National Library of Energy BETA

Sample records for noaa earth system

  1. Earth System Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Earth System Observations Research comprises Earth, ocean, and atmospheric sciences to better understand and predict climate change's impact on ecosystems and to study subsurface geological materials and their interactions. Deploying research facilities globally Forecasting forests' responses to climate change Monitoring terrestrial ecosystems Contact Us Group Leader (acting) Bob Roback Email Deputy Group Leader (acting) Jeff Heikoop Email Profile pages header Search our Profile pages

  2. Modeling the earth system

    SciTech Connect (OSTI)

    Ojima, D.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  3. Climate & Earth Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Earth Systems - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  4. SciTech Connect: "earth system models"

    Office of Scientific and Technical Information (OSTI)

    earth system models" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "earth system models" Semantic Semantic Term Title: Full Text: Bibliographic...

  5. Modeling the Earth System, volume 3

    SciTech Connect (OSTI)

    Ojima, D.

    1992-01-01

    The topics covered fall under the following headings: critical gaps in the Earth system conceptual framework; development needs for simplified models; and validating Earth system models and their subcomponents.

  6. A toolkit for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1993-03-01

    An earth system model is a computer code designed to simulate the interrelated processes that determine the earth`s weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

  7. ARM - PI Product - ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central

  8. A toolkit for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1993-03-01

    An earth system model is a computer code designed to simulate the interrelated processes that determine the earth's weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

  9. 2012 Community Earth System Model (CESM) Tutorial - Proposal...

    Office of Scientific and Technical Information (OSTI)

    Conference: 2012 Community Earth System Model (CESM) Tutorial - Proposal to DOE Citation Details In-Document Search Title: 2012 Community Earth System Model (CESM) Tutorial - ...

  10. A Scalable and Extensible Earth System Model for Climate Change...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: A Scalable and Extensible Earth System Model for Climate Change Science Citation Details In-Document Search Title: A Scalable and Extensible Earth System Model ...

  11. DOE Science Showcase - Earth System Models | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Earth System Models Research in DOE Databases In the OSTI Collections: Earth System Models, Dr. William Watson DOE PAGESBeta - journal articles and accepted manuscripts resulting ...

  12. End-to-End Network Tuning Sends Data Screaming from NERSC to NOAA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    End-to-End Network Tuning Sends Data Screaming from NERSC to NOAA End-to-End Network Tuning Sends Data Screaming from NERSC to NOAA September 21, 2012 Jon Bashor, Jbashor@lbl.gov, +1 510 486 5849 reforecast.gif (a) 24 hour observed precipitation amounts for 9 January 1995; (b) Average 1-day precipitation forecasts; (c) Today's forecast calibrated with old reforecasts and precipitation analyses. (Click image to enlarge.) Image coutesy of NOAA's Earth Systems Research Laboratory. When it comes to

  13. The Community Earth System Model: A Framework for Collaborative Research

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Earth System Model: A Framework for Collaborative Research Citation Details In-Document Search Title: The Community Earth System Model: A Framework for Collaborative Research The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of earth system interactions across multiple time and space scales. This global coupled model is a natural evolution from its predecessor, the Community Climate System

  14. Proposal Title: Community Earth System Model (CESM) Tutorial

    Office of Scientific and Technical Information (OSTI)

    Proposal Title: Community Earth System Model (CESM) Tutorial PI: James W. Hurrell In fiscal year 2011, the Community Earth System Model (CESM) tutorial was taught at NCAR from 1-5...

  15. 2012 Community Earth System Model (CESM) Tutorial - Proposal to DOE

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: 2012 Community Earth System Model (CESM) Tutorial - Proposal to DOE Citation Details In-Document Search Title: 2012 Community Earth System Model (CESM) Tutorial - Proposal to DOE The Community Earth System Model (CESM) is a fully-coupled, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. This document provides the agenda and list of participants for the conference. Web

  16. PMEL contributions to the collaboration: SCALING THE EARTH SYSTEM GRID TO PETASCALE DATA for the DOE SciDACs Earth System Grid Center for Enabling Technologies

    SciTech Connect (OSTI)

    Hankin, Steve

    2012-06-01

    Drawing to a close after five years of funding from DOE's ASCR and BER program offices, the SciDAC-2 project called the Earth System Grid (ESG) Center for Enabling Technologies has successfully established a new capability for serving data from distributed centers. The system enables users to access, analyze, and visualize data using a globally federated collection of networks, computers and software. The ESG softwareâ??now known as the Earth System Grid Federation (ESGF)â??has attracted a broad developer base and has been widely adopted so that it is now being utilized in serving the most comprehensive multi-model climate data sets in the world. The system is used to support international climate model intercomparison activities as well as high profile U.S. DOE, NOAA, NASA, and NSF projects. It currently provides more than 25,000 users access to more than half a petabyte of climate data (from models and from observations) and has enabled over a 1,000 scientific publications.

  17. The integrated Earth System Model Version 1: formulation and functionality

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect The integrated Earth System Model Version 1: formulation and functionality Citation Details In-Document Search Title: The integrated Earth System Model Version 1: formulation and functionality The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure.

  18. A Scalable and Extensible Earth System Model for Climate Change...

    Office of Scientific and Technical Information (OSTI)

    Scalable and Extensible Earth System Model for Climate Change Science Gent, Peter; Lamarque, Jean-Francois; Conley, Andrew; Vertenstein, Mariana; Craig, Anthony 54 ENVIRONMENTAL...

  19. ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Torn, Margaret

    2008-01-15

    Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central Facility, usually once per week on one afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. Samples are collected by the ARM/LBNL Carbon Project. CO2 flask data contains measurements of CO2 concentration and CO2 stable isotope ratios (13CO2 and C18OO) from flasks collected at the SGP site. The flask samples are collected at 2m, 4m, 25m, and 60m along the 60m tower.

  20. ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Torn, Margaret

    Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central Facility, usually once per week on one afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. Samples are collected by the ARM/LBNL Carbon Project. CO2 flask data contains measurements of CO2 concentration and CO2 stable isotope ratios (13CO2 and C18OO) from flasks collected at the SGP site. The flask samples are collected at 2m, 4m, 25m, and 60m along the 60m tower.

  1. Modeling the Changing Earth System: Prospects and Challenges

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bill Collins Modeling the Changing Earth System: Prospects and Challenges February 4, 2014 Bill Collins, Berkeley Lab Downloads CollinSNERSCUG020514.pdf | Adobe Acrobat PDF file Modeling the Changing Earth System: Prospects and Challenges - William Collins, Berkeley Lab Last edited: 2016-02-01 08:07:24

  2. DOE SciDAC's Earth System Grid Center for Enabling Technologies...

    Office of Scientific and Technical Information (OSTI)

    of Southern California 96 KNOWLEDGE MANAGEMENT AND PRESERVATION Earth System Grid, data replication, system monitoring Earth System Grid, data replication, system monitoring...

  3. Digital Through-The-Earth Communication System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Digital Through-The-Earth Communication System Digital Through-The-Earth Communication System System Provides Voice and Data Link for Surface to Subsurface Communications Traditional radio uses frequencies above 500 kHz and does not penetrate any significant distance into typical underground rock masses. Hard-wired links such as phone lines, coaxial cables, mining car tracks, short-range radio links, or line-of-sight communication are commonly used, but these systems restrict the mobility of an

  4. Collaborative Project. Mode and Intermediate Waters in Earth System Models

    SciTech Connect (OSTI)

    Sarmiento, Jorge L.; Dufour, Carolina; Rodgers, Keith B.

    2015-12-16

    The focus of this grant was on diagnosing the physical mechanisms controlling upper ocean water mass formation and carbon distribution in Earth System Models (ESMs), with the goal of improving the physics that controls their formation.

  5. 2012 Community Earth System Model (CESM) Tutorial - Proposal to DOE

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: 2012 Community Earth System Model (CESM) Tutorial - Proposal to DOE Citation Details In-Document Search Title: 2012 Community Earth System Model (CESM) Tutorial - Proposal to DOE × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  6. Climate, Earth system project draws on science powerhouses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate, Earth system project draws on science powerhouses Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Climate, Earth system project draws on science powerhouses The project will focus initially on three climate-change science drivers and corresponding questions to be answered during the project's initial phase. November 1, 2014 Computer modeling provides policymakers with essential information on such data as

  7. Climate, Earth system project draws on science powerhouses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate, Earth system project draws on science powerhouses Climate, Earth system project draws on science powerhouses The project will focus initially on three climate-change science drivers and corresponding questions to be answered during the project's initial phase. September 25, 2014 Computer modeling provides policymakers with essential information on such data as global sea surface temperatures related to specific currents. Computer modeling provides policymakers with essential information

  8. NOAA Webinar: The U.S. Climate Resilience Toolkit

    Broader source: Energy.gov [DOE]

    This series is co-sponsored by the NOAA Sectoral Applications Research Program (SARP), US National Integrated Drought Information System (NIDIS), Water Research Foundation, Water Environment...

  9. Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enthusiastic employees: sustaining the Earth January 30, 2014 Green Teams work hard to make sustainable choices at home, at work The Lab has made many energy sustainable improvements, but it's the employee commitment that really makes a difference. Immersed in the day-to-day operations, they're key players to help the Lab spot ways to reduce waste and energy use. Take Monica Witt, for example. The Lab's sustainability program manager and a key advocate for making the Lab use energy more

  10. The integrated Earth system model version 1: formulation and functionality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; et al

    2015-07-23

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  11. The integrated Earth System Model Version 1: formulation and functionality

    SciTech Connect (OSTI)

    Collins, William D.; Craig, Anthony P.; Truesdale, John E.; Di Vittorio, Alan; Jones, Andrew D.; Bond-Lamberty, Benjamin; Calvin, Katherine V.; Edmonds, James A.; Kim, Son H.; Thomson, Allison M.; Patel, Pralit L.; Zhou, Yuyu; Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E.; Chini, Louise M.; Hurtt, George C.

    2015-07-23

    The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a sin- gle simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore- omitted feedbacks between natural and societal drivers, we can improve scientific under- standing of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper de- scribes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.

  12. Big Data Visual Analytics for Exploratory Earth System Simulation Analysis

    SciTech Connect (OSTI)

    Steed, Chad A.; Ricciuto, Daniel M.; Shipman, Galen M.; Smith, Brian E.; Thornton, Peter E.; Wang, Dali; Shi, Xiaoying; Williams, Dean N.

    2013-12-01

    Rapid increases in high performance computing are feeding the development of larger and more complex data sets in climate research, which sets the stage for so-called big data analysis challenges. However, conventional climate analysis techniques are inadequate in dealing with the complexities of today s data. In this paper, we describe and demonstrate a visual analytics system, called the Exploratory Data analysis ENvironment (EDEN), with specific application to the analysis of complex earth system simulation data sets. EDEN represents the type of interactive visual analysis tools that are necessary to transform data into insight, thereby improving critical comprehension of earth system processes. In addition to providing an overview of EDEN, we describe real-world studies using both point ensembles and global Community Land Model Version 4 (CLM4) simulations.

  13. The Brief History and Future Development of Earth System Models:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brief History and Future Development of Earth System Models: Resolution and Complexity Warren M. Washington National Center for Atmospheric Research NERSC Lecture Series at Berkeley Lab May, 2014 Overview * Brief history of climate modeling * Brief discussion of computational methods * Environmental Justice connected to climate change * Behind the scenes White House origin of the U. S. Global Change Research Program (USGCRP) * The future of the USGCRP and National Climate Assessment The next two

  14. FORTRAN M as a language for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1992-01-01

    FORTRAN M is a small set of extensions to FORTRAN 77 that supports a modular or object-oriented approach to the development of parallel programs. In this paper, I discuss the use of FORTRAN M as a tool for building earth system models on massively parallel computers. I hypothesize that the use of FORTRAN M has software engineering advantages and outline experiments that we are conducting to investigate this hypothesis.

  15. FORTRAN M as a language for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1992-12-31

    FORTRAN M is a small set of extensions to FORTRAN 77 that supports a modular or object-oriented approach to the development of parallel programs. In this paper, I discuss the use of FORTRAN M as a tool for building earth system models on massively parallel computers. I hypothesize that the use of FORTRAN M has software engineering advantages and outline experiments that we are conducting to investigate this hypothesis.

  16. Toward an Earth System Modeling Approach to Simulate Irrigation Effects |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Toward an Earth System Modeling Approach to Simulate Irrigation Effects Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000

  17. Earth Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth Videos Earth

  18. A Scalable and Extensible Earth System Model for Climate Change Science

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: A Scalable and Extensible Earth System Model for Climate Change Science Citation Details In-Document Search Title: A Scalable and Extensible Earth System Model for Climate Change Science The objective of this award was to build a scalable and extensible Earth System Model that can be used to study climate change science. That objective has been achieved with the public release of the Community Earth System Model, version 1 (CESM1). In

  19. A Scalable and Extensible Earth System Model for Climate Change Science

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect A Scalable and Extensible Earth System Model for Climate Change Science Citation Details In-Document Search Title: A Scalable and Extensible Earth System Model for Climate Change Science The objective of this award was to build a scalable and extensible Earth System Model that can be used to study climate change science. That objective has been achieved with the public release of the Community Earth System Model, version 1 (CESM1). In particular, the

  20. SciDAC's Earth System Grid Center for Enabling Technologies Semiannual Progress Report October 1, 2010 through March 31, 2011

    SciTech Connect (OSTI)

    Williams, Dean N.

    2011-04-02

    This report summarizes work carried out by the Earth System Grid Center for Enabling Technologies (ESG-CET) from October 1, 2010 through March 31, 2011. It discusses ESG-CET highlights for the reporting period, overall progress, period goals, and collaborations, and lists papers and presentations. To learn more about our project and to find previous reports, please visit the ESG-CET Web sites: http://esg-pcmdi.llnl.gov/ and/or https://wiki.ucar.edu/display/esgcet/Home. This report will be forwarded to managers in the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER), as well as national and international collaborators and stakeholders (e.g., those involved in the Coupled Model Intercomparison Project, phase 5 (CMIP5) for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5); the Community Earth System Model (CESM); the Climate Science Computational End Station (CCES); SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science; the North American Regional Climate Change Assessment Program (NARCCAP); the Atmospheric Radiation Measurement (ARM) program; the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA)), and also to researchers working on a variety of other climate model and observation evaluation activities. The ESG-CET executive committee consists of Dean N. Williams, Lawrence Livermore National Laboratory (LLNL); Ian Foster, Argonne National Laboratory (ANL); and Don Middleton, National Center for Atmospheric Research (NCAR). The ESG-CET team is a group of researchers and scientists with diverse domain knowledge, whose home institutions include eight laboratories and two universities: ANL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), LLNL, NASA/Jet Propulsion Laboratory (JPL), NCAR, Oak Ridge National Laboratory (ORNL), Pacific Marine Environmental Laboratory (PMEL)/NOAA, Rensselaer Polytechnic Institute (RPI), and University of Southern California, Information Sciences Institute (USC/ISI). All ESG-CET work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Through the ESG project, the ESG-CET team has developed and delivered a production environment for climate data from multiple climate model sources (e.g., CMIP (IPCC), CESM, ocean model data (e.g., Parallel Ocean Program), observation data (e.g., Atmospheric Infrared Sounder, Microwave Limb Sounder), and analysis and visualization tools) that serves a worldwide climate research community. Data holdings are distributed across multiple sites including LANL, LBNL, LLNL, NCAR, and ORNL as well as unfunded partners sites such as the Australian National University (ANU) National Computational Infrastructure (NCI), the British Atmospheric Data Center (BADC), the Geophysical Fluid Dynamics Laboratory/NOAA, the Max Planck Institute for Meteorology (MPI-M), the German Climate Computing Centre (DKRZ), and NASA/JPL. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users who want to understand it, process it, extract value from it, visualize it, and/or communicate it to others. This ongoing effort is extremely large and complex, but it will be incredibly valuable for building 'science gateways' to critical climate resources (such as CESM, CMIP5, ARM, NARCCAP, Atmospheric Infrared Sounder (AIRS), etc.) for processing the next IPCC assessment report. Continued ESG progress will result in a production-scale system that will empower scientists to attempt new and exciting data exchanges, which could ultimately lead to breakthrough climate science discoveries.

  1. Climate Model Datasets on Earth System Grid II (ESG II)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Earth System Grid (ESG) is a project that combines the power and capacity of supercomputers, sophisticated analysis servers, and datasets on the scale of petabytes. The goal is to provide a seamless distributed environment that allows scientists in many locations to work with large-scale data, perform climate change modeling and simulation,and share results in innovative ways. Though ESG is more about the computing environment than the data, still there are several catalogs of data available at the web site that can be browsed or search. Most of the datasets are restricted to registered users, but several are open to any access.

  2. NOAA's Hurricane Field Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    capable of withstanding hurricane conditions. Image: Courtesy of NOAA P-3 2 of 4 P-3 High-tech P-3 aircraft are used in NOAA's Hurricane Field Program. Image: Courtesy of NOAA...

  3. National Oceanic and Atmospheric Administration (NOAA) | Open...

    Open Energy Info (EERE)

    National Oceanic and Atmospheric Administration (NOAA) Jump to: navigation, search Logo: National Oceanic and Atmospheric Administration (NOAA) Name: National Oceanic and...

  4. The Dy-Ni-Si system as a representative of the rare earth-Ni-Si

    Office of Scientific and Technical Information (OSTI)

    family: Its isothermal section and new rare-earth nickel silicides (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: The Dy-Ni-Si system as a representative of the rare earth-Ni-Si family: Its isothermal section and new rare-earth nickel silicides Citation Details In-Document Search Title: The Dy-Ni-Si system as a representative of the rare earth-Ni-Si family: Its isothermal section and new rare-earth nickel silicides The Dy-Ni-Si system has been

  5. Performance of the Community Earth System Model (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Conference: Performance of the Community Earth System Model Citation Details In-Document Search Title: Performance of the Community Earth System Model The Community Earth System Model (CESM), released in June 2010, incorporates new physical process and new numerical algorithm options, significantly enhancing simulation capabilities over its predecessor, the June 2004 release of the Community Climate System Model. CESM also includes enhanced performance tuning options and performance

  6. Earth System Modeling (ESM) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Earth System Modeling (ESM) Program Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program

  7. Berkeley Lab's Bill Collins talks about Modeling the Changing Earth System:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prospects and Challenges. From the 2014 NERSC User's Group Meeting Berkeley Lab's Bill Collins talks about Modeling the Changing Earth System: Prospects and Challenges. From the 2014 NERSC User's Group Meeting Berkeley Lab's Bill Collins talks about Modeling the Changing Earth System: Prospects and Challenges. From the 2014 NERSC User's Group Meeting March 20, 2014 by Richard Gerber Modeling the Changing Earth System: Prospects and Challenges, William Collins, Berkeley Lab Subscribe via RSS

  8. Final Report for proposal "The Interface between Earth System Models and

    Office of Scientific and Technical Information (OSTI)

    Impacts on Society Workshop, Spring 2011 (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Final Report for proposal "The Interface between Earth System Models and Impacts on Society Workshop, Spring 2011 Citation Details In-Document Search Title: Final Report for proposal "The Interface between Earth System Models and Impacts on Society Workshop, Spring 2011 The creation of a new Community Earth System Model (CESM) working group, combining

  9. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report (Technical Report) | SciTech Connect DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report Citation Details In-Document Search Title: DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate

  10. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report for University of Southern California Information Sciences Institute (Technical Report) | SciTech Connect DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute Citation Details In-Document Search Title: DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute The mission of the Earth System Grid Federation

  11. Final Report for proposal "The Interface between Earth System Models and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impacts on Society Workshop, Spring 2011 (Technical Report) | SciTech Connect Technical Report: Final Report for proposal "The Interface between Earth System Models and Impacts on Society Workshop, Spring 2011 Citation Details In-Document Search Title: Final Report for proposal "The Interface between Earth System Models and Impacts on Society Workshop, Spring 2011 The creation of a new Community Earth System Model (CESM) working group, combining science-driven research with

  12. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    SciTech Connect (OSTI)

    Adam, J. C.; Stephens, J. C.; Chung, Serena; Brady, M. P.; Evans, R. D.; Kruger, C. E.; Lamb, Brian K.; Liu, M. L.; Stockle, Claudio O.; Vaughan, Joseph K.; Rajagopalan, K.; Harrison, John; Tague, C. L.; Kalyanaraman, Anantharaman; Chen, Yong; Guenther, Alex B.; Leung, F. Y.; Leung, Lai-Yung R.; Perleberg, A. B.; Yoder, J.; Allen, Elizabeth; Anderson, S.; Chandrasekharan, B.; Malek, K.; Mullis, T.; Miller, C.; Nergui, T.; Poinsatte, J.; Reyes, J.; Zhu, J.; Choate, J. S.; Jiang, X.; Nelson, R.; Yoon, Jin-Ho; Yorgey, G. G.; Johnson, Kristen; Chinnayakanhalli, K. J.; Hamlet, A. F.; Nijssen, B.; Walden, Von

    2015-04-01

    As managers of agricultural and natural resources are confronted with uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (land, air, water, economics, etc). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and "usability" of EaSMs. BioEarth is a current research initiative with a focus on the U.S. Pacific Northwest region that explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a "bottom-up" approach, upscaling a catchment-scale model to basin and regional scales, as opposed to the "top-down" approach of downscaling global models utilized by most other EaSM efforts. This paper describes the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.

  13. Improving the representation of hydrologic processes in Earth System Models

    SciTech Connect (OSTI)

    Clark, Martyn P.; Fan, Ying; Lawrence, David M.; Adam, J. C.; Bolster, Diogo; Gochis, David; Hooper, Richard P.; Kumar, Mukesh; Leung, Lai-Yung R.; Mackay, D. Scott; Maxwell, Reed M.; Shen, Chaopeng; Swenson, Sean C.; Zeng, Xubin

    2015-08-21

    Many of the scientific and societal challenges in understanding and preparing for global environmental change rest upon our ability to understand and predict the water cycle change at large river basin, continent, and global scales. However, current large-scale models, such as the land components of Earth System Models (ESMs), do not yet represent the terrestrial water cycle in a fully integrated manner or resolve the finer-scale processes that can dominate large-scale water budgets. This paper reviews the current representation of hydrologic processes in ESMs and identifies the key opportunities for improvement. This review suggests that (1) the development of ESMs has not kept pace with modeling advances in hydrology, both through neglecting key processes (e.g., groundwater) and neglecting key aspects of spatial variability and hydrologic connectivity; and (2) many modeling advances in hydrology can readily be incorporated into ESMs and substantially improve predictions of the water cycle. Accelerating modeling advances in ESMs requires comprehensive hydrologic benchmarking activities, in order to systematically evaluate competing modeling alternatives, understand model weaknesses, and prioritize model development needs. This demands stronger collaboration, both through greater engagement of hydrologists in ESM development and through more detailed evaluation of ESM processes in research watersheds. Advances in the representation of hydrologic process in ESMs can substantially improve energy, carbon and nutrient cycle prediction capabilities through the fundamental role the water cycle plays in regulating these cycles.

  14. Scaling the Earth System Grid to 100Gbps Networks

    SciTech Connect (OSTI)

    Balman, Mehmet; Sim, Alex

    2012-03-02

    The SC11 demonstration, titled Scaling the Earth System Grid to 100Gbps Networks, showed the ability to use underlying infrastructure for the movement of climate data over 100Gbps network. Climate change research is one of the critical data intensive sciences, and the amount of data is continuously growing. Climate simulation data is geographically distributed over the world, and it needs to be accessed from many sources for fast and efficient analysis and inter-comparison of simulations. We used a 100Gbps link connecting National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory (LBNL), Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL). In the demo, the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) phase 3 of the Coupled Model Intercomparison Project (CMIP-3) dataset was staged into the memory of computing nodes at ANL and ORNL from NERSC over the 100Gbps network for analysis and visualization. In general, climate simulation data consists of relatively small and large files with irregular file size distribution in each dataset. In this demo, we addressed challenges on data management in terms of high bandwidth networks, usability of existing protocols and middleware tools, and how applications can adapt and benefit from next generation networks.

  15. Runtime Tracing of The Community Earth System Model: Feasibility and Benefits

    SciTech Connect (OSTI)

    Wang, Dali [ORNL] [ORNL; Domke, Jens [ORNL] [ORNL

    2011-01-01

    Community Earth System Models (CESM) is one of US's leading earth system modeling systems, which has over decades of development history and embraced by large, active user communities. In this paper, we first review the history of CESM software development and layout the general objectives of performance analysis. Then we present an offline global community land model simulation within the CESM framework to demonstrate the procedure of runtime tracing of CESM using the Vampir toolset. Finally, we explain the benefits of runtime tracing to the general earth system modeling community. We hope those considerations can also be beneficial to many other modeling research programs involving legacy high-performance computing applications.

  16. Earth System Modeling -- Director`s initiative. LDRD Program final report

    SciTech Connect (OSTI)

    MacCracken, M.; Penner, J. [Lawrence Livermore National Lab., CA (United States). Atmospheric Science Div.

    1996-06-01

    The objective of the Earth System Modeling Director`s Initiative is to develop and test a framework for interactively coupling subsystem models that represent the physical, chemical, and biological processes which determine the state of the atmosphere, ocean, land surface and vegetation. Most studies of the potential for human perturbations of the climate system made previously have treated only limited components of the Earth system. The purpose of this project was to demonstrate the capability of coupling all relevant components in a flexible framework that will permit a wide variety of tests to be conducted to assure realistic interactions. A representation of the Earth system is shown and its important interactions.

  17. ARM - Campaign Instrument - noaa-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA Airborne Aerosol Instruments (NOAA-AIR) Instrument Categories...

  18. ARM - Campaign Instrument - noaa-p3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p3 Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA P-3 Aircraft (NOAA-P3) Instrument Categories...

  19. 2011 Community Earth System Model (CESM) Tutorial, August 1-5, 2011

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: 2011 Community Earth System Model (CESM) Tutorial, August 1-5, 2011 Citation Details In-Document Search Title: 2011 Community Earth System Model (CESM) Tutorial, August 1-5, 2011 In fiscal year 2011, the Community Earth System Model (CESM) tutorial was taught at NCAR from 1-5 August 2011. This project hosted 79 full participants (1 accepted participant from China couldn't get a visa) selected from 180 applications. The tutorial was advertised

  20. DOE SciDAC's Earth System Grid Center for Enabling Technologies...

    Office of Scientific and Technical Information (OSTI)

    For the ESGF, the U.S. Department of Energy's (DOE's) Earth System Grid Center for ... Publication Date: 2013-12-19 OSTI Identifier: 1111156 Report Number(s): DOE-USC-25773 DOE ...

  1. A Scalable and Extensible Earth System Model for Climate Change Science

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: A Scalable and Extensible Earth System Model for Climate Change Science Citation Details In-Document Search Title: A Scalable and Extensible Earth System Model for Climate Change Science × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  2. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final

    Office of Scientific and Technical Information (OSTI)

    Report for University of Southern California Information Sciences Institute (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute Citation Details In-Document Search Title: DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute

  3. optimal initial conditions for coupling ice sheet models to earth system

    Office of Scientific and Technical Information (OSTI)

    models (Conference) | SciTech Connect Conference: optimal initial conditions for coupling ice sheet models to earth system models Citation Details In-Document Search Title: optimal initial conditions for coupling ice sheet models to earth system models × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  4. optimal initial conditions for coupling ice sheet models to earth system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    models (Conference) | SciTech Connect Conference: optimal initial conditions for coupling ice sheet models to earth system models Citation Details In-Document Search Title: optimal initial conditions for coupling ice sheet models to earth system models Authors: Perego, Mauro [1] ; Price, Stephen F. Dr [2] ; Stadler, Georg [3] + Show Author Affiliations Sandia National Laboratories [Sandia National Laboratories Los Alamos National Laboratory [Los Alamos National Laboratory Institute for

  5. In the OSTI Collections: Earth System Models | OSTI, US Dept of Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Scientific and Technical Information Earth System Models Dr. Watson computer sleuthing scientist. Article Acknowledgement: Dr. William N. Watson, Physicist DOE Office of Scientific and Technical Information Experiment, theoretical analysis, and something like both Perfecting and using earth system models Enabling technologies, user training Towards decisions References Reports available from SciTech Connect Research organizations Additional References "The abstract of the

  6. The integrated Earth System Model Version 1: formulation and...

    Office of Scientific and Technical Information (OSTI)

    effects, and the subsequent impacts of a changing climate on human and natural systems. ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: ...

  7. ARM - Campaign Instrument - amsu-b-noaa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsamsu-b-noaa Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA Advanced Microwave Sounding Unit-B (AMSU-B-NOAA) Instrument Categories Cloud Properties, Derived Quantities and Models, Satellite Observations Campaigns Spring Cloud IOP [ Download Data ] Southern Great Plains, 2000.03.01 - 2000.03.26 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) [ Download Data ] Tropical Western Pacific,

  8. ARM - Campaign Instrument - kite-noaa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentskite-noaa Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA Tethered Kite (KITE-NOAA) Instrument Categories Airborne Observations Campaigns Fall 1997 Water Vapor IOP [ Download Data ] Southern Great Plains, 1997.09.15 - 1997.10.05 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file headers for the list of all available

  9. Optimal Initial Conditions for Coupling Ice Sheet Models to Earth System

    Office of Scientific and Technical Information (OSTI)

    Models. (Journal Article) | SciTech Connect Optimal Initial Conditions for Coupling Ice Sheet Models to Earth System Models. Citation Details In-Document Search Title: Optimal Initial Conditions for Coupling Ice Sheet Models to Earth System Models. Abstract not provided. Authors: Perego, Mauro ; Price, Stephen ; Stadler, Georg Publication Date: 2014-04-01 OSTI Identifier: 1142266 Report Number(s): SAND2014-2781J 507169 DOE Contract Number: DE-AC04-94AL85000 Resource Type: Journal Article

  10. 2013 Community Earth System Model (CESM) Tutorial-Proposal to DOE

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect 3 Community Earth System Model (CESM) Tutorial-Proposal to DOE Citation Details In-Document Search Title: 2013 Community Earth System Model (CESM) Tutorial-Proposal to DOE × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  11. Improved structural systems for earth sheltered housing. Structural supplement to the design program

    SciTech Connect (OSTI)

    Behr, R.

