National Library of Energy BETA

Sample records for noaa earth system

  1. Earth System Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    earth system processes Earth System Processes Cosmogenic isotopes are rare isotopes created when a high-energy cosmic ray interacts with the nucleus of an atom, causing cosmic ray spallation. These isotopes are produced within earth materials such as rocks or soil, in Earth's atmosphere, and in extraterrestrial items such as meteorites. By measuring cosmogenic isotopes, scientists are able to gain insight into a range of geological and astronomical processes. Cosmogenic nuclides can provide a

  2. Earth System Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Earth System Observations Research comprises Earth, ocean, and atmospheric sciences to better understand and predict climate change's impact on ecosystems and to study subsurface geological materials and their interactions. Deploying research facilities globally Forecasting forests' responses to climate change Monitoring terrestrial ecosystems Contact Us Group Leader Claudia Mora Email Deputy Group Leader Bob Roback Email Profile pages header Search our Profile pages Investigating carbon

  3. Modeling the earth system

    SciTech Connect (OSTI)

    Ojima, D.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  4. SciTech Connect: "earth system models"

    Office of Scientific and Technical Information (OSTI)

    earth system models" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "earth system models" Semantic Semantic Term Title: Full Text: Bibliographic...

  5. Modeling the Earth System, volume 3

    SciTech Connect (OSTI)

    Ojima, D.

    1992-01-01

    The topics covered fall under the following headings: critical gaps in the Earth system conceptual framework; development needs for simplified models; and validating Earth system models and their subcomponents.

  6. Earth Systems Science and Engineering

    SciTech Connect (OSTI)

    Rotman, D A

    2006-02-21

    Providing the essential energy and water systems to support human needs while understanding and addressing their environmental consequences is a watershed problem for the 21st century. The LLNL Earth System Science and Engineering Program seeks to provide the scientific understanding and technological expertise to help provide solutions at both global and regional scales. Our work is highly collaborative with universities, laboratories and industrial partners across the world and involves observational data, laboratory experiments, and numerical simulations. The energy systems we have enjoyed for the last 100 years have resulted in the advanced standard of living in the developed world and a major emerging problem with climate change. Now we face a simultaneous realization that our reliance on fossil fuels is a source of conflict and economic disruption as well as causing potentially abrupt, even catastrophic global climate change. The climate and energy problem is perhaps the greatest challenge ever faced by mankind. Fossil fuel remains the least expensive and most available source of energy and the basis of our economy. The use of fossil fuels, especially over the last 100 years has led to a 30% increase in CO{sub 2} in the atmosphere. The problem is growing. The population of the Earth will increase by several billion people in the next 50 years. If economic growth is to continue, the demand for energy is estimated to approximately double in the next 50 years so that we will need approximately 10 TW more energy than the 15 TW we use now. Much of this demand will come from the developing world where most of the population growth will occur and where advanced energy technology is not generally used. The problem affects and is affected by a complex system of systems. The climate and energy problem will affect resources, social structure and the probability of increased conflict. No one person, no one nation, no one technology can solve the problem. There is no

  7. ARM - PI Product - ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central

  8. A toolkit for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1993-03-01

    An earth system model is a computer code designed to simulate the interrelated processes that determine the earth`s weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

  9. A toolkit for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1993-03-01

    An earth system model is a computer code designed to simulate the interrelated processes that determine the earth's weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

  10. OSTIblog Articles in the earth systems modeling Topic | OSTI...

    Office of Scientific and Technical Information (OSTI)

    earth systems modeling Topic ACME - Perfecting Earth System Models by Kathy Chambers 29 Oct, 2014 in Earth system modeling as we know it and how it benefits climate change research ...

  11. A Scalable and Extensible Earth System Model for Climate Change...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: A Scalable and Extensible Earth System Model for Climate Change Science Citation Details In-Document Search Title: A Scalable and Extensible Earth System Model ...

  12. Climate, Earth system project draws on science powerhouses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate, Earth system project draws on science powerhouses Climate, Earth system project draws on science powerhouses The project will focus initially on three climate-change ...

  13. End-to-End Network Tuning Sends Data Screaming from NERSC to NOAA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    End-to-End Network Tuning Sends Data Screaming from NERSC to NOAA End-to-End Network Tuning Sends Data Screaming from NERSC to NOAA September 21, 2012 Jon Bashor, Jbashor@lbl.gov, +1 510 486 5849 reforecast.gif (a) 24 hour observed precipitation amounts for 9 January 1995; (b) Average 1-day precipitation forecasts; (c) Today's forecast calibrated with old reforecasts and precipitation analyses. (Click image to enlarge.) Image coutesy of NOAA's Earth Systems Research Laboratory. When it comes to

  14. Atmosphere Component in Community Earth System Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atiq Warraich About Us Atiq Warraich - Technical Lead/Project Manager Atiq Warraich Most Recent Digital Strategy May

    Atmosphere Component in Community Earth System Model - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy

  15. 2013 Community Earth System Model (CESM) Tutorial-Proposal to...

    Office of Scientific and Technical Information (OSTI)

    3 Community Earth System Model (CESM) Tutorial-Proposal to DOE Citation Details In-Document Search Title: 2013 Community Earth System Model (CESM) Tutorial-Proposal to DOE THE SAME ...

  16. The integrated Earth System Model Version 1: formulation and...

    Office of Scientific and Technical Information (OSTI)

    Title: The integrated Earth System Model Version 1: formulation and functionality The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the ...

  17. PMEL contributions to the collaboration: SCALING THE EARTH SYSTEM GRID TO PETASCALE DATA for the DOE SciDACs Earth System Grid Center for Enabling Technologies

    SciTech Connect (OSTI)

    Hankin, Steve

    2012-06-01

    Drawing to a close after five years of funding from DOE's ASCR and BER program offices, the SciDAC-2 project called the Earth System Grid (ESG) Center for Enabling Technologies has successfully established a new capability for serving data from distributed centers. The system enables users to access, analyze, and visualize data using a globally federated collection of networks, computers and software. The ESG software now known as the Earth System Grid Federation (ESGF) has attracted a broad developer base and has been widely adopted so that it is now being utilized in serving the most comprehensive multi-model climate data sets in the world. The system is used to support international climate model intercomparison activities as well as high profile U.S. DOE, NOAA, NASA, and NSF projects. It currently provides more than 25,000 users access to more than half a petabyte of climate data (from models and from observations) and has enabled over a 1,000 scientific publications.

  18. DOE Science Showcase - Earth System Models | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Earth System Models U.S. DOE Office of Science: Getting Forest Carbon Right in Climate ... agencies, particularly the National Science Foundation, the National Oceanic and ...

  19. 2012 Community Earth System Model (CESM) Tutorial - Proposal...

    Office of Scientific and Technical Information (OSTI)

    The Community Earth System Model (CESM) is a fully-coupled, global climate model that ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 54 ...

  20. The Community Earth System Model: A Framework for Collaborative...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: Community Earth System Model; global coupled model; atmosperic chemistry Word Cloud More Like ...

  1. A Scalable and Extensible Earth System Model for Climate Change...

    Office of Scientific and Technical Information (OSTI)

    Scalable and Extensible Earth System Model for Climate Change Science Gent, Peter; Lamarque, Jean-Francois; Conley, Andrew; Vertenstein, Mariana; Craig, Anthony 54 ENVIRONMENTAL...

  2. ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Torn, Margaret

    2008-01-15

    Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central Facility, usually once per week on one afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. Samples are collected by the ARM/LBNL Carbon Project. CO2 flask data contains measurements of CO2 concentration and CO2 stable isotope ratios (13CO2 and C18OO) from flasks collected at the SGP site. The flask samples are collected at 2m, 4m, 25m, and 60m along the 60m tower.

  3. ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Torn, Margaret

    Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central Facility, usually once per week on one afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. Samples are collected by the ARM/LBNL Carbon Project. CO2 flask data contains measurements of CO2 concentration and CO2 stable isotope ratios (13CO2 and C18OO) from flasks collected at the SGP site. The flask samples are collected at 2m, 4m, 25m, and 60m along the 60m tower.

  4. Modeling the Changing Earth System: Prospects and Challenges

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bill Collins Modeling the Changing Earth System: Prospects and Challenges February 4, 2014 Bill Collins, Berkeley Lab Downloads CollinSNERSCUG020514.pdf | Adobe Acrobat PDF file Modeling the Changing Earth System: Prospects and Challenges - William Collins, Berkeley Lab Last edited: 2016-04-29 11:35:09

  5. DOE SciDAC's Earth System Grid Center for Enabling Technologies...

    Office of Scientific and Technical Information (OSTI)

    of Southern California 96 KNOWLEDGE MANAGEMENT AND PRESERVATION Earth System Grid, data replication, system monitoring Earth System Grid, data replication, system monitoring...

  6. Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enthusiastic employees: sustaining the Earth January 30, 2014 Green Teams work hard to make sustainable choices at home, at work The Lab has made many energy sustainable ...

  7. Performance of the Community Earth System Model | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility Performance of the Community Earth System Model Authors: Worley, P.H., Craig, A., Dennis, J., Mirin, A.A., Taylor, M.A., Vertenstein, M. The Community Earth System Model (CESM), released in June 2010, incorporates new physical process and new numerical algorithm options, significantly enhancing simulation capabilities over its predecessor, the June 2004 release of the Community Climate System Model. CESM also includes enhanced performance tuning options and performance

  8. Collaborative Project. Mode and Intermediate Waters in Earth System Models

    SciTech Connect (OSTI)

    Sarmiento, Jorge L.; Dufour, Carolina; Rodgers, Keith B.

    2015-12-16

    The focus of this grant was on diagnosing the physical mechanisms controlling upper ocean water mass formation and carbon distribution in Earth System Models (ESMs), with the goal of improving the physics that controls their formation.

  9. Climate, Earth system project draws on science powerhouses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate, Earth system project draws on science powerhouses Climate, Earth system project draws on science powerhouses The project will focus initially on three climate-change science drivers and corresponding questions to be answered during the project's initial phase. September 25, 2014 Computer modeling provides policymakers with essential information on such data as global sea surface temperatures related to specific currents. Computer modeling provides policymakers with essential information

  10. Climate, Earth system project draws on science powerhouses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate, Earth system project draws on science powerhouses Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Climate, Earth system project draws on science powerhouses The project will focus initially on three climate-change science drivers and corresponding questions to be answered during the project's initial phase. November 1, 2014 Computer modeling provides policymakers with essential information on such data as

  11. NOAA Webinar: The U.S. Climate Resilience Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE)

    This series is co-sponsored by the NOAA Sectoral Applications Research Program (SARP), US National Integrated Drought Information System (NIDIS), Water Research Foundation, Water Environment...

  12. The integrated Earth System Model Version 1: formulation and functionality

    SciTech Connect (OSTI)

    Collins, William D.; Craig, Anthony P.; Truesdale, John E.; Di Vittorio, Alan; Jones, Andrew D.; Bond-Lamberty, Benjamin; Calvin, Katherine V.; Edmonds, James A.; Kim, Son H.; Thomson, Allison M.; Patel, Pralit L.; Zhou, Yuyu; Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E.; Chini, Louise M.; Hurtt, George C.

    2015-07-23

    The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a sin- gle simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore- omitted feedbacks between natural and societal drivers, we can improve scientific under- standing of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper de- scribes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.

  13. The integrated Earth system model version 1: formulation and functionality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; et al

    2015-07-23

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  14. Big Data Visual Analytics for Exploratory Earth System Simulation Analysis

    SciTech Connect (OSTI)

    Steed, Chad A.; Ricciuto, Daniel M.; Shipman, Galen M.; Smith, Brian E.; Thornton, Peter E.; Wang, Dali; Shi, Xiaoying; Williams, Dean N.

    2013-12-01

    Rapid increases in high performance computing are feeding the development of larger and more complex data sets in climate research, which sets the stage for so-called big data analysis challenges. However, conventional climate analysis techniques are inadequate in dealing with the complexities of today s data. In this paper, we describe and demonstrate a visual analytics system, called the Exploratory Data analysis ENvironment (EDEN), with specific application to the analysis of complex earth system simulation data sets. EDEN represents the type of interactive visual analysis tools that are necessary to transform data into insight, thereby improving critical comprehension of earth system processes. In addition to providing an overview of EDEN, we describe real-world studies using both point ensembles and global Community Land Model Version 4 (CLM4) simulations.

  15. The Brief History and Future Development of Earth System Models:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brief History and Future Development of Earth System Models: Resolution and Complexity Warren M. Washington National Center for Atmospheric Research NERSC Lecture Series at Berkeley Lab May, 2014 Overview * Brief history of climate modeling * Brief discussion of computational methods * Environmental Justice connected to climate change * Behind the scenes White House origin of the U. S. Global Change Research Program (USGCRP) * The future of the USGCRP and National Climate Assessment The next two

  16. Mode and Intermediate Waters in Earth System Models

    SciTech Connect (OSTI)

    Gnanadesikan, Anand; Sarmiento, Jorge L.

    2015-12-22

    This report describes work done as part of a joint Princeton-Johns Hopkins project to look at the impact of mode and intermediate waters in Earth System Models. The Johns Hopkins portion of this work focussed on the role of lateral mixing in ventilating such waters, with important implications for hypoxia, the uptake of anthropogenic carbon, the dynamics of El Nino and carbon pumps. The Johns Hopkins group also collaborated with the Princeton Group to help develop a watermass diagnostics framework.

  17. FORTRAN M as a language for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1992-01-01

    FORTRAN M is a small set of extensions to FORTRAN 77 that supports a modular or object-oriented approach to the development of parallel programs. In this paper, I discuss the use of FORTRAN M as a tool for building earth system models on massively parallel computers. I hypothesize that the use of FORTRAN M has software engineering advantages and outline experiments that we are conducting to investigate this hypothesis.

  18. FORTRAN M as a language for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1992-12-31

    FORTRAN M is a small set of extensions to FORTRAN 77 that supports a modular or object-oriented approach to the development of parallel programs. In this paper, I discuss the use of FORTRAN M as a tool for building earth system models on massively parallel computers. I hypothesize that the use of FORTRAN M has software engineering advantages and outline experiments that we are conducting to investigate this hypothesis.

  19. A Scalable and Extensible Earth System Model for Climate Change Science

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect A Scalable and Extensible Earth System Model for Climate Change Science Citation Details In-Document Search Title: A Scalable and Extensible Earth System Model for Climate Change Science The objective of this award was to build a scalable and extensible Earth System Model that can be used to study climate change science. That objective has been achieved with the public release of the Community Earth System Model, version 1 (CESM1). In particular, the

  20. OSTIblog Articles in the earth systems modeling Topic | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information earth systems modeling Topic ACME - Perfecting Earth System Models by Kathy Chambers 29 Oct, 2014 in Earth system modeling as we know it and how it benefits climate change research is about to transform with the newly launched Accelerated Climate Modeling for Energy (ACME) project sponsored by the Earth System Modeling program within the Department of Energy's (DOE) Office of Biological and Environmental Research. ACME is an unprecedented

  1. Climate Model Datasets on Earth System Grid II (ESG II)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Earth System Grid (ESG) is a project that combines the power and capacity of supercomputers, sophisticated analysis servers, and datasets on the scale of petabytes. The goal is to provide a seamless distributed environment that allows scientists in many locations to work with large-scale data, perform climate change modeling and simulation,and share results in innovative ways. Though ESG is more about the computing environment than the data, still there are several catalogs of data available at the web site that can be browsed or search. Most of the datasets are restricted to registered users, but several are open to any access.

  2. SciDAC's Earth System Grid Center for Enabling Technologies Semiannual Progress Report October 1, 2010 through March 31, 2011

    SciTech Connect (OSTI)

    Williams, Dean N.

    2011-04-02

    This report summarizes work carried out by the Earth System Grid Center for Enabling Technologies (ESG-CET) from October 1, 2010 through March 31, 2011. It discusses ESG-CET highlights for the reporting period, overall progress, period goals, and collaborations, and lists papers and presentations. To learn more about our project and to find previous reports, please visit the ESG-CET Web sites: http://esg-pcmdi.llnl.gov/ and/or https://wiki.ucar.edu/display/esgcet/Home. This report will be forwarded to managers in the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER), as well as national and international collaborators and stakeholders (e.g., those involved in the Coupled Model Intercomparison Project, phase 5 (CMIP5) for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5); the Community Earth System Model (CESM); the Climate Science Computational End Station (CCES); SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science; the North American Regional Climate Change Assessment Program (NARCCAP); the Atmospheric Radiation Measurement (ARM) program; the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA)), and also to researchers working on a variety of other climate model and observation evaluation activities. The ESG-CET executive committee consists of Dean N. Williams, Lawrence Livermore National Laboratory (LLNL); Ian Foster, Argonne National Laboratory (ANL); and Don Middleton, National Center for Atmospheric Research (NCAR). The ESG-CET team is a group of researchers and scientists with diverse domain knowledge, whose home institutions include eight laboratories and two universities: ANL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), LLNL, NASA/Jet Propulsion Laboratory (JPL), NCAR, Oak Ridge National

  3. National Oceanic and Atmospheric Administration (NOAA) | Open...

    Open Energy Info (EERE)

    National Oceanic and Atmospheric Administration (NOAA) Jump to: navigation, search Logo: National Oceanic and Atmospheric Administration (NOAA) Name: National Oceanic and...

  4. Solar energy system case study: Telex Communications, Blue Earth, Minnesota

    SciTech Connect (OSTI)

    Raymond, M.G.

    1984-09-01

    A study is made of a solar energy system for space heating a 97,000-square-foot office, factory, and warehouse building owned by Telex Communications, Inc. in Blue Earth, Minnesota. The solar system has 11,520 square feet of ground-oriented flat-plate collectors and a 20,000-gallon storage tank inside the building. Freeze protection is by drainback. Solar heated water from the storage tank circulates around the clock throughout the heating season to heating coils in the ducts. The system achieves its design solar fraction, is efficient, and generally reliable, but not cost-effective. Performance data for the solar system was collected by the National Solar Data Network for three heating seasons from 1978 to 1981. Because of a freeze-up of the collector array in December 1978, the solar system was only partially operational in the 1978 to 1979 heating season. The data in this report were collected in the 1979 to 1980 and 1980 to 1981 heating seasons.

  5. Earth System Modeling (ESM) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Earth System Modeling (ESM) Program Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program

  6. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final

    Office of Scientific and Technical Information (OSTI)

    Report for University of Southern California Information Sciences Institute (Technical Report) | SciTech Connect DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute Citation Details In-Document Search Title: DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute The mission of the Earth System Grid Federation

  7. Final Report for proposal "The Interface between Earth System Models and

    Office of Scientific and Technical Information (OSTI)

    Impacts on Society Workshop, Spring 2011 (Technical Report) | SciTech Connect Technical Report: Final Report for proposal "The Interface between Earth System Models and Impacts on Society Workshop, Spring 2011 Citation Details In-Document Search Title: Final Report for proposal "The Interface between Earth System Models and Impacts on Society Workshop, Spring 2011 The creation of a new Community Earth System Model (CESM) working group, combining science-driven research with

  8. DOE Science Showcase - Earth System Models | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information Earth System Models U.S. DOE Office of Science: Getting Forest Carbon Right in Climate Models. "Boreal Forest" Image Credit: Wikimedia Commons, peupleloup. Optimizing emerging high-performance computing and information technologies, the Department of Energy's (DOE) Earth System Modeling (ESM) Program concentrates on advancing coupled climate and earth system models for climate change projections at global-to-regional spatial scales and

  9. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adam, Jennifer C.; Stephens, Jennie C.; Chung, Serena H.; Brady, Michael P.; Evans, R. David; Kruger, Chad E.; Lamb, Brian K.; Liu, Mingliang; Stöckle, Claudio O.; Vaughan, Joseph K.; et al

    2014-04-24

    Uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (e.g., land, air, water, and economics). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and “usability” of EaSMs. BioEarth is a research initiative currently under development with a focus on the U.S. Pacific Northwest region thatmore » explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a bottom-up approach for its land surface model that preserves fine spatial-scale sensitivities and lateral hydrologic connectivity, which makes it unique among many regional EaSMs. Here, we describe the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.« less

  10. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    SciTech Connect (OSTI)

    Adam, Jennifer C.; Stephens, Jennie C.; Chung, Serena H.; Brady, Michael P.; Evans, R. David; Kruger, Chad E.; Lamb, Brian K.; Liu, Mingliang; Stöckle, Claudio O.; Vaughan, Joseph K.; Rajagopalan, Kirti; Harrison, John A.; Tague, Christina L.; Kalyanaraman, Ananth; Chen, Yong; Guenther, Alex; Leung, Fok-Yan; Leung, L. Ruby; Perleberg, Andrew B.; Yoder, Jonathan; Allen, Elizabeth; Anderson, Sarah; Chandrasekharan, Bhagyam; Malek, Keyvan; Mullis, Tristan; Miller, Cody; Nergui, Tsengel; Poinsatte, Justin; Reyes, Julian; Zhu, Jun; Choate, Janet S.; Jiang, Xiaoyan; Nelson, Roger; Yoon, Jin-Ho; Yorgey, Georgine G.; Johnson, Kristen; Chinnayakanahalli, Kiran J.; Hamlet, Alan F.; Nijssen, Bart; Walden, Von

    2014-04-24

    Uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (e.g., land, air, water, and economics). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and “usability” of EaSMs. BioEarth is a research initiative currently under development with a focus on the U.S. Pacific Northwest region that explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a bottom-up approach for its land surface model that preserves fine spatial-scale sensitivities and lateral hydrologic connectivity, which makes it unique among many regional EaSMs. Here, we describe the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.

  11. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    SciTech Connect (OSTI)

    Adam, J. C.; Stephens, J. C.; Chung, Serena; Brady, M. P.; Evans, R. D.; Kruger, C. E.; Lamb, Brian K.; Liu, M. L.; Stockle, Claudio O.; Vaughan, Joseph K.; Rajagopalan, K.; Harrison, John; Tague, C. L.; Kalyanaraman, Anantharaman; Chen, Yong; Guenther, Alex B.; Leung, F. Y.; Leung, Lai-Yung R.; Perleberg, A. B.; Yoder, J.; Allen, Elizabeth; Anderson, S.; Chandrasekharan, B.; Malek, K.; Mullis, T.; Miller, C.; Nergui, T.; Poinsatte, J.; Reyes, J.; Zhu, J.; Choate, J. S.; Jiang, X.; Nelson, R.; Yoon, Jin-Ho; Yorgey, G. G.; Johnson, Kristen; Chinnayakanhalli, K. J.; Hamlet, A. F.; Nijssen, B.; Walden, Von

    2015-04-01

    As managers of agricultural and natural resources are confronted with uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (land, air, water, economics, etc). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and "usability" of EaSMs. BioEarth is a current research initiative with a focus on the U.S. Pacific Northwest region that explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a "bottom-up" approach, upscaling a catchment-scale model to basin and regional scales, as opposed to the "top-down" approach of downscaling global models utilized by most other EaSM efforts. This paper describes the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.

  12. Scaling the Earth System Grid to 100Gbps Networks

    SciTech Connect (OSTI)

    Balman, Mehmet; Sim, Alex

    2012-03-02

    The SC11 demonstration, titled Scaling the Earth System Grid to 100Gbps Networks, showed the ability to use underlying infrastructure for the movement of climate data over 100Gbps network. Climate change research is one of the critical data intensive sciences, and the amount of data is continuously growing. Climate simulation data is geographically distributed over the world, and it needs to be accessed from many sources for fast and efficient analysis and inter-comparison of simulations. We used a 100Gbps link connecting National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory (LBNL), Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL). In the demo, the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) phase 3 of the Coupled Model Intercomparison Project (CMIP-3) dataset was staged into the memory of computing nodes at ANL and ORNL from NERSC over the 100Gbps network for analysis and visualization. In general, climate simulation data consists of relatively small and large files with irregular file size distribution in each dataset. In this demo, we addressed challenges on data management in terms of high bandwidth networks, usability of existing protocols and middleware tools, and how applications can adapt and benefit from next generation networks.

