracture capillary pressures.

Abbas Firoozabadi

2002-04-12T23:59:59.000Z

194

Interaction between Injection Points during Hydraulic Fracturing  

E-Print Network (OSTI)

We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

Hals, Kjetil M D

2012-01-01T23:59:59.000Z

195

Microseismic Tracer Particles for Hydraulic Fracturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Microseismic Tracer Particles for Hydraulic Fracturing Microseismic Tracer Particles for Hydraulic Fracturing Microseismic Tracer Particles for Hydraulic Fracturing Scientists at Los Alamos National Laboratory have developed a method by which microseismic events can be discriminated/detected that correspond to only the portion of the hydraulic fracture that contains the proppant material and can be expected to be conductive to the flow of oil and gas. July 3, 2013 Microseismic Tracer Particles for Hydraulic Fracturing Figure 1: A graph of ionic conductivity as a function of temperature for the anti-perovskite Li3OCl. Available for thumbnail of Feynman Center (505) 665-9090 Email Microseismic Tracer Particles for Hydraulic Fracturing Applications: Oil and gas production Geophysical exploration Benefits: Tracks the disposition of material in a hydraulic fracturing

196

Hydrodynamics of a vertical hydraulic fracture  

DOE Green Energy (OSTI)

We have developed a numerical algorithm, HUBBERT, to simulate the hydrodynamics of a propagating vertical, rectangular fracture in an elastic porous medium. Based on the IFD method, this algorithm assumes fracture geometry to be prescribed. The breakdown and the creation of the incipient fracture is carried out according to the Hubbert-Willis theory. The propagation of the fracture is based on the criterion provided by Griffith, based on energy considerations. The deformation properties of the open fracture are based on simple elasticity solutions. The fracture is assumed to have an elliptical shape to a distance equal to the fracture height, beyond which the shape is assumed to be parallel plate. A consequence of Griffith's criterion is that the fracture must propagate in discrete steps. The parametric studies carried out suggest that for a clear understanding of the hydrodynamics of the hydraulic fracture many hitherto unrecognized parameters must be better understood. Among these parameters one might mention, efficiency, aperture of the newly formed fracture, stiffness of the newly formed fracture, relation between fracture aperture and permeability, and well bore compliance. The results of the studies indicate that the patterns of pressure transients and the magnitudes of fracture length appear to conform to field observations. In particular, the discrete nature of fracture propagation as well as the relevant time scales of interest inferred from the present work seem to be corroborated by seismic monitoring in the field. The results suggest that the estimation of least principal stress can be reliably made either with shut in data or with reinjection data provided that injection rates are very small.

Narasimhan, T.N.

1987-03-24T23:59:59.000Z

197

Performance prediction of cryogenically cooled silicon crystal monochromator  

SciTech Connect

To predict the performance of the cryogenically cooled silicon crystal, intensive studies have been carried out to sort out the influences of various parameters, such as heat load power and power distribution, cooling coefficient, and beam size. The thermal slope error of the crystal is calculated by finite element modeling. Quadratic law was applied to calculate the rocking-curve width. Heat load tests were also performed with a channel-cut silicon monochromator on beamline ID09 at the European Synchrotron Radiation Facility (ESRF). The silicon crystal is indirectly cooled from the sides by liquid nitrogen. Measured rocking-curve widths are compared with those calculated by finite element modeling. When we include the broadening from the intrinsic rocking-curve width and mounting strain, the calculated rocking-curve width versus heat load is in excellent agreement with experiment.

Zhang Lin; Wulff, Michael; Eybert, Laurent [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Lee, Wah-Keat [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France)

2004-05-12T23:59:59.000Z

198

A High Reliability Gas-driven Helium Cryogenic Centrifugal Compressor  

E-Print Network (OSTI)

A helium cryogenic compressor was developed and tested in real conditions in 1996. The achieved objective was to compress 0.018 kg/s Helium at 4 K @ 1000 Pa (10 mbar) up to 3000 Pa (30 mbar). This project was an opportunity to develop and test an interesting new concept in view of future needs. The main features of this new specific technology are described. Particular attention is paid to the gas bearing supported rotor and to the pneumatic driver. Trade off between existing technologies and the present work are presented with special stress on the bearing system and the driver. The advantages are discussed, essentially focused on life time and high reliability without maintenance as well as non pollution characteristic. Practical operational modes are also described together with the experimental performances of the compressor. The article concludes with a brief outlook of future work.

Bonneton, M; Gistau-Baguer, Guy M; Turcat, F; Viennot, P

1998-01-01T23:59:59.000Z

199

Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test  

E-Print Network (OSTI)

Unconventional gas has become an important resource to help meet our future energy demands. Although plentiful, it is difficult to produce this resource, when locked in a massive sedimentary formation. Among all unconventional gas resources, tight gas sands represent a big fraction and are often characterized by very low porosity and permeability associated with their producing formations, resulting in extremely low production rate. The low flow properties and the recovery factors of these sands make necessary continuous efforts to reduce costs and improve efficiency in all aspects of drilling, completion and production techniques. Many of the recent improvements have been in well completions and hydraulic fracturing. Thus, the main goal of a hydraulic fracture is to create a long, highly conductive fracture to facilitate the gas flow from the reservoir to the wellbore to obtain commercial production rates. Fracture conductivity depends on several factors, such as like the damage created by the gel during the treatment and the gel clean-up after the treatment. This research is focused on predicting more accurately the fracture conductivity, the gel damage created in fractures, and the fracture cleanup after a hydraulic fracture treatment under certain pressure and temperature conditions. Parameters that alter fracture conductivity, such as polymer concentration, breaker concentration and gas flow rate, are also examined in this study. A series of experiments, using a procedure of dynamical fracture conductivity test, were carried out. This procedure simulates the proppant/frac fluid slurries flow into the fractures in a low-permeability rock, as it occurs in the field, using different combinations of polymer and breaker concentrations under reservoirs conditions. The result of this study provides the basis to optimize the fracturing fluids and the polymer loading at different reservoir conditions, which may result in a clean and conductive fracture. Success in improving this process will help to decrease capital expenditures and increase the production in unconventional tight gas reservoirs.

Correa Castro, Juan

2011-05-01T23:59:59.000Z

200

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network (OSTI)

improving production by hydraulic fracturing 8 the focus otfor fractures. (d) Hydraulic Fracturing: The model has been

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization  

E-Print Network (OSTI)

We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by ...

Barnes, Alexander B.

202

Heat-transfer dynamics during cryogen spray cooling of substrate at different initial temperatures  

E-Print Network (OSTI)

Aguilar G 2004 Radial heat transfer dynamics during cryogenof droplet dynamics and heat transfer in spray cooling Exp.S0031-9155(04)84030-2 Heat-transfer dynamics during cryogen

Jia, W; Aguilar, G; Wang, G X; Nelson, J S

2004-01-01T23:59:59.000Z

203

Ten-Inch Manipulator-Based Neutron Temporal Diagnostic for Cryogenic Experiments on OMEGA  

SciTech Connect

Measurements of the neutron emission from inertial confinement fusion (ICF) implosions provide important information about target performance that can be compared directly with numerical models. For ''warm'' target experiments on LLE's OMEGA the neutron temporal diagnostic (NTD), originally developed at LLNL, is used to measure the neutron burn history with high resolution and timing accuracy. Due to the standoff required by the cryogenic target handling system, NTD is mechanically incompatible with cryogenic target experiments. This presentation describes a new cryogenic- compatible neutron temporal diagnostic (cryoNTD), which has been designed for LLE's standard ten-inch-manipulator (TIM) diagnostic inserters. First experimental results of the performance of the cryoNTD compared to NTD on warm direct-drive implosions and on cryogenic implosions will be presented.

Stoeckl, C.; Glebov, V.Yu.; Roberts, S.; Sangster, T.C.; Lerche, R.A.; Griffith, R.L.; Sorce, C.

2003-03-03T23:59:59.000Z

204

Hydraulic fracturing of jointed formations  

DOE Green Energy (OSTI)

Measured by volume, North America's largest hydraulic fracturing operations have been conducted at Fenton Hill, New Mexico to create geothermal energy reservoirs. In the largest operation 21,000 m/sup 3/ of water were injected into jointed granitic rock at a depth of 3.5 km. Microearthquakes induced by this injection were measured with geophones placed in five wells drilled into, or very close, to the reservoir, as well as 11 surface seismometers. The large volume of rock over which the microearthquakes were distributed indicates a mechanism of hydraulic stimulation which is at odds with conventional fracturing theory, which predicts failure along a plane which is perpendicular to the least compressive earth stress. A coupled rock mechanics/fluid flow model provides much of the explanation. Shear slippage along pre-existing joints in the rock is more easily induced than conventional tensile failure, particularly when the difference between minimum and maximum earth stresses is large and the joints are oriented at angles between 30 and 60 degrees to the principal earth stresses, and a low viscosity fluid like water is injected. Shear slippage results in local redistribution of stresses, which allows a branching, or dendritic, stimulation pattern to evolve, in agreement with the patterns of microearthquake locations. These results are qualitatively similar to the controversial process known as ''Kiel'' fracturing, in which sequential injections and shut-ins are repeated to create dendritic fractures for enhanced oil and gas recovery. However, we believe that the explanation is shear slippage of pre-existing joints and stress redistribution, not proppant bridging and fluid blocking as suggested by Kiel. 15 refs., 10 figs.

Murphy, H.D.; Fehler, M.C.

1986-01-01T23:59:59.000Z

205

Fluid Flow Within Fractured Porous Media  

Science Conference Proceedings (OSTI)

Fractures provide preferential flow paths to subterranean fluid flows. In reservoir scale modeling of geologic flows fractures must be approximated by fairly simple formulations. Often this is accomplished by assuming fractures are parallel plates subjected to an applied pressure gradient. This is known as the cubic law. An induced fracture in Berea sandstone has been digitized to perform numerical flow simulations. A commercially available computational fluid dynamics software package has been used to solve the flow through this model. Single phase flows have been compared to experimental works in the literature to evaluate the accuracy with which this model can be applied. Common methods of fracture geometry classification are also calculated and compared to experimentally obtained values. Flow through regions of the fracture where the upper and lower fracture walls meet (zero aperture) are shown to induce a strong channeling effect on the flow. This model is expanded to include a domain of surrounding porous media through which the flow can travel. The inclusion of a realistic permeability in this media shows that the regions of small and zero apertures contribute to the greatest pressure losses over the fracture length and flow through the porous media is most prevalent in these regions. The flow through the fracture is shown to be the largest contributor to the net flow through the media. From this work, a novel flow relationship is proposed for flow through fractured media.

Crandall, D.M.; Ahmadi, G. (Clarkson Univ., Potsdam, NY); Smith, D.H.; Bromhal, G.S.

2006-10-01T23:59:59.000Z

206

Well test analysis in fractured media  

DOE Green Energy (OSTI)

The behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. These models are based on the assumption that a fracture system under well test conditions may be represented by two concentric regions, one representing a small number of fractures that dominates flow near the well, and the other representing average conditions farther away from the well. Type curves are presented that can be used to find the flow parameters of these two regions and the extent of the inner concentric region. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented.

Karasaki, K.

1987-04-01T23:59:59.000Z

207

Nonlinear Hertzian indentation fracture mechanics  

SciTech Connect

Indentation cracking under blunt indenters is analyzed using nonlinear fracture mechanics. The usual assumptions of linear elastic fracture mechanics have been replaced with a nonlinear load vs load-point displacement curve while assuming the material is linear elastic. The load, the load-point displacement, and a function of the crack area have been related to the crack driving force, J, while assuming a cone fracture under the Hertzian sphere. Experimentally, it was found that the load-displacement curve during loading, cracking, and unloading is nonlinear. The crack length is empirically shown to be proportional to the load-point displacement for several indenters. The experimentally measured relations between indenter load, load-point displacement, and crack geometries are then analyzed with mechanical energy balances based on the similitude of crack lengths with load-point displacements. The Hertz hardness that describes the nonlinear load vs load-point displacement relation during cracking is derived on the constant J line in load-displacement space. Finally, well-known experimental expressions that relate load to crack length are shown to be indistinguishable from the load-point displacement analysis reported.

Burns, S.J.; Chia, K.Y. [Univ. of Rochester, NY (United States). Dept. of Mechanical Engineering

1995-09-01T23:59:59.000Z

208

Fracture Toughness Variations for Alloy 718 Base Metal and Welds  

Science Conference Proceedings (OSTI)

in the aerospace, nuclear, cryogenic and ...... Johnson Space Center, Houston, TX, 1974. Lorenz, P. M. ... Aluminum," NASA Report CR-100208, Jet Propulsion.

209

Proceedings of the Second International Symposium on Dynamics of Fluids in Fractured Rock  

E-Print Network (OSTI)

new fracture surface by hydraulic fracturing. Termination ofwas impossible until hydraulic fracturing was applied. ForFor conventional hydraulic fracturing, this is not crucial

Faybishenko, Boris; Witherspoon, Paul A.

2004-01-01T23:59:59.000Z

210

Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture  

E-Print Network (OSTI)

responses during hydraulic fracturing, and aid developmentFracture Monitoring Hydraulic fracturing is a method forfluids" used for hydraulic fracturing, the above frequencies

Nelson, J.T.

2009-01-01T23:59:59.000Z

211

Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test  

E-Print Network (OSTI)

The key to producing gas from tight gas reservoirs is to create a long, highly conductive flow path, via the placement of a hydraulic fracture, to stimulate flow from the reservoir to the wellbore. Viscous fluid is used to transport proppant into the fracture. However, these same viscous fluids need to break to a thin fluid after the treatment is over so that the fracture fluid can be cleaned up. In shallower, lower temperature (less than 250F) reservoirs, the choice of a fracture fluid is very critical to the success of the treatment. Current hydraulic fracturing methods in unconventional tight gas reservoirs have been developed largely through ad-hoc application of low-cost water fracs, with little optimization of the process. It seems clear that some of the standard tests and models are missing some of the physics of the fracturing process in low-permeability environments. A series of the extensive laboratory "dynamic fracture conductivity" tests have been conducted. Dynamic fracture conductivity is created when proppant slurry is pumped into a hydraulic fracture in low permeability rock. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially, we pump proppant/ fracturing fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. Test results indicate that increasing gel concentration decreases retained fracture conductivity for a constant gas flow rate and decreasing gas flow rate decreases retained fracture conductivity. Without breaker, the damaging effect of viscous hydraulic fracturing fluids on the conductivity of proppant packs is significant at temperature of 150F. Static conductivity testing results in higher retained fracture conductivity when compared to dynamic conductivity testing.

Marpaung, Fivman

2007-12-01T23:59:59.000Z

212

Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test  

E-Print Network (OSTI)

The key to producing gas from tight gas reservoirs is to create a long, highly conductive flow path, via the placement of a hydraulic fracture, to stimulate flow from the reservoir to the wellbore. Viscous fluid is used to transport proppant into the fracture. However, these same viscous fluids need to break to a thin fluid after the treatment is over so that the fracture fluid can be cleaned up. In shallower, lower temperature (less than 250oF) reservoirs, the choice of a fracture fluid is very critical to the success of the treatment. Current hydraulic fracturing methods in unconventional tight gas reservoirs have been developed largely through ad-hoc application of low-cost water fracs, with little optimization of the process. It seems clear that some of the standard tests and models are missing some of the physics of the fracturing process in low-permeability environments. A series of the extensive laboratory dynamic fracture conductivity tests have been conducted. Dynamic fracture conductivity is created when proppant slurry is pumped into a hydraulic fracture in low permeability rock. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially, we pump proppant/ fracturing fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. Test results indicate that increasing gel concentration decreases retained fracture conductivity for a constant gas flow rate and decreasing gas flow rate decreases retained fracture conductivity. Without breaker, the damaging effect of viscous hydraulic fracturing fluids on the conductivity of proppant packs is significant at temperature of 150oF. Static conductivity testing results in higher retained fracture conductivity when compared to dynamic conductivity testing.

Marpaung, Fivman

2007-12-01T23:59:59.000Z

213

Using seismic tomography to characterize fracture systems induced by hydraulic fracturing  

DOE Green Energy (OSTI)

Microearthquakes induced by hydraulic fracturing have been studied by many investigators to characterize fracture systems created by the fracturing process and to better understand the locations of energy resources in the earth`s subsurface. The pattern of the locations often contains a great deal of information about the fracture system stimulated during the hydraulic fracturing. Seismic tomography has found applications in many areas for characterizing the subsurface of the earth. It is well known that fractures in rock influence both the P and S velocities of the rock. The influence of the fractures is a function of the geometry of the fractures, the apertures and number of fractures, and the presence of fluids in the fractures. In addition, the temporal evolution of the created fracture system can be inferred from the temporal changes in seismic velocity and the pattern of microearthquake locations. Seismic tomography has been used to infer the spatial location of a fracture system in a reservoir that was created by hydraulic fracturing.

Fehler, M.; Rutledge, J.

1995-01-01T23:59:59.000Z

214

Apparatus and method for monitoring underground fracturing  

DOE Patents (OSTI)

An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture. 13 figs.

Warpinski, N.R.; Steinfort, T.D.; Branagan, P.T.; Wilmer, R.H.

1999-08-10T23:59:59.000Z

215

Apparatus and method for monitoring underground fracturing  

DOE Patents (OSTI)

An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture.

Warpinski, Norman R. (Albuquerque, NM); Steinfort, Terry D. (Tijeras, NM); Branagan, Paul T. (Las Vegas, NV); Wilmer, Roy H. (Las Vegas, NV)

1999-08-10T23:59:59.000Z

216

Injection into a fractured geothermal reservoir  

DOE Green Energy (OSTI)

A detailed study is made on the movement of the thermal fronts in the fracture and in the porous medium when 100{sup 0}C water is injected into a 300{sup 0}C geothermal reservoir with equally spaced horizontal fractures. Numerical modeling calculations were made for a number of thermal conductivity values, as well as different values of the ratio of fracture and rock medium permeabilities. One important result is an indication that although initially, the thermal front in the fracture moves very fast relative to the front in the porous medium as commonly expected, its speed rapidly decreases. At some distance from the injection well the thermal fronts in the fracture and the porous medium coincide, and from that point they advance together. The implication of this result on the effects of fractures on reinjection into geothermal reservoirs is discussed.

Bodvarsson, G.S.; Tsang, C.F.

1980-05-01T23:59:59.000Z

217

A finite element model for three dimensional hydraulic fracturing  

Science Conference Proceedings (OSTI)

This paper is devoted to the development of a model for the numerical simulation of hydraulic fracturing processes with 3d fracture propagation. It takes into account the effects of fluid flow inside the fracture, fluid leak-off through fracture walls ... Keywords: boundary elements, finite elements, hydraulic fracturing, petroleum recovery

Philippe R. B. Devloo; Paulo Dore Fernandes; Snia M. Gomes; Cedric Marcelo Augusto Ayala Bravo; Renato Gomes Damas

2006-11-01T23:59:59.000Z

218

The Performance of Fractured Horizontal Well in Tight Gas Reservoir  

E-Print Network (OSTI)

Horizontal wells have been used to increase reservoir recovery, especially in unconventional reservoirs, and hydraulic fracturing has been applied to further extend the contact with the reservoir to increase the efficiency of development. In the past, many models, analytical or numerical, were developed to describe the flow behavior in horizontal wells with fractures. Source solution is one of the analytical/semi-analytical approaches. To solve fractured well problems, source methods were advanced from point sources to volumetric source, and pressure change inside fractures was considered in the volumetric source method. This study aims at developing a method that can predict horizontal well performance and the model can also be applied to horizontal wells with multiple fractures in complex natural fracture networks. The method solves the problem by superposing a series of slab sources under transient or pseudosteady-state flow conditions. The principle of the method comprises the calculation of semi-analytical response of a rectilinear reservoir with closed outer boundaries. A statistically assigned fracture network is used in the study to represent natural fractures based on the spacing between fractures and fracture geometry. The multiple dominating hydraulic fractures are then added to the natural fracture system to build the physical model of the problem. Each of the hydraulic fractures is connected to the horizontal wellbore, and the natural fractures are connected to the hydraulic fractures through the network description. Each fracture, natural or hydraulically induced, is treated as a series of slab sources. The analytical solution of superposed slab sources provides the base of the approach, and the overall flow from each fracture and the effect between the fractures are modeled by applying superposition principle to all of the fractures. It is assumed that hydraulic fractures are the main fractures that connect with the wellbore and the natural fractures are branching fractures which only connect with the main fractures. The fluid inside of the branch fractures flows into the main fractures, and the fluid of the main fracture from both the reservoir and the branch fractures flows to the wellbore. Predicting well performance in a complex fracture network system is extremely challenged. The statistical nature of natural fracture networks changes the flow characteristic from that of a single linear fracture. Simply using the single fracture model for individual fracture, and then adding the flow from each fracture for the network could introduce significant error. This study provides a semi-analytical approach to estimate well performance in a complex fracture network system.

Lin, Jiajing

2011-12-01T23:59:59.000Z

219

Hydraulic fracturing and shale gas extraction.  

E-Print Network (OSTI)

??In the past decade the technique of horizontal drilling and hydraulic fracturing has been improved so much that it has become a cost effective method (more)

Klein, Michael

2012-01-01T23:59:59.000Z

220

Geothermal: Sponsored by OSTI -- Injection through fractures  

Office of Scientific and Technical Information (OSTI)

Injection through fractures Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fatigue and Fracture I - Programmaster.org  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Fretting Corrosion Induced Fracture of a Floating Bearing Base Plate in a 250 Tons Yankee Paper Drum: Pierre Dupont1; 1Schaeffler Belgium...

222

Hydraulic fractures traced by monitoring microseismic events  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: The trend toward production of hydrocarbons from unconventional reservoirs (tight gas, shale oilgas) has caused a large increase in the use of hydraulic fracture...

223

Structural Settings Of Hydrothermal Outflow- Fracture Permeability...  

Open Energy Info (EERE)

elevated stress termed breakdown regions. Here, stress concentrations cause active fracturing and continual re-opening of fluid-flow conduits, permitting long-lived hydrothermal...

224

Method of fracturing a geological formation  

DOE Patents (OSTI)

An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

1990-01-01T23:59:59.000Z

225

Fracture of Thin Films and Nanomaterials  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Fracture Toughness of SPD-Deformed Nanostructured Rail Steels and Its Implications on the In-Service Behaviour: Christoph Kammerhofer1;...

226

Deformation and Fracture - Programmaster.org  

Science Conference Proceedings (OSTI)

Mar 14, 2012 ... Investigations on the crack propagation resistance showed an increasing fracture resistance with crack extension, so-called R-curve behavior.

227

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect

Research continued on methods to detect naturally fractured tight gas reservoirs. This report discusses 3D-3C seismic acquisition and 3D P-wave alternate processing.

NONE

1995-12-31T23:59:59.000Z

228

Microseismic Tracer Particles for Hydraulic Fracturing  

NLE Websites -- All DOE Office Websites (Extended Search)

The trend toward production of hydrocarbons from unconventional reservoirs (tight gas, shale oilgas) has caused a large increase in the use of hydraulic fracture stimulation of...

229

Molecular Dynamics Simulation of Thermoset Fracture with ...  

Science Conference Proceedings (OSTI)

The effects of resin chain extensibility and dilution on fracture behavior are studied by testing a variety of molecular systems. The molecular bases for precursors...

230

MML Leads Discussion of Dynamic Fracture Testing  

Science Conference Proceedings (OSTI)

Dynamic Fracture in Steel. ... More recently, the pipeline industry has been adopting the CTOA ... fatigue characteristics of new pipeline steels, as these ...

2012-10-15T23:59:59.000Z

231

Well test analysis in fractured media  

DOE Green Energy (OSTI)

In this study the behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented. This model develops an explicit solution in the porous matrix as well as in the discrete fractures. Because the model does not require the assumptions of the conventional double porosity approach, it may be used to simulate cases where double porosity models fail.

Karasaki, K.

1986-04-01T23:59:59.000Z

232

Geothermal: Sponsored by OSTI -- Hydraulic fracturing: insights...  

Office of Scientific and Technical Information (OSTI)

Hydraulic fracturing: insights from field, lab, and numerical studies Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

233

Enhancing in situ bioremediation with pneumatic fracturing  

Science Conference Proceedings (OSTI)

A major technical obstacle affecting the application of in situ bioremediation is the effective distribution of nutrients to the subsurface media. Pneumatic fracturing can increase the permeability of subsurface formations through the injection of high pressure air to create horizontal fracture planes, thus enhancing macro-scale mass-transfer processes. Pneumatic fracturing technology was demonstrated at two field sites at Tinker Air Force Base, Oklahoma City, Oklahoma. Tests were performed to increase the permeability for more effective bioventing, and evaluated the potential to increase permeability and recovery of free product in low permeability soils consisting of fine grain silts, clays, and sedimentary rock. Pneumatic fracturing significantly improved formation permeability by enhancing secondary permeability and by promoting removal of excess soil moisture from the unsaturated zone. Postfracture airflows were 500% to 1,700% higher than prefracture airflows for specific fractured intervals in the formation. This corresponds to an average prefracturing permeability of 0.017 Darcy, increasing to an average of 0.32 Darcy after fracturing. Pneumatic fracturing also increased free-product recovery rates of number 2 fuel from an average of 587 L (155 gal) per month before fracturing to 1,647 L (435 gal) per month after fracturing.