    1981-10-01

    Additional engineering information is provided with regard to the structural analysis and design of thin shell concrete structures. The design program has tentatively demonstrated the overall architectural and marketing feasibility of curved, thin shell structural systems for earth sheltered housing. This supplement will address the structural feasibility question by presenting a complete manual analysis and structural design of an earth sheltered dome/tension ring/wall structural system, and also by presenting the results of a parametric sensitivity study of the dome/ring/wall configuration with respect to variations in span and rise for a three foot soil loading condition. Double curvature dome configurations are emphasized in this structural supplement because their analysis is not extensively addressed in earth sheltered housing literature.

  12. Earth System Grid (ESG) Data Node Software Stack

    Energy Science and Technology Software Center (OSTI)

    2009-12-01

    The ESG-CET system consist of two major components: 1) Gateways that support portal services, which serve as interfaces to end-users who can search, discover, and request data and data products, and 2) Data Nodes where the data actually resides. The Data is "published" to the Data Node, which makes the data visible to a Gateway and enables its delivery to end-users. It is expected that Gateways will only be installed by a small number ofmore »centers devoted to serving data (e.g., LLNL/PCMDI, NCAR, GFDL, DADC, DKRZ, ANU, JAMSTEC), whereas it is hoped that most climate modeling centers will install the Data Node software through which they can serve their model output.« less

  13. Case Study: Innovative Energy Efficiency Approaches in NOAA's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Energy Efficiency Approaches in NOAA's Environmental Security Computing Center in Fairmont, West Virginia Case Study: Innovative Energy Efficiency Approaches in NOAA's ...

  14. Department of Energy to Provide Supercomputing Time to Run NOAA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy to Provide Supercomputing Time to Run NOAA's Climate Change Models Department of Energy to Provide Supercomputing Time to Run NOAA's Climate Change Models ...

  15. The integrated Earth System Model (iESM): formulation and functionality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; et al

    2015-01-21

    The integrated Earth System Model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM projectmore » integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  16. Funding Opportunity from NOAA's Office of Education

    Broader source: Energy.gov [DOE]

    NOAA's Office of Education (OEd) has issued a request for applications for projects designed to strengthen the public's and/or K-12 students' environmental literacy to improve community resilience...

  17. Multicomponent analysis of mixed rare-earth metal ion solutions by the electronic tongue sensor system

    SciTech Connect (OSTI)

    Legin, A.; Kirsanov, D.; Rudnitskaya, A.; Rovny, S.; Logunov, M.

    2007-07-01

    Novel electrochemical sensors based on well-known extracting agents are developed. Sensors have shown high sensitivity towards a variety of rear earth metal ions in acidic media at pH=2. Multi-sensor system (electronic tongue) comprising newly developed sensors was successfully applied for the analysis of binary and ternary mixtures of Ce{sup 3+}, Nd{sup 3+}, Sm{sup 3+} and Gd{sup 3+} cations in different combinations. (authors)

  18. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect (OSTI)

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  19. A Subbasin-based framework to represent land surface processes in an Earth System Model

    SciTech Connect (OSTI)

    Tesfa, Teklu K.; Li, Hongyi; Leung, Lai-Yung R.; Huang, Maoyi; Ke, Yinghai; Sun, Yu; Liu, Ying

    2014-05-20

    Realistically representing spatial heterogeneity and lateral land surface processes within and between modeling units in earth system models is important because of their implications to surface energy and water exchange. The traditional approach of using regular grids as computational units in land surface models and earth system models may lead to inadequate representation of lateral movements of water, energy and carbon fluxes, especially when the grid resolution increases. Here a new subbasin-based framework is introduced in the Community Land Model (CLM), which is the land component of the Community Earth System Model (CESM). Local processes are represented assuming each subbasin as a grid cell on a pseudo grid matrix with no significant modifications to the existing CLM modeling structure. Lateral routing of water within and between subbasins is simulated with the subbasin version of a recently-developed physically based routing model, Model for Scale Adaptive River Routing (MOSART). As an illustration, this new framework is implemented in the topographically diverse region of the U.S. Pacific Northwest. The modeling units (subbasins) are delineated from high-resolution Digital Elevation Model while atmospheric forcing and surface parameters are remapped from the corresponding high resolution datasets. The impacts of this representation on simulating hydrologic processes are explored by comparing it with the default (grid-based) CLM representation. In addition, the effects of DEM resolution on parameterizing topography and the subsequent effects on runoff processes are investigated. Limited model evaluation and comparison showed that small difference between the averaged forcing can lead to more significant difference in the simulated runoff and streamflow because of nonlinear horizontal processes. Topographic indices derived from high resolution DEM may not improve the overall water balance, but affect the partitioning between surface and subsurface runoff. More systematic analyses are needed to determine the relative merits of the subbasin representation compared to the commonly used grid-based representation, especially when land surface models are approaching higher resolutions.

  20. On an improved sub-regional water resources management representation for integration into earth system models

    SciTech Connect (OSTI)

    Voisin, Nathalie; Li, Hongyi; Ward, Duane L.; Huang, Maoyi; Wigmosta, Mark S.; Leung, Lai-Yung R.

    2013-09-30

    Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of earth system models in hydrologic and climate predictions, as well as impact studies at regional to global scales. Emerging large-scale research reservoir models use generic operating rules that are flexible for coupling with earth system models. Those generic operating rules have been successful in reproducing the overall regulated flow at large basin scales. This study investigates the uncertainties of the reservoir models from different implementations of the generic operating rules using the complex multi-objective Columbia River Regulation System in northwestern United States as an example to understand their effects on not only regulated flow but also reservoir storage and fraction of the demand that is met. Numerical experiments are designed to test new generic operating rules that combine storage and releases targets for multi-purpose reservoirs and to compare the use of reservoir usage priorities, withdrawals vs. consumptive demand, as well as natural vs. regulated mean flow for calibrating operating rules. Overall the best performing implementation is the use of the combined priorities (flood control storage targets and irrigation release targets) operating rules calibrated with mean annual natural flow and mean monthly withdrawals. The challenge of not accounting for groundwater withdrawals, or on the contrary, assuming that all remaining demand is met through groundwater extractions, is discussed.

  1. Progress Report 2008: A Scalable and Extensible Earth System Model for Climate Change Science

    SciTech Connect (OSTI)

    Drake, John B; Worley, Patrick H; Hoffman, Forrest M; Jones, Phil

    2009-01-01

    This project employs multi-disciplinary teams to accelerate development of the Community Climate System Model (CCSM), based at the National Center for Atmospheric Research (NCAR). A consortium of eight Department of Energy (DOE) National Laboratories collaborate with NCAR and the NASA Global Modeling and Assimilation Office (GMAO). The laboratories are Argonne (ANL), Brookhaven (BNL) Los Alamos (LANL), Lawrence Berkeley (LBNL), Lawrence Livermore (LLNL), Oak Ridge (ORNL), Pacific Northwest (PNNL) and Sandia (SNL). The work plan focuses on scalablity for petascale computation and extensibility to a more comprehensive earth system model. Our stated goal is to support the DOE mission in climate change research by helping ... To determine the range of possible climate changes over the 21st century and beyond through simulations using a more accurate climate system model that includes the full range of human and natural climate feedbacks with increased realism and spatial resolution.

  2. Earth materials and earth dynamics

    SciTech Connect (OSTI)

    Bennett, K; Shankland, T.

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  3. A modern solver framework to manage solution algorithms in the Community Earth System Model

    SciTech Connect (OSTI)

    Evans, Katherine J [ORNL; Worley, Patrick H [ORNL; Nichols, Dr Jeff A [ORNL; WhiteIII, James B [National Center for Atmospheric Research (NCAR); Salinger, Andy [Sandia National Laboratories (SNL); Price, Stephen [Los Alamos National Laboratory (LANL); Lemieux, Jean-Francois [New York University; Lipscomb, William [Los Alamos National Laboratory (LANL); Perego, Mauro [Florida State University; Vertenstein, Mariana [National Center for Atmospheric Research (NCAR); Edwards, Jim [IBM and National Center for Atmospheric Research

    2012-01-01

    Global Earth-system models (ESM) can now produce simulations that resolve ~50 km features and include finer-scale, interacting physical processes. In order to achieve these scale-length solutions, ESMs require smaller time steps, which limits parallel performance. Solution methods that overcome these bottlenecks can be quite intricate, and there is no single set of algorithms that perform well across the range of problems of interest. This creates significant implementation challenges, which is further compounded by complexity of ESMs. Therefore, prototyping and evaluating new algorithms in these models requires a software framework that is flexible, extensible, and easily introduced into the existing software. We describe our efforts to create a parallel solver framework that links the Trilinos library of solvers to Glimmer-CISM, a continental ice sheet model used in the Community Earth System Model (CESM). We demonstrate this framework within both current and developmental versions of Glimmer-CISM and provide strategies for its integration into the rest of the CESM.

  4. 2014 Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Conference Report

    SciTech Connect (OSTI)

    Williams, Dean N.

    2015-01-27

    The climate and weather data science community met December 9–11, 2014, in Livermore, California, for the fourth annual Earth System Grid Federation (ESGF) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Conference, hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UVCDATremain global collaborations committed to developing a new generation of open-source software infrastructure that provides distributed access and analysis to simulated and observed data from the climate and weather communities. The tools and infrastructure created under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change. In addition, the F2F conference fosters a stronger climate and weather data science community and facilitates a stronger federated software infrastructure. The 2014 F2F conference detailed the progress of ESGF, UV-CDAT, and other community efforts over the year and sets new priorities and requirements for existing and impending national and international community projects, such as the Coupled Model Intercomparison Project Phase Six. Specifically discussed at the conference were project capabilities and enhancements needs for data distribution, analysis, visualization, hardware and network infrastructure, standards, and resources.

  5. Final Report Collaborative Project. Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    SciTech Connect (OSTI)

    Bryan, Frank; Dennis, John; MacCready, Parker; Whitney, Michael

    2015-11-20

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation. The main computational objectives were: 1. To develop computationally efficient, but physically based, parameterizations of estuary and continental shelf mixing processes for use in an Earth System Model (CESM). 2. To develop a two-way nested regional modeling framework in order to dynamically downscale the climate response of particular coastal ocean regions and to upscale the impact of the regional coastal processes to the global climate in an Earth System Model (CESM). 3. To develop computational infrastructure to enhance the efficiency of data transfer between specific sources and destinations, i.e., a point-to-point communication capability, (used in objective 1) within POP, the ocean component of CESM.

  6. The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geospatial Data

    SciTech Connect (OSTI)

    Ananthakrishnan, Rachana; Bell, Gavin; Cinquini, Luca; Crichton, Daniel; Danvil, Sebastian; Drach, Bob; Fiore, Sandro; Gonzalez, Estanislao; Harney, John F; Mattmann, Chris; Kershaw, Philip; Morgan, Mark; Pascoe, Stephen; Shipman, Galen M; Wang, Feiyi

    2013-01-01

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF s architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL, GSI and SAML). The ESGF software is developed collaboratively across institutional boundaries and made available to the community as open source. It has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire model output used for the next international assessment report on climate change (IPCC-AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs).

  7. The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geo-Spatial Data

    SciTech Connect (OSTI)

    Cinquini, Luca; Crichton, Daniel; Miller, Neill; Mattmann, Chris; Harney, John F; Shipman, Galen M; Wang, Feiyi; Bell, Gavin; Drach, Bob; Ananthakrishnan, Rachana; Pascoe, Stephen; Fiore, Sandro; Schweitzer, Roland; Danvil, Sebastian; Morgan, Mark

    2012-01-01

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF s architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL, GSI and SAML). The ESGF software is developed collaboratively across institutional boundaries and made available to the community as open source. It has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire model output used for the next international assessment report on climate change (IPCC-AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs).

  8. NOAA Hydropower and Fish Passage webpage | Open Energy Information

    Open Energy Info (EERE)

    NOAA Hydropower and Fish Passage webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: NOAA Hydropower and Fish Passage webpage Author National...

  9. NOAA Webinar: The U.S. Climate Resilience Toolkit

    Broader source: Energy.gov [DOE]

    Hosted by the National Oceanic and Atmospheric Administration (NOAA), this webinar will demonstrate the U.S. Climate Resilience Toolkit.

  10. Exploring the isopycnal mixing and helium-heat paradoxes in a suite of Earth System Models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gnanadesikan, A.; Abernathey, R.; Pradal, M.-A.

    2014-11-20

    This paper uses a suite of Earth System models which simulate the distribution of He isotopes and radiocarbon to examine two paradoxes in Earth science. The helium-heat paradox refers to the fact that helium emissions to the deep ocean are far lower than would be expected given the rate of geothermal heating, since both are thought to be the result of radioactive decay in the earth's interior. The isopycnal mixing paradox comes from the fact that many theoretical parameterizations of the isopycnal mixing coefficient ARedi that link it to baroclinic instability project it to be small (of order a fewmore » hundred m2 s−1) in the ocean interior away from boundary currents. However, direct observations using tracers and floats (largely in the upper ocean) suggest that values of this coefficient are an order of magnitude higher. Because helium isotopes equilibrate rapidly with the atmosphere, but radiocarbon equilibrates slowly, it might be thought that resolving the isopycnal mixing paradox in favor of the higher observational estimates of ARedi might also solve the helium paradox. In this paper we show that this is not the case. In a suite of models with different spatially constant and spatially varying values of ARedi the distribution of radiocarbon and helium isotopes is sensitive to the value of ARedi. However, away from strong helium sources in the Southeast Pacific, the relationship between the two is not sensitive, indicating that large-scale advection is the limiting process for removing helium and radiocarbon from the deep ocean. The helium isotopes, in turn, suggest a higher value of ARedi in the deep ocean than is seen in theoretical parameterizations based on baroclinic growth rates. We argue that a key part of resolving the isopycnal mixing paradox is to abandon the idea that ARedi has a direct relationship to local baroclinic instability and to the so called "thickness" mixing coefficient AGM.« less

  11. Exploring the isopycnal mixing and helium–heat paradoxes in a suite of Earth system models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gnanadesikan, A.; Pradal, M.-A.; Abernathey, R.

    2015-07-27

    This paper uses a suite of Earth system models which simulate the distribution of He isotopes and radiocarbon to examine two paradoxes in Earth science, each of which results from an inconsistency between theoretically motivated global energy balances and direct observations. The helium–heat paradox refers to the fact that helium emissions to the deep ocean are far lower than would be expected given the rate of geothermal heating, since both are thought to be the result of radioactive decay in Earth's interior. The isopycnal mixing paradox comes from the fact that many theoretical parameterizations of the isopycnal mixing coefficient ARedimore » that link it to baroclinic instability project it to be small (of order a few hundred m2 s−1) in the ocean interior away from boundary currents. However, direct observations using tracers and floats (largely in the upper ocean) suggest that values of this coefficient are an order of magnitude higher. Helium isotopes equilibrate rapidly with the atmosphere and thus exhibit large gradients along isopycnals while radiocarbon equilibrates slowly and thus exhibits smaller gradients along isopycnals. Thus it might be thought that resolving the isopycnal mixing paradox in favor of the higher observational estimates of ARedi might also solve the helium paradox, by increasing the transport of mantle helium to the surface more than it would radiocarbon. In this paper we show that this is not the case. In a suite of models with different spatially constant and spatially varying values of ARedi the distribution of radiocarbon and helium isotopes is sensitive to the value of ARedi. However, away from strong helium sources in the southeastern Pacific, the relationship between the two is not sensitive, indicating that large-scale advection is the limiting process for removing helium and radiocarbon from the deep ocean. The helium isotopes, in turn, suggest a higher value of ARedi below the thermocline than is seen in theoretical parameterizations based on baroclinic growth rates. We argue that a key part of resolving the isopycnal mixing paradox is to abandon the idea that ARedi has a direct relationship to local baroclinic instability and to the so-called "thickness" mixing coefficient AGM.« less

  12. DOE Award Number DE-SC0006012 Recipient: NCAR Project Title: The Interface between Earth System Models and Impacts on Society

    Office of Scientific and Technical Information (OSTI)

    Award Number DE-SC0006012 Recipient: NCAR Project Title: The Interface between Earth System Models and Impacts on Society Name of principal investigator: Jim Hurrell Executive Summary: This proposal funded planning activities to determine the readiness for a new working group on societal dimensions for the Community Earth System Model (CESM) project. This is in recognition of the potential that Earth System Models have to play a central role in the provision of information to support

  13. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report

    SciTech Connect (OSTI)

    Williams, Dean N.

    2011-09-27

    The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy's (DOE's) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing Centre, the National Aeronautics and Space Administration Jet Propulsion Laboratory, and the National Oceanic and Atmospheric Administration. The ESGF software is distinguished from other collaborative knowledge systems in the climate community by its widespread adoption, federation capabilities, and broad developer base. It is the leading source for present climate data holdings, including the most important and largest data sets in the global-climate community, and - assuming its development continues - we expect it to be the leading source for future climate data holdings as well. Recently, ESG-CET extended its services beyond data-file access and delivery to include more detailed information products (scientific graphics, animations, etc.), secure binary data-access services (based upon the OPeNDAP protocol), and server-side analysis. The latter capabilities allow users to request data subsets transformed through commonly used analysis and intercomparison procedures. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users seeking to understand, process, extract value from, visualize, and/or communicate it to others. This ongoing effort, though daunting in scope and complexity, will greatly magnify the value of numerical climate model outputs and climate observations for future national and international climate-assessment reports. The ESG-CET team also faces substantial technical challenges due to the rapidly increasing scale of climate simulation and observational data, which will grow, for example, from less than 50 terabytes for the last Intergovernmental Panel on Climate Change (IPCC) assessment to multiple Petabytes for the next IPCC assessment. In a world of exponential technological change and rapidly growing sophistication in climate data analysis, an infrastructure such as ESGF must constantly evolve if it is to remain relevant and useful. Regretfully, we submit our final report at the end of project funding. To continue to serve the climate-science community, we are

  14. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect (OSTI)

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM). We have made substantial progress in model development and evaluation, computational efficiencies and software engineering, and data development and evaluation, as discussed in Sections 2-4. Section 5 presents our success in data dissemination, while Section 6 discusses the scientific impacts of our work. Section 7 discusses education and mentoring success of our project, while Section 8 lists our relevant DOE services. All peer-reviewed papers that acknowledged this project are listed in Section 9. Highlights of our achievements include: • We have finished 20 papers (most published already) on model development and evaluation, computational efficiencies and software engineering, and data development and evaluation • The global datasets developed under this project have been permanently archived and publicly available • Some of our research results have already been implemented in WRF and CLM • Patrick Broxton and Michael Brunke have received their Ph.D. • PI Zeng has served on DOE proposal review panels and DOE lab scientific focus area (SFA) review panels

  15. Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases. Final report

    SciTech Connect (OSTI)

    Prather, Michael J.; Hsu, Juno; Nicolau, Alex; Veidenbaum, Alex; Smith, Philip Cameron; Bergmann, Dan

    2014-11-07

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  16. Department of Energy's Biological and Environmental Research Strategic Data Roadmap for Earth System Science

    SciTech Connect (OSTI)

    Williams, Dean N.; Palanisamy, Giri; Shipman, Galen; Boden, Thomas A.; Voyles, Jimmy W.

    2014-04-25

    Rapid advances in experimental, sensor, and computational technologies and techniques are driving exponential growth in the volume, acquisition rate, variety, and complexity of scientific data. This wealth of scientifically meaningful data has tremendous potential to lead to scientific discovery. However, to achieve scientific breakthroughs, these data must be exploitable—they must be analyzed effectively and efficiently and the results shared and communicated easily within the wider Department of Energy’s (DOE’s) Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) community. The explosion in data complexity and scale makes these tasks exceedingly difficult to achieve, particularly given that an increasing number of disciplines are working across techniques, integrating simulation and experimental or observational results (see Table 5 in Appendix 2). Consequently, we need new approaches to data management, analysis, and visualization that provide research teams with easy-to-use and scalable end-to-end solutions. These solutions must facilitate (and where feasible, automate and capture) every stage in the data lifecycle (shown in Figure 1), from collection to management, annotation, sharing, discovery, analysis, and visualization. In addition, the core functionalities are the same across climate science communities, but they require customization to adapt to specific needs and fit into research and analysis workflows. To this end, the mission of CESD’s Data and Informatics Program is to integrate all existing and future distributed CESD data holdings into a seamless and unified environment for the acceleration of Earth system science.

  17. Incorporating Stakeholder Decision Support Needs into an Integrated Regional Earth System Model

    SciTech Connect (OSTI)

    Rice, Jennie S.; Moss, Richard H.; Runci, Paul J.; Anderson, K. L.; Malone, Elizabeth L.

    2012-03-21

    A new modeling effort exploring the opportunities, constraints, and interactions between mitigation and adaptation at regional scale is utilizing stakeholder engagement in an innovative approach to guide model development and demonstration, including uncertainty characterization, to effectively inform regional decision making. This project, the integrated Regional Earth System Model (iRESM), employs structured stakeholder interactions and literature reviews to identify the most relevant adaptation and mitigation alternatives and decision criteria for each regional application of the framework. The information is used to identify important model capabilities and to provide a focus for numerical experiments. This paper presents the stakeholder research results from the first iRESM pilot region. The pilot region includes the Great Lakes Basin in the Midwest portion of the United States as well as other contiguous states. This geographic area (14 states in total) permits cohesive modeling of hydrologic systems while also providing gradients in climate, demography, land cover/land use, and energy supply and demand. The results from the stakeholder research indicate that iRESM should prioritize addressing adaptation alternatives in the water resources, urban infrastructure, and agriculture sectors, such as water conservation, expanded water quality monitoring, altered reservoir releases, lowered water intakes, urban infrastructure upgrades, increased electric power reserves in urban areas, and land use management/crop selection changes. Regarding mitigation alternatives, the stakeholder research shows a need for iRESM to focus on policies affecting the penetration of renewable energy technologies, and the costs and effectiveness of energy efficiency, bioenergy production, wind energy, and carbon capture and sequestration.

  18. A Generalized Stability Analysis of the AMOC in Earth System Models: Implication for Decadal Variability and Abrupt Climate Change

    SciTech Connect (OSTI)

    Fedorov, Alexey V.; Fedorov, Alexey

    2015-01-14

    The central goal of this research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) as related to climate variability and abrupt climate change within a hierarchy of climate models ranging from realistic ocean models to comprehensive Earth system models. Generalized Stability Analysis, a method that quantifies the transient and asymptotic growth of perturbations in the system, is one of the main approaches used throughout this project. The topics we have explored range from physical mechanisms that control AMOC variability to the factors that determine AMOC predictability in the Earth system models, to the stability and variability of the AMOC in past climates.

  19. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    SciTech Connect (OSTI)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.

  20. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; Primeau, F.

    2015-01-12

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a fact that is often omitted from biogeochemical ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observationalmore » data coverage and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C : N : P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model (CESM) and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1, 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively, with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. Dissolved organic carbon (DOC) export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  1. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; Primeau, F.

    2014-06-16

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a~fact that is often omitted from biogeochemical-ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observational data coveragemore » and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C / N / P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1), 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. DOC export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  2. On linking an Earth system model to the equilibrium carbon representation of an economically optimizing land use model

    SciTech Connect (OSTI)

    Bond-Lamberty, Benjamin; Calvin, Katherine V.; Jones, Andrew D.; Mao, Jiafu; Patel, Pralit L.; Shi, Xiaoying; Thomson, Allison M.; Thornton, Peter E.; Zhou, Yuyu

    2014-01-01

    Human activities are significantly altering biogeochemical cycles at the global scale, posing a significant problem for earth system models (ESMs), which may incorporate static land-use change inputs but do not actively simulate policy or economic forces. One option to address this problem is a to couple an ESM with an economically oriented integrated assessment model. Here we have implemented and tested a coupling mechanism between the carbon cycles of an ESM (CLM) and an integrated assessment (GCAM) model, examining the best proxy variables to share between the models, and quantifying our ability to distinguish climate- and land-use-driven flux changes. CLM’s net primary production and heterotrophic respiration outputs were found to be the most robust proxy variables by which to manipulate GCAM’s assumptions of long-term ecosystem steady state carbon, with short-term forest production strongly correlated with long-term biomass changes in climate-change model runs. By leveraging the fact that carbon-cycle effects of anthropogenic land-use change are short-term and spatially limited relative to widely distributed climate effects, we were able to distinguish these effects successfully in the model coupling, passing only the latter to GCAM. By allowing climate effects from a full earth system model to dynamically modulate the economic and policy decisions of an integrated assessment model, this work provides a foundation for linking these models in a robust and flexible framework capable of examining two-way interactions between human and earth system processes.

  3. Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models

    SciTech Connect (OSTI)

    Hoffman, Forrest M [ORNL] [ORNL; Randerson, James T. [University of California, Irvine] [University of California, Irvine; Arora, Vivek K. [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada] [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada; Bao, Qing [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics] [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics; Cadule, Patricia [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment] [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment; Ji, Duoying [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing] [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing; Jones, Chris D. [Hadley Centre, U.K. Met Office] [Hadley Centre, U.K. Met Office; Kawamiya, Michio [Japan Agency for Marine-Earth Science and Technology (JAMSTEC)] [Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Khatiwala, Samar [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY] [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY; Lindsay, Keith [National Center for Atmospheric Research (NCAR)] [National Center for Atmospheric Research (NCAR); Obata, Atsushi [Meteorological Research Institute, Japan] [Meteorological Research Institute, Japan; Shevliakova, Elena [Princeton University] [Princeton University; Six, Katharina D. [Max Planck Institute for Meteorology, Hamburg, Germany] [Max Planck Institute for Meteorology, Hamburg, Germany; Tjiputra, Jerry F. [Uni Climate, Uni Research] [Uni Climate, Uni Research; Volodin, Evgeny M. [Institute of Numerical Mathematics, Russian Academy of Science, Moscow] [Institute of Numerical Mathematics, Russian Academy of Science, Moscow; Wu, Tongwen [China Meteorological Administration (CMA), Beijing] [China Meteorological Administration (CMA), Beijing

    2014-01-01

    The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in future climate projections can be reduced.

  4. Livermore Lab's giant laser system will bring star power to Earth

    SciTech Connect (OSTI)

    Moses, E

    2010-04-08

    In the 50 years since the laser was first demonstrated in Malibu, California, on May 16, 1960, Lawrence Livermore National Laboratory (LLNL) has been a world leader in laser technology and the home for many of the world's most advanced laser systems. That tradition continues today at LLNL's National Ignition Facility (NIF), the world's most energetic laser system. NIF's completion in March 2009 not only marked the dawn of a new era of scientific research - it could also prove to be the next big step in the quest for a sustainable, carbon-free energy source for the world. NIF consists of 192 laser beams that will focus up to 1.8 million joules of energy on a bb-sized target filled with isotopes of hydrogen - forcing the hydrogen nuclei to collide and fuse in a controlled thermonuclear reaction similar to what happens in the sun and the stars. More energy will be produced by this 'ignition' reaction than the amount of laser energy required to start it. This is the long-sought goal of 'energy gain' that has eluded fusion researchers for more than half a century. Success will be a scientific breakthrough - the first demonstration of fusion ignition in a laboratory setting, duplicating on Earth the processes that power the stars. This impending success could not be achieved without the valuable partnerships forged with other national and international laboratories, private industry and universities. One of the most crucial has been between LLNL and the community in which it resides. Over 155 businesses in the local Tri-Valley area have contributed to the NIF, from industrial technology and engineering firms to tool manufacturing, electrical, storage and supply companies. More than $2.3B has been spent locally between contracts with nearby merchants and employee salaries. The Tri-Valley community has enabled the Laboratory to complete a complex and far-reaching project that will have national and global impact in the future. The first experiments were conducted on NIF last summer and fall, successfully delivering a world-record level of ultraviolet laser energy - more than 1.2 million joules - to a target. The experiments also demonstrated the target drive and target capsule conditions required to achieve fusion ignition. When ignition experiments begin later this year, NIF's lasers will create temperatures and pressures in the hydrogen target that exist only in the cores of stars and giant planets and inside thermonuclear weapons. As a key component of the National Nuclear Security Administration's Stockpile Stewardship Program, NIF will offer the means for sustaining a safe, secure and reliable U.S. nuclear deterrent without nuclear testing. NIF is uniquely capable of providing the experimental data needed to develop and validate computer models that will enable scientists to assess the continuing viability of the nation's nuclear stockpile. Along with this vital national security mission, success at NIF also offers the possibility of groundbreaking scientific discoveries in a wide variety of disciplines ranging from hydrodynamics to astrophysics. As a unique facility in the world that can create the conditions that exist in supernovas and in the cores of giant planets, NIF will help unlock the secrets of the cosmos and inspire the next generation of scientists. It is NIF's third mission, energy security that has been generating the most excitement in the news media and the international scientific community. The reasons are obvious: global energy demand, driven by population growth and the aspirations of the developing world, already is straining the planet's existing energy resources. Global need for electricity is expected to double from its current level of about two trillion watts (TW) to four TW by 2030 and could reach eight to ten TW by the end of the century. As many as 10,000 new billion-watt power plants will have to be built to keep up with this demand. Meeting this pressing need will require a sustainable carbon-free energy technology that can supply base load electricity to the world. Successful ignition experim

  5. Case Study: Innovative Energy Efficiency Approaches in NOAA's

    Energy Savers [EERE]

    Environmental Security Computing Center in Fairmont, West Virginia | Department of Energy Innovative Energy Efficiency Approaches in NOAA's Environmental Security Computing Center in Fairmont, West Virginia Case Study: Innovative Energy Efficiency Approaches in NOAA's Environmental Security Computing Center in Fairmont, West Virginia Document summarizes three data centers evaluated for potential energy efficiency improvements. These three data centers represent a broad cross section of the

  6. 3rd Annual Earth System Grid Federation and 3rd Annual Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Face-to-Face Meeting Report December 2013

    SciTech Connect (OSTI)

    Williams, Dean N.