  13. Improving the representation of hydrologic processes in Earth System Models

    SciTech Connect (OSTI)

    Clark, Martyn P.; Fan, Ying; Lawrence, David M.; Adam, J. C.; Bolster, Diogo; Gochis, David; Hooper, Richard P.; Kumar, Mukesh; Leung, Lai-Yung R.; Mackay, D. Scott; Maxwell, Reed M.; Shen, Chaopeng; Swenson, Sean C.; Zeng, Xubin

    2015-08-21

    Many of the scientific and societal challenges in understanding and preparing for global environmental change rest upon our ability to understand and predict the water cycle change at large river basin, continent, and global scales. However, current large-scale models, such as the land components of Earth System Models (ESMs), do not yet represent the terrestrial water cycle in a fully integrated manner or resolve the finer-scale processes that can dominate large-scale water budgets. This paper reviews the current representation of hydrologic processes in ESMs and identifies the key opportunities for improvement. This review suggests that (1) the development of ESMs has not kept pace with modeling advances in hydrology, both through neglecting key processes (e.g., groundwater) and neglecting key aspects of spatial variability and hydrologic connectivity; and (2) many modeling advances in hydrology can readily be incorporated into ESMs and substantially improve predictions of the water cycle. Accelerating modeling advances in ESMs requires comprehensive hydrologic benchmarking activities, in order to systematically evaluate competing modeling alternatives, understand model weaknesses, and prioritize model development needs. This demands stronger collaboration, both through greater engagement of hydrologists in ESM development and through more detailed evaluation of ESM processes in research watersheds. Advances in the representation of hydrologic process in ESMs can substantially improve energy, carbon and nutrient cycle prediction capabilities through the fundamental role the water cycle plays in regulating these cycles.

  14. Projections of leaf area index in earth system models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mahowald, Natalie; Lo, Fiona; Zheng, Yun; Harrison, Laura; Funk, Chris; Lombardozzi, Danica; Goodale, Christine

    2016-03-09

    The area of leaves in the plant canopy, measured as leaf area index (LAI), modulates key land–atmosphere interactions, including the exchange of energy, moisture, carbon dioxide (CO2), and other trace gases and aerosols, and is therefore an essential variable in predicting terrestrial carbon, water, and energy fluxes. Here our goal is to characterize the LAI projections from the latest generation of earth system models (ESMs) for the Representative Concentration Pathway (RCP) 8.5 and RCP4.5 scenarios. On average, the models project increases in LAI in both RCP8.5 and RCP4.5 over most of the globe, but also show decreases in some partsmore » of the tropics. Because of projected increases in variability, there are also more frequent periods of low LAI across broad regions of the tropics. Projections of LAI changes varied greatly among models: some models project very modest changes, while others project large changes, usually increases. Modeled LAI typically increases with modeled warming in the high latitudes, but often decreases with increasing local warming in the tropics. The models with the most skill in simulating current LAI in the tropics relative to satellite observations tend to project smaller increases in LAI in the tropics in the future compared to the average of all the models. Using LAI projections to identify regions that may be vulnerable to climate change presents a slightly different picture than using precipitation projections, suggesting LAI may be an additional useful tool for understanding climate change impacts. Going forward, users of LAI projections from the CMIP5 ESMs evaluated here should be aware that model outputs do not exhibit clear-cut relationships to vegetation carbon and precipitation. Lastly, our findings underscore the need for more attention to LAI projections, in terms of understanding the drivers of projected changes and improvements to model skill.« less

  15. Runtime Tracing of The Community Earth System Model: Feasibility and Benefits

    SciTech Connect (OSTI)

    Wang, Dali [ORNL] [ORNL; Domke, Jens [ORNL] [ORNL

    2011-01-01

    Community Earth System Models (CESM) is one of US's leading earth system modeling systems, which has over decades of development history and embraced by large, active user communities. In this paper, we first review the history of CESM software development and layout the general objectives of performance analysis. Then we present an offline global community land model simulation within the CESM framework to demonstrate the procedure of runtime tracing of CESM using the Vampir toolset. Finally, we explain the benefits of runtime tracing to the general earth system modeling community. We hope those considerations can also be beneficial to many other modeling research programs involving legacy high-performance computing applications.

  16. Earth System Modeling -- Director`s initiative. LDRD Program final report

    SciTech Connect (OSTI)

    MacCracken, M.; Penner, J. [Lawrence Livermore National Lab., CA (United States). Atmospheric Science Div.

    1996-06-01

    The objective of the Earth System Modeling Director`s Initiative is to develop and test a framework for interactively coupling subsystem models that represent the physical, chemical, and biological processes which determine the state of the atmosphere, ocean, land surface and vegetation. Most studies of the potential for human perturbations of the climate system made previously have treated only limited components of the Earth system. The purpose of this project was to demonstrate the capability of coupling all relevant components in a flexible framework that will permit a wide variety of tests to be conducted to assure realistic interactions. A representation of the Earth system is shown and its important interactions.

  17. ARM - Campaign Instrument - noaa-p3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p3 Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA P-3 Aircraft (NOAA-P3) Instrument Categories...

  18. ARM - Campaign Instrument - noaa-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA Airborne Aerosol Instruments (NOAA-AIR) Instrument Categories...

  19. NOAA's Hurricane Field Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Image: Courtesy of NOAA Measuring storms 4 of 4 Measuring storms A workstation on a NOAA P-3 aircraft, where operators launch sondes (brown tube in front of the operator) that ...

  20. 2011 Community Earth System Model (CESM) Tutorial, August 1-5, 2011

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: 2011 Community Earth System Model (CESM) Tutorial, August 1-5, 2011 Citation Details In-Document Search Title: 2011 Community Earth System Model (CESM) Tutorial, August 1-5, 2011 In fiscal year 2011, the Community Earth System Model (CESM) tutorial was taught at NCAR from 1-5 August 2011. This project hosted 79 full participants (1 accepted participant from China couldn't get a visa) selected from 180 applications. The tutorial was advertised

  1. 2011 Community Earth System Model (CESM) Tutorial, August 1-5...

    Office of Scientific and Technical Information (OSTI)

    Model (CESM) Tutorial, August 1-5, 2011 Citation Details In-Document Search Title: 2011 Community Earth System Model (CESM) Tutorial, August 1-5, 2011 In fiscal year 2011, the ...

  2. In the OSTI Collections: Earth System Models | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Earth System Models Dr. Watson computer sleuthing scientist. Article Acknowledgement: Dr. William N. Watson, Physicist DOE Office of Scientific and Technical Information Experiment, theoretical analysis, and something like both Perfecting and using earth system models Enabling technologies, user training Towards decisions References Reports available from SciTech Connect Research organizations Additional References "The abstract of the

  3. ARM - Campaign Instrument - amsu-b-noaa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsamsu-b-noaa Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA Advanced Microwave Sounding Unit-B (AMSU-B-NOAA) Instrument Categories Cloud Properties, Derived Quantities and Models, Satellite Observations Campaigns Spring Cloud IOP [ Download Data ] Southern Great Plains, 2000.03.01 - 2000.03.26 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) [ Download Data ] Tropical Western Pacific,

  4. ARM - Campaign Instrument - kite-noaa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentskite-noaa Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA Tethered Kite (KITE-NOAA) Instrument Categories Airborne Observations Campaigns Fall 1997 Water Vapor IOP [ Download Data ] Southern Great Plains, 1997.09.15 - 1997.10.05 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file headers for the list of all available

  5. BioMon: A Google Earth Based Continuous Biomass Monitoring System (Demo Paper)

    SciTech Connect (OSTI)

    Vatsavai, Raju

    2009-01-01

    We demonstrate a Google Earth based novel visualization system for continuous monitoring of biomass at regional and global scales. This system is integrated with a back-end spatiotemporal data mining system that continuously detects changes using high temporal resolution MODIS images. In addition to the visualization, we demonstrate novel query features of the system that provides insights into the current conditions of the landscape.

  6. Improved structural systems for earth sheltered housing. Structural supplement to the design program

    SciTech Connect (OSTI)

    Behr, R.

    1981-10-01

    Additional engineering information is provided with regard to the structural analysis and design of thin shell concrete structures. The design program has tentatively demonstrated the overall architectural and marketing feasibility of curved, thin shell structural systems for earth sheltered housing. This supplement will address the structural feasibility question by presenting a complete manual analysis and structural design of an earth sheltered dome/tension ring/wall structural system, and also by presenting the results of a parametric sensitivity study of the dome/ring/wall configuration with respect to variations in span and rise for a three foot soil loading condition. Double curvature dome configurations are emphasized in this structural supplement because their analysis is not extensively addressed in earth sheltered housing literature.

  7. Earth System Grid (ESG) Data Node Software Stack

    Energy Science and Technology Software Center (OSTI)

    2009-12-01

    The ESG-CET system consist of two major components: 1) Gateways that support portal services, which serve as interfaces to end-users who can search, discover, and request data and data products, and 2) Data Nodes where the data actually resides. The Data is "published" to the Data Node, which makes the data visible to a Gateway and enables its delivery to end-users. It is expected that Gateways will only be installed by a small number ofmore » centers devoted to serving data (e.g., LLNL/PCMDI, NCAR, GFDL, DADC, DKRZ, ANU, JAMSTEC), whereas it is hoped that most climate modeling centers will install the Data Node software through which they can serve their model output.« less

  8. Department of Energy to Provide Supercomputing Time to Run NOAA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy to Provide Supercomputing Time to Run NOAA's Climate Change Models Department of Energy to Provide Supercomputing Time to Run NOAA's Climate Change Models ...

  9. The integrated Earth System Model (iESM): formulation and functionality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; Di Vittorio, A. V.; Jones, A. D.; Bond-Lamberty, B.; Calvin, K. V.; Edmonds, J. A.; Kim, S. H.; Thomson, A. M.; et al

    2015-01-21

    The integrated Earth System Model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. The iESM projectmore » integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  10. Funding Opportunity from NOAA's Office of Education

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOAA's Office of Education (OEd) has issued a request for applications for projects designed to strengthen the public's and/or K-12 students' environmental literacy to improve community resilience...

  11. Multicomponent analysis of mixed rare-earth metal ion solutions by the electronic tongue sensor system

    SciTech Connect (OSTI)

    Legin, A.; Kirsanov, D.; Rudnitskaya, A.; Rovny, S.; Logunov, M.

    2007-07-01

    Novel electrochemical sensors based on well-known extracting agents are developed. Sensors have shown high sensitivity towards a variety of rear earth metal ions in acidic media at pH=2. Multi-sensor system (electronic tongue) comprising newly developed sensors was successfully applied for the analysis of binary and ternary mixtures of Ce{sup 3+}, Nd{sup 3+}, Sm{sup 3+} and Gd{sup 3+} cations in different combinations. (authors)

  12. Earth Systems Questions in Experimental Climate Change Science: Pressing Questions and Necessary Facilities

    SciTech Connect (OSTI)

    Osmond, B.

    2002-05-20

    Sixty-four scientists from universities, national laboratories, and other research institutions worldwide met to evaluate the feasibility and potential of the Biosphere2 Laboratory (B2L) as an inclusive multi-user scientific facility (i.e., a facility open to researchers from all institutions, according to agreed principles of access) for earth system studies and engineering research, education, and training relevant to the mission of the United States Department of Energy (DOE).

  13. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect (OSTI)

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  14. THROUGH-THE-EARTH (TTE) COMMUNICATIONS SYSTEM AND THE IN-MINE POWER LINE (IMPL) COMMUNICATIONS SYSTEM

    SciTech Connect (OSTI)

    Zvi H. Meiksin

    2002-01-01

    Work has progressed on both subsystems: the Through-the-Earth (TTE) Communications system and the In-Mine Power Line (IMPL) Communications system. The TTE system: The system was fabricated and repackaged as an industrial product enclosed in a commercial rugged, waterproof housing suitable for installation in mines. Features were added to the system to appeal to the preferences of different mine managers. Arrangements were made with NIOSH to install the system in the Lake Lynn underground mine for evaluation and demonstration to potential users. The IMPL system: Voice compression was successfully implemented and incorporated into the laboratory model. Compressed voice was transmitted through a power line, expanded at the receiving end, and received with high clarity.

  15. A Subbasin-based framework to represent land surface processes in an Earth System Model

    SciTech Connect (OSTI)

    Tesfa, Teklu K.; Li, Hongyi; Leung, Lai-Yung R.; Huang, Maoyi; Ke, Yinghai; Sun, Yu; Liu, Ying

    2014-05-20

    Realistically representing spatial heterogeneity and lateral land surface processes within and between modeling units in earth system models is important because of their implications to surface energy and water exchange. The traditional approach of using regular grids as computational units in land surface models and earth system models may lead to inadequate representation of lateral movements of water, energy and carbon fluxes, especially when the grid resolution increases. Here a new subbasin-based framework is introduced in the Community Land Model (CLM), which is the land component of the Community Earth System Model (CESM). Local processes are represented assuming each subbasin as a grid cell on a pseudo grid matrix with no significant modifications to the existing CLM modeling structure. Lateral routing of water within and between subbasins is simulated with the subbasin version of a recently-developed physically based routing model, Model for Scale Adaptive River Routing (MOSART). As an illustration, this new framework is implemented in the topographically diverse region of the U.S. Pacific Northwest. The modeling units (subbasins) are delineated from high-resolution Digital Elevation Model while atmospheric forcing and surface parameters are remapped from the corresponding high resolution datasets. The impacts of this representation on simulating hydrologic processes are explored by comparing it with the default (grid-based) CLM representation. In addition, the effects of DEM resolution on parameterizing topography and the subsequent effects on runoff processes are investigated. Limited model evaluation and comparison showed that small difference between the averaged forcing can lead to more significant difference in the simulated runoff and streamflow because of nonlinear horizontal processes. Topographic indices derived from high resolution DEM may not improve the overall water balance, but affect the partitioning between surface and subsurface runoff

  16. On an improved sub-regional water resources management representation for integration into earth system models

    SciTech Connect (OSTI)

    Voisin, Nathalie; Li, Hongyi; Ward, Duane L.; Huang, Maoyi; Wigmosta, Mark S.; Leung, Lai-Yung R.

    2013-09-30

    Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of earth system models in hydrologic and climate predictions, as well as impact studies at regional to global scales. Emerging large-scale research reservoir models use generic operating rules that are flexible for coupling with earth system models. Those generic operating rules have been successful in reproducing the overall regulated flow at large basin scales. This study investigates the uncertainties of the reservoir models from different implementations of the generic operating rules using the complex multi-objective Columbia River Regulation System in northwestern United States as an example to understand their effects on not only regulated flow but also reservoir storage and fraction of the demand that is met. Numerical experiments are designed to test new generic operating rules that combine storage and releases targets for multi-purpose reservoirs and to compare the use of reservoir usage priorities, withdrawals vs. consumptive demand, as well as natural vs. regulated mean flow for calibrating operating rules. Overall the best performing implementation is the use of the combined priorities (flood control storage targets and irrigation release targets) operating rules calibrated with mean annual natural flow and mean monthly withdrawals. The challenge of not accounting for groundwater withdrawals, or on the contrary, assuming that all remaining demand is met through groundwater extractions, is discussed.

  17. Progress Report 2008: A Scalable and Extensible Earth System Model for Climate Change Science

    SciTech Connect (OSTI)

    Drake, John B; Worley, Patrick H; Hoffman, Forrest M; Jones, Phil

    2009-01-01

    This project employs multi-disciplinary teams to accelerate development of the Community Climate System Model (CCSM), based at the National Center for Atmospheric Research (NCAR). A consortium of eight Department of Energy (DOE) National Laboratories collaborate with NCAR and the NASA Global Modeling and Assimilation Office (GMAO). The laboratories are Argonne (ANL), Brookhaven (BNL) Los Alamos (LANL), Lawrence Berkeley (LBNL), Lawrence Livermore (LLNL), Oak Ridge (ORNL), Pacific Northwest (PNNL) and Sandia (SNL). The work plan focuses on scalablity for petascale computation and extensibility to a more comprehensive earth system model. Our stated goal is to support the DOE mission in climate change research by helping ... To determine the range of possible climate changes over the 21st century and beyond through simulations using a more accurate climate system model that includes the full range of human and natural climate feedbacks with increased realism and spatial resolution.

  18. Earth materials and earth dynamics

    SciTech Connect (OSTI)

    Bennett, K; Shankland, T.

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  19. NOAA Hydropower and Fish Passage webpage | Open Energy Information

    Open Energy Info (EERE)

    NOAA Hydropower and Fish Passage webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: NOAA Hydropower and Fish Passage webpage Author National...

  20. NOAA Webinar: The U.S. Climate Resilience Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hosted by the National Oceanic and Atmospheric Administration (NOAA), this webinar will demonstrate the U.S. Climate Resilience Toolkit.

  1. The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geo-Spatial Data

    SciTech Connect (OSTI)

    Cinquini, Luca; Crichton, Daniel; Miller, Neill; Mattmann, Chris; Harney, John F; Shipman, Galen M; Wang, Feiyi; Bell, Gavin; Drach, Bob; Ananthakrishnan, Rachana; Pascoe, Stephen; Fiore, Sandro; Schweitzer, Roland; Danvil, Sebastian; Morgan, Mark

    2012-01-01

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF s architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL, GSI and SAML). The ESGF software is developed collaboratively across institutional boundaries and made available to the community as open source. It has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire model output used for the next international assessment report on climate change (IPCC-AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs).

  2. The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geospatial Data

    SciTech Connect (OSTI)

    Ananthakrishnan, Rachana; Bell, Gavin; Cinquini, Luca; Crichton, Daniel; Danvil, Sebastian; Drach, Bob; Fiore, Sandro; Gonzalez, Estanislao; Harney, John F; Mattmann, Chris; Kershaw, Philip; Morgan, Mark; Pascoe, Stephen; Shipman, Galen M; Wang, Feiyi

    2013-01-01

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF s architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL, GSI and SAML). The ESGF software is developed collaboratively across institutional boundaries and made available to the community as open source. It has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire model output used for the next international assessment report on climate change (IPCC-AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs).

  3. 2014 Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Conference Report

    SciTech Connect (OSTI)

    Williams, Dean N.

    2015-01-27

    The climate and weather data science community met December 9–11, 2014, in Livermore, California, for the fourth annual Earth System Grid Federation (ESGF) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Conference, hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UVCDATremain global collaborations committed to developing a new generation of open-source software infrastructure that provides distributed access and analysis to simulated and observed data from the climate and weather communities. The tools and infrastructure created under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change. In addition, the F2F conference fosters a stronger climate and weather data science community and facilitates a stronger federated software infrastructure. The 2014 F2F conference detailed the progress of ESGF, UV-CDAT, and other community efforts over the year and sets new priorities and requirements for existing and impending national and international community projects, such as the Coupled Model Intercomparison Project Phase Six. Specifically discussed at the conference were project capabilities and enhancements needs for data distribution, analysis, visualization, hardware and network infrastructure, standards, and resources.

  4. Final Report Collaborative Project. Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    SciTech Connect (OSTI)

    Bryan, Frank; Dennis, John; MacCready, Parker; Whitney, Michael

    2015-11-20

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation. The main computational objectives were: 1. To develop computationally efficient, but physically based, parameterizations of estuary and continental shelf mixing processes for use in an Earth System Model (CESM). 2. To develop a two-way nested regional modeling framework in order to dynamically downscale the climate response of particular coastal ocean regions and to upscale the impact of the regional coastal processes to the global climate in an Earth System Model (CESM). 3. To develop computational infrastructure to enhance the efficiency of data transfer between specific sources and destinations, i.e., a point-to-point communication capability, (used in objective 1) within POP, the ocean component of CESM.

  5. A modern solver framework to manage solution algorithms in the Community Earth System Model

    SciTech Connect (OSTI)

    Evans, Katherine J [ORNL; Worley, Patrick H [ORNL; Nichols, Dr Jeff A [ORNL; WhiteIII, James B [National Center for Atmospheric Research (NCAR); Salinger, Andy [Sandia National Laboratories (SNL); Price, Stephen [Los Alamos National Laboratory (LANL); Lemieux, Jean-Francois [New York University; Lipscomb, William [Los Alamos National Laboratory (LANL); Perego, Mauro [Florida State University; Vertenstein, Mariana [National Center for Atmospheric Research (NCAR); Edwards, Jim [IBM and National Center for Atmospheric Research

    2012-01-01

    Global Earth-system models (ESM) can now produce simulations that resolve ~50 km features and include finer-scale, interacting physical processes. In order to achieve these scale-length solutions, ESMs require smaller time steps, which limits parallel performance. Solution methods that overcome these bottlenecks can be quite intricate, and there is no single set of algorithms that perform well across the range of problems of interest. This creates significant implementation challenges, which is further compounded by complexity of ESMs. Therefore, prototyping and evaluating new algorithms in these models requires a software framework that is flexible, extensible, and easily introduced into the existing software. We describe our efforts to create a parallel solver framework that links the Trilinos library of solvers to Glimmer-CISM, a continental ice sheet model used in the Community Earth System Model (CESM). We demonstrate this framework within both current and developmental versions of Glimmer-CISM and provide strategies for its integration into the rest of the CESM.

  6. Exploring the isopycnal mixing and helium-heat paradoxes in a suite of Earth System Models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gnanadesikan, A.; Abernathey, R.; Pradal, M.-A.

    2014-11-20

    This paper uses a suite of Earth System models which simulate the distribution of He isotopes and radiocarbon to examine two paradoxes in Earth science. The helium-heat paradox refers to the fact that helium emissions to the deep ocean are far lower than would be expected given the rate of geothermal heating, since both are thought to be the result of radioactive decay in the earth's interior. The isopycnal mixing paradox comes from the fact that many theoretical parameterizations of the isopycnal mixing coefficient ARedi that link it to baroclinic instability project it to be small (of order a fewmore » hundred m2 s−1) in the ocean interior away from boundary currents. However, direct observations using tracers and floats (largely in the upper ocean) suggest that values of this coefficient are an order of magnitude higher. Because helium isotopes equilibrate rapidly with the atmosphere, but radiocarbon equilibrates slowly, it might be thought that resolving the isopycnal mixing paradox in favor of the higher observational estimates of ARedi might also solve the helium paradox. In this paper we show that this is not the case. In a suite of models with different spatially constant and spatially varying values of ARedi the distribution of radiocarbon and helium isotopes is sensitive to the value of ARedi. However, away from strong helium sources in the Southeast Pacific, the relationship between the two is not sensitive, indicating that large-scale advection is the limiting process for removing helium and radiocarbon from the deep ocean. The helium isotopes, in turn, suggest a higher value of ARedi in the deep ocean than is seen in theoretical parameterizations based on baroclinic growth rates. We argue that a key part of resolving the isopycnal mixing paradox is to abandon the idea that ARedi has a direct relationship to local baroclinic instability and to the so called "thickness" mixing coefficient AGM.« less

  7. Exploring the isopycnal mixing and helium–heat paradoxes in a suite of Earth system models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gnanadesikan, A.; Pradal, M.-A.; Abernathey, R.

    2015-07-27

    This paper uses a suite of Earth system models which simulate the distribution of He isotopes and radiocarbon to examine two paradoxes in Earth science, each of which results from an inconsistency between theoretically motivated global energy balances and direct observations. The helium–heat paradox refers to the fact that helium emissions to the deep ocean are far lower than would be expected given the rate of geothermal heating, since both are thought to be the result of radioactive decay in Earth's interior. The isopycnal mixing paradox comes from the fact that many theoretical parameterizations of the isopycnal mixing coefficient ARedimore » that link it to baroclinic instability project it to be small (of order a few hundred m2 s−1) in the ocean interior away from boundary currents. However, direct observations using tracers and floats (largely in the upper ocean) suggest that values of this coefficient are an order of magnitude higher. Helium isotopes equilibrate rapidly with the atmosphere and thus exhibit large gradients along isopycnals while radiocarbon equilibrates slowly and thus exhibits smaller gradients along isopycnals. Thus it might be thought that resolving the isopycnal mixing paradox in favor of the higher observational estimates of ARedi might also solve the helium paradox, by increasing the transport of mantle helium to the surface more than it would radiocarbon. In this paper we show that this is not the case. In a suite of models with different spatially constant and spatially varying values of ARedi the distribution of radiocarbon and helium isotopes is sensitive to the value of ARedi. However, away from strong helium sources in the southeastern Pacific, the relationship between the two is not sensitive, indicating that large-scale advection is the limiting process for removing helium and radiocarbon from the deep ocean. The helium isotopes, in turn, suggest a higher value of ARedi below the thermocline than is seen in theoretical

  8. 2011 Community Earth System Model (CESM) Tutorial, August 1-5, 2011

    SciTech Connect (OSTI)

    Hurrell, James W.