Anderson, D.B.; Peyton, B.M.; Liskowitz, J.L.; Fitzgerald, C.; Schuring, J.R.

1994-04-01T23:59:59.000Z

234

Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks  

Science Conference Proceedings (OSTI)

Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective ... Keywords: Fractal dimension, Global sensitivity, Hydraulic fracturing, Optimization, Surrogate model

Mingjie Chen, Yunwei Sun, Pengcheng Fu, Charles R. Carrigan, Zhiming Lu, Charles H. Tong, Thomas A. Buscheck

2013-08-01T23:59:59.000Z

235

The feasibility and application of multilayer vacuum insulation for cryogenic hydrogen storage / Hodgman J.H.  

E-Print Network (OSTI)

??A need was identified to test multilayer vacuum super insulation (MLVSI) used in cryogenic applications for hydrogen storage. The study focuses on the application of (more)

Hodgman, Jacobus Henry

2011-01-01T23:59:59.000Z

236

Standard for Inert Cryogenic Liquid Usage in the Laboratory Page 1 of 4 Standard for Inert Cryogenic Liquid Usage in the Laboratory  

E-Print Network (OSTI)

nitrogen, liquid helium, liquid argon) can lead to serious workplace injuries due to hazards related, students and visitors. Definition · A cryogenic liquid is defined as a liquefied gas that is stored or used and Technology) as being below 93.15 K (-180C). · Common examples: nitrogen, argon, neon, helium

Chan, Hue Sun

237

GMINC - A MESH GENERATOR FOR FLOW SIMULATIONS IN FRACTURED RESERVOIRS  

E-Print Network (OSTI)

Simulation of Fluid Flow in Fractured Porous Media, Watergovern fluid flow in fractured porous media. These are (i)for Modeling Fluid and Heat Flow in fractured Porous Media,

Pruess, K.

2010-01-01T23:59:59.000Z

238

Ductile fracture modeling : theory, experimental investigation and numerical verification  

E-Print Network (OSTI)

The fracture initiation in ductile materials is governed by the damaging process along the plastic loading path. A new damage plasticity model for ductile fracture is proposed. Experimental results show that fracture ...

Xue, Liang, 1973-

2007-01-01T23:59:59.000Z

239

A liquid helium cryogenic system design for the GEM magnet  

SciTech Connect

The Superconducting Super Collider (SSC) Gammas, Electrons, Muons (GEM) magnet is a large superconducting solenoid with a total mass of 1.05 {times} 10{sup 6} kg and a stored energy of 2.5 G. A cryogenic system to cool and to maintain the GEM magnet to liquid helium temperature is described. The system is designed to operate effectively under a variety of operating conditions, including cooldown/warm-up, steady state operations, and quench. Primary cooling during steady-state operation is based on natural circulation thermosiphon flow through cooling tubes in the solenoid support bobbin. Additional cooling loops are included for lead and joint cooling and conductor stabilization. A helium refrigerator/liquefier rated at 2 kill and 20 g/s will be specified to meet the refrigeration requirements. Cooldown of the magnet from 300 K to liquid nitrogen temperatures is accomplished using a counterflow helium-to-liquid-nitrogen heat exchanger independent of the helium refrigerator. The system incorporates provisions for maintenance access during accelerator beam operation.

Deis, G.; Warren, R.P. [Lawrence Livermore National Lab., CA (United States); Richied, D.E.; Martovetsky, N.N.; Krupczak, J.J.; Sidi-Yekhlef, A.; Pace, J.R.; Collins, C.A. [Superconducting Super Collider Lab., Dallas, TX (United States)

1993-06-01T23:59:59.000Z

240

Cryogenic vertical test facility for the SRF cavities at BNL  

SciTech Connect

A vertical test facility has been constructed to test SRF cavities and can be utilized for other applications. The liquid helium volume for the large vertical dewar is approximate 2.1m tall by 1m diameter with a clearance inner diameter of 0.95m after the inner cold magnetic shield installed. For radiation enclosure, the test dewar is located inside a concrete block structure. The structure is above ground, accessible from the top, and equipped with a retractable concrete roof. A second radiation concrete facility, with ground level access via a labyrinth, is also available for testing smaller cavities in 2 smaller dewars. The cryogenic transfer lines installation between the large vertical test dewar and the cryo plant's sub components is currently near completion. Controls and instrumentations wiring are also nearing completion. The Vertical Test Facility will allow onsite testing of SRF cavities with a maximum overall envelope of 0.9 m diameter and 2.1 m height in the large dewar and smaller SRF cavities and assemblies with a maximum overall envelope of 0.66 m diameter and 1.6 m height.

Than, R.; Liaw, CJ; Porqueddu, R.; Grau, M.; Tuozzolo, J.; Tallerico, T.; McIntyre, G.; Lederle, D.; Ben-Zvi, I.; Burrill, A.; Pate, D.

2011-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mobile remote surveillance system for the CERN LHC cryogenic system  

E-Print Network (OSTI)

This thesis documents the research, planning and partial implementation of a remote surveillance system for use in the CERN LHC machine tunnel. The system is planned to provide surveillance of the cryogenic system in the LHC, eliminating the need for the personnel to go personally to look at a piece of possible faulty equipment. For this project, the complete system is planned. The system will be controlled via an Ethernet connection. This is fed into a 400V power line as a powerline communication signal, and picked up by the surveillance system. Then it is decoded into an Ethernet signal again, and sent to a camera with an on board web server. The power is transported by the same powered rail as used for communication, so that the system can take power and communication along the whole tunnel. The thesis describes the goals of the system and explains the requirements it needs to meet. Several solutions, especially technologies for communication, are considered, and details about them are described. A solutio...

Torbjrn, Houge

2006-01-01T23:59:59.000Z

242

The role of superconductivity and cryogenics in the neutrinofactory  

DOE Green Energy (OSTI)

The proposed neutrino factory will produce a defined beam of neutrinos from the decay of muons in a storage ring[1,2,3]. The storage ring will be oriented so that the neutrinos can be detected at one or more detectors several thousand kilometers from the storage ring. This report presents an overview of the proposed neutrino factory and its subsystems that use cryogenics. Superconducting magnets will be used in the following ways in the neutrino factory; (1) the outsert solenoid for the 20 T pion capture system, (2) the decay channel where pions decay to muons, (3) the muon phase rotation system, (4) the muon cooling system, (5) focusing during the first stage of muon acceleration, (6) bending and focusing magnets in the re-circulating linac accelerator and (7) bending and focusing magnets in the muon storage ring where the neutrino beams are generated. Low temperature superconducting RF cavities will be used to accelerate the muons from about 200 MeV to 20 GeV. The muon cooling system uses liquid hydrogen absorbers at 20 K to reduce the emittance of the muon beam before it is accelerated to full energy.

Green, M.A.; Black, E.L.; Gupta, R.C.; Iarocci, M.A.; Lebedev,V.; Miller, J.R.; Palmer, R.B.; Padamsee, H.S.; Parker, B.L.; Prestemon,S.; Weggel, R.J.

2001-05-06T23:59:59.000Z

243

Improved cryogenic coring device for sampling wetland soils  

SciTech Connect

This paper is the third in a series on the design and construction (Knaus 1986) and improvements (Knaus and Cahoon 1990) of a cryogenic soil-coring device (cryocorer). Freezing wetland soils in place during sampling eliminates compaction, dewatering, and loss of flocculent material at the water-sediment interface. The cryocorer is suitable for sampling soils of emergent marsh and mangrove forests as well as shallow water bottoms, although it has been used primarily for the former. A small-diameter frozen soil core minimizes disruption of the surface, can be evaluated immediately for overall quality, and can be used to measure soil profiles and subsample for further analysis. The cryocorer continues to be used in studies of wetland accretion and soil bulk density throughout the US. Concomitant with the increased use of the device, improvements in cryocorer design and application have occurred. Reported here are improvements in design that have been made since 1992 with references to wetland research in which the cryocorer has been used extensively.

Cahoon, D.R.; Lynch, J.C. [National Biological Service, Lafayette, LA (United States); Knaus, R.M. [Louisiana State Univ., Baton Rouge, LA (United States)

1996-09-01T23:59:59.000Z

244

Analysis of the Thermal Loads on the KSTAR Cryogenic System  

SciTech Connect

A large-scale helium refrigeration system is one of the key components for the KSTAR (Korea Superconducting Tokamak Advanced Research) device. In the design of the refrigeration system, an estimation of the thermal loads on the cold mass is an important issue according to the operation scenario. The cold mass of the KSTAR device is about 250 tons including 30 superconducting (SC) coils and the magnet structure. In addition to the static thermal loads, pulsed thermal loads to the refrigeration system have been considered in the operation stage. The main pulsed thermal loads on magnet system are AC losses in the SC coils and eddy current losses in the magnet structure that depend on the magnetic field variation rate. The nuclear radiation loss due to plasma pulse operation is also considered. The designed cooling capacity of the refrigeration system is estimated to be about 9 kW at 4.5 K isothermal. In this paper, calculation of the various kinds of thermal loads on KSTAR cryogenic system and design of the large-scale helium refrigeration system are presented.

Kim, Y.S.; Oh, Y.K.; Kim, W.C.; Park, Y.M.; Lee, Y.J.; Jin, S.B.; Sa, J.W.; Choi, C.H.; Cho, K.W.; Bak, J.S.; Lee, G.S. [Korea Basic Science Institute, Yusung-Ku, Daejeon 305-806 (Korea, Republic of)

2004-06-23T23:59:59.000Z

245

Cryogenic apparatus for study of near-field heat transfer  

Science Conference Proceedings (OSTI)

For bodies spaced in vacuum at distances shorter than the wavelength of the thermal radiation, radiative heat transfer substantially increases due to the contribution of evanescent electromagnetic waves. Experimental data on heat transfer in near-field regime are scarce. We have designed a cryogenic apparatus for the study of heat transfer over microscopic distances between metallic and non-metallic surfaces. Using a mechanical positioning system, a planeparallel gap between the samples, concentric disks, each 35 mm in diameter, is set and varied from 10{sup 0} to 10{sup 3} {mu}m. The heat transferred from the hot (10 - 100 K) to the cold sample ({approx}5 K) sinks into a liquid helium bath through a thermal resistor, serving as a heat flux meter. Transferred heat power within {approx}2 nW/cm{sup 2} and {approx}30 {mu}W/cm{sup 2} is derived from the temperature drop along the thermal resistor. For tungsten samples, the distance of the near-field effect onset was inversely proportional to temperature and the heat power increase was observed up to three orders of magnitude greater than the power of far-field radiative heat transfer.

Kralik, T.; Hanzelka, P.; Musilova, V.; Srnka, A.; Zobac, M. [Institute of Scientific Instruments of the ASCR, v.v.i., Kralovopolska 147, Brno (Czech Republic)

2011-05-15T23:59:59.000Z

246

Welding stainless and 9% nickel steel cryogenic vessels  

SciTech Connect

Gases are often more efficiently stored and shipped as liquids at cryogenic temperatures. Pure gases commonly stored below liquefaction temperatures include oxygen {minus}297 F ({minus}183 C), argon {minus}302 f ({minus}186 C), nitrogen {minus}320 F ({minus}196 C), hydrogen {minus}423 F ({minus}253 C) and helium {minus}452 F ({minus}269 C). Natural gas is also transported and frequently stored as liquefied natural gas (LNG) at temperatures below {minus}261 F ({minus}163 C). Storage tanks for the pure gases are generally shop fabricated in sizes that can be shipped by conventional carriers. Smaller LNG vessels for over-the-road and railroad fuel applications are also shop-fabricated. Shown in a figure is a rail-mounted tank designed to supply liquefied natural gas to locomotives. Another example of a tank installation is also shown. LNG terminal storage tanks are generally field-erected vessels fabricated from 9% nickel steel in sizes of 50,000 to 100,000 m{sup 3} (315,000 to 630,000 bbls). This article focuses on welding practices for shop-fabricated vessels and equipment.

Avery, R.E. [Nickel Development Inst., Londonderry, NH (United States); Parsons, D. [Parsons (David), Hampstead, NH (United States)

1995-11-01T23:59:59.000Z

247

A New Cryogenic Sample Manipulator For SRC's Scienta 2002 System  

SciTech Connect

We discuss the first bench tests of a sample manipulator which was recently designed at SRC for the Scienta 2002 User system. The manipulator concept utilizes the 10 deg. angular window of the Scienta in the horizontal plane (angle dispersion) by rotating the sample normal around the vertical axis while angular scans along the vertical axis (energy dispersion) are continuous within {+-}30 deg. relative to the electron lens by rotating the sample around the horizontal axis. With this concept it is possible to precisely map the entire two-dimensional k-space of a crystal by means of stitching together 10 deg. wide stripes centered +15 deg. to -50 deg. relative to the sample normal. Three degrees of translational freedom allow positioning the sample surface at the focal point of the analyzer. Two degrees of rotational freedom are available at this position for manipulating the sample. Samples are mounted to a standard holder and transferred to the manipulator via a load-lock system attached to a prep chamber. The manipulator is configured with a cryogenic cold head, an electrical heater, and a temperature sensor permitting continuous closed-loop operation for 20-380 K.

Gundelach, Chad T.; Fisher, Mike V.; Hoechst, Hartmut [Synchrotron Radiation Center, University of Wisconsin-Madison, 3731 Schneider Drive, Stoughton, WI 53589 (United States)

2004-05-12T23:59:59.000Z

248

Permeability enhancement using high energy gas fracturing  

DOE Green Energy (OSTI)

This paper reports the results of a preliminary study of using High Energy Gas Fracturing (HEGF) techniques for geothermal well stimulation. Experiments conducted in the G-tunnel complex at the Nevada Test Site (NTS) showed that multiple fractures could be created in water-filled boreholes using HEGF. Therefore, the method is potentially useful for geothermal well stimulation. 4 refs., 11 figs.

Chu, T.Y.; Cuderman, J.F.; Jung, J.; Jacobson, R.D.

1986-01-01T23:59:59.000Z

249

Finding Large Aperture Fractures in Geothermal Resource Areas...  

Open Energy Info (EERE)

low-permeability fractures and LAF's (Large Aperature Fractures). USG will develop and test the combination of three-component,long-offset seismic surveying, permanent scatter...

250

Characterizing Fractures in Geysers Geothermal Field by Micro...  

Open Energy Info (EERE)

water through existing fractures into hot wet and hot dry rocks by thermo-elastic cooling shrinkage. The stimulated, existing fractures thus enhance the permeability of the...

251

Modeling Of Hydraulic Fracture Network Propagation In Shale Gas Reservoirs.  

E-Print Network (OSTI)

??The most effective method for stimulating shale gas reservoirs is massive hydraulic fracture treatments. Recent fracture diagnostic technologies such as microseismic technology have shown that (more)

Ahn, Chong

2012-01-01T23:59:59.000Z

252

Microseismicity, stress, and fracture in the Coso geothermal...  

Open Energy Info (EERE)

Microearthquakes in the geothermal field are proposed as indicators of shear fracturing associated with fluid injection and circulation along major pre-existing fractures....

253

A physical model for fracture surface features in metallic glasses  

Science Conference Proceedings (OSTI)

Apr 30, 2010 ... at a rate of 1000 mm/ min, fracturing the grease in the sample. Photographs were then taken of the fracture surfaces. The photographs were...

254

Irradiation Effects on Human Cortical Bone Fracture Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic...

255

An Alternate Approach for Characterizing the Fracture Resistance of ...  

Science Conference Proceedings (OSTI)

While the elastic properties and strength of fish scales have received considerable attention, the resistance to fracture has not. Here the fracture resistance of...

256

Coupled thermohydromechanical analysis of a heater test in unsaturated clay and fractured rock at Kamaishi Mine  

E-Print Network (OSTI)

injection and hydraulic fracturing stress measurements inlevel measured with hydraulic fracturing (reproduced from

Rutqvist, J.

2011-01-01T23:59:59.000Z

257

Optimization of Construction Discharge Rate and Proppant Slugs for Preventing Complex Fractures  

Science Conference Proceedings (OSTI)

For volcanic rock and fracture type reservoir, etc, steering fractures, branching fractures and their combined herringbone fractures are usually caused by hydraulic fracturing. The generation of these complex fractures is one of the crucial factors that ... Keywords: hydraulic fracturing, construction discharge rate, complex fractures, proppant slug, optimization

Dali Guo; Yang Lin; Yong Ji; Jiangwen Xu; Guobin Wang

2011-10-01T23:59:59.000Z

258

Hydraulic Fracturing Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil & Gas » Shale Gas » Hydraulic Oil & Gas » Shale Gas » Hydraulic Fracturing Technology Hydraulic Fracturing Technology Image taken from "Shale Gas: Applying Technology to Solve America's Energy Challenges," NETL, 2011. Image taken from "Shale Gas: Applying Technology to Solve America's Energy Challenges," NETL, 2011. Hydraulic fracturing is a technique in which large volumes of water and sand, and small volumes of chemical additives are injected into low-permeability subsurface formations to increase oil or natural gas flow. The injection pressure of the pumped fluid creates fractures that enhance gas and fluid flow, and the sand or other coarse material holds the fractures open. Most of the injected fluid flows back to the wellbore and is pumped to the surface.

259

Occult fractures of the knee: tomographic evaluation  

SciTech Connect

Seven adults with painful effusions of the knee were examined for occult fractures using pluridirectional tomograph in the coronal and lateral planes. Six patients (ages 50 to 82 years) were osteopenic and gave histories ranging from none to mild trauma; one 26-year-old man was not osteopenic and had severe trauma. In all cases, routine radiographs were interpreted as negative, but tomography demonstrated a fracture. Five fractures were subchondral. Bone scans in 2 patients were positive. The authors conclude that osteopenic patients with a painful effusion of the knee should be considered to have an occult fracture. While bone scans may be helpful, tomography is recommended as the procedure of choice to define the location and extent of the fracture.

Apple, J.S.; Martinez, S.; Allen, N.B.; Caldwell, D.S.; Rice, J.R.

1983-08-01T23:59:59.000Z

260

Self-potential observations during hydraulic fracturing  

SciTech Connect

The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

Moore, Jeffrey R.; Glaser, Steven D.

2007-09-13T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks  

E-Print Network (OSTI)

Fluid flow process in fractured reservoirs is controlled primarily by the connectivity of fractures. The presence of fractures in these reservoirs significantly affects the mechanism of fluid flow. They have led to problems in the reservoir which results in early water breakthroughs, reduced tertiary recovery efficiency due to channeling of injected gas or fluids, dynamic calculations of recoverable hydrocarbons that are much less than static mass balance ones due to reservoir compartmentalization, and dramatic production changes due to changes in reservoir pressure as fractures close down as conduits. These often lead to reduced ultimate recoveries or higher production costs. Generally, modeling flow behavior and mass transport in fractured porous media is done using the dual-continuum concept in which fracture and matrix are modeled as two separate kinds of continua occupying the same control volume (element) in space. This type of numerical model cannot reproduce many commonly observed types of fractured reservoir behavior since they do not explicitly model the geometry of discrete fractures, solution features, and bedding that control flow pathway geometry. This inaccurate model of discrete feature connectivity results in inaccurate flow predictions in areas of the reservoir where there is not good well control. Discrete Fracture Networks (DFN) model has been developed to aid is solving some of these problems experienced by using the dual continuum models. The Discrete Fracture Networks (DFN) approach involves analysis and modeling which explicitly incorporates the geometry and properties of discrete features as a central component controlling flow and transport. DFN are stochastic models of fracture architecture that incorporate statistical scaling rules derived from analysis of fracture length, height, spacing, orientation, and aperture. This study is focused on developing a methodology for application of DFN to a shale gas reservoir and the practical application of DFN simulator (FracGen and NFflow) for fracture modeling of a shale gas reservoir and also studies the interaction of the different fracture properties on reservoir response. The most important results of the study are that a uniform fracture network distribution and fracture aperture produces the highest cumulative gas production for the different fracture networks and fracture/well properties considered.

Ogbechie, Joachim Nwabunwanne

2011-12-01T23:59:59.000Z

262

Brittle fracture phenomena: An hypothesis  

SciTech Connect

It is proposed that: volumetric dilation is a fundamental requirement for brittle fracture involving shear; such dilation commonly involves or is expressed as zonal overpressures; the overpressured zones radiate particle motions which are significant to or dominate seismic radiation from blasting; the overpressures are commonly significant to and may dominate the energetics of blastings. Outstanding problems and gaps in our knowledge regarding fragmentation are discussed. It is argued that there is a common missing factor, dilatancy. Supporting evidence is presented from soils and rock mechanics, blasting experimental data and blasting experience. Computer modeling of fragmentation is discussed and the necessity for the inclusion of dilatancy established. Implications are discussed and a test of the hypothesis proposed.

Britton, K.; Walton, O.R.

1987-05-01T23:59:59.000Z

263

How cold can you get in space? Quantum Physics at cryogenic temperatures in space  

E-Print Network (OSTI)

Although it is often believed that the coldness of space is ideally suited for performing measurements at cryogenic temperatures, this must be regarded with caution for two reasons: Firstly, the sensitive instrument must be completely shielded from the strong solar radiation and therefore, e.g. either be placed inside a satellite or externally on the satellite's shaded side. Secondly, any platform hosting such an experiment in space generally provides an environment close to room temperature for the accommodated equipment. To obtain cryogenic temperatures without active cooling, one must isolate the instrument from radiative and conductive heat exchange with the platform as well as possible. We investigate the limits of this passive cooling method in the context of a recently proposed experiment to observe the decoherence of quantum superpositions of massive objects. The analyses and conclusions are applicable to a host of similar experimental designs requiring a cryogenic environment in space.

Gerald Hechenblaikner; Fabian Hufgard; Johannes Burkhardt; Nikolai Kiesel; Ulrich Johann; Markus Aspelmeyer; Rainer Kaltenbaek

2013-09-12T23:59:59.000Z

264

Instrumentation, Field Network And Process Automation for the LHC Cryogenic Line Tests  

E-Print Network (OSTI)

This paper describes the cryogenic control system and associated instrumentation of the test facility for 3 pre-series units of the LHC Cryogenic Distribution Line. For each unit, the process automation is based on a Programmable Logic Con-troller implementing more than 30 closed control loops and handling alarms, in-terlocks and overall process management. More than 160 sensors and actuators are distributed over 150 m on a Profibus DP/PA network. Parameterization, cali-bration and diagnosis are remotely available through the bus. Considering the diversity, amount and geographical distribution of the instru-mentation involved, this is a representative approach to the cryogenic control system for CERN's next accelerator.

Bager, T; Bertrand, G; Casas-Cubillos, J; Gomes, P; Parente, C; Riddone, G; Suraci, A

2000-01-01T23:59:59.000Z

265

Incorporating Rigorous Height Determination into Unified Fracture Design  

E-Print Network (OSTI)

Hydraulic fracturing plays an important role in increasing production rate in tight reservoirs. The performance of the reservoir after fracturing can be observed from the productivity index. This parameter is dependent on the fracture geometry; height, length and width. Unified fracture design (UFD) offers a method to determine the fracture dimensions providing the maximum productivity index for a specific proppant amount. Then, in order to achieve the maximum productivity index, the treatment schedules including the amount of liquid and proppant used for each stage must be determined according to the fracture dimensions obtained from the UFD. The proppant number is necessary for determining the fracture geometry using the UFD. This number is used to find the maximum productivity index for a given proppant amount. Then, the dimensionless fracture conductivity index corresponding to the maximum productivity index can be computed. The penetration ration, the fracture length, and the propped fracture width can be computed from the dimensionless fracture conductivity. However, calculating the proppant number used in UFD requires the fracture height as an input. The most convenient way to estimate fracture height to input to the UFD is to assume that the fracture height is restricted by stress contrast between the pay zone and over and under-lying layers. In other words, the fracture height is assumed to be constant, independent of net pressure and equal to the thickness of the layer which has the least minimum principal stress. However, in reality, the fracture may grow out from the target formation and the height of fracture is dependent on the net pressure during the treatment. Therefore, it is necessary to couple determination of the fracture height with determination of the other fracture parameters. In this research, equilibrium height theory is applied to rigorously determine the height of fracture. Solving the problem iteratively, it is possible to incorporate the rigorous fracture height determination into the unified fracture design.

Pitakbunkate, Termpan

2010-08-01T23:59:59.000Z

266

Properties and Processes for Cryogenic Refrigeration R. Radebaugh, P. Bradley, M. Lewis (838), J. Gary, and A. O'Gallagher (ITL)  

E-Print Network (OSTI)

Properties and Processes for Cryogenic Refrigeration R. Radebaugh, P. Bradley, M. Lewis (838), J to characterize losses within cryocoolers and models need to be developed to optimize the design of such systems. Material properties at cryogenic temperatures also are needed by industry for the design of cryogenic

Magee, Joseph W.

267

Optimizing reservoir management through fracture modeling  

DOE Green Energy (OSTI)

Fracture flow will become increasingly important to optimal reservoir management as exploration of geothermal reservoirs continues and as injection of spent fluid increases. The Department of Energy conducts research focused on locating and characterizing fractures, modeling the effects of fractures on movement of fluid, solutes, and heat throughout a reservoir, and determining the effects of injection on long-term reservoir production characteristics in order to increase the ability to predict with greater certainty the long-term performance of geothermal reservoirs. Improvements in interpreting and modeling geophysical techniques such as gravity, self potential, and aeromagnetics are yielding new information for the delineation of active major conduits for fluid flow. Vertical seismic profiling and cross-borehole electromagnetic techniques also show promise for delineating fracture zones. DOE funds several efforts for simulating geothermal reservoirs. Lawrence Berkeley Laboratory has adopted a continuum treatment for reservoirs with a fracture component. Idaho National Engineering Laboratory has developed simulation techniques which utilize discrete fractures and interchange of fluid between permeable matrix and fractures. Results of these research projects will be presented to industry through publications and appropriate public meetings. 9 refs.