    2014-02-21

    The climate and weather data science community gathered December 3–5, 2013, at Lawrence Livermore National Laboratory, in Livermore, California, for the third annual Earth System Grid Federation (ESGF) and Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Meeting, which was hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UV-CDAT are global collaborations designed to develop a new generation of open-source software infrastructure that provides distributed access and analysis to observed and simulated data from the climate and weather communities. The tools and infrastructure developed under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change, while the F2F meetings help to build a stronger climate and weather data science community and stronger federated software infrastructure. The 2013 F2F meeting determined requirements for existing and impending national and international community projects; enhancements needed for data distribution, analysis, and visualization infrastructure; and standards and resources needed for better collaborations.

  7. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    SciTech Connect (OSTI)

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  8. Earth System Grid Center for Enabling Technologies (ESG-CET): A Data Infrastructure for Data-Intensive Climate Research

    SciTech Connect (OSTI)

    Williams, Dean N.

    2011-06-03

    For the Earth System Grid Federation (ESGF), the ESG-CET team has led international development and delivered a production environment for managing and accessing ultrascale climate data. This production environment includes multiple national and international climate projects (e.g., Couple Model Intercomparison Project, Community Earth System Model), ocean model data (such as the Parallel Ocean Program), observation data (Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, and so forth), and analysis and visualization tools, all of which serve a diverse community of users. These data holdings and services are distributed across multiple ESG-CET sites (such as LANL, LBNL, LLNL, NCAR, and ORNL) as well as at unfunded partners sites such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing Centre, and the National Aeronautics and Space Administration Jet Propulsion Laboratory. More recently, ESG-CET has been extending services beyond data-file access and delivery to develop more detailed information products (scientific graphics, animations, etc.), secure binary data-access services (based upon the OPeNDAP protocol), and server-side analysis capabilities. These will allow users to request data subsets transformed through commonly used analysis and intercomparison procedures. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users seeking to understand, process, extract value from, visualize, and/or communicate it to others. This ongoing effort, though daunting in scope and complexity, will greatly magnify the value of numerical climate model outputs and climate observations for future national and international climate-assessment reports. Continued ESGF progress will result in a production ultrascale data system for empowering scientists who attempt new and exciting data exchanges that could ultimately lead to breakthrough climate-science discoveries.

  9. Luminescent nanocrystals in the rare-earth niobate–zirconia system formed via hydrothermal method

    SciTech Connect (OSTI)

    Hirano, Masanori Dozono, Hayato

    2013-08-15

    Luminescent nanocrystals based on the rare-earth niobates (Ln{sub 3}NbO{sub 7}, Ln=Y, Eu) and zirconia (ZrO{sub 2}) that were composed of 50 mol% Ln{sub 3}NbO{sub 7} and 50 mol% ZrO{sub 2}, were hydrothermally formed as cubic phase under weakly basic conditions at 240 °C. The lattice parameter of the as-prepared nanoparticles corresponding to the composition of Y{sub 3?x}Eu{sub x}NbO{sub 7}–4ZrO{sub 2} that was estimated as a single phase of cubic gradually increased as the content of europium x increased. The existence of small absorbance peaks at 395 and 466 nm corresponding to the Eu{sup 3+7}F{sub 0}?{sup 5}L{sub 6}, and {sup 7}F{sub 0}?{sup 5}D{sub 2} excitation transition, respectively, was clearly observed in the diffuse reflectance spectra of the as-prepared samples containing europium. The optical band gap of the as-prepared samples was in the range from 3.5 to 3.7 eV. The photoluminescence spectra of the as-prepared nanocrystals containing europium showed orange and red luminescences with main peaks at 590 and 610 nm, corresponding to {sup 5}D{sub 0}?{sup 7}F{sub 1} and {sup 5}D{sub 0}?{sup 7}F{sub 2} transitions of Eu{sup 3+}, respectively, under excitation at 395 nm Xe lamp. The emission intensity corresponding to {sup 5}D{sub 0}?{sup 7}F{sub 2} transition increased as heat-treatment temperature rose from 800 to 1200 °C. - Graphical abstract: This graphical abstract shows the excitation and emission spectra and a transmission electron microscopy image of nanocrystals (with composition based on the rare-earth niobates (Ln{sub 3}NbO{sub 7}, Ln=Y, Eu) and zirconia (ZrO{sub 2}) that were composed of 50 mol% Ln{sub 3}NbO{sub 7} and 50 mol% ZrO{sub 2}) formed via hydrothermal route. Display Omitted - Highlights: • Nanocrystals composed of 50 mol% Y{sub 3?x}Eu{sub x}NbO{sub 7} and 50 mol% ZrO{sub 2} was directly formed. • The nanocrystals were hydrothermally formed under weakly basic conditions at 240 °C. • The Y{sub 3}NbO{sub 7} showed an UV-blue and broad-band emission under excitation at 240 nm. • The emission is originated from the niobate octahedral group [NbO{sub 6}]{sup 7?}. • The nanocrystals showed orange and red luminescences ({sup 5}D{sub 0}?{sup 7}F{sub 1} and {sup 5}D{sub 0}?{sup 7}F{sub 2} , Eu{sup 3+})

  10. System for beaming power from earth to a high altitude platform

    DOE Patents [OSTI]

    Friedman, Herbert W. (Oakland, CA); Porter, Terry J. (Ridgecrest, CA)

    2002-01-01

    Power is transmitted to a high altitude platform by an array of diode pumped solid state lasers each operated at a single range of laser wavelengths outside of infrared and without using adaptive optics. Each laser produces a beam with a desired arrival spot size. An aircraft avoidance system uses a radar system for automatic control of the shutters of the lasers.

  11. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E; Song, Xia; Yuan, Fengming; Goswami, Santonu

    2014-01-01

    Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, a simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.

  12. ARM - PI Product - NOAA PMEL Station Chemistry Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsNOAA PMEL Station Chemistry Data ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : NOAA PMEL Station Chemistry Data Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH. Data

  13. Mars, the Moon, and the Ends of the Earth: Autonomy for Small Reactor Power Systems

    SciTech Connect (OSTI)

    Wood, Richard Thomas [ORNL

    2008-01-01

    In recent years, the National Aeronautics and Space Administration (NASA) has been considering deep space missions that utilize a small-reactor power system (SRPS) to provide energy for propulsion and spacecraft power. Additionally, application of SRPS modules as a planetary power source is being investigated to enable a continuous human presence for nonpolar lunar sites and on Mars. A SRPS can supply high-sustained power for space and surface applications that is both reliable and mass efficient. The use of small nuclear reactors for deep space or planetary missions presents some unique challenges regarding the operations and control of the power system. Current-generation terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a SRPS employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. While surface power systems for planetary outposts face less extreme delays and periods of isolation and may benefit from limited maintenance capabilities, considerations such as human safety, resource limitations and usage priorities, and economics favor minimizing direct, continuous human interaction with the SRPS for online, dedicated power system management. Thus, a SRPS control system for space or planetary missions must provide capabilities for operational autonomy. For terrestrial reactors, large-scale power plants remain the preferred near-term option for nuclear power generation. However, the desire to reduce reliance on carbon-emitting power sources in developing countries may lead to increased consideration of SRPS modules for local power generation in remote regions that are characterized by emerging, less established infrastructures. Additionally, many Generation IV (Gen IV) reactor concepts have goals for optimizing investment recovery and economic efficiency that promote significant reductions in plant operations and maintenance staff over current-generation nuclear power plants. To accomplish these Gen IV goals and also address the SRPS remote-siting challenges, higher levels of automation, fault tolerance, and advanced diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. Essentially, the SRPS control system for several anticipated terrestrial applications can benefit from the kind of operational autonomy that is necessary for deep space and planetary SRPS-enabled missions. Investigation of the state of the technology for autonomous control confirmed that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. As an example, NASA has pursued autonomy for spacecraft and surface exploration vehicles (e.g., rovers) to reduce mission costs, increase efficiency for communications between ground control and the vehicle, and enable independent operation of the vehicle during times of communications blackout. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and fully automated control of normal SRPS operations is clearly feasible. However, the space-based and remote terrestrial applications of SRPS modules require autonomous capabilities that can accommodate nonoptimum operations when degradation, failure, and other off-normal events challenge the performance of the reactor while immediate human intervention is not possible. The independent action provided by autonomous control, which is distinct from the more limited self action of automated control, can satisfy these conditions. Key characteristics that distinguish autonomous control i

  14. A metallurgical approach toward alloying in rare earth permanen magnet systems

    SciTech Connect (OSTI)

    Branagan, D. J.

    1995-02-23

    The approach was developed to allow microstructural enhancement and control during solidification and processing. Compound additions of Group IVA, VA, or VIA transition metals (TM) and carbon were added to Nd{sub 2}Fe{sub 14}B (2-14-1). Transition metal carbides formed in IVA (TiC, ZrC, HfC) and Group VA (VC, NbC, TaC) systems, but not in the VIA system. The alloying ability of each TM carbide was graded using phase stability, liquid and equilibrium solid solubility, and high temperature carbide stability. Ti with C additions was chosen as the best system. The practically zero equilibrium solid solubility means that the Ti and C additions will ultimately form TiC after heat treatment which allows the development of a composite microstructure consisting of the 2-14-1 phase and TiC. Thus, the excellent intrinsic magnetic properties of the 2-14-1 phase remain unaltered and the extrinsic properties relating to the microstructure are enhanced due to the TiC stabilized microstructure which is much more resistant to grain growth. When Ti + C are dissolved in the liquid melt or solid phases, such as the glass or 2-14-1 phase, the intrinsic properties are changed; favorable changes include increased glass forming ability, reduced optimum cooling rate, increased optimum energy product, and enhanced nucleation kinetics of crystallization.

  15. Earth's Magnetosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mysterious electron stash found hidden among Van Allen belts March 1, 2013 Instruments detect never-before-seen phenomenon in Earth's Magnetosphere LOS ALAMOS, N.M., March 1, 2013-U.S. researchers, including a trio from Los Alamos National Laboratory, have witnessed the mysterious appearance of a relatively long-lived zone of high-energy electrons stored between Earth's Van Allen radiation belts. The surprising findings, discovered by NASA's Van Allen Probes (formerly known as the Radiation Belt

  16. EarthEnergy Limited | Open Energy Information

    Open Energy Info (EERE)

    Cornwall, United Kingdom Product: EarthEnergy Systems specialises in ground source heat pump systems. References: EarthEnergy Limited1 This article is a stub. You can help OpenEI...

  17. Earth System Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interactions. Deploying research facilities globally Forecasting forests' responses to climate change Monitoring terrestrial ecosystems Contact Us Group Leader (acting) Bob...

  18. Earth System Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rates. The ability to measure the concentrations of cosmogenic nuclides in rock and sediment has revolutionized geomorphology. Erosional surfaces and depositional features formed...

  19. SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period October 1, 2009 through March 31, 2010

    SciTech Connect (OSTI)

    Williams, Dean N.; Foster, I. T.; Middleton, D. E.; Ananthakrishnan, R.; Siebenlist, F.; Shoshani, A.; Sim, A.; Bell, G.; Drach, R.; Ahrens, J.; Jones, P.; Brown, D.; Chastang, J.; Cinquini, L.; Fox, P.; Harper, D.; Hook, N.; Nienhouse, E.; Strand, G.; West, P.; Wilcox, H.; Wilhelmi, N.; Zednik, S.; Hankin, S.; Schweitzer, R.; Bernholdt, D.; Chen, M.; Miller, R.; Shipman, G.; Wang, F.; Bharathi, S.; Chervenak, A.; Schuler, R.; Su, M.

    2010-04-21

    This report summarizes work carried out by the ESG-CET during the period October 1, 2009 through March 31, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities).

  20. Differences in carbon cycle and temperature projections from emission- and concentration-driven earth system model simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, P.; Zeng, X.; Zeng, X.

    2014-08-29

    The influence of prognostic and prescribed atmospheric CO2 concentrations ([CO2]) on the carbon uptake and temperature is investigated using all eight Earth System Models (ESMs) with relevant output variables from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Under the RCP8.5 scenario, the projected [CO2] differences in 2100 vary from -19.7 to +207.3 ppm in emission-driven ESMs. Incorporation of the interactive concentrations also increases the range of global warming, computed as the 20 year average difference between 2081–2100 and 1850–1869/1861–1880, by 49% from 2.36 K (i.e. ranging from 3.11 to 5.47 K) in the concentration-driven simulations to 3.51 K inmore »the emission-driven simulations. The observed seasonal amplitude of global [CO2] from 1980–2011 is about 1.2–5.3 times as large as those from the eight emission-driven ESMs, while the [CO2] seasonality is simply neglected in concentration-driven ESMs, suggesting the urgent need of ESM improvements in this area. The temperature-concentration feedback parameter ? is more sensitive to [CO2] (e.g. during 1980–2005 versus 2075–2100) than how [CO2] is handled (i.e. prognostic versus prescribed). This sensitivity can be substantially reduced by using a more appropriate parameter ?' computed from the linear regression of temperature change versus that of the logarithm of [CO2]. However, the inter-model relative variations of both ? and ?' remain large, suggesting the need of more detailed studies to understand and hopefully reduce these discrepancies.« less

  1. Description and Evaluation of Tropospheric Chemistry and Aerosols in the Community Earth System Model (CESM1.2)

    SciTech Connect (OSTI)

    Tilmes, S.; Lamarque, J. -F.; Emmons, L.; Kinnison, Douglas E.; Ma, Po-Lun; Liu, Xiaohong; Ghan, Steven J.; Bardeen, C.; Arnold, S.; Deeter, M.; Vitt, Francis; Ryerson, T. B.; Elkins, J. W.; Moore, F.; Spackman, R.; Martin, M. V.

    2015-05-13

    The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. Both configurations are well suited as tools for atmospheric-chemistry modeling studies in the troposphere and lower stratosphere, whether with internally derived “free running” (FR) meteorology, or “specified dynamics” (SD). The main focus of this paper is to compare the performance of these configurations against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We particularly focus on comparing present-day methane lifetime estimates within the different model configurations, which range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem. We find that tropospheric surface area density is an important factor in controlling the burden of the hydroxyl radical (OH), which causes differences in tropical methane lifetime of about half a year between CAM4-chem and CAM5-chem. In addition, different distributions of nitrogen oxides (NOx) produced from lightning production explain about half of the difference between SD and FR model versions in both CAM4-chem and CAM5-chem. Remaining differences in the tropical OH burden are due to enhanced tropical ozone burden in SD configurations compared to the FR versions, which are not only caused by differences in chemical production or loss, but also by transport and mixing. For future studies, we recommend the use of CAM5-chem, due to improved aerosol description and inclusion of aerosol-cloud interactions. However, smaller tropospheric surface area density in the current version of CAM5-chem compared to CAM4-chem results in larger oxidizing capacity in the troposphere and therefore a shorter methane lifetime.

  2. A Generic Biogeochemical Module for Earth System Models: Next Generation BioGeoChemical Module (NGBGC), Version 1.0

    SciTech Connect (OSTI)

    Fang, Yilin; Huang, Maoyi; Liu, Chongxuan; Li, Hongyi; Leung, Lai-Yung R.

    2013-11-13

    Physical and biogeochemical processes regulate soil carbon dynamics and CO2 flux to and from atmosphere, influencing global climate changes. Integration of these processes into earth system models (e.g., community land models (CLM)), however, currently faces three major challenges: 1) extensive efforts are required to modify modeling structures and to rewrite computer programs to incorporate new or updated processes as new knowledge is being generated, 2) computational cost is prohibitively expensive to simulate biogeochemical processes in land models due to large variations in the rates of biogeochemical processes, and 3) various mathematical representations of biogeochemical processes exist to incorporate different aspects of fundamental mechanisms, but systematic evaluation of the different mathematical representations is difficult, if not possible. To address these challenges, we propose a new computational framework to easily incorporate physical and biogeochemical processes into land models. The new framework consists of a new biogeochemical module with a generic algorithm and reaction database so that new and updated processes can be incorporated into land models without the need to manually set up the ordinary differential equations to be solved numerically. The reaction database consists of processes of nutrient flow through the terrestrial ecosystems in plants, litter and soil. This framework facilitates effective comparison studies of biogeochemical cycles in an ecosystem using different conceptual models under the same land modeling framework. The approach was first implemented in CLM and benchmarked against simulations from the original CLM-CN code. A case study was then provided to demonstrate the advantages of using the new approach to incorporate a phosphorus cycle into the CLM model. To our knowledge, the phosphorus-incorporated CLM is a new model that can be used to simulate phosphorus limitation on the productivity of terrestrial ecosystems.

  3. Description and Evaluation of Tropospheric Chemistry and Aerosols in the Community Earth System Model (CESM1.2)

    SciTech Connect (OSTI)

    Tilmes, S.; Lamarque, J.-F.; Emmons, L.; Kinnison, Douglas E.; Ma, Po-Lun; Liu, Xiaohong; Ghan, Steven J.; Bardeen, C.; Arnold, S.; Deeter, M.; Vitt, Francis; Ryerson, T. B.; Elkins, J. W.; Moore, F.; Spackman, R.; Martin, M. V.

    2015-01-01

    The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. Both configurations are well suited as tools for atmospheric-chemistry modeling studies in the troposphere and lower stratosphere, whether with internally derived “free running” (FR) meteorology, or “specified dynamics” (SD). The main focus of this paper is to compare the performance of these configurations against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We particularly focus on comparing present-day methane lifetime estimates within the different model configurations, which range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem. We find that tropospheric surface area density is an important factor in controlling the burden of the hydroxyl radical (OH), which causes differences in tropical methane lifetime of about half a year between CAM4-chem and CAM5-chem. In addition, different distributions of nitrogen oxides (NOx) produced from lightning production explain about half of the difference between SD and FR model versions in both CAM4-chem and CAM5-chem. Remaining differences in the tropical OH burden are due to enhanced tropical ozone burden in SD configurations compared to the FR versions, which are not only caused by differences in chemical production or loss, but also by transport and mixing. For future studies, we recommend the use of CAM5-chem, due to improved aerosol description and inclusion of aerosol-cloud interactions. However, smaller tropospheric surface area density in the current version of CAM5-chem compared to CAM4-chem results in larger oxidizing capacity in the troposphere and therefore a shorter methane lifetime.

  4. Description and Evaluation of Tropospheric Chemistry and Aerosols in the Community Earth System Model (CESM1.2)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tilmes, S.; Lamarque, J. -F.; Emmons, L.; Kinnison, Douglas E.; Ma, Po-Lun; Liu, Xiaohong; Ghan, Steven J.; Bardeen, C.; Arnold, S.; Deeter, M.; et al

    2015-05-13

    The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. Both configurations are well suited as tools for atmospheric-chemistry modeling studies in the troposphere and lower stratosphere, whether with internally derived “free running” (FR) meteorology, or “specified dynamics” (SD). The main focus of this paper is to compare the performance of these configurations against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We particularly focus on comparing present-daymore » methane lifetime estimates within the different model configurations, which range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem. We find that tropospheric surface area density is an important factor in controlling the burden of the hydroxyl radical (OH), which causes differences in tropical methane lifetime of about half a year between CAM4-chem and CAM5-chem. In addition, different distributions of nitrogen oxides (NOx) produced from lightning production explain about half of the difference between SD and FR model versions in both CAM4-chem and CAM5-chem. Remaining differences in the tropical OH burden are due to enhanced tropical ozone burden in SD configurations compared to the FR versions, which are not only caused by differences in chemical production or loss, but also by transport and mixing. For future studies, we recommend the use of CAM5-chem, due to improved aerosol description and inclusion of aerosol-cloud interactions. However, smaller tropospheric surface area density in the current version of CAM5-chem compared to CAM4-chem results in larger oxidizing capacity in the troposphere and therefore a shorter methane lifetime.« less

  5. Google Earth Tour: Contaminants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google Earth Tour: Contaminants Google Earth Tour: Contaminants Historical operations used the best available waste handling methods for that time.

  6. NOAA and U.S. Department of Energy Expand Efforts to Increase Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency at National Marine Sanctuaries | Department of Energy NOAA and U.S. Department of Energy Expand Efforts to Increase Energy Efficiency at National Marine Sanctuaries NOAA and U.S. Department of Energy Expand Efforts to Increase Energy Efficiency at National Marine Sanctuaries January 29, 2008 - 11:13am Addthis HONOLULU, HI - Through the signing of a Memorandum of Understanding (MOU) the National Oceanic and Atmospheric Administration's (NOAA) National Marine Sanctuary Program

  7. Department of Energy to Provide Supercomputing Time to Run NOAA's Climate

    Office of Environmental Management (EM)

    Change Models | Department of Energy to Provide Supercomputing Time to Run NOAA's Climate Change Models Department of Energy to Provide Supercomputing Time to Run NOAA's Climate Change Models September 8, 2008 - 9:45am Addthis WASHINGTON, DC - The U.S. Department of Energy's (DOE) Office of Science will make available more than 10 million hours of computing time for the U.S. Commerce Department's National Oceanic and Atmospheric Administration (NOAA) to explore advanced climate change models

  8. NOAA and U.S. Department of Energy Expand Efforts to Increase...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... as biomass and biofuels, solar power, wind power, advanced vehicles, and hydrogen fuel cells to fundamentally change the ... the NOAA website. Media contact(s): Julie Ruggiero, (202) ...

  9. WFIP NOAA Final Report - Page i DE-EE0003080 TABLE OF CONTENTS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WFIP NOAA Final Report - Page i DE-EE0003080 TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................................................. i Executive Summary .................................................................................................................................. 1 1. Project Overview

  10. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to today’s best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  11. Google Earth Tour: Contaminants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google Earth Tour: Contaminants Google Earth Tour: Contaminants Historical operations used the best available waste handling methods for that time. Open full screen to view more...

  12. Earth and Environmental Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EES Earth and Environmental Sciences (EES) Sustainable energy, climate impacts, nuclear threat detection, and environmental management are primary focus areas of earth and...

  13. Through-the-earth radio

    DOE Patents [OSTI]

    Reagor, David; Vasquez-Dominguez, Jose

    2006-12-12

    A through-the-earth communication system that includes a digital signal input device; a transmitter operating at a predetermined frequency sufficiently low to effectively penetrate useful distances through-the earth; a data compression circuit that is connected to an encoding processor; an amplifier that receives encoded output from the encoding processor for amplifying the output and transmitting the data to an antenna; and a receiver with an antenna, a band pass filter, a decoding processor, and a data decompressor.

  14. Earth coupled cooling techniques

    SciTech Connect (OSTI)

    Grondzik, W.T.; Boyer, L.L.; Johnston, T.L.

    1981-01-01

    Earth coupled cooling is an important consideration for residential and commercial designers, owners, and builders in many regions of the country. The potential benefits which can be expected from passive earth contact cooling are reviewed. Recommendations for the design of earth sheltered structures incorporating earth coupled cooling strategies are also presented.

  15. CoolEarth formerly Cool Earth Solar | Open Energy Information

    Open Energy Info (EERE)

    CoolEarth formerly Cool Earth Solar Jump to: navigation, search Name: CoolEarth (formerly Cool Earth Solar) Place: Livermore, California Zip: 94550 Product: CoolEarth is a...

  16. Google Earth Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google Earth Gallery Google Earth Gallery Use Google Earth to view our efforts in cleaning the past, protecting the present, and creating a sustainable future. Tours Air Quality Download | View Tour Environmental Cleanup Download | View Tour Environmental Monitoring Download | View Tour How Contaminants Got There Download | View Tour Sediment Retention Download | View Tour Water Reuse Download | View Tour Waters LANL Protects Download | View Tour Google Earth Support Google Earth Website

  17. Earth, Space Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth, Space Sciences /science-innovation/_assets/images/icon-science.jpg Earth, Space Sciences National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Climate, Ocean and Sea Ice Modeling (COSIM)» Earth and Environmental Sciences Division» Intelligence and Space Research» Earth Read caption + A team of scientists is working to understand

  18. SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period April 1, 2009 through September 30, 2009

    SciTech Connect (OSTI)

    Williams, Dean N.; Foster, I. T.; Middleton, D. E.

    2009-10-15

    This report summarizes work carried out by the ESG-CET during the period April 1, 2009 through September 30, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities). During this semi-annual reporting period, the ESG-CET team continued its efforts to complete software components needed for the ESG Gateway and Data Node. These components include: Data Versioning, Data Replication, DataMover-Lite (DML) and Bulk Data Mover (BDM), Metrics, Product Services, and Security, all joining together to form ESG-CET's first beta release. The launch of the beta release is scheduled for late October with the installation of ESG Gateways at NCAR and LLNL/PCMDI. Using the developed ESG Data Publisher, the ESG II CMIP3 (IPCC AR4) data holdings - approximately 35 TB - will be among the first datasets to be published into the new ESG enterprise system. In addition, the NCAR's ESG II data holdings will also be published into the new system - approximately 200 TB. This period also saw the testing of the ESG Data Node at various collaboration sites, including: the British Atmospheric Data Center (BADC), the Max-Planck-Institute for Meteorology, the University of Tokyo Center for Climate System Research, and the Australian National University. This period, a total of 14 national and international sites installed an ESG Data Node for testing. During this period, we also continued to provide production-level services to the community, providing researchers worldwide with access to CMIP3 (IPCC AR4), CCES, and CCSM, Parallel Climate Model (PCM), Parallel Ocean Program (POP), and Cloud Feedback Model Intercomparison Project (CFMIP), and NARCCAP data.

  19. NOAA Teams Up with Department of Energy & Industry to Improve Wind Forecasts

    Broader source: Energy.gov [DOE]

    The growth of wind-generated power in the United States  is creating greater demand for improved wind forecasts. To address this need, the Department of Energy is working with NOAA and industry on...

  20. DOE, BOEMRE and NOAA Announce Nearly $5 Million for Joint Environmental

    Energy Savers [EERE]

    Research Projects to Advance Ocean Renewable Energy | Department of Energy DOE, BOEMRE and NOAA Announce Nearly $5 Million for Joint Environmental Research Projects to Advance Ocean Renewable Energy DOE, BOEMRE and NOAA Announce Nearly $5 Million for Joint Environmental Research Projects to Advance Ocean Renewable Energy October 26, 2010 - 12:00am Addthis WASHINGTON, DC - The Department of Energy (DOE), Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE), and the

  1. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 3. Heavy Lanthanides (Gd–Lu)

    SciTech Connect (OSTI)

    Mioduski, Tomasz; Gumi?ski, Cezary; Zeng, Dewen

    2015-06-15

    This is the third part of the volume devoted to solubility data for the rare earth metal (REM) fluorides in water and in aqueous ternary and multicomponent systems. It covers experimental results of trivalent fluorides of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu (so-called heavy lanthanides), since no quantitative data on solubilities of TbF{sub 4} and YbF{sub 2} (the most stable compounds at these valencies) are available. The related literature has been covered through the end of 2014. Compilations of all available papers with the solubility data are introduced for each REM fluoride with a corresponding critical evaluation. Every such assessment contains a collection of all solubility results in aqueous solution, a selection of suggested solubility data, a solubility equation, and a brief discussion of the multicomponent systems. Only simple fluorides (no complexes or double salts) are treated as the input substances in this report. General features of the systems, such as nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, solution pH, mixed solvent medium on the solubility, quality of the solubility results, and the solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.

  2. A PLANETARY SYSTEM AROUND THE NEARBY M DWARF GJ 667C WITH AT LEAST ONE SUPER-EARTH IN ITS HABITABLE ZONE

    SciTech Connect (OSTI)

    Anglada-Escude, Guillem; Butler, R. Paul; Arriagada, Pamela; Minniti, Dante; Vogt, Steven S.; Rivera, Eugenio J.; Haghighipour, Nader; Carter, Brad D.; Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A.; O'Toole, Simon J.; Jones, Hugh R. A.; Jenkins, James S.

    2012-05-20

    We re-analyze 4 years of HARPS spectra of the nearby M1.5 dwarf GJ 667C available through the European Southern Observatory public archive. The new radial velocity (RV) measurements were obtained using a new data analysis technique that derives the Doppler measurement and other instrumental effects using a least-squares approach. Combining these new 143 measurements with 41 additional RVs from the Magellan/Planet Finder Spectrograph and Keck/High Resolution Echelle Spectrometer spectrometers reveals three additional signals beyond the previously reported 7.2 day candidate, with periods of 28 days, 75 days, and a secular trend consistent with the presence of a gas giant (period {approx}10 years). The 28 day signal implies a planet candidate with a minimum mass of 4.5 M{sub Circled-Plus} orbiting well within the canonical definition of the star's liquid water habitable zone (HZ), that is, the region around the star at which an Earth-like planet could sustain liquid water on its surface. Still, the ultimate water supporting capability of this candidate depends on properties that are unknown such as its albedo, atmospheric composition, and interior dynamics. The 75 day signal is less certain, being significantly affected by aliasing interactions among a potential 91 day signal, and the likely rotation period of the star at 105 days detected in two activity indices. GJ 667C is the common proper motion companion to the GJ 667AB binary, which is metal-poor compared to the Sun. The presence of a super-Earth in the HZ of a metal-poor M dwarf in a triple star system supports the evidence that such worlds should be ubiquitous in the Galaxy.

  3. Argonne's Earth Day 2011

    ScienceCinema (OSTI)

    None

    2013-04-19

    Argonne celebrated Earth Day on April 21, 2011 with an event that featured green activities and information booths.