    2013-10-11

    In fiscal year 2011, the Community Earth System Model (CESM) tutorial was taught at NCAR from 1-5 August 2011. This project hosted 79 full participants (1 accepted participant from China couldn't get a visa) selected from 180 applications. The tutorial was advertised through emails to CESM mailing lists. NCAR staff and long-term visitors (who were not eligible to attend) were also invited to 'audit' the climate and practical lectures and to work on the practical sessions on their own. 15 NCAR staff and long-term visitors took advantage of this opportunity. The majority of the students were graduate students, but several post-docs, faculty, and other research scientists also attended. Additionally, many people are using the on-line lessons and practical sessions. As of August 18, 2011, 407 people had registered to access and use the tutorial from 33 countries all over the world, but a majority from US universities. In fiscal year 2011, the Climate and Global Dynamics Division Information Systems Group (CGD/ISG) built and operated a temporary computer laboratory in a meeting room. This project was made possible through funding from the National Science Foundation Directorate of Geosciences, and the Department of Energy Office of Science.

  9. The Cost of Jointness: Insights from Environmental Monitoring Systems in Low-Earth Orbit

    SciTech Connect (OSTI)

    Dwyer, Morgan Maeve

    2014-09-01

    This report summarizes the results of doctoral research that explored the cost impact of acquiring complex government systems jointly. The report begins by reviewing recent evidence that suggests that joint programs experience greater cost growth than non-joint programs. It continues by proposing an alternative approach for studying cost growth on government acquisition programs and demonstrates the utility of this approach by applying it to study the cost of jointness on three past programs that developed environmental monitoring systems for low-Earth orbit. Ultimately, the report concludes that joint programs' costs grow when the collaborating government agencies take action to retain or regain their autonomy. The report provides detailed qualitative and quantitative data in support of this conclusion and generalizes its findings to other joint programs that were not explicitly studied here. Finally, it concludes by presenting a quantitative model that assesses the cost impacts of jointness and by demonstrating how government agencies can more effectively architect joint programs in the future.

  10. Department of Energy's Biological and Environmental Research Strategic Data Roadmap for Earth System Science

    SciTech Connect (OSTI)

    Williams, Dean N.; Palanisamy, Giri; Shipman, Galen; Boden, Thomas A.; Voyles, Jimmy W.

    2014-04-25

    Rapid advances in experimental, sensor, and computational technologies and techniques are driving exponential growth in the volume, acquisition rate, variety, and complexity of scientific data. This wealth of scientifically meaningful data has tremendous potential to lead to scientific discovery. However, to achieve scientific breakthroughs, these data must be exploitable—they must be analyzed effectively and efficiently and the results shared and communicated easily within the wider Department of Energy’s (DOE’s) Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) community. The explosion in data complexity and scale makes these tasks exceedingly difficult to achieve, particularly given that an increasing number of disciplines are working across techniques, integrating simulation and experimental or observational results (see Table 5 in Appendix 2). Consequently, we need new approaches to data management, analysis, and visualization that provide research teams with easy-to-use and scalable end-to-end solutions. These solutions must facilitate (and where feasible, automate and capture) every stage in the data lifecycle (shown in Figure 1), from collection to management, annotation, sharing, discovery, analysis, and visualization. In addition, the core functionalities are the same across climate science communities, but they require customization to adapt to specific needs and fit into research and analysis workflows. To this end, the mission of CESD’s Data and Informatics Program is to integrate all existing and future distributed CESD data holdings into a seamless and unified environment for the acceleration of Earth system science.

  11. Leaf respiration (GlobResp) - global trait database supports Earth System Models

    SciTech Connect (OSTI)

    Wullschleger, Stan D.; Warren, Jeffrey; Thornton, Peter E.

    2015-03-20

    Here we detail how Atkin and his colleagues compiled a global database (GlobResp) that details rates of leaf dark respiration and associated traits from sites that span Arctic tundra to tropical forests. This compilation builds upon earlier research (Reich et al., 1998; Wright et al., 2006) and was supplemented by recent field campaigns and unpublished data.In keeping with other trait databases, GlobResp provides insights on how physiological traits, especially rates of dark respiration, vary as a function of environment and how that variation can be used to inform terrestrial biosphere models and land surface components of Earth System Models. Although an important component of plant and ecosystem carbon (C) budgets (Wythers et al., 2013), respiration has only limited representation in models. Seen through the eyes of a plant scientist, Atkin et al. (2015) give readers a unique perspective on the climatic controls on respiration, thermal acclimation and evolutionary adaptation of dark respiration, and insights into the covariation of respiration with other leaf traits. We find there is ample evidence that once large databases are compiled, like GlobResp, they can reveal new knowledge of plant function and provide a valuable resource for hypothesis testing and model development.

  12. Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases. Final report

    SciTech Connect (OSTI)

    Prather, Michael J.; Hsu, Juno; Nicolau, Alex; Veidenbaum, Alex; Smith, Philip Cameron; Bergmann, Dan

    2014-11-07

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  13. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect (OSTI)

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM). We have made substantial progress in model development and evaluation, computational efficiencies and software engineering, and data development and evaluation, as discussed in Sections 2-4. Section 5 presents our success in data dissemination, while Section 6 discusses the scientific impacts of our work. Section 7 discusses education and mentoring success of our project, while Section 8 lists our relevant DOE services. All peer-reviewed papers that acknowledged this project are listed in Section 9. Highlights of our achievements include: • We have finished 20 papers (most published already) on model development and evaluation, computational efficiencies and software engineering, and data development and evaluation • The global datasets developed under this project have been permanently archived and publicly available • Some of our research results have already been implemented in WRF and CLM • Patrick Broxton and Michael Brunke have received their Ph.D. • PI Zeng has served on DOE proposal review panels and DOE lab scientific focus area (SFA) review panels

  14. Incorporating Stakeholder Decision Support Needs into an Integrated Regional Earth System Model

    SciTech Connect (OSTI)

    Rice, Jennie S.; Moss, Richard H.; Runci, Paul J.; Anderson, K. L.; Malone, Elizabeth L.

    2012-03-21

    A new modeling effort exploring the opportunities, constraints, and interactions between mitigation and adaptation at regional scale is utilizing stakeholder engagement in an innovative approach to guide model development and demonstration, including uncertainty characterization, to effectively inform regional decision making. This project, the integrated Regional Earth System Model (iRESM), employs structured stakeholder interactions and literature reviews to identify the most relevant adaptation and mitigation alternatives and decision criteria for each regional application of the framework. The information is used to identify important model capabilities and to provide a focus for numerical experiments. This paper presents the stakeholder research results from the first iRESM pilot region. The pilot region includes the Great Lakes Basin in the Midwest portion of the United States as well as other contiguous states. This geographic area (14 states in total) permits cohesive modeling of hydrologic systems while also providing gradients in climate, demography, land cover/land use, and energy supply and demand. The results from the stakeholder research indicate that iRESM should prioritize addressing adaptation alternatives in the water resources, urban infrastructure, and agriculture sectors, such as water conservation, expanded water quality monitoring, altered reservoir releases, lowered water intakes, urban infrastructure upgrades, increased electric power reserves in urban areas, and land use management/crop selection changes. Regarding mitigation alternatives, the stakeholder research shows a need for iRESM to focus on policies affecting the penetration of renewable energy technologies, and the costs and effectiveness of energy efficiency, bioenergy production, wind energy, and carbon capture and sequestration.

  15. Dave Turner NOAA / Na.onal Severe Storms Laboratory ARM Summer Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dave Turner NOAA / Na.onal Severe Storms Laboratory ARM Summer Workshop University of Oklahoma 15-24 July 2015 My Goal I don't want passive remote sensing be this! Important for Remote Sensing Important for Earth's Energy Balance My talk O O Oxygen N N Nitrogen O C Carbon Monoxide O O C Carbon Dioxide N N O Nitrous Oxide O H H Water O O O Ozone H C H H H Methane No (magnetic dipole) Yes No No Yes Yes Yes Yes Molecule Structure Permanent Electirc Dipole Moment? linear linear linear linear linear

  16. A Generalized Stability Analysis of the AMOC in Earth System Models: Implication for Decadal Variability and Abrupt Climate Change

    SciTech Connect (OSTI)

    Fedorov, Alexey V.; Fedorov, Alexey

    2015-01-14

    The central goal of this research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) as related to climate variability and abrupt climate change within a hierarchy of climate models ranging from realistic ocean models to comprehensive Earth system models. Generalized Stability Analysis, a method that quantifies the transient and asymptotic growth of perturbations in the system, is one of the main approaches used throughout this project. The topics we have explored range from physical mechanisms that control AMOC variability to the factors that determine AMOC predictability in the Earth system models, to the stability and variability of the AMOC in past climates.

  17. DOE SciDAC's Earth System Grid Center for Enabling Technologies Final Report

    SciTech Connect (OSTI)

    Williams, Dean N.

    2011-09-27

    The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy's (DOE's) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing

  18. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    SciTech Connect (OSTI)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.

  19. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; Primeau, F.

    2015-01-12

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a fact that is often omitted from biogeochemical ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observationalmore » data coverage and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C : N : P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model (CESM) and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1, 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively, with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. Dissolved organic carbon (DOC) export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  20. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; Primeau, F.

    2014-06-16

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a~fact that is often omitted from biogeochemical-ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observational data coveragemore » and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C / N / P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1), 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. DOC export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  1. On linking an Earth system model to the equilibrium carbon representation of an economically optimizing land use model

    SciTech Connect (OSTI)

    Bond-Lamberty, Benjamin; Calvin, Katherine V.; Jones, Andrew D.; Mao, Jiafu; Patel, Pralit L.; Shi, Xiaoying; Thomson, Allison M.; Thornton, Peter E.; Zhou, Yuyu

    2014-01-01

    Human activities are significantly altering biogeochemical cycles at the global scale, posing a significant problem for earth system models (ESMs), which may incorporate static land-use change inputs but do not actively simulate policy or economic forces. One option to address this problem is a to couple an ESM with an economically oriented integrated assessment model. Here we have implemented and tested a coupling mechanism between the carbon cycles of an ESM (CLM) and an integrated assessment (GCAM) model, examining the best proxy variables to share between the models, and quantifying our ability to distinguish climate- and land-use-driven flux changes. CLMs net primary production and heterotrophic respiration outputs were found to be the most robust proxy variables by which to manipulate GCAMs assumptions of long-term ecosystem steady state carbon, with short-term forest production strongly correlated with long-term biomass changes in climate-change model runs. By leveraging the fact that carbon-cycle effects of anthropogenic land-use change are short-term and spatially limited relative to widely distributed climate effects, we were able to distinguish these effects successfully in the model coupling, passing only the latter to GCAM. By allowing climate effects from a full earth system model to dynamically modulate the economic and policy decisions of an integrated assessment model, this work provides a foundation for linking these models in a robust and flexible framework capable of examining two-way interactions between human and earth system processes.

  2. Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models

    SciTech Connect (OSTI)

    Hoffman, Forrest M [ORNL] [ORNL; Randerson, James T. [University of California, Irvine] [University of California, Irvine; Arora, Vivek K. [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada] [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada; Bao, Qing [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics] [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics; Cadule, Patricia [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment] [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment; Ji, Duoying [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing] [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing; Jones, Chris D. [Hadley Centre, U.K. Met Office] [Hadley Centre, U.K. Met Office; Kawamiya, Michio [Japan Agency for Marine-Earth Science and Technology (JAMSTEC)] [Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Khatiwala, Samar [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY] [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY; Lindsay, Keith [National Center for Atmospheric Research (NCAR)] [National Center for Atmospheric Research (NCAR); Obata, Atsushi [Meteorological Research Institute, Japan] [Meteorological Research Institute, Japan; Shevliakova, Elena [Princeton University] [Princeton University; Six, Katharina D. [Max Planck Institute for Meteorology, Hamburg, Germany] [Max Planck Institute for Meteorology, Hamburg, Germany; Tjiputra, Jerry F. [Uni Climate, Uni Research] [Uni Climate, Uni Research; Volodin, Evgeny M. [Institute of Numerical Mathematics, Russian Academy of Science, Moscow] [Institute of Numerical Mathematics, Russian Academy of Science, Moscow; Wu, Tongwen [China Meteorological Administration (CMA), Beijing] [China Meteorological Administration (CMA), Beijing

    2014-01-01

    The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in

  3. Case Study: Innovative Energy Efficiency Approaches in NOAA's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Security Computing Center in Fairmont, West Virginia | Department of Energy Innovative Energy Efficiency Approaches in NOAA's Environmental Security Computing Center in Fairmont, West Virginia Case Study: Innovative Energy Efficiency Approaches in NOAA's Environmental Security Computing Center in Fairmont, West Virginia Document summarizes three data centers evaluated for potential energy efficiency improvements. These three data centers represent a broad cross section of the

  4. Livermore Lab's giant laser system will bring star power to Earth

    SciTech Connect (OSTI)

    Moses, E

    2010-04-08

    In the 50 years since the laser was first demonstrated in Malibu, California, on May 16, 1960, Lawrence Livermore National Laboratory (LLNL) has been a world leader in laser technology and the home for many of the world's most advanced laser systems. That tradition continues today at LLNL's National Ignition Facility (NIF), the world's most energetic laser system. NIF's completion in March 2009 not only marked the dawn of a new era of scientific research - it could also prove to be the next big step in the quest for a sustainable, carbon-free energy source for the world. NIF consists of 192 laser beams that will focus up to 1.8 million joules of energy on a bb-sized target filled with isotopes of hydrogen - forcing the hydrogen nuclei to collide and fuse in a controlled thermonuclear reaction similar to what happens in the sun and the stars. More energy will be produced by this 'ignition' reaction than the amount of laser energy required to start it. This is the long-sought goal of 'energy gain' that has eluded fusion researchers for more than half a century. Success will be a scientific breakthrough - the first demonstration of fusion ignition in a laboratory setting, duplicating on Earth the processes that power the stars. This impending success could not be achieved without the valuable partnerships forged with other national and international laboratories, private industry and universities. One of the most crucial has been between LLNL and the community in which it resides. Over 155 businesses in the local Tri-Valley area have contributed to the NIF, from industrial technology and engineering firms to tool manufacturing, electrical, storage and supply companies. More than $2.3B has been spent locally between contracts with nearby merchants and employee salaries. The Tri-Valley community has enabled the Laboratory to complete a complex and far-reaching project that will have national and global impact in the future. The first experiments were conducted on NIF

  5. 3rd Annual Earth System Grid Federation and 3rd Annual Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Face-to-Face Meeting Report December 2013

    SciTech Connect (OSTI)

    Williams, Dean N.

    2014-02-21

    The climate and weather data science community gathered December 3–5, 2013, at Lawrence Livermore National Laboratory, in Livermore, California, for the third annual Earth System Grid Federation (ESGF) and Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Meeting, which was hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UV-CDAT are global collaborations designed to develop a new generation of open-source software infrastructure that provides distributed access and analysis to observed and simulated data from the climate and weather communities. The tools and infrastructure developed under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change, while the F2F meetings help to build a stronger climate and weather data science community and stronger federated software infrastructure. The 2013 F2F meeting determined requirements for existing and impending national and international community projects; enhancements needed for data distribution, analysis, and visualization infrastructure; and standards and resources needed for better collaborations.

  6. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    SciTech Connect (OSTI)

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  7. DOE SciDAC's Earth System Grid Center for Enabling Technologies...

    Office of Scientific and Technical Information (OSTI)

    Jet Propulsion Laboratory, and the National Oceanic and Atmospheric Administration. ... System Grid, data replication, system monitoring Word Cloud More Like This Full Text ...

  8. Earth System Grid Center for Enabling Technologies (ESG-CET): A Data Infrastructure for Data-Intensive Climate Research

    SciTech Connect (OSTI)

    Williams, Dean N.

    2011-06-03

    For the Earth System Grid Federation (ESGF), the ESG-CET team has led international development and delivered a production environment for managing and accessing ultrascale climate data. This production environment includes multiple national and international climate projects (e.g., Couple Model Intercomparison Project, Community Earth System Model), ocean model data (such as the Parallel Ocean Program), observation data (Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, and so forth), and analysis and visualization tools, all of which serve a diverse community of users. These data holdings and services are distributed across multiple ESG-CET sites (such as LANL, LBNL, LLNL, NCAR, and ORNL) as well as at unfunded partners sites such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing Centre, and the National Aeronautics and Space Administration Jet Propulsion Laboratory. More recently, ESG-CET has been extending services beyond data-file access and delivery to develop more detailed information products (scientific graphics, animations, etc.), secure binary data-access services (based upon the OPeNDAP protocol), and server-side analysis capabilities. These will allow users to request data subsets transformed through commonly used analysis and intercomparison procedures. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users seeking to understand, process, extract value from, visualize, and/or communicate it to others. This ongoing effort, though daunting in scope and complexity, will greatly magnify the value of numerical climate model outputs and climate observations for future national and international climate-assessment reports

  9. Luminescent nanocrystals in the rare-earth niobatezirconia system formed via hydrothermal method

    SciTech Connect (OSTI)

    Hirano, Masanori Dozono, Hayato

    2013-08-15

    Luminescent nanocrystals based on the rare-earth niobates (Ln{sub 3}NbO{sub 7}, Ln=Y, Eu) and zirconia (ZrO{sub 2}) that were composed of 50 mol% Ln{sub 3}NbO{sub 7} and 50 mol% ZrO{sub 2}, were hydrothermally formed as cubic phase under weakly basic conditions at 240 C. The lattice parameter of the as-prepared nanoparticles corresponding to the composition of Y{sub 3?x}Eu{sub x}NbO{sub 7}4ZrO{sub 2} that was estimated as a single phase of cubic gradually increased as the content of europium x increased. The existence of small absorbance peaks at 395 and 466 nm corresponding to the Eu{sup 3+7}F{sub 0}?{sup 5}L{sub 6}, and {sup 7}F{sub 0}?{sup 5}D{sub 2} excitation transition, respectively, was clearly observed in the diffuse reflectance spectra of the as-prepared samples containing europium. The optical band gap of the as-prepared samples was in the range from 3.5 to 3.7 eV. The photoluminescence spectra of the as-prepared nanocrystals containing europium showed orange and red luminescences with main peaks at 590 and 610 nm, corresponding to {sup 5}D{sub 0}?{sup 7}F{sub 1} and {sup 5}D{sub 0}?{sup 7}F{sub 2} transitions of Eu{sup 3+}, respectively, under excitation at 395 nm Xe lamp. The emission intensity corresponding to {sup 5}D{sub 0}?{sup 7}F{sub 2} transition increased as heat-treatment temperature rose from 800 to 1200 C. - Graphical abstract: This graphical abstract shows the excitation and emission spectra and a transmission electron microscopy image of nanocrystals (with composition based on the rare-earth niobates (Ln{sub 3}NbO{sub 7}, Ln=Y, Eu) and zirconia (ZrO{sub 2}) that were composed of 50 mol% Ln{sub 3}NbO{sub 7} and 50 mol% ZrO{sub 2}) formed via hydrothermal route. Display Omitted - Highlights: Nanocrystals composed of 50 mol% Y{sub 3?x}Eu{sub x}NbO{sub 7} and 50 mol% ZrO{sub 2} was directly formed. The nanocrystals were hydrothermally formed under weakly basic conditions at 240 C. The Y{sub 3}NbO{sub 7} showed an UV-blue and broad

  10. System for beaming power from earth to a high altitude platform

    DOE Patents [OSTI]

    Friedman, Herbert W.; Porter, Terry J.

    2002-01-01

    Power is transmitted to a high altitude platform by an array of diode pumped solid state lasers each operated at a single range of laser wavelengths outside of infrared and without using adaptive optics. Each laser produces a beam with a desired arrival spot size. An aircraft avoidance system uses a radar system for automatic control of the shutters of the lasers.

  11. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E; Song, Xia; Yuan, Fengming; Goswami, Santonu

    2014-01-01

    Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, a simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.

  12. ARM - PI Product - NOAA PMEL Station Chemistry Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsNOAA PMEL Station Chemistry Data ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : NOAA PMEL Station Chemistry Data Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH. Data

  13. Earth's Magnetosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mysterious electron stash found hidden among Van Allen belts March 1, 2013 Instruments detect never-before-seen phenomenon in Earth's Magnetosphere LOS ALAMOS, N.M., March 1, 2013-U.S. researchers, including a trio from Los Alamos National Laboratory, have witnessed the mysterious appearance of a relatively long-lived zone of high-energy electrons stored between Earth's Van Allen radiation belts. The surprising findings, discovered by NASA's Van Allen Probes (formerly known as the Radiation Belt

  14. Mars, the Moon, and the Ends of the Earth: Autonomy for Small Reactor Power Systems

    SciTech Connect (OSTI)

    Wood, Richard Thomas [ORNL

    2008-01-01

    In recent years, the National Aeronautics and Space Administration (NASA) has been considering deep space missions that utilize a small-reactor power system (SRPS) to provide energy for propulsion and spacecraft power. Additionally, application of SRPS modules as a planetary power source is being investigated to enable a continuous human presence for nonpolar lunar sites and on Mars. A SRPS can supply high-sustained power for space and surface applications that is both reliable and mass efficient. The use of small nuclear reactors for deep space or planetary missions presents some unique challenges regarding the operations and control of the power system. Current-generation terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a SRPS employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. While surface power systems for planetary outposts face less extreme delays and periods of isolation and may benefit from limited maintenance capabilities, considerations such as human safety, resource limitations and usage priorities, and economics favor minimizing direct, continuous human interaction with the SRPS for online, dedicated power system management. Thus, a SRPS control system for space or planetary missions must provide capabilities for operational autonomy. For terrestrial reactors, large-scale power plants remain the preferred near-term option for nuclear power generation. However, the desire to reduce reliance on carbon-emitting power sources in developing countries may lead to increased consideration of SRPS modules for local power generation in remote regions that are characterized by emerging, less established infrastructures

  15. Earth Day 2016

    Broader source: Energy.gov [DOE]

    Earth Day 2016 event details and links. Earth Day video montage and Earth Day Nationals video link. Earth Day photo contest.

  16. A metallurgical approach toward alloying in rare earth permanen magnet systems

    SciTech Connect (OSTI)

    Branagan, D. J.

    1995-02-23

    The approach was developed to allow microstructural enhancement and control during solidification and processing. Compound additions of Group IVA, VA, or VIA transition metals (TM) and carbon were added to Nd{sub 2}Fe{sub 14}B (2-14-1). Transition metal carbides formed in IVA (TiC, ZrC, HfC) and Group VA (VC, NbC, TaC) systems, but not in the VIA system. The alloying ability of each TM carbide was graded using phase stability, liquid and equilibrium solid solubility, and high temperature carbide stability. Ti with C additions was chosen as the best system. The practically zero equilibrium solid solubility means that the Ti and C additions will ultimately form TiC after heat treatment which allows the development of a composite microstructure consisting of the 2-14-1 phase and TiC. Thus, the excellent intrinsic magnetic properties of the 2-14-1 phase remain unaltered and the extrinsic properties relating to the microstructure are enhanced due to the TiC stabilized microstructure which is much more resistant to grain growth. When Ti + C are dissolved in the liquid melt or solid phases, such as the glass or 2-14-1 phase, the intrinsic properties are changed; favorable changes include increased glass forming ability, reduced optimum cooling rate, increased optimum energy product, and enhanced nucleation kinetics of crystallization.

  17. EarthEnergy Limited | Open Energy Information

    Open Energy Info (EERE)

    Cornwall, United Kingdom Product: EarthEnergy Systems specialises in ground source heat pump systems. References: EarthEnergy Limited1 This article is a stub. You can help OpenEI...

  18. Earth System Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Primary Expertise Atmospheric, climate, and ecosystem science Geology, geochemistry, and ... utilization and storage Next Generation Ecosystem Experiment: examines Arctic permafrost ...

  19. Climate & Earth Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Buyer's Guide Clean Cities Biodiesel Ethanol Flex-Fuel Hybrid Electric Plug-In Hybrid All-Electric Hydrogen Fuel Cell Propane Natural Gas Disclaimers This report was prepared as an account of work sponsored by an agency of the United States govern- ment. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

  20. SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period October 1, 2009 through March 31, 2010

    SciTech Connect (OSTI)

    Williams, Dean N.; Foster, I. T.; Middleton, D. E.; Ananthakrishnan, R.; Siebenlist, F.; Shoshani, A.; Sim, A.; Bell, G.; Drach, R.; Ahrens, J.; Jones, P.; Brown, D.; Chastang, J.; Cinquini, L.; Fox, P.; Harper, D.; Hook, N.; Nienhouse, E.; Strand, G.; West, P.; Wilcox, H.; Wilhelmi, N.; Zednik, S.; Hankin, S.; Schweitzer, R.; Bernholdt, D.; Chen, M.; Miller, R.; Shipman, G.; Wang, F.; Bharathi, S.; Chervenak, A.; Schuler, R.; Su, M.