Renner, J.L.

1988-01-01T23:59:59.000Z

268

Cryogenic system for the Energy Recovery Linac and vertical test facility at BNL  

SciTech Connect

A small cryogenic system and warm helium vacuum pumping system provides cooling to either the Energy Recovery Linac's (ERL) cryomodules that consist of a 5-cell cavity and an SRF gun or a large Vertical Test Dewar (VTD) at any given time. The cryogenic system consists of a model 1660S PSI piston plant, a 3800 liter storage dewar, subcooler, a wet expander, a 50 g/s main helium compressor, and a 170 m{sup 3} storage tank. A system description and operating plan of the cryogenic plant and cryomodules is given. The cryogenic system for ERL and the Vertical Test Dewar has a plant that can produce the equivalent of 300W at 4.5K with the addition of a wet expander 350 W at 4.5K. Along with this system, a sub-atmospheric, warm compression system provides pumping to produce 2K at the ERL cryomodules or the Vertical Test Dewar. The cryogenic system for ERL and the Vertical Test Dewar makes use of existing equipment for putting a system together. It can supply either the ERL side or the Vertical Test Dewar side, but not both at the same time. Double valve isolation on the liquid helium supply line allows one side to be warmed to room temperature and worked on while the other side is being held at operating temperature. The cryogenic system maintain the end loads from 4.4K to 2K or colder depending on capacity. Liquid helium storage dewar capacity allows ERL or the VTD to operate above the plant's capacity when required and ERL cryomodules ballast reservoirs and VTD reservoir allows the end loads to operate on full vacuum pump capacity when required.

Than, R.; Soria, V.; Lederle, D.; Orfin, P.; Porqueddu, R.; Talty, P.; Zhang, Y.; Tallerico, T.; Masi, L.

2011-03-28T23:59:59.000Z

269

Cryogenic loading of large volume presses for high-pressure experimentation and synthesis of novel materials  

Science Conference Proceedings (OSTI)

We present an efficient easily implemented method for loading cryogenic fluids in a large volume press. We specifically apply this method to the high-pressure synthesis of an extended solid derived from CO using a Paris-Edinburgh cell. This method employs cryogenic cooling of Bridgman type WC anvils well insulated from other press components, condensation of the load gas within a brass annulus surrounding the gasket between the Bridgman anvils. We demonstrate the viability of the described approach by synthesizing macroscopic amounts (several milligrams) of polymeric CO-derived material, which were recovered to ambient conditions after compression of pure CO to 5 GPa or above.

Lipp, M J; Evans, W J; Yoo, C S

2005-01-21T23:59:59.000Z

270

Design of a scanning gate microscope in a cryogen-free dilution refrigerator  

E-Print Network (OSTI)

We report on our design of a scanning gate microscope housed in a cryogen-free dilution refrigerator with a base temperature of 15 mK. The recent increase in efficiency of pulse tube cryocoolers has made cryogen-free systems popular in recent years. However, this new style of cryostat presents challenges for performing scanning probe measurements, mainly as a result of the vibrations introduced by the cryocooler. We demonstrate scanning with root-mean-square vibrations of 0.8 nm at 3 K and 2.1 nm at 15 mK in a 1 kHz bandwidth with our design.

Pelliccione, Matthew; Bartel, John; Keller, Andrew; Goldhaber-Gordon, David

2012-01-01T23:59:59.000Z

271

The Integration Of The LHC Cryogenics Control System Data Into The CERN Layout Database  

E-Print Network (OSTI)

The Large Hadron Colliders Cryogenic Control System makes extensive use of several databases to manage data appertaining to over 34,000 cryogenic instrumentation channels. This data is essential for populating the software of the PLCs which are responsible for maintaining the LHC at the appropriate temperature. In order to reduce the number of data sources and the overall complexity of the system, the databases have been rationalised and the automatic tool, that extracts data for the control software, has been simplified. This paper describes the main improvements that have been made and considers the success of the project.

Fortescue-Beck, E; Gomes, P

2011-01-01T23:59:59.000Z

272

Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers  

E-Print Network (OSTI)

Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers by Tom Myers Abstract Hydraulic fracturing of deep shale beds to develop natural gas has caused concern regarding the potential and preferential flow through fractures--could allow the transport of contaminants from the fractured shale

273

Does hydraulic-fracturing theory work in jointed rock masses  

DOE Green Energy (OSTI)

The hypocenter locations of micro-earthquakes (acoustic emissions) generated during fracturing typically are distributed three-dimensionally suggesting that fracturing stimulates a volumetric region, rather than the planar fracture theoretically expected. The hypocenter maps generated at six operating, or potential, HDR reservoirs in the US, Europe and Japan are examined in detail and the fracture dimensions are correlated with fracture injection volumes and formation permeability. Depsite the volumetric appearance of the maps we infer that the induced fractures are mainly planar and may propagate aseismically. The induced seismicity stems from nearby joints, which are not opened significantly by fracturing, but are caused to shear-slip because of local pore pressure.

Murphy, H.D.; Keppler, H.; Dash, Z.V.

1983-01-01T23:59:59.000Z

274

Well fracturing method using liquefied gas as fracturing fluid  

SciTech Connect

A method is described for fracturing an oil well or gas well with a mixture of liquid carbon dioxide and liquid petroleum gas. The objective is to be able to inject the liquid into the well bore at a relatively high pumping rate without causing the liquid to boil. Prior to injection, both the liquid CO/sub 2/ and the LPG are held in separate supply tanks at a temperature and pressure at which the liquid phase will not boil. The temperature of the LPG is substantially higher than the liquid CO/sub 2/. During the pumping operation, part of the liquid CO/sub 2/ and all of the LPG are fed through a heat exchanger. In the exchanger, the amount of heat transferred from the LPG to the liquid CO/sub 2/ is enough to vaporize the liquid. The CO/sub 2/ vapor is then circulated back into the CO/sub 2/ tank. The recycled vapor thus maintains the liquid-vapor phase in the tank at equilibrium, so that the liquid will not boil at the desired pumping rate. (4 claims)

Zingg, W.M.; Grassman, D.D.

1974-10-22T23:59:59.000Z

275

Physical model of a fractured reservoir | Open Energy Information  

Open Energy Info (EERE)

model of a fractured reservoir model of a fractured reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Physical model of a fractured reservoir Details Activities (1) Areas (1) Regions (0) Abstract: The objectives of the physical modeling effort are to: (1) evaluate injection-backflow testing for fractured reservoirs under conditions of known reservoir parameters (porosity, fracture width, etc.); (2) study the mechanisms controlling solute transport in fracture systems; and (3) provide data for validation of numerical models that explicitly simulate solute migration in fracture systems. The fracture network is 0.57-m wide, 1.7-m long, and consists of two sets of fractures at right angles to one another with a fracture spacing of 10.2 cm. A series of

276

Method of optimizing the conductivity of a propped fractured formation  

Science Conference Proceedings (OSTI)

This patent describes a method of reducing viscosity of a fracturing fluid containing proppant, a polymer, a delayed breaker and a nondelayed breaker, it comprises: introducing the fracturing fluid into a subterranean formation to form at least one fracture; depositing the proppant and the polymer in the fracture; determining an after closure polymer viscosity of the deposited polymer in the fracture; selecting a proppant pack permeability in the fracture; calculating an amount of breaker necessary to reduce the after closure viscosity of the deposited polymer to attain the selected permeability of; determining a minimum viscosity of the fracturing fluid which maintains the proppant in suspension in the fluid during pumping in the fracture; and introducing an effective amount of delayed breaker and nondelayed breaker into the fracturing fluid to attain the selected proppant pack permeability while maintaining the minimum viscosity to maintain the proppant in suspension in the fluid during pumping in the fracture.

Brannon, H.D.; Gulbis, J.; King, M.T.; Hawkins, G.W.

1992-04-14T23:59:59.000Z

277

Domain Decomposition for Flow in Porous Media with Fractures  

E-Print Network (OSTI)

this article. The fractures that we are concerned with are filled with debris so we consider them as porous media. The permeability in the fracture is large in comparison with that in the surrounding rock, so the fluid circulates faster in the fracture. Thus we have a highly heterogeneous porous medium. One idea that has been used to take this into account is to treat the fracture as an interface and to assume that the fluid that flows into the fracture stays in the fracture. In fact, in many models the contrast in permeabilities is of such an order that the flow outside of the fracture is neglected. However, here we are concerned with the situation in which the exchange between the fracture and the rest of the domain is significant. To deal with this case we need to model both what happens in the fracture and what happens outside the fracture. One

Clarisse Alboin; Jerome Jaffre; Jean Roberts; Christophe Serres

1999-01-01T23:59:59.000Z

278

A Study of Latrogenic Fracture Risk in Reduction of Pipkin Fracture ...  

Science Conference Proceedings (OSTI)

This study evaluated the risk of such fractures during closed reduction of Pipkin ... of Ti-6Al-4V for Medical Applications after Surface Modification by Anodization.

279

Geomechanical review of hydraulic fracturing technology  

E-Print Network (OSTI)

Hydraulic fracturing as a method for recovering unconventional shale gas has been around for several decades. Significant research and improvement in field methods have been documented in literature on the subject. The ...

Arop, Julius Bankong

2013-01-01T23:59:59.000Z

280

Studies of injection into naturally fractured reservoirs  

DOE Green Energy (OSTI)

A semi-analytical model for studies of cold water injection into naturally fractured reservoirs has been developed. The model can be used to design the flow rates and location of injection wells in such systems. The results obtained using the model show that initially the cold water will move very rapidly through the fracture system away from the well. Later on, conductive heat transfer from the rock matrix blocks will retard the advancement of the cold water front, and eventually uniform energy sweep conditions will prevail. Where uniform energy sweep conditions are reached the cold waer movement away from the injection well will be identical to that in a porous medium; consequently maximum energy recovery from the rock matrix will be attained. The time of uniform energy sweep and the radial distance from the injection well where it occurs are greatly dependent upon the fracture spacing, but independent of the fracture aperture.

Boedvarsson, G.S.; Lai, C.H.

1982-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Definition: Hydraulic Fracturing | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Dictionary.png Hydraulic Fracturing The process used in the Oil and Gas industry of drilling deep into the ground and injecting water, sand, and other...

282

Multiphase flow in fractured porous media  

Science Conference Proceedings (OSTI)

The major goal of this research project was to improve the understanding of the gas-oil two-phase flow in fractured porous media. In addition, miscible displacement was studied to evaluate its promise for enhanced recovery.

Firoozabadi, A.

1995-02-01T23:59:59.000Z

283

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network (OSTI)

of multiphase, multicomponent fluid mixtures in porous andmultiphase heat and mass flow in unsaturated fractured porous

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

284

Hydraulic fracturing and propping tests at Yakedake field in Japan  

DOE Green Energy (OSTI)

Hydraulic fracturing experiments have been conducted at Yakedake field in Gifu prefecture, Japan. From the data obtained during the fracturing operation, the open-hole section permeability was estimated of the wellbore, the minimum pressure required to propagate the fracture, the impedances before and after the propping, and the earth stress normal to the fracture plane. The final fracture plane was also mapped with the microseismic events.

Yamaguchi, Tsutomu; Seo, Kunio; Suga, Shoto; Itoh, Toshinobu; Kuriyagawa, Michio

1984-01-01T23:59:59.000Z

285

NFFLOW: A reservoir simulator incorporating explicit fractures (SPE 153890)  

SciTech Connect

NFFLOW is a research code that quickly and inexpensively simulates flow in moderately fractured reservoirs. It explicitly recognizes fractures separately from rock matrix. In NFFLOW fracture flow is proportional to the pressure gradient along the fracture, and flow in the rock matrix is determined by Darcys Law. The two flow mechanisms are coupled through the pressure gradient between a fracture and its adjacent rock matrix. Presented is a promising change to NFFLOW that allows for flow across a rock matrix block.

Boyle, E.J.; Sams, W.N.

2012-01-01T23:59:59.000Z

286

Poroelastic response of orthotropic fractured porous media  

SciTech Connect

An algorithm is presented for inverting either laboratory or field poroelastic data for all the drained constants of an anisotropic (specifically orthotropic) fractured poroelastic system. While fractures normally weaken the system by increasing the mechanical compliance, any liquids present in these fractures are expected to increase the stiffness somewhat, thus negating to some extent the mechanical weakening influence of the fractures themselves. The analysis presented quantifies these effects and shows that the key physical variable needed to account for the pore-fluid effects is a factor of (1 - B), where B is Skempton's second coe#14;fficient and satisfies 0 {<=} #20; B < 1. This scalar factor uniformly reduces the increase in compliance due to the presence of communicating fractures, thereby stiffening the fractured composite medium by a predictable amount. One further goal of the discussion is to determine how many of the poroelastic constants need to be known by other means in order to determine the rest from remote measurements, such as seismic wave propagation data in the field. Quantitative examples arising in the analysis show that, if the fracture aspect ratio a{sub f} ~ 0.1 and the pore fluid is liquid water, then for several cases considered Skempton's B ~ 0:9, so the stiffening effect of the pore-liquid reduces the change in compliance due to the fractures by a factor 1-B ~ 0.1, in these examples. The results do however depend on the actual moduli of the unfractured elastic material, as well as on the pore-liquid bulk modulus, so these quantitative predictions are just examples, and should not be treated as universal results. Attention is also given to two previously unremarked poroelastic identities, both being useful variants of Gassmann's equations for homogeneous -- but anisotropic -- poroelasticity. Relationships to Skempton's analysis of saturated soils are also noted. The paper concludes with a discussion of alternative methods of analyzing and quantifying fluid-substitution behavior in poroelastic systems, especially for those systems having heterogeneous constitution.

Berryman, J.G.

2010-12-01T23:59:59.000Z

287

Modeling interfacial fracture in Sierra.  

SciTech Connect

This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.

Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang; Nelson, Stacy A. C.; Foulk, James W.,; Reedy, Earl David,; Austin, Kevin N.; Margolis, Stephen B.

2013-09-01T23:59:59.000Z

288

Numerical analysis of the heat transfer for packing design of cryogenic gate valve  

Science Conference Proceedings (OSTI)

The packing, among the components comprising the gate valve, is used to sustain the airtightness and the study on change of shape or pattern has been carried out to maximize the functions, but the study on changing the location or the size of the packing ... Keywords: cryogenic, heat transfer, liquefied natural gas, numerical analysis, packing

Si Pom Kim; Rock Won Jeon; Il Ju Hwang; Jae Hoon Lee; Won Heaop Shin

2012-04-01T23:59:59.000Z

289

Operational modes and control philosophy of the SSCL Magnet Test Lab. (MTL) cryogenic system  

SciTech Connect

The MTL`s function is to test prototype and industrially manufactured magnets for the Superconducting Super Collider Laboratory (SSCL). The cryogenic system of the MTL has a main refrigeration system consisting of a two-stage compression system, a refrigerator/liquefier coldbox, a liquid helium dewar, warm gas storage, and a regeneration skid. The MTL cryogenic system also includes the following auxiliary equipment: two cleaning, cooling, warmup and purification (CCWP) coldbox modules with a regeneration skid for the charcoal beds, two CCWP compressors, a dehydration skid with its own regeneration system, a pump box, a refrigeration recovery unit, and five distribution boxes. At any given time, the refrigeration system has the capacity to simultaneously test at least six magnets under normally required testing conditions. Every magnet will undergo cleaning, cooldown, and filling prior to general testing, conditioning, quench testing, and other experiments. At the completion of general testing, etc., the magnet must be emptied prior to warming it up to ambient temperature. Furthermore, conditioning, training, and testing of the magnets can be carried out at different temperatures between 4.5 K and 2.5 K. The cryogenic system is designed to test multiple magnets, not all of which are necessarily in the same preparational or operational stage. This paper describes the different operational modes and the behavior and control of the total cryogenic system during multiple magnet tests.

Ganni, V.; Than, R.; Thirumaleshwar, M.

1993-05-01T23:59:59.000Z

290

THE CRYOGENIC SYSTEM OF TESLA S. Wolff, DESY, Notkestr. 85, 22607 Hamburg, Germany  

E-Print Network (OSTI)

THE CRYOGENIC SYSTEM OF TESLA S. Wolff, DESY, Notkestr. 85, 22607 Hamburg, Germany for the TESLA collaboration Abstract TESLA, a 33 km long 500 GeV centre-of-mass energy superconducting linear collider The 33 km long e+ e- linear collider TESLA (Tera eV Energy Superconductiong Linear Accelerator) with 500

291

Fault Detection and Isolation of a Cryogenic Rocket Engine Combustion Chamber Using a Parity Space Approach  

Science Conference Proceedings (OSTI)

his paper presents a parity space (PS) approach for fault detection and isolation (FDI) of a cryogenic rocket engine combustion chamber. Nominal and non-nominal simulation data for three engine set points have been provided. The PS approach uses three ... Keywords: Fault Detection, Fault Isolation, Fault Diagnosis, Parity Space, Rocket Engine

Paul van Gelder; Andr Bos

2009-07-01T23:59:59.000Z

292

Cryogenic DT and D2 targets for inertial confinement fusiona... T. C. Sangster,b  

E-Print Network (OSTI)

Facility NIF W. J. Hogan et al., Nucl. Fusion 41, 567 2001 are based on a spherical ablator containing most of the critical fabrication tolerances for ignition on the NIF. At the University of Rochester required for ignition on the NIF. At LLE, these cryogenic DT and D2 capsules are being imploded

293

Exergoeconomic optimization of the cryogenic cycles used in the pilot plant for tritium and deuterium separation  

Science Conference Proceedings (OSTI)

Increased consumption of natural resources and energy needs has led to development of new energy conversion technologies and concerns for environmental impacts as a result of emissions. Thermoeconomy is more broadly a science of saving natural resources ... Keywords: cryogenic systems, exergoeconomic analyze, optimal investment cost

Sorin Gherghinescu; Alexandru Dobrovicescu; Eugenia Vasilescu

2011-07-01T23:59:59.000Z

294

Experimental Studies of Convection Effects in a Cryogenic NIF Ignition Target  

DOE Green Energy (OSTI)

We describe experiments which investigate convection effects on hydrogen ice layers in a transparent CH capsule suspended with a fill-tube. These experiments validate simulations which show that unmitigated convection from the hohlraum fill gas can produce significant distortions to the cryogenic hydrogen ice layer. Experimental results show good agreement with thermal simulations which include conduction and convection.

Moody, J D; Sanchez, J J; Bittner, D N; Giedt, W H; London, R L; Sater, J D; Burmann, J A; Jones, R L

2003-08-22T23:59:59.000Z

295

Development of a cryogenic induction motor for use with a superconducting magnetic bearing  

E-Print Network (OSTI)

Development of a cryogenic induction motor for use with a superconducting magnetic bearing Tomotake of a superconducting magnetic bearing (SMB). Both the motor and the SMB are operated at liquid He temperatures. We give Keywords: Astrophysical polarimeter; Induction motor; Superconducting magnetic bearings 1. Introduction

Oxley, Paul

296

Apparatus for supporting a cryogenic fluid containment system within an enclosure  

DOE Patents (OSTI)

An apparatus for supporting at least one inner cryogenic fluid containment system within an outer isolating enclosure to retard heat transfer into the inner containment system comprising a plurality of supports serially interconnected and laterally spaced by lateral connections to extend the heat conduction path into the inner containment system.

Zhang, Burt X. (Lancaster, TX); Ganni, Venkatarao (Degoto, TX); Stifle, Kirk E. (Lancaster, TX)

1995-01-01T23:59:59.000Z

297

Apparatus for supporting a cryogenic fluid containment system within an enclosure  

DOE Patents (OSTI)

An apparatus is disclosed for supporting at least one inner cryogenic fluid containment system within an outer isolating enclosure to retard heat transfer into the inner containment system comprising a plurality of supports serially interconnected and laterally spaced by lateral connections to extend the heat conduction path into the inner containment system. 8 figs.

Zhang, B.X.; Ganni, V.; Stifle, K.E.

1995-01-31T23:59:59.000Z

298

100-W Q-switched Cryogenically Cooled Yb:YAG Laser  

E-Print Network (OSTI)

This work describes a cryogenic, electro-optically Q-switched Yb:YAG laser that generates 114-W average TEM[subscript 00] power with 47% optical-to-optical efficiency. Pulse repetition frequency is 5 kHz, pulse duration ...

Hybl, John D.

299

Design and testing of the New Muon Lab cryogenic system at Fermilab  

Science Conference Proceedings (OSTI)

Fermi National Accelerator Laboratory is constructing a superconducting 1.3 GHz cryomodule test facility located at the New Muon Lab building. The facility will be used for testing and validating cryomodule designs as well as support systems. For the initial phase of the project, a single Type III plus 1.3 GHz cryomodule will be cooled and tested using a single Tevatron style standalone refrigerator. Subsequent phases involve testing as many as two full RF units consisting of up to six 1.3 GHz cryomodules with the addition of a new cryogenic plant. The cryogenic infrastructure consists of the refrigerator system, cryogenic distribution system as well as an ambient temperature pumping system to achieve 2 K operations with supporting purification systems. A discussion of the available capacity for the various phases versus the proposed heat loads is included as well as commissioning results and testing schedule. This paper describes the plans, status and challenges of this initial phase of the New Muon Lab cryogenic system.

Martinez, A.; Klebaner, A.L.; Theilacker, J.C.; DeGraff, B.D.; Leibfritz, J.; /Fermilab

2009-11-01T23:59:59.000Z

300

Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy  

DOE Green Energy (OSTI)

Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Understanding the life cycle of a fracture in a geothermal system is fundamental to the development of techniques for creating fractures. Recognizing the stage of a fracture, whether it is currently open and transmitting fluids; if it recently has closed; or if it is an ancient fracture would assist in targeting areas for further fracture stimulation. Identifying dense fracture areas as well as large open fractures from small fracture systems will also assist in fracture stimulation selection. Geothermal systems are constantly generating fractures, and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. Our hypothesis is that fractures over their life cycle have different chemical signatures that we can see in fluid inclusion gas analysis and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of fractures, along with an estimate of fracture size can be identified during the well drilling process. We have shown with this study that it is possible to identify fracture locations using FIS and that different fractures have different chemical signatures however that signature is somewhat dependent upon rock type. Open, active fractures correlate with increase concentrations of CO2, N2, Ar, and to a lesser extent H2O. These fractures would be targets for further enhancement. The usefulness of this method is that it is low cost alternative to current well logging techniques and can be done as a well is being drilled.

Dilley, Lorie M.; Norman, David; Owens, Lara

2008-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Transport of Bottom Water in the Romanche Fracture Zone and the Chain Fracture Zone  

Science Conference Proceedings (OSTI)

Two moored arrays deployed in the Romanche Fracture Zone and Chain Fracture Zone in the equatorial Atlantic Ocean provide two-year-long time series of current and temperature in the Lower North Atlantic Deep Water and the Antarctic Bottom Water. ...

Herl Mercier; Kevin G. Speer

1998-05-01T23:59:59.000Z

302

HYDRAULIC FRACTURING AND OVERCORING STRESS MEASUREMENTS IN A DEEP BOREHOLE AT THE STRIPA TEST MINE, SWEDEN  

E-Print Network (OSTI)

u l y 2 , 1 9 8 1 HYDRAULIC FRACTURING AND OVERCORING STRESSI nun LBL-12478 HYDRAULIC FRACTURING AND OVERCORING STRESSthe calculated stress. n HYDRAULIC FRACTURING EQUIPMENT AND

Doe, T.

2010-01-01T23:59:59.000Z

303

Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs  

E-Print Network (OSTI)

Zimmermann, G. , 2005. Hydraulic fracturing in a sedimentaryare described in the hydraulic fracturing context, in whichoverview. However, hydraulic fracturing theories and related

Wessling, S.

2009-01-01T23:59:59.000Z

304

A STATISTICAL FRACTURE MECHANICS APPROACH TO THE STRENGTH OF BRITTLE ROCK  

E-Print Network (OSTI)

Carlsson, H. , "Hydraulic fracturing and overcoring stress1949). Haimson, B.C. , "Hydraulic fracturing in porous andc.B. , "Laboratory hydraulic fracturing experiments in

Ratigan, J.L.

2010-01-01T23:59:59.000Z

305

A triple-continuum approach for modeling flow and transport processes in fractured rock  

E-Print Network (OSTI)

Multiphase Tracer Transport in Heterogeneous Fractured Porousmultiphase, nonisothermal flow and solute transport in fractured porousmultiphase fluid flow, heat transfer, and chemical migration in a fractured porous

Wu, Yu-Shu; Liu, H.H.; Bodvarsson, G.S; Zellmer, K .E.