  4. National K-12 Educator Conference; "Earth Then, Earth Now: Our Changing Climate" (July 23-24, 2008)

    SciTech Connect (OSTI)

    Flammer, Karen; O'Shaughnessy, Tam

    2013-12-11

    With the support of the Department of Energy, the National Science Teachers Association and the National Oceanic and Atmospheric Administration, Imaginary Lines Inc. (dba Sally Ride Science) delivered a highly successful 2-day conference to 165 K-12 educators on climate change. The event took place on July 23rd and 24th, 2008 at the NOAA facility in Silver Spring, MD. The conference celebrated the 25th anniversary of Dr. Sally Ride’s first flight into space in 1983 and examined how our understanding of Earth has changed in those 25 years. One the first day of the conference, participants heard a keynote talk delivered by Dr. Sally Ride, followed by presentations by well-known climate change scientists: Dr. Richard Somerville, Dr. Inez Fung and Dr. Susan Solomon. These sessions were concurrently webcast and made available to educators who were unable to attend the conference. On the second day of the conference, participants attended breakout sessions where they performed climate change activities (e.g. “Neato Albedo!”, “Greenhouse in a Bottle”, “Shell-Shocked”) that they could take back to their classrooms. Additional break-out sessions on using remote sensing images to illustrate climate change effects on Earth’s surface and how to address the climate change debate, were also offered. During lunch, participants attended an Educator Street Fair and had the opportunity to interact with representatives from NOAA, NASA, the EPA, NEEF and the JASON project. A follow-up evaluation survey was administered to all conference attendees immediately following the conference to evaluate its effectiveness. The results of this survey were overwhelmingly positive. The conference materials: presentation Power Points, workshop handouts and activities were available for teachers to download after the conference from the Sally Ride Science website. In summary, the approximately $55K support for the Department of Energy was used to help plan, deliver and evaluate the “Earth Then, Earth Now: Our Changing Climate”, conference which took place on July 23rd and 24th, 2008 at the NOAA facility in Silver Spring, MD.

  5. Earth sheltered structures

    SciTech Connect (OSTI)

    Boyer, L.L.

    1982-01-01

    The earth shelter concept has been utilized successfully around the world for thousands of years, but its use with contemporary mechanically conditioned buildings dates only from the oil embargo of the mid-1970s. This is an architectural innovation and a growing and viable response to the energy imperative. Most of the technical problems of earth shelters have been effectively addressed, but a systems design approach could further enhance overall energy savings. Although occupant lifestyle seems to be at a high level, areas that require further attention include site design, daylighting, and refined thermal design. The proper integration of passive solar heating and disaster protection represent opportunities for improved multifunctional aspects. With proper design, annual heating and cooling energy use reductions on the order of 80% can be anticipated. Research on energy design refinements and occupancy aspects necessary to achieve such levels of savings is presently under way at Oklahoma State University, the University of Minnesota, and other study centers throughout the nation and the world.

  6. Geoengineering the Earth's Climate

    ScienceCinema (OSTI)

    Google Tech Talks

    2009-09-01

    Emergency preparedness is generally considered to be a good thing, yet there is no plan regarding what we might do should we be faced with a climate emergency. Such an emergency could take the form of a rapid shift in precipitation patterns, a collapse of the great ice sheets, the imminent triggering of strong climate system feedbacks, or perhaps the loss of valuable ecosystems. Over the past decade, we have used climate models to investigate the potential to reverse some of the effects of greenhouse gases in the atmosphere by deflecting some incoming sunlight back to space. This would probably be most cost-effectively achieved with the placement of small particles in or above the stratosphere. Our model simulations indicate that such geoengineering approaches could potentially bring our climate closer to the state is was in prior to the introduction of greenhouse gases. This talk will present much of what is known about such geoengineering approaches, and raise a range of issues likely to stimulate lively discussion. Speaker: Ken Caldeira Ken Caldeira is a scientist at the Carnegie Institution Department of Global Ecology and a Professor (by courtesy) at the Stanford University Department of Environmental and Earth System Sciences. Previously, he worked for 12 years in the Energy and Environment Directorate at the Lawrence Livermore National Laboratory (Department of Energy). His research interests include the numerical simulation of Earth's climate, carbon, and biogeochemistry; ocean acidification; climate emergency response systems; evaluating approaches to supplying environmentally-friendly energy services; ocean carbon sequestration; long-term evolution of climate and geochemical cycles; and marine biogeochemical cycles. Caldeira has a B.A. in Philosophy from Rutgers College and an M.S. and Ph.D. in Atmospheric Sciences from New York University.

  7. HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND

    SciTech Connect (OSTI)

    Lopez, Eric D.; Miller, Neil; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2012-12-10

    We use models of thermal evolution and extreme ultraviolet (XUV) driven mass loss to explore the composition and history of low-mass, low-density transiting planets. We investigate the Kepler-11 system in detail and provide estimates of both the current and past planetary compositions. We find that an H/He envelope on Kepler-11b is highly vulnerable to mass loss. By comparing to formation models, we show that in situ formation of the system is extremely difficult. Instead we propose that it is a water-rich system of sub-Neptunes that migrated from beyond the snow line. For the broader population of observed planets, we show that there is a threshold in bulk planet density and incident flux above which no low-mass transiting planets have been observed. We suggest that this threshold is due to the instability of H/He envelopes to XUV-driven mass loss. Importantly, we find that this mass-loss threshold is well reproduced by our thermal evolution/contraction models that incorporate a standard mass-loss prescription. Treating the planets' contraction history is essential because the planets have significantly larger radii during the early era of high XUV fluxes. Over time low-mass planets with H/He envelopes can be transformed into water-dominated worlds with steam envelopes or rocky super-Earths. Finally, we use this threshold to provide likely minimum masses and radial-velocity amplitudes for the general population of Kepler candidates. Likewise, we use this threshold to provide constraints on the maximum radii of low-mass planets found by radial-velocity surveys.

  8. Earth and Environmental Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EES Division Earth and Environmental Sciences We provide solutions to complex problems in climate and environmental change, sustainable energy, and national security. Climate...

  9. Holding Mother Earth Sacred

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Holding Mother Earth Sacred Photo Journal Project ... Colorado School of Public Health: www.ucdenver.edu... www.cdc.govniosh American Industrial Hygiene ...

  10. DOE's NREL and LLNL team with NOAA and University of Colorado to Study Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inflow Conditions | Department of Energy NREL and LLNL team with NOAA and University of Colorado to Study Wind Inflow Conditions DOE's NREL and LLNL team with NOAA and University of Colorado to Study Wind Inflow Conditions October 3, 2011 - 12:33pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. Invisible to the eye, wind wakes created by multimegawatt wind turbines can nevertheless strongly impact performance of other turbines

  11. From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations

    SciTech Connect (OSTI)

    Di Vittorio, Alan; Chini, Louise M.; Bond-Lamberty, Benjamin; Mao, Jiafu; Shi, Xiaoying; Truesdale, John E.; Craig, Anthony P.; Calvin, Katherine V.; Jones, Andrew D.; Collins, William D.; Edmonds, James A.; Hurtt, George; Thornton, Peter E.; Thomson, Allison M.

    2014-11-27

    Climate projections depend on scenarios of fossil fuel emissions and land use change, and the IPCC AR5 parallel process assumes consistent climate scenarios across Integrated Assessment and Earth System Models (IAMs and ESMs). To facilitate consistency, CMIP5 used a novel land use harmonization to provide ESMs with seamless, 1500-2100 land use trajectories generated by historical data and four IAMs. However, we have identified and partially addressed a major gap in the CMIP5 land coupling design. The CMIP5 Community ESM (CESM) global afforestation is only 22% of RCP4.5 afforestation from 2005 to 2100. Likewise, only 17% of the Global Change Assessment Model’s (GCAM’s) 2040 RCP4.5 afforestation signal, and none of the pasture loss, were transmitted to CESM within a newly integrated model. This is a critical problem because afforestation is necessary for achieving the RCP4.5 climate stabilization. We attempted to rectify this problem by modifying only the ESM component of the integrated model, enabling CESM to simulate 66% of GCAM’s afforestation in 2040, and 94% of GCAM’s pasture loss as grassland and shrubland losses. This additional afforestation increases vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040, implying different climate scenarios between CMIP5 GCAM and CESM. Similar inconsistencies likely exist in other CMIP5 model results, primarily because land cover information is not shared between models, with possible contributions from afforestation exceeding model-specific, potentially viable forest area. Further work to harmonize land cover among models will be required to adequately rectify this problem.

  12. Cool Earth Solar

    ScienceCinema (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2014-02-26

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  13. LANL Studies Earth's Magnetosphere

    ScienceCinema (OSTI)

    Daughton, Bill

    2014-08-12

    A new 3-D supercomputer model presents a new theory of how magnetic reconnection works in high-temperature plasmas. This Los Alamos National Laboratory research supports an upcoming NASA mission to study Earth's magnetosphere in greater detail than ever.

  14. Computational Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Computational Earth Science We develop and apply a range of high-performance computational methods and software tools to Earth science projects in support of environmental health, cleaner energy, and national security. Contact Us Group Leader Carl Gable Deputy Group Leader Gilles Bussod Email Profile pages header Search our Profile pages Hari Viswanathan inspects a microfluidic cell used to study the extraction of hydrocarbon fuels from a complex fracture network. EES-16's Subsurface Flow

  15. Lab celebrates Earth Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab celebrates Earth Day Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Lab celebrates Earth Day Multiple activities focus on environmental protection. May 1, 2013 A team from Industrial Hygiene and Safety during the Great Garbage Grab A team from Industrial Hygiene and Safety during the Great Garbage Grab. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Great

  16. optimal initial conditions for coupling ice sheet models to earth...

    Office of Scientific and Technical Information (OSTI)

    optimal initial conditions for coupling ice sheet models to earth system models Perego, Mauro Sandia National Laboratories Sandia National Laboratories; Price, Stephen F. Dr...

  17. Optimal Initial Conditions for Coupling Ice Sheet Models to Earth...

    Office of Scientific and Technical Information (OSTI)

    Models to Earth System Models. Abstract not provided. Authors: Perego, Mauro ; Price, Stephen ; Stadler, Georg Publication Date: 2014-04-01 OSTI Identifier: 1142266 Report...

  18. Rare Earth Elements Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth Elements Rare Earth Elements from Coal and Coal By-Products logo. Rare Earth Elements from Coal and Coal By-Products program overview slide. The REE Program is focused on developing technologies for the recovery of REEs from Coal and Coal By-Products. Rare Earth Elements from Coal and Coal By-Products background slide The 17-element group known as rare earth elements (REEs) provides significant value to our national security, energy independence, environmental future, and economic

  19. Google Earth Tour: Water reuse at LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google Earth Tour: Water reuse at LANL Google Earth Tour: Water reuse at LANL

  20. Earth shelter goes international

    SciTech Connect (OSTI)

    Boyer, L.L.

    1983-06-01

    Since the mid-1970's earth sheltered buildings in the US have become more numerous and important as a contemporary passive building concept. Further, an intense international interest has now developed, as evidenced by a number of important activities. One of these events is the 1983 International Conference on Energy Efficient Buildings with Earth Shelter Protection to be conducted during 1-6 August in Sydney, Australia. A review of past activities leading up to this event, as well as a brief review of the conference program, is the subject of this discussion.

  1. Earth sheltered housing phenomenon

    SciTech Connect (OSTI)

    Boyer, L.L.

    1981-06-21

    Both national and international attention has recently been focused on earth sheltered construction as an emerging energy alternative. This is especially true for the High Plains region of the central United States. Traditionally, inhabitants of this region have been sensitized to the need for windstorm protection. However, the dramatic potentials for energy savings have served as a strong secondary inducement to the burgeoning construction activity in what is now viewed as a contemporary dwelling concept. The typical characteristics of such dwellings are reviewed as well as the educational challenge awaiting professional input to this developing boom in earth sheltered construction. 12 refs.

  2. Diagnosis of the Marine Low Cloud Simulation in the NCAR Community Earth System Model (CESM) and the NCEP Global Forecast System (GFS)-Modular Ocean Model v4 (MOM4) coupled model

    SciTech Connect (OSTI)

    Xiao, Heng; Mechoso, C. R.; Sun, Rui; Han, J.; Pan, H. L.; Park, S.; Hannay, Cecile; Bretherton, Christopher S.; Teixeira, J.

    2014-07-25

    We present a diagnostic analysis of the marine low cloud climatology simulated by two state-of-the-art coupled atmosphere-ocean models: the NCAR Community Earth System Model (CESM) and the NCEP Global Forecasting System (GFS). In both models, the shallow convection and boundary layer turbulence parameterizations have been recently updated: both models now use a mass-flux scheme for the parameterization of shallow convection, and a turbulence parameterization capable of handling Stratocumulus (Sc)-topped Planetary Boundary Layers (PBLs). For shallow convection, both models employ a convective trigger function based on the concept of convective inhibition and both include explicit convective overshooting/penetrative entrainment formulation. For Sc-topped PBL, both models treat explicitly turbulence mixing and cloud-top entrainment driven by cloud-top radiative cooling. Our focus is on the climatological transition from Sc to shallow Cumulus (Cu)-topped PBL in the subtropical eastern oceans. We show that in the CESM the coastal Sc-topped PBLs in the subtropical Eastern Pacific are well-simulated but the climatological transition from Sc to shallow Cu is too abrupt and happens too close to the coast. By contrast, in the GFS coupled simulation the coastal Sc amount and PBL depth are severely underestimated while the transition from Sc to shallow Cu is ³delayed² and offshore Sc cover is too extensive in the subtropical Eastern Pacific. We discuss the possible connections between such differences in the simulations and differences in the parameterizations of shallow convection and boundary layer turbulence in the two models.

  3. Rare-Earth-Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    Hong, Yang-Ki; Haskew, Timothy; Myryasov, Oleg; Jin, Sungho; Berkowitz, Ami

    2014-06-05

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  4. Solar Power Beaming: From Space to Earth

    SciTech Connect (OSTI)

    Rubenchik, A M; Parker, J M; Beach, R J; Yamamoto, R M

    2009-04-14

    Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overall concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.

  5. NASA Earth at Night Video

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Twitter Google + Vimeo GovDelivery SlideShare NASA Earth at Night Video HomeEC, Energy, ... at night? NASA provides a clear, cloud-free view of the Earth at night using the Suomi ...

  6. Superhydrophobic diatomaceous earth

    DOE Patents [OSTI]

    Simpson, John T. (Clinton, TN); D'Urso, Brian R. (Clinton, TN)

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  7. Stone's code reveals Earth's processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stone's code reveals Earth's processes Stone's code reveals Earth's processes The returning student researches carbon sequestration to determine the best methods to capture the greenhouse gas that increases global warming. August 27, 2013 Ian Stone At the Lab's Earth and Environmental Sciences (EES) Division, Stone helps monitor movement of Earth's crust while predicting the effects of these events on the environment. He uses his photographic lens to record the effects of a more personal

  8. LLNL-Earth3D

    Energy Science and Technology Software Center (OSTI)

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  9. Ames Lab 101: Rare Earths

    SciTech Connect (OSTI)

    Gschneidner, Karl

    2010-01-01

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  10. Ames Lab 101: Rare Earths

    ScienceCinema (OSTI)

    Gschneidner, Karl

    2012-08-29

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  11. NOAA lidar observations during the TMDBCE lethality test at WSMR on 5 February 1993. Technical memo

    SciTech Connect (OSTI)

    Post, M.J.; Olivier, L.D.

    1996-03-01

    The National Oceanic and Atomospheric Administration`s (NOAA) pulsed CO2 Doppler lidar successfully tracked a cloud of liquid triethyl phosphate (TEP) released from an incoming Storm missile. By concentrating on the lowest portion of the cloud, information about the descent of the TEP cloud was obtained. TEP cloud bottom height and a ground track showing the motion of the cloud relative to the lidar were plotted. In addition, lidar measurements were used to guide an instrumented air craft into the cloud. Improvements for future tests were defined.

  12. Earth Sciences Division annual report 1990

    SciTech Connect (OSTI)

    NONE

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  13. A Star on Earth

    ScienceCinema (OSTI)

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2014-06-06

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  14. A Star on Earth

    SciTech Connect (OSTI)

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2014-03-05

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  15. Earth-sheltered apartments

    SciTech Connect (OSTI)

    Germer, J.

    1984-12-01

    Earth-sheltered apartments for students at St. Johns University, Collegeville, MN are described. The intent was to provide energy-efficient, low maintenance housing in a neighborhood environment for the students. Students would learn about energy-conscious architecture from living in the buildings. The buildings have had few problems, but energy performance has not been up to expectations. The consumption of electricity exceeded predictions by 49%. The most likely answer to the problem is deviation from design. Several items of energy-efficient design were specified but deleted in order to cut costs.

  16. Microsoft PowerPoint - ARMSTM2008_pdf.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measures of aerosol-cloud interactions and their uncertainties: A case study from the AMF Pt. Reyes deployment Allison McComiskey, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder / NOAA Earth System Research Laboratory Graham Feingold, NOAA Earth System Research Laboratory, Boulder, CO, Shelby Frisch, Cooperative Institute for Research in the Atmosphere, Colorado State University / NOAA Earth System Research Laboratory, Qilong Min, Atmospheric

  17. White Earth Nation Biomass Fasibility Study

    Energy Savers [EERE]

    November 16, 2012 Jerome Lhotka, Director, Economic Development Mike Triplett, Planner White Earth Nation Presentation Overview * Study Objectives * Accomplishments to Date * Initial Findings * Observations * Plans Forward 2 Study Objectives * Primary Objectives: * Conduct a due diligence grade feasibility study to assess the opportunity to convert existing thermal and power systems at the Shooting Star Casino to a sustainable bioenergy system. * Background * The Casino is utilizing fuel oil and

  18. White Earth Nation Biomass Feasibility Study

    Energy Savers [EERE]

    May 5, 2015 - DOE Tribal Energy Program Mike Triplett, Planner White Earth Nation Presentation Overview * Study Objectives * Accomplishments to Date * Initial Findings * Observations * Plans Forward 2 Study Objectives * Primary Objectives: * Conduct a due diligence grade feasibility study to assess the opportunity to convert existing thermal and power systems at the Shooting Star Casino to a sustainable bioenergy system. * Background * The Casino is utilizing fuel oil and propane fired boilers

  19. White Earth Nation Biomass Feasibility Study

    Energy Savers [EERE]

    March 27, 2014 Mike Triplett, Planner White Earth Nation Presentation Overview * Study Objectives * Accomplishments to Date * Initial Findings * Observations * Plans Forward 2 Study Objectives * Primary Objectives: * Conduct a due diligence grade feasibility study to assess the opportunity to convert existing thermal and power systems at the Shooting Star Casino to a sustainable bioenergy system. * Background * The Casino is utilizing fuel oil and propane fired boilers as primary source of

  20. Good Earths and Rare Earths | Department of Energy

    Office of Environmental Management (EM)

    Rare earth elements -- dysprosium, neodymium, terbium, europium and yttrium -- are essential to a wide range of green energy technologies ranging from windmills to electric ...

  1. Energy Department Earth Week 2015

    Broader source: Energy.gov [DOE]

    To celebrate Earth Week and Earth Day, the Bioenergy Technologies Office (BETO) is participating in several Energy Department activities! Look for us inside the lobby of the U.S. Department of Energy Forrestal Building in Washington, D.C., from April 13–17. Then, on Earth Day, April 22, everyone is welcome to join us outside on the Forrestal West Plaza for Community Day!

  2. Evolution of stable and metastable phases and coercivity in rare-earth-rich alloys of the Fe-Nd and Fe-Pr systems

    SciTech Connect (OSTI)

    Cabral, F.A.O. ); Gama, S. )

    1990-09-01

    The authors have studied eutectic alloys of the Fe-Nd and Fe-Pr systems regarding their magnetic behavior in the as-cast state and heat-treated at 600 C for different periods. In both systems the initial precipitation of a metastable phase is observed. This phase transforms into Fe{sub 17}Nd{sub 2} and this finally into a second phase with Fe{sub 17}Nd{sub 5} stoichiometry that is stable. For the Fe-Pr system the precipitation of two metastable phases that transform into the stable Fe{sub 17}Pr{sub 2} is observed. The authors have also measured the influence of these transformations on the coercivity of these alloys.

  3. Two earth sheltered passive solar residences with photovoltaic electricity

    SciTech Connect (OSTI)

    Strong, S.J.; Osten, R.J. Jr.

    1980-01-01

    The design and construction of two earth sheltered passive solar residence with photovoltaic electricity are described. The sizing and design of the P.V. system as well as the module fabrication and array integration are also discussed.

  4. Scientists compose complex math equations to replicate behaviors of Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems | Argonne National Laboratory Rob Jacob talks about climate models Climate Models: Rob Jacob Scientists compose complex math equations to replicate behaviors of Earth systems By Angela Hardin * December 16, 2015 Tweet EmailPrint Whenever news breaks about what Earth's climate is expected to be like decades into the future or how much rainfall various regions around the country or the world are likely to receive, those educated estimates are generated by a global climate model. But

  5. Phase stable rare earth garnets

    DOE Patents [OSTI]

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  6. White Earth Biomass/Biogas Feasibility Study

    SciTech Connect (OSTI)

    Triplett, Michael

    2015-03-12

    The White Earth Nation examined the feasibility of cost savings and fossil energy reduction through the installation of biogas/biomass boiler at the tribal casino. The study rejected biogas options due to availability and site constraints, but found a favorable environment for technical and financial feasibility of installing a 5 MMBtu hot water boiler system to offset 60-70 percent of current fuel oil and propane usage.

  7. Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike today’s large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldor’s motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

  8. High Poisson;s ratio of Earth;s inner core explained by carbon...

    Office of Scientific and Technical Information (OSTI)

    High Poisson;s ratio of Earth;s inner core explained by carbon alloying Citation Details In-Document Search Title: High Poisson;s ratio of Earth;s inner core explained by carbon ...

  9. Earth Day | Department of Energy

    Energy Savers [EERE]

    Earth Day Earth Day If you do not see the event begin at 3pm ET, please refresh your browser. Are you looking for ways to go green while saving yourself some green? Or are you interested in learning how to incorporate renewable energy options -- like solar, wind and geothermal -- into your home? This Earth Day, hang out with Energy Department experts to learn how you can reduce your energy use, improve your home's comfort and cut your energy bills. We hope you'll join us on April 22 at 3 pm ET

  10. Celebrate Earth Day! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savers Facebook pages, our Earth Day poll provides another opportunity for you to interact with us. Log on to our Earth Day Web site and tell us how you'll recognize Earth Day,...

  11. VenEarth Group | Open Energy Information

    Open Energy Info (EERE)

    VenEarth Group Jump to: navigation, search Name: VenEarth Group Place: San Francisco, California Product: San Francisco-based venture capital company. References: VenEarth Group1...

  12. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOE Patents [OSTI]

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  13. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOE Patents [OSTI]

    Shearer, John A. (Chicago, IL); Turner, Clarence B. (Shorewood, IL); Johnson, Irving (Clarendon Hills, IL)

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  14. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOE Patents [OSTI]

    West, Phillip B.; Novascone, Stephen R.; Wright, Jerry P.

    2012-05-29

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  15. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOE Patents [OSTI]

    West, Phillip B.; Novascone, Stephen R.; Wright, Jerry P.

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  16. Green Earth Fuels | Open Energy Information

    Open Energy Info (EERE)

    Earth Fuels Jump to: navigation, search Name: Green Earth Fuels Place: Houston, Texas Zip: 77057 Product: A producer and distributor of soy and palm based biodiesel Coordinates:...

  17. Smiling Earth Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Earth Energy LLC Place: Bakersfield, California Zip: 93314 Product: California based biodiesel producer and project developer. References: Smiling Earth Energy LLC1 This...

  18. Earth Tidal Analysis | Open Energy Information

    Open Energy Info (EERE)

    of earth tide response of three deep, confined aquifers Earth Tidal Analysis At Raft River Geothermal Area (1980) Raft River Geothermal Area 1980 1980 Reservoir response to...

  19. Happy Earth Day 2011! | Department of Energy

    Office of Environmental Management (EM)

    Earth Day 2011! Happy Earth Day 2011! April 22, 2011 - 7:30am Addthis Allison Casey Senior Communicator, NREL Happy Earth Day! Today, April 22, marks the 41st anniversary of Earth Day. Check out these resources from the Department of Energy to help you celebrate, get in the Earth Day spirit, and take action: Earth Day Website This page from the Office of Energy Efficiency and Renewable Energy highlights other great resources to help you be energy efficient and Earth-friendly Earth Day 2011

  20. Enthusiastic employees: sustaining the Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enthusiastic employees: sustaining the Earth Enthusiastic employees: taking action Green Teams make sustainable choices and identify untapped opportunities to reduce waste. January 30, 2014 Enthusiastic employees: sustaining the Earth Los Alamos National Laboratory undergraduate student, Erica Garcia,tests water around the Laboratory. Energy sustainability is a daunting task: How do we develop top-notch innovations with some of the world's most powerful technology without consuming excessive

  1. Chemistry, Life, and Earth Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADCLES Chemistry, Life, and Earth Sciences The CLES Directorate is home to world class capabilities in chemistry, bioscience, and earth and environmental sciences. Structural protein research Structural protein research A wide range of protein folding research Field Instrument Deployments and Operations (FIDO) Field Instrument Deployments and Operations (FIDO) Atmospheric science research Quantum Dots Quantum Dots Quantum dot research for energy and light Contact Us Associate Director Nan Sauer

  2. Earth Week 2008 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Day 1 Day 1: Earth Day Every Day - Jefferson Lab observes Earth Day every day with its business practices. Recycling Centers for paper, batteries, toner cartridges, aluminum cans and plastic bottles are distributed throughout the site, and scrap metal and other lab industrial waste is recycled. In procurements, the stockroom offers an array of recycled options and encourages the purchase of recycled and recyclable products. And motion-sensor lighting reduces power use in empty offices and

  3. Extraordinary Responsive Rare Earth Magnetic Materials | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Extraordinary Responsive Rare Earth Magnetic Materials Research Personnel Updates Publications https://www.ameslab.gov/dmse/highlight/real-estate-atoms-it-all-about-location-location-location Read More Rare Earth Alloys - Why Purity Matters Read More A Mystery at Cryogenic Temperatures Read More Previous Pause Next Synthesis Responsive systems, where a small change of an extrinsic thermodynamic variable, such as temperature, pressure, or magnetic field, triggers an intrinsic phase

  4. CHROMOSPHERIC MASS MOTIONS AND INTRINSIC SUNSPOT ROTATIONS FOR NOAA ACTIVE REGIONS 10484, 10486, AND 10488 USING ISOON DATA

    SciTech Connect (OSTI)

    Hardersen, Paul S.; Balasubramaniam, K. S.; Shkolyar, Svetlana

    2013-08-10

    This work utilizes Improved Solar Observing Optical Network continuum (630.2 nm) and H{alpha} (656.2 nm) data to: (1) detect and measure intrinsic sunspot rotations occurring in the photosphere and chromosphere, (2) identify and measure chromospheric filament mass motions, and (3) assess any large-scale photospheric and chromospheric mass couplings. Significant results from 2003 October 27-29, using the techniques of Brown et al., indicate significant counter-rotation between the two large sunspots in NOAA AR 10486 on October 29, as well as discrete filament mass motions in NOAA AR 10484 on October 27 that appear to be associated with at least one C-class solar flare.

  5. SUCCESSIVE SOLAR FLARES AND CORONAL MASS EJECTIONS ON 2005 SEPTEMBER 13 FROM NOAA AR 10808

    SciTech Connect (OSTI)

    Liu Chang; Wang Haimin; Lee, Jeongwoo; Karlicky, Marian; Choudhary, Debi Prasad; Deng Na E-mail: haimin@flare.njit.ed E-mail: karlicky@asu.cas.c E-mail: na.deng@csun.ed

    2009-09-20

    We present a multiwavelength study of the 2005 September 13 eruption from NOAA AR 10808 that produced total four flares and two fast coronal mass ejections (CMEs) within {approx}1.5 hr. Our primary attention is paid to the fact that these eruptions occurred in close succession in time, and that all of them were located along an S-shaped magnetic polarity inversion line (PIL) of the active region. In our analysis, (1) the disturbance created by the first flare propagated southward along the PIL to cause a major filament eruption that led to the first CME and the associated second flare underneath. (2) The first CME partially removed the overlying magnetic fields over the northern delta spot to allow the third flare and the second CME. (3) The ribbon separation during the fourth flare would indicate reclosing of the overlying field lines opened by the second CME. It is thus concluded that these series of flares and CMEs are interrelated to each other via magnetic reconnections between the expanding magnetic structure and the nearby magnetic fields. These results complement previous works made on this event with the suggested causal relationship among the successive eruptions.

  6. CALCULATING ENERGY STORAGE DUE TO TOPOLOGICAL CHANGES IN EMERGING ACTIVE REGION NOAA AR 11112

    SciTech Connect (OSTI)

    Tarr, Lucas; Longcope, Dana

    2012-04-10

    The minimum current corona model provides a way to estimate stored coronal energy using the number of field lines connecting regions of positive and negative photospheric flux. This information is quantified by the net flux connecting pairs of opposing regions in a connectivity matrix. Changes in the coronal magnetic field, due to processes such as magnetic reconnection, manifest themselves as changes in the connectivity matrix. However, the connectivity matrix will also change when flux sources emerge or submerge through the photosphere, as often happens in active regions. We have developed an algorithm to estimate the changes in flux due to emergence and submergence of magnetic flux sources. These estimated changes must be accounted for in order to quantify storage and release of magnetic energy in the corona. To perform this calculation over extended periods of time, we must additionally have a consistently labeled connectivity matrix over the entire observational time span. We have therefore developed an automated tracking algorithm to generate a consistent connectivity matrix as the photospheric source regions evolve over time. We have applied this method to NOAA Active Region 11112, which underwent a GOES M2.9 class flare around 19:00 on 2010 October 16th, and calculated a lower bound on the free magnetic energy buildup of {approx}8.25 Multiplication-Sign 10{sup 30} erg over 3 days.