    2010-04-21

    This report summarizes work carried out by the ESG-CET during the period October 1, 2009 through March 31, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities).

  1. Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tilmes, Simone; Lamarque, Jean -Francois; Emmons, Louisa K.; Kinnison, Doug E.; Marsh, Dan; Garcia, Rolando R.; Smith, Anne K.; Neely, Ryan R.; Conley, Andrew; Vitt, Francis; et al

    2016-05-20

    The Community Earth System Model (CESM1) CAM4-chem has been used to perform the Chemistry Climate Model Initiative (CCMI) reference and sensitivity simulations. In this model, the Community Atmospheric Model version 4 (CAM4) is fully coupled to tropospheric and stratospheric chemistry. Details and specifics of each configuration, including new developments and improvements are described. CESM1 CAM4-chem is a low-top model that reaches up to approximately 40 km and uses a horizontal resolution of 1.9° latitude and 2.5° longitude. For the specified dynamics experiments, the model is nudged to Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. We summarize the performance ofmore » the three reference simulations suggested by CCMI, with a focus on the last 15 years of the simulation when most observations are available. Comparisons with selected data sets are employed to demonstrate the general performance of the model. We highlight new data sets that are suited for multi-model evaluation studies. Most important improvements of the model are the treatment of stratospheric aerosols and the corresponding adjustments for radiation and optics, the updated chemistry scheme including improved polar chemistry and stratospheric dynamics and improved dry deposition rates. These updates lead to a very good representation of tropospheric ozone within 20 % of values from available observations for most regions. In particular, the trend and magnitude of surface ozone is much improved compared to earlier versions of the model. Furthermore, stratospheric column ozone of the Southern Hemisphere in winter and spring is reasonably well represented. In conclusion, all experiments still underestimate CO most significantly in Northern Hemisphere spring and show a significant underestimation of hydrocarbons based on surface observations.« less

  2. Differences in carbon cycle and temperature projections from emission- and concentration-driven earth system model simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, P.; Zeng, X.; Zeng, X.

    2014-08-29

    The influence of prognostic and prescribed atmospheric CO2 concentrations ([CO2]) on the carbon uptake and temperature is investigated using all eight Earth System Models (ESMs) with relevant output variables from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Under the RCP8.5 scenario, the projected [CO2] differences in 2100 vary from -19.7 to +207.3 ppm in emission-driven ESMs. Incorporation of the interactive concentrations also increases the range of global warming, computed as the 20 year average difference between 20812100 and 18501869/18611880, by 49% from 2.36 K (i.e. ranging from 3.11 to 5.47 K) in the concentration-driven simulations to 3.51 K inmorethe emission-driven simulations. The observed seasonal amplitude of global [CO2] from 19802011 is about 1.25.3 times as large as those from the eight emission-driven ESMs, while the [CO2] seasonality is simply neglected in concentration-driven ESMs, suggesting the urgent need of ESM improvements in this area. The temperature-concentration feedback parameter ? is more sensitive to [CO2] (e.g. during 19802005 versus 20752100) than how [CO2] is handled (i.e. prognostic versus prescribed). This sensitivity can be substantially reduced by using a more appropriate parameter ?' computed from the linear regression of temperature change versus that of the logarithm of [CO2]. However, the inter-model relative variations of both ? and ?' remain large, suggesting the need of more detailed studies to understand and hopefully reduce these discrepancies.less

  3. Description and Evaluation of Tropospheric Chemistry and Aerosols in the Community Earth System Model (CESM1.2)

    SciTech Connect (OSTI)

    Tilmes, S.; Lamarque, J.-F.; Emmons, L.; Kinnison, Douglas E.; Ma, Po-Lun; Liu, Xiaohong; Ghan, Steven J.; Bardeen, C.; Arnold, S.; Deeter, M.; Vitt, Francis; Ryerson, T. B.; Elkins, J. W.; Moore, F.; Spackman, R.; Martin, M. V.

    2015-01-01

    The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. Both configurations are well suited as tools for atmospheric-chemistry modeling studies in the troposphere and lower stratosphere, whether with internally derived free running (FR) meteorology, or specified dynamics (SD). The main focus of this paper is to compare the performance of these configurations against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We particularly focus on comparing present-day methane lifetime estimates within the different model configurations, which range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem. We find that tropospheric surface area density is an important factor in controlling the burden of the hydroxyl radical (OH), which causes differences in tropical methane lifetime of about half a year between CAM4-chem and CAM5-chem. In addition, different distributions of nitrogen oxides (NOx) produced from lightning production explain about half of the difference between SD and FR model versions in both CAM4-chem and CAM5-chem. Remaining differences in the tropical OH burden are due to enhanced tropical ozone burden in SD configurations compared to the FR versions, which are not only caused by differences in chemical production or loss, but also by transport and mixing. For future studies, we recommend the use of CAM5-chem, due to improved aerosol description and inclusion of aerosol-cloud interactions. However, smaller tropospheric surface area density in the current version of CAM5-chem compared to CAM4-chem results in larger oxidizing capacity in the troposphere and therefore a shorter methane lifetime.

  4. A Generic Biogeochemical Module for Earth System Models: Next Generation BioGeoChemical Module (NGBGC), Version 1.0

    SciTech Connect (OSTI)

    Fang, Yilin; Huang, Maoyi; Liu, Chongxuan; Li, Hongyi; Leung, Lai-Yung R.

    2013-11-13

    Physical and biogeochemical processes regulate soil carbon dynamics and CO2 flux to and from atmosphere, influencing global climate changes. Integration of these processes into earth system models (e.g., community land models (CLM)), however, currently faces three major challenges: 1) extensive efforts are required to modify modeling structures and to rewrite computer programs to incorporate new or updated processes as new knowledge is being generated, 2) computational cost is prohibitively expensive to simulate biogeochemical processes in land models due to large variations in the rates of biogeochemical processes, and 3) various mathematical representations of biogeochemical processes exist to incorporate different aspects of fundamental mechanisms, but systematic evaluation of the different mathematical representations is difficult, if not possible. To address these challenges, we propose a new computational framework to easily incorporate physical and biogeochemical processes into land models. The new framework consists of a new biogeochemical module with a generic algorithm and reaction database so that new and updated processes can be incorporated into land models without the need to manually set up the ordinary differential equations to be solved numerically. The reaction database consists of processes of nutrient flow through the terrestrial ecosystems in plants, litter and soil. This framework facilitates effective comparison studies of biogeochemical cycles in an ecosystem using different conceptual models under the same land modeling framework. The approach was first implemented in CLM and benchmarked against simulations from the original CLM-CN code. A case study was then provided to demonstrate the advantages of using the new approach to incorporate a phosphorus cycle into the CLM model. To our knowledge, the phosphorus-incorporated CLM is a new model that can be used to simulate phosphorus limitation on the productivity of terrestrial ecosystems.

  5. Description and Evaluation of Tropospheric Chemistry and Aerosols in the Community Earth System Model (CESM1.2)

    SciTech Connect (OSTI)

    Tilmes, S.; Lamarque, J. -F.; Emmons, L.; Kinnison, Douglas E.; Ma, Po-Lun; Liu, Xiaohong; Ghan, Steven J.; Bardeen, C.; Arnold, S.; Deeter, M.; Vitt, Francis; Ryerson, T. B.; Elkins, J. W.; Moore, F.; Spackman, R.; Martin, M. V.

    2015-05-13

    The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. Both configurations are well suited as tools for atmospheric-chemistry modeling studies in the troposphere and lower stratosphere, whether with internally derived “free running” (FR) meteorology, or “specified dynamics” (SD). The main focus of this paper is to compare the performance of these configurations against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We particularly focus on comparing present-day methane lifetime estimates within the different model configurations, which range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem. We find that tropospheric surface area density is an important factor in controlling the burden of the hydroxyl radical (OH), which causes differences in tropical methane lifetime of about half a year between CAM4-chem and CAM5-chem. In addition, different distributions of nitrogen oxides (NOx) produced from lightning production explain about half of the difference between SD and FR model versions in both CAM4-chem and CAM5-chem. Remaining differences in the tropical OH burden are due to enhanced tropical ozone burden in SD configurations compared to the FR versions, which are not only caused by differences in chemical production or loss, but also by transport and mixing. For future studies, we recommend the use of CAM5-chem, due to improved aerosol description and inclusion of aerosol-cloud interactions. However, smaller tropospheric surface area density in the current version of CAM5-chem compared to CAM4-chem results in larger oxidizing capacity in the troposphere and therefore a shorter methane lifetime.

  6. Description and Evaluation of Tropospheric Chemistry and Aerosols in the Community Earth System Model (CESM1.2)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tilmes, S.; Lamarque, J. -F.; Emmons, L.; Kinnison, Douglas E.; Ma, Po-Lun; Liu, Xiaohong; Ghan, Steven J.; Bardeen, C.; Arnold, S.; Deeter, M.; et al

    2015-05-13

    The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. Both configurations are well suited as tools for atmospheric-chemistry modeling studies in the troposphere and lower stratosphere, whether with internally derived “free running” (FR) meteorology, or “specified dynamics” (SD). The main focus of this paper is to compare the performance of these configurations against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We particularly focus on comparing present-daymore » methane lifetime estimates within the different model configurations, which range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem. We find that tropospheric surface area density is an important factor in controlling the burden of the hydroxyl radical (OH), which causes differences in tropical methane lifetime of about half a year between CAM4-chem and CAM5-chem. In addition, different distributions of nitrogen oxides (NOx) produced from lightning production explain about half of the difference between SD and FR model versions in both CAM4-chem and CAM5-chem. Remaining differences in the tropical OH burden are due to enhanced tropical ozone burden in SD configurations compared to the FR versions, which are not only caused by differences in chemical production or loss, but also by transport and mixing. For future studies, we recommend the use of CAM5-chem, due to improved aerosol description and inclusion of aerosol-cloud interactions. However, smaller tropospheric surface area density in the current version of CAM5-chem compared to CAM4-chem results in larger oxidizing capacity in the troposphere and therefore a shorter methane lifetime.« less

  7. Final Report. Evaluating the Climate Sensitivity of Dissipative Subgrid-Scale Mixing Processes and Variable Resolution in NCAR's Community Earth System Model

    SciTech Connect (OSTI)

    Jablonowski, Christiane

    2015-12-14

    The goals of this project were to (1) assess and quantify the sensitivity and scale-dependency of unresolved subgrid-scale mixing processes in NCAR’s Community Earth System Model (CESM), and (2) to improve the accuracy and skill of forthcoming CESM configurations on modern cubed-sphere and variable-resolution computational grids. The research thereby contributed to the description and quantification of uncertainties in CESM’s dynamical cores and their physics-dynamics interactions.

  8. Google Earth Tour: Contaminants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google Earth Tour: Contaminants Google Earth Tour: Contaminants Historical operations used the best available waste handling methods for that time.

  9. WFIP NOAA Final Report - Page i DE-EE0003080 TABLE OF CONTENTS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WFIP NOAA Final Report - Page i DE-EE0003080 TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................................................. i Executive Summary .................................................................................................................................. 1 1. Project Overview

  10. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to todays best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  11. Google Earth Tour: Contaminants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google Earth Tour: Contaminants Google Earth Tour: Contaminants Historical operations used the best available waste handling methods for that time. Open full screen to view more...

  12. Computational Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Computational Earth Science We develop and apply a range of high-performance computational methods and software tools to Earth science projects in support of environmental ...

  13. Earth and Environmental Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EES Earth and Environmental Sciences (EES) Sustainable energy, climate impacts, nuclear threat detection, and environmental management are primary focus areas of earth and...

  14. Through-the-earth radio

    DOE Patents [OSTI]

    Reagor, David; Vasquez-Dominguez, Jose

    2006-12-12

    A through-the-earth communication system that includes a digital signal input device; a transmitter operating at a predetermined frequency sufficiently low to effectively penetrate useful distances through-the earth; a data compression circuit that is connected to an encoding processor; an amplifier that receives encoded output from the encoding processor for amplifying the output and transmitting the data to an antenna; and a receiver with an antenna, a band pass filter, a decoding processor, and a data decompressor.

  15. NOAA Teams Up with Department of Energy & Industry to Improve Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasts | Department of Energy NOAA Teams Up with Department of Energy & Industry to Improve Wind Forecasts NOAA Teams Up with Department of Energy & Industry to Improve Wind Forecasts July 2, 2014 - 3:51pm Addthis The growth of wind-generated power in the United States is creating greater demand for improved wind forecasts. To address this need, the Department of Energy is working with NOAA and industry on the Wind Forecast Improvement Project, funded and led by DOE. "Our

  16. Partitioning and Leaching Behavior of Actinides and Rare Earth Elements in a Zirconolite- Bearing Hydrothermal Vein System

    SciTech Connect (OSTI)

    Payne, Timothy E.; Hart, Kaye P.; Lumpkin, Gregory R.; McGlinn, Peter J.; Giere, Reto

    2007-07-01

    Chemical extraction techniques and scanning electron microscopy were used to study the distribution and behavior of actinides and rare earth elements (REE) in hydrothermal veins at Adamello (Italy). The six samples discussed in this paper were from the phlogopite zone, which is one of the major vein zones. The samples were similar in their bulk chemical composition, mineralogy, and leaching behavior of major elements (determined by extraction with 9 M HCl). However, there were major differences in the extractability of REE and actinides. The most significant influence on the leaching characteristics appears to be the amounts of U, Th and REE incorporated in resistant host phases (zirconolite and titanite) rather than readily leached phases (such as apatite). Uranium and Th are very highly enriched in zirconolite grains. Actinides were more readily leached from samples with a higher content of U and Th, relative to the amount of zirconium. The results show that REE and actinides present in chemically resistant host minerals can be retained under aggressive leaching conditions. (authors)

  17. Earth coupled cooling techniques

    SciTech Connect (OSTI)

    Grondzik, W.T.; Boyer, L.L.; Johnston, T.L.

    1981-01-01

    Earth coupled cooling is an important consideration for residential and commercial designers, owners, and builders in many regions of the country. The potential benefits which can be expected from passive earth contact cooling are reviewed. Recommendations for the design of earth sheltered structures incorporating earth coupled cooling strategies are also presented.

  18. CoolEarth formerly Cool Earth Solar | Open Energy Information

    Open Energy Info (EERE)

    CoolEarth formerly Cool Earth Solar Jump to: navigation, search Name: CoolEarth (formerly Cool Earth Solar) Place: Livermore, California Zip: 94550 Product: CoolEarth is a...

  19. Earth, Space Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth, Space Sciences Earth, Space Sciences National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Climate, Ocean and Sea Ice Modeling (COSIM)» Earth and Environmental Sciences Division» Intelligence and Space Research» Earth Read caption + A team of scientists is working to understand how local changes in hydrology might bring about

  20. Analysis the configuration of earthing system based on high-low and low-high soil structure

    SciTech Connect (OSTI)

    Ramani, A. N.; Ahmad, Abdul Rahman; Sulaima, M. F.; Nasir, M. N. M.; Ahmad, Arfah

    2015-05-15

    Each TNB transmission tower requires a tower footing resistance (TFR) with a lower grounding resistance value that depends on the transmission line voltage. For 132kV and 275kV tower, the TFR must less than 10Ω and 500kV tower must less than 5Ω. The TFR is changeable with variable factors such as soil resistivity. Low TFR provides essential protection to the fault such as lightning strike that may occur at any time. The fault current flow to the lowest resistance path and easily disperses to earth. Back flashover voltage across the insulator of transmission lines may occur when the TFR is high. The TFR is influenced by soil resistivity. There are three parameters affecting the soil resistivity; moisture content, salt content and temperature of the soil. High moisture content in soil will reduce the soil resistivity and resultant low TFR. Small scale moisture control by using Micro Reservoir (MR) irrigation with semi-permeable membranes have the power to offer the stable moisture in soil. By using osmosis concept, it is the process of net movement of water molecules from high potential water to lower potential water though a semi permeable membrane. The MR can withstand for 3 to 5 days without continuous water supply. The MR installed in the centre of the tower that contains a multiple parallel of electrode rods. The concentrated of electrode rods grounding configuration with a combination of MR will improve the TFR even at multilayer soil. As a result, MR gives a little improvement to TFR. The MR in area of concentrated electrode rod configuration to ensure the soil always wet and moist at all times. The changes in soil affect the tower-footing-resistance. The tower-footing-resistance measurement at afternoon is higher than at evening because of the temperature and moisture content in soil is change due to sun radiation.

  1. MOA-2011-BLG-262Lb: A sub-Earth-mass moon orbiting a gas giant primary or a high velocity planetary system in the galactic Bulge

    SciTech Connect (OSTI)

    Bennett, D. P.; Batista, V.; Bond, I. A.; Ling, C. H.; Bennett, C. S.; Suzuki, D.; Koshimoto, N.; Beaulieu, J.-P.; Udalski, A.; Donatowicz, J.; Bozza, V.; Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Botzler, C. S.; Freeman, M.; Fukui, A.; Collaboration: MOA Collaboration; PLANET Collaboration; μFUN Collaboration; OGLE Collaboration; RoboNet Collaboration; and others

    2014-04-20

    We present the first microlensing candidate for a free-floating exoplanet-exomoon system, MOA-2011-BLG-262, with a primary lens mass of M {sub host} ∼ 4 Jupiter masses hosting a sub-Earth mass moon. The argument for an exomoon hinges on the system being relatively close to the Sun. The data constrain the product M{sub L} π{sub rel} where M{sub L} is the lens system mass and π{sub rel} is the lens-source relative parallax. If the lens system is nearby (large π{sub rel}), then M{sub L} is small (a few Jupiter masses) and the companion is a sub-Earth-mass exomoon. The best-fit solution has a large lens-source relative proper motion, μ{sub rel} = 19.6 ± 1.6 mas yr{sup –1}, which would rule out a distant lens system unless the source star has an unusually high proper motion. However, data from the OGLE collaboration nearly rule out a high source proper motion, so the exoplanet+exomoon model is the favored interpretation for the best fit model. However, there is an alternate solution that has a lower proper motion and fits the data almost as well. This solution is compatible with a distant (so stellar) host. A Bayesian analysis does not favor the exoplanet+exomoon interpretation, so Occam's razor favors a lens system in the bulge with host and companion masses of M{sub host}=0.12{sub −0.06}{sup +0.19} M{sub ⊙} and m{sub comp}=18{sub −10}{sup +28} M{sub ⊕}, at a projected separation of a{sub ⊥}=0.84{sub −0.14}{sup +0.25} AU. The existence of this degeneracy is an unlucky accident, so current microlensing experiments are in principle sensitive to exomoons. In some circumstances, it will be possible to definitively establish the mass of such lens systems through the microlensing parallax effect. Future experiments will be sensitive to less extreme exomoons.

  2. OSTIblog Articles in the NOAA Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    NOAA Topic OSTI CELEBRATES SCIENCE AND ENGINEERING - COME JOIN US AT THE USA SCIENCE AND ENGINEERING FESTIVAL MALL EXPO by Kate Bannan 19 Oct, 2010 in Science Communications 2463 ...

  3. DOE, BOEMRE and NOAA Announce Nearly $5 Million for Joint Environmental

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Projects to Advance Ocean Renewable Energy | Department of Energy DOE, BOEMRE and NOAA Announce Nearly $5 Million for Joint Environmental Research Projects to Advance Ocean Renewable Energy DOE, BOEMRE and NOAA Announce Nearly $5 Million for Joint Environmental Research Projects to Advance Ocean Renewable Energy October 26, 2010 - 12:00am Addthis WASHINGTON, DC - The Department of Energy (DOE), Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE), and the

  4. SciDAC's Earth System Grid Center for Enabling Technologies Semi-Annual Progress Report for the Period April 1, 2009 through September 30, 2009

    SciTech Connect (OSTI)

    Williams, Dean N.; Foster, I. T.; Middleton, D. E.

    2009-10-15

    This report summarizes work carried out by the ESG-CET during the period April 1, 2009 through September 30, 2009. It includes discussion of highlights, overall progress, period goals, collaborations, papers, and presentations. To learn more about our project, and to find previous reports, please visit the Earth System Grid Center for Enabling Technologies (ESG-CET) website. This report will be forwarded to the DOE SciDAC program management, the Office of Biological and Environmental Research (OBER) program management, national and international collaborators and stakeholders (e.g., the Community Climate System Model (CCSM), the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the Climate Science Computational End Station (CCES), the SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science, the North American Regional Climate Change Assessment Program (NARCCAP), and other wide-ranging climate model evaluation activities). During this semi-annual reporting period, the ESG-CET team continued its efforts to complete software components needed for the ESG Gateway and Data Node. These components include: Data Versioning, Data Replication, DataMover-Lite (DML) and Bulk Data Mover (BDM), Metrics, Product Services, and Security, all joining together to form ESG-CET's first beta release. The launch of the beta release is scheduled for late October with the installation of ESG Gateways at NCAR and LLNL/PCMDI. Using the developed ESG Data Publisher, the ESG II CMIP3 (IPCC AR4) data holdings - approximately 35 TB - will be among the first datasets to be published into the new ESG enterprise system. In addition, the NCAR's ESG II data holdings will also be published into the new system - approximately 200 TB. This period also saw the testing of the ESG Data Node at various collaboration sites, including: the British Atmospheric Data Center (BADC), the Max-Planck-Institute for Meteorology, the University of Tokyo Center for

  5. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 3. Heavy Lanthanides (GdLu)

    SciTech Connect (OSTI)

    Mioduski, Tomasz; Gumi?ski, Cezary; Zeng, Dewen

    2015-06-15

    This is the third part of the volume devoted to solubility data for the rare earth metal (REM) fluorides in water and in aqueous ternary and multicomponent systems. It covers experimental results of trivalent fluorides of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu (so-called heavy lanthanides), since no quantitative data on solubilities of TbF{sub 4} and YbF{sub 2} (the most stable compounds at these valencies) are available. The related literature has been covered through the end of 2014. Compilations of all available papers with the solubility data are introduced for each REM fluoride with a corresponding critical evaluation. Every such assessment contains a collection of all solubility results in aqueous solution, a selection of suggested solubility data, a solubility equation, and a brief discussion of the multicomponent systems. Only simple fluorides (no complexes or double salts) are treated as the input substances in this report. General features of the systems, such as nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, solution pH, mixed solvent medium on the solubility, quality of the solubility results, and the solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.

  6. A PLANETARY SYSTEM AROUND THE NEARBY M DWARF GJ 667C WITH AT LEAST ONE SUPER-EARTH IN ITS HABITABLE ZONE

    SciTech Connect (OSTI)

    Anglada-Escude, Guillem; Butler, R. Paul; Arriagada, Pamela; Minniti, Dante; Vogt, Steven S.; Rivera, Eugenio J.; Haghighipour, Nader; Carter, Brad D.; Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A.; O'Toole, Simon J.; Jones, Hugh R. A.; Jenkins, James S.

    2012-05-20

    We re-analyze 4 years of HARPS spectra of the nearby M1.5 dwarf GJ 667C available through the European Southern Observatory public archive. The new radial velocity (RV) measurements were obtained using a new data analysis technique that derives the Doppler measurement and other instrumental effects using a least-squares approach. Combining these new 143 measurements with 41 additional RVs from the Magellan/Planet Finder Spectrograph and Keck/High Resolution Echelle Spectrometer spectrometers reveals three additional signals beyond the previously reported 7.2 day candidate, with periods of 28 days, 75 days, and a secular trend consistent with the presence of a gas giant (period {approx}10 years). The 28 day signal implies a planet candidate with a minimum mass of 4.5 M{sub Circled-Plus} orbiting well within the canonical definition of the star's liquid water habitable zone (HZ), that is, the region around the star at which an Earth-like planet could sustain liquid water on its surface. Still, the ultimate water supporting capability of this candidate depends on properties that are unknown such as its albedo, atmospheric composition, and interior dynamics. The 75 day signal is less certain, being significantly affected by aliasing interactions among a potential 91 day signal, and the likely rotation period of the star at 105 days detected in two activity indices. GJ 667C is the common proper motion companion to the GJ 667AB binary, which is metal-poor compared to the Sun. The presence of a super-Earth in the HZ of a metal-poor M dwarf in a triple star system supports the evidence that such worlds should be ubiquitous in the Galaxy.