2001-01-01T23:59:59.000Z

306

Introducing a Clinical Practice Guideline Using Early CT in the Diagnosis of Scaphoid and Other Fractures  

E-Print Network (OSTI)

61-6. 30. Kusano N. Diagnosis of Occult Scaphoid Fracture: AMJ, Schaefer-Prokop C, et al. Occult scaphoid fractures:revealing radiographically occult scaphoid fractures. [see

2009-01-01T23:59:59.000Z

307

A PKN Hydraulic Fracture Model Study and Formation Permeability Determination  

E-Print Network (OSTI)

Hydraulic fracturing is an important method used to enhance the recovery of oil and gas from reservoirs, especially for low permeability formations. The distribution of pressure in fractures and fracture geometry are needed to design conventional and unconventional hydraulic fracturing operations, fracturing during water-flooding of petroleum reservoirs, shale gas, and injection/extraction operation in a geothermal reservoir. Designing a hydraulic fracturing job requires an understanding of fracture growth as a function of treatment parameters. There are various models used to approximately define the development of fracture geometry, which can be broadly classified into 2D and 3D categories. 2D models include, the Perkins-Kern-Nordgren (PKN) fracture model, and the Khristianovic-Geertsma-de. Klerk (KGD) fracture model, and the radial model. 3D models include fully 3D models and pseudo-three-dimensional (P-3D) models. The P-3D model is used in the oil industry due to its simplification of height growth at the wellbore and along the fracture length in multi-layered formations. In this research, the Perkins-Kern-Nordgren (PKN) fracture model is adopted to simulate hydraulic fracture propagation and recession, and the pressure changing history. Two different approaches to fluid leak-off are considered, which are the classical Carter's leak-off theory with a constant leak-off coefficient, and Pressure-dependent leak-off theory. Existence of poroelastic effect in the reservoir is also considered. By examining the impact of leak-off models and poroelastic effects on fracture geometry, the influence of fracturing fluid and rock properties, and the leak-off rate on the fracture geometry and fracturing pressure are described. A short and wide fracture will be created when we use the high viscosity fracturing fluid or the formation has low shear modulus. While, the fracture length, width, fracturing pressure, and the fracture closure time increase as the fluid leak-off coefficient is decreased. In addition, an algorithm is developed for the post-fracture pressure-transient analysis to calculate formation permeability. The impulse fracture pressure transient model is applied to calculate the formation permeability both for the radial flow and linear fracture flow assumption. Results show a good agreement between this study and published work.

Xiang, Jing

2011-12-01T23:59:59.000Z

308

Fracturing operations in a dry geothermal reservoir  

DOE Green Energy (OSTI)

Fracturing operations at the Fenton Hill, New Mexico, Hot Dry Rock (HDR) Geothermal Test Site initiated unique developments necessary to solve problems caused by an extremely harsh downhole environment. Two deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures are in excess of 600/sup 0/F (315/sup 0/C). The wells were drilled during 1979 to 1981, inclined at 35 degrees, one above the other, and directionally drilled in an azimuthal direction orthogonal to the least principal in-situ crustal stress field. Hydraulic fracturing experiments to connect the two wells have used openhole packers, hydraulic jet notching of the borehole wall, cemented-in insolation liners and casing packers. Problems were encountered with hole drag, high fracture gradients, H/sub 2/S in vent back fluids, stress corrosion cracking of tubulars, and the complex nature of three-dimensional fracture growth that requires very large volumes of injected water. Two fractured zones have been formed by hydraulic fracturing and defined by close-in, borehole deployed, microseismic detectors. Initial operations were focused in the injection wellbore near total depth, where water injection treatments totalling 51,000 bbls (8100 m/sup 3/) were accomplished by pumping through a cemented-in 4-1/2 in. liner/PBR assembly. Retrievable casing packers were used to inject 26,000 bbls (4100 m/sup 3/) in the upper section of the open hole. Surface injection pressures (ISIP) varied from 4000 to 5900 psi (27 to 41 MPa) and the fracture gradient ranged from 0.7 to 0.96 psi/ft.

Rowley, J.C.; Pettitt, R.A.; Hendron, R.H.; Sinclair, A.R.; Nicholson, R.W.

1983-01-01T23:59:59.000Z

309

Cryogenic thermonuclear fuel implosions on the National Ignition Facility  

Science Conference Proceedings (OSTI)

The first inertial confinement fusion implosion experiments with equimolar deuterium-tritium thermonuclear fuel have been performed on the National Ignition Facility. These experiments use 0.17 mg of fuel with the potential for ignition and significant fusion yield conditions. The thermonuclear fuel has been fielded as a cryogenic layer on the inside of a spherical plastic capsule that is mounted in the center of a cylindrical gold hohlraum. Heating the hohlraum with 192 laser beams for a total laser energy of 1.6 MJ produces a soft x-ray field with 300 eV temperature. The ablation pressure produced by the radiation field compresses the initially 2.2-mm diameter capsule by a factor of 30 to a spherical dense fuel shell that surrounds a central hot-spot plasma of 50 {mu}m diameter. While an extensive set of x-ray and neutron diagnostics has been applied to characterize hot spot formation from the x-ray emission and 14.1 MeV deuterium-tritium primary fusion neutrons, thermonuclear fuel assembly is studied by measuring the down-scattered neutrons with energies in the range of 10 to 12 MeV. X-ray and neutron imaging of the compressed core and fuel indicate a fuel thickness of (14 {+-} 3) {mu}m, which combined with magnetic recoil spectrometer measurements of the fuel areal density of (1 {+-} 0.09) g cm{sup -2} result in fuel densities approaching 600 g cm{sup -3}. The fuel surrounds a hot-spot plasma with average ion temperatures of (3.5 {+-} 0.1) keV that is measured with neutron time of flight spectra. The hot-spot plasma produces a total fusion neutron yield of 10{sup 15} that is measured with the magnetic recoil spectrometer and nuclear activation diagnostics that indicate a 14.1 MeV yield of (7.5{+-}0.1) Multiplication-Sign 10{sup 14} which is 70% to 75% of the total fusion yield due to the high areal density. Gamma ray measurements provide the duration of nuclear activity of (170 {+-} 30) ps. These indirect-drive implosions result in the highest areal densities and neutron yields achieved on laser facilities to date. This achievement is the result of the first hohlraum and capsule tuning experiments where the stagnation pressures have been systematically increased by more than a factor of 10 by fielding low-entropy implosions through the control of radiation symmetry, small hot electron production, and proper shock timing. The stagnation pressure is above 100 Gbars resulting in high Lawson-type confinement parameters of P{tau} Asymptotically-Equal-To 10 atm s. Comparisons with radiation-hydrodynamic simulations indicate that the pressure is within a factor of three required for reaching ignition and high yield. This will be the focus of future higher-velocity implosions that will employ additional optimizations of hohlraum, capsule and laser pulse shape conditions.

Glenzer, S. H.; Callahan, D. A.; MacKinnon, A. J.; Alger, E. T.; Berger, R. L.; Bernstein, L. A.; Bleuel, D. L.; Bradley, D. K.; Burkhart, S. C.; Burr, R.; Caggiano, J. A.; Castro, C.; Choate, C.; Clark, D. S.; Celliers, P.; Cerjan, C. J.; Collins, G. W.; Dewald, E. L.; DiNicola, P.; DiNicola, J. M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-05-15T23:59:59.000Z

310

HYDRAULIC FRACTURING AND INDUCED SEISMICITY IN KANSAS  

E-Print Network (OSTI)

For some time the public has asked questions about seismic activity related to hydraulic fracturing and other oil-field related activities. In particular, there is concern that the energy that goes into the subsurface during hydraulic fracturing is sufficient to cause felt earthquakes. The following is a response to those questions. 1) Seismic activity that is related to human activities is generally referred to as induced seismicity or triggered seismicity. Induced seismicity is defined as seismic events attributable to human activities (National Research Council, 2012). The term triggered seismicity is also used to describe situations in which human activities could potentially trigger large and potentially damaging earthquakes (Shemeta et al., 2012). The following discussion uses only the term induced seismicity to refer to seismic activity in which human activity plays a role. 2) Because it uses energy to fracture rocks to release oil or natural gas, hydraulic fracturing does create microseismic events (of a magnitude less than 2.0). Felt earthquake activity (generally greater than a magnitude 3.0) resulting from hydraulic fracturing has been confirmed from only one location in the world (National Research Council, 2012). In the

unknown authors

2013-01-01T23:59:59.000Z

311

Anomalous fracture-extension pressure in granitic rocks  

DOE Green Energy (OSTI)

Fracture-extension pressures appreciably higher than the least principal earth-stress were observed in hydraulic fractures formed in a pair of 3 km (9600 ft) deep boreholes drilled near the Valles Caldera in northern New Mexico. Pressurization of open wellbores in rock containing preexisting fractures may open these fractures, instead of creating new fractures at right angles to the least principal stress. The pressure necessary to flow into these fractures may be appreciably higher than the least principal stress. Upon sand-propping one such pre-existing fracture, a lower fracture extension pressure was observed. A second fracture in a parallel well-bore 92 m (300 ft) away, at the same depth of 2 km (6500 ft) exhibited the lower fracture extension pressure without propping, but with about 90/sup 0/ difference in fracture direction. Fractures created through perforations at a depth of 3 km (9600 ft) not only exhibited breakdown pressures upon initial pressurization, but sometimes even higher ''breakdown'' pressures upon repressurization. These phenomena may be of interest in the interpretation of earth stress measurements made by hydraulic fracturing.

Aamodt, R.L.; Potter, R.M.

1978-01-01T23:59:59.000Z

312

Fracture Characterization Technologies | Open Energy Information  

Open Energy Info (EERE)

Fracture Characterization Technologies Fracture Characterization Technologies Jump to: navigation, search Geothermal ARRA Funded Projects for Fracture Characterization Technologies Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

313

Pressure transient analysis for naturally fractured reservoirs  

Science Conference Proceedings (OSTI)

New ideas are presented for the interpretation of pressure transient tests for wells in naturally fractured reservoirs. This work is based on the transient matrix flow model formulated by de Swaan. The differences between this model and the Warren and Root model occur during the transition flow period. It is demonstrated that the behavior of a naturally fractured reservoir can be correlated by using three dimensionless parameters. It is established that regardless of matrix geometry the transition period might exhibit a straight line whose slope is equal to half the slope of the classical parallel semilog straight lines, provided the transient matrix linear flow is present. In addition, information is provided on the estimation of fracture area per unit matrix volume or matrix parameters from the transition period semilog straight line. It is shown that matrix geometry might be identified when pressure data are smooth. Field examples are included to illustrate the application and the validity of the theoretical results of this study.

Cinco-ley, H.; Samaniego, F.V.

1982-09-01T23:59:59.000Z

314

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cryogenic Fracturing Technology Laboratory studies of cryogenic fracturing of shale and tight gas rock media. Gary Covatch Digitally signed by Gary Covatch DN: cnGary Covatch,...

315

On the fracture toughness of advanced materials  

Science Conference Proceedings (OSTI)

Few engineering materials are limited by their strength; rather they are limited by their resistance to fracture or fracture toughness. It is not by accident that most critical structures, such as bridges, ships, nuclear pressure vessels and so forth, are manufactured from materials that are comparatively low in strength but high in toughness. Indeed, in many classes of materials, strength and toughness are almost mutually exclusive. In the first instance, such resistance to fracture is a function of bonding and crystal structure (or lack thereof), but can be developed through the design of appropriate nano/microstructures. However, the creation of tough microstructures in structural materials, i.e., metals, polymers, ceramics and their composites, is invariably a compromise between resistance to intrinsic damage mechanisms ahead of the tip of a crack (intrinsic toughening) and the formation of crack-tip shielding mechanisms which principally act behind the tip to reduce the effective 'crack-driving force' (extrinsic toughening). Intrinsic toughening is essentially an inherent property of a specific microstructure; it is the dominant form of toughening in ductile (e.g., metallic) materials. However, for most brittle (e.g., ceramic) solids, and this includes many biological materials, it is largely ineffective and toughening conversely must be developed extrinsically, by such shielding mechanisms as crack bridging. From a fracture mechanics perspective, this results in toughening in the form of rising resistance-curve behavior where the fracture resistance actually increases with crack extension. The implication of this is that in many biological and high-strength advanced materials, toughness is developed primarily during crack growth and not for crack initiation. This is an important realization yet is still rarely reflected in the way that toughness is measured, which is invariably involves the use of single-value (crack-initiation) parameters such as the fracture toughness K{sub Ic}.

Launey, Maximilien E.; Ritchie, Robert O.

2008-11-24T23:59:59.000Z

316

Gas condensate damage in hydraulically fractured wells  

E-Print Network (OSTI)

This project is a research into the effect of gas condensate damage in hydraulically fractured wells. It is the result of a problem encountered in producing a low permeability formation from a well in South Texas owned by the El Paso Production Company. The well was producing from a gas condensate reservoir. Questions were raised about whether flowing bottomhole pressure below dewpoint would be appropriate. Condensate damage in the hydraulic fracture was expected to be of significant effect. In the most recent work done by Adedeji Ayoola Adeyeye, this subject was studied when the effects of reservoir depletion were minimized by introduction of an injector well with fluid composition the same as the original reservoir fluid. He also used an infinite conductivity hydraulic fracture along with a linear model as an adequate analogy. He concluded that the skin due to liquid build-up is not enough to prevent lower flowing bottomhole pressures from producing more gas. This current study investigated the condensate damage at the face of the hydraulic fracture in transient and boundary dominated periods when the effects of reservoir depletion are taken into account. As a first step, simulation of liquid flow into the fracture was performed using a 2D 1-phase simulator in order to help us to better understand the results of gas condensate simulation. Then during the research, gas condensate models with various gas compositions were simulated using a commercial simulator (CMG). The results of this research are a step forward in helping to improve the management of gas condensate reservoirs by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas into the hydraulic fracture.

Reza, Rostami Ravari

2004-08-01T23:59:59.000Z

317

PHYSICAL PARAMETERS OF ASTEROIDS ESTIMATED FROM THE WISE 3-BAND DATA AND NEOWISE POST-CRYOGENIC SURVEY  

Science Conference Proceedings (OSTI)

Enhancements to the science data processing pipeline of NASA's Wide-field Infrared Survey Explorer (WISE) mission, collectively known as NEOWISE, resulted in the detection of >158,000 minor planets in four infrared wavelengths during the fully cryogenic portion of the mission. Following the depletion of its cryogen, NASA's Planetary Science Directorate funded a four-month extension to complete the survey of the inner edge of the Main Asteroid Belt and to detect and discover near-Earth objects (NEOs). This extended survey phase, known as the NEOWISE Post-Cryogenic Survey, resulted in the detection of {approx}6500 large Main Belt asteroids and 86 NEOs in its 3.4 and 4.6 {mu}m channels. During the Post-Cryogenic Survey, NEOWISE discovered and detected a number of asteroids co-orbital with the Earth and Mars, including the first known Earth Trojan. We present preliminary thermal fits for these and other NEOs detected during the 3-Band Cryogenic and Post-Cryogenic Surveys.

Mainzer, A.; Masiero, J.; Bauer, J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ 85719 (United States); Cutri, R. M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); McMillan, R. S. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Nugent, C. R. [Department of Earth and Space Sciences, UCLA, 595 Charles Young Drive East, Box 951567, Los Angeles, CA 90095-1567 (United States); Tholen, D. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Walker, R. [Monterey Institute for Research in Astronomy, Monterey, CA 93933 (United States); Wright, E. L., E-mail: amainzer@jpl.nasa.gov [Department of Physics and Astronomy, UCLA, P.O. Box 91547, Los Angeles, CA 90095-1547 (United States)

2012-11-20T23:59:59.000Z

318

Application of a 3D hydraulic-fracturing simulator for design of acid-fracturing treatments  

Science Conference Proceedings (OSTI)

Field experience during 1989--90 shows that application of a 3D hydraulic-fracturing simulator increases success of acid-fracturing well treatments. Fracture extension can be limited to the oil-bearing pay, maximum lateral extension can be realized within the height constraint, and acid/rock contact time can be increased by a factor of between 3 and 30. Oil-production response can be improved over other stimulation designs while water-production response can be limited. These methods have been applied in mature waterfloods of the Permian Basin and Cedar Creek anticline.

Morgenthaler, L.N. (Shell Development Co., Houston, TX (United States))

1994-02-01T23:59:59.000Z

319

On equivalence of thinning fluids used for hydraulic fracturing  

E-Print Network (OSTI)

The paper aims to answer the question: if and how non-Newtonian fluids may be compared in their mechanical action when used for hydraulic fracturing? By employing the modified formulation of the PKN problem we obtain its simple analytical solutions in the cases of perfectly plastic and Newtonian fluids. Since the results for shear thinning fluids are intermediate between those for these cases, the obtained equation for the fracture length suggests a criterion of the equivalence of various shear thinning fluids for the problem of hydraulic fractures. We assume fluids equivalent in their hydrofracturing action, when at a reference time they produce fractures of the same length. The equation for the fracture length translates the equivalence in terms of the hydraulic fracture length and treatment time into the equivalence in terms of the properties of a fracturing fluid (behavior and consistency indices). Analysis shows that the influence of the consistency and behavior indices on the fracture length, particle v...

Linkov, Alexander

2012-01-01T23:59:59.000Z

320

How can we use one fracture to locate another?  

E-Print Network (OSTI)

Hydraulic fracturing is an important tool that helps extract fluids from the subsurface. It is critical in applications ranging from enhanced oil recovery to geothermal energy pro-duction. As the goal of fracturing is to ...

Poliannikov, Oleg V.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE's Shale Gas and Hydraulic Fracturing Research | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Shale Gas and Hydraulic Fracturing Research DOE's Shale Gas and Hydraulic Fracturing Research April 26, 2013 - 11:05am Addthis Statement of Guido DeHoratiis Acting Deputy...

322

Permeability Estimation From Velocity Anisotropy In Fractured Rock  

E-Print Network (OSTI)

Cracks in a rock mass subjected to a uniaxial stress will be preferentially closed depending on the angle between the fracture normal vectors and the direction of the applied stress. If the prestress fracture orientation ...

Gibson, Richard L., Jr.

1990-01-01T23:59:59.000Z

323

Rigid-body fracture sound with precomputed soundbanks  

Science Conference Proceedings (OSTI)

We propose a physically based algorithm for synthesizing sounds synchronized with brittle fracture animations. Motivated by laboratory experiments, we approximate brittle fracture sounds using time-varying rigid-body sound models. We extend methods for ...

Changxi Zheng; Doug L. James

2010-07-01T23:59:59.000Z

324

Predicting the occurrence of open natural fractures in shale reservoirs  

SciTech Connect

Prolific oil and gas production has been established from naturally fractured shale reservoirs. For example, in the last few years over 4 Tcf of gas reserves have been established within the self-sourcing Antrim Shale of the Michigan Basin. Historically, locating subsurface fracture systems essential for commercial production has proven elusive and costly. An integrated exploration approach utilizing available geologic, geophysical, and remote sensing data has successfully located naturally fractured zones within the Antrim Shale. It is believed that fracturing of the Antrim shale was a result of basement involved tectonic processes. Characteristic integrated stacked signatures of known fracture systems within the Antrim were built using gravity and magnetic data, structure maps, fracture identification logs, and Landsat imagery. Wireline fracture logs pinpointed the locations and geometries of subsurface fracture systems. Landsat imagery was interpreted to reveal surficial manifestations of subsurface structures.

Decker, A.D.; Klawitter, A.L. (Advanced Resources International, Denver, CO (United States))

1996-01-01T23:59:59.000Z

325

Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model  

SciTech Connect

Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

Huang, Hai; Plummer, Mitchell; Podgorney, Robert

2013-02-01T23:59:59.000Z

326

Upscaling solute transport in naturally fractured porous media with the continuous time random walk method  

E-Print Network (OSTI)

fracture model for multiphase ?ow in porous media. AIChEsingle- and multiphase transport in fractured porous media

Geiger, S.

2012-01-01T23:59:59.000Z

327

A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development  

DOE Green Energy (OSTI)

Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are defined from the numerical solution of a complex hypersingular integral equation written for a given fracture configuration and loading. The fracture propagation studies include modeling interaction of induced fractures with existing discontinuities such as faults and joints. In addition to the fracture propagation studies, two- and three-dimensional heat extraction solution algorithms have been developed and used to estimate heat extraction and the variations of the reservoir stress with cooling. The numerical models have been developed in a user-friendly environment to create a tool for improving fracture design and investigating single or multiple fracture propagation in rock.

Ahmad Ghassemi

2003-06-30T23:59:59.000Z

328

Imaging, Characterizing, and Modeling of Fracture Networks and...  

Open Energy Info (EERE)

Los Alamos National Laboratory Other Principal Investigators Grant Bromhal, National Energy Technology Laboratory Targets Milestones - Improve image resolution for fracture...

329

Fluid Flow in Fractured Rock: Theory and Application  

E-Print Network (OSTI)

Porous Media, Pullman, WA, July 9-18,1989, and to be published in the Proceedings Fluid Flow in Fractured

Long, J.C.S.

2012-01-01T23:59:59.000Z

330

Fracture Criterion of Discontinuous Carbon Fiber Dispersed SiC ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Ceramic Matrix Composites. Presentation Title, Fracture Criterion of...

331

Towards Understanding the Deformation and Fracture Behavior of ...  

Science Conference Proceedings (OSTI)

Presentation Title, Towards Understanding the Deformation and Fracture Behavior of Gas Turbine Structural Materials at Elevated Temperatures. Author(s) ...

332

Experimental and Analytical Research on Fracture Processes in ROck  

DOE Green Energy (OSTI)

Experimental studies on fracture propagation and coalescence were conducted which together with previous tests by this group on gypsum and marble, provide information on fracturing. Specifically, different fracture geometries wsere tested, which together with the different material properties will provide the basis for analytical/numerical modeling. INitial steps on the models were made as were initial investigations on the effect of pressurized water on fracture coalescence.

Herbert H.. Einstein; Jay Miller; Bruno Silva

2009-02-27T23:59:59.000Z

333

Fan Blade Fracture in a Welded Assembly - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Failure Analysis and Prevention. Presentation Title, Fan Blade Fracture in a...

334

Fracture and Delamination in Thin Film Si Electrodes  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors. Presentation Title, Fracture and Delamination in Thin Film Si Electrodes.

335

Characterization of liquefied natural gas tanker steel from cryogenic to fire temperatures.  

SciTech Connect

The increased demand for Liquefied Natural Gas (LNG) as a fuel source in the U.S. has prompted a study to improve our capability to predict cascading damage to LNG tankers from cryogenic spills and subsequent fire. To support this large modeling and simulation effort, a suite of experiments were conducted on two tanker steels, ABS Grade A steel and ABS Grade EH steel. A thorough and complete understanding of the mechanical behavior of the tanker steels was developed that was heretofore unavailable for the span of temperatures of interest encompassing cryogenic to fire temperatures. This was accomplished by conducting several types of experiments, including tension, notched tension and Charpy impact tests at fourteen temperatures over the range of -191 C to 800 C. Several custom fixtures and special techniques were developed for testing at the various temperatures. The experimental techniques developed and the resulting data will be presented, along with a complete description of the material behavior over the temperature span.

Dempsey, J. Franklin (Sandia National Laboratories, Albuquerque, NM); Wellman, Gerald William (Sandia National Laboratories, Albuquerque, NM); Antoun, Bonnie R.; Connelly, Kevin; Kalan, Robert J. (Sandia National Laboratories, Albuquerque, NM)

2010-03-01T23:59:59.000Z

336

A microkelvin cryogen-free experimental platform with integrated noise thermometry  

E-Print Network (OSTI)

We report experimental demonstration of the feasibility of reaching temperatures below 1 mK using cryogen-free technology. Our prototype system comprises an adiabatic nuclear demagnetisation stage, based on hyperfine-enhanced nuclear magnetic cooling, integrated with a commercial cryogen-free dilution refrigerator and 8 T superconducting magnet. Thermometry was provided by a current-sensing noise thermometer. The minimum temperature achieved at the experimental platform was 600 {\\mu}K. The platform remained below 1 mK for over 24 hours, indicating a total residual heat-leak into the experimental stage of 5 nW. We discuss straightforward improvements to the design of the current prototype that are expected to lead to enhanced performance. This opens the way to widening the accessibility of temperatures in the microkelvin regime, of potential importance in the application of strongly correlated electron states in nanodevices to quantum computing.

Batey, Graham; Cuthbert, Michael; Matthews, Anthony; Saunders, John; Shibahara, Aya

2013-01-01T23:59:59.000Z

337

Energy Efficiency of large Cryogenic Systems: the LHC Case and Beyond  

E-Print Network (OSTI)

Research infrastructures for high-energy and nuclear physics, nuclear fusion and production of high magnetic fields are increasingly based on applied superconductivity and associated cryogenics in their quest for scientific breakthroughs at affordable capital and operation costs, a condition for their acceptance and sustained funding by society. The thermodynamic penalty for operating at low temperature makes energy efficiency a key requirement for their large cryogenic systems, from conceptual design to procurement, construction and operation. Meeting this requirement takes a combined approach on several fronts in parallel: management of heat loads and sizing of cooling duties, distribution of cooling power matching the needs of the superconducting devices, efficient production of refrigeration, optimal control resting on precise instrumentation and diagnostics, as well as a targeted industrial procurement policy. The case of the Large Hadron Collider (LHC) at CERN is presented. Potential improvements for fu...