  7. The earth is in your hands

    SciTech Connect (OSTI)

    Browner, C.M.

    1995-08-01

    Earth Day 25 is a time to reflect on how mankind is doing in protecting their environment. Twenty-five years ago, in the wake of the first Earth Day, the US has created, virtually from scratch, the most advanced system of environmental protection in the world. In the course of a very short history--a mere quarter-century--man has made tremendous progress. Their skies and rivers are cleaner. And US environmental expertise and technology are in demand throughout the world. In the years since the first Earth Day, EPA banned lead in gasoline, lowering lead levels in the air by more than 90 percent and protecting millions of children from harm. Dangerous and widely used pesticides were banned. Unsafe local garbage dumps all over the nation were closed and recycling has become a household habit. American towns have been provided with substantial funding for wastewater treatment--the second biggest public works effort in US history, resulting in cleaner rivers all over the US. All cars and trucks now have standards for fuel economy, set by EPA, that allow consumers to choose a car for its energy efficiency. And EPA has played an important role in ensuring that companies and others comply with their environmental laws or face stiff penalties. Perhaps most important, the nation has gained a new understanding. More Americans than ever understand that to ensure a good quality of life they must act as responsible stewards of their air, their water, and their land.

  8. Earth Day 2014 | Department of Energy

    Office of Environmental Management (EM)

    Earth Day 2014 Earth Day 2014 Earth Day 2014 This year, we're celebrating Earth Day all week long. It's Earth Week on Energy.gov! We're focusing on climate change, highlighting Earth Day events and sharing ways Americans #ActOnClimate -- from climate scientists at the National Labs to high school students competing in the National Science Bowl. Follow along all week on Twitter, Facebook, Instagram and Google+, and let us know how you #ActOnClimate. Earth Day at Fenway Park Secretary Moniz's

  9. Sandia Energy - Monitoring Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Systems Home Climate & Earth Systems Climate Measurement & Modeling Arctic Climate Measurements Monitoring Systems Monitoring Systemscwdd2015-06-02T22:40:49+00:00...

  10. Barometric and Earth Tide Correction

    Energy Science and Technology Software Center (OSTI)

    2005-11-10

    BETCO corrects for barometric and earth tide effects in long-term water level records. A regression deconvolution method is used ot solve a series of linear equations to determine an impulse response function for the well pressure head. Using the response function, a pressure head correction is calculated and applied.

  11. Habitability and energy performance of earth sheltered dwellings

    SciTech Connect (OSTI)

    Boyer, L.L.; Grondzik, W.T.

    1980-12-01

    The High Plains region of the central United States has become host to an emerging dwelling concept which incorporates the use of earth shelter technologies. Traditionally, inhabitants of this region have been sensitized to the need for windstorm protection. More recently, dramatic potentials for energy savings have served as a strong secondary inducement to the exploration of earth sheltered housing as an energy alternative. Habitability and passive energy design of earth sheltered structures are key focal elements being investigated at Oklahoma State University. Habitability aspects have received little treatment elsewhere, and existing passive energy design strategies have generally not considered the passive cooling benefits of earth sheltered construction. Extended questionnaires were used to obtain earth sheltered occupant responses to both habitability and energy design aspects including measured energy usage. Preliminary analysis has been completed on about 80 (eighty) projects in the State of Oklahoma, and the study is being extended to 8 (eight) additional surrounding states. Initial results indicate that occupants are generally satisfied with such attributes as structural safety, thermal comfort, and acoustical environment; but have some reservations concerning daylighting, site design, and energy design and performance. Energy usage patterns tend to indicate that, in fact, sizeable savings are being realized by owners of current generation earth shelters. However, it is anticipated that with optimized passive systems design, the presently realized savings could be further increased by perhaps a factor of two. An appropriate design balance must be realized between passive heating and passive cooling needs.

  12. Suitable thin shell structural configurations for earth sheltered housing

    SciTech Connect (OSTI)

    Behr, R.A.

    1982-01-01

    An earth sheltered house is one whose building envelope is substantially in contact with soil, without necessarily being totally underground. Hence, it can provide the commonly sought attributes of a residence, including natural light, exterior views, and curb appeal. It also exhibits strong energy performance, lower maintenance, and good storm protection. Despite the longer-term life cycle cost advantages of earth sheltered buildings, a current hindrance to the mass market acceptance of earth sheltered housing is higher initial cost which is caused, in part, by the inability of conventional rectilinear structural systems to support economically the massive soil loads imposed on earth covered buildings. In deference to the premise that technical suitability is no guarantee of innovation acceptance in the housing industry, a survey of the nontechnical impediments to housing innovation was first undertaken. These impediment areas include: market inhibition; builder trepidations; industry constraints; and financing problems. As a result of an architectural design program written under contract for the Department of Energy, it was possible to include a rather extensive (but necessarily subjective) evaluation of the architectural potential for earth sheltered shell structures. Engineering suitability dimensions included structural effectiveness, constructability, and economy of construction for single- and double-curvature thin shell structures. Overall engineering suitability and architectural potential are deemed to be adequate, although non-engineering impediments to housing innovation appear to raise significant questions regarding the potential for mass market implementation of thin shell stuctures in earth sheltered housing.

  13. Production method for making rare earth compounds

    DOE Patents [OSTI]

    McCallum, R. William (Ames, IA); Ellis, Timothy W. (Ames, IA); Dennis, Kevin W. (Ames, IA); Hofer, Robert J. (Ames, IA); Branagan, Daniel J. (Ames, IA)

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.

  14. Production method for making rare earth compounds

    DOE Patents [OSTI]

    McCallum, R.W.; Ellis, T.W.; Dennis, K.W.; Hofer, R.J.; Branagan, D.J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g., a transition metal and optional boron), and a carbide-forming element (e.g., a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g., Nd{sub 2}Fe{sub 14}B or LaNi{sub 5}) and a carbide of the carbide-forming element are formed.

  15. EarthCraft Virginia | Open Energy Information

    Open Energy Info (EERE)

    EarthCraft Virginia Jump to: navigation, search Name: EarthCraft Virginia Place: Richmond, VA Zip: 23220 Website: www.ecvirginia.org Coordinates: 37.5464259, -77.4644607 Show...

  16. Google Earth Tour: Water reuse at LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google Earth Tour: Water reuse at LANL Google Earth Tour: Water reuse at LANL Open full screen to view more You are running an unsupported browser, some features may not work....

  17. Alternative Earth Resources Inc | Open Energy Information

    Open Energy Info (EERE)

    840 - 1140 West Pender St. Place: Vancouver, B.C. Zip: V6E 4G1 Sector: Geothermal energy Website: www.alternative-earth.comsHo References: Alternative Earth Website1...

  18. EarthRise Capital | Open Energy Information

    Open Energy Info (EERE)

    EarthRise Capital Jump to: navigation, search Name: EarthRise Capital Place: New York, New York Zip: NY 10111 Sector: Efficiency Product: Venture capital fund focused on new...

  19. DOE Co-Spnsors Earth Day Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Co-Sponsors Earth Day Activities Free trees and native plants are available to the first participants at the Idaho Falls Earth Day festivities in Tautphaus Park. There are a...

  20. Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Take Monica Witt, for example. The Lab's sustainability program manager and a key advocate ... A volunteer on the county's sustainability board for eight years, Witt is committed to ...

  1. Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... aims to bring the future of tropical forests into much clearer focus - 4115 A simulation of vortex induced motion shows how ocean currents affect offshore oil rigs. ...

  2. Argonne's 2012 Earth Day Event

    ScienceCinema (OSTI)

    None

    2013-04-19

    Argonne's 2012 Earth Day event drew crowds from across the laboratory. Argonne and U.S. Department of Energy employees toured booths and interactive displays set up by Argonne programs and clubs. Several of Argonne's partners participated, including U.S. Department of Energy, University of Chicago, Abri Credit Union, DuPage County Forest Preserve, DuPage Water Commission, PACE and Morton Arboretum. Argonne scientists and engineers also participated in a poster session, discussing their clean energy research.

  3. rare earth recycling | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rare earth recycling Meet CMI Researcher David Reed CMI researcher David Reed is the principal investigator for the CMI project bioleaching for recovery of recycled rare earth elements. CMI Researcher David Reed is the PI for project 3.2.5 Bioleaching for Recovery of Recycled REE. The objective of this project is to develop and deploy a biological strategy for recovery of rare earth elements from recyclable materials. Read more about Meet CMI Researcher David Reed Subscribe to RSS - rare earth

  4. Wood panel earth shelter construction

    SciTech Connect (OSTI)

    Berg, J.R.; Loveless, J.G.; Senkow, W.

    1986-05-27

    An earth sheltered building is described including an arch structure, the structure including footings, a floor extending between the footings and arch means extending between the footings and having a base having lower ends on the footings for defining an enclosure which is covered with earth and open at opposite ends. The arch structure consists of: joined, curved wooden panel sections arranged in tandem in adjacent rows with more than two panel sections in a row, each of the sections including circumferentially extending wooden side members; wooden sheathing sections overlying the top skins of panel sections, the sheathing including a plurality of plywood sheets lapped over the joints between the panel sections and treated with a preservative; an adhesive joining the panel sections together within each row and to adjacent rows; waterproofing means on the sheathing for waterproofing the exterior surface of the arch means; connecting means engaging the base of the arch means at the footings and within the floor for tying the base together at its lower ends; and end walls and fastener means for joining the end walls to lateral edges of the arch means, the end walls dimensioned to extend above the arch means to retain earth placed on the arch means.

  5. Category:Earth Tidal Analysis | Open Energy Information

    Open Energy Info (EERE)

    Earth Tidal Analysis Jump to: navigation, search Geothermalpower.jpg Looking for the Earth Tidal Analysis page? For detailed information on Earth Tidal Analysis, click here....

  6. On the spin-axis dynamics of a Moonless Earth

    SciTech Connect (OSTI)

    Li, Gongjie; Batygin, Konstantin

    2014-07-20

    The variation of a planet's obliquity is influenced by the existence of satellites with a high mass ratio. For instance, Earth's obliquity is stabilized by the Moon and would undergo chaotic variations in the Moon's absence. In turn, such variations can lead to large-scale changes in the atmospheric circulation, rendering spin-axis dynamics a central issue for understanding climate. The relevant quantity for dynamically forced climate change is the rate of chaotic diffusion. Accordingly, here we re-examine the spin-axis evolution of a Moonless Earth within the context of a simplified perturbative framework. We present analytical estimates of the characteristic Lyapunov coefficient as well as the chaotic diffusion rate and demonstrate that even in absence of the Moon, the stochastic change in Earth's obliquity is sufficiently slow to not preclude long-term habitability. Our calculations are consistent with published numerical experiments and illustrate the putative system's underlying dynamical structure in a simple and intuitive manner.

  7. Earth boring machine and method

    SciTech Connect (OSTI)

    Sullinger, R.

    1983-09-13

    An earth boring machine and method are disclosed. An above-ground reference line, such as a laser beam, is established for a hole to be bored. The direction of the reference line is detected. The direction of a cutting head of the boring machine in a bore hole is detected and signals of the detected direction are transmitted to a control unit for comparison with the reference line direction. The boring machine is controlled with, for example, cam actuated adjustable peripheral cutters on the cutting head so that the direction of the boring machine can be adjusted to that of the reference line.

  8. 2015 DOE Earth Day Reference Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Earth Day Reference Materials 2015 DOE Earth Day Reference Materials April 17, 2015 Earth Day's 45th anniversary is on April 22, 2015. The celebration will showcase interactive, eco-friendly exhibits and activities to raise awareness of environmental issues and encourage sustainability. 2015 Earth Day Reference Materials: PDF icon 2015 DOE Earth Day Schedule of Events Flyer PDF icon 2015 Earth Day Save the Date Flyer PDF icon 2015 Earth Day Photo Contest Announcement PDF icon 2015 Earth Day

  9. Through-the-earth radio

    DOE Patents [OSTI]

    Reagor, David (Los Alamos, NM); Vasquez-Dominguez, Jose (Los Alamos, NM)

    2006-05-09

    A method and apparatus for effective through-the-earth communication involves a signal input device connected to a transmitter operating at a predetermined frequency sufficiently low to effectively penetrate useful distances through-the earth, and having an analog to digital converter receiving the signal input and passing the signal input to a data compression circuit that is connected to an encoding processor, the encoding processor output being provided to a digital to analog converter. An amplifier receives the analog output from the digital to analog converter for amplifying said analog output and outputting said analog output to an antenna. A receiver having an antenna receives the analog output passes the analog signal to a band pass filter whose output is connected to an analog to digital converter that provides a digital signal to a decoding processor whose output is connected to an data decompressor, the data decompressor providing a decompressed digital signal to a digital to analog converter. An audio output device receives the analog output form the digital to analog converter for producing audible output.

  10. Earth Week 2015 Schedule of Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Earth Week 2015 Schedule of Events Earth Week 2015 Schedule of Events Schedule of Events for Energy Department Earth Week 2015 PDF icon doe_earth_day_2015_schedule.pdf More Documents & Publications DOE Headquarters Earth Day 2015 2015 DOE Earth Day Reference Materials Customer Services Handbook, 2010, Office of Administration

  11. Towards a Fine-Resolution Global Coupled Climate System for Prediction...

    Office of Scientific and Technical Information (OSTI)

    58 GEOSCIENCES climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale eddies climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale...

  12. Local Students Celebrate Earth Day at NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Students Celebrate Earth Day at NREL For more information contact: e:mail: Public Affairs Golden, Colo., April 17, 1998 — Media are invited to cover Earth Day celebration designed to inspire a new generation of scientists to discover better ways of using our natural resources. What: The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) will host an Earth Day celebration for 60 elementary students. Hands-on activities will include building model solar cars and

  13. Rare Earth Metals & Alloys | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Various processes employed by the MPC include: vacuum casting sublimation distillation electro-transport processing In most cases, the rare earth oxides are first...

  14. LANL | Solid Earth Geophysics | EES-17

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to monitor underground explosions, maintain our ability to conduct tests, and develop the Yucca Mountain Project. In addition, we study the nonlinear properties of earth materials,...

  15. MIT- Earth Resources Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Name: MIT- Earth Resources Laboratory Address: 77 Massachusetts Avenue Place: Cambridge, Massachusetts Zip: 02139 Region: Greater Boston Area Website: eaps.mit.eduerl...

  16. Earth Turbines Inc | Open Energy Information

    Open Energy Info (EERE)

    Earth Turbines Inc Place: Hinesburg, Vermont Zip: 5461 Sector: Wind energy Product: Start-up company developing small-scale wind technology for the residential and commercial...

  17. Improved method for preparing rare earth sesquichalcogenides

    DOE Patents [OSTI]

    Takeshita, T.; Beaudry, B.J.; Gschneidner, K.A. Jr.

    1982-04-14

    An improved method for the preparation of high purity rare earth sesquichalcogenides is described. The rare earth, as one or more pieces of the metal, is sealed under a vacuum with a stoichiometric amount of sulfur or selenium and a small amount of iodine into a quartz reaction vessel. The sealed vessel is then heated to above the vaporization temperature of the chalcogen and below the melting temperature of the rare earth metal and maintained until the product has been formed. The iodine is then vaporized off leaving a pure product. The rare earth sulfides and selenides thus formed are useful as semiconductors and as thermoelectric generators. 3 tables.

  18. Earth-abundant semiconductors for photovoltaic applications ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth-abundant semiconductors for photovoltaic applications Thin film photovoltaics (solar cells) has the potential to revolutionize our energy landscape by producing clean,...

  19. Earth Power Resources Inc | Open Energy Information

    Open Energy Info (EERE)

    Resources Inc is a company based in Tulsa, Oklahoma. Earth Power Resources Inc in Tulsa, OK is a private company categorized under: Electric Companies. Records show it was...

  20. Lab joins in global Earth Day celebrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab joins in global Earth Day celebrations Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2015-Jan. 2016 all...

  1. Earth Day Coalition | Open Energy Information

    Open Energy Info (EERE)

    Day Coalition Jump to: navigation, search Name: Earth Day Coalition Address: 3606 Bridge Avenue, Suite 4 Place: Cleveland, Ohio Zip: 44113 Coordinates: 41.4829135, -81.7117416...

  2. Clean Earth Capital LLP | Open Energy Information

    Open Energy Info (EERE)

    Capital LLP Jump to: navigation, search Name: Clean Earth Capital LLP Place: EDINBURGH, United Kingdom Zip: EH6 4NW Sector: Renewable Energy Product: Edinburgh-based corporate...

  3. Earth Share Oregon | Open Energy Information

    Open Energy Info (EERE)

    Share Oregon Jump to: navigation, search Name: Earth Share Oregon Address: 319 SW Washington Street Place: Portland, Oregon Zip: 97204 Region: Pacific Northwest Area Website:...

  4. EarthTronics Inc | Open Energy Information

    Open Energy Info (EERE)

    Name: EarthTronics Inc. Place: Muskegon, Michigan Zip: 49440 Product: Michigan-based firm that has licensed the Honeywell International brand for its gearless micro-scale...

  5. Ferrocement: a technique for passive solar earth sheltered structures

    SciTech Connect (OSTI)

    Impson, L.C.

    1982-01-01

    A system of construction is discussed which allows for the least cost with the most return yet noted in any of the current publications. This system utilizes commonly available and relatively inexpensive materials. The use of unskilled labor is possible, thereby expanding one's labor pool. This system also allows more design freedom than do any of the other construction techniques now widely practiced. This system of construction is ferrocement, a technique which has been in use intermittently since 1847. A method of insulating Earth Shelters is also discussed, as well as air flow characteristics of domes.

  6. Construction details of an earth-sheltered passive solar thermosiphon air house

    SciTech Connect (OSTI)

    Ashelman, R.B.; Hagen, G.C.

    1980-01-01

    Construction details are presented for Sunrise, a passive solar, earth-sheltered house in eastern West Virginia. Particular attention is paid to the thermosiphon air system, as well as structural, waterproofing and insulation details.

  7. Discovery of a ternary pseudobrookite phase in the earth-abundant...

    Office of Scientific and Technical Information (OSTI)

    Title: Discovery of a ternary pseudobrookite phase in the earth-abundant TiZnO system Authors: Perry, Nicola H. ; Stevanovic, Vladan ; Lime, Linda Y. ; Mason, Thomas O. 1 ; CSM) ...

  8. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2016-02-10

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  9. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Power | Department of Energy Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power April 12, 2013 - 11:17am Addthis Learn the basics of enhanced geothermal systems technology. I Infographic by <a href="http://energy.gov/contributors/sarah-gerrity">Sarah Gerrity</a>. Learn the basics of enhanced geothermal systems technology. I

  10. Ames Lab 101: Rare-Earth Recycling

    ScienceCinema (OSTI)

    Ryan Ott

    2013-06-05

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  11. Precise rare earth analysis of geological materials

    SciTech Connect (OSTI)

    Laul, J.C.; Wogman, N.A.

    1982-01-01

    Rare earth element (REE) concentrations are very informative in revealing chemical fractionation processs in geological systems. The REE's (La-Lu) behavior is characteristic of various primary and secondary minerals which comprise a rock. The REE's contents and their patterns provide a strong fingerprint in distinguishing among various rock types and in understanding the partial melting and/or fractional crystallization of the source region. The REE contents in geological materials are usually at trace levels. To measure all the REE at such levels, radiochemical neutron activation analysis (RNAA) has been used with a REE group separation scheme. To maximize detection sensitivites for individual REE, selective ..gamma..-ray/x-ray measurements have been made using normal Ge(Li) and low-energy photon detectors (LEPD), and Ge(Li)-NaI(Tl) coincidence-noncoincidence spectrometer systems. Using these detection methods an individual REE can be measured at or below the ppB levels; chemical yields of the REE are determined by reactivation.

  12. Earth-Abundant Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics » Earth-Abundant Materials Earth-Abundant Materials Graphic showing the five layers of a CZTS PV cell: Mo-coated substrate, CZTS light absorber, n- CdS, i-ZnO, and transparent conductive oxide. DOE funds research into Earth-abundant materials for thin-film solar applications in response to the issue of materials scarcity surrounding other photovoltaic (PV) technologies. The sections below contain a list of the projects, summary of the benefits, and discussion on the production and

  13. Earth sheltering: the form of energy and the energy of form

    SciTech Connect (OSTI)

    Frenette, E.R.

    1981-01-01

    Winners in a national competition illustrate the state of the art in earth-sheltered construction. The winners were chosen from student and professional entries in four categories: single-family residential, multi-family residential, non-residential, and research. The book presents architectural details, including construction plans, floor plans, landscaping ideas, and photographs of the 50 examples. The three research examples include a regional analysis of ground and above-ground climate, biotechnical earth-support systems, and evaluation of free-span earth-sheltered structure and its method of production. 199 figures. (DCK)

  14. Earth Sciences Division Research Summaries 2006-2007

    SciTech Connect (OSTI)

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology, climate systems, and environmental engineering. Building on this scientific foundation, we also perform applied earth science research and technology development to support DOE in a number of its program areas. We currently organize our efforts in the following Division Programs: Fundamental and Exploratory Research--fundamental research in geochemistry, geophysics, and hydrology to provide a basis for new and improved energy and environmental technologies; Climate and Carbon Sciences--carbon cycling in the terrestrial biosphere and oceans, and global and regional climate modeling, are the cornerstones of a major developing divisional research thrust related to understanding and mitigating the effects of increased greenhouse gas concentrations in the atmosphere; Energy Resources--collaborative projects with industry to develop or improve technologies for the exploration and production of oil, gas, and geothermal reservoirs, and for the development of bioenergy; Environmental Remediation and Water Resources--innovative technologies for locating, containing, and remediating metals, radionuclides, chlorinated solvents, and energy-related contaminants in soils and groundwaters; Geologic Carbon Sequestration--development and testing of methods for introducing carbon dioxide to subsurface geologic reservoirs, and predicting and monitoring its subsequent migration; and Nuclear Waste and Energy--theoretical, experimental, and simulation studies of the unsaturated zone at Yucca Mountain, Nevada. These programs draw from each of ESD's disciplinary departments: Climate Science, Ecology, Geochemistry, Geophysics, and Hydrogeology. Short descriptions of these departments are provided as introductory material. In this document, we present summaries of selected current research projects. While it is not a complete accounting, the projects described here are representative of the nature and breadth of the ESD research effort. We are proud of our scientific accomplishments and we hope that you will find this material useful and exciting. A list of publications for the period from January 2006 to June 2007, along with a listing of our personnel, are also appended. Any comments on our research are appreciated and can be sent to me personally.

  15. Google Earth Tour: Waters LANL Protects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Clean the Past > What waters does LANL protect? PreviousNext Google Earth Tour: Waters LANL Protects Click here to load the tour...then click the play button below

  16. Ames Lab 101: Rare-Earth Magnets

    ScienceCinema (OSTI)

    McCallum, Bill

    2012-08-29

    Senior Scientist, Bill McCallum, briefly discusses rare-earth magnets and their uses and how Ames Lab is research new ways to save money and energy using magnets.

  17. Earth Day, Every Day | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Earth Day, Every Day April 20, 2011 - 5:09pm Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs April 22, 2011 is the 41st celebration...

  18. Planning for Earth Day | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    not do something for the good ol' Earth and save a little energy at the same time? We talk a lot about insulation and home energy audits and other fancy stuff, but energy saving...

  19. New Earth Energy Limited | Open Energy Information

    Open Energy Info (EERE)

    Zip: BH31 6AT Sector: Renewable Energy Product: UK-based subsidiary of British waste treatment and renewable energy company New Earth Group, formed to deploy thermal conversion...

  20. Evolution Energy formerly Earth Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Energy formerly Earth Biofuels Inc Jump to: navigation, search Name: Evolution Energy (formerly Earth Biofuels Inc) Place: Dallas, Texas Zip: 75205 Sector: Renewable Energy...

  1. Preparations of rare earth-iron alloys by thermite reduction

    DOE Patents [OSTI]

    Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA)

    1986-09-16

    An improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.

  2. USGS-Earth Resources Observation and Science (EROS) Center |...

    Open Energy Info (EERE)

    USGS-Earth Resources Observation and Science (EROS) Center Jump to: navigation, search Tool Summary LAUNCH TOOL Name: USGS-Earth Resources Observation and Science (EROS) Center...

  3. Solar Energy Education. Renewable energy activities for earth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    earth science Citation Details In-Document Search Title: Solar Energy Education. Renewable energy activities for earth science You are accessing a document from the Department ...

  4. Seismic Imaging of the Earth's Interior (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Romanowicz, Barbara

    2011-04-28

    Summer Lecture Series 2006: Earth scientist Barbara Romanowicz discusses how she explores the deep structure and dynamics of the Earth using seismic tomography.

  5. Ternary rare earth-lanthanide sulfides

    DOE Patents [OSTI]

    Takeshita, Takuo (Omiya, JP); Gschneidner, Jr., Karl A. (Ames, IA); Beaudry, Bernard J. (Ames, IA)

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  6. Earth Sciences Division annual report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  7. Earth Day event showcases LANL energy work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth Day showcases energy work Earth Day event showcases LANL energy work The public is invited to learn about projects in energy conservation, generation, research, and management at an Energy Town Hall April 21. April 19, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los

  8. Constructing earth sheltered housing with concrete

    SciTech Connect (OSTI)

    Spears, R.E.

    1981-01-01

    This manual provides a state - of - the - art review of the design and construction of an earth - sheltered house using cast - in - place concrete, precast concrete, and concrete masonry. Based on a literature survey, theoretical work, and discussions with researchers and engineers in the concrete industry, the text is designed for use by architects, engineers, and homebuilders. The features of concrete construction that are current accepted practice for the concrete products discussed are shown to be applicable with reasonable care to building a safe, dry, and comfortable earth - sheltered house. The main considerations underlying the recommendations were the use of the earth's mass and passive solar effects to minimize energy needs, the structural capacity of the separate concrete products and their construction methods, and drainage principles and waterproofing details. Shelter ranging from those with at least 2 feet of earth cover to those with an uncovered roof of usual construction are included. To be considered an earth - sheltered residential building, at least half of the exterior wall and roof area that is in direct contact with the conditioned living space must be sheltered from the environment by earth berm or earthfill. Siting considerations, the fundamentals of passive solar heating, planning considerations, and structural considerations are discussed. Detailed guidelines are provided on concrete masonry construction, joint details in walls and floors, waterproofing, formwork and form removal, concrete construction practices, concrete masonry, and surface finishes. Numerous illustrations, tables, and a list of 32 references are provided. (Author abstract modified).

  9. Earth-sheltered housing: the what and the why. Special report 100

    SciTech Connect (OSTI)

    McCray, J.W.; Brubaker, S.E.

    1982-01-01

    Four basic styles of earth-sheltered structures are illustrated and described. Benefits of earth-sheltered homes are cited, including energy savings potential, protection from natural elements and intruders, privacy, and owner pride. Construction-related considerations discussed include: layout, site, construction materials, moisture control systems, insulation, and building codes. Finally, the aspects of life-cycle costs and insurance costs and financing are discussed briefly. (LEW)

  10. Gulf Stream Locale R. J. Alliss and S. Raman Department of Marine, Earth and Atmospheric Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. J. Alliss and S. Raman Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, NC 27695-8208 Introduction Clouds have long been recognized as having a major impact on the radiation budget in the earth's climate system. One of the preferred areas for the production of clouds is off the east coast of the United States. The formation of clouds in this region, particularly during the winter months, is caused predominately by the presence of the Gulf Stream,

  11. High Poisson;s ratio of Earth;s inner core explained by carbon alloying

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect High Poisson;s ratio of Earth;s inner core explained by carbon alloying Citation Details In-Document Search Title: High Poisson;s ratio of Earth;s inner core explained by carbon alloying Authors: Prescher, C. ; Dubrovinsky, L. ; Bykova, E. ; Kupenko, I. ; Glazyrin, K. ; Kantor, A. ; McCammon, C. ; Mookherjee, M. ; Nakajima, Y. ; Miyajima, N. ; Sinmyo, R. ; Cerantola, V. ; Dubrovinskaia, N. ; Prakapenka, V. ; Rüffer, R. ; Chumakov, A. ; Hanfland , M. [1] ;

  12. Spin transition zone in Earth;s lower mantle (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Spin transition zone in Earth;s lower mantle Citation Details In-Document Search Title: Spin transition zone in Earth;s lower mantle Authors: Lin, J.-F. ; Vanko, G. ; Jacobsen, S.D. ; Iota, V. ; Struzhkin, V.V. ; Prakapenka, V.B. ; Kuznetsov, A. ; Yoo, C.-S. [1] ; Northwestern Univ) [2] ; CIW) [2] ; UC) [2] ; ESRF) [2] + Show Author Affiliations (LLNL) ( Publication Date: 2015-02-19 OSTI Identifier: 1171206 Resource Type: Journal Article Resource Relation: Journal Name: Science;

  13. Comparison of Data Quality of NOAA's ISIS and SURFRAD Networks to NREL's SRRL-BMS

    SciTech Connect (OSTI)

    Anderberg, M.; Sengupta, M.

    2014-11-01

    This report provides analyses of broadband solar radiometric data quality for the National Oceanic and Atmospheric Administration's Integrated Surface Irradiance Study and Surface Radiation Budget Network (SURFRAD) solar measurement networks. The data quality of these networks is compared to that of the National Renewable Energy Laboratory's Solar Radiation Research Laboratory Baseline Measurement System (SRRL-BMS) native data resolutions and hourly averages of the data from the years 2002 through 2013. This report describes the solar radiometric data quality testing and flagging procedures and the method used to determine and tabulate data quality statistics. Monthly data quality statistics for each network were plotted by year against the statistics for the SRRL-BMS. Some of the plots are presented in the body of the report, but most are in the appendix. These plots indicate that the overall solar radiometric data quality of the SURFRAD network is superior to that of the Integrated Surface Irradiance Study network and can be comparable to SRRL-BMS.