  7. Argonne's Earth Day 2011

    ScienceCinema (OSTI)

    None

    2013-04-19

    Argonne celebrated Earth Day on April 21, 2011 with an event that featured green activities and information booths.

  8. National K-12 Educator Conference; "Earth Then, Earth Now: Our Changing Climate" (July 23-24, 2008)

    SciTech Connect (OSTI)

    Flammer, Karen; O'Shaughnessy, Tam

    2013-12-11

    With the support of the Department of Energy, the National Science Teachers Association and the National Oceanic and Atmospheric Administration, Imaginary Lines Inc. (dba Sally Ride Science) delivered a highly successful 2-day conference to 165 K-12 educators on climate change. The event took place on July 23rd and 24th, 2008 at the NOAA facility in Silver Spring, MD. The conference celebrated the 25th anniversary of Dr. Sally Rides first flight into space in 1983 and examined how our understanding of Earth has changed in those 25 years. One the first day of the conference, participants heard a keynote talk delivered by Dr. Sally Ride, followed by presentations by well-known climate change scientists: Dr. Richard Somerville, Dr. Inez Fung and Dr. Susan Solomon. These sessions were concurrently webcast and made available to educators who were unable to attend the conference. On the second day of the conference, participants attended breakout sessions where they performed climate change activities (e.g. Neato Albedo!, Greenhouse in a Bottle, Shell-Shocked) that they could take back to their classrooms. Additional break-out sessions on using remote sensing images to illustrate climate change effects on Earths surface and how to address the climate change debate, were also offered. During lunch, participants attended an Educator Street Fair and had the opportunity to interact with representatives from NOAA, NASA, the EPA, NEEF and the JASON project. A follow-up evaluation survey was administered to all conference attendees immediately following the conference to evaluate its effectiveness. The results of this survey were overwhelmingly positive. The conference materials: presentation Power Points, workshop handouts and activities were available for teachers to download after the conference from the Sally Ride Science website. In summary, the approximately $55K support for the Department of Energy was used to help plan, deliver and evaluate the Earth Then

  9. DOE SciDAC’s Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute

    SciTech Connect (OSTI)

    Chervenak, Ann Louise

    2013-12-19

    The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy’s (DOE’s) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing

  10. Earth sheltered structures

    SciTech Connect (OSTI)

    Boyer, L.L.

    1982-01-01

    The earth shelter concept has been utilized successfully around the world for thousands of years, but its use with contemporary mechanically conditioned buildings dates only from the oil embargo of the mid-1970s. This is an architectural innovation and a growing and viable response to the energy imperative. Most of the technical problems of earth shelters have been effectively addressed, but a systems design approach could further enhance overall energy savings. Although occupant lifestyle seems to be at a high level, areas that require further attention include site design, daylighting, and refined thermal design. The proper integration of passive solar heating and disaster protection represent opportunities for improved multifunctional aspects. With proper design, annual heating and cooling energy use reductions on the order of 80% can be anticipated. Research on energy design refinements and occupancy aspects necessary to achieve such levels of savings is presently under way at Oklahoma State University, the University of Minnesota, and other study centers throughout the nation and the world.

  11. Geoengineering the Earth's Climate

    ScienceCinema (OSTI)

    Google Tech Talks

    2009-09-01

    Emergency preparedness is generally considered to be a good thing, yet there is no plan regarding what we might do should we be faced with a climate emergency. Such an emergency could take the form of a rapid shift in precipitation patterns, a collapse of the great ice sheets, the imminent triggering of strong climate system feedbacks, or perhaps the loss of valuable ecosystems. Over the past decade, we have used climate models to investigate the potential to reverse some of the effects of greenhouse gases in the atmosphere by deflecting some incoming sunlight back to space. This would probably be most cost-effectively achieved with the placement of small particles in or above the stratosphere. Our model simulations indicate that such geoengineering approaches could potentially bring our climate closer to the state is was in prior to the introduction of greenhouse gases. This talk will present much of what is known about such geoengineering approaches, and raise a range of issues likely to stimulate lively discussion. Speaker: Ken Caldeira Ken Caldeira is a scientist at the Carnegie Institution Department of Global Ecology and a Professor (by courtesy) at the Stanford University Department of Environmental and Earth System Sciences. Previously, he worked for 12 years in the Energy and Environment Directorate at the Lawrence Livermore National Laboratory (Department of Energy). His research interests include the numerical simulation of Earth's climate, carbon, and biogeochemistry; ocean acidification; climate emergency response systems; evaluating approaches to supplying environmentally-friendly energy services; ocean carbon sequestration; long-term evolution of climate and geochemical cycles; and marine biogeochemical cycles. Caldeira has a B.A. in Philosophy from Rutgers College and an M.S. and Ph.D. in Atmospheric Sciences from New York University.

  12. NOAA and U.S. Department of Energy Expand Efforts to Increase Energy Efficiency at National Marine Sanctuaries

    Broader source: Energy.gov [DOE]

    HONOLULU, HI - Through the signing of a Memorandum of Understanding (MOU) the National Oceanic and Atmospheric Administration's (NOAA) National Marine Sanctuary Program (NMSP) and the U.S....

  13. Rare Earth Elements Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth Elements Rare Earth Elements from Coal and Coal By-Products logo. Download the 2016 Rare Earth Elements from Coal and Coal By-Products Project Portfolio Rare Earth ...

  14. HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND

    SciTech Connect (OSTI)

    Lopez, Eric D.; Miller, Neil; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2012-12-10

    We use models of thermal evolution and extreme ultraviolet (XUV) driven mass loss to explore the composition and history of low-mass, low-density transiting planets. We investigate the Kepler-11 system in detail and provide estimates of both the current and past planetary compositions. We find that an H/He envelope on Kepler-11b is highly vulnerable to mass loss. By comparing to formation models, we show that in situ formation of the system is extremely difficult. Instead we propose that it is a water-rich system of sub-Neptunes that migrated from beyond the snow line. For the broader population of observed planets, we show that there is a threshold in bulk planet density and incident flux above which no low-mass transiting planets have been observed. We suggest that this threshold is due to the instability of H/He envelopes to XUV-driven mass loss. Importantly, we find that this mass-loss threshold is well reproduced by our thermal evolution/contraction models that incorporate a standard mass-loss prescription. Treating the planets' contraction history is essential because the planets have significantly larger radii during the early era of high XUV fluxes. Over time low-mass planets with H/He envelopes can be transformed into water-dominated worlds with steam envelopes or rocky super-Earths. Finally, we use this threshold to provide likely minimum masses and radial-velocity amplitudes for the general population of Kepler candidates. Likewise, we use this threshold to provide constraints on the maximum radii of low-mass planets found by radial-velocity surveys.

  15. DOE's NREL and LLNL team with NOAA and University of Colorado to Study Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inflow Conditions | Department of Energy DOE's NREL and LLNL team with NOAA and University of Colorado to Study Wind Inflow Conditions DOE's NREL and LLNL team with NOAA and University of Colorado to Study Wind Inflow Conditions October 3, 2011 - 12:33pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. Invisible to the eye, wind wakes created by multimegawatt wind turbines can nevertheless strongly impact performance of other turbines

  16. Earth and Environmental Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reveal climate change drivers and ecosystem impacts Perfect geological greenhouse gas ... Advanced computational Earth sciences Atmospheric, climate and ecosystem science Geology ...

  17. Happy Earth Day 2011!

    Broader source: Energy.gov [DOE]

    Check out these resources from the Department of Energy to help you celebrate, get in the Earth Day spirit, and take action.

  18. Cool Earth Solar

    ScienceCinema (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2014-02-26

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  19. Cool Earth Solar

    SciTech Connect (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  20. Earth Day 2016

    Broader source: Energy.gov [DOE]

    April 22, 2016 is the forty-sixth anniversary of the founding of Earth Day which marked the beginning of the modern environmental movement. The Office of Environment, Health, Safety and Security (AU) is leading DOE’s coordinated Earth Day celebrations at the Forrestal DOE Headquarters Building in Washington, D.C.

  1. Improvement in Clouds and the Earth's Radiant Energy System/Surface and Atmosphere Radiation Budget Dust Aerosol Properties, Effects on Surface Validation of Clouds and Radiative Swath

    SciTech Connect (OSTI)

    Rutan, D.; Rose, F.; Charlock, T.P.

    2005-03-18

    Within the Clouds and the Earth's Radiant Energy System (CERES) science team (Wielicki et al. 1996), the Surface and Atmospheric Radiation Budget (SARB) group is tasked with calculating vertical profiles of heating rates, globally, and continuously, beneath CERES footprint observations of Top of Atmosphere (TOA) fluxes. This is accomplished using a fast radiative transfer code originally developed by Qiang Fu and Kuo-Nan Liou (Fu and Liou 1993) and subsequently highly modified by the SARB team. Details on the code and its inputs can be found in Kato et al. (2005) and Rose and Charlock (2002). Among the many required inputs is characterization of the vertical column profile of aerosols beneath each footprint. To do this SARB combines aerosol optical depth information from the moderate-resolution imaging spectroradiometer (MODIS) instrument along with aerosol constituents specified by the Model for Atmosphere and Chemical Transport (MATCH) of Collins et al. (2001), and aerosol properties (e.g. single scatter albedo and asymmetry parameter) from Tegen and Lacis (1996) and OPAC (Hess et al. 1998). The publicly available files that include these flux profiles, called the Clouds and Radiative Swath (CRS) data product, available from the Langley Atmospheric Sciences Data Center (http://eosweb.larc.nasa.gov/). As various versions of the code are completed, publishable results are named ''Editions.'' After CRS Edition 2A was finalized it was found that dust aerosols were too absorptive. Dust aerosols have subsequently been modified using a new set of properties developed by Andy Lacis and results have been released in CRS Edition 2B. This paper discusses the effects of changing desert dust aerosol properties, which can be significant for the radiation budget in mid ocean, a few thousand kilometers from the source regions. Resulting changes are validated via comparison of surface observed fluxes from the Saudi Solar Village surface site (Myers et al. 1999), and the E13 site

  2. From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment - earth system model and the implications for CMIP5 RCP simulations

    SciTech Connect (OSTI)

    Di Vittorio, Alan; Chini, Louise M.; Bond-Lamberty, Benjamin; Mao, Jiafu; Shi, Xiaoying; Truesdale, John E.; Craig, Anthony P.; Calvin, Katherine V.; Jones, Andrew D.; Collins, William D.; Edmonds, James A.; Hurtt, George; Thornton, Peter E.; Thomson, Allison M.

    2014-11-27

    Climate projections depend on scenarios of fossil fuel emissions and land use change, and the IPCC AR5 parallel process assumes consistent climate scenarios across Integrated Assessment and Earth System Models (IAMs and ESMs). To facilitate consistency, CMIP5 used a novel land use harmonization to provide ESMs with seamless, 1500-2100 land use trajectories generated by historical data and four IAMs. However, we have identified and partially addressed a major gap in the CMIP5 land coupling design. The CMIP5 Community ESM (CESM) global afforestation is only 22% of RCP4.5 afforestation from 2005 to 2100. Likewise, only 17% of the Global Change Assessment Models (GCAMs) 2040 RCP4.5 afforestation signal, and none of the pasture loss, were transmitted to CESM within a newly integrated model. This is a critical problem because afforestation is necessary for achieving the RCP4.5 climate stabilization. We attempted to rectify this problem by modifying only the ESM component of the integrated model, enabling CESM to simulate 66% of GCAMs afforestation in 2040, and 94% of GCAMs pasture loss as grassland and shrubland losses. This additional afforestation increases vegetation carbon gain by 19 PgC and decreases atmospheric CO2 gain by 8 ppmv from 2005 to 2040, implying different climate scenarios between CMIP5 GCAM and CESM. Similar inconsistencies likely exist in other CMIP5 model results, primarily because land cover information is not shared between models, with possible contributions from afforestation exceeding model-specific, potentially viable forest area. Further work to harmonize land cover among models will be required to adequately rectify this problem.

  3. Rare earth gas laser

    DOE Patents [OSTI]

    Krupke, W.F.

    1975-10-31

    A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.

  4. LANL Studies Earth's Magnetosphere

    ScienceCinema (OSTI)

    Daughton, Bill

    2014-08-12

    A new 3-D supercomputer model presents a new theory of how magnetic reconnection works in high-temperature plasmas. This Los Alamos National Laboratory research supports an upcoming NASA mission to study Earth's magnetosphere in greater detail than ever.

  5. Earth-Abundant Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE funds research into Earth-abundant materials for thin-film solar applications in response to the issue of materials scarcity surrounding other photovoltaic (PV) technologies. The sections below...

  6. Lab celebrates Earth Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab celebrates Earth Day Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Lab celebrates Earth Day Multiple activities focus on environmental protection. May 1, 2013 A team from Industrial Hygiene and Safety during the Great Garbage Grab A team from Industrial Hygiene and Safety during the Great Garbage Grab. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus

  7. Unveiled: Earth's Viral Diversity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unveiled: Earth's Viral Diversity Unveiled: Earth's Viral Diversity NERSC Resources Help Researchers Identify 125,000 New Viral Sequences in Environmental Datasets August 17, 2016 Contact: David Gilbert, degilbert@lbl.gov, 925-296-5643 virome graphic art by Z Rostomian LBNL DOE JGI researchers utilized the largest collection of assembled metagenomic datasets from around the world to uncover over 125,000 partial and complete viral genomes, the majority of them infecting microbes. Graphic by Zosia

  8. Computational Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Computational Earth Science We develop and apply a range of high-performance computational methods and software tools to Earth science projects in support of environmental health, cleaner energy, and national security. Contact Us Group Leader Carl Gable Deputy Group Leader Gilles Bussod Email Profile pages header Search our Profile pages Hari Viswanathan inspects a microfluidic cell used to study the extraction of hydrocarbon fuels from a complex fracture network. EES-16's Subsurface Flow

  9. Optimal Initial Conditions for Coupling Ice Sheet Models to Earth...

    Office of Scientific and Technical Information (OSTI)

    Optimal Initial Conditions for Coupling Ice Sheet Models to Earth System Models. Citation ... Country of Publication: United States Language: English Word Cloud More Like This Full ...

  10. optimal initial conditions for coupling ice sheet models to earth...

    Office of Scientific and Technical Information (OSTI)

    optimal initial conditions for coupling ice sheet models to earth system models Perego, Mauro Sandia National Laboratories Sandia National Laboratories; Price, Stephen F. Dr...

  11. Fluid rare earth element anlayses from geothermal wells located on the Reykjanes Peninsula, Iceland and Middle Valley seafloor hydrothermal system on the Juan de Fuca Ridge.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2015-05-01

    Results for fluid rare earth element analyses from four Reykjanes peninsula high-temperature geothermal fields. Data for fluids from hydrothermal vents located 2400 m below sea level from Middle Valley on the Juan de Fuca Ridge are also included. Data have been corrected for flashing. Samples preconcentrated using a chelating resin with IDA functional group (InertSep ME-1). Analyzed using an Element magnetic sector inductively coupled plasma mass spectrometry (ICP-MS).

  12. Total carbon dioxide, hydrographic, and nitrate measurements in the Southwest Pacific during Austral autumn, 1990: Results from NOAA/PMEL CGC-90 cruise

    SciTech Connect (OSTI)

    Lamb, M.F.; Feely, R.A.; Moore, L.

    1995-10-01

    In support of the National Oceanic and Atmospheric Administration (NOAA) Climate and Global Change (C&GC) Program, Pacific Marine Environmental Laboratory (PMEL) scientists have been measuring the growing burden of greenhouse gases in the thermocline waters of the Pacific Ocean since 1980. Collection of data at a series of hydrographic stations along longitude 170{degrees} W during austral autumn of 1990 was designed to enhance understanding of the increase in the column burden of chlorofluorocarbons and carbon dioxide in the thermocline waters since the last expedition in 1984. This document presents the procedures and methods used to obtain total carbon dioxide (TCO{sub 2}), hydrographic, and nitrate data during the NOAA/PMEL research vessel (R/V) Malcolm Baldrige CGC-90 Cruise. Data were collected along two legs; sampling for Leg 1 began along 170{degrees} W from 15{degrees} S to 60{degrees} S, then angled northwest toward New Zealand across the Western Boundary Current. Leg 2 included a reoccupation of some stations between 30{degrees} S and 15{degrees} S on 170{degrees} W and measurements from 15{degrees} S to 5{degrees} N along 170{degrees} W. The following data report summarizes the TCO{sub 2}, salinity, temperature, and nitrate measurements from 63 stations. The TCO, concentration in seawater samples was measured using a coulometric/extraction system (Models 5011 and 5030, respectively) originated by Ken Johnson. The NOAA/PMEL R/V Malcolm Baldrige CGC-90 Cruise data set is available without charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of two oceanographic data files, two FORTRAN 77 data retrieval routine files, a {open_quotes}readme{close_quotes} file, and this printed documentation, which describes the contents and format of all files as well as the procedures and methods used to obtain the data.

  13. Good Earths and Rare Earths | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Good Earths and Rare Earths Good Earths and Rare Earths April 20, 2011 - 6:17pm Addthis Charles Rousseaux Charles Rousseaux Senior Communications Specialist (detailee) What does this mean for me? Rare earth elements -- dysprosium, neodymium, terbium, europium and yttrium -- are essential to a wide range of green energy technologies ranging from windmills to electric vehicles One of their primary uses is in permanent magnets, which amount to over a $4 billion global industry Ames Laboratory

  14. Earth shelter goes international

    SciTech Connect (OSTI)

    Boyer, L.L.

    1983-06-01

    Since the mid-1970's earth sheltered buildings in the US have become more numerous and important as a contemporary passive building concept. Further, an intense international interest has now developed, as evidenced by a number of important activities. One of these events is the 1983 International Conference on Energy Efficient Buildings with Earth Shelter Protection to be conducted during 1-6 August in Sydney, Australia. A review of past activities leading up to this event, as well as a brief review of the conference program, is the subject of this discussion.

  15. Earth sheltered housing phenomenon

    SciTech Connect (OSTI)

    Boyer, L.L.

    1981-06-21

    Both national and international attention has recently been focused on earth sheltered construction as an emerging energy alternative. This is especially true for the High Plains region of the central United States. Traditionally, inhabitants of this region have been sensitized to the need for windstorm protection. However, the dramatic potentials for energy savings have served as a strong secondary inducement to the burgeoning construction activity in what is now viewed as a contemporary dwelling concept. The typical characteristics of such dwellings are reviewed as well as the educational challenge awaiting professional input to this developing boom in earth sheltered construction. 12 refs.

  16. Google Earth Tour: Water reuse at LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google Earth Tour: Water reuse at LANL Google Earth Tour: Water reuse at LANL

  17. Diagnosis of the Marine Low Cloud Simulation in the NCAR Community Earth System Model (CESM) and the NCEP Global Forecast System (GFS)-Modular Ocean Model v4 (MOM4) coupled model

    SciTech Connect (OSTI)

    Xiao, Heng; Mechoso, C. R.; Sun, Rui; Han, J.; Pan, H. L.; Park, S.; Hannay, Cecile; Bretherton, Christopher S.; Teixeira, J.

    2014-07-25

    We present a diagnostic analysis of the marine low cloud climatology simulated by two state-of-the-art coupled atmosphere-ocean models: the NCAR Community Earth System Model (CESM) and the NCEP Global Forecasting System (GFS). In both models, the shallow convection and boundary layer turbulence parameterizations have been recently updated: both models now use a mass-flux scheme for the parameterization of shallow convection, and a turbulence parameterization capable of handling Stratocumulus (Sc)-topped Planetary Boundary Layers (PBLs). For shallow convection, both models employ a convective trigger function based on the concept of convective inhibition and both include explicit convective overshooting/penetrative entrainment formulation. For Sc-topped PBL, both models treat explicitly turbulence mixing and cloud-top entrainment driven by cloud-top radiative cooling. Our focus is on the climatological transition from Sc to shallow Cumulus (Cu)-topped PBL in the subtropical eastern oceans. We show that in the CESM the coastal Sc-topped PBLs in the subtropical Eastern Pacific are well-simulated but the climatological transition from Sc to shallow Cu is too abrupt and happens too close to the coast. By contrast, in the GFS coupled simulation the coastal Sc amount and PBL depth are severely underestimated while the transition from Sc to shallow Cu is delayed and offshore Sc cover is too extensive in the subtropical Eastern Pacific. We discuss the possible connections between such differences in the simulations and differences in the parameterizations of shallow convection and boundary layer turbulence in the two models.

  18. doe-sc-arm-15-091 Analysis of the uncertainty in wind measurements...

    Office of Scientific and Technical Information (OSTI)

    ... Oceanic and Atmospheric Administration (NOAA)'s Earth System Research Laboratory (ESRL). ... The comparison is carried out by computing statistics of the wind speed difference aM M ...

  19. 2016 Rare Earth Elements Workshop Accelerating Rare Earth Element...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth Elements Workshop Accelerating Rare Earth Element Recovery from U.S. Domestic Sources of Coal and Coal By-Products August 8-9, 2016 Hosted by: Dr. Cynthia Powell Acting ...

  20. Rare-Earth-Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    Hong, Yang-Ki; Haskew, Timothy; Myryasov, Oleg; Jin, Sungho; Berkowitz, Ami

    2014-06-05

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  1. Solar Power Beaming: From Space to Earth

    SciTech Connect (OSTI)

    Rubenchik, A M; Parker, J M; Beach, R J; Yamamoto, R M

    2009-04-14

    Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overall concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.

  2. Earth's Decelerating Tectonic Plates

    SciTech Connect (OSTI)

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  3. NASA Earth at Night Video

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Twitter Google + Vimeo GovDelivery SlideShare NASA Earth at Night Video HomeEC, Energy, Energy Efficiency, Global, Modeling, News & Events, Solid-State Lighting, VideosNASA Earth ...

  4. Superhydrophobic diatomaceous earth

    DOE Patents [OSTI]

    Simpson, John T.; D'Urso, Brian R.

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  5. Holding Mother Earth Sacred

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Holding Mother Earth Sacred Photo Journal Project Resource List 2010 Mountain and Plains Education and Research Center, Ken Scott: http://maperc.ucdenver.edu/ UC Denver Office of Diversity and Inclusion, Anschutz Medical Center, Dominic Martinez: www.ucdenver.edu Colorado School of Public Health: www.ucdenver.edu/academics/colleges/PublicHealth/Pages/welcome.aspx University of Colorado Denver: www.ucdenver.edu National Institute of Occupational Safety and Health (NIOSH): www.cdc.gov/niosh

  6. Microsoft Word - westwater_er.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of ARM, a Global Positioning System operated by NOAA Earth System Research Laboratory. ... The overall integrated moisture statistics for the 30-day experiment are shown in Figure ...

  7. NOAA lidar observations during the TMDBCE lethality test at WSMR on 5 February 1993. Technical memo

    SciTech Connect (OSTI)

    Post, M.J.; Olivier, L.D.

    1996-03-01

    The National Oceanic and Atomospheric Administration`s (NOAA) pulsed CO2 Doppler lidar successfully tracked a cloud of liquid triethyl phosphate (TEP) released from an incoming Storm missile. By concentrating on the lowest portion of the cloud, information about the descent of the TEP cloud was obtained. TEP cloud bottom height and a ground track showing the motion of the cloud relative to the lidar were plotted. In addition, lidar measurements were used to guide an instrumented air craft into the cloud. Improvements for future tests were defined.

  8. LLNL-Earth3D

    Energy Science and Technology Software Center (OSTI)

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  9. Ames Lab 101: Rare Earths

    ScienceCinema (OSTI)

    Gschneidner, Karl

    2012-08-29

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  10. Ames Lab 101: Rare Earths

    SciTech Connect (OSTI)

    Gschneidner, Karl

    2010-01-01

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  11. Rare Earth Metals & Alloys | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth Metals & Alloys Quantities of high-purity rare earth metals and alloys in ... storage, cutting and cleaning and SDS information for the rare earth elements (metals).

  12. Validation of GOES-Derived Surface Radiation Using NOAA's Physical Retrieval Method

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Wilcox, S.