Claudet, S; Ferlin, G; Lebrun, P; Tavian, L; Wagner, U

2013-01-01T23:59:59.000Z

338

The Control System for the Cryogenics in the LHC Tunnel [First Experience and Improvements  

E-Print Network (OSTI)

The Large Hadron Collider (LHC) was commissioned at CERN and started operation with beams in 2008. Several months of operation in nominal cryogenic conditions have triggered an optimisation of the process functional analysis. This lead to a few revisions of the control logic, which were realised on-the-fly. During the 2008-09 shut-down, and in order to enhance the safety, availability and operability of the LHC cryogenics, a major rebuild of the logic and several hardware modifications were implemented. The databases, containing instruments and controls in-formation, are being rationalized; the automatic tool, that extracts data for the control software, is being simplified. This paper describes the main improvements and sug-gests perspectives of further developments.

Gomes, P; Casas, J; Fluder, C; Fortescue, E; Le Roux, P; Penacoba, G; Pezzetti, M; Soubiran, M; Tovar, A; Zwalinski, L

2010-01-01T23:59:59.000Z

339

EVALUATION OF SILICON DIODES AS IN-SITU CRYOGENIC FIELD EMISSION DETECTORS FOR SRF CAVITY DEVELOPMENT  

Science Conference Proceedings (OSTI)

We performed in-situ cryogenic testing of four silicon diodes as possible candidates for field emission (FE) monitors of superconducting radio frequency (SRF) cavities during qualification testing and in accelerator cryo-modules. We evaluated diodes from 2 companies - from Hamamatsu corporation model S1223-01; and from OSI Optoelectronics models OSD35-LR-A, XUV-50C, and FIL-UV20. The measurements were done by placing the diodes in superfluid liquid helium near the top of a field emitting 9-cell cavity during its vertical test. For each diode, we will discuss their viability as a 2K cryogenic detector for FE mapping of SRF cavities and the directionality of S1223-01 in such environments. We will also present calibration curves between the diodes and JLab's standard radiation detector placed above the Dewar's top plate.

Ari Palczewski, Rongli Geng

2012-07-01T23:59:59.000Z

340

Measurement of /sup 85/Kr concentrations in air using a cryogenic sampling technique  

Science Conference Proceedings (OSTI)

A new method to detect moderate concentrations (down to approximately 370 Bq/m/sup 3/ under actual field conditions) of /sup 85/Kr in air has been developed. This method employs a cryogenic sampler for collection of the air sample of interest and a Ge(Li) spectroscopy system to determine the concentration of /sup 85/Kr by detection of the 514-keV gamma photon. Data from experiments are presented.

Owens, M.E.; Berven, B.A.; Perdue, P.T.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High Precision CTE-Measurement of SiC-100 for Cryogenic Space-Telescopes  

E-Print Network (OSTI)

We present the results of high precision measurements of the thermal expansion of the sintered SiC, SiC-100, intended for use in cryogenic space-telescopes, in which minimization of thermal deformation of the mirror is critical and precise information of the thermal expansion is needed for the telescope design. The temperature range of the measurements extends from room temperature down to $\\sim$ 10 K. Three samples, #1, #2, and #3 were manufactured from blocks of SiC produced in different lots. The thermal expansion of the samples was measured with a cryogenic dilatometer, consisting of a laser interferometer, a cryostat, and a mechanical cooler. The typical thermal expansion curve is presented using the 8th order polynomial of the temperature. For the three samples, the coefficients of thermal expansion (CTE), $\\bar{\\alpha}_{#1}$, $\\bar{\\alpha}_{#2}$, and $\\bar{\\alpha}_{#3}$ were derived for temperatures between 293 K and 10 K. The average and the dispersion (1 $\\sigma$ rms) of these three CTEs are 0.816 and 0.002 ($\\times 10^{-6}$/K), respectively. No significant difference was detected in the CTE of the three samples from the different lots. Neither inhomogeneity nor anisotropy of the CTE was observed. Based on the obtained CTE dispersion, we performed an finite-element-method (FEM) analysis of the thermal deformation of a 3.5 m diameter cryogenic mirror made of six SiC-100 segments. It was shown that the present CTE measurement has a sufficient accuracy well enough for the design of the 3.5 m cryogenic infrared telescope mission, the Space Infrared telescope for Cosmology and Astrophysics (SPICA).

K. Enya; N. Yamada; T. Onaka; T. Nakagawa; H. Kaneda; M. Hirabayashi; Y. Toulemont; D. Castel; Y. Kanai; N. Fujishiro

2007-04-12T23:59:59.000Z

342

Mirror thermal noise in laser interferometer gravitational wave detectors operating at room and cryogenic temperature  

E-Print Network (OSTI)

Mirror thermal noise is and will remain one of the main limitations to the sensitivity of gravitational wave detectors based on laser interferometers. We report about projected mirror thermal noise due to losses in the mirror coatings and substrates. The evaluation includes all kind of thermal noises presently known. Several of the envisaged substrate and coating materials are considered. The results for mirrors operated at room temperature and at cryogenic temperature are reported.

Janyce Franc; Nazario Morgado; Raffaele Flaminio; Ronny Nawrodt; Iain Martin; Liam Cunningham; Alan Cumming; Sheila Rowan; James Hough

2009-12-01T23:59:59.000Z

343

Ultra-stable cryogenic optical resonators for tests of fundamental physics  

E-Print Network (OSTI)

We present the design and first measurement results for an ultra-stable cryogenically cooled optical sapphire resonator system with a potential relative frequency stability better than 3x10^-17. This level of oscillator stability allows for more precise tests of Einstein's theories of relativity and thus could help to find first hints of "new physics". We will give some details on a projected experiment to test Lorentz invariance that will utilize these cavities.

Nagel, M; Dringshoff, K; Schikora, S; Kovalchuk, E V; Peters, A

2013-01-01T23:59:59.000Z

344

Ductile Fracture Handbook, Volume 1: Circumferential Throughwall Cracks  

Science Conference Proceedings (OSTI)

Over the past 10 years, the focus of fracture research related to nuclear power plants has shifted from brittle fractures to fractures of steels used for piping and vessels. This handbook developed by EPRI and Novetech Corporation is the first single-source document containing formulas for evaluating throughwall cracks in these tough ductile steels.

1989-07-01T23:59:59.000Z

345

Experimental Study of Acid Fracture Conductivity of Austin Chalk Formation  

E-Print Network (OSTI)

Acid fracture conductivity and the effect of key variables in the etching process during acid fracturing can be assessed at the laboratory scale. This is accomplished by using an experimental apparatus that simulates acid injection fluxes comparable to those in actual acid fracture treatments. After acid etching, fracture conductivity is measured at different closure stresses. This research work presents a systematic study to investigate the effect of temperature, rock-acid contact time and initial condition of the fracture surfaces on acid fracture conductivity in the Austin Chalk formation. While temperature and rock-acid contact are variables normally studied in fracture conductivity tests, the effect of the initial condition of the fracture surface has not been extensively investigated. The experimental results showed that there is no significant difference in acid fracture conductivity at high closure stress using smooth or rough fracture surfaces. In addition, we analyzed the mechanisms of acid etching and resulting conductivity creation in the two types of fracture surfaces studied by using surface profiles. For smooth surfaces, the mechanism of conductivity creation seems connected to uneven etching of the rock and roughness generation. For rough surfaces, acid conductivity is related to smoothing and deepening of the initial features on the sample surface than by creating more roughness. Finally, we compared the experimental results with Nirode-Kruk correlation for acid fracture conductivity.

Nino Penaloza, Andrea

2013-05-01T23:59:59.000Z

346

Efficient fracturing of all angle shaped VLSI mask pattern data  

Science Conference Proceedings (OSTI)

Fracturing (i.e., filling area by rectangles) is one of the most important tasks of an artwork system for a pattern generator. Growing chip complexity requires efficient algorithms to perform this non-trivial data transformation. In order to solve this ... Keywords: CAD for VLSI, computational geometry, coverage, dissection, exposure system, fracturing, hierarchical fracturing, pattern generator, plane sweep

Georg Pelz; Volker Meyer zu Bexten

1991-01-01T23:59:59.000Z

347

Particle-based fracture simulation on the GPU  

Science Conference Proceedings (OSTI)

In this paper, a particle-based framework is presented to simulate the fracture phenomenon in computer graphics field. First, the object is represented as discrete particles, and then we introduce the Extend Discrete Element Method (EDEM) simulation ... Keywords: CUDA, EDEM, anti-fracture mechanism, fracture

Jiangfan Ning; Huaxun Xu; Liang Zeng; Sikun Li

2011-01-01T23:59:59.000Z

348

6. Fracture mechanics lead author: J, R. Rice  

E-Print Network (OSTI)

6. Fracture mechanics lead author: J, R. Rice Division of Applied Sciences, Harvard University. F. Shih, and the ASME/AMD Technical Committee on Fracture Mechanics, pro- vided by A. S. Argon, S. N, W. D. Stuart, and R. Thomson. 6.0 ABSTRACT Fracture mechanics is an active research field

349

Synthetic benchmark for modeling flow in 3D fractured media  

Science Conference Proceedings (OSTI)

Intensity and localization of flows in fractured media have promoted the development of a large range of different modeling approaches including Discrete Fracture Networks, pipe networks and equivalent continuous media. While benchmarked usually within ... Keywords: Benchmark, Fractured media, Single-phase flow, Stochastic model

Jean-Raynald De Dreuzy; GRaldine Pichot; Baptiste Poirriez; Jocelyne Erhel

2013-01-01T23:59:59.000Z

350

Fracture analysis of the upper devonian antrim shale, Michigan basin  

Science Conference Proceedings (OSTI)

The Antrim Shale is a fractured, unconventional gas reservoir in the northern Michigan basin. Controls on gas production are poorly constrained but must depend on the fracture framework. Analyses of fracture geometry (orientation, spacing, and aperture width) were undertaken to better evaluate reservoir permeability and, hence, pathways for fluid migration. Measurements from nearly 600 fractures were made from outcrop, core, and Formation MicroScanner logs covering three members of the Antrim Shale (Norwood, Paxton, Lachine) and the Ellsworth Shale. Fracture analyses indicate pronounced reservoir anisotropy among the members. Together related with lithologic variations, this leads to unique reservoir characteristics within each member. There are two dominant fracture sets, northeast-southwest and northwest-southeast. Fracture density varies among stratigraphic intervals but always is lowest in the northwest-southeast fracture set and is greatest in the northeast-southwest fracture set. While aperture width decreases markedly with depth, subsurface variation in mean aperture width is significant. Based on fracture density and mean aperture width, the Norwood member has the largest intrinsic permeability and the Ellsworth Shale the lowest intrinsic permeability. The highest intrinsic fracture permeability in all intervals is associated with the northeast-southwest fracture set. The Norwood and Lachine members thus exhibit the best reservoir character. This information is useful in developing exploration strategies and completion practices in the Antrim Shale gas play.

Richards, J.A.; Budai, J.M.; Walter, L.M.; Abriola, L.M. (Univ. of Michigan, Ann Arbor, MI (United States))

1994-08-01T23:59:59.000Z

351

Estimating Major and Minor Natural Fracture Patterns in Gas  

E-Print Network (OSTI)

Estimating Major and Minor Natural Fracture Patterns in Gas Shales Using Production Data Razi Identification of infill drilling locations has been challenging with mixed results in gas shales. Natural fractures are the main source of permeability in gas shales. Natural fracture patterns in shale has a random

Mohaghegh, Shahab

352

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network (OSTI)

for both liquid and heat transfer processes. In order to beprocesses in hot fractured rock with ( 1) flow channeling in fractures, (2) interface reduction in F-M heat transfer,

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

353

Cryogenic sub-system for the 56 MHz SRF storage cavity for RHIC  

Science Conference Proceedings (OSTI)

A 56 MHz Superconducting RF Storage Cavity is being constructed for the RHIC collider. This cavity is a quarter wave resonator that will be operated in a liquid helium bath at 4.4 K. The cavity requires an extremely quiet environment to maintain its operating frequency. The cavity, besides being engineered for a mechanically quiet system, also requires a quiet cryogenic system. The helium is taken from RHIC's main helium supply header at 3.5 atm, 5.3K at a phase separator tank. The boil-off is sent back to the RHIC refrigeration system to recover the cooling. To acoustically separate the RHIC helium supply and return lines, a condenser/boiler heat exchanger condenses the helium vapor generated in the RF cavity bath. A system description and operating parameters are given about the cryogen delivery system. The 56 MHz superconducting storage RF cavity project is making progress. The cryogenic system design is in its final stage. The helium supply lines have been tapped into the RHIC helium distribution lines. The plate-and-fin heat exchanger design is near completion and specification will be sent out for bid soon. The cold helium vapor heating system design will start soon as well. A booster compressor specification is underway. The first phase separator and transfer line design work is near completion and will be sent out for bid soon.

Huang, Y.; Than, R.; Orfin, P.; Lederle, D.; Tallerico, T.; Masi L.; Talty, P.; Zhang, Y.

2011-03-28T23:59:59.000Z

354

Experimental Determination of Tracer Dispersivity in Fractures  

DOE Green Energy (OSTI)

Reinjection of waste hot water is commonly practiced in most geothermal fields, primarily as a means of disposal. Surface discharge of these waste waters is usually unacceptable due to the resulting thermal and chemical pollution. Although reinjection can help to main reservoir pressure and fluid volume, in some cases a decrease in reservoir productivity has been observed. This is caused by rapid flow of the reinjected water through fractures connecting the injector and producers. As a result, the water is not sufficiently heated by the reservoir rock, and a reduction in enthalpy of the produced fluids is seen. Tracer tests have proven to be valuable to reservoir engineers for the design of a successful reinjection program. By injecting a slug of tracer and studying the discharge of surrounding producing wells, an understanding of the fracture network within a reservoir can be provided. In order to quantify the results of a tracer test, a model that accurately describes the mechanisms of tracer transport is necessary. One such mechanism, dispersion, is like a smearing out of a tracer concentration due to the velocity gradients over the cross section of flow. If a dispersion coefficient can be determined from tracer test data, the fracture width can be estimated. The purpose of this project was to design and construct an apparatus to study the dispersion of a chemical tracer in flow through a fracture.

Gilardi, J.; Horns, R.N.

1985-01-22T23:59:59.000Z

355

Unsteady Flow Model for Fractured Gas Reservoirs  

Science Conference Proceedings (OSTI)

Developing low permeability reservoirs is currently a big challenge to the industry. Because low permeability reservoirs are of low quality and are easily damaged, production from a single well is low, and there is unlikely to be any primary recovery. ... Keywords: Low permeability, Fractured well, Orthogonal transformation, Unsteady, Productivity

Li Yongming; Zhao Jinzhou; Gong Yang; Yao Fengsheng; Jiang Youshi

2010-12-01T23:59:59.000Z

356

Regulation of Hydraulic Fracturing (or lack thereof)  

E-Print Network (OSTI)

: "subsurface emplacement of fluids by well injection." 42 U.S.C. § 300h(d)(1). #12;UIC Program Requirements, EPA has concluded that the injection of hydraulic fracturing fluids into [coalbed methane] wells poses Water Act The federal Safe Drinking Water Act prohibits "underground injection" that is not authorized

Boufadel, Michel

357

Mixing in the Romanche Fracture Zone  

Science Conference Proceedings (OSTI)

The Romanche Fracture Zone is a major gap in the Mid-Atlantic Ridge at the equator, which is deep enough to allow significant eastward flows of Antarctic Bottom Water from the Brazil Basin to the Sierra Leone and Guinea Abyssal Plains. While ...

Bruno Ferron; Herl Mercier; Kevin Speer; Ann Gargett; Kurt Polzin

1998-10-01T23:59:59.000Z

358

GEOLOGY AND FRACTURE SYSTEM AT STRIPA  

E-Print Network (OSTI)

g. ~C,K iiE,30~~ nK,~K E E CoK 28S C ;~K, 70K~tC K SO C kite 50,65 C K,t Ii f ~g K CoK (XBL 799-11950 ) U K,e FRACTURE

Olkiewicz, O.

2010-01-01T23:59:59.000Z

359

Evaluation of waste disposal by shale fracturing  

SciTech Connect

The shale fracturing process is evaluated as a means for permanent disposal of radioactive intermediate level liquid waste generated at the Oak Ridge National Laboratory. The estimated capital operating and development costs of a proposed disposal facility are compared with equivalent estimated costs for alternative methods of waste fixation.

Weeren, H.O.

1976-02-01T23:59:59.000Z

360

Deriving the shape factor of a fractured rock matrix  

SciTech Connect

Fluid flow from a fractured rock matrix was investigated for accurately predicting oil recovery from fractured reservoirs. To relate the oil rate with rock geometry and average rock matrix pressure, a shape factor is used in the mathematical model of fractured reservoirs. The shape factor in the transfer function was derived by solving the three-dimensional diffusivity equation of a rock matrix block under unsteady-state production, in contrast to the quasi-steady-state condition assumed by most previous studies denoted in the literature. The diffusivity equation in the x, y, and z coordinate was solved in four cases by assuming different boundary conditions of (1) constant fracture pressure; (2) constant flow rate; (3) constant fracture pressure followed by linearly declining fracture pressure; and (4) linearly declining fracture pressure followed by constant fracture pressure. Shape factor values are high at the initial depletion stage under an unsteady-state condition. When the fracture pressure is constant, the shape factor converges to {pi}{sup 2}/L{sup 2}, 2{pi}{sup 2}/L{sup 2}, and 3{pi}{sup 2}/L{sup 2} for one-, two-, and three-dimensional rock matrix, respectively, at the dimensionless time ({tau}) of about 0.1. When the flow rate between the rock matrix and the fracture is constant, the fracture pressure varies with location on the rock surface. Based on the average fracture pressure, the shape factor decreases with production time until a {tau} value of 0.1 is reached. The boundary conditions of constant fracture pressure followed by a constant decline in fracture pressure are equivalent to the condition of a constant fracture pressure followed by a period of constant flow rate.

Chang, Ming-Ming

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Microseismicity, stress, and fracture in the Coso geothermal field,  

Open Energy Info (EERE)

Microseismicity, stress, and fracture in the Coso geothermal field, Microseismicity, stress, and fracture in the Coso geothermal field, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Microseismicity, stress, and fracture in the Coso geothermal field, California Details Activities (1) Areas (1) Regions (0) Abstract: Microseismicity, stress, and fracture in the Coso geothermal field are investigated using seismicity, focal mechanisms and stress analysis. Comparison of hypocenters of microearthquakes with locations of development wells indicates that microseismic activity has increased since the commencement of fluid injection and circulation. Microearthquakes in the geothermal field are proposed as indicators of shear fracturing associated with fluid injection and circulation along major pre-existing

362

High-permeability fracturing: The evolution of a technology  

SciTech Connect

Since its introduction almost 50 years ago, hydraulic fracturing has been the prime engineering tool for improving well productivity either by bypassing near-wellbore damage or by actually stimulating performance. Historically (and in many instances erroneously), the emphasis for propped fracturing was on fracture length, culminating in massive treatments for tight-gas sands with several million pounds of proppant and design lengths in excess of 1,500 ft. More recently, the importance of fracture conductivity has become appreciated. This paper uses field examples to trace the history, development, and application of TSO fracturing to high-permeability formations, including fracturing to increase PI, as well as applications aimed at improving completions in unconsolidated sands. Potential applications of fracturing to bypass the need for sand control are explored. Finally, the use of fracturing as a reservoir-management tool is examined through use of a propped fracture to alter the vertical flow profile of a well to maximize reserves. This particular use of fracturing leads to cases where careful design of both fracture length and conductivity is required; i.e., too much conductivity is as damaging to reservoir management as too little.

Smith, M.B.; Hannah, R.R.

1996-07-01T23:59:59.000Z

363

Characterization of Fractures in Geothermal Reservoirs Using Resistivity |  

Open Energy Info (EERE)

Characterization of Fractures in Geothermal Reservoirs Using Resistivity Characterization of Fractures in Geothermal Reservoirs Using Resistivity Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Characterization of Fractures in Geothermal Reservoirs Using Resistivity Abstract The optimal design of production in fractured geothermal reservoirs requires knowledge of the resource's connectivity, therefore making fracture characterization highly important. This study aims to develop methodologies to use resistivity measurements to infer fracture properties in geothermal fields. The resistivity distribution in the field can be estimated by measuring potential differences between various points and the data can then be used to infer fracture properties due to the contrast in resistivity between water and rock.

364

Estimating fracture apertures from hydraulic data and comparison with theory  

DOE Green Energy (OSTI)

Estimates of fracture openings, or apertures, were made for massive hydraulic fracture experiments at the Hot Dry Rock geothermal reservoir at Fenton Hill, New Mexico. The basis of these estimates is that if the injection rate is suddenly increased during fracturing, and the subsequent pressure increase to sustain this additional flow is measured, then the pressure increase must be related to the fracture aperture. More detailed considerations indicate that the fracture aperture estimated in this manner is affected by the nature of the fracture geometry, its propagation distance, and its viscous characteristics, but these effects are surprisingly unimportant. The result is a reasonably accurate aperture estimate, which considering the elusive nature of this measurement by other means, is quite satisfactory. These estimates are in good agreement with the fracturing theory of Geertsma and de Klerk. 10 refs., 6 figs.

Dash, Z.V.; Murphy, H.D.

1985-01-01T23:59:59.000Z

365

Monitoring the Width of Hydraulic Fractures With Ultrasonic Measurements  

E-Print Network (OSTI)

Introduction During hydraulic fracturing experiments in the laboratory the opening of hydraulic fractures is monitored with ultrasonic transducers. The experiment closely resembles seismic monitoring surveys in the field [MEADOWS AND WIN- TERSTEIN 1994, WILLS ET AL. 1992]. The extraction of information out of these experiments is critically dependent on the understanding of the elastodynamic behaviour of the thin fluid filled fractures. The laboratory experiments provide useful information on what determines the seismic visibility of these fractures, both for compressional and shear waves. The role of the fracture thickness or width on the elastodynamic response and a new method for monitoring fracture opening is investigated. Most theoretical approaches postulate the use of the classical boundary conditions. The void boundary condition assumes a stress free surface. The "fluid-filled" fracture boundary condition

J. Groenenboom; A.J.W. Duijndam; J.T. Fokkema

1995-01-01T23:59:59.000Z

366

Reservoir Fracturing in the Geysers Hydrothermal System: Fact or Fallacy?  

DOE Green Energy (OSTI)

Proper application of proven worldwide fracture determination analyses adequately aids in the detection and enhanced exploitation of reservoir fractures in The Geysers steam field. Obsolete, superficial ideas concerning fracturing in this resource have guided various malformed judgements of the actual elusive trends. Utilizing regional/local tectonics with theoretical rack mechanics and drilling statistics, offers the most favorable method of fracture comprehension. Exploitation philosophies should favor lateral drilling trends along local tensional components and under specific profound drainage/faulting manifestations to enhance high productivities. Drill core observations demonstrate various degrees of fracture filling, brecciation, strain responses, and rock fracture properties, giving the most favorable impression of subsurface reservoir conditions. Considerably more work utilizing current fracturing principles and geologic thought is required to adequately comprehend and economically exploit this huge complex resource.

Hebein, Jeffrey J.

1986-01-21T23:59:59.000Z

367

Feasibility of a borehole VHF radar technique for fracture mapping  

DOE Green Energy (OSTI)

Experiments were conducted to establish the feasibility of a downhole high-frequency electromagnetic technique for location of fractures in the vicinity of boreholes. An existing flame-cut slot in granite was filled with salt water to simulate a brine-filled fracture. A transmitter consisting of a phased dual-dipole array arranged to provide a directional signal toward the fracture was installed in a borehole opposite the fracture. A receiver operated at 30 to 300 MHz was also located in the same borehole. The radar returns from the simulated fracture were detectable in boreholes located at distances of up to 12 meters from the fracture. These results indicate for the first time the feasibility of a downhole VHF radar for use in a single borehole for detection of fractures located away from the borehole.

Chang, H.T.

1984-01-01T23:59:59.000Z

368

Advanced hydraulic fracturing methods to create in situ reactive barriers  

Science Conference Proceedings (OSTI)

This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed.

Murdoch, L. [FRX Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States). Dept. of Geological Sciences; Siegrist, B.; Meiggs, T. [Oak Ridge National Lab., TN (United States)] [and others

1997-12-31T23:59:59.000Z

369

Cryogenic system design of 11 GEV/C super high momentum spectrometer superconducting magnets at Jefferson Lab  

SciTech Connect

The design of the cryogenic system for the 11 GeV/c Super High Momentum Spectrometer (SHMS) is presented. A description of the cryogenic control reservoir and the cryogenic transfer line is given. Details of the cryogenic control reservoirs, cryogenic transfer lines, and pressure piping are summarized. Code compliance is ensured through following the requirements of the ASME Pressure Vessel Code and Pressure Piping Code. An elastic-plastic-analysis-based combined safety factor approach is proposed to meet the low stress requirement of ASME 2007 Section VIII, Division 2 so that Charpy V-notch (CVN) impact testing can be avoided through analysis. Material toughness requirements in ASME 2007 Section VIII, Division 2 are adopted as CVN impact testing rules of stainless steel 304 piping at 4.2 K and 77 K. A formula-based combined safety factor approach for pressure piping is also proposed to check whether the impact testing can be avoided due to low stress. Analysis and calculation have shown that no CVN impact testing of base metal and heat affected zones is required for the helium reservoir, nitrogen reservoir, and their relevant piping. Total heat loads to liquid helium and liquid nitrogen are studied also. The total heat load to LHe for SHMS is estimated to be 137 W, and the total load to LN2 is calculated to be 420 W.