  14. INTERPRETING ERUPTIVE BEHAVIOR IN NOAA AR 11158 VIA THE REGION'S MAGNETIC ENERGY AND RELATIVE-HELICITY BUDGETS

    SciTech Connect (OSTI)

    Tziotziou, Kostas; Georgoulis, Manolis K.; Liu Yang

    2013-08-01

    In previous works, we introduced a nonlinear force-free method that self-consistently calculates the instantaneous budgets of free magnetic energy and relative magnetic helicity in solar active regions (ARs). Calculation is expedient and practical, using only a single vector magnetogram per computation. We apply this method to a time series of 600 high-cadence vector magnetograms of the eruptive NOAA AR 11158 acquired by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory over a five-day observing interval. Besides testing our method extensively, we use it to interpret the dynamical evolution in the AR, including eruptions. We find that the AR builds large budgets of both free magnetic energy and relative magnetic helicity, sufficient to power many more eruptions than the ones it gave within the interval of interest. For each of these major eruptions, we find eruption-related decreases and subsequent free-energy and helicity budgets that are consistent with the observed eruption (flare and coronal mass ejection (CME)) sizes. In addition, we find that (1) evolution in the AR is consistent with the recently proposed (free) energy-(relative) helicity diagram of solar ARs, (2) eruption-related decreases occur before the flare and the projected CME-launch times, suggesting that CME progenitors precede flares, and (3) self terms of free energy and relative helicity most likely originate from respective mutual terms, following a progressive mutual-to-self conversion pattern that most likely stems from magnetic reconnection. This results in the non-ideal formation of increasingly helical pre-eruption structures and instigates further research on the triggering of solar eruptions with magnetic helicity firmly placed in the eruption cadre.

  15. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    SciTech Connect (OSTI)

    Cohen, O.; Drake, J. J.; Kota, J.

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.

  16. Predicting Land-Ice Retreat and Sea-Level Rise with the Community Earth

    Office of Scientific and Technical Information (OSTI)

    System Model (Conference) | SciTech Connect Predicting Land-Ice Retreat and Sea-Level Rise with the Community Earth System Model Citation Details In-Document Search Title: Predicting Land-Ice Retreat and Sea-Level Rise with the Community Earth System Model Coastal stakeholders need defensible predictions of 21st century sea-level rise (SLR). IPCC assessments suggest 21st century SLR of {approx}0.5 m under aggressive emission scenarios. Semi-empirical models project SLR of {approx}1 m or more

  17. Discovery of a ternary pseudobrookite phase in the earth-abundant TiZnO

    Office of Scientific and Technical Information (OSTI)

    system (Journal Article) | SciTech Connect Discovery of a ternary pseudobrookite phase in the earth-abundant TiZnO system Citation Details In-Document Search Title: Discovery of a ternary pseudobrookite phase in the earth-abundant TiZnO system Authors: Perry, Nicola H. ; Stevanovic, Vladan ; Lime, Linda Y. ; Mason, Thomas O. [1] ; CSM) [2] ; NWU) [2] ; MIT) [2] + Show Author Affiliations Stanford ( Publication Date: 2016-02-11 OSTI Identifier: 1238274 Resource Type: Journal Article Resource

  18. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOAA Earth System Research Laboratory Retrievables: mean rainfall rate (R m ) andor rain water path (RWP), cloud liquid water path (LWP) (D < 50 m or so) (cloud and rain...

  19. Ocean pC02 Data from the Lamont-Doherty Earth Observatory of Columbia University, 1994 - 2009

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Takahashi, T.

    The Earth Institute of Columbia University has, as an overarching goal, to help achieve sustainable development primarily by expanding the world's understanding of Earth as one integrated system. The Earth Institute encompasses centers of excellence with an established reputation for groundbreaking research, including the renowned Lamont-Doherty Earth Observatory (LDEO), home to more than 200 researchers who study Earth and its systems. The Carbon Dioxide Research Group, led by Dr. Taro Takahashi, studies pCO2 in seawater, carbon sequestration models related to deep aquifers, and air-sea CO2 flux. Datasets from ocean cruises in the years 1994 to the present are made available from this website, along with a list of publications, and cruise maps.

  20. Rare earth phosphors and phosphor screens

    DOE Patents [OSTI]

    Buchanan, Robert A. (Palo Alto, CA); Maple, T. Grant (Sunnyvale, CA); Sklensky, Alden F. (Sunnyvale, CA)

    1981-01-01

    This invention relates to rare earth phosphor screens for converting image carrying incident radiation to image carrying visible or near-visible radiation and to the rare earth phosphor materials utilized in such screens. The invention further relates to methods for converting image carrying charged particles to image carrying radiation principally in the blue and near-ultraviolet region of the spectrum and to stabilized rare earth phosphors characterized by having a continuous surface layer of the phosphors of the invention. More particularly, the phosphors of the invention are oxychlorides and oxybromides of yttrium, lanthanum and gadolinium activated with trivalent cerium and the conversion screens are of the type illustratively including x-ray conversion screens, image amplifier tube screens, neutron imaging screens, cathode ray tube screens, high energy gamma ray screens, scintillation detector screens and screens for real-time translation of image carrying high energy radiation to image carrying visible or near-visible radiation.

  1. Rare Earths -- The Fraternal Fifteen | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earths -- The Fraternal Fifteen cover of Rare Earths - The Fraternal Fifteen pamplet from 1964 What are rare earths? To see and read an elementary primer, check Rare Earths - The Fraternal Fifteen. The 46-page pamphlet describes this family of chemical elements that have similar chemical properties and different physical behaviors, especially the magnetic and optical properties. "Rare earths impact all of us," Karl A. Gschneidner, Jr., explains. "When you watch TV or use a

  2. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOE Patents [OSTI]

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  3. Earth Week event all about energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth Week event all about energy Earth Week event all about energy People all across Northern New Mexico can learn about how they can play a role in energy research and energy and fuel conservation at an upcoming Energy Town Hall. April 16, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  4. Magnetic behaviour of the rare earth binary R-Fe alloys

    SciTech Connect (OSTI)

    Cabral, F.A.O.; Turtelli, R.S.; Gama, S.; Machado, F.L.A. )

    1989-09-01

    Thermomagnetic analysis and coercive field measurements in rare-earth-rich alloys of the systems Fe-Ce, Fe-Pr and Fe-Nd suggest the presence of two different magnetically hard phases in all these systems. These phases can be metastable and their magnetic properties are strongly affected by heat-treatments at 600{sup 0}C.

  5. Rare earth element patterns in biotite, muscovite and tourmaline minerals

    SciTech Connect (OSTI)

    Laul, J.C.; Lepel, E.A.

    1986-04-21

    Rare earth element concentrations in the minerals biotite and muscovite from the mica schist country rocks of the Etta pegmatite and tourmalines from the Bob Ingersoll pegmatite have been measured by INAA and CNAA. The concentrations range from 10/sup -4/ g/g to 10/sup -10g//sub g/. The REE patterns of biotite, muscovite and tourmaline reported herein are highly fractionated from light to heavy REE. The REE concentrations in biotite and muscovite are high and indigenous. The pegmatite tourmalines contain low concentrations of REE. Variations in tourmaline REE patterns reflect the geochemical evolution of pegmatite melt/fluid system during crystallization.

  6. Earth Sciences Department Annual Report, 1984

    SciTech Connect (OSTI)

    Henry, A.L.; Donohue, M.L.

    1985-09-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory comprises nine different disciplinary and programmatic groups that provide research in the geosciences, including nuclear waste management, containment of nuclear weapons tests, seismic treaty verification, stimulation of natural gas production by unconventional means, and oil shale retorting. Each group's accomplishments in 1984 are discussed, followed by a listing of the group's publications for the year.

  7. Crystalline rare-earth activated oxyorthosilicate phosphor

    DOE Patents [OSTI]

    McClellan, Kenneth J.; Cooke, D. Wayne

    2004-02-10

    Crystalline, transparent, rare-earth activated lutetium oxyorthosilicate phosphor. The phosphor consists essentially of lutetium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of lutetium gadolinium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Gd.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of gadolinium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Gd(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor may be optically coupled to a photodetector to provide a radiation detector.

  8. Thermal benefits and cost effectiveness of earth berming

    SciTech Connect (OSTI)

    Speltz, J.; Haves, P.

    1980-01-01

    A number of advantages are claimed for earth sheltered buildings; the earth provides both insulation and thermal storage and also serves to reduce infiltration and noise. This paper seeks to quantify the thermal advantages of both earth sheltering and perimeter insulation by comparing the simulated thermal performance of an earth sheltered house, a house with perimeter insulation and a house with neither. The fuel savings are then compared to the estimated construction costs to determine cost-effectiveness. The major saving from an earth sheltered building is obtained in colder climates where the effective elevation of the frost line due to the earth berms considerably reduces the cost of the foundation.

  9. Rare earths for life: an 85th birthday visit with Mr. Rare Earth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth While scientists often talk about their life's work, few lives have been fuller than that of Ames Laboratory's Karl A. Gschneidner, Jr. who's being honored for over...

  10. COLLISIONAL STRIPPING AND DISRUPTION OF SUPER-EARTHS

    SciTech Connect (OSTI)

    Marcus, Robert A.; Sasselov, Dimitar; Hernquist, Lars; Stewart, Sarah T.

    2009-08-01

    The final stage of planet formation is dominated by collisions between planetary embryos. The dynamics of this stage determine the orbital configuration and the mass and composition of planets in the system. In the solar system, late giant impacts have been proposed for Mercury, Earth, Mars, and Pluto. In the case of Mercury, this giant impact may have significantly altered the bulk composition of the planet. Here we present the results of smoothed particle hydrodynamics simulations of high-velocity (up to {approx}5v {sub esc}) collisions between 1 and 10 M {sub +} planets of initially terrestrial composition to investigate the end stages of formation of extrasolar super-Earths. As found in previous simulations of collisions between smaller bodies, when collision energies exceed simple merging, giant impacts are divided into two regimes: (1) disruption and (2) hit-and-run (a grazing inelastic collision and projectile escape). Disruption occurs when the impact parameter is near zero, when the projectile mass is small compared to the target, or at extremely high velocities. In the disruption regime, we derive the criteria for catastrophic disruption (when half the total colliding mass is lost), the transition energy between accretion and erosion, and a scaling law for the change in bulk composition (iron-to-silicate ratio) resulting from collisional stripping of a mantle.

  11. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    DOE Patents [OSTI]

    Duncan, Paul G. (8544 Electric Ave., Vienna, VA 22182)

    2002-01-01

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  12. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, Timothy W. (Ames, IA); Schmidt, Frederick A. (Ames, IA)

    1995-08-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  13. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  14. Ideas for What to Do this Earth Day

    Broader source: Energy.gov [DOE]

    Given that Earth Day's coming up in a couple of days, you might find a few things you can do if you choose to celebrate Earth Day this year.

  15. Aljazeera story on rare earths features Alex King | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aljazeera story on rare earths features Alex King Aljazeera America recently did a story on the demand and scarcity of rare-earth metals and spoke to Ames Laboratory scientist and...

  16. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial...

  17. What would we do without rare earths? | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an Energy Innovation Hub created by the U.S. Department of Energy, has a big problem to solve -- what would we do without rare earths? Rare earths are a big part of our modern...

  18. The Materials Preparation Center - Making Rare Earth Metals - Part 2

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 2 of 4.

  19. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory...

  20. The Materials Preparation Center - Making Rare Earth Metals - Part 3

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 3 of 4.

  1. Blue Earth-Nicollet-Faribault | Open Energy Information

    Open Energy Info (EERE)

    Earth-Nicollet-Faribault Jump to: navigation, search Name: Blue Earth-Nicollet-Faribault Place: Minnesota Phone Number: 507-387-7963 Website: www.benco.org Facebook: https:...

  2. City of Blue Earth, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Earth, Minnesota (Utility Company) Jump to: navigation, search Name: City of Blue Earth Place: Minnesota Phone Number: (507) 526-2191 or (507) 526-5382 or (507) 526-2402 Website:...

  3. BlueEarth Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    BlueEarth Biofuels LLC Jump to: navigation, search Name: BlueEarth Biofuels LLC Place: Hawaii Zip: 96813 Sector: Renewable Energy Product: Developer of power and renewable-energy...

  4. Preparations of rare earth-iron alloys by thermite reduction

    DOE Patents [OSTI]

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.

    1985-10-28

    Disclosed is an improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.

  5. News about Rare Earths, New or Critical Materials, and Their...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth Elements and National Security, October 2014 The Rare Earth Elements in Your Smartphone, 4:05 video on BloombergTV, August 8, 2014 Jony Ive Speaks on Future Products,...

  6. The Materials Preparation Center - Making Rare Earth Metals - Part 1

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 1 of 4.

  7. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced...

  8. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle The Iron Spin Transition in the Earth's Lower Mantle Print Wednesday, 30 April 2008 00:00 It is now known that the iron present...

  9. The Materials Preparation Center - Making Rare Earth Metals - Part 4

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 4 of 4.

  10. Earth sheltered housing performance: a summary report

    SciTech Connect (OSTI)

    Boyer, L.L.; Grondzik, W.T.; Fitzgerald, D.K.

    1981-01-01

    Oklahoma and the surrounding interior plains region is being studied with respect to the extensive development of earth sheltered housing. An understanding of the occupant responses to this rediscovered dwelling concept is being determined through extended questionnaires and telephone interviews. Statistical evaluation of these responses should suggest regional relationships between the interior human environment and the exterior environment as expressed by earth sheltered architecture. Habitability and passive energy design are the main topics of interest being investigated at Oklahoma State University. Initial results indicate that occupants are generally satisfied with such attributes as structural safety, thermal comfort, and acoustic environment; but have some reservations concerning daylighting, site design, privacy of family members, and energy design and performance. Despite reservations on energy performance, owners have still achieved significant savings in comparison to their previous homes. A most promising fact is that these savings have been realized with little decrease and often an increase in comfort and habitability aspects.

  11. Tracking target objects orbiting earth using satellite-based telescopes

    DOE Patents [OSTI]

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  12. SEPARATION OF RARE EARTHS BY SOLVENT EXTRACTION

    DOE Patents [OSTI]

    Peppard, D.F.; Mason, G.W.

    1960-10-11

    A process is given for separating lanthanide rare earths from each other from an aqueous mineral acid solution, e.g., hydrochloric or nitric acid of a concentration of above 3 M, preferably 12 to 16 M, by extraction with a water- immiscible alkyl phosphate, such as tributyl phosphate or a mixture of mono-, di- and tributyl phosphate, and fractional back-extraction with mineral acid whereby the lanthanides are taken up by the acid in the order of increasing atomic number.

  13. Center for Space and Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute of Geophysics, Planetary Physics, and Signatures Center for Space and Earth Science Promoting and supporting high-quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia Sanchez (505) 665-0855 Email Astophysics and Cosmology Hui Li (505) 665-3131 Email Climate Keeley Costigan (505) 665-4788 Email Geophysics David Coblentz (505)

  14. Center for Space and Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call for Proposals Submit Proposals Research Subject Areas Types of Proposals Funding for Projects Evaluation and Selection Acceptance and Rejection Events, Deadlines Partnerships NSEC » CSES Center for Space and Earth Science Formerly known as the Institute for Geophysics, Planetary Physics, and Signatures (IGPPS) Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia D. Sanchez (505) 665-0855 Email Science Discipline Leaders Astrophysics & Cosmology Hui

  15. Alkaline earth cation extraction from acid solution

    DOE Patents [OSTI]

    Dietz, Mark (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  16. Earth Sciences Division annual report 1980

    SciTech Connect (OSTI)

    Not Available

    1981-07-01

    Summaries of the highlights of programs in the Earth Sciences Division are presented under four headings; Geosciences, Geothermal Energy Development, Nuclear Waste Isolation, and Marine Sciences. Utilizing both basic and applied research in a wide spectrum of topics, these programs are providing results that will be of value in helping to secure the nation's energy future. Separate abstracts have been prepared for each project for inclusion in the Energy Data Base. (DMC)

  17. Breaking a Cycle-Free Lifestyle for Earth Day

    Broader source: Energy.gov [DOE]

    One woman works through traumatic bicycle-related experiences while contemplating the purchase of a new bike for Earth Day.

  18. Percolation Explains How Earth's Iron Core Formed | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Percolation Explains How Earth's Iron Core Formed Wednesday, November 27, 2013 The formation of Earth's metallic core, which makes up a third of our planet's mass, represents the most significant differentiation event in Earth's history. Earth's present layered structure with a metallic core and an overlying silicate mantle would have required mechanisms to separate iron alloy from a silicate phase. Percolation of liquid iron alloy moving through a solid silicate matrix

  19. Webtrends Archives by Fiscal Year — Earth Day

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the Earth Day site by fiscal year.

  20. DOE Science Showcase - Rare Earth Metal Research from DOE Databases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information Rare Earth Metal Research from DOE Databases Information Bridge Energy Citations Database Highlighted documents of Rare Earth Metal research in DOE databases Information Bridge - Corrosion-resistant metal surfaces DOE R&D Project Summaries - Structural and magnetic studies on heavy rare earth metals at high pressures using designer diamonds Energy Citations Database - Intermultiplet transitions in rare-earth metals

  1. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Mineral Deformation at Earth's Core-Mantle Boundary Print Wednesday, 31 August 2011 00:00 Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in

  2. Modeling Magnetism in Rare-Earth Intermetallic Materials | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Modeling Magnetism in Rare-Earth Intermetallic Materials Theoretical modeling has led to a key development in our understanding of the deeply complex magnetic properties in a series of rare-earth intermetallic materials. Rare-earth elements are unique in that their cores hold strongly localized electrons that underpin their novel magnetic properties. When combined with transition metals, rare earths become technologically-useful intermetallic materials. Here gadolinium-an element

  3. What if Every Day was Earth Day? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Celebrate Earth Day every day this year. | Photo courtesy of ©iStockphoto.com/nazarethman Celebrate Earth Day every day this year. | Photo courtesy of ©iStockphoto.com/nazarethman Christina Stowers Communications Specialist in the Weatherization and Intergovernmental Programs Office How can I participate? Consider ways to spend time outside and use less energy all summer long. Earth Day has been celebrated across the globe for more than four decades. Usually Earth Day is something that we

  4. The Community Earth System Model: A Framework for Collaborative...

    Office of Scientific and Technical Information (OSTI)

    This global coupled model is a natural evolution from its predecessor, the Community ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: ...

  5. Final Report for proposal "The Interface between Earth System...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  6. Plant Functional Types and Earth System Models (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    DE-AC05-00OR22725 Resource Type: Journal Article Resource Relation: Journal Name: Annals of Botany; Journal Volume: 114; Journal Issue: 1 Research Org: Oak Ridge National...

  7. Behavior of Rare Earth Elements in Geothermal Systems- A New...

    Open Energy Info (EERE)

    ExplorationExploitation Tool? Abstract NA Author Scott A. Wood Published Department of Geology and Geological Engineering University of Idaho, 2001 DOI Not Provided Check for...

  8. Sandia Energy - Atmosphere Component in Community Earth System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    climate models is a key step toward improving the ability to simulate regional details of climate change and improving our assessments of the impacts of climate change on extreme...

  9. The Brief History and Future Development of Earth System Models...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling * Brief discussion of computational methods * Environmental Justice connected to climate change * Behind the scenes White House origin of the U. S. Global Change Research...

  10. Climate, Earth system project draws on science powerhouses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information on such data as global sea surface temperatures related to specific currents. ... of ice sheet processes and improved ocean and sea ice components will help to better ...

  11. 2013 Community Earth System Model (CESM) Tutorial-Proposal to...

    Office of Scientific and Technical Information (OSTI)

    These will be targeted to the graduate student level. Attendance will be limited to a maximum of 80 students with financial support for up to 40 students. Attendees will be ...

  12. Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph; Rodhe, Henning

    2014-12-08

    Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content.more »This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO₂ given in AR5, 1.5–4.5 K/(3.7 W m⁻²) exceeds the range inferred from the assessed likely range of forcing, 1.2–2.9 K/(3.7 W m⁻²), where 3.7 W ⁻² denotes the forcing for doubled CO₂. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.« less

  13. FIRST EARTH-BASED DETECTION OF A SUPERBOLIDE ON JUPITER

    SciTech Connect (OSTI)

    Hueso, R.; Perez-Hoyos, S.; Sanchez-Lavega, A.; Wesley, A.; Go, C.; Wong, M. H.; De Pater, I.; Fletcher, L. N.; Boslough, M. B. E.; Orton, G. S.; Yanamandra-Fisher, P. A.; Simon-Miller, A. A.; Djorgovski, S. G.; Edwards, M. L.; Clarke, J. T.; Noll, K. S.

    2010-10-01

    Cosmic collisions on planets cause detectable optical flashes that range from terrestrial shooting stars to bright fireballs. On 2010 June 3 a bolide in Jupiter's atmosphere was simultaneously observed from the Earth by two amateur astronomers observing Jupiter in red and blue wavelengths. The bolide appeared as a flash of 2 s duration in video recording data of the planet. The analysis of the light curve of the observations results in an estimated energy of the impact of (0.9-4.0) x 10{sup 15} J which corresponds to a colliding body of 8-13 m diameter assuming a mean density of 2 g cm{sup -3}. Images acquired a few days later by the Hubble Space Telescope and other large ground-based facilities did not show any signature of aerosol debris, temperature, or chemical composition anomaly, confirming that the body was small and destroyed in Jupiter's upper atmosphere. Several collisions of this size may happen on Jupiter on a yearly basis. A systematic study of the impact rate and size of these bolides can enable an empirical determination of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer solar system and may allow a better quantification of the threat of impacting bodies to Earth. The serendipitous recording of this optical flash opens a new window in the observation of Jupiter with small telescopes.

  14. Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments

    SciTech Connect (OSTI)

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph; Rodhe, Henning

    2014-12-08

    Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content. This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO? given in AR5, 1.5–4.5 K/(3.7 W m?²) exceeds the range inferred from the assessed likely range of forcing, 1.2–2.9 K/(3.7 W m?²), where 3.7 W ?² denotes the forcing for doubled CO?. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.

  15. Efficient Earth-Sheltered Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Types of Homes » Efficient Earth-Sheltered Homes Efficient Earth-Sheltered Homes This house in Tempe, Arizona, uses earth-sheltered construction methods to help decrease cooling costs. | Photo by Pamm McFadden This house in Tempe, Arizona, uses earth-sheltered construction methods to help decrease cooling costs. | Photo by Pamm McFadden If you are looking for a home with energy-efficient features that will provide a comfortable, tranquil, weather-resistant dwelling, an earth-sheltered

  16. EERE Success Story-UQM Patents Non-Rare Earth Magnet Motor under

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE-Supported Project | Department of Energy UQM Patents Non-Rare Earth Magnet Motor under DOE-Supported Project EERE Success Story-UQM Patents Non-Rare Earth Magnet Motor under DOE-Supported Project April 16, 2015 - 10:29am Addthis Credit: UQM Technologies Credit: UQM Technologies Through a cooperative R&D project with the Vehicle Technologies Office (VTO), UQM Technologies, a company developing propulsion systems for electric, hybrid electric, plug-in hybrid electric and fuel cell

  17. UQM Patents Non-Rare Earth Magnet Motor under DOE-Supported Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy UQM Patents Non-Rare Earth Magnet Motor under DOE-Supported Project UQM Patents Non-Rare Earth Magnet Motor under DOE-Supported Project April 16, 2015 - 10:29am Addthis Credit: UQM Technologies Credit: UQM Technologies Through a cooperative R&D project with the Vehicle Technologies Office (VTO), UQM Technologies, a company developing propulsion systems for electric, hybrid electric, plug-in hybrid electric and fuel cell electric vehicles recently patented a new

  18. Earth shelter performance and evaluation proceedings

    SciTech Connect (OSTI)

    Boyer, L.L. (ed.)

    1983-01-01

    Papers from 16 states, plus New South Wales, Australia, Alberta, Canada, and the Eastern Province of Saudi Arabia were presented in the conference. About one-third of the papers are authored by architects, nearly one-half by engineers, and the remainder are mainly by building contractors. Slightly over half of the authors are associated with universities, of which 13 are represented. The scale of the projects discussed varies from domestic, to commercial, to institutional; with an increased emphasis on passive solar inputs and earth cooling. Of the 32 papers presented, 19 were indexed separately for inclusion in the Energy Data Base. (JMT)

  19. Monitoring objects orbiting earth using satellite-based telescopes

    DOE Patents [OSTI]

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  20. Microsoft PowerPoint - Williams_Profilers.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2835-MHz Profiler Status of Profiler and Surface Data Sets for TWPICE Christopher.R.Williams@noaa.gov - University of Colorado at Boulder and NOAA Earth Science Research...

  1. Enhanced pinning in mixed rare earth-123 films

    DOE Patents [OSTI]

    Driscoll, Judith L. (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2009-06-16

    An superconductive article and method of forming such an article is disclosed, the article including a substrate and a layer of a rare earth barium cuprate film upon the substrate, the rare earth barium cuprate film including two or more rare earth metals capable of yielding a superconductive composition where ion size variance between the two or more rare earth metals is characterized as greater than zero and less than about 10.times.10.sup.-4, and the rare earth barium cuprate film including two or more rare earth metals is further characterized as having an enhanced critical current density in comparison to a standard YBa.sub.2Cu.sub.3O.sub.y composition under identical testing conditions.

  2. Sandia National Laboratories: Pathfinder Airborne ISR Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aperture Radar (SAR)? What is Synthetic Aperture Radar? Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high...

  3. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  4. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  5. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  6. A unified initiative to harness Earth's microbiomes (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect A unified initiative to harness Earth's microbiomes Citation Details In-Document Search Title: A unified initiative to harness Earth's microbiomes Nearly three billion years ago, photosynthetic cyanobacteria transformed Earth's atmosphere from oxygen-poor to oxygen-rich, enabling the evolution of complex life (1). Microbes shaped our evolutionary origins and their vast impact continues: they are essential constituents of animals and plants and are the most widespread,

  7. Composition of Earth's mantle revisited thanks to research at Argonne's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Photon Source | Argonne National Laboratory Composition of Earth's mantle revisited thanks to research at Argonne's Advanced Photon Source By Louise Lerner * June 17, 2014 Tweet EmailPrint Research published last week in Science suggested that the makeup of the Earth's lower mantle, which makes up the largest part of the Earth by volume, is significantly different than previously thought. The work, performed at the Advanced Photon Source at the U.S. Department of Energy's Argonne

  8. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  9. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  10. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  11. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  12. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  13. An Earth-Friendly Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Earth-Friendly Wind Vision An Earth-Friendly Wind Vision April 22, 2015 - 7:30am Addthis An Earth-Friendly Wind Vision Wind energy is a clean, domestic energy source that requires little to no water and creates no air pollution when compared with conventional energy technologies. In the Energy Department's new Wind Vision Report, a collaborative effort of more than 250 experts informed a comprehensive analysis that quantified the future national benefits of wind power, including reduced

  14. Creating a Star on Earth | Department of Energy

    Office of Environmental Management (EM)

    Creating a Star on Earth Creating a Star on Earth March 5, 2014 - 11:45am Addthis In the video above, learn how scientists at the Princeton Plasma Physics Lab are creating a star on Earth in the National Spherical Torus Experiment (NSTX), a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas. | Video by Matty Greene, Energy Department. Ben Dotson Ben Dotson Former Project Coordinator for Digital Reform, Office of Public Affairs Matty Greene Matty

  15. Rare earth doped zinc oxide varistors

    DOE Patents [OSTI]

    McMillan, April D.; Modine, Frank A.; Lauf, Robert J.; Alim, Mohammad A.; Mahan, Gerald D.; Bartkowiak, Miroslaw

    1998-01-01

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.

  16. Rare earth doped zinc oxide varistors

    DOE Patents [OSTI]

    McMillan, A.D.; Modine, F.A.; Lauf, R.J.; Alim, M.A.; Mahan, G.D.; Bartkowiak, M.

    1998-12-29

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2--4.0% oxide of at least one rare earth element, 0.5--4.0% Co{sub 3}O{sub 4}, 0.05--0.4% K{sub 2}O, 0.05--0.2% Cr{sub 2}O{sub 3}, 0--0.2% CaO, 0.00005--0.01% Al{sub 2}O{sub 3}, 0--2% MnO, 0--0.05% MgO, 0--0.5% TiO{sub 3}, 0--0.2% SnO{sub 2}, 0--0.02% B{sub 2}O{sub 3}, balance ZnO. 4 figs.

  17. Rare Earth Metals for Science | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (MPC) by one of the following processes: vacuum casting sublimation distillation zone refining electro-transport processing More information on the rare-earth...

  18. PPPL's Earth Week features Colloquium on NYC green plan, cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    York City's Office of Long Term Planning and Sustainability, gave a special Earth Day colloquium on New York City's sustainability plan and climate change. (Photo by Photo by ...

  19. New Earth Renewable Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    New Earth Renewable Energy Inc Address: 1122 E Pike St Place: Seattle, Washington Zip: 98122 Region: Pacific Northwest Area Sector: Biomass Product: Aspires to develop inexpensive...

  20. Recent Drilling Activities At The Earth Power Resources Tuscarora...

    Open Energy Info (EERE)

    Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Jump to: navigation, search OpenEI Reference LibraryAdd...

  1. Google Archives by Fiscal Year — Earth Day

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Corporate sites, retired Google Analytics profiles for the Earth Day site for fiscal year 2012-13.

  2. Earth Tidal Analysis At East Mesa Geothermal Area (1984) | Open...

    Open Energy Info (EERE)

    is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous...

  3. Earth Tidal Analysis At Marysville Mountain Geothermal Area ...

    Open Energy Info (EERE)

    is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous...