    2013-01-01

    This report was part of a multiyear collaboration with the University of Wisconsin and the National Oceanic and Atmospheric Administration (NOAA) to produce high-quality, satellite-based, solar resource datasets for the United States. High-quality, solar resource assessment accelerates technology deployment by making a positive impact on decision making and reducing uncertainty in investment decisions. Satellite-based solar resource datasets are used as a primary source in solar resource assessment. This is mainly because satellites provide larger areal coverage and longer periods of record than ground-based measurements. With the advent of newer satellites with increased information content and faster computers that can process increasingly higher data volumes, methods that were considered too computationally intensive are now feasible. One class of sophisticated methods for retrieving solar resource information from satellites is a two-step, physics-based method that computes cloud properties and uses the information in a radiative transfer model to compute solar radiation. This method has the advantage of adding additional information as satellites with newer channels come on board. This report evaluates the two-step method developed at NOAA and adapted for solar resource assessment for renewable energy with the goal of identifying areas that can be improved in the future.

  13. Earth Sciences Division annual report 1990

    SciTech Connect (OSTI)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  14. Earth-sheltered apartments

    SciTech Connect (OSTI)

    Germer, J.

    1984-12-01

    Earth-sheltered apartments for students at St. Johns University, Collegeville, MN are described. The intent was to provide energy-efficient, low maintenance housing in a neighborhood environment for the students. Students would learn about energy-conscious architecture from living in the buildings. The buildings have had few problems, but energy performance has not been up to expectations. The consumption of electricity exceeded predictions by 49%. The most likely answer to the problem is deviation from design. Several items of energy-efficient design were specified but deleted in order to cut costs.

  15. A Star on Earth

    ScienceCinema (OSTI)

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2014-06-06

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  16. A Star on Earth

    SciTech Connect (OSTI)

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2014-03-05

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  17. C COAST. A PC-based program for the analysis of coastal processes using NOAA coastwatch data

    SciTech Connect (OSTI)

    Miller, R.L.; Decampo, J. )

    1994-02-01

    As part of the NOAA Coastal Ocean Program, the CoastWatch program was created to provide low-cost, near real-time remotely sensed data of the coast and Great Lakes region of the United States to decision makers in the public and private sectors. This paper describes a PC-based program developed specifically for the display and analysis of NOAA's CoastWatch sea surface temperatures (SST) processed imagery. This program, C COAST, provides an easy to use environment to users to incorporate SST images into their activities. 2 refs.

  18. Observing and modeling Earths energy flows

    SciTech Connect (OSTI)

    Stevens B.; Schwartz S.

    2012-05-11

    This article reviews, from the authors perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within {+-}2 W m{sup -2}. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds

  19. Energy Department Earth Week 2015

    Broader source: Energy.gov [DOE]

    To celebrate Earth Week and Earth Day, the Bioenergy Technologies Office (BETO) is participating in several Energy Department activities! Look for us inside the lobby of the U.S. Department of Energy Forrestal Building in Washington, D.C., from April 13–17. Then, on Earth Day, April 22, everyone is welcome to join us outside on the Forrestal West Plaza for Community Day!

  20. Are Earths Rare? Perhaps Not

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Are Earths Rare? Perhaps Not Are Earths Rare? Perhaps Not Developed at NERSC, a Pipeline for Finding Earth-like Planets in the Milky Way January 13, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov habitablezones450.jpg Artist's representation of the "habitable zone," the range of orbits where liquid water is permitted on the surface of a planet. The authors find that 22% of Sun-like stars harbor a planet between one and two times the size of Earth in the habitable zone One out of

  1. Evolution of stable and metastable phases and coercivity in rare-earth-rich alloys of the Fe-Nd and Fe-Pr systems

    SciTech Connect (OSTI)

    Cabral, F.A.O. ); Gama, S. )

    1990-09-01

    The authors have studied eutectic alloys of the Fe-Nd and Fe-Pr systems regarding their magnetic behavior in the as-cast state and heat-treated at 600 C for different periods. In both systems the initial precipitation of a metastable phase is observed. This phase transforms into Fe{sub 17}Nd{sub 2} and this finally into a second phase with Fe{sub 17}Nd{sub 5} stoichiometry that is stable. For the Fe-Pr system the precipitation of two metastable phases that transform into the stable Fe{sub 17}Pr{sub 2} is observed. The authors have also measured the influence of these transformations on the coercivity of these alloys.

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Lantz, Kathy The National Oceanic and Atmospheric Administration (NOAA) is preparing for ... Service has funded the Global Monitoring Division at the Earth System Research ...

  3. DOE SC ARM TR 165 Integrating Nephelometer Instrument Handbook...

    Office of Scientific and Technical Information (OSTI)

    ... Journal of Atmospheric and Oceanic Technology 13, 987-1000. TSI 3563 Nephelometer description by NOAA Earth System Research Laboratory Global Monitoring Division. 2015. http:...

  4. Two-Column Aerosol Project (TCAP): Ground-Based Radiation and...

    Office of Scientific and Technical Information (OSTI)

    ... Background The National Oceanic and Atmospheric Administration (NOAA) is preparing for ... Service has funded the Global Monitoring Division at the Earth System Research ...

  5. Layered Atlantic Smoke Interactions with Clouds (LASIC) Science...

    Office of Scientific and Technical Information (OSTI)

    NOAA - Earth System Research Laboratory Brookhaven National Laboratory National Oceanic and Atmospheric Administration NASA - Ames Research Center University of Washington Florida ...

  6. Special Feature: Supercomputers Map Our Changing Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model to see how well the model can reproduced observed tropical cyclone statistics. ... National Oceanic and Atmospheric Administration's (NOAA) Earth System Research Laboratory. ...

  7. Two earth sheltered passive solar residences with photovoltaic electricity

    SciTech Connect (OSTI)

    Strong, S.J.; Osten, R.J. Jr.

    1980-01-01

    The design and construction of two earth sheltered passive solar residence with photovoltaic electricity are described. The sizing and design of the P.V. system as well as the module fabrication and array integration are also discussed.

  8. Collaborative Research: Analysis and Interpretation of Multi-Scale Phenomena in Crustal Deformation Processes Using Numerical Simulations of Complex Nonlinear Earth Systems

    SciTech Connect (OSTI)

    Rundle, John B.

    2004-12-31

    In both our past work and the work in progress we focused on understanding the physics and statistical patterns in earthquake faults and fault systems. Our approach had three key aspects. The first was to look for patterns of seismic activity in earthquake fault systems. The second was to understand the physics of a sequence of models for faults and fault systems that are increasingly more realistic. The third key element was to connect the two previous approaches by investigating specific properties found in models to see if they are indeed properties of real faults. A specific example of how this approach works can be seen in the following: In the papers discussed below, we demonstrated that the cellular automation (CA) versions of the slider block models with long range stress transfer are ergodic and could be described by a Boltzmann-Gibbs distribution in the meanfield limit. The ergodicity follows from the fact that the long range stress transfer makes the model meanfield. The meanfield nature of the CA models, generated by long range stress transfer, also allows a description of the CA models by a Langevin equation. The Langevin equation indicates that evolution of seismicity in the model over relatively short times is linear in time. This appears to be consistent with the success of a forecasting algorithm we have developed that is based on a linear evolution of seismicity patterns. This algorithm has had considerable success in that the regions of the Southern California fault system which have been predicted to have a higher probability of an event greater than magnitude 5 have consistently been the sites where such events occur. These two results have led to the question as to whether the Southern California fault system is ergodic and can be described by a Langevin equation like the model. To answer this question we ran a series of tests for ergodicity very much like the ones run on the models. Our results, which have been accepted for publication in

  9. Phase stable rare earth garnets

    SciTech Connect (OSTI)

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  10. White Earth Biomass/Biogas Feasibility Study

    SciTech Connect (OSTI)

    Triplett, Michael

    2015-03-12

    The White Earth Nation examined the feasibility of cost savings and fossil energy reduction through the installation of biogas/biomass boiler at the tribal casino. The study rejected biogas options due to availability and site constraints, but found a favorable environment for technical and financial feasibility of installing a 5 MMBtu hot water boiler system to offset 60-70 percent of current fuel oil and propane usage.

  11. Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike todays large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldors motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

  12. High Poisson;s ratio of Earth;s inner core explained by carbon...

    Office of Scientific and Technical Information (OSTI)

    High Poisson;s ratio of Earth;s inner core explained by carbon alloying Citation Details In-Document Search Title: High Poisson;s ratio of Earth;s inner core explained by carbon ...

  13. Spin transition zone in Earth;s lower mantle (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Spin transition zone in Earth;s lower mantle Citation Details In-Document Search Title: Spin transition zone in Earth;s lower mantle Authors: Lin, J.-F. ; Vanko, G. ; Jacobsen, ...

  14. VenEarth Group | Open Energy Information

    Open Energy Info (EERE)

    VenEarth Group Jump to: navigation, search Name: VenEarth Group Place: San Francisco, California Product: San Francisco-based venture capital company. References: VenEarth Group1...

  15. Celebrate Earth Day! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savers Facebook pages, our Earth Day poll provides another opportunity for you to interact with us. Log on to our Earth Day Web site and tell us how you'll recognize Earth Day,...

  16. Earth Day 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This year, we're celebrating Earth Day all week long. It's Earth Week on Energy.gov We're focusing on climate change, highlighting Earth Day events and sharing ways Americans ...

  17. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOE Patents [OSTI]

    Shearer, John A.; Turner, Clarence B.; Johnson, Irving

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  18. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOE Patents [OSTI]

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  19. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOE Patents [OSTI]

    West, Phillip B.; Novascone, Stephen R.; Wright, Jerry P.

    2012-05-29

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  20. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOE Patents [OSTI]

    West, Phillip B.; Novascone, Stephen R.; Wright, Jerry P.

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  1. Chemistry, Life, and Earth Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADCLES Chemistry, Life, and Earth Sciences The CLES Directorate is home to world class capabilities in chemistry, bioscience, and earth and environmental sciences. Structural protein research Structural protein research A wide range of protein folding research Field Instrument Deployments and Operations (FIDO) Field Instrument Deployments and Operations (FIDO) Atmospheric science research Quantum Dots Quantum Dots Quantum dot research for energy and light Contact Us Associate Director Nan Sauer

  2. Green Earth Fuels | Open Energy Information

    Open Energy Info (EERE)

    Earth Fuels Jump to: navigation, search Name: Green Earth Fuels Place: Houston, Texas Zip: 77057 Product: A producer and distributor of soy and palm based biodiesel Coordinates:...

  3. Smiling Earth Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Earth Energy LLC Place: Bakersfield, California Zip: 93314 Product: California based biodiesel producer and project developer. References: Smiling Earth Energy LLC1 This...

  4. Earth Tidal Analysis | Open Energy Information

    Open Energy Info (EERE)

    of earth tide response of three deep, confined aquifers Earth Tidal Analysis At Raft River Geothermal Area (1980) Raft River Geothermal Area 1980 1980 Reservoir response to...

  5. CHROMOSPHERIC MASS MOTIONS AND INTRINSIC SUNSPOT ROTATIONS FOR NOAA ACTIVE REGIONS 10484, 10486, AND 10488 USING ISOON DATA

    SciTech Connect (OSTI)

    Hardersen, Paul S.; Balasubramaniam, K. S.; Shkolyar, Svetlana

    2013-08-10

    This work utilizes Improved Solar Observing Optical Network continuum (630.2 nm) and H{alpha} (656.2 nm) data to: (1) detect and measure intrinsic sunspot rotations occurring in the photosphere and chromosphere, (2) identify and measure chromospheric filament mass motions, and (3) assess any large-scale photospheric and chromospheric mass couplings. Significant results from 2003 October 27-29, using the techniques of Brown et al., indicate significant counter-rotation between the two large sunspots in NOAA AR 10486 on October 29, as well as discrete filament mass motions in NOAA AR 10484 on October 27 that appear to be associated with at least one C-class solar flare.

  6. Extraordinary Responsive Rare Earth Magnetic Materials | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Extraordinary Responsive Rare Earth Magnetic Materials Research Personnel Updates Publications https://www.ameslab.gov/dmse/highlight/real-estate-atoms-it-all-about-location-location-location Read More Rare Earth Alloys - Why Purity Matters Read More A Mystery at Cryogenic Temperatures Read More Previous Pause Next Synthesis Responsive systems, where a small change of an extrinsic thermodynamic variable, such as temperature, pressure, or magnetic field, triggers an intrinsic phase

  7. SUCCESSIVE SOLAR FLARES AND CORONAL MASS EJECTIONS ON 2005 SEPTEMBER 13 FROM NOAA AR 10808

    SciTech Connect (OSTI)

    Liu Chang; Wang Haimin; Lee, Jeongwoo; Karlicky, Marian; Choudhary, Debi Prasad; Deng Na E-mail: haimin@flare.njit.ed E-mail: karlicky@asu.cas.c E-mail: na.deng@csun.ed

    2009-09-20

    We present a multiwavelength study of the 2005 September 13 eruption from NOAA AR 10808 that produced total four flares and two fast coronal mass ejections (CMEs) within {approx}1.5 hr. Our primary attention is paid to the fact that these eruptions occurred in close succession in time, and that all of them were located along an S-shaped magnetic polarity inversion line (PIL) of the active region. In our analysis, (1) the disturbance created by the first flare propagated southward along the PIL to cause a major filament eruption that led to the first CME and the associated second flare underneath. (2) The first CME partially removed the overlying magnetic fields over the northern delta spot to allow the third flare and the second CME. (3) The ribbon separation during the fourth flare would indicate reclosing of the overlying field lines opened by the second CME. It is thus concluded that these series of flares and CMEs are interrelated to each other via magnetic reconnections between the expanding magnetic structure and the nearby magnetic fields. These results complement previous works made on this event with the suggested causal relationship among the successive eruptions.

  8. CALCULATING ENERGY STORAGE DUE TO TOPOLOGICAL CHANGES IN EMERGING ACTIVE REGION NOAA AR 11112

    SciTech Connect (OSTI)

    Tarr, Lucas; Longcope, Dana

    2012-04-10

    The minimum current corona model provides a way to estimate stored coronal energy using the number of field lines connecting regions of positive and negative photospheric flux. This information is quantified by the net flux connecting pairs of opposing regions in a connectivity matrix. Changes in the coronal magnetic field, due to processes such as magnetic reconnection, manifest themselves as changes in the connectivity matrix. However, the connectivity matrix will also change when flux sources emerge or submerge through the photosphere, as often happens in active regions. We have developed an algorithm to estimate the changes in flux due to emergence and submergence of magnetic flux sources. These estimated changes must be accounted for in order to quantify storage and release of magnetic energy in the corona. To perform this calculation over extended periods of time, we must additionally have a consistently labeled connectivity matrix over the entire observational time span. We have therefore developed an automated tracking algorithm to generate a consistent connectivity matrix as the photospheric source regions evolve over time. We have applied this method to NOAA Active Region 11112, which underwent a GOES M2.9 class flare around 19:00 on 2010 October 16th, and calculated a lower bound on the free magnetic energy buildup of {approx}8.25 Multiplication-Sign 10{sup 30} erg over 3 days.

  9. Google Earth Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google Drive for Work Google Drive for Work Computer.png Welcome to the U.S. Department of Energy Pilot Program, Google Drive for Work. Please read and sign the Terms of Use and Privacy Statement below. DISCLAIMER All data is owned by DOE and may be monitored, intercepted, recorded, read, copied, or captured in any manner and disclosed in any manner, by authorized personnel. THERE IS NO RIGHT OF PRIVACY IN THIS SYSTEM, and system personnel may give to law enforcement officials any potential

  10. Digital Through-The-Earth Communication System

    Broader source: Energy.gov [DOE]

    Traditional radio uses frequencies above 500 kHz and does not penetrate any significant distance into typical underground rock masses. Hard-wired links such as phone lines, coaxial cables, mining...

  11. The earth is in your hands

    SciTech Connect (OSTI)

    Browner, C.M.

    1995-08-01

    Earth Day 25 is a time to reflect on how mankind is doing in protecting their environment. Twenty-five years ago, in the wake of the first Earth Day, the US has created, virtually from scratch, the most advanced system of environmental protection in the world. In the course of a very short history--a mere quarter-century--man has made tremendous progress. Their skies and rivers are cleaner. And US environmental expertise and technology are in demand throughout the world. In the years since the first Earth Day, EPA banned lead in gasoline, lowering lead levels in the air by more than 90 percent and protecting millions of children from harm. Dangerous and widely used pesticides were banned. Unsafe local garbage dumps all over the nation were closed and recycling has become a household habit. American towns have been provided with substantial funding for wastewater treatment--the second biggest public works effort in US history, resulting in cleaner rivers all over the US. All cars and trucks now have standards for fuel economy, set by EPA, that allow consumers to choose a car for its energy efficiency. And EPA has played an important role in ensuring that companies and others comply with their environmental laws or face stiff penalties. Perhaps most important, the nation has gained a new understanding. More Americans than ever understand that to ensure a good quality of life they must act as responsible stewards of their air, their water, and their land.

  12. Barometric and Earth Tide Correction

    Energy Science and Technology Software Center (OSTI)

    2005-11-10

    BETCO corrects for barometric and earth tide effects in long-term water level records. A regression deconvolution method is used ot solve a series of linear equations to determine an impulse response function for the well pressure head. Using the response function, a pressure head correction is calculated and applied.

  13. Habitability and energy performance of earth sheltered dwellings

    SciTech Connect (OSTI)

    Boyer, L.L.; Grondzik, W.T.

    1980-12-01

    The High Plains region of the central United States has become host to an emerging dwelling concept which incorporates the use of earth shelter technologies. Traditionally, inhabitants of this region have been sensitized to the need for windstorm protection. More recently, dramatic potentials for energy savings have served as a strong secondary inducement to the exploration of earth sheltered housing as an energy alternative. Habitability and passive energy design of earth sheltered structures are key focal elements being investigated at Oklahoma State University. Habitability aspects have received little treatment elsewhere, and existing passive energy design strategies have generally not considered the passive cooling benefits of earth sheltered construction. Extended questionnaires were used to obtain earth sheltered occupant responses to both habitability and energy design aspects including measured energy usage. Preliminary analysis has been completed on about 80 (eighty) projects in the State of Oklahoma, and the study is being extended to 8 (eight) additional surrounding states. Initial results indicate that occupants are generally satisfied with such attributes as structural safety, thermal comfort, and acoustical environment; but have some reservations concerning daylighting, site design, and energy design and performance. Energy usage patterns tend to indicate that, in fact, sizeable savings are being realized by owners of current generation earth shelters. However, it is anticipated that with optimized passive systems design, the presently realized savings could be further increased by perhaps a factor of two. An appropriate design balance must be realized between passive heating and passive cooling needs.

  14. Suitable thin shell structural configurations for earth sheltered housing

    SciTech Connect (OSTI)

    Behr, R.A.

    1982-01-01

    An earth sheltered house is one whose building envelope is substantially in contact with soil, without necessarily being totally underground. Hence, it can provide the commonly sought attributes of a residence, including natural light, exterior views, and curb appeal. It also exhibits strong energy performance, lower maintenance, and good storm protection. Despite the longer-term life cycle cost advantages of earth sheltered buildings, a current hindrance to the mass market acceptance of earth sheltered housing is higher initial cost which is caused, in part, by the inability of conventional rectilinear structural systems to support economically the massive soil loads imposed on earth covered buildings. In deference to the premise that technical suitability is no guarantee of innovation acceptance in the housing industry, a survey of the nontechnical impediments to housing innovation was first undertaken. These impediment areas include: market inhibition; builder trepidations; industry constraints; and financing problems. As a result of an architectural design program written under contract for the Department of Energy, it was possible to include a rather extensive (but necessarily subjective) evaluation of the architectural potential for earth sheltered shell structures. Engineering suitability dimensions included structural effectiveness, constructability, and economy of construction for single- and double-curvature thin shell structures. Overall engineering suitability and architectural potential are deemed to be adequate, although non-engineering impediments to housing innovation appear to raise significant questions regarding the potential for mass market implementation of thin shell stuctures in earth sheltered housing.

  15. Climate change stored below the earth`s surface

    SciTech Connect (OSTI)

    Cermak, V.; Safanda, J.; Kresl, M.

    1997-12-31

    Earth`s subsurface has a certain capability to remember what has happened on its surface tens to hundreds (or even thousands) years ago. Long-term climate changes accompanied by variations in tile mean annual temperature determine tile soil temperature, the time variations of which then propagate downwards with an attenuated amplitude and delayed phase. Ground surface temperature (GST) history, reflecting the past climate, can thus be evaluated by analysing its excursions left on the present-day temperature-depth T(z) distribution measured by precise temperature logging in the boreholes. Whereas the depths of several hundred metres may still keep and reveal a reliable record oil the climate of the past several centuries, tile uppermost layer of 100-150 in presents a plentiful archive of the recent global warming. Several characteristic examples of extracted climate recollections from holes all over the world will be resented and discussed.

  16. Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Earned Value Management Earned Value Management The mission of the DOE Earned Value Management website is to educate and train on theory and practice of Earned Value Management, and use it as an integrated Project Management process. Earned Value Management (EVM) is a systematic approach to the integration and measurement of cost, schedule, and technical (scope) accomplishments on a project or task. It provides both the government and contractors the ability to examine detailed

  17. Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... last month. - 71315 Claudia Mora Geological Society of America selects Los Alamos ... Photo courtesy U.S. Department of Energy. Global samples from nuclear contamination sites ...

  18. Google Earth Tour: Water reuse at LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google Earth Tour: Water reuse at LANL Google Earth Tour: Water reuse at LANL Open full screen to view more You are running an unsupported browser, some features may not work....

  19. EarthCraft Virginia | Open Energy Information

    Open Energy Info (EERE)

    EarthCraft Virginia Jump to: navigation, search Name: EarthCraft Virginia Place: Richmond, VA Zip: 23220 Website: www.ecvirginia.org Coordinates: 37.5464259, -77.4644607 Show...

  20. EarthRise Capital | Open Energy Information

    Open Energy Info (EERE)

    EarthRise Capital Jump to: navigation, search Name: EarthRise Capital Place: New York, New York Zip: NY 10111 Sector: Efficiency Product: Venture capital fund focused on new...

  1. Alternative Earth Resources Inc | Open Energy Information

    Open Energy Info (EERE)

    840 - 1140 West Pender St. Place: Vancouver, B.C. Zip: V6E 4G1 Sector: Geothermal energy Website: www.alternative-earth.comsHo References: Alternative Earth Website1...

  2. Earth Week event all about energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth Week event all about energy Earth Week event all about energy People all across ... Energy Town Hall is April 21 at Fuller Lodge LOS ALAMOS, New Mexico, April 16, 2009-People ...

  3. DOE Co-Spnsors Earth Day Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Co-Sponsors Earth Day Activities Free trees and native plants are available to the first participants at the Idaho Falls Earth Day festivities in Tautphaus Park. There are a...

  4. Production method for making rare earth compounds

    DOE Patents [OSTI]

    McCallum, R.W.; Ellis, T.W.; Dennis, K.W.; Hofer, R.J.; Branagan, D.J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g., a transition metal and optional boron), and a carbide-forming element (e.g., a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g., Nd{sub 2}Fe{sub 14}B or LaNi{sub 5}) and a carbide of the carbide-forming element are formed.

  5. Production method for making rare earth compounds

    DOE Patents [OSTI]

    McCallum, R. William; Ellis, Timothy W.; Dennis, Kevin W.; Hofer, Robert J.; Branagan, Daniel J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.

  6. Argonne's 2012 Earth Day Event

    ScienceCinema (OSTI)

    None

    2013-04-19

    Argonne's 2012 Earth Day event drew crowds from across the laboratory. Argonne and U.S. Department of Energy employees toured booths and interactive displays set up by Argonne programs and clubs. Several of Argonne's partners participated, including U.S. Department of Energy, University of Chicago, Abri Credit Union, DuPage County Forest Preserve, DuPage Water Commission, PACE and Morton Arboretum. Argonne scientists and engineers also participated in a poster session, discussing their clean energy research.

  7. Wood panel earth shelter construction

    SciTech Connect (OSTI)

    Berg, J.R.; Loveless, J.G.; Senkow, W.