Eric Sun, Paul Brindza, Steven Lassister, Mike Fowler

2012-07-01T23:59:59.000Z

370

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect

Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

NONE

1999-06-01T23:59:59.000Z

371

Location of hydraulic fractures using microseismic techniques  

DOE Green Energy (OSTI)

Microearthquakes with magnitudes ranging between -6 and -2 have been observed in three successive massive injections of water at the Hot Dry Rock Geothermal Energy demonstration site at Fenton Hill, New Mexico. The injection was part of a program to increase the heat transfer area of hydraulic fractures and to decrease the flow-through impedance between wells. The microearthquakes were used in mapping the location of the extended hydraulic fractures. A downhole triaxial system positioned approximately 200 m vertically above the injection point in a shut-in production well was used for detection. The microearthquakes occurred in a north-northwest striking zone 400 m in length passing through the injection point. During a third substantially larger injection, microearthquakes occurred in a dispersed volume at distances as great as 800 m from the zone active in the first two injections.

Albright, J.A.; Pearson, C.F.

1980-01-01T23:59:59.000Z

372

Gas condensate damage in hydraulically fractured wells  

E-Print Network (OSTI)

This project is a research into the effect of gas condensate damage in hydraulically fractured wells. It is the result of a problem encountered in producing a low permeability formation from a well in South Texas owned by the El Paso Production Company. The well was producing a gas condensate reservoir and questions were raised about how much drop in flowing bottomhole pressure below dewpoint would be appropriate. Condensate damage in the hydraulic fracture was expected to be of significant effect. Previous attempts to answer these questions have been from the perspective of a radial model. Condensate builds up in the reservoir as the reservoir pressure drops below the dewpoint pressure. As a result, the gas moving to the wellbore becomes leaner. With respect to the study by El-Banbi and McCain, the gas production rate may stabilize, or possibly increase, after the period of initial decline. This is controlled primarily by the condensate saturation near the wellbore. This current work has a totally different approach. The effects of reservoir depletion are minimized by introduction of an injector well with fluid composition the same as the original reservoir fluid. It also assumes an infinite conductivity hydraulic fracture and uses a linear model. During the research, gas condensate simulations were performed using a commercial simulator (CMG). The results of this research are a step forward in helping to improve the management of gas condensate reservoirs by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas into the hydraulic fracture.

Adeyeye, Adedeji Ayoola

2003-12-01T23:59:59.000Z

373

Optimization of fractured well performance of horizontal gas wells  

E-Print Network (OSTI)

In low-permeability gas reservoirs, horizontal wells have been used to increase the reservoir contact area, and hydraulic fracturing has been further extending the contact between wellbores and reservoirs. This thesis presents an approach to evaluate horizontal well performance for fractured or unfractured gas wells and a sensitivity study of gas well performance in a low permeability formation. A newly developed Distributed Volumetric Sources (DVS) method was used to calculate dimensionless productivity index for a defined source in a box-shaped domain. The unique features of the DVS method are that it can be applied to transient flow and pseudo-steady state flow with a smooth transition between the boundary conditions. In this study, I conducted well performance studies by applying the DVS method to typical tight sandstone gas wells in the US basins. The objective is to determine the best practice to produce horizontal gas wells. For fractured wells, well performance of a single fracture and multiple fractures are compared, and the effect of the number of fractures on productivity of the well is presented based on the well productivity. The results from this study show that every basin has a unique ideal set of fracture number and fracture length. Permeability plays an important role on dictating the location and the dimension of the fractures. This study indicated that in order to achieve optimum production, the lower the permeability of the formation, the higher the number of fractures.

Magalhaes, Fellipe Vieira

2007-08-01T23:59:59.000Z

374

Dual Permeability Modeling of Flow in a Fractured Geothermal Reservoir  

DOE Green Energy (OSTI)

A three dimensional fracture system synthesis and flow simulation has been developed to correlate drawdown characteristics measured in a geothermal well and to provide the basis for an analysis of tracer tests. A new dual permeability approach was developed which incorporates simulations at two levels to better represent a discrete fracture system within computer limitations. The first incorporates a discrete simulation of the largest fractures in the system plus distributed or representative element simulation of the smaller fractures. the second determines the representative element properties by discrete simulation of the smaller fractures. The fracture system was synthesized from acoustic televiewer data on the orientation and separation of three distinct fracture sets, together with additional data from the literature. Lognormal and exponential distributions of fracture spacing and radius were studied with the exponential distribution providing more reasonable results. Hydraulic apertures were estimated as a function of distance from the model boundary to a constant head boundary. Mean values of 6.7, 101 and 46 {micro}m were chosen as the most representative values for the three fracture sets. Recommendations are given for the additional fracture characterization needed to reduce the uncertainties in the model.

Miller, John D.; Allman, David W.

1986-01-21T23:59:59.000Z

375

Dual permeability modeling of flow in a fractured geothermal reservoir  

DOE Green Energy (OSTI)

A three dimensional fracture system synthesis and flow simulation has been developed to correlate drawdown characteristics measured in a geothermal well and to provide the basis for an analysis of tracer tests. A new dual permeability approach was developed which incorporates simulations at two levels to better represent a discrete fracture system within computer limitations. The first incorporates a discrete simulation of the largest fractures in the system plus distributed or representative element stimulation of the smaller fractures. The second determines the representative element properties by discrete simulation of the smaller fractures. The fracture system was synthesized from acoustic televiewer data on the orientation and separation of three distinct fracture sets, together with additional data from the literature. Lognormal and exponential distributions of fracture spacing and radius were studied with the exponential distribution providing more reasonable results. Hydraulic apertures were estimated as a function of distance from the model boundary to a constant head boundary. Mean values of 6.7, 101 and 46 ..mu..m were chosen as the most representative values for the three fracture sets. Recommendations are given for the additional fracture characterization needed to reduce the uncertainties in the model. 20 refs., 6 figs.

Miller, J.D.; Allman, D.W.

1986-01-01T23:59:59.000Z

376

Three Models for Waterflooding in a Naturally Fractured Petroleum Reservoir  

E-Print Network (OSTI)

Introduction. For the purposes of this paper a naturally fractured reservoir is a porous medium that has been fractured in a regular geometric fashion; the resulting medium consists of a collection of porous matrix blocks, each of which is quite small with respect to the size of the reservoir, essentially lling out the reservoir, and a set of thin fractures that separate the blocks. The fractures will be considered to be generated by either two or three families of parallel planes. Though the total volume in the fractures is very small in comparison to the total void volume in the porous blocks, the ow of uids in such a fractured reservoir is seriously aected by the existence of the fractures, since the resistance to ow in the fractures is much smaller than that in the blocks. Flow in the blocks will be described by means of the usual Darcy and conservation laws [17]. Flow in the fractures will also be described using Darcy's law; this implies that the fractures will be t

Jim Douglas, Jr.

1987-01-01T23:59:59.000Z

377

Modelling cleavage fracture of bainitic steels  

Science Conference Proceedings (OSTI)

The origin of brittle fracture of polycrystalline metals failing by cleavage is most frequently associated to slip-induced cracking of some non-metallic brittle particle or inclusion (a carbide in ferritic steels). When the size of the particles is smaller than the grain size of the metallic matrix, the nucleating event of a macroscopic failure results from the successive occurrence of three simple events: slip-induced cleavage of a particle, transmission of the microcrack to the neighboring grain across the particle/matrix interface and propagation of the grain-size microcrack to the neighboring grains across the grain boundary. On the basis of this scheme, a statistical weakest link'' fracture model has been developed which takes into account the presence of two independent distributions of structural elements (isolated particles and matrix grains) with two barriers for cleavage propagation (the particle/matrix interfaces and the grain boundaries), characterized by a crack arrest capability well over the crack propagation resistance of the cleavage planes of the crystalline lattices of the two planes. An application of the model to the prediction of the fracture stress and the critical stress intensity factor as a function of the temperature of a bainitic steel is presented.

Martin-Meizoso, A.; Ocana-Arizcorreta, I.; Gil-Sevillano, J.; Fuentes-Perez, M. (Univ. de Navarra, San Sebastian (Spain). Escuela Superior de Ingenieros Centro de Estudios e Investigaciones Tecnicas de Guipuzcoa, San Sebastian (Spain))

1994-06-01T23:59:59.000Z

378

Verifying Mirror Technology for NGST with a Space-Qualified, Cryogenic 3.5 M Mirror  

E-Print Network (OSTI)

The lightweighting and surface accuracy targeted for NGST's 8 m primary mirror has been demonstrated in a 0.5 m prototype. Now a second, 2 m prototype weighing 40 kg in total is being fabricated at the University of Arizona under the NGST NMSD program. It will be tested in cryogenic operation in spring 1999. A third, advanced mirror system demonstrator (AMSD) is needed, the full size of an NGST segment, for flight qualification, including launch survival and extremely high reliability. The 3.5 m mirror, 1/6 the weight of HST's primary, would be made with a 2 mm thick glass face-sheet attached by adjustable screws to a carbon composite support. It would be figured as a fast telescope primary, and fully tested cryogenically to verify closed loop figure stability with simulated infrared starlight. If started in early 1999, this could be completed in 2001. Construction of the NGST mirror panels could then be undertaken on the basis of proven technology, and in time for a 2007 launch. With a diameter of 3.5 m and a weight of only 140 kg, the mirror could be incorporated into a telescope and launched to a high orbit by the Shuttle or number of other vehicles. Such a space mission would complement those already planned for scaled down tests of the unfolding of the NGST mirror segments (NEXUS) and the sunshade (ISIS). Much would be learned by running the mirror at cryogenic temperature, with a new infrared array to make preliminary observations in the 2 - 4 microns dark sky window, and a CCD to check optical image quality. This mission would be independent of the NGST, but would lay the scientific groundwork for the much more powerful telescope, as well as giving practical experience of mirror operation.

Roger Angel; Jim Burge

1998-08-11T23:59:59.000Z

379

Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures  

DOE Patents (OSTI)

An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample.

Gonczy, John D. (Oaklawn, IL); Markley, Finley W. (St. Charles, IL); McCaw, William R. (Burr Ridge, IL); Niemann, Ralph C. (Downers Grove, IL)

1992-01-01T23:59:59.000Z

380

Temperature Profile of IR Blocking Windows Used in Cryogenic X-Ray Spectrometers  

SciTech Connect

Cryogenic high-resolution X-ray spectrometers are typically operated with thin IR blocking windows to reduce radiative heating of the detector while allowing good x-ray transmission. We have estimated the temperature profile of these IR blocking windows under typical operating conditions. We show that the temperature in the center of the window is raised due to radiation from the higher temperature stages. This can increase the infrared photon flux onto the detector, thereby increasing the IR noise and decreasing the cryostat hold time. The increased window temperature constrains the maximum window size and the number of windows required. We discuss the consequences for IR blocking window design.

Friedrich, S.; Funk, T.; Drury, O.; Labov, S.E.

2000-08-08T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Cryogenic design of the liquid helium experiment ``critical dynamics in microgravity``  

Science Conference Proceedings (OSTI)

Although many well controlled experiments have been conducted to measure the static properties of systems near criticality, few experiments have explored the transport properties in systems driven far away from equilibrium as a phase transition occurs. The cryogenic design of an experiment to study the dynamic aspect of critical phenomena is reported here. Measurements of the thermal gradient across the superfluid (He II) -- normal fluid (He I) interface in helium under microgravity conditions will be performed as a heat flux holds the system away from equilibrium. New technologies are under development for this experiment, which is in the definition phase for a space shuttle flight.

Moeur, W.A. [New Mexico Univ., Albuquerque, NM (United States); Adriaans, M.J.; Boyd, S.T. [Sandia National Labs., Albuquerque, NM (United States); Strayer, D.M. [Jet Propulsion Lab., Pasadena, CA (United States); Duncan, R.V. [New Mexico Univ., Albuquerque, NM (United States)]|[Sandia National Labs., Albuquerque, NM (United States)

1995-10-01T23:59:59.000Z

382

Compact cryogenic source of periodic hydrogen and argon droplet beams for relativistic laser-plasma generation  

Science Conference Proceedings (OSTI)

We present a cryogenic source of periodic streams of micrometer-sized hydrogen and argon droplets as ideal mass-limited target systems for fundamental intense laser-driven plasma applications. The highly compact design combined with a high temporal and spatial droplet stability makes our injector ideally suited for experiments using state-of-the-art high-power lasers in which a precise synchronization between the laser pulses and the droplets is mandatory. We show this by irradiating argon droplets with multi-terawatt pulses.

Fraga, R. A. Costa; Kalinin, A.; Kuehnel, M.; Schottelius, A. [Institut fuer Kernphysik, J. W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Hochhaus, D. C.; Neumayer, P. [EMMI Extreme Matter Institute and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); FIAS Frankfurt Institute for Advanced Studies, J. W. Goethe-Universitaet, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Polz, J. [Institut fuer Optik und Quantenelektronik, Max-Wien-Platz 1, 07743 Jena (Germany); Kaluza, M. C. [Institut fuer Optik und Quantenelektronik, Max-Wien-Platz 1, 07743 Jena (Germany); Helmholtz-Institut Jena, Froebelstieg 3, 07743 Jena (Germany); Grisenti, R. E. [Institut fuer Kernphysik, J. W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)

2012-02-15T23:59:59.000Z

383

Cryogenic, high-resolution x-ray detector with high count rate capability  

DOE Patents (OSTI)

A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

Frank, Matthias (Oakland, CA); Mears, Carl A. (Windsor, CA); Labov, Simon E. (Berkeley, CA); Hiller, Larry J. (Livermore, CA); Barfknecht, Andrew T. (Menlo Park, CA)

2003-03-04T23:59:59.000Z

384

Mapping Fractures In The Medicine Lake Geothermal System | Open Energy  

Open Energy Info (EERE)

Fractures In The Medicine Lake Geothermal System Fractures In The Medicine Lake Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mapping Fractures In The Medicine Lake Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: A major challenge to energy production in the region has been locating high-permability fracture zones in the largely impermeable volcanic host rock. An understanding of the fracture networks will be a key to harnessing geothermal resources in the Cascades Author(s): Steven Clausen, Michal Nemcok, Joseph Moore, Jeffrey Hulen, John Bartley Published: GRC, 2006 Document Number: Unavailable DOI: Unavailable Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) Medicine Lake Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Mapping_Fractures_In_The_Medicine_Lake_Geothermal_System&oldid=388927

385

Regional Analysis And Characterization Of Fractured Aquifers In The  

Open Energy Info (EERE)

Analysis And Characterization Of Fractured Aquifers In The Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Regional Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Details Activities (1) Areas (1) Regions (0) Abstract: Areas related to low-temperature geothermal applications include the recognition of and exploration for deep fracture permeability in crystalline rocks. It is well known that the best currently available downhole techniques to identify the locations of fracture zones in crystalline rocks depend upon the measurement of some thermal parameter such as temperature or heat flow. The temperature-depth profiles and their derivatives provide a direct indication of those fracture zones that

386

Modeling of fluid and heat flow in fractured geothermal reservoirs  

DOE Green Energy (OSTI)

In most geothermal reservoirs large-scale permeability is dominated by fractures, while most of the heat and fluid reserves are stored in the rock matrix. Early-time fluid production comes mostly from the readily accessible fracture volume, while reservoir behavior at later time depends upon the ease with which fluid and heat can be transferred from the rock matrix to the fractures. Methods for modeling flow in fractured porous media must be able to deal with this matrix-fracture exchange, the so-called interporosity flow. This paper reviews recent work at Lawrence Berkeley Laboratory on numerical modeling of nonisothermal multiphase flow in fractured porous media. We also give a brief summary of simulation applications to problems in geothermal production and reinjection. 29 refs., 1 fig.

Pruess, K.

1988-08-01T23:59:59.000Z

387

Fracture network modeling of a Hot Dry Rock geothermal reservoir  

DOE Green Energy (OSTI)

Fluid flow and tracer transport in a fractured Hot Dry Rock (HDR) geothermal reservoir are modeled using fracture network modeling techniques. The steady state pressure and flow fields are solved for a two-dimensional, interconnected network of fractures with no-flow outer boundaries and constant-pressure source and sink points to simulate wellbore-fracture intersections. The tracer response is simulated by particle tracking, which follows the progress of a representative sample of individual tracer molecules traveling through the network. Solute retardation due to matrix diffusion and sorption is handled easily with these particle tracking methods. Matrix diffusion is shown to have an important effect in many fractured geothermal reservoirs, including those in crystalline formations of relatively low matrix porosity. Pressure drop and tracer behavior are matched for a fractured HDR reservoir tested at Fenton Hill, NM.

Robinson, B.A.

1988-01-01T23:59:59.000Z

388

Intrusion Margins and Associated Fractures | Open Energy Information  

Open Energy Info (EERE)

Intrusion Margins and Associated Fractures Intrusion Margins and Associated Fractures Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Intrusion Margins and Associated Fractures Dictionary.png Intrusion Margins and Associated Fractures: No definition has been provided for this term. Add a Definition Controlling Structures List of controlling structures typically associated with geothermal systems: Major Normal Fault Termination of a Major Normal Fault Stepover or Relay Ramp in Normal Fault Zones Apex or Salient of Normal Fault Fault Intersection Accommodation Zone Displacement Transfer Zone Pull-Apart in Strike-Slip Fault Zone Intrusion Margins and Associated Fractures Stratigraphic Boundaries Fissure Swarms Caldera Rim Margins Lithologically Controlled Fractures caused by igneous activity creates permeability, allowing water

389

Evaluation of rock/fracture interactions during steam injection through vertical hydraulic fractures  

SciTech Connect

The design, results, and analysis of a steamdrive pilot in the South Belridge diatomite, Kern County, California, are reviewed. Pilot results demonstrate that steam can be injected across a 1,000-ft-tall diatomite column using hydraulically fractured wells and that significant oil is produced in response to steaming. A computationally simple numerical model is proposed and used to analyze reservoir heating and volumetric sweep by steam. Results from the analysis show that hydraulic fractures undergoing steam injection can be dynamic and asymmetrical.

Kovscek, A.R. [Stanford Univ., CA (United States); Johnston, R.M. [CalResources LLC, Bakersfield, CA (United States); Patzek, T.W. [Univ. of California, Berkeley, CA (United States)

1997-05-01T23:59:59.000Z

390

A hierarchical fracture model for the iterative multiscale finite volume method  

Science Conference Proceedings (OSTI)

An iterative multiscale finite volume (i-MSFV) method is devised for the simulation of multiphase flow in fractured porous media in the context of a hierarchical fracture modeling framework. Motivated by the small pressure change inside highly conductive ... Keywords: Fractured porous media, Hierarchical fractured modeling, Iterative multiscale finite volume, Iterative multiscale methods, Multiscale finite volume, Multiscale fracture modeling, Multiscale methods

Hadi Hajibeygi; Dimitris Karvounis; Patrick Jenny

2011-10-01T23:59:59.000Z

391

Fracturing results in diatomaceous earth formations, South Belridge Field, California  

SciTech Connect

The company began fracturing diatomaceous earth zones in the San Joaquin Valley (CA) in 1976. Fracturing has proved an effective method of exploiting these previously noncommercial reservoirs. Nevertheless, productivity behavior is typified by high initial rates followed by rapid decline. Reasons for this decline have been evaluated and are discussed. Also discussed are laboratory experiments performed to determine an appropriate fracture design for this formation.

Strubhar, M.K.; Andreani, F.S.; Medlin, W.L.; Nabi, S.M.

1984-03-01T23:59:59.000Z

392

Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs  

Science Conference Proceedings (OSTI)

The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.

Stephen Holditch; A. Daniel Hill; D. Zhu

2007-06-19T23:59:59.000Z

393

Hydraulic Fracturing and Water Use in Dallas, Texas.  

E-Print Network (OSTI)

??Dallas, Texas is located in North Texas and sits above the eastern portion of the Barnett Shale natural gas formation. Hydraulic fracturing, or fracking, was (more)

Yates, Sarah

2013-01-01T23:59:59.000Z

394

Seepage into drifts in unsaturated fractured rock at Yucca Mountain  

E-Print Network (OSTI)

Fractured Rock at Yucca Mountain Jens Birkholzer, Guomin Lrepository site at Yucca Mountain, Nevada, as it is locatedclimate conditions at Yucca Mountain. The numerical study is

Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

1998-01-01T23:59:59.000Z

395

INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

and Pruess, K. , Analysis of injection testing of geothermalreservoirs: Geothermal Resoures Council, Vol. 4. , (into a fractured geothermal reservoir: Transactions, Vol. 4,

Bodvarsson, Gudmundur S.

2012-01-01T23:59:59.000Z

396

Nano- and Atomic-Scale Fracture - Programmaster.org  

Science Conference Proceedings (OSTI)

Mar 29, 2011 ... About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Nano- and Atomic-Scale Fracture. Sponsorship, MS&T...

397

FRACSTIM/I: An Integrated Fracture Stimulation and Reservoir...  

Open Energy Info (EERE)

An Integrated Fracture Stimulation and Reservoir Flow and Transport Simulator Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

398

Fracture Mechanics of Solder Joint under Mechanical Fatigue  

Science Conference Proceedings (OSTI)

Structural similarities in solder joint used in these studies yet varying locations of cracking site suggest that fracture in solder joint is affected greatly by a subtle...

399

Investigation of Brittle Fracture in 200 Series Austenitic Stainless Steel  

Science Conference Proceedings (OSTI)

Failure Analysis Case Studies from Refinery and Petrochemical Pilot Plants ... Failure of Electrical Submersible Pump of Oil Reservoir Fan Blade Fracture in a ...

400

Evaluation of subsurface fracture geometry using fluid pressure...  

Open Energy Info (EERE)

response method with conventional pump tests in order to independently calculate the hydraulic parameters of the fracture-formation system is discussed. How advanced spectral...

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal...  

Open Energy Info (EERE)

nearly parallel to the maximum horizontal stress. In this favorable situation, hydraulic injections will tend both to reactivate natural fractures at low pressures, and to...

402

Geomechanical Development of Fractured Reservoirs During Gas Production  

E-Print Network (OSTI)

Within fractured reservoirs, such as tight gas reservoir, coupled processes between matrix deformation and fluid flow are very important for predicting reservoir behavior, pore pressure evolution and fracture closure. To study the coupling between gas desorption and rock matrix/fracture deformation, a poroelastic constitutive relation is developed and used for deformation of gas shale. Local continuity equation of dry gas model is developed by considering the mass conservation of gas, including both free and absorbed phases. The absorbed gas content and the sorption-induced volumetric strain are described through a Langmiur-type equation. A general porosity model that differs from other empirical correlations in the literature is developed and utilized in a finite element model to coupled gas diffusion and rock mass deformation. The dual permeability method (DPM) is implemented into the Finite Element Model (FEM) to investigate fracture deformation and closure and its impact on gas flow in naturally fractured reservoir. Within the framework of DPM, the fractured reservoir is treated as dual continuum. Two independent but overlapping meshes (or elements) are used to represent these kinds of reservoirs: one is the matrix elements used for deformation and fluid flow within matrix domain; while the other is the fracture element simulating the fluid flow only through the fractures. Both matrix and fractures are assumed to be permeable and can accomodate fluid transported. A quasi steady-state function is used to quantify the flow that is transferred between rock mass and fractures. By implementing the idea of equivalent fracture permeability and shape-factor within the transfer function into DPM, the fracture geometry and orientation are numerically considered and the complexity of the problem is well reduced. Both the normal deformation and shear dilation of fractures are considered and the stress-dependent fracture aperture can be updated in time. Further, a non-linear numerical model is constructed by implementing a poroviscoelastic model into the dual permeability (DPM)-finite element model (FEM) to investigate the coupled time-dependent viscoelastic deformation, fracture network evolution and compressible fluid flow in gas shale reservoir. The viscoelastic effect is addressed in both deviatoric and symmetric effective stresses to emphasize the effect of shear strain localization on fracture shear dilation. The new mechanical model is first verified with an analytical solution in a simple wellbore creep problem and then compared with the poroelastic solution in both wellbore and field cases.

Huang, Jian

2013-05-01T23:59:59.000Z

403

Multiphase Steel: A Microscale Study on Deformation and Fracture ...  

Science Conference Proceedings (OSTI)

Consequently those findings are correlated to fracture toughness (J-integral, COD) and SEM void studies. Proceedings Inclusion? Definite: A CD-only volume ...

404

Fracture Permeability and In Situ Stress in the Dixie Valley...  

Open Energy Info (EERE)

Reservoir Abstract Borehole televiewer, temperature and flowmeter logs and hydraulic fracturing stress measurements conducted in six wells penetrating a geothermal reservoir...

405

Application of the directional hydraulic fracturing at Berezovskaya Mine  

SciTech Connect

The paper analyzes the experimental research of the directional hydraulic fracturing applied for weakening of rocks at Berezovskaya Mine (Kuznetsk Coal Basin) in 2005-2006.

Lekontsev, Y.M.; Sazhin, P.V. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Institute for Mining

2008-05-15T23:59:59.000Z

406

Understanding the essential work of fracture at the molecular level.  

E-Print Network (OSTI)

??xix, 138 leaves : ill. ; 30 cm HKUST Call Number: Thesis MECH 2006 Chen The essential work of fracture (EWF), a tool for characterizing (more)

Chen, Haibin

2006-01-01T23:59:59.000Z

407

Irradiation Effects on Human Cortical Bone Fracture Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

above a micron, toughening mechanisms can be markedly changed. Cortical bones' resistance to fracture in the transverse (breaking) orientation can be associated with...