  4. User:Woodjr/Sandbox/GoogleEarth | Open Energy Information

    Open Energy Info (EERE)

    < User:Woodjr | Sandbox Jump to: navigation, search Demonstration of an experimental "GoogleEarth" result format for ask queries. Based on the Thematic Mapping API....

  5. EarthFirst Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: Tampa, Florida Zip: 33610 Product: EarthFirst Technologies is engaged in research, development and commercialization of technologies for the use alternative...

  6. Zoning for earth sheltered buildings. A guide for Minnesota communities

    SciTech Connect (OSTI)

    Not Available

    1983-08-01

    Background information on earth sheltered buildings and the zoning issues related to this construction techniques is provided. Ways to develop goals and policies on earth sheltering and integrate them into existing planning documents are outlined. Ways to eliminate prohibitions and barriers to earth-sheltered buildings from zoning language are explained. Subdivision and planned unit development (PUD) regulations designed to facilitate and encourage new developments of earth sheltered homes are considered. Model language on planning, zoning, and subdivisions and planned unit developments and a summary of the various recommendations made throughout the guidebook are included. (MHR)

  7. Resolving to Make Earth Day Last All Year

    Broader source: Energy.gov [DOE]

    With these resources, you'll be able to get your Earth Day energy campaign up and running in no time.

  8. CHARACTERIZATION OF NEAR NET-SHAPE CASTABLE RARE EARTH MODIFIED...

    Office of Scientific and Technical Information (OSTI)

    HIGH TEMPERATURE APPLICATION Citation Details In-Document Search Title: CHARACTERIZATION OF NEAR NET-SHAPE CASTABLE RARE EARTH MODIFIED ALUMINUM ALLOYS FOR HIGH TEMPERATURE ...

  9. DOE Announces RFI on Rare Earth Metals | Department of Energy

    Energy Savers [EERE]

    RFI on Rare Earth Metals DOE Announces RFI on Rare Earth Metals May 6, 2010 - 12:00am Addthis Washington, D.C. - The Department of Energy has released a Request for Information (RFI) soliciting information on rare earth metals and other materials used in the energy sector. The request is specifically focused on rare earth metals (e.g., lanthanum, cerium and neodymium) and several other metals including lithium and cobalt, but respondents are welcome to identify other materials of interest. These

  10. Climate Change as Recorded in Earth Surface Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change as Recorded in Earth Surface Processes Not surprisingly significant changes in climate leave their imprint on the landscape. During the last glacial maximum, 20,000...

  11. Argonne Celebrates Earth Day 2013: It's Easy Being Green

    SciTech Connect (OSTI)

    Paul Kearns; Pam Sydelko; Ray Bair; Stephen Streiffer; Brian Stephenson;

    2013-04-17

    Argonne's April 23, 2013 Earth Day celebration featured "green" R&D conducted at the lab and interactive displays and fun activities that engage the laboratory community.

  12. Trace rare earth element analysis in briny groundwaters

    SciTech Connect (OSTI)

    Laul, J.C.; Lepel, E.A.; Smith, M.R.

    1986-08-01

    A rare-earth element (REE) group separation scheme has been developed. REE data for two briny groundwaters representing Granite Wash and Wolfcamp Carbonate formations are reported. (DLC)

  13. PPPL Celebrates Earth Day with Reduction in Greenhouse Gas Emissions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL Celebrates Earth Day with Reduction in Greenhouse Gas Emissions By Patti Wieser April 25, 2011 Tweet Widget Google Plus One Share on Facebook PPPL's Tim Stevenson takes...

  14. Watch a Rare Earth Elements Event Live This Morning

    Broader source: Energy.gov [DOE]

    From 9:30am to noon ET today you can tune into a live discussion rare earth materialsmthat are critical to the production of clean energy technologies.

  15. Organic-Inorganic Complexes Containing a Luminescent Rare Earth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Luminescent Rare Earth-Metal Nanocluster and an Antenna Ligand, Luminescent Articles, and Methods of Making Luminescent Articles Powerpane TM Battelle Memorial Institute...

  16. Discovery of bridgmanite, the most abundant mineral in Earth...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite Citation Details In-Document Search Title: ...

  17. Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Raft River Geothermal Area (1984) Exploration Activity Details Location Raft River...

  18. Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River...

  19. Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River...

  20. How Are You Celebrating Earth Day? | Department of Energy

    Office of Environmental Management (EM)

    22, 2010 - 7:30am Addthis Happy Earth Day! Today marks the 40th anniversary of celebrating Earth Day, and we hope you're getting into the spirit and committing to protecting the environment and saving energy. Check out EERE's Earth Day Web site and interactive animation for some great ideas and information to get you started. How are you celebrating Earth Day? Once you've shared your answer here, check out our guest post in today's GovGab! Each Thursday, you have the chance to share your

  1. Argonne Celebrates Earth Day 2013: It's Easy Being Green

    ScienceCinema (OSTI)

    Paul Kearns; Pam Sydelko; Ray Bair; Stephen Streiffer; Brian Stephenson;

    2013-06-10

    Argonne's April 23, 2013 Earth Day celebration featured "green" R&D conducted at the lab and interactive displays and fun activities that engage the laboratory community.

  2. Magnetic properties of RT2Zn20; R = rare earth, T = Fe, Co, Ru, Os and Ir

    SciTech Connect (OSTI)

    Jia, Shuang

    2008-12-15

    It is well known that rare earth intermetallic compounds have versatile, magnetic properties associated with the 4f electrons: a local moment associated with the Hund's rule ground state is formed in general, but a strongly correlated, hybridized state may also appear for specific 4f electronic configuration (eg. for rare earth elements such as Ce or Yb). On the other hand, the conduction electrons in rare earth intermetallic compounds, certainly ones associated with non hybridizing rare earths, usually manifest non-magnetic behavior and can be treated as a normal, non-interacted Fermi liquid, except for some 3d-transition metal rich binary or ternary systems which often manifest strong, itinerant, d electron dominant magnetic behavior. Of particular interest are examples in which the band filling of the conduction electrons puts the system in the vicinity of a Stoner transition: such systems, characterized as nearly or weakly ferromagnet, manifest strongly correlated electronic properties [Moriya, 1985]. For rare earth intermetallic compounds, such systems provide an additional versatility and allow for the study of the behaviors of local moments and hybridized moments which are associated with 4f electron in a correlated conduction electron background.

  3. CMI Webinar: Recycling of Rare Earth Elements: A Microbiological Approach |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute Recycling of Rare Earth Elements: A Microbiological Approach The CMI Webinar series includes a presentation CMI Webinar: Recycling of Rare Earth Elements: A Microbiological Approach by David Reed, Idaho National Laboratory (INL), on April 23, 2015. The recording of the webinar runs nearly 39 minutes (38:52

  4. Tunable, rare earth-doped solid state lasers

    DOE Patents [OSTI]

    Emmett, John L. (Pleasanton, CA); Jacobs, Ralph R. (Livermore, CA); Krupke, William F. (Pleasanton, CA); Weber, Marvin J. (Danville, CA)

    1980-01-01

    Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.

  5. Supporting our scientists with Google Earth-based UIs.

    SciTech Connect (OSTI)

    Scott, Janine

    2010-10-01

    Google Earth and Google Maps are incredibly useful for researchers looking for easily-digestible displays of data. This presentation will provide a step-by-step tutorial on how to begin using Google Earth to create tools that further the mission of the DOE national lab complex.

  6. A limit on the presence of Earth-mass planets around a Sun-like star

    SciTech Connect (OSTI)

    Agol, Eric; Steffen, Jason H.; /Fermilab

    2006-10-01

    We present a combined analysis of all publicly available, visible HST observations of transits of the planet HD 209458b. We derive the times of transit, planet radius, inclination, period, and ephemeris. The transit times are then used to constrain the existence of secondary planets in the system. We show that planets near an Earth mass can be ruled out in low-order mean-motion resonance, while planets less than an Earth mass are ruled out in interior, 2:1 resonance. We also present a combined analysis of the transit times and 68 high precision radial velocity measurements of the system. These results are compared to theoretical predictions for the constraints that can be placed on secondary planets.

  7. The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets

    SciTech Connect (OSTI)

    Misra, Amit; Meadows, Victoria; Crisp, Dave

    2014-09-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Pallé et al. We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope NIRSPEC. Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each given planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal-to-noise ratio (S/N) of absorption features by 60%, while for an Earth-analog planet orbiting in the habitable zone of an M5V star it is possible to probe almost the entire atmosphere with minimal decreases in S/N. We also show that refraction can result in temporal variations in the transit transmission spectrum which may provide a way to obtain altitude-dependent spectra of exoplanet atmospheres. Additionally, the variations prior to ingress and subsequent to egress provide a way to probe pressures greater than the maximum tangent pressure that can be probed during transit. Therefore, probing the maximum range of atmospheric altitudes, and in particular the near-surface environment of an Earth-analog exoplanet, will require looking at out-of-transit refracted light in addition to the in-transit spectrum.

  8. Earth: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    largest of the terrestrial planets in the Solar System in terms of diameter, mass and density." Worldwide Alternative Energy Investments The following table summarizes worldwide...

  9. GreenEarth Equities | Open Energy Information

    Open Energy Info (EERE)

    About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems...

  10. High power laser perforating tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  11. DOE Headquarters Earth Day 2015 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Earth Day logo 2015 with tagline.jpg Save the Date! Earth Day's 45th anniversary is on April 22, 2015. The celebration will showcase interactive, eco-friendly exhibits and activities to raise awareness of environmental issues and encourage sustainability. As in years past, the Office of Environment, Health, Safety and Security is leading the U.S. Department of Energy's (DOE) Earth Day program at Forrestal and Germantown. From April 13-22, DOE program and staff offices and Field sites will

  12. Annual review of earth and planetary sciences. Vol. 19

    SciTech Connect (OSTI)

    Wetherill, G.W.; Albee, A.L.; Burke, K.C. (Carnegie Inst. of Washington, DC (United States) California Inst. of Tech., Pasadena (United States) National Research Council, Washington, DC (United States))

    1991-01-01

    Various review papers on earth and planetary sciences are presented. The individual topics addressed include: tectonics of the New Guinea area, interpretation of ancient Eolian and dunes, seismic tomography of the earth's mantle, shock modification and chemistry and planetary geologic processes, the significance of evaporites, the magnetosphere, untangling the effects of burial alteration and ancient soil formation. Also discussed are: pressure-temperature-time paths, fractals in rock physics, earthquake prediction, rings in the ocean, applications of Be{minus}10 to problems in the earth sciences, measurement of crustal deformation using the GPS, physics and physical mechanisms of nuclear winter, experiemental determination of bed-form stability.

  13. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle The Iron Spin Transition in the Earth's Lower Mantle Print Wednesday, 30 April 2008 00:00 It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the

  14. 3-D Earth model more accurately pinpoints explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-D Earth model more accurately pinpoints explosions 3-D Earth model more accurately pinpoints explosions The purpose of this model is to assist the U.S. Air Force and the international Comprehensive Nuclear Test Ban Treaty Organization with more accurately locating all types of explosions. October 25, 2013 A one-dimensional velocity profile with depth plotted within a three-dimensional Earth. The colors are compressional wave velocity in km/s. The rays are examples coming from a pseudo station

  15. Two-dimensional heat transfer from earth-sheltered buildings

    SciTech Connect (OSTI)

    Krarti, M. (Steven Winter Associates, Inc., Norwalk, CT (US)); Claridge, D.E. (Texas A and M Univ., College Station, TX (USA). Dept. of Mechanical Engineering)

    1990-02-01

    This paper describes use of the interzone temperature profile estimation (or ITPE) technique, an analytical calculation procedure to predict heat transfer within earth in contact with a structure. The solutions governing steady-state and steady-periodic heat conduction are derived for rectangular earth-sheltered buildings. The procedure accepts continuously variable values of geometric dimensions, insulation levels, and constant soil thermal characteristics and considers the presence of a finite water table level. Soil temperature profiles are shown for both steady-state and steady periodic conditions. The effects of insulation and water table depth on the heat losses from an earth-sheltered building envelope are discussed.

  16. New Model of Earth's Interior Reveals Clues to Hotspot Volcanoes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Model of Earth's Interior Reveals Clues to Hotspot Volcanoes New Model of Earth's Interior Reveals Clues to Hotspot Volcanoes October 29, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov volcanic-hotspots1.jpg This 3D view of the top 1,000 kilometers of Earth's mantle beneath the central Pacific shows the relationship between seismically-slow "plumes" and channels imaged in the UC Berkeley study. Green cones on the ocean floor mark islands associated with "hotspot"

  17. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  18. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  19. How Will We Explore Earth's Final Frontier? | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explore Earth's Final Frontier? Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Invention Factory: How Will We Explore Earth's Final Frontier? In this episode of Invention Factory, we uncover the mysteries of the earth's final frontier, the oceans. From creating machines that work at extreme depths, to mapping and

  20. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  1. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  2. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  3. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  4. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Evidence for a Weak Iron Core at Earth's Center Print Wednesday, 30 April 2014 00:00 Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron

  5. 3-D Earth model more accurately pinpoints explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-D Earth model more accurately pinpoints explosions 3-D Earth model more accurately pinpoints explosions The purpose of this model is to assist the U.S. Air Force and the international Comprehensive Nuclear Test Ban Treaty Organization with more accurately locating all types of explosions. October 25, 2013 A one-dimensional velocity profile with depth plotted within a three-dimensional Earth. The colors are compressional wave velocity in km/s. The rays are examples coming from a pseudo station

  6. At 85, Mr. Rare Earth is Retiring | Department of Energy

    Energy Savers [EERE]

    At 85, Mr. Rare Earth is Retiring At 85, Mr. Rare Earth is Retiring February 19, 2016 - 11:00am Addthis We first talked to Dr. Gschneider back in 2013 for one of our <a href="/node/609731">"10 Questions with a Scientist"</a> blogs. Today he looks back at over 60 years of studying rare earth metals. We first talked to Dr. Gschneider back in 2013 for one of our "10 Questions with a Scientist" blogs. Today he looks back at over 60 years of studying rare

  7. Celebrate Earth Day with Secretary Chu | Department of Energy

    Energy Savers [EERE]

    Celebrate Earth Day with Secretary Chu Celebrate Earth Day with Secretary Chu April 16, 2012 - 5:51pm Q&A What would you ask Secretary Chu about the environmental benefits of transitioning to a clean energy economy? Ask Us Addthis Celebrate Earth Day with Secretary Chu Amanda Scott Amanda Scott Former Managing Editor, Energy.gov How can I participate? Tweet questions @energy with the hashtag #AskEnergy. Email questions to newmedia@hq.doe.gov. This Friday, April 20, at 10:45am ET, join us for

  8. How Are You Celebrating Earth Day? | Department of Energy

    Office of Environmental Management (EM)

    18, 2012 - 9:33am Addthis Are you doing anything special this week, or this month, to save energy and money? If you're looking for ideas, check out the Office of Energy Efficiency and Renewable Energy's Earth Day website for energy saving ideas, or read Elizabeth's Earth Day resolution post for inspiration. Tell us your Earth Day plans! You have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver

  9. Rare-earth nanoparticles for catalysis | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing new materials based on these two elements is expected to impact favorably the supply chain of the more scarce rare earths. The SULI student in this program will work...

  10. Efficient Earth-Sheltered Homes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to be limited because of the position of the home's windows, and courtyard drainage and snow removal should be carefully thought through during design. Bermed Earth-Sheltered Homes...

  11. Underground helium travels to the Earth's surface via aquifers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tweet EmailPrint Before it can put the party in party balloons, helium is carried from deep within the Earth's crust to the surface via aquifers, according to new research...

  12. Earth Sciences Division annual report 1981. [Lead abstract

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences. (KRM)

  13. VERDE: Visualizing Energy Resources Dynamically on Earth - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Google Earth(c) platform to provide real time visualization of the electric power ... VERDE will primarily be used to provide wide-area, real-time electric grid situational ...

  14. Redox Active Catalysts Utilizing Earth Abundant Metals | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Active Catalysts Utilizing Earth Abundant Metals 14 Mar 2014 Ryan Trovitch has recently joined the team of the BISfuel PIs. He is an Assistant Professor at the Department of...

  15. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this...

  16. New Model of Earth's Interior Reveals Clues to Hotspot Volcanoes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    +1 510 495 2402, lvu@lbl.gov volcanic-hotspots1.jpg This 3D view of the top 1,000 kilometers of Earth's mantle beneath the central Pacific shows the relationship between...

  17. Interpretation of earth tide response of three deep, confined...

    Open Energy Info (EERE)

    sfrom earth tide response. Except for the fact that barometric changes act both on the water surface in the well and on the aquifer as a whole while stress changes associated...

  18. Geothermal Energy: Clean Power from the Earth's Heat | Open Energy...

    Open Energy Info (EERE)

    from the Earth into the atmosphere is enormous-equivalent to ten times the annual energy consumption of the United States and more than that needed to power all nations of the...

  19. DOE's "Creating a Star on Earth" video highlights PPPL's magnetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tweet Widget Google Plus One Share on Facebook A screenshot from the U.S. Department of Energy video about PPPL "Creating a Star on Earth." A screenshot from the U.S. Department...

  20. Blue Earth County, Minnesota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Earth County is a county in Minnesota. Its FIPS County Code is 013. It is classified as...

  1. Formation of rare earth carbonates using supercritical carbon dioxide

    DOE Patents [OSTI]

    Fernando, Quintus (Tucson, AZ); Yanagihara, Naohisa (Zacopan, MX); Dyke, James T. (Santa Fe, NM); Vemulapalli, Krishna (Tuscon, AZ)

    1991-09-03

    The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

  2. Enhanced Geothermal in Nevada: Extracting Heat From the Earth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    depths of 10,000 feet and beyond to access the hot rock that makes up the earth's crust. ... to open pre-existing fractures along the surface of the rock - creating permeability. ...

  3. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ultrahigh pressures of the deep Earth at ALS Beamline 12.2.2 while conducting in situ x-ray diffraction experiments to probe changes in crystal orientations. Rocks Flow in the...

  4. Jacob P. Fugal, Scott Spuler Earth Observing Laboratory NCAR...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 (HOLODEC 2) Jacob P. Fugal, Scott Spuler Earth Observing Laboratory NCAR, Boulder, CO USA & Raymond A. Shaw Physics Department, michigan Tech Houghton, MI USA C-130 Hercules Q...

  5. Iron-Nitride Alloy Magnets: Transformation Enabled Nitride Magnets Absent Rare Earths (TEN Mare)

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Case Western is developing a highly magnetic iron-nitride alloy to use in the magnets that power electric motors found in EVs and renewable power generators. This would reduce the overall price of the motor by eliminating the expensive imported rare earth minerals typically found in today’s best commercial magnets. The iron-nitride powder is sourced from abundant and inexpensive materials found in the U.S. The ultimate goal of this project is to demonstrate this new magnet system, which contains no rare earths, in a prototype electric motor. This could significantly reduce the amount of greenhouse gases emitted in the U.S. each year by encouraging the use of clean alternatives to oil and coal.

  6. Solar Energy Education. Renewable energy activities for earth science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect earth science Citation Details In-Document Search Title: Solar Energy Education. Renewable energy activities for earth science × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is

  7. Energy-efficient buildings with earth-shelter protection. Proceedings

    SciTech Connect (OSTI)

    Boyer, L.L.; Grondzik, W.T.; Sterling, R.L.; Baggs, S.A. (eds.)

    1983-01-01

    Climate and proximity to the equator as well as acceptance of the concept made Australia a logical place for an international conference on the energy-efficiency opportunities of earth-sheltered buildings. Papers presented at the conference are grouped under 10 general topics: earth environment, landscape/site, passive solar integration, hazard protection, design process, livability/acceptance, interior environment, energy conservation, performance simulation, and structural variations. Sixty-two papers were separately abstracted for the Department of Energy's Data Base.

  8. Introduction to computed microtomography and applications in Earth science

    Office of Scientific and Technical Information (OSTI)

    (Book) | SciTech Connect Introduction to computed microtomography and applications in Earth science Citation Details In-Document Search Title: Introduction to computed microtomography and applications in Earth science Authors: Rivers, M. [1] + Show Author Affiliations (UC) Publication Date: 2014-12-22 OSTI Identifier: 1168409 Resource Type: Book Resource Relation: Related Information: CMS Workshop Lectures, Advanced Applications of Synchrotron Radiation in Clay Science Publisher: 2014; Tha

  9. Non-Rare Earth magnetic materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    magnetic materials Non-Rare Earth magnetic materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon pm035_mcguire_2011_o.pdf More Documents & Publications Non-Rare Earth magnetic materials (Agreement ID:19201) Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2012 Propulsion

  10. Geophysics-based method of locating a stationary earth object

    DOE Patents [OSTI]

    Daily, Michael R. (Albuquerque, NM); Rohde, Steven B. (Corrales, NM); Novak, James L. (Albuquerque, NM)

    2008-05-20

    A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

  11. CT Scan of Earth Links Mantle Plumes with Volcanic Hotspots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CT Scan of Earth Links Mantle Plumes with Volcanic Hotspots CT Scan of Earth Links Mantle Plumes with Volcanic Hotspots Simulations Run at NERSC Show How Seismic Waves Travel Through Mantle September 2, 2015 Robert Sanders, rlsanders@berkeley.edu, (510) 643-6998 NERSC PI: Barbara Romanowicz Lead Institution: University of California, Berkeley Project Title: Imaging and Calibration of Mantle Structure at Global and Regional Scales Using Full-Waveform Seismic Tomography NERSC Resources Used:

  12. Climate Change as Recorded in Earth Surface Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change as Recorded in Earth Surface Processes Not surprisingly significant changes in climate leave their imprint on the landscape. During the last glacial maximum, ~20,000 years ago ice more than a mile thick covered vast portions of the continents. When a glacier retreats due to warmer or drier climate, it may expose boulders and fresh bedrock surfaces to cosmic rays entering earth's atmosphere from space. These newly exposed surfaces are often eroded by glacial scouring and erosion

  13. Engineering Density of States of Earth Abundant Semiconductors for Enhanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Power Factor | Department of Energy Density of States of Earth Abundant Semiconductors for Enhanced Thermoelectric Power Factor Engineering Density of States of Earth Abundant Semiconductors for Enhanced Thermoelectric Power Factor In highly mismatched semiconductor alloys, localized states of the impurities hybridize with energy bands of the host and lead to a density of states that can be optimally tuned to enhance the thermoelectric thermopower PDF icon wu.pdf More

  14. Scalable superhydrophobic coatings based on fluorinated diatomaceous earth

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Scalable superhydrophobic coatings based on fluorinated diatomaceous earth Citation Details In-Document Search Title: Scalable superhydrophobic coatings based on fluorinated diatomaceous earth Authors: Polyzos, Georgios [1] ; Winter, Kyle O [1] ; Lance, Michael J [1] ; Meyer III, Harry M [1] ; Armstrong, Beth L [1] ; Schaeffer, Daniel A [1] ; Simpson, John T [1] ; Hunter, Scott Robert [1] ; Datskos, Panos G [1] ; Demko, Jonathan A [1] + Show Author

  15. Spomenka Kobe, Jozef Stefan Institut, Rare Earth Magnets in Europe |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Spomenka Kobe, Jozef Stefan Institut, Rare Earth Magnets in Europe Spomenka Kobe, Jozef Stefan Institut, Rare Earth Magnets in Europe PDF icon Session_B4_Kobe_-_Josef_Stefan_Institut.pdf More Documents & Publications George Hadjipanayis, Chairman, Department of Physics and Astronomy, University of Delaware, Moving Beyond Neodymium-Iron Permanent Magnets for EV Motors Iowa lab gets critical materials research center Unique Lanthide-Free Motor Construction

  16. Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode

    SciTech Connect (OSTI)

    Ichimura, Kouichi; Goto, Hayato

    2006-09-15

    We demonstrated coupling of rare-earth-metal ions in a crystal to a macroscopic cavity mode by observing optical bistability and normal-mode peaks due to sweeping-laser-induced population redistribution of the ions. The experimentally evaluated coupling constant between the individual ions and the single cavity mode is 15 kHz, which is comparable with or larger than the dissipation of the ions and will exceed the cavity dissipation with a narrowing of the mode waist of the cavity to the wavelength. The results advance the application of a coupled system of rare-earth-metal ions in a crystal and an optical cavity for quantum information processing.

  17. A Spitzer search for transits of radial velocity detected super-Earths

    SciTech Connect (OSTI)

    Kammer, J. A.; Knutson, H. A.; Desert, J.-M.; Howard, A. W.; Laughlin, G. P.; Fortney, J. J.; Deming, D.; Todorov, K. O.; Agol, E.; Burrows, A.; Showman, A. P.; Lewis, N. K.

    2014-02-01

    Unlike hot Jupiters or other gas giants, super-Earths are expected to have a wide variety of compositions, ranging from terrestrial bodies like our own to more gaseous planets like Neptune. Observations of transiting systems, which allow us to directly measure planet masses and radii and constrain atmospheric properties, are key to understanding the compositional diversity of the planets in this mass range. Although Kepler has discovered hundreds of transiting super-Earth candidates over the past 4 yr, the majority of these planets orbit stars that are too far away and too faint to allow for detailed atmospheric characterization and reliable mass estimates. Ground-based transit surveys focus on much brighter stars, but most lack the sensitivity to detect planets in this size range. One way to get around the difficulty of finding these smaller planets in transit is to start by choosing targets that are already known to host super-Earth sized bodies detected using the radial velocity (RV) technique. Here we present results from a Spitzer program to observe six of the most favorable RV-detected super-Earth systems, including HD 1461, HD 7924, HD 156668, HIP 57274, and GJ 876. We find no evidence for transits in any of their 4.5 ?m flux light curves, and place limits on the allowed transit depths and corresponding planet radii that rule out even the most dense and iron-rich compositions for these objects. We also observed HD 97658, but the observation window was based on a possible ground-based transit detection that was later ruled out; thus the window did not include the predicted time for the transit detection recently made by the Microvariability and Oscillations of Stars space telescope.

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Ice Nuclei Recycling in the Maintenance of Cloud Ice in Arctic Mixed-phase Stratocumulus Download a printable PDF Submitter: Solomon, A., NOAA/ESRL/Physical Sciences Division Feingold, G., NOAA - Earth System Research Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle Journal Reference: Solomon A, G Feingold, and MD Shupe. 2015. "The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase

  19. Solar Forecast Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Forecast Improvement Project Solar Forecast Improvement Project NOAA.png For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more accurate methods for solar forecasts using their state-of-the-art weather models. APPROACH NOAA solar.png SFIP has three main goals: 1) to develop solar forecasting metrics tailored to the utility sector; 2) to improve solar

  20. ARM - Instrument - noaarad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsnoaarad Documentation NOAARAD : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : NOAA/ESRL/GMD Radiometers (NOAARAD) Instrument Categories Radiometric General Overview The ARM Climate Research Facility is providing data in netCDF format from the National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Global Monitoring Division (NOAA/ESRL GMD).

  1. THE ALBEDOS OF KEPLER'S CLOSE-IN SUPER-EARTHS

    SciTech Connect (OSTI)

    Demory, Brice-Olivier

    2014-07-01

    Exoplanet research focusing on the characterization of super-Earths is currently limited to the handful of targets orbiting bright stars that are amenable to detailed study. This Letter proposes to look at alternative avenues to probe the surface and atmospheric properties of this category of planets, known to be ubiquitous in our galaxy. I conduct Markov Chain Monte Carlo light-curves analyses for 97 Kepler close-in R{sub P} ? 2.0 R {sub ?} super-Earth candidates with the aim of detecting their occultations at visible wavelengths. Brightness temperatures and geometric albedos in the Kepler bandpass are constrained for 27 super-Earth candidates. A hierarchical Bayesian modeling approach is then employed to characterize the population-level reflective properties of these close-in super-Earths. I find median geometric albedos A{sub g} in the Kepler bandpass ranging between 0.16 and 0.30, once decontaminated from thermal emission. These super-Earth geometric albedos are statistically larger than for hot Jupiters, which have medians A{sub g} ranging between 0.06 and 0.11. A subset of objects, including Kepler-10b, exhibit significantly larger albedos (A{sub g} ? 0.4). I argue that a better understanding of the incidence of stellar irradation on planetary surface and atmospheric processes is key to explain the diversity in albedos observed for close-in super-Earths.

  2. Geoneutrinos and Heat Production in the Earth: Constraints and Implications

    ScienceCinema (OSTI)

    McDonough, Bill [University of Maryland, College Park, Maryland, United States

    2010-01-08

    Recent results from antineutrino (geoneutrino) studies at KamLAND are coincident with geochemical models of Th and U in the Earth.  KamLAND and Borexino detectors are on line, thus uncertainties in counting statistics will be reduced as data are accumulated.  The SNO+ detector, situated in the middle of the North American plate will come on line in ~3 yrs and will be best suited to yield a precise estimate of the continental contribution to the Earth?s Th & U budget.  The distribution of heat producing elements in the Earth drives convection and plate tectonics.  Geochemical models posit that ~40% of the heat producing elements are in the continental crust, with the remainder in the mantle.  Although models of core formation allow for the incorporation of heat producing elements, the core contribution of radiogenic heating is considered to be negligible.  Most parameterized convection models for the Earth require significant amounts of radiogenic heating of the Earth, a factor of two greater than geochemical models predict.  The initial KamLAND results challenge these geophysical models and support geochemical models calling for a significant contribution from secular cooling of the mantle.