    1986-05-27

    An earth sheltered building is described including an arch structure, the structure including footings, a floor extending between the footings and arch means extending between the footings and having a base having lower ends on the footings for defining an enclosure which is covered with earth and open at opposite ends. The arch structure consists of: joined, curved wooden panel sections arranged in tandem in adjacent rows with more than two panel sections in a row, each of the sections including circumferentially extending wooden side members; wooden sheathing sections overlying the top skins of panel sections, the sheathing including a plurality of plywood sheets lapped over the joints between the panel sections and treated with a preservative; an adhesive joining the panel sections together within each row and to adjacent rows; waterproofing means on the sheathing for waterproofing the exterior surface of the arch means; connecting means engaging the base of the arch means at the footings and within the floor for tying the base together at its lower ends; and end walls and fastener means for joining the end walls to lateral edges of the arch means, the end walls dimensioned to extend above the arch means to retain earth placed on the arch means.

  8. Category:Earth Tidal Analysis | Open Energy Information

    Open Energy Info (EERE)

    Earth Tidal Analysis Jump to: navigation, search Geothermalpower.jpg Looking for the Earth Tidal Analysis page? For detailed information on Earth Tidal Analysis, click here....

  9. Near earth object fuels (neo-fuels): Discovery, prospecting and use

    SciTech Connect (OSTI)

    Zuppero, A.C.; Jacox, M.G.

    1992-08-25

    The 1992 discovery of a water-ice, near-Earth object (NEO) in the space near Earth is evaluated as a source of rocket fuel and life support materials for Earth orbit use. Nuclear thermal rockets using steam propellant are evaluated and suggested. The space geological formation containing such water-rich NEO's is described. An architecture couples near-Earth object fuels (neo-fuel) extraction with use in Earth orbits. Preliminary mass payback analyses show that space tanker systems fueled from space can return in excess of 100 times their launched mass from the NEO, per trip. Preliminary cost estimates indicate neo-fuel costs at Earth orbit can be 3 orders of magnitude below today's cost. A suggested resource verification plan is presented.

  10. Near earth object fuels (neo-fuels): Discovery, prospecting and use

    SciTech Connect (OSTI)

    Zuppero, A.C.; Jacox, M.G.

    1992-08-25

    The 1992 discovery of a water-ice, near-Earth object (NEO) in the space near Earth is evaluated as a source of rocket fuel and life support materials for Earth orbit use. Nuclear thermal rockets using steam propellant are evaluated and suggested. The space geological formation containing such water-rich NEO`s is described. An architecture couples near-Earth object fuels (neo-fuel) extraction with use in Earth orbits. Preliminary mass payback analyses show that space tanker systems fueled from space can return in excess of 100 times their launched mass from the NEO, per trip. Preliminary cost estimates indicate neo-fuel costs at Earth orbit can be 3 orders of magnitude below today`s cost. A suggested resource verification plan is presented.

  11. On the spin-axis dynamics of a Moonless Earth

    SciTech Connect (OSTI)

    Li, Gongjie; Batygin, Konstantin

    2014-07-20

    The variation of a planet's obliquity is influenced by the existence of satellites with a high mass ratio. For instance, Earth's obliquity is stabilized by the Moon and would undergo chaotic variations in the Moon's absence. In turn, such variations can lead to large-scale changes in the atmospheric circulation, rendering spin-axis dynamics a central issue for understanding climate. The relevant quantity for dynamically forced climate change is the rate of chaotic diffusion. Accordingly, here we re-examine the spin-axis evolution of a Moonless Earth within the context of a simplified perturbative framework. We present analytical estimates of the characteristic Lyapunov coefficient as well as the chaotic diffusion rate and demonstrate that even in absence of the Moon, the stochastic change in Earth's obliquity is sufficiently slow to not preclude long-term habitability. Our calculations are consistent with published numerical experiments and illustrate the putative system's underlying dynamical structure in a simple and intuitive manner.

  12. Earth boring machine and method

    SciTech Connect (OSTI)

    Sullinger, R.

    1983-09-13

    An earth boring machine and method are disclosed. An above-ground reference line, such as a laser beam, is established for a hole to be bored. The direction of the reference line is detected. The direction of a cutting head of the boring machine in a bore hole is detected and signals of the detected direction are transmitted to a control unit for comparison with the reference line direction. The boring machine is controlled with, for example, cam actuated adjustable peripheral cutters on the cutting head so that the direction of the boring machine can be adjusted to that of the reference line.

  13. Through-the-earth radio

    DOE Patents [OSTI]

    Reagor, David; Vasquez-Dominguez, Jose

    2006-05-09

    A method and apparatus for effective through-the-earth communication involves a signal input device connected to a transmitter operating at a predetermined frequency sufficiently low to effectively penetrate useful distances through-the earth, and having an analog to digital converter receiving the signal input and passing the signal input to a data compression circuit that is connected to an encoding processor, the encoding processor output being provided to a digital to analog converter. An amplifier receives the analog output from the digital to analog converter for amplifying said analog output and outputting said analog output to an antenna. A receiver having an antenna receives the analog output passes the analog signal to a band pass filter whose output is connected to an analog to digital converter that provides a digital signal to a decoding processor whose output is connected to an data decompressor, the data decompressor providing a decompressed digital signal to a digital to analog converter. An audio output device receives the analog output form the digital to analog converter for producing audible output.

  14. Towards a Fine-Resolution Global Coupled Climate System for Prediction...

    Office of Scientific and Technical Information (OSTI)

    58 GEOSCIENCES climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale eddies climate, numerical modeling, earth system model, ocean, sea-ice, mesoscale...

  15. Local Students Celebrate Earth Day at NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Students Celebrate Earth Day at NREL For more information contact: e:mail: Public Affairs Golden, Colo., April 17, 1998 — Media are invited to cover Earth Day celebration designed to inspire a new generation of scientists to discover better ways of using our natural resources. What: The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) will host an Earth Day celebration for 60 elementary students. Hands-on activities will include building model solar cars and

  16. Educate yourself about stewardship this Earth Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Educate yourself about stewardship this Earth Day Educate yourself about stewardship this Earth Day WHEN: Apr 20, 2016 12:00 PM - 2:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Earth Day open house Open House at the Bradbury Science Museum hosted by the Lab's Environmental Protection & Compliance-Environmental Stewardship resources team. Laboratory

  17. Space technology can help sustain Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space technology can help sustain Earth Space technology can help sustain Earth Satellite imagery and communication are powerful aids in confronting humanitarian and environmental issues June 12, 2016 Mars The 2014 Sabina Wildfire in California, captured by low-cost satellites created by Planet Labs Credit: Image by Planet Labs Inc via Wikimedia Commons under Creative Commons license Space technology can help sustain Earth ... Planet Labs, a San Francisco-based space startup, was born in the

  18. LANL | Solid Earth Geophysics | EES-17

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to monitor underground explosions, maintain our ability to conduct tests, and develop the Yucca Mountain Project. In addition, we study the nonlinear properties of earth materials,...

  19. EarthTronics Inc | Open Energy Information

    Open Energy Info (EERE)

    Name: EarthTronics Inc. Place: Muskegon, Michigan Zip: 49440 Product: Michigan-based firm that has licensed the Honeywell International brand for its gearless micro-scale...

  20. Earth Turbines Inc | Open Energy Information

    Open Energy Info (EERE)

    Earth Turbines Inc Place: Hinesburg, Vermont Zip: 5461 Sector: Wind energy Product: Start-up company developing small-scale wind technology for the residential and commercial...

  1. MIT- Earth Resources Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Name: MIT- Earth Resources Laboratory Address: 77 Massachusetts Avenue Place: Cambridge, Massachusetts Zip: 02139 Region: Greater Boston Area Website: eaps.mit.eduerl...

  2. Earth Power Resources Inc | Open Energy Information

    Open Energy Info (EERE)

    Resources Inc is a company based in Tulsa, Oklahoma. Earth Power Resources Inc in Tulsa, OK is a private company categorized under: Electric Companies. Records show it was...

  3. Clean Earth Capital LLP | Open Energy Information

    Open Energy Info (EERE)

    Capital LLP Jump to: navigation, search Name: Clean Earth Capital LLP Place: EDINBURGH, United Kingdom Zip: EH6 4NW Sector: Renewable Energy Product: Edinburgh-based corporate...

  4. Earth Day Coalition | Open Energy Information

    Open Energy Info (EERE)

    Day Coalition Jump to: navigation, search Name: Earth Day Coalition Address: 3606 Bridge Avenue, Suite 4 Place: Cleveland, Ohio Zip: 44113 Coordinates: 41.4829135, -81.7117416...

  5. Earth Share Oregon | Open Energy Information

    Open Energy Info (EERE)

    Share Oregon Jump to: navigation, search Name: Earth Share Oregon Address: 319 SW Washington Street Place: Portland, Oregon Zip: 97204 Region: Pacific Northwest Area Website:...

  6. Improved method for preparing rare earth sesquichalcogenides

    DOE Patents [OSTI]

    Takeshita, T.; Beaudry, B.J.; Gschneidner, K.A. Jr.

    1982-04-14

    An improved method for the preparation of high purity rare earth sesquichalcogenides is described. The rare earth, as one or more pieces of the metal, is sealed under a vacuum with a stoichiometric amount of sulfur or selenium and a small amount of iodine into a quartz reaction vessel. The sealed vessel is then heated to above the vaporization temperature of the chalcogen and below the melting temperature of the rare earth metal and maintained until the product has been formed. The iodine is then vaporized off leaving a pure product. The rare earth sulfides and selenides thus formed are useful as semiconductors and as thermoelectric generators. 3 tables.

  7. Earth-abundant semiconductors for photovoltaic applications ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth-abundant semiconductors for photovoltaic applications Thin film photovoltaics (solar cells) has the potential to revolutionize our energy landscape by producing clean,...

  8. Leverage Earth Day to Promote Energy Efficiency

    Broader source: Energy.gov [DOE]

    Learn how to leverage Earth Day and other holidays by visiting the Better Buildings Residential Program Solution Center for helpful peer exchange call summaries and case studies:

  9. Ferrocement: a technique for passive solar earth sheltered structures

    SciTech Connect (OSTI)

    Impson, L.C.

    1982-01-01

    A system of construction is discussed which allows for the least cost with the most return yet noted in any of the current publications. This system utilizes commonly available and relatively inexpensive materials. The use of unskilled labor is possible, thereby expanding one's labor pool. This system also allows more design freedom than do any of the other construction techniques now widely practiced. This system of construction is ferrocement, a technique which has been in use intermittently since 1847. A method of insulating Earth Shelters is also discussed, as well as air flow characteristics of domes.

  10. Construction details of an earth-sheltered passive solar thermosiphon air house

    SciTech Connect (OSTI)

    Ashelman, R.B.; Hagen, G.C.

    1980-01-01

    Construction details are presented for Sunrise, a passive solar, earth-sheltered house in eastern West Virginia. Particular attention is paid to the thermosiphon air system, as well as structural, waterproofing and insulation details.

  11. Discovery of a ternary pseudobrookite phase in the earth-abundant...

    Office of Scientific and Technical Information (OSTI)

    Title: Discovery of a ternary pseudobrookite phase in the earth-abundant TiZnO system Authors: Perry, Nicola H. ; Stevanovic, Vladan ; Lime, Linda Y. ; Mason, Thomas O. 1 ; CSM) ...

  12. THERMAL EXPANSION AND PHASE INVERSION OF RARE-EARTH OXIDES By...

    Office of Scientific and Technical Information (OSTI)

    ... do not take into account non-rare-earth impurities in ... CALCULATIONS Linear expansion (percent) and linear expansion ... l 2 (5) (6) For the cubic system, measurement of a single ...

  13. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2016-02-10

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  14. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Power | Department of Energy Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power April 12, 2013 - 11:17am Addthis Learn the basics of enhanced geothermal systems technology. I Infographic by <a href="http://energy.gov/contributors/sarah-gerrity">Sarah Gerrity</a>. Learn the basics of enhanced geothermal systems technology. I

  15. Ames Lab 101: Rare-Earth Recycling

    ScienceCinema (OSTI)

    Ryan Ott

    2013-06-05

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  16. Ternary rare earth-lanthanide sulfides

    DOE Patents [OSTI]

    Takeshita, Takuo; Gschneidner JR., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  17. Precise rare earth analysis of geological materials

    SciTech Connect (OSTI)

    Laul, J.C.; Wogman, N.A.

    1982-01-01

    Rare earth element (REE) concentrations are very informative in revealing chemical fractionation processs in geological systems. The REE's (La-Lu) behavior is characteristic of various primary and secondary minerals which comprise a rock. The REE's contents and their patterns provide a strong fingerprint in distinguishing among various rock types and in understanding the partial melting and/or fractional crystallization of the source region. The REE contents in geological materials are usually at trace levels. To measure all the REE at such levels, radiochemical neutron activation analysis (RNAA) has been used with a REE group separation scheme. To maximize detection sensitivites for individual REE, selective ..gamma..-ray/x-ray measurements have been made using normal Ge(Li) and low-energy photon detectors (LEPD), and Ge(Li)-NaI(Tl) coincidence-noncoincidence spectrometer systems. Using these detection methods an individual REE can be measured at or below the ppB levels; chemical yields of the REE are determined by reactivation.

  18. Method for laser drilling subterranean earth formations

    DOE Patents [OSTI]

    Shuck, Lowell Z.

    1976-08-31

    Laser drilling of subterranean earth formations is efficiently accomplished by directing a collimated laser beam into a bore hole in registry with the earth formation and transversely directing the laser beam into the earth formation with a suitable reflector. In accordance with the present invention, the bore hole is highly pressurized with a gas so that as the laser beam penetrates the earth formation the high pressure gas forces the fluids resulting from the drilling operation into fissures and pores surrounding the laser-drilled bore so as to inhibit deleterious occlusion of the laser beam. Also, the laser beam may be dynamically programmed with some time dependent wave form, e.g., pulsed, to thermally shock the earth formation for forming or enlarging fluid-receiving fissures in the bore.

  19. Earth Sciences Division collected abstracts: 1979

    SciTech Connect (OSTI)

    Henry, A.L.; Schwartz, L.L.

    1980-04-30

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

  20. Radiometer Characterization System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Contact: James C. Liljegren Phone: 630-252-9540 Email: jcliljegren@anl.gov ... the Earth Observing System (EOS) Aqua satellite. (See June 2002 ARM Facility Newsletter ...

  1. Rare Earth Metals for Science | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth Metals for Science The Ames Laboratory has been actively involved in the ... More information on the rare-earth elements Quantities of high-purity rare earth metals ...

  2. How Are You Celebrating Earth Day This Year? | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Day This Year? How Are You Celebrating Earth Day This Year? April 21, 2011 - 7:30am Addthis Tomorrow is Earth Day We've already written about how you can resolve to make Earth Day ...

  3. Earth Day Events Flyer 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Events Flyer 2016 Earth Day Events Flyer 2016 The schedule of events for the 2016 Department of Energy Earth Day activities. PDF icon Earth Day Events Flyer 2016 More Documents & ...

  4. Earth sheltering: the form of energy and the energy of form

    SciTech Connect (OSTI)

    Frenette, E.R.

    1981-01-01

    Winners in a national competition illustrate the state of the art in earth-sheltered construction. The winners were chosen from student and professional entries in four categories: single-family residential, multi-family residential, non-residential, and research. The book presents architectural details, including construction plans, floor plans, landscaping ideas, and photographs of the 50 examples. The three research examples include a regional analysis of ground and above-ground climate, biotechnical earth-support systems, and evaluation of free-span earth-sheltered structure and its method of production. 199 figures. (DCK)

  5. Earth Day, Every Day | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Week festivities at our headquarters here in Washington, D.C. throughout this week. This year's theme is "Earth Day, Every Day Changing Behavior to Reduce DOE's Carbon Footprint." ...

  6. Google Earth Tour: Waters LANL Protects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Clean the Past > What waters does LANL protect? PreviousNext Google Earth Tour: Waters LANL Protects Click here to load the tour...then click the play button below...

  7. New Earth Energy Limited | Open Energy Information

    Open Energy Info (EERE)

    Zip: BH31 6AT Sector: Renewable Energy Product: UK-based subsidiary of British waste treatment and renewable energy company New Earth Group, formed to deploy thermal conversion...

  8. Planning for Earth Day | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    not do something for the good ol' Earth and save a little energy at the same time? We talk a lot about insulation and home energy audits and other fancy stuff, but energy saving...

  9. Ames Lab 101: Rare-Earth Magnets

    ScienceCinema (OSTI)

    McCallum, Bill

    2012-08-29

    Senior Scientist, Bill McCallum, briefly discusses rare-earth magnets and their uses and how Ames Lab is research new ways to save money and energy using magnets.

  10. Earth Sciences Division Research Summaries 2006-2007

    SciTech Connect (OSTI)

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology

  11. Fusion On Earth | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weekly Highlights Brochures Fact Sheets Newsletters PPPL News Quest Princeton Journal Watch Blog PPPL Experts Research at Princeton Events Research Education Organization Contact Us News Room News Archive American Fusion News Press Releases Publications Weekly Highlights Brochures Fact Sheets Newsletters PPPL News Quest Princeton Journal Watch Blog PPPL Experts Research at Princeton Fusion On Earth Publication File: PDF icon Fusion On Earth Publication Type: Brochures

  12. Lab joins in global Earth Day celebrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab joins in global Earth Day celebrations Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Lab joins in global Earth Day celebrations A personal message from Laboratory Director Charlie McMillan April 1, 2014 Charlie McMillan, Laboratory Director Charlie McMillan, Laboratory Director Contacts Community Programs Office Director Kurt Steinhaus Email Editor Linda Anderman Email Los Alamos

  13. Earth Sciences Division collected abstracts: 1980

    SciTech Connect (OSTI)

    Henry, A.L.; Hornady, B.F.

    1981-10-15

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author.

  14. Ternary rare earth-lanthanide sulfides

    DOE Patents [OSTI]

    Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  15. Earth Sciences Division annual report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  16. Solar Energy Education. Renewable energy activities for earth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    earth science Citation Details In-Document Search Title: Solar Energy Education. Renewable energy activities for earth science You are accessing a document from the Department ...

  17. Nan Sauer named Associate Director for Chemistry, Life, and Earth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sauer named AD for Chemistry, Life, and Earth Sciences Nan Sauer named Associate Director for Chemistry, Life, and Earth Sciences Sauer has a distinguished track record as a ...

  18. Seismic Imaging of the Earth's Interior (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Romanowicz, Barbara

    2011-04-28

    Summer Lecture Series 2006: Earth scientist Barbara Romanowicz discusses how she explores the deep structure and dynamics of the Earth using seismic tomography.

  19. Engineering Density of States of Earth Abundant Semiconductors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Density of States of Earth Abundant Semiconductors for Enhanced Thermoelectric Power Factor Engineering Density of States of Earth Abundant Semiconductors for Enhanced ...

  20. Preparations of rare earth-iron alloys by thermite reduction

    DOE Patents [OSTI]

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.

    1986-09-16

    An improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.

  1. Earth Week 2015 Schedule of Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Schedule of Events Schedule of Events for Energy Department Earth Week 2015 PDF icon doeearthday2015schedule.pdf More Documents & Publications DOE Headquarters Earth Day 2015...

  2. ORNL Licenses Rare Earth Magnet Recycling Process to Momentum...

    Office of Environmental Management (EM)

    ORNL Licenses Rare Earth Magnet Recycling Process to Momentum Technologies ORNL Licenses ... Dallas-based Momentum Technologies is focused on extraction of rare earth elements and ...

  3. Transport of transient solar wind particles in Earth's cusps...

    Office of Scientific and Technical Information (OSTI)

    Transport of transient solar wind particles in Earth's cusps Citation Details In-Document Search Title: Transport of transient solar wind particles in Earth's cusps An important ...

  4. USGS-Earth Resources Observation and Science (EROS) Center |...

    Open Energy Info (EERE)

    USGS-Earth Resources Observation and Science (EROS) Center Jump to: navigation, search Tool Summary LAUNCH TOOL Name: USGS-Earth Resources Observation and Science (EROS) Center...

  5. Characterization and Recovery of Rare Earths from Coal and By...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Characterization and Recovery of Rare Earths from Coal and By-Products Citation Details In-Document Search Title: Characterization and Recovery of Rare Earths ...

  6. Evolution Energy formerly Earth Biofuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Energy formerly Earth Biofuels Inc Jump to: navigation, search Name: Evolution Energy (formerly Earth Biofuels Inc) Place: Dallas, Texas Zip: 75205 Sector: Renewable Energy...

  7. Constructing earth sheltered housing with concrete

    SciTech Connect (OSTI)

    Spears, R.E.

    1981-01-01

    This manual provides a state - of - the - art review of the design and construction of an earth - sheltered house using cast - in - place concrete, precast concrete, and concrete masonry. Based on a literature survey, theoretical work, and discussions with researchers and engineers in the concrete industry, the text is designed for use by architects, engineers, and homebuilders. The features of concrete construction that are current accepted practice for the concrete products discussed are shown to be applicable with reasonable care to building a safe, dry, and comfortable earth - sheltered house. The main considerations underlying the recommendations were the use of the earth's mass and passive solar effects to minimize energy needs, the structural capacity of the separate concrete products and their construction methods, and drainage principles and waterproofing details. Shelter ranging from those with at least 2 feet of earth cover to those with an uncovered roof of usual construction are included. To be considered an earth - sheltered residential building, at least half of the exterior wall and roof area that is in direct contact with the conditioned living space must be sheltered from the environment by earth berm or earthfill. Siting considerations, the fundamentals of passive solar heating, planning considerations, and structural considerations are discussed. Detailed guidelines are provided on concrete masonry construction, joint details in walls and floors, waterproofing, formwork and form removal, concrete construction practices, concrete masonry, and surface finishes. Numerous illustrations, tables, and a list of 32 references are provided. (Author abstract modified).

  8. Earth-sheltered housing: the what and the why. Special report 100

    SciTech Connect (OSTI)

    McCray, J.W.; Brubaker, S.E.

    1982-01-01

    Four basic styles of earth-sheltered structures are illustrated and described. Benefits of earth-sheltered homes are cited, including energy savings potential, protection from natural elements and intruders, privacy, and owner pride. Construction-related considerations discussed include: layout, site, construction materials, moisture control systems, insulation, and building codes. Finally, the aspects of life-cycle costs and insurance costs and financing are discussed briefly. (LEW)

  9. Fluorescent lifetime measurements of rare-earth elements in gallium arsenide. Master's thesis

    SciTech Connect (OSTI)

    Topp, D.J.

    1990-12-01

    Lifetime measurements of the excited states of three GaAs semiconductors doped with the rare earth elements Erbium (Er), Praseodymium (Pr), and Thulium (Tm) has been studied using a pulsed nitrogen laser and germanium detector. The measurements were made with an experimental set up with a system response time of 0.34 microseconds. A 330 milliwatt nitrogen laser with a wavelength of 3370 angstroms was used to excite transitions of the rare earth elements.

  10. Comparison of Data Quality of NOAA's ISIS and SURFRAD Networks to NREL's SRRL-BMS

    SciTech Connect (OSTI)

    Anderberg, M.; Sengupta, M.

    2014-11-01

    This report provides analyses of broadband solar radiometric data quality for the National Oceanic and Atmospheric Administration's Integrated Surface Irradiance Study and Surface Radiation Budget Network (SURFRAD) solar measurement networks. The data quality of these networks is compared to that of the National Renewable Energy Laboratory's Solar Radiation Research Laboratory Baseline Measurement System (SRRL-BMS) native data resolutions and hourly averages of the data from the years 2002 through 2013. This report describes the solar radiometric data quality testing and flagging procedures and the method used to determine and tabulate data quality statistics. Monthly data quality statistics for each network were plotted by year against the statistics for the SRRL-BMS. Some of the plots are presented in the body of the report, but most are in the appendix. These plots indicate that the overall solar radiometric data quality of the SURFRAD network is superior to that of the Integrated Surface Irradiance Study network and can be comparable to SRRL-BMS.

  11. INTERPRETING ERUPTIVE BEHAVIOR IN NOAA AR 11158 VIA THE REGION'S MAGNETIC ENERGY AND RELATIVE-HELICITY BUDGETS

    SciTech Connect (OSTI)

    Tziotziou, Kostas; Georgoulis, Manolis K.; Liu Yang

    2013-08-01

    In previous works, we introduced a nonlinear force-free method that self-consistently calculates the instantaneous budgets of free magnetic energy and relative magnetic helicity in solar active regions (ARs). Calculation is expedient and practical, using only a single vector magnetogram per computation. We apply this method to a time series of 600 high-cadence vector magnetograms of the eruptive NOAA AR 11158 acquired by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory over a five-day observing interval. Besides testing our method extensively, we use it to interpret the dynamical evolution in the AR, including eruptions. We find that the AR builds large budgets of both free magnetic energy and relative magnetic helicity, sufficient to power many more eruptions than the ones it gave within the interval of interest. For each of these major eruptions, we find eruption-related decreases and subsequent free-energy and helicity budgets that are consistent with the observed eruption (flare and coronal mass ejection (CME)) sizes. In addition, we find that (1) evolution in the AR is consistent with the recently proposed (free) energy-(relative) helicity diagram of solar ARs, (2) eruption-related decreases occur before the flare and the projected CME-launch times, suggesting that CME progenitors precede flares, and (3) self terms of free energy and relative helicity most likely originate from respective mutual terms, following a progressive mutual-to-self conversion pattern that most likely stems from magnetic reconnection. This results in the non-ideal formation of increasingly helical pre-eruption structures and instigates further research on the triggering of solar eruptions with magnetic helicity firmly placed in the eruption cadre.

  12. Three-dimensional magnetic restructuring in two homologous solar flares in the seismically active NOAA AR 11283

    SciTech Connect (OSTI)

    Liu, Chang; Deng, Na; Lee, Jeongwoo; Wang, Haimin; Wiegelmann, Thomas; Jiang, Chaowei; Dennis, Brian R.; Su, Yang; Donea, Alina

    2014-11-10

    We carry out a comprehensive investigation comparing the three-dimensional magnetic field restructuring, flare energy release, and the helioseismic response of two homologous flares, the 2011 September 6 X2.1 (FL1) and September 7 X1.8 (FL2) flares in NOAA AR 11283. In our analysis, (1) a twisted flux rope (FR) collapses onto the surface at a speed of 1.5 km s{sup –1} after a partial eruption in FL1. The FR then gradually grows to reach a higher altitude and collapses again at 3 km s{sup –1} after a fuller eruption in FL2. Also, FL2 shows a larger decrease of the flux-weighted centroid separation of opposite magnetic polarities and a greater change of the horizontal field on the surface. These imply a more violent coronal implosion with corresponding more intense surface signatures in FL2. (2) The FR is inclined northward and together with the ambient fields, it undergoes a southward turning after both events. This agrees with the asymmetric decay of the penumbra observed in the peripheral regions. (3) The amounts of free magnetic energy and nonthermal electron energy released during FL1 are comparable to those of FL2 within the uncertainties of the measurements. (4) No sunquake was detected in FL1; in contrast, FL2 produced two seismic emission sources S1 and S2 both lying in the penumbral regions. Interestingly, S1 and S2 are connected by magnetic loops, and the stronger source S2 has a weaker vertical magnetic field. We discuss these results in relation to the implosion process in the low corona and the sunquake generation.

  13. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    SciTech Connect (OSTI)

    Cohen, O.; Drake, J. J.; Kota, J.

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.

  14. Grand Research Questions in the Solid-Earth Sciences Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Linn, Anne M.

    2008-12-03

    Over the past three decades, Earth scientists have made great strides in understanding our planet’s workings and history. Yet this progress has served principally to lay bare more fundamental questions about the Earth. Expanding knowledge is generating new questions, while innovative technologies and new partnerships with other sciences provide new paths toward answers. A National Academies committee was established to frame some of the great intellectual challenges inherent in the study of the Earth and planets. The goal was to focus on science, not implementation issues, such as facilities or recommendations aimed at specific agencies. The committee canvassed the geological community and deliberated at length to arrive at 10 questions: 1. How did Earth and other planets form? 2. What happened during Earth’s “dark age” (the first 500 million years)? 3. How did life begin? 4. How does Earth’s interior work, and how does it affect the surface? 5. Why does Earth have plate tectonics and continents? 6. How are Earth processes controlled by material properties? 7. What causes climate to change—and how much can it change? 8. How has life shaped Earth—and how has Earth shaped life? 9. Can earthquakes, volcanic eruptions, and their consequences be predicted? 10. How do fluid flow and transport affect the human environment? Written for graduate students, colleagues in sister disciplines, and program managers funding Earth and planetary science research, the report describes where the field stands, how it got there, and where it might be headed. Our hope is that the report will spark new interest in and support for the field by showing how Earth science can contribute to a wide range of issues—including some not always associated with the solid Earth—from the formation of the solar system to climate change to the origin of life. Its reach goes beyond the United States; the report is being translated into Chinese and distributed in China.

  15. Predicting Land-Ice Retreat and Sea-Level Rise with the Community Earth

    Office of Scientific and Technical Information (OSTI)

    System Model (Conference) | SciTech Connect Conference: Predicting Land-Ice Retreat and Sea-Level Rise with the Community Earth System Model Citation Details In-Document Search Title: Predicting Land-Ice Retreat and Sea-Level Rise with the Community Earth System Model Coastal stakeholders need defensible predictions of 21st century sea-level rise (SLR). IPCC assessments suggest 21st century SLR of {approx}0.5 m under aggressive emission scenarios. Semi-empirical models project SLR of

  16. Ocean pC02 Data from the Lamont-Doherty Earth Observatory of Columbia University, 1994 - 2009

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Takahashi, T.

    The Earth Institute of Columbia University has, as an overarching goal, to help achieve sustainable development primarily by expanding the world's understanding of Earth as one integrated system. The Earth Institute encompasses centers of excellence with an established reputation for groundbreaking research, including the renowned Lamont-Doherty Earth Observatory (LDEO), home to more than 200 researchers who study Earth and its systems. The Carbon Dioxide Research Group, led by Dr. Taro Takahashi, studies pCO2 in seawater, carbon sequestration models related to deep aquifers, and air-sea CO2 flux. Datasets from ocean cruises in the years 1994 to the present are made available from this website, along with a list of publications, and cruise maps.

  17. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOAA Earth System Research Laboratory Retrievables: mean rainfall rate (R m ) andor rain water path (RWP), cloud liquid water path (LWP) (D < 50 m or so) (cloud and rain...

  18. Earth Sciences report, 1989--1990

    SciTech Connect (OSTI)

    Younker, L.W.; Peterson, S.J.; Price, M.E.

    1991-03-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) conducts work in support of the Laboratory's energy, defense, environmental, and basic research programs. The Department comprises more than 100 professional scientific personnel spanning a variety of subdisciplines: geology, seismology, physics, geophysics, geochemistry, geohydrology, chemical engineering, and mechanical engineering. Resident technical support groups add significant additional technical expertise, including Containment Engineering, Computations, Electronic Engineering, Mechanical Engineering, Chemistry and Materials Science, and Technical Information. In total, approximately 180 professional scientists and engineers are housed in the Earth Sciences Department, making it one of the largest geo-science research groups in the nation. Previous Earth Sciences reports have presented an outline of the technical capabilities and accomplishments of the groups within the Department. In this FY 89/90 Report, we have chosen instead to present twelve of our projects in full-length technical articles. This Overview introduces those articles and highlights other significant research performed during this period.

  19. Rare earth phosphors and phosphor screens

    DOE Patents [OSTI]

    Buchanan, Robert A.; Maple, T. Grant; Sklensky, Alden F.

    1981-01-01

    This invention relates to rare earth phosphor screens for converting image carrying incident radiation to image carrying visible or near-visible radiation and to the rare earth phosphor materials utilized in such screens. The invention further relates to methods for converting image carrying charged particles to image carrying radiation principally in the blue and near-ultraviolet region of the spectrum and to stabilized rare earth phosphors characterized by having a continuous surface layer of the phosphors of the invention. More particularly, the phosphors of the invention are oxychlorides and oxybromides of yttrium, lanthanum and gadolinium activated with trivalent cerium and the conversion screens are of the type illustratively including x-ray conversion screens, image amplifier tube screens, neutron imaging screens, cathode ray tube screens, high energy gamma ray screens, scintillation detector screens and screens for real-time translation of image carrying high energy radiation to image carrying visible or near-visible radiation.

  20. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOE Patents [OSTI]

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  1. Resonance electronic Raman scattering in rare earth crystals

    SciTech Connect (OSTI)

    Williams, G.M.

    1988-11-10

    The intensities of Raman scattering transitions between electronic energy levels of trivalent rare earth ions doped into transparent crystals were measured and compared to theory. A particle emphasis was placed on the examination of the effect of intermediate state resonances on the Raman scattering intensities. Two specific systems were studied: Ce/sup 3 +/(4f/sup 1/) in single crystals of LuPO/sub 4/ and Er/sup 3 +/(4f/sup 11/) in single crystals of ErPO/sub 4/. 134 refs., 92 figs., 33 tabs.

  2. Rare earth element patterns in biotite, muscovite and tourmaline minerals

    SciTech Connect (OSTI)

    Laul, J.C.; Lepel, E.A.

    1986-04-21

    Rare earth element concentrations in the minerals biotite and muscovite from the mica schist country rocks of the Etta pegmatite and tourmalines from the Bob Ingersoll pegmatite have been measured by INAA and CNAA. The concentrations range from 10/sup -4/ g/g to 10/sup -10g//sub g/. The REE patterns of biotite, muscovite and tourmaline reported herein are highly fractionated from light to heavy REE. The REE concentrations in biotite and muscovite are high and indigenous. The pegmatite tourmalines contain low concentrations of REE. Variations in tourmaline REE patterns reflect the geochemical evolution of pegmatite melt/fluid system during crystallization.

  3. Magnetic behaviour of the rare earth binary R-Fe alloys

    SciTech Connect (OSTI)

    Cabral, F.A.O.; Turtelli, R.S.; Gama, S.; Machado, F.L.A. )

    1989-09-01

    Thermomagnetic analysis and coercive field measurements in rare-earth-rich alloys of the systems Fe-Ce, Fe-Pr and Fe-Nd suggest the presence of two different magnetically hard phases in all these systems. These phases can be metastable and their magnetic properties are strongly affected by heat-treatments at 600{sup 0}C.

  4. Earth Sciences Department Annual Report, 1984

    SciTech Connect (OSTI)

    Henry, A.L.; Donohue, M.L.

    1985-09-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory comprises nine different disciplinary and programmatic groups that provide research in the geosciences, including nuclear waste management, containment of nuclear weapons tests, seismic treaty verification, stimulation of natural gas production by unconventional means, and oil shale retorting. Each group's accomplishments in 1984 are discussed, followed by a listing of the group's publications for the year.

  5. Replacing the Rare Earth Intellectual Capital

    SciTech Connect (OSTI)

    Gschneidner, Jr., Karl

    2011-04-01

    The rare earth crisis slowly evolved during a 10 to 15 year period beginning in the mid-1980s, when the Chinese began to export mixed rare earth concentrates. In the early 1990s, they started to move up the supply chain and began to export the individual rare earth oxides and metals. By the late 1990s the Chinese exported higher value products, such as magnets, phosphors, polishing compounds, catalysts; and in the 21st century they supplied finished products including electric motors, computers, batteries, liquid-crystal displays (LCDs), TVs and monitors, mobile phones, iPods and compact fluorescent lamp (CFL) light bulbs. As they moved to higher value products, the Chinese slowly drove the various industrial producers and commercial enterprises in the US, Europe and Japan out of business by manipulating the rare earth commodity prices. Because of this, the technically trained rare earth engineers and scientists who worked in areas from mining to separations, to processing to production, to manufacturing of semifinished and final products, were laid-off and moved to other fields or they retired. However, in the past year the Chinese have changed their philosophy of the 1970s and 1980s of forming a rare earth cartel to control the rare earth markets to one in which they will no longer supply the rest of the world (ROW) with their precious rare earths, but instead will use them internally to meet the growing demand as the Chinese standard of living increases. To this end, they have implemented and occasionally increased export restrictions and added an export tariff on many of the high demand rare earth elements. Now the ROW is quickly trying to start up rare earth mines, e.g. Molycorp Minerals in the US and Lynas Corp. in Australia, to cover this shortfall in the worldwide market, but it will take about five years for the supply to meet the demand, even as other mines in the ROW become productive. Unfortunately, today there is a serious lack of technically trained

  6. Crystalline rare-earth activated oxyorthosilicate phosphor

    DOE Patents [OSTI]

    McClellan, Kenneth J.; Cooke, D. Wayne

    2004-02-10

    Crystalline, transparent, rare-earth activated lutetium oxyorthosilicate phosphor. The phosphor consists essentially of lutetium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of lutetium gadolinium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Gd.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of gadolinium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Gd(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor may be optically coupled to a photodetector to provide a radiation detector.

  7. Thermal benefits and cost effectiveness of earth berming

    SciTech Connect (OSTI)

    Speltz, J.; Haves, P.

    1980-01-01

    A number of advantages are claimed for earth sheltered buildings; the earth provides both insulation and thermal storage and also serves to reduce infiltration and noise. This paper seeks to quantify the thermal advantages of both earth sheltering and perimeter insulation by comparing the simulated thermal performance of an earth sheltered house, a house with perimeter insulation and a house with neither. The fuel savings are then compared to the estimated construction costs to determine cost-effectiveness. The major saving from an earth sheltered building is obtained in colder climates where the effective elevation of the frost line due to the earth berms considerably reduces the cost of the foundation.

  8. Rare earths for life: an 85th birthday visit with Mr. Rare Earth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth While scientists often talk about their life's work, few lives have been fuller than that of Ames Laboratory's Karl A. Gschneidner, Jr. who's being honored for over...

  9. COLLISIONAL STRIPPING AND DISRUPTION OF SUPER-EARTHS

    SciTech Connect (OSTI)

    Marcus, Robert A.; Sasselov, Dimitar; Hernquist, Lars; Stewart, Sarah T.

    2009-08-01

    The final stage of planet formation is dominated by collisions between planetary embryos. The dynamics of this stage determine the orbital configuration and the mass and composition of planets in the system. In the solar system, late giant impacts have been proposed for Mercury, Earth, Mars, and Pluto. In the case of Mercury, this giant impact may have significantly altered the bulk composition of the planet. Here we present the results of smoothed particle hydrodynamics simulations of high-velocity (up to {approx}5v {sub esc}) collisions between 1 and 10 M {sub +} planets of initially terrestrial composition to investigate the end stages of formation of extrasolar super-Earths. As found in previous simulations of collisions between smaller bodies, when collision energies exceed simple merging, giant impacts are divided into two regimes: (1) disruption and (2) hit-and-run (a grazing inelastic collision and projectile escape). Disruption occurs when the impact parameter is near zero, when the projectile mass is small compared to the target, or at extremely high velocities. In the disruption regime, we derive the criteria for catastrophic disruption (when half the total colliding mass is lost), the transition energy between accretion and erosion, and a scaling law for the change in bulk composition (iron-to-silicate ratio) resulting from collisional stripping of a mantle.

  10. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    DOE Patents [OSTI]

    Duncan, Paul G.

    2002-01-01

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  11. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  12. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOE Patents [OSTI]

    Ellis, Timothy W.; Schmidt, Frederick A.

    1995-08-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  13. Earth sheltered housing performance: a summary report

    SciTech Connect (OSTI)

    Boyer, L.L.; Grondzik, W.T.; Fitzgerald, D.K.

    1981-01-01

    Oklahoma and the surrounding interior plains region is being studied with respect to the extensive development of earth sheltered housing. An understanding of the occupant responses to this rediscovered dwelling concept is being determined through extended questionnaires and telephone interviews. Statistical evaluation of these responses should suggest regional relationships between the interior human environment and the exterior environment as expressed by earth sheltered architecture. Habitability and passive energy design are the main topics of interest being investigated at Oklahoma State University. Initial results indicate that occupants are generally satisfied with such attributes as structural safety, thermal comfort, and acoustic environment; but have some reservations concerning daylighting, site design, privacy of family members, and energy design and performance. Despite reservations on energy performance, owners have still achieved significant savings in comparison to their previous homes. A most promising fact is that these savings have been realized with little decrease and often an increase in comfort and habitability aspects.

  14. METHOD AND APPARATUS FOR EARTH PENETRATION

    DOE Patents [OSTI]

    Adams, W.M.

    1963-12-24

    A nuclear reactor apparatus for penetrating into the earth's crust is described. The apparatus comprises a cylindrical nuclear core operating at a temperature that is higher than the melting temperature of rock. A high-density ballast member is coupled to the nuclear core such that the overall density of the core-ballast assembly is greater than the density of molten rock. The nuclear core is thermally insulated so that its heat output is constrained to flow axially, with radial heat flow being minimized. In operation, the apparatus is placed in contact with the earth's crust at the point desired to be penetrated. The heat output of the reactor melts the underlying rock, and the apparatus sinks through the resulting magma. The fuel loading of the reactor core determines the ultimate depth of crust penetration. (AEC)

  15. Blue Earth-Nicollet-Faribault | Open Energy Information

    Open Energy Info (EERE)

    Earth-Nicollet-Faribault Jump to: navigation, search Name: Blue Earth-Nicollet-Faribault Place: Minnesota Phone Number: 507-387-7963 Website: www.benco.org Facebook: https:...

  16. City of Blue Earth, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Earth, Minnesota (Utility Company) Jump to: navigation, search Name: City of Blue Earth Place: Minnesota Phone Number: (507) 526-2191 or (507) 526-5382 or (507) 526-2402 Website:...

  17. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle Print It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced...

  18. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle The Iron Spin Transition in the Earth's Lower Mantle Print Wednesday, 30 April 2008 00:00 It is now known that the iron present...

  19. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory...

  20. The Materials Preparation Center - Making Rare Earth Metals - Part 1

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 1 of 4.

  1. Preparations of rare earth-iron alloys by thermite reduction

    DOE Patents [OSTI]

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.

    1985-10-28

    Disclosed is an improved method for the preparation of high-purity rare earth-iron alloys by the aluminothermic reduction of a mixture of rare earth and iron fluorides.

  2. The Materials Preparation Center - Making Rare Earth Metals - Part 4

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 4 of 4.

  3. The Materials Preparation Center - Making Rare Earth Metals - Part 3

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 3 of 4.

  4. Earth plus Mars: Los Alamos National Lab partners with Spain...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth plus Mars: Los Alamos National Lab partners with Spain and France Earth plus Mars: Los Alamos National Lab partners with Spain and France New Mexico's role in the next...

  5. What would we do without rare earths? | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an Energy Innovation Hub created by the U.S. Department of Energy, has a big problem to solve -- what would we do without rare earths? Rare earths are a big part of our modern...

  6. DOE-Led Research Team Makes Significant Rare Earth Discovery...

    Office of Environmental Management (EM)

    DOE-Led Research Team Makes Significant Rare Earth Discovery DOE-Led Research Team Makes ... Energy (DOE) has found that rare earth elements (REEs) can be removed from two U.S. ...

  7. Modeling Magnetism in Rare-Earth Intermetallic Materials | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Magnetism in Rare-Earth Intermetallic Materials Theoretical modeling has led to a ... Rare-earth elements are unique in that their cores hold strongly localized electrons that ...

  8. How Are You Celebrating Earth Day? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22, 2010 - 7:30am Addthis Happy Earth Day Today marks the 40th anniversary of celebrating Earth Day, and we hope you're getting into the spirit and committing to protecting the ...

  9. Ideas for What to Do this Earth Day

    Broader source: Energy.gov [DOE]

    Given that Earth Day's coming up in a couple of days, you might find a few things you can do if you choose to celebrate Earth Day this year.

  10. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial...

  11. BlueEarth Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    BlueEarth Biofuels LLC Jump to: navigation, search Name: BlueEarth Biofuels LLC Place: Hawaii Zip: 96813 Sector: Renewable Energy Product: Developer of power and renewable-energy...

  12. The Materials Preparation Center - Making Rare Earth Metals - Part 2

    ScienceCinema (OSTI)

    Riedemann, Trevor

    2013-03-01

    Trevor Riedeman, manager of the MPC Rare Earth Materials Section, gives a presentation on the importance of rare earth metals and how they are made at Ames Laboratory. Part 2 of 4.

  13. Aljazeera story on rare earths features Alex King | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aljazeera story on rare earths features Alex King Aljazeera America recently did a story on the demand and scarcity of rare-earth metals and spoke to Ames Laboratory scientist and...

  14. Tracking target objects orbiting earth using satellite-based telescopes

    DOE Patents [OSTI]

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  15. SEPARATION OF RARE EARTHS BY SOLVENT EXTRACTION

    DOE Patents [OSTI]

    Peppard, D.F.; Mason, G.W.

    1960-10-11

    A process is given for separating lanthanide rare earths from each other from an aqueous mineral acid solution, e.g., hydrochloric or nitric acid of a concentration of above 3 M, preferably 12 to 16 M, by extraction with a water- immiscible alkyl phosphate, such as tributyl phosphate or a mixture of mono-, di- and tributyl phosphate, and fractional back-extraction with mineral acid whereby the lanthanides are taken up by the acid in the order of increasing atomic number.

  16. Earth Sciences Division annual report 1980

    SciTech Connect (OSTI)

    Not Available

    1981-07-01

    Summaries of the highlights of programs in the Earth Sciences Division are presented under four headings; Geosciences, Geothermal Energy Development, Nuclear Waste Isolation, and Marine Sciences. Utilizing both basic and applied research in a wide spectrum of topics, these programs are providing results that will be of value in helping to secure the nation's energy future. Separate abstracts have been prepared for each project for inclusion in the Energy Data Base. (DMC)

  17. Center for Space and Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call for Proposals Submit Proposals Research Subject Areas Types of Proposals Funding for Projects Evaluation and Selection Acceptance and Rejection Deadlines Events Partnerships NSEC » CSES Center for Space and Earth Science Formerly known as the Institute for Geophysics, Planetary Physics, and Signatures (IGPPS) Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia D. Sanchez (505) 665-0855 Email Science Discipline Leaders Astrophysics & Cosmology Hui

  18. Alkaline earth cation extraction from acid solution

    DOE Patents [OSTI]

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  19. Center for Space and Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute of Geophysics, Planetary Physics, and Signatures Center for Space and Earth Science Promoting and supporting high-quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia Sanchez (505) 665-0855 Email Astophysics and Cosmology Hui Li (505) 665-3131 Email Climate Keeley Costigan (505) 665-4788 Email Geophysics David Coblentz (505)

  20. Earth Day Celebration at Nationals Park

    Broader source: Energy.gov [DOE]

    As a part of the Earth Day celebration, Deputy Secretary Elizabeth Sherwood-Randall will represent DOE during the pregame acknowledgements and Presidents Race at Nationals Park on Friday, April 22, when the Nationals play the Minnesota Twins beginning at 7:05 p.m. The Sustainability Performance Office (SPO) is assisting with this "Celebration of Sustainability" to have some fun while promoting workplace sustainability to staff and citizens.

  1. Breaking a Cycle-Free Lifestyle for Earth Day

    Broader source: Energy.gov [DOE]

    One woman works through traumatic bicycle-related experiences while contemplating the purchase of a new bike for Earth Day.

  2. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Mineral Deformation at Earth's Core-Mantle Boundary Print Wednesday, 31 August 2011 00:00 Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in

  3. Modeling Magnetism in Rare-Earth Intermetallic Materials | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Modeling Magnetism in Rare-Earth Intermetallic Materials Theoretical modeling has led to a key development in our understanding of the deeply complex magnetic properties in a series of rare-earth intermetallic materials. Rare-earth elements are unique in that their cores hold strongly localized electrons that underpin their novel magnetic properties. When combined with transition metals, rare earths become technologically-useful intermetallic materials. Here gadolinium-an element

  4. Webtrends Archives by Fiscal Year — Earth Day

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the Earth Day site by fiscal year.

  5. CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL

    DOE Patents [OSTI]

    Ploetz, G.L.; Ray, W.E.

    1958-11-01

    A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.

  6. The Brief History and Future Development of Earth System Models...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... OMBOSTP FY 14 S&T Memo: Guidance to the Agencies Memo at http:www.whitehouse.govsitesdefaultfilesombmemoranda2012m-12-15.pdf "Emphasize research that advances ...

  7. Behavior of Rare Earth Elements in Geothermal Systems- A New...

    Open Energy Info (EERE)

    ExplorationExploitation Tool? Abstract NA Author Scott A. Wood Published Department of Geology and Geological Engineering University of Idaho, 2001 DOI Not Provided Check for...

  8. Performance of the Community Earth System Model (Conference)...

    Office of Scientific and Technical Information (OSTI)

    Authors: Worley, Patrick H 1 ; Craig, Anthony 