408

Effect of Lamellar Microstructure on Impact Toughness and Fracture ...  

Science Conference Proceedings (OSTI)

... that the higher the lamellar angle with respect to the loading axis the larger the crack propagation resistance, thereby increasing the fracture toughness.

409

Characterization Of Fracture Patterns In The Geysers Geothermal...  

Open Energy Info (EERE)

By Shear-Wave Splitting Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Characterization Of Fracture Patterns In The Geysers Geothermal Reservoir By...

410

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

411

Urban-rural differences in distal forearm fractures: Cohort Norway  

Science Conference Proceedings (OSTI)

with increasing degree of urbanization for both genders in ... The capital city of Oslo still had a higher incidence ... energy wrist fracture have osteoporosis (T-

412

Impact and Fracture Toughness of Investment Cast, Plasma Sprayed ...  

Science Conference Proceedings (OSTI)

Impact and Fracture Toughness of Investment Cast,. Plasma Sprayed, and Wrought Alloy 718. G. K. Bouse. Howmet Corporation. Operhall Research Center .

413

Gas transport, sorption, and mechanical response of fractured coal.  

E-Print Network (OSTI)

??Fractured coal exhibits strong and dynamic coupling between fluid transport and mechanical response especially when the pore fluid is a sorbing gas. This complex interaction (more)

Wang, Shugang

2012-01-01T23:59:59.000Z

414

Stress and Fracture of Silicon Solar Cells as Revealed by ...  

Science Conference Proceedings (OSTI)

Presentation Title, Stress and Fracture of Silicon Solar Cells as Revealed by ... thinner and thinner silicon in the solar photovoltaic (PV) technologies due to the...

415

High-Speed Fracture Phenomena of Glass Bottle by Underwater ...  

Science Conference Proceedings (OSTI)

Presentation Title, High-Speed Fracture Phenomena of Glass Bottle by Underwater Shock Wave. Author(s), Hidetoshi Sakamoto, Shinjirou Kawabe, Yoshifumi...

416

Effect of Microstructural Variations on the Fracture Toughness of ...  

Science Conference Proceedings (OSTI)

A series of studies were performed at Westinghouse Hanford. Company('-6) to characterize the effects of metallurgical variations on the fracture toughness.

417

Variation in sericite composition from fracture zones within...  

Open Energy Info (EERE)

zones of the crystalline basement contain coarse-grained relict muscovite, whereas rock alteration near fracture zones at temperatures > 150C is characterized by abundant...

418

Studies of Transport Properties of Fractures: Final Report  

DOE Green Energy (OSTI)

We proposed to study several key factors controlling the character and evolution of fracture system permeability and transport processes. We suggest that due to surface roughness and the consequent channeling in single fractures and in fracture intersections, the tendency of a fracture system to plug up, remain permeable, or for permeability to increase due to chemical dissolution/precipitation conditions will depend strongly on the instantaneous flow channel geometry. This geometry will change as chemical interaction occurs, thus changing the permeability through time. To test this hypothesis and advance further understanding toward a predictive capability, we endeavored to physically model and analyze several configurations of flow and transport of inert and chemically active fluids through channels in single fractures and through fracture intersections. This was an integrated program utilizing quantitative observations of fractures and veins in drill core, quantitative and visual observations of flow and chemical dissolution and precipitation within replicas of real rough-walled fractures and fracture intersections, and numerical modeling via lattice Boltzmann methods.

Stephen R. Brown

2006-06-30T23:59:59.000Z

419

A Shallow Attenuating Anomaly Inside The Ring Fracture Of The...  

Open Energy Info (EERE)

Shallow Attenuating Anomaly Inside The Ring Fracture Of The Valles Caldera, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Shallow...

420

Characterization of Nickel-Base Superalloy Fracture Surfaces by ...  

Science Conference Proceedings (OSTI)

lb). After fracture, a vacuum manipulator picks up each half of the specimen by hooks attached to the grip and maneuvers it into the Auger analysis position.

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Cryogenic Loop Heat Pipes for the Cooling of Small Particle Detectors at CERN  

E-Print Network (OSTI)

The loop heat pipe (LHP) is among the most effective heat transfer elements. Its principle is based on a continuous evaporation/condensation process and its passive nature does not require any mechanical devices such as pumps to circulate the cooling agent. Instead a porous wick structure in the evaporator provides the capillary pumping forces to drive the fluid [1]. Cryogenic LHP are investigated as potential candidates for the cooling of future small-scale particle detectors and upgrades of existing ones. A large spectrum of cryogenic temperatures can be covered by choosing appropriate working fluids. For high luminosity upgrades of existing experiments installed at the Large Hadron Collider (LHC) (TOTEM) and planned ones (FP420) [2-3] being in the design phase, radiation-hard solutions are studied with noble gases as working fluids to limit the radiolysis effect on molecules detrimental to the functioning of the LHP. The installation compactness requirement of experiments such as the CAST frame-store CCD d...

Pereira, H; Silva, P; Wu, J; Koettig, T; 10.1063/1.3422264

2010-01-01T23:59:59.000Z

422

Progress on the MICE Liquid Absorber Cooling and CryogenicDistribution System  

DOE Green Energy (OSTI)

This report describes the progress made on the design of the cryogenic cooling system for the liquid absorber for the international Muon Ionization Cooling Experiment (MICE). The absorber consists of a 20.7-liter vessel that contains liquid hydrogen (1.48 kg at 20.3 K) or liquid helium (2.59 kg at 4.2 K). The liquid cryogen vessel is located within the warm bore of the focusing magnet for the MICE. The purpose of the magnet is to provide a low beam beta region within the absorber. For safety reasons, the vacuum vessel for the hydrogen absorber is separated from the vacuum vessel for the superconducting magnet and the vacuum that surrounds the RF cavities or the detector. The absorber thin windows separate the liquid in the absorber from the absorber vacuum. The absorber vacuum vessel also has thin windows that separate the absorber vacuum space from adjacent vacuum spaces. Because the muon beam in MICE is of low intensity, there is no beam heating in the absorber. The absorber can use a single 4 K cooler to cool either liquid helium or liquid hydrogen within the absorber.

Green, M.A.; Baynham, E.; Bradshaw, T.; Drumm, P.; Ivanyushenkov,Y.; Ishimoto, S.; Cummings, M.A.C.; Lau, W.W.; Yang, S.Q.

2005-05-13T23:59:59.000Z

423

The Local Helium Compound Transfer Lines for the Large Hadron Collider Cryogenic System  

E-Print Network (OSTI)

The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include twelve new local helium transfer lines distributed among five LHC points in underground caverns. These lines, being manufactured and installed by industry, will connect the cold boxes of the 4.5-K refrigerators and the 1.8-K refrigeration units to the cryogenic interconnection boxes. The lines have a maximum of 30-m length and may possess either small or large re-distribution units to allow connection to the interface ports. Due to space restrictions the lines may have complex routings and require several elbowed sections. The lines consist of a vacuum jacket, a thermal shield and either three or four helium process pipes. Specific internal and external supporting and compensation systems were designed for each line to allow for thermal contraction of the process pipes (or vacuum jacket, in case of a break in the insulation vacuum) and to minimise the forces applied to the interface equipment. Whenever possible, f...

Parente, C; Munday, A; Wiggins, P

2006-01-01T23:59:59.000Z

424

Fractured Geothermal Growth Induced by Heat Extraction  

SciTech Connect

Field testing of a hydraulically stimulated, hot dry rock (HDR) geothermal system at the Fenton Hill site in northern New Mexico indicated that significant reservoir growth occurred as energy was extracted. Tracer, microseismic, and geochemical measurements provided the primary quantitative evidence for the increases in accessible reservoir volume and fractured rock surface area that were observed during energy extraction operations that caused substantial thermal drawdown in portions of the reservoir. These temporal increases suggest that augmentation of reservoir hear-production capacity in an HDR system may be possible. [DJE 2005

Tester, J.W.; Murphy, H.D.; Grigsby, C.O.; Potter, R.M.; Robinson, B.A.

1989-02-01T23:59:59.000Z

425

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network (OSTI)

is related to the heat transfer between the two phasespossibly be affected. Heat transfer from the matrix can beof Fracture-Matrix Heat Transfer Jens T. Birkholzer and

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

426

Application of microseismic technology to hydraulic fracture diagnostics: GRI/DOE Field Fracturing Multi-Sites Project  

SciTech Connect

The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct field experiments and analyze data that will result in definitive determinations of hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data that will resolve significant unknowns with regard to hydraulic fracture modeling, fracture fluid rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment as well as surface facilities and equipment conducive to acquiring high-quality data. It is anticipated that the project`s research advancements will provide a foundation for a fracture diagnostic service industry and hydraulic fracture optimization based on measured fracture response. The M-Site Project is jointly sponsored by the Gas Research Institute (GRI) and the US Department of Energy (DOE). The site developed for M-Site hydraulic fracture experimentation is the former DOE Multiwell Experiment (MWX) site located near Rifle, Colorado. The MWX project drilled three closely-spaced wells (MWX-1, MWX-2 and MWX-3) which were the basis for extensive reservoir analyses and tight gas sand characterizations in the blanket and lenticular sandstone bodies of the Mesaverde Group. The research results and background knowledge gained from the MWX project are directly applicable to research in the current M-Site Project.

Wilmer, R. [CER Corp., Las Vegas, NV (United States); Warpinski, N.R. [Sandia National Laboratories (United States); Wright, T.B. [Resources Engineering Systems (United States); Branagan, P.T. [Branagan & Associates (United States); Fix, J.E. [Fix & Associates (United States)

1995-06-01T23:59:59.000Z

427

Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture  

E-Print Network (OSTI)

Motion for a New Model of Hydraulic Fracture With an Induced1987. Hydrodynamics of a Vertical Hydraulic Fracture, Earthand Fluid Flow in the Hydraulic Fracture Pmess, (PhD.

Nelson, J.T.

2009-01-01T23:59:59.000Z

428

Proceedings of the Second International Symposium on Dynamics of Fluids in Fractured Rock  

E-Print Network (OSTI)

modeling fluid and heat flow in fractured porous media. Soc.Modelling Fluid and Heat Flow in Fractured Porous Media. SPEmodeling fluid and heat flow in fractured porous media. Soc

Faybishenko, Boris; Witherspoon, Paul A.

2004-01-01T23:59:59.000Z

429

Interpretation of pre- and post-fracturing well tests in a geothermal reservoir  

SciTech Connect

Pre- and post-fracturing well tests in TG-2 well drilled next to the Matsukawa field are interpreted for evaluating effects of a massive hydraulic fracturing treatment. The interpreted data include multiple-step rate tests, a two-step rate test, and falloff tests. Pressure behaviors of massive hydraulic fracturing are matched by a simulator of dynamic fracture option. Fracture parting pressures can be evaluated from the multiple-step rate test data. The multiple-step rates during the massive hydraulic fracturing treatment show that multiple fractures have been induced in sequence. Although the pre-fracturing falloff tests are too short, fracture propagation can be evaluated qualitatively from the falloff data. Interpretation of the falloff test immediately after the MHF suggests that extensive fractures have been created by the MHF, which is verified by simulation. The post-fracturing falloff tests show that the fractures created by the MHF have closed to a great degree.

Arihara, Norio; Fukagawa, Hiroshi; Hyodo, Masami; Abbaszadeh, Maghsood

1995-01-26T23:59:59.000Z

430

Imaging Hydraulic Fractures: Source Location Uncertainty Analysis At The UPRC Carthage Test Site  

E-Print Network (OSTI)

Hydraulic fracturing is a useful tool for enhancing gas and oil production. High-resolution seismic imaging of the fracture geometry and fracture growth process is the key in determining optimal spacing and location of ...

Li, Yingping

1996-01-01T23:59:59.000Z

431

Effective fracture geometry obtained with large water sand ratio  

E-Print Network (OSTI)

Shale gas formation exhibits some unusual reservoir characteristics: nano-darcy matrix permeability, presence of natural fractures and gas storage on the matrix surface that makes it unique in many ways. Its difficult to design an optimum fracture treatment for such formation and even more difficult is to describe production behavior using a reservoir model. So far homogeneous, two wing fracture, and natural fracture models have been used for this purpose without much success. Micro seismic mapping technique is used to measure the fracture propagation in real time. This measurement in naturally fractured shale formation suggests a growth of fracture network instead of a traditional two wing fractures. There is an industry wise consensus that fracture network plays an important role in determining the well productivity of such formations. A well with high density of fracture networks supposed to have better productivity. Shale formations have also exhibited production pattern which is very different from conventional or tight gas reservoir. Initial flow period is marked by steep decline in production while the late time production exhibits a slow decline. One of the arguments put for this behavior is linear flow from a bi-wing fractured well at early time and contribution of adsorbed gas in production at late time. However, bi-wing fracture geometry is not supported by the micro-seismic observation. A realistic model should include both the fracture network and adsorbed gas property. In this research we have proposed a new Power Law Permability model to simulate fluid flow from hydraulically fractured Shale formation. This model was first described by Valko & Fnu (2002) and used for analyzing acid treatment jobs. The key idea of this model is to use a power law permeability function that varies with the radial distance from well bore. Scaling exponent of this power law function has been named power law index. The permeability function has also been termed as secondary permeability. This work introduces the method of Laplace solution to solve the problem of transient and pseudo steady-state flow in a fracture network. Development and validation of this method and its extension to predict the pressure (and production) behaviour of fracture network were made using a novel technic. Pressure solution was then combined with material balance through productivity index to make production forecast. Reservoir rock volume affected by the fracture stimulation treatment that contributes in the production is called effective stimulated volume. This represents the extent of fracture network in this case. Barnett shale formation is a naturally fractured shale reservoir in Fort Worth basin. Several production wells from this formation was analysed using Power Law Model and it was found that wells productivity are highly dependent on stimulated volume. Apparently the wells flow under pseudo steady state for most part of their producing life and the effect of boundary on production is evident in as soon as one months of production. Due to short period of transient flow production from Barnett formations is expected to be largely independent of the relative distribution of permeability and highly dependent on the stimulated area and induced secondary permeability. However, an indirect relationship between permeability distribution and production rate is observed. A well with low power law index shows a better (more even) secondary permeability distribution in spatial direction, larger stimulated volume and better production. A comparative analysis between the new model and traditional fracture model was made. It was found that both models can be used successfully for history matching and production forecasting from hydraulically fractured shale gas formation.

Kumar, Amrendra

2008-12-01T23:59:59.000Z

432

Cryogenic ion implantation near amorphization threshold dose for halo/extension junction improvement in sub-30 nm device technologies  

SciTech Connect

We report on junction advantages of cryogenic ion implantation with medium current implanters. We propose a methodical approach on maximizing cryogenic effects on junction characteristics near the amorphization threshold doses that are typically used for halo implants for sub-30 nm technologies. BF{sub 2}{sup +} implant at a dose of 8 Multiplication-Sign 10{sup 13}cm{sup -2} does not amorphize silicon at room temperature. When implanted at -100 Degree-Sign C, it forms a 30 - 35 nm thick amorphous layer. The cryogenic BF{sub 2}{sup +} implant significantly reduces the depth of the boron distribution, both as-implanted and after anneals, which improves short channel rolloff characteristics. It also creates a shallower n{sup +}-p junction by steepening profiles of arsenic that is subsequently implanted in the surface region. We demonstrate effects of implant sequences, germanium preamorphization, indium and carbon co-implants for extension/halo process integration. When applied to sequences such as Ge+As+C+In+BF{sub 2}{sup +}, the cryogenic implants at -100 Degree-Sign C enable removal of Ge preamorphization, and form more active n{sup +}-p junctions and steeper B and In halo profiles than sequences at room temperature.

Park, Hugh; Todorov, Stan; Colombeau, Benjamin; Rodier, Dennis; Kouzminov, Dimitry; Zou Wei; Guo Baonian; Khasgiwale, Niranjan; Decker-Lucke, Kurt [Applied Materials, Varian Semiconductor Equipment, 35 Dory Road, Gloucester, Massachusetts 01930 (United States)

2012-11-06T23:59:59.000Z

433

130-W picosecond green laser based on a frequency-doubled hybrid cryogenic Yb:YAG amplifier  

E-Print Network (OSTI)

130-W average-power picosecond green laser pulses at 514.5 nm are generated from a frequency-doubled hybrid cryogenic Yb:YAG laser. A second-harmonic conversion efficiency of 54% is achieved with a 15-mm-long noncritically ...

Hong, Kyung-Han

434

A New Compact Cryogenic Air Sampler and Its Application in Stratospheric Greenhouse Gas Observation at Syowa Station, Antarctica  

Science Conference Proceedings (OSTI)

To collect stratospheric air samples for greenhouse gas measurements, a compact cryogenic air sampler has been developed using a cooling device called the JouleThomson (JT) minicooler. The JT minicooler can produce liquefied neon within 5 s ...

Shinji Morimoto; Takashi Yamanouchi; Hideyuki Honda; Issei Iijima; Tetsuya Yoshida; Shuji Aoki; Takakiyo Nakazawa; Shigeyuki Ishidoya; Satoshi Sugawara

2009-10-01T23:59:59.000Z

435

Dynamics of window glass fracture in explosions  

SciTech Connect

An exploratory study was conducted under the Architectural Surety Program to examine the possibility of modifying fracture of glass in the shock-wave environment associated with terrorist bombings. The intent was to explore strategies to reduce the number and severity of injuries resulting from those attacks. The study consisted of a series of three experiments at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology at Socorro, NM, in which annealed and tempered glass sheets were exposed to blast waves at several different levels of overpressure and specific impulse. A preliminary assessment of the response of tempered glass to the blast environment suggested that inducing early failure would result in lowering fragment velocity as well as reducing the loading from the window to the structure. To test that possibility, two different and novel procedures (indentation flaws and spot annealing) were used to reduce the failure strength of the tempered glass while maintaining its ability to fracture into small cube-shaped fragments. Each experiment involved a comparison of the performance of four sheets of glass with different treatments.

Beauchamp, E.K.; Matalucci, R.V.

1998-05-01T23:59:59.000Z

436

Hydraulic fracture experiments in GT-1 and GT-2  

DOE Green Energy (OSTI)

Hydraulic fracturing experiments were conducted in granite rock, at temperatures near 100 and 150/sup 0/C, in two wells 0.785 km (2575 ft) and 1.98 km (6500 ft) deep near Los Alamos, New Mexico. No unusual difficulty was observed in fracturing crystalline rock hydraulically. The apparent surface energy (energy required to create new fracture surface by breaking the rock) was measured as 100 J/m/sup 2/. Orientation of the deeper fracture was measured as N35/sup 0/E (+-5/sup 0/). The fraction of fluid injected into the rock that could be recovered at hydrostatic surface pressure was measured. The efficiency of recovery was as high as 92 percent after the fracture impedance was lowered by ''propping'' the fracture with sand. Permeability of the rock over the face of the fracture was compatible with laboratory measurements (10/sup -7/ to 10/sup -8/ darcys). Downhole pressures required to extend the fractures were about 150 and 340 bars (2175 and 4900 psi), respectively.

Aamodt, R.L.

1977-02-01T23:59:59.000Z

437

Hydraulic fracturing of a moderate permeability reservoir, Kuparuk River Unit  

SciTech Connect

Sixty-five percent of the proven reserves in one of the United States' largest oil fields, the Kuparuk River Unit, are contained in the lower of two producing horizons. This zone, commonly referred to as the ''A'' sand, has a permeability of between 30 and 100 md. Unfortunately this interval is easily damaged during drilling and completion operations. Low initial flow efficiencies have been confirmed by numerous pressure transient tests. A program of hydraulic fracturing was initiated in March 1984 to overcome near wellbore damage and provide stimulation to more efficiently tap ''A'' sand reserves. More than 300 fracture stimulations have been completed to date in the arctic setting of the Kuparuk River Unit. These jobs have used a variety of fluids, proppants, and pumping schedules. The current hydraulic fracture design was evolved by continual interpretation of field results and related data from these previous stimulations. Success of the overall program has been impressive. Average post-fracture flow efficiency has been in excess of 100%. Post-fracture rate increase has averaged approximately 300%, accounting for a total rate increase of over 125,000 BOPD (19,900 m/sup 3//d). Based on these results, fracturing will continue to play an important part in future field development. This paper is the first review of the Kuparuk River Unit fracture program. It provides a case history of the development of a standard fracture design. In addition, the findings of this study would be applicable to reservoirs elsewhere with similar characteristics.

Niemeyer, B.L.; Reinart, M.R.

1986-01-01T23:59:59.000Z

438

The Modeling of Slurry Friction Loss of Hydraulic Fracturing  

Science Conference Proceedings (OSTI)

In recent years, the research on theoretical model of hydraulic fracturing has experienced development. But there is little progress in the research on slurry friction loss in the fracturing string, which is the key to guide the design and construction ... Keywords: slurry, friction loss, momentum transfer

Yongming Li; Hu Mao; Fengsheng Yao; Song Wang; Jinzhou Zhao

2011-10-01T23:59:59.000Z

439

Deformation and fracturing using adaptive shape matching with stiffness adjustment  

Science Conference Proceedings (OSTI)

This paper presents a fast method that computes deformations with fracturing of an object using a hierarchical lattice. Our method allows numerically stable computation based on so-called shape matching. During the simulation, the deformed shape of the ... Keywords: fracturing, interactive deformation, shape matching, soft body

Makoto Ohta; Yoshihiro Kanamori; Tomoyuki Nishita

2009-06-01T23:59:59.000Z

440

Modeling the fracture of ice sheets on parallel computers.  

SciTech Connect

The objective of this project is to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. Dramatic illustrations of fracture-induced phenomena most notably include the recent collapse of ice shelves in Antarctica (e.g. partial collapse of the Wilkins shelf in March of 2008 and the diminishing extent of the Larsen B shelf from 1998 to 2002). Other fracture examples include ice calving (fracture of icebergs) which is presently approximated in simplistic ways within ice sheet models, and the draining of supraglacial lakes through a complex network of cracks, a so called ice sheet plumbing system, that is believed to cause accelerated ice sheet flows due essentially to lubrication of the contact surface with the ground. These dramatic changes are emblematic of the ongoing change in the Earth's polar regions and highlight the important role of fracturing ice. To model ice fracture, a simulation capability will be designed centered around extended finite elements and solved by specialized multigrid methods on parallel computers. In addition, appropriate dynamic load balancing techniques will be employed to ensure an approximate equal amount of work for each processor.

Waisman, Haim (Columbia University); Bell, Robin (Columbia University); Keyes, David (Columbia University); Boman, Erik Gunnar; Tuminaro, Raymond Stephen

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A New Parameter Identification Method for Hydraulic Fractured Gas Wells  

Science Conference Proceedings (OSTI)

The relaxation search algorithm to identify the parameters of hydraulic fractured gas wells is developed in this paper based on the inductive matrix. According to the optimization theory and parallel computation method, the parameters to be identified ... Keywords: Gas Wells, hydraulic fracturing, formation parameters, parameter identification, historic fitting

Li Tiejun; Guo Dali; Min Chao

2010-12-01T23:59:59.000Z

442

Physical model studies of dispersion in fracture systems  

DOE Green Energy (OSTI)

The purposes of the laboratory-scale fracture network experiments are to study mechanisms controlling solute transport under conditions of known fracture parameters, to evaluate injection-backflow test procedures under conditions of known reservoir parameters, and to acquire data for validation of numerical models. Validation of computer codes against laboratory data collected under controlled conditions provides reassurance that the codes deal with important processes in a realistic manner. Preliminary simulations of the dual-permeability physical model have been made using the FRACSL reservoir code. These simulations permit locating electrodes and piezometers in the most advantageous positions to record tracer migration and pressure response. Much of the physical modeling effort this year was oriented towards validating the particle tracking algorithm used in FRACSL, and developing a better theoretical understanding of transport processes in fractures. Experiments were conducted in single fractures and single fracture junctions, and data on tracer migration collected. The Prickett, Naymik, and Lonnquist Random Walk aquifer simulation program has been modfied to simulate flow in single fractures. The particle tracking algorithm was also used to simulate infinite parallel plates under conditions where analytical solutions to the transport equation could be derived. The first case is for zero diffusion in the fracture, and transport based on a parabolic velocity profile. The second case is for diffusion homogenizing the tracer solution across the fracture. The particle tracking algorithm matched both analytical solutions quite well, with the same grid for both simulations. 48 refs., 41 figs., 2 tabs.

Hull, L.C.

1985-04-01T23:59:59.000Z

443

Representative element modeling of fracture systems based on stochastic analysis  

DOE Green Energy (OSTI)

An important task associated with reservoir simulation is the development of a technique to model a large number of fractures with a single description. Representative elements must be developed before reservoir scale simulations can adequately address the effects of intersecting fracture systems on fluid migration. An effective element model will sharply reduce the cost and complexity of large scale simulations to bring these to manageable levels. Stochastic analysis is a powerful tool which can determine the hydraulic and transport characteristics of intersecting sets of statistically defined fractures. Hydraulic and transport characteristics are required to develop representative elements. Given an assumption of fully developed laminar flow, the net fracture conductivities and hence flow velocities can be determined from descriptive statistics of fracture spacing, orientation, aperture, and extent. The distribution of physical characteristics about their mean leads to a distribution of the associated conductivities. The variance of hydraulic conductivity induces dispersion into the transport process. The simplest of fracture systems, a single set of parallel fractures, is treated to demonstrate the usefulness of stochastic analysis. Explicit equations for conductivity of an element are developed and the dispersion characteristics are shown. The analysis reveals the dependence of the representative element properties on the various parameters used to describe the fracture system. 10 refs., 3 figs.