  3. High power laser downhole cutting tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  4. High power laser workover and completion tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-10-28

    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  5. Enhanced Geothermal Systems Technologies

    Broader source: Energy.gov [DOE]

    Geothermal Energy an​d the Enhanced Geothermal Systems Concept The Navy 1 geothermal power plant near Coso Hot Springs, California, is applying EGS technology. Heat is naturally present everywhere in the earth. For all intents and purposes, heat from the earth is inexhaustible. Water is not nearly as ubiquitous in the earth as heat. Most aqueous fluids are derived from surface waters that have percolated into the earth along permeable pathways such as faults. Permeability is a measure of the ease of fluid flow through rock. The permeability of rock results from pores, fractures, joints, faults, and other openings which allow fluids to move. High permeability implies that fluids can flow rapidly through the rock. Permeability and, subsequently, the amount of fluids tend to decrease with depth as openings in the rocks compress from the weight of the overburden.

  6. Total Ozone Mapping Spectrometer (TOMS) Derived Data, Global Earth Coverage (GEC) from NASA's Earth Probe Satellite

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This is data from an external datastream processed through the ARM External Data Center (XDC) at Brookhaven National Laboratory. The XDC identifies sources and acquires data, called "external data", to augment the data being generated within the ARM program. The external data acquired are usually converted from native format to either netCDF or HDF formats. The GEC collection contains global data derived from the Total Ozone Mapping Spectrometer (TOMS) instrument on the Earth Probe satellite, consisting of daily values of aerosol index, ozone and reflectivity remapped into a regular 1x1.25 deg grid. Data are available from July 25, 1996 - December 31, 2005, but have been updated or replaced as of September 2007. See the explanation on the ARM web site at http://www.arm.gov/xds/static/toms.stm and the information at the NASA/TOMS web site: http://toms.gsfc.nasa.gov/ (Registration required)

  7. State","County","NOAA Climate Division (Number)","NOAA Climate...

    U.S. Energy Information Administration (EIA) Indexed Site

    CENTRAL",3 "KS","SHERIDAN",1,"NORTHWEST",2 "KS","SHERMAN",1,"NORTHWEST",2 "KS","SMITH",2,"NORTH CENTRAL",2 "KS","STAFFORD",8,"SOUTH CENTRAL",3 "KS","STANTON",7,"SOUTHWEST",...

  8. Harnessing Hydropower: The Earth's Natural Resource

    SciTech Connect (OSTI)

    2011-04-01

    This document is a layman's overview of hydroelectric power. It includes information on: History of Hydropower; Nature’s Water Cycle; Hydropower Plants; Turbines and Generators; Transmission Systems; power dispatching centers; and Substations. It goes on to discuss The Power Grid, Hydropower in the 21st Century; Energy and the Environment; and how hydropower is useful for Meeting Peak Demands. It briefly addresses how Western Area Power Administration is Responding to Environmental Concerns.

  9. Hubble space telescope near-ir transmission spectroscopy of the super-Earth HD 97658B

    SciTech Connect (OSTI)

    Knutson, Heather A.; Dragomir, Diana; Kreidberg, Laura; Bean, Jacob L.; Kempton, Eliza M.-R.; McCullough, P. R.; Fortney, Jonathan J.; Gillon, Michael; Homeier, Derek; Howard, Andrew W.

    2014-10-20

    Recent results from the Kepler mission indicate that super-Earths (planets with masses between 1-10 times that of the Earth) are the most common kind of planet around nearby Sun-like stars. These planets have no direct solar system analogue, and are currently one of the least well-understood classes of extrasolar planets. Many super-Earths have average densities that are consistent with a broad range of bulk compositions, including both water-dominated worlds and rocky planets covered by a thick hydrogen and helium atmosphere. Measurements of the transmission spectra of these planets offer the opportunity to resolve this degeneracy by directly constraining the scale heights and corresponding mean molecular weights of their atmospheres. We present Hubble Space Telescope near-infrared spectroscopy of two transits of the newly discovered transiting super-Earth HD 97658b. We use the Wide Field Camera 3's (WFC3) scanning mode to measure the wavelength-dependent transit depth in 30 individual bandpasses. Our averaged differential transmission spectrum has a median 1? uncertainty of 23 ppm in individual bins, making this the most precise observation of an exoplanetary transmission spectrum obtained with WFC3 to date. Our data are inconsistent with a cloud-free solar metallicity atmosphere at the 10? level. They are consistent at the 0.4? level with a flat line model, as well as effectively flat models corresponding to a metal-rich atmosphere or a solar metallicity atmosphere with a cloud or haze layer located at pressures of 10 mbar or higher.

  10. Advances in the growth of alkaline-earth halide single crystals for scintillator detectors

    SciTech Connect (OSTI)

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Neal, John S; Cherepy, Nerine; Payne, Stephen A.; Beck, P; Burger, Arnold; Rowe, E; Bhattacharya, P.

    2014-01-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystal-growth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  11. ARPA-E Workshop on Rare Earth and Critical Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARPA-E Workshop on Rare Earth and Critical Materials ARPA-E Workshop on Rare Earth and Critical Materials ARPA-E Workshop on Rare Earth and Critical Materials, December 6, 2010 PDF icon ARPA-E_RareEarth_Workshop_Overview.pdf More Documents & Publications Critical Materials Workshop Critical Materials Workshop Iowa lab gets critical materials research center

  12. ON THE FLARE-INDUCED SEISMICITY IN THE ACTIVE REGION NOAA 10930 AND RELATED ENHANCEMENT OF GLOBAL WAVES IN THE SUN

    SciTech Connect (OSTI)

    Kumar, Brajesh; Venkatakrishnan, P.; Mathur, Savita; Tiwari, Sanjiv Kumar; Garcia, R. A. E-mail: pvk@prl.res.in E-mail: tiwari@mps.mpg.de

    2011-12-10

    A major flare (of class X3.4) occurred on 2006 December 13 in the active region NOAA 10930. This flare event has remained interesting to solar researchers for studies related to particle acceleration during the flare process and the reconfiguration of magnetic fields as well as fine-scale features in the active region. The energy released during flares is also known to induce acoustic oscillations in the Sun. Here, we analyze the line-of-sight velocity patterns in this active region during the X3.4 flare using the Dopplergrams obtained by the Global Oscillation Network Group (GONG) instrument. We have also analyzed the disk-integrated velocity observations of the Sun obtained by the Global Oscillation at Low Frequency (GOLF) instrument on board the Solar and Heliospheric Observatory spacecraft as well as full-disk collapsed velocity signals from GONG observations during this flare to study any possible connection between the flare-related changes seen in the local and global velocity oscillations in the Sun. We apply wavelet transform to the time series of the localized velocity oscillations as well as the global velocity oscillations in the Sun spanning the flare event. The line-of-sight velocity shows significant enhancement in some localized regions of the penumbra of this active region during the flare. The affected region is seen to be away from the locations of the flare ribbons and the hard X-ray footpoints. The sudden enhancement of this velocity seems to be caused by the Lorentz force driven by the 'magnetic jerk' in the localized penumbral region. Application of wavelet analysis to these flare-induced localized seismic signals shows significant enhancement in the high-frequency domain (5 <{nu} < 8 mHz) and a feeble enhancement in the p-mode oscillations (2 <{nu} < 5 mHz) during the flare. On the other hand, the wavelet analysis of GOLF velocity data and the full-disk collapsed GONG velocity data spanning the flare event indicates significant post-flare enhancements in the high-frequency global velocity oscillations in the Sun, as evident from the wavelet power spectrum and the corresponding scale-average variance. The present observations of the flare-induced seismic signals in the active region in context of the driving force are different as compared to previous reports on such cases. We also find indications of a connection between flare-induced localized seismic signals and the excitation of global high-frequency oscillations in the Sun.

  13. NOAA PMEL Station Chemistry Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Quinn, Patricia

    2008-04-04

    Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH.

  14. Method for treating rare earth-transition metal scrap

    DOE Patents [OSTI]

    Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA); Jones, Lawrence L. (Des Moines, IA)

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.

  15. Analysis of transient heat loss in earth-sheltered structures

    SciTech Connect (OSTI)

    Szydlowski, R.F.

    1980-09-01

    The two-dimensional transient Fourier heat conduction equation has been solved in cartesian coordinates using an alternating direction implicit finite difference technique for several earth sheltered building configurations. The model has been computer coded and verified by comparing results with data taken from an instrumented conventional residence basement. The present model considers variable soil properties, different types of below grade configurations, and various types, thicknesses, and locations of insulation. The model has been used to analyze the thermal impact of varying levels of interior and exterior insulation on conventional basements, earth bermed walls, and earth covered structures. Local and integrated heat transfer through the exterior building envelope versus time of year are given as functions of construction materials, insulation, and soil geometry. Temperature distributions within the building envelope material and in the surrounding soil are presented versus time of year. An economic analysis is also given to indicate the cost effectiveness of the insulation levels analyzed.

  16. Method for treating rare earth-transition metal scrap

    DOE Patents [OSTI]

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a rare earth fluoride-bearing flux of CaF[sub 2], CaCl[sub 2] or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy. 3 figs.

  17. Yttrium and rare earth stabilized fast reactor metal fuel

    DOE Patents [OSTI]

    Guon, Jerold (Woodland Hills, CA); Grantham, LeRoy F. (Calabasas, CA); Specht, Eugene R. (Simi Valley, CA)

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  18. Laminated rare earth structure and method of making

    DOE Patents [OSTI]

    Senor, David J [West Richland, WA; Johnson, Roger N [Richland, WA; Reid, Bruce D [Pasco, WA; Larson, Sandra [Richland, WA

    2002-07-30

    A laminated structure having two or more layers, wherein at least one layer is a metal substrate and at least one other layer is a coating comprising at least one rare earth element. For structures having more than two layers, the coating and metal substrate layers alternate. In one embodiment of the invention, the structure is a two-layer laminate having a rare earth coating electrospark deposited onto a metal substrate. In another embodiment of the invention, the structure is a three-layer laminate having the rare earth coating electrospark deposited onto a first metal substrate and the coating subsequently abonded to a second metal substrate. The bonding of the coating to the second metal substrate may be accomplished by hot pressing, hot rolling, high deformation rate processing, or combinations thereof. The laminated structure may be used in nuclear components where reactivity control or neutron absorption is desired and in non-nuclear applications such as magnetic and superconducting films.

  19. Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs

    SciTech Connect (OSTI)

    Pelletier, Jon D.; Murray, A. Brad; Pierce, Jennifer L.; Bierman, Paul R.; Breshears, David D.; Crosby, Benjamin T.; Ellis, Michael; Foufoula-Georgiou, Efi; Heimsath, Arjun M.; Houser, Chris; Lancaster, Nick; Marani, Marco; Merritts, Dorothy J.; Moore, Laura J.; Pederson, Joel L.; Poulos, Michael J.; Rittenour, Tammy M.; Rowland, Joel C.; Ruggiero, Peter; Ward, Dylan J.; Wickert, Andrew D.; Yager, Elowyn M.

    2015-07-14

    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.

  20. Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pelletier, Jon D.; Murray, A. Brad; Pierce, Jennifer L.; Bierman, Paul R.; Breshears, David D.; Crosby, Benjamin T.; Ellis, Michael; Foufoula-Georgiou, Efi; Heimsath, Arjun M.; Houser, Chris; et al

    2015-07-14

    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we havemore » the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.« less

  1. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  2. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  3. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  4. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  5. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  6. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  7. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the effects of this transition on the elastic properties of magnesiowüstite (Mg1-xFex)O,

  8. Earth-sheltered compromise home saves on heating, cooling costs

    SciTech Connect (OSTI)

    Frankhauser, T.

    1985-02-01

    Building a home into the side of a hill to take advantage of the earth's temperature-neutralizing qualities and facing it to the south will reduce heating and cooling costs. A home in North Dakota based on these principles has never had two unheated rooms freeze and needs no air conditioning. Mutli-zoned thermostats are located in the south-facing rooms. Other features are a five-foot overhang, lower ceilings, aluminum foil deflectors beneath carpets and above the plasterboard in the ceiling, and extra insulation. By eliminating an earth covering that would require sturdier support, construction costs were competitive with regular frame construction.

  9. Rare earth-transition metal scrap treatment method

    DOE Patents [OSTI]

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.

  10. Rare earth-transition metal scrap treatment method

    DOE Patents [OSTI]

    Schmidt, Frederick A. (Ames, IA); Peterson, David T. (Ames, IA); Wheelock, John T. (Nevada, IA); Jones, Lawrence L. (Des Moines, IA); Lincoln, Lanny P. (Woodward, IA)

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.

  11. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, John P.; Johnson, Terry R.

    1994-01-01

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  12. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, J.P.; Johnson, T.R.

    1994-08-09

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner. 1 fig.

  13. Process to remove rare earth from IFR electrolyte

    DOE Patents [OSTI]

    Ackerman, J.P.; Johnson, T.R.

    1992-01-01

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  14. Compressible pressure compensator within closed lubricant volume of an earth boring apparatus

    SciTech Connect (OSTI)

    Saxman, W. C.; Parker, L. J.

    1985-04-09

    A compressible pressure compensating member is disposed within a sealed lubricant volume enclosing a bearing and seal system of an earth boring apparatus. Lubricant is maintained within the volume by metal face seals so that both the bearing and the seal structure are lubricated thereby. As the lubricant expands, due to thermal expansion under use, the increased pressure is accommodated by compression of the compressible member so that no lubricant is expelled through the seals. When the lubricant cools and contracts, the compensator expands to maintain the lubricant volume at the initially filled level.

  15. Complex Electronic Structure of Rare Earth Activators in Scintillators

    SciTech Connect (OSTI)

    Aberg, D.; Yu, S. W.; Zhou, F.

    2015-10-27

    To aid and further the understanding of the microscopic mechanisms behind the scintillator nonproportionality that leads to degradation of the attainable energy resolution, we have developed theoretical and experimental algorithms and procedures to determine the position of the 4f energy levels of rare earth dopants relative to the host band edge states.

  16. Earth sheltered industrial/utility park. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    A proposed industrial park in Cumberland, Wisconsin is discussed. Planners identified 4 land use elements for the site. A concept feasibility study for the earth-covered industrial park, an analysis of energy flows within the Cumberland community, and a resource and technology assessment of biomass feedstocks for a possible community scale bioenergy facility are discussed. (MCW)

  17. Earth sheltered housing in the south central United States

    SciTech Connect (OSTI)

    Grondzik, W.T. (Oklahoma State Univ., Stillwater); Grondzik, C.S.

    1982-01-01

    A detailed study of identified, occupied earth sheltered residences in the south central United States has been conducted by the Oklahoma State University. Selected results from this investigation of more than 150 residences in the states of Arkansas, Colorado, Iowa, Kansas, Missouri, Nebraska, New Mexico, Oklahoma, and Texas are presented, focusing upon the issues of habitability and energy performance of such structures.

  18. ON THE VIGOR OF MANTLE CONVECTION IN SUPER-EARTHS

    SciTech Connect (OSTI)

    Miyagoshi, Takehiro; Tachinami, Chihiro; Kameyama, Masanori; Ogawa, Masaki E-mail: ctchnm.geo@gmail.com E-mail: cmaogawa@mail.ecc.u-tokyo.ac.jp

    2014-01-01

    Numerical models are presented to clarify how adiabatic compression affects thermal convection in the mantle of super-Earths ten times the Earth's mass. The viscosity strongly depends on temperature, and the Rayleigh number is much higher than that of the Earth's mantle. The strong effect of adiabatic compression reduces the activity of mantle convection; hot plumes ascending from the bottom of the mantle lose their thermal buoyancy in the middle of the mantle owing to adiabatic decompression, and do not reach the surface. A thick lithosphere, as thick as 0.1 times the depth of the mantle, develops along the surface boundary, and the efficiency of convective heat transport measured by the Nusselt number is reduced by a factor of about four compared with the Nusselt number for thermal convection of incompressible fluid. The strong effect of adiabatic decompression is likely to inhibit hot spot volcanism on the surface and is also likely to affect the thermal history of the mantle, and hence, the generation of magnetic field in super-Earths.

  19. Structural transition in rare earth doped zirconium oxide: A positron annihilation study

    SciTech Connect (OSTI)

    Chakraborty, Keka; Bisoi, Abhijit

    2012-11-15

    Graphical abstract: New microstructural analysis and phase transition of rare earth doped mixed oxide compounds such as: Sm{sub 2?x}Dy{sub x}Zr{sub 2}O{sub 7} (where x = 0.0 ? x ? 2.0) that are potentially useful as solid oxide fuels, ionic conductors, optoelectronic materials and most importantly as radiation resistant host for high level rad-waste disposal, structural transition in the system is reported through positron annihilation spectroscopy as there is an indication in the X-ray diffraction analysis. Highlights: ? Zirconium oxide material doped with rare earth ions. ? The method of positron annihilation spectroscopy suggests a phase transition in the system. ? The crystal structure transformation from pure pyrochlore to defect fluorite type of structure is shown by X-ray diffraction results. -- Abstract: A series of compounds with the general composition Sm{sub 2?x}Dy{sub x}Zr{sub 2}O{sub 7} (where 0 ? x ? 2.0) were synthesized by chemical route and characterized by powder X-ray diffraction (XRD) analysis. The rare earth ion namely Sm{sup +3} in the compound was gradually replaced with another smaller and heavier ion, Dy{sup +3} of the 4f series, there by resulting in order–disorder structural transition, which has been studied by positron annihilation lifetime and Doppler broadening spectroscopy. This study reveals the subtle electronic micro environmental changes in the pyrochlore lattice (prevalent due to the oxygen vacancy in anti-site defect structure of the compound) toward its transformation to defect fluorite structure as found in Dy{sub 2}Zr{sub 2}O{sub 7}. A comparison of the changes perceived with PAS as compared to XRD analysis is critically assayed.

  20. Gj 832c: A super-Earth in the habitable zone

    SciTech Connect (OSTI)

    Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.; Marshall, J. P.; Bailey, J.; Salter, G. S.; Wright, D.; Tuomi, Mikko; Jones, H. R. A.; Butler, R. P.; Arriagada, P.; Anglada-Escudé, Guillem; Carter, B. D.; O'Toole, S. J.; Crane, J. D.; Schectman, S. A.; Thompson, I.; Minniti, D.; Jenkins, J. S.; Diaz, M.

    2014-08-20

    We report the detection of GJ 832c, a super-Earth orbiting near the inner edge of the habitable zone of GJ 832, an M dwarf previously known to host a Jupiter analog in a nearly circular 9.4 yr orbit. The combination of precise radial-velocity measurements from three telescopes reveals the presence of a planet with a period of 35.68 ± 0.03 days and minimum mass (m sin i) of 5.4 ± 1.0 Earth masses. GJ 832c moves on a low-eccentricity orbit (e = 0.18 ± 0.13) toward the inner edge of the habitable zone. However, given the large mass of the planet, it seems likely that it would possess a massive atmosphere, which may well render the planet inhospitable. Indeed, it is perhaps more likely that GJ 832c is a 'super-Venus', featuring significant greenhouse forcing. With an outer giant planet and an interior, potentially rocky planet, the GJ 832 planetary system can be thought of as a miniature version of our own solar system.

  1. Time reversal communication system

    DOE Patents [OSTI]

    Candy, James V. (Danville, CA); Meyer, Alan W. (Danville, CA)

    2008-12-02

    A system of transmitting a signal through a channel medium comprises digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. The channel medium may be air, earth, water, tissue, metal, and/or non-metal.

  2. ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS

    SciTech Connect (OSTI)

    Liu, Ying D.; Luhmann, Janet G.; Moestl, Christian; Bale, Stuart D.; Lin, Robert P.; Lugaz, Noe; Davies, Jackie A.

    2013-05-20

    We investigate how coronal mass ejections (CMEs) propagate through, and interact with, the inner heliosphere between the Sun and Earth, a key question in CME research and space weather forecasting. CME Sun-to-Earth kinematics are constrained by combining wide-angle heliospheric imaging observations, interplanetary radio type II bursts, and in situ measurements from multiple vantage points. We select three events for this study, the 2012 January 19, 23, and March 7 CMEs. Different from previous event studies, this work attempts to create a general picture for CME Sun-to-Earth propagation and compare different techniques for determining CME interplanetary kinematics. Key results are obtained concerning CME Sun-to-Earth propagation: (1) the Sun-to-Earth propagation of fast CMEs can be approximately formulated into three phases: an impulsive acceleration, then a rapid deceleration, and finally a nearly constant speed propagation (or gradual deceleration); (2) the CMEs studied here are still accelerating even after the flare maximum, so energy must be continuously fed into the CME even after the time of the maximum heating and radiation has elapsed in the corona; (3) the rapid deceleration, presumably due to interactions with the ambient medium, mainly occurs over a relatively short timescale following the acceleration phase; and (4) CME-CME interactions seem a common phenomenon close to solar maximum. Our comparison between different techniques (and data sets) has important implications for CME observations and their interpretations: (1) for the current cases, triangulation assuming a compact CME geometry is more reliable than triangulation assuming a spherical front attached to the Sun for distances below 50-70 solar radii from the Sun, but beyond about 100 solar radii we would trust the latter more; (2) a proper treatment of CME geometry must be performed in determining CME Sun-to-Earth kinematics, especially when the CME propagation direction is far away from the observer; and (3) our approach to comparing wide-angle heliospheric imaging observations with interplanetary radio type II bursts provides a novel tool in investigating CME propagation characteristics. Future CME observations and space weather forecasting are discussed based on these results.

  3. Separation of americium, curium, and rare earths from high-level wastes by oxalate precipitation: experiments with synthetic waste solutions

    SciTech Connect (OSTI)

    Forsberg, C.W.

    1980-01-01

    The separation of trivalent actinides and rare earths from other fission products in high-level nuclear wastes by oxalate precipitation followed by ion exchange (OPIX) was experimentally investigated using synthetic wastes and a small-scale, continuous-flow oxalic acid precipitation and solid-liquid separation system. Trivalent actinide and rare earth oxalates are relatively insoluble in 0.5 to 1.0 M HNO/sub 3/ whereas other fission product oxalates are not. The continuous-flow system consisted of one or two stirred-tank reactors in series for crystal growth. Oxalic acid and waste solutions were mixed in the first tank, with the product solid-liquid slurry leaving the second tank. Solid-liquid separation was tested by filters and by a gravity settler. The experiments determined the fraction of rare earths precipitated and separated from synthetic waste streams as a function of number of reactors, system temperature, oxalic acid concentration, liquid residence time in the process, power input to the stirred-tank reactors, and method of solid-liquid separation. The crystalline precipitate was characterized with respect to form, size, and chemical composition. These experiments are only the first step in converting a proposed chemical flowsheet into a process flowsheet suitable for large-scale remote operations at high activity levels.

  4. Detailed thermal performance measurements and cost effectiveness of earth-sheltered construction: a case study

    SciTech Connect (OSTI)

    Christian, J.E.

    1985-09-01

    Earth-covering, solar gain, and massive construction are the design concepts successfully blended to produce an energy-efficient, durable, and comfortable building. Twenty-four-hour-quiet sleeping quarters and quality office space were the first design objectives of this building, these were successfully accomplished. The data acquisition system and a unique energy-balance analysis documents the thermal performance of each envelope component. Since the building's typical number of occupants, size, and internal electric loads are similar to those of a large residential building, the energy-performance data are extended to the residential marketplace. First-cost estimates for the whole building, earth-covered roof, and bermed wall are used with the detailed measured energy-use data to estimate cost effectiveness using residential economics criteria, such as 3% discount rate and 30-year life. The results from this analysis confirm the fact that earth, sun, and mass can save substantial amounts of annual and peak energy demand. However, further construction cost reductions are needed to produce more favorable cost effectiveness in the residential market arena. The overall thermal conductance value of this building is lower than the average values from the 300 low-energy residences as reported in the Building Energy-Use Compilation and Analysis, Part A (BECA-A), data base. However, the balance point of this building, with mechanical ventilation to ensure about 0.5 air change per hour, is substantially higher than those reported for low-energy residential buildings. This suggests that most of the energy-efficient homes either have an air-to-air heat exchanger or infiltration levels far below the generally accepted 0.5 air change per hour to ensure healthy indoor air quality. Reflective insulating blinds were installed in this building and have enhanced the daylighting and usability of the building. 9 refs., 23 figs., 4 tabs.

  5. Rare-earth tantalates and niobates suitable for use as nanophosphors

    DOE Patents [OSTI]

    Nyman, May D; Rohwer, Lauren E.S& gt

    2013-11-19

    A family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.

  6. Alternative High-Performance Motors with Non-Rare Earth Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Motors with Non-Rare Earth Materials Alternative High-Performance Motors with Non-Rare Earth Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  7. U.S. Postal Service BlueEarth Program - Personal Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Postal Service BlueEarth Program - Personal Electronics Recycling Program U.S. Postal Service BlueEarth Program - Personal Electronics Recycling Program June 26, 2015 - 1:02pm ...

  8. GROUND-STATE PROPERTIES OF RARE-EARTH METALS: AN EVALUATION OF...

    Office of Scientific and Technical Information (OSTI)

    GROUND-STATE PROPERTIES OF RARE-EARTH METALS: AN EVALUATION OF DENSITY-FUNCTIONAL THEORY Citation Details In-Document Search Title: GROUND-STATE PROPERTIES OF RARE-EARTH METALS: AN...

  9. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOE Patents [OSTI]

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  10. Architecture earth-sheltered buildings. Design manual 1. 4

    SciTech Connect (OSTI)

    Not Available

    1984-03-01

    Design guidance is presented for use by experienced engineers and architects. The types of buildings within the scope of this manual include slab-on-grade, partially-buried (bermed) or fully-buried, and large (single-story or multistory) structures. New criteria unique to earth-sheltered design are included for the following disciplines: Planning, Landscape Design, Life-Cycle Analysis, Architectural, Structural, Mechanical (criteria include below-grade heat flux calculation procedures), and Electrical.

  11. NREL Earth Day Celebration Features Energy Activities, Tours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Features Energy Activities, Tours For more information contact: e:mail: Public Affairs Golden, Colo., April 12, 1999 — Celebrate Earth Day by discovering the power of clean energy at the nation's premier laboratory for renewable energy and energy efficiency research, development and deployment. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will open its doors 10 a.m. to 3 p.m., April 24 for tours of its research facilities and interactive exhibits at the Visitors

  12. Microsoft Word - rare earth speech 3-18 6am

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REMARKS PREPARED FOR DELIVERY TECHNOLOGY AND RARE EARTH METALS CONFERENCE 2010 KEYNOTE ADDRESS DAVID SANDALOW ASSISTANT SECRETARY FOR POLICY & INTERNATIONAL AFFAIRS U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C. MARCH 17, 2010 [Acknowledgements.] 1. INTRODUCTION Thank you for the invitation to speak at this important conference. At energy conferences today, no topic is hotter than shale gas. The story is striking: recoverable reserves of shale gas have increased six-fold in the past few years,

  13. CMI Offers Webinars on Critical Materials and Rare Earths | Critical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Institute Offers Webinars on Critical Materials and Rare Earths CMI at Mines offers webinars about critical materials at no charge. These began in March 2015: December 9: Alex King, CMI, and Stacy Joiner, Ames Laboratory, discuss the updates to the CMI Affiliates Membership Program. A recording of the webinar is available. October 28: Bruce Moyer, Oak Ridge National Laboratory, Challenges in Diversifying Supply of Critical Materials for Clean Energy. A recording of the webinar is

  14. DOE celebrates Earth Day | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    celebrates Earth Day | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at

  15. Earth Day: Leading by Example | Department of Energy

    Office of Environmental Management (EM)

    Day: Leading by Example Earth Day: Leading by Example April 20, 2012 - 11:40am Addthis Michael Dunn, Deputy Director of Facilities Management at Argonne National Laboratory, setup a program that encouraged employees to cut their energy use during peak summer months and resulted in more than $475,000 in savings. Here he stands next to an electrical vehicle fueling station that charges cars with solar energy. | Image courtesy of Argonne National Laboratory. Michael Dunn, Deputy Director of

  16. Earth Day 2012: A Day to Remember the Past and Shape the Future

    Broader source: Energy.gov [DOE]

    On Earth Day 2012, one man contemplates the history of conservationism and environmentalism in the United States - and the world.

  17. Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for a Clean Energy Future | Department of Energy Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future PDF icon Trans-Atlantic Workshopon Rare Earth Elements andOther Critical Materials for a Clean Energy Future More Documents &

  18. Submit Your Home Energy Efficiency Questions Now for Earth Day Google+

    Energy Savers [EERE]

    Hangout | Department of Energy Submit Your Home Energy Efficiency Questions Now for Earth Day Google+ Hangout Submit Your Home Energy Efficiency Questions Now for Earth Day Google+ Hangout April 2, 2013 - 10:40am Addthis Submit a video question now for our Earth Day Google+ Hangout on home energy efficiency. | Graphic courtesy of Sarah Gerrity, Energy Department. Submit a video question now for our Earth Day Google+ Hangout on home energy efficiency. | Graphic courtesy of Sarah Gerrity,

  19. Radon in energy-efficient earth-sheltered structures

    SciTech Connect (OSTI)

    Nero, A.V.

    1983-05-01

    Exposure o the radioactive-decay products of radon 222 that are present in indoor air constitutes the most-significant radiation dose received by the general population in most countries. Indoor concentrations vary from one building to another, ranging from insignificant to very high levels that cause radiation doses higher than those experienced by uranium miners. This wide range of concentrations is attributable to variability in the rate at which radon enters buildings, and differences in the ventilation rate. Earth-sheltered dwellings, because they are more completely surrounded by earth material than other structures, have an as yet unquantified potential for having radon entry rates that are higher than typical for other houses in the region. Moreover, measures that save energy by reducing ventilation rates (for example by reducing infiltration) can also raise indoor radon concentrations. For these reasons a significant effort is needed to determine the potential for ventilation-reducing measures and earth sheltering to increase radon concentrations, especially in regions where they are already high. Where necessary, proper attention to specific design features that affect radon entry rates or residence time indoors should be adequate to avoid undue risk to the public.

  20. Method for testing earth samples for contamination by organic contaminants

    DOE Patents [OSTI]

    Schabron, J.F.

    1996-10-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants. 2 figs.