Clemo, T.M.

1986-01-01T23:59:59.000Z

444

Evaluation of borehole electromagnetic and seismic detection of fractures  

DOE Green Energy (OSTI)

Experiments were conducted to establish the feasibility of downhole high-frequency techniques for location of fractures in the vicinity of boreholes. An existing flame-cut slot in granite was filled with salt water to simulate a brine-filled fracture. The first method used an electromagnetic wave at 30 to 300 MHz, vhf frequencies. A transmitter consisting of a phased dual-dipole array arranged to provide a directional signal toward the fracture was installed in a borehole opposite the fracture. A receiver was also located in the same borehole. The radar returns from the simulated fracture were detectable in boreholes located at distances of up to 12 meters from the fracture. These results indicate for the first time the feasibility of a downhole vhf radar for use in a single borehole for detection of fractures located away from the borehole. Similar experiments were also conducted using seismic waves at 4.5 to 6 KHz. The transmitter and the receiver in this case were located in separate boreholes. During this experiment, reflections from the slot were obtained only with the transducers oriented for shear wave illumination and detection. These results suggest that a high-frequency shear wave can also be used to detect fractures away from a borehole.

Chang, H.T.; Suhler, S.A.; Owen, T.E.

1984-02-01T23:59:59.000Z

445

OBSERVATIONS OF A POTENTIAL SIZE-EFFECT IN EXPERIMENTAL DETERMINATION OF THE HYDRAULIC PROPERTIES OF FRACTURES  

E-Print Network (OSTI)

DETERMINATION OF THE HYDRAULIC PROPERTIES OF FRACTURES P. A.cell 5. Variation of hydraulic conductivity in a fracturecceleratior of gravity hydraulic head fracture intrinsic

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

446

INTERPRETATION OF HYDRAULIC FRACTURING PRESSURE IN LOW-PERMEABILITY GAS RESERVOIRS.  

E-Print Network (OSTI)

??Hydraulic fracturing has been used in most oil and gas wells to increase production by creating fractures that extend from the wellbore into the formation. (more)

Kim, Gun Ho

2010-01-01T23:59:59.000Z

447

Thickness Measurement of Fracture Fluid Gel Filter Cake after Static Build Up and Shear Erosion.  

E-Print Network (OSTI)

??The hydraulic fracturing treatment is an essential tight sand gas reservoir stimulation that employs viscous fluid to break the formation rock to create a fracture (more)

Xu, Ben

2011-01-01T23:59:59.000Z

448

Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling  

E-Print Network (OSTI)

modeling fluid and heat flow in fractured porous media, Soc.fluid and heat flows of multiphase, multicomponent fluid mixtures in porous and fractured media.

Mukhopadhyay, S.

2009-01-01T23:59:59.000Z

449

Study on the feasibility of using electromagnetic methods for fracture diagnostics.  

E-Print Network (OSTI)

??This thesis explores two ways of developing a fracture diagnostics tool capable of estimating hydraulic fracture propped length and orientation. Both approaches make use of (more)

Salis, Natlia Gasto

2012-01-01T23:59:59.000Z

450

Proceedings of the Second International Symposium on Dynamics of Fluids in Fractured Rock  

E-Print Network (OSTI)

toward the heat source, or into the rock underlying the heatcharacterizing DNAPL source zones in fractured rock at theby a point source injection in fractured rock with multiple

Faybishenko, Boris; Witherspoon, Paul A.

2004-01-01T23:59:59.000Z

451

Prediction of effects of hydraulic fracturing using reservoir and well flow simulation  

Science Conference Proceedings (OSTI)

This paper presents a method to predict and evaluate effects of hydraulic fracturing jobs by using reservoir and well flow numerical simulation. The concept of the method i5 that steam production rate at the operating well head pressure is predicted with different fracture conditions which would be attained by the hydraulic fracturing jobs. Then, the effects of the hydraulic fracturing is evaluated by comparing the predicted steam production rate and that before the hydraulic fracturing. This course of analysis will suggest how large fracture should be created by the fracturing job to attain large enough increase in steam production at the operating condition and the best scheme of the hydraulic fracturing job.

Mineyuki Hanano; Tayuki Kondo

1992-01-01T23:59:59.000Z

452

Enthalpy transients in fractured two-phase geothermal systems  

DOE Green Energy (OSTI)

Numerical modeling techniques are used to study the changes in flowing enthalpy of fluids produced from a well completed in a fractured two-phase geothermal reservoir. Complex interactions between different fracture and porous matrix parameters control the enthalpy transients. The results show that the flowing enthalpy is most sensitive to the characteristics of the relative permeability curves, the magnitude of the matrix permeability and the effective fracture porosity. Other parameters such as the thermal conductivity and fracture spacing also significantly affect the flowing enthalpy. In spite of the complex phenomena associated with enthalpy transients in fractured two-phase systems, it is possible to infer useful information about the producing geothermal reservoirs from field data. 15 refs., 13 figs., 2 tabs.

Lippmann, M.J.; Bodvarsson, G.S.; Gaulke, S.W.

1985-03-01T23:59:59.000Z

453

A Study of Hydraulic Fracturing Initiation in Transversely Isotropic Rocks  

E-Print Network (OSTI)

Hydraulic fracturing of transverse isotropic reservoirs is of major interest for reservoir stimulation and in-situ stress estimation. Rock fabric anisotropy not only causes in-situ stress anisotropy, but also affects fracture initiation from the wellbore. In this study a semi-analytical method is used to investigate these effects with particular reference to shale stimulation. Using simplifying assumptions, equations are derived for stress distribution around the wellbore's walls. The model is then used to study the fracture initiation pressure variations with anisotropy. A sensitivity analysis is carried out on the impact of Young's modulus and Poisson's ration, on the fracture initiation pressure. The results are useful in designing hydraulic fractures and also can be used to develop information about in-situ rock properties using failure pressure values observed in the field. Finally, mechanical and permeability anisotropy are measured using Pulse Permeameter and triaxial tests on Pierre shale.

Serajian, Vahid

2011-08-01T23:59:59.000Z

454

Water infiltration and intermittent flow in rough-walled fractures  

DOE Green Energy (OSTI)

Flow visualization experiments were conducted in transparent replicas of natural rough-walled fractures. The fracture was inclined to observe the interplay between capillary and gravity forces. Water was introduced into the fracture by a capillary siphon. Preferential flow paths were observed, where intermittent flow frequently occurred. The water infiltration experiments suggest that intermittent flow in fractures appears to be the rule rather than the exception. In order to investigate the mechanism causing intermittent flow in fractures, parallel plates with different apertures were assembled using lucite and glass. A medium-coarse-fine pore structure is believed to cause the intermittency in flow. Intermittent flow was successfully produced in the parallel plate experiments using the lucite plates. After several trials, intermittent flow was also produced in the glass plates.

Su, G.

1995-05-01T23:59:59.000Z

455

On relative permeability of rough-walled fractures  

DOE Green Energy (OSTI)

This paper presents a conceptual and numerical model of multiphase flow in fractures. The void space of real rough-walled rock fractures is conceptualized as a two-dimensional heterogeneous porous medium, characterized by aperture as a function of position in the fracture plane. Portions of a fracture are occupied by wetting and non-wetting phase, respectively, according to local capillary pressure and accessibility criteria. Phase occupancy and permeability are derived by assuming a parallel-plate approximation for suitably small subregions in the fracture plane. Wetting and non-wetting phase relative permeabilities are calculated by numerically simulating single phase flows separately in the wetted and non-wetted pore spaces. Illustrative examples indicate that relative permeabilities depend sensitively on the nature and range of spatial correlation between apertures. 30 refs., 7 figs., 1 tab.

Pruess, K.; Tsang, Y.W.

1989-01-01T23:59:59.000Z

456

Selection of fracture fluid for stimulating tight gas reservoirs  

E-Print Network (OSTI)

Essentially all producing wells drilled in tight gas sands and shales are stimulated using hydraulic fracture treatments. The development of optimal fracturing procedures, therefore, has a large impact on the long-term economic viability of the wells. The industry has been working on stimulation technology for more than 50 years, yet practices that are currently used may not always be optimum. Using information from the petroleum engineering literature, numerical and analytical simulators, surveys from fracturing experts, and statistical analysis of production data, this research provides guidelines for selection of the appropriate stimulation treatment fluid in most gas shale and tight gas reservoirs. This study takes into account various parameters such as the type of formation, the presence of natural fractures, reservoir properties, economics, and the experience of experts we have surveyed. This work provides a guide to operators concerning the selection of an appropriate type of fracture fluid for a specific set of conditions for a tight gas reservoir.

Malpani, Rajgopal Vijaykumar

2006-12-01T23:59:59.000Z

457

About Cryogenics  

Science Conference Proceedings (OSTI)

... It is used to treat cancers and abnormalities of the skin, cervix, uterus, prostate gland, and liver. Bibliography. Scurlock, Ralph G., ed. (1993). ...

2011-11-15T23:59:59.000Z

458

Cryogenic Engineering  

Science Conference Proceedings (OSTI)

... compressed into high-pressure tanks and shipped ... hydrogen/oxygen space vehicle; storage of hydrogen ... the formulation of LNG safety procedures. ...

2001-04-16T23:59:59.000Z

459

Design and operating experience of the cryogenic system of the U. S. SCMS as incorporated into the bypass loop of the U-25 MHD generator facility  

DOE Green Energy (OSTI)

The design features and accumulated operating experience, from a cryogenics point of view, of the United States Superconducting Magnet System (U.S. SCMS) are presented. The principal cryogenic system design parameters are enumerated. Details of the cryogenic aspects of magnetic system commissioning, standby mode, and operation with MHD generators are discussed. Included are system operation, problems encountered and corrective actions taken, and measured operating parameters which include liquid helium boiloff, cryostat pressure and level versus time, etc. The aspects of the transition between operation in the laboratory and in an MHD plant are elaborated.

Niemann, R.C.; Mataya, K.F.; McWilliams, D.A.; Borden, R.; Streeter, M.H.; Wickson, R.; Smelser, P.; Privalov, N.P.

1978-01-01T23:59:59.000Z

460

Subsurface fracture mapping from geothermal wellbores. Final report  

DOE Green Energy (OSTI)

To advance the state-of-the-art in Hot Dry Rock technology, and evaluation is made of (1) the use of both electromagnetic and acoustic radar to map far-field fractures, (2) the use of more than twenty different conventional well logging tools to map borehole-fracture intercepts, (3) the use of magnetic dipole ranging to determine the relative positions of the injection well and the production well within the fractured zone, (4) the use of passive microseismic methods to determine the orientation and extent of hydraulic fractures, and (5) the application of signal processing techniques to fracture mapping including tomography, holography, synthetic aperture, image reconstruction, and the relative importance of phase and amplitude information. It is found that according to calculations, VHF backscatter radar has the potential for mapping fractures within a distance of 50 +- 20 meters from the wellbore. A new technique for improving fracture identification is presented. The range of acoustic radar is five to seven times greater than that of VHF radar when compared on the basis of equal resolution, i.e., equal wavelengths. Analyses of extant data indicate that when used synergistically the (1) caliper, (2) resistivity dipmeter, (3) televiewer, (4) television, (5) impression packer, and (6) acoustic transmission are useful for mapping borehole-fracture intercepts. A new model of hydraulic fracturing is presented which indicates that a hydraulic fracture is dynamically unstable; consequently, improvements in locating the crack tip may be possible. The importance of phase in signal processing is stressed and those techniques which employ phase data are emphasized for field use.

Hartenbaum, B.A.; Rawson, G.

1983-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "non-contaminating cryogenic fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fracture detection, mapping, and analysis of naturally fractured gas reservoirs using seismic technology. Final report, November 1995  

SciTech Connect

Many basins in the Rocky Mountains contain naturally fractured gas reservoirs. Production from these reservoirs is controlled primarily by the shape, orientation and concentration of the natural fractures. The detection of gas filled fractures prior to drilling can, therefore, greatly benefit the field development of the reservoirs. The objective of this project was to test and verify specific seismic methods to detect and characterize fractures in a naturally fractured reservoir. The Upper Green River tight gas reservoir in the Uinta Basin, Northeast Utah was chosen for the project as a suitable reservoir to test the seismic technologies. Knowledge of the structural and stratigraphic geologic setting, the fracture azimuths, and estimates of the local in-situ stress field, were used to guide the acquisition and processing of approximately ten miles of nine-component seismic reflection data and a nine-component Vertical Seismic Profile (VSP). Three sources (compressional P-wave, inline shear S-wave, and cross-line, shear S-wave) were each recorded by 3-component (3C) geophones, to yield a nine-component data set. Evidence of fractures from cores, borehole image logs, outcrop studies, and production data, were integrated with the geophysical data to develop an understanding of how the seismic data relate to the fracture network, individual well production, and ultimately the preferred flow direction in the reservoir. The multi-disciplinary approach employed in this project is viewed as essential to the overall reservoir characterization, due to the interdependency of the above factors.

NONE

1995-10-01T23:59:59.000Z

462

Cryogenic Viscous Compressor Development and Modeling for the ITER Vacuum System  

SciTech Connect

The ITER vacuum system requires a roughing pump system that can pump the exhaust gas from the torus cryopumps to the tritium exhaust processing plant. The gas will have a high tritium content and therefore conventional vacuum pumps are not suitable. A pump called a cryogenic viscous compressor (CVC) is being designed for the roughing system to pump from ~500 Pa to 10 Pa at flow rates of 200 Pa-m3/ s. A unique feature of this pump is that is allows any helium in the gas to flow through the pump where it is sent to the detritiation system before exhausting to atmosphere. A small scale prototype of the CVC is being tested for heat transfer characteristics and compared to modeling results to ensure reliable operation of the full scale CVC. Keywords- ITER; vacuum; fuel cycle

Baylor, Larry R [ORNL; Meitner, Steven J [ORNL; Barbier, Charlotte N [ORNL; Combs, Stephen Kirk [ORNL; Duckworth, Robert C [ORNL; Edgemon, Timothy D [ORNL; Rasmussen, David A [ORNL; Hechler, Michael P [ORNL; Kersevan, R. [ITER Organization, Cadarache, France; Dremel, M. [General Atomics, San Diego; Pearce, R.J.H. [General Atomics, San Diego; Boissin, Jean Claude [Consultant

2011-01-01T23:59:59.000Z

463

Low Mode Control of Cryogenic ICF Fuel Layers Using Infrared Heating  

DOE Green Energy (OSTI)

Infrared heating has been demonstrated as an effective technique to smooth solid hydrogen layers inside transparent cryogenic inertial confinement fusion capsules. Control of the first two Legendre modes of the fuel thickness perturbations using two infrared beams injected into a hohlraum was predicted by modeling and experimentally demonstrated. In the current work, we use coupled ray tracing and heat transfer simulations to explore a wider range of control of long scale length asymmetries. We demonstrate several scenarios to control the first four Legendre modes in the fuel layer using four beams. With such a system, it appears possible to smooth both short and long scale length fuel thickness variations in transparent indirect drive inertial confinement fusion targets.

London, R A; Kozioziemski, B J; Marinak, M M; Kerbel, G D; Bittner, D N

2005-07-06T23:59:59.000Z

464

Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity  

E-Print Network (OSTI)

Preparing and manipulating quantum states of mechanical resonators is a highly interdisciplinary undertaking that now receives enormous interest for its far-reaching potential in fundamental and applied science. Up to now, only nanoscale mechanical devices achieved operation close to the quantum regime. We report a new micro-optomechanical resonator that is laser cooled to a level of 30 thermal quanta. This is equivalent to the best nanomechanical devices, however, with a mass more than four orders of magnitude larger (43 ng versus 1 pg) and at more than two orders of magnitude higher environment temperature (5 K versus 30 mK). Despite the large laser-added cooling factor of 4,000 and the cryogenic environment, our cooling performance is not limited by residual absorption effects. These results pave the way for the preparation of 100-um scale objects in the quantum regime. Possible applications range from quantum-limited optomechanical sensing devices to macroscopic tests of quantum physics.

Simon Groeblacher; Jared B. Hertzberg; Michael R. Vanner; Garrett D. Cole; Sylvain Gigan; K. C. Schwab; Markus Aspelmeyer

2009-01-13T23:59:59.000Z

465

Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature  

E-Print Network (OSTI)

Increasing requirements in the sensitivity of interferometric measurements is a common feature of several research fields, from gravitational wave detection to quantum optics. This motivates refined studies of high reflectivity mirrors and of noise sources that are tightly related to their structure. In this work we present an experimental characterization of photothermal and thermo-refractive effects in high reflectivity mirrors, i.e., of the variations in the position of their effective reflection plane due to weak residual power absorption. The measurements are performed by modulating the impinging power in the range 10 Hz $\\div$ 100 kHz. The experimental results are compared with an expressly derived theoretical model in order to fully understand the phenomena and exploit them to extract useful effective thermo-mechanical parameters of the coating. The measurements are extended at cryogenic temperature, where most high sensitivity experiments are performed (or planned in future versions) and where characterizations of dielectric film coatings are still poor.

Alessandro Farsi; Mario Siciliani de Cumis; Francesco Marino; Francesco Marin

2011-09-21T23:59:59.000Z

466

Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature  

E-Print Network (OSTI)

Increasing requirements in the sensitivity of interferometric measurements is a common feature of several research fields, from gravitational wave detection to quantum optics. This motivates refined studies of high reflectivity mirrors and of noise sources that are tightly related to their structure. In this work we present an experimental characterization of photothermal and thermo-refractive effects in high reflectivity mirrors, i.e., of the variations in the position of their effective reflection plane due to weak residual power absorption. The measurements are performed by modulating the impinging power in the range 10 Hz $\\div$ 100 kHz. The experimental results are compared with an expressly derived theoretical model in order to fully understand the phenomena and exploit them to extract useful effective thermo-mechanical parameters of the coating. The measurements are extended at cryogenic temperature, where most high sensitivity experiments are performed (or planned in future versions) and where charact...

Farsi, Alessandro; Marino, Francesco; Marin, Francesco

2011-01-01T23:59:59.000Z

467

Helium Recovery in the LHC Cryogenic System following Magnet Resistive Transitions  

E-Print Network (OSTI)

A resistive transition (quench) of the Large Hadron Collider magnets provokes the expulsion of helium from the magnet cryostats to the helium recovery system. A high-volume, vacuum-insulated recovery line connected to several uninsulated medium-pressure gas storage tanks, forms the main constituents of the system. Besides a dedicated hardware configuration, helium recovery also implies specific procedures that should follow a quench, in order to conserve the discharged helium and possibly make use of its refrigeration capability. The amount of energy transferred after a quench from the magnets to the helium leaving the cold mass has been estimated on the basis of experimental data. Based on these data, the helium thermodynamic state in the recovery system is calculated using a lumped parameter approach. The LHC magnet quenches are classified ina parametric way from their cryogenic consequences and procedures that should follow the quench are proposed.

Chorowski, M; Serio, L; Tavian, L; Wagner, U; Van Weelderen, R

1998-01-01T23:59:59.000Z

468

Development of a Navigator and Imaging Techniques for the Cryogenic Dark Matter Search Detectors  

Science Conference Proceedings (OSTI)

This project contributes to the detection of flaws in the germanium detectors for the Cryogenic Dark Matter Search (CDMS) experiment. Specifically, after imaging the detector surface with a precise imaging and measuring device, they developed software to stitch the resulting images together, applying any necessary rotations, offsets, and averaging, to produce a smooth image of the whole detector that can be used to detect flaws on the surface of the detector. These images were also tiled appropriately for the Google Maps API to use as a navigation tool, allowing viewers to smoothly zoom and pan across the detector surface. Automated defect identification can now be implemented, increasing the scalability of the germanium detector fabrication.

Wilen, Chris; /Carleton Coll. /KIPAC, Menlo Park

2011-06-22T23:59:59.000Z

469

First Results from the Cryogenic Dark Matter Search in the Soudan Underground Lab  

E-Print Network (OSTI)

We report the first results from a search for weakly interacting massive particles (WIMPs) in the Cryogenic Dark Matter Search (CDMS) experiment at the Soudan Underground Laboratory. Four Ge and two Si detectors were operated for 52.6 live days, providing 19.4 kg-d of Ge net exposure after cuts for recoil energies between 10-100 keV. A blind analysis was performed using only calibration data to define the energy threshold and selection criteria for nuclear-recoil candidates. These data set the world's lowest exclusion limits on the coherent WIMP-nucleon scalar cross-section for all WIMP masses above 15 GeV, ruling out a significant range of neutralino supersymmetric models. The minimum of the limit curve at the 90% C.L. is 4 x 10^{-43} cm^2 at a WIMP mass of 60 GeV.

Akerib, D S; Armel-Funkhouser, M S; Attisha, M J; Baudis, L; Bauer, D A; Beaty, J; Brink, P L; Bunker, R; Cabrera, B; Caldwell, D O; Callahan, D; Castle, J P; Chang, C L; Choate, R; Crisler, M B; Cushman, P; Dixon, R; Dragowsky, M R; Driscoll, D D; Duong, L; Emes, J; Ferril, R; Filippini, J; Gaitskell, R J; Haldeman, M; Hale, D; Holmgren, D; Huber, M E; Johnson, B; Johnson, W; Kamat, S; Kozlovsky, M; Kula, L; Kyre, S; Lambin, B; Lu, A; Mahapatra, R; Manalaysay, A G; Mandic, V; May, J; McDonald, R; Merkel, B; Meunier, P; Mirabolfathi, N; Morrison, S; Nelson, H; Nelson, R; Novak, L; Ogburn, R W; Orr, S; Perera, T A; Perillo-Isaac, M C; Ramberg, E; Rau, W; Reisetter, A; Ross, R R; Saab, T; Sadoulet, B; Sander, J; Savage, C; Schmitt, R L; Schnee, R W; Seitz, D N; Serfass, B; Smith, A; Smith, G; Spadafora, A L; Sundqvist, K; Thompson, J P F; Tomada, A; Wang, G; Williams, J; Yellin, S; Young, B A

2004-01-01T23:59:59.000Z

470

A gamma- and X-ray detector for cryogenic, high magnetic field applications  

E-Print Network (OSTI)

As part of an experiment to measure the spectrum of photons emitted in beta-decay of the free neutron, we developed and operated a detector consisting of 12 bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs). The detector was operated near liquid nitrogen temperature in the bore of a superconducting magnet and registered photons with energies from 5 keV to 1000 keV. To enlarge the detection range, we also directly detected soft X-rays with energies between 0.2 keV and 20 keV with three large area APDs. The construction and operation of the detector is presented, as well as information on operation of APDs at cryogenic temperatures.

Cooper, R L; Bales, M J; Bass, C D; Beise, E J; Breuer, H; Byrne, J; Chupp, T E; Coakley, K J; Dewey, M S; Fu, C; Gentile, T R; Mumm, H P; Nico, J S; O'Neill, B; Pulliam, K; Thompson, A K; Wietfeldt, F E

2012-01-01T23:59:59.000Z

471

First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon  

E-Print Network (OSTI)

We report on the performance and commissioning of a cryogenic distillation column for low radioactivity underground argon at Fermi National Accelerator Laboratory. The distillation column is designed to accept a mixture of argon, helium, and nitrogen and return pure argon with a nitrogen contamination less than 10 ppm. In the first commissioning, we were able to run the distillation column in a continuous mode and produce argon that is 99.9% pure. After running in a batch mode, the argon purity was increased to 99.95%, with 500 ppm of nitrogen remaining. The efficiency of collecting the argon from the gas mixture was between 70% and 81%, at an argon production rate of 0.84-0.98 kg/day.

H. O. Back; T. Alexander; A. Alton; C. Condon; E. de Haas; C. Galbiati; A. Goretti; T. Hohmann; An. Ianni; C. Kendziora; B. Loer; D. Montanari; P. Mosteiro; S. Pordes

2012-04-26T23:59:59.000Z

472

Stable five axes cryogenic photoemission manipulator without a differentially pumped rotary feedthrough  

Science Conference Proceedings (OSTI)

We report on the design and construction of an ultrahigh vacuum compatible cryogenic manipulator for angle resolved photoemission spectroscopy. Unlike designs that have been used so far, our design allows five motions (three translational and two angular) without a differentially pumped rotary feedthrough. The design greatly reduces the sample motion upon rotation, which is crucial in automatic data acquisition over a large area in the momentum space. The constructed manipulator shows smooth motions in vacuum and the lowest temperature it could reach is about 8 K at the sample position. Angular reproducibilities are found to be about 0.02 deg. for both of the angular motions. The wobbling motion from the rotation around the vertical rotation axis is found to be virtually nonexistent (less than 0.1 mm)

Kim, Bum Joon; Kim, Hyeong-Do; Cho, Deok-Yong; Kim, Myongjin; Oh, S.-J.; Kim, Changyoung [School of Physics and Center for Strongly Correlated Materials Research, Seoul National University, Seoul 151-742 (Korea, Republic of); Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); School of Physics and Center for Strongly Correlated Materials Research, Seoul National University, Seoul 151-742 (Korea, Republic of); Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); School of Physics and Center for Strongly Correlated Materials Research, Seoul National University, Seoul 151-742 (Korea, Republic of); Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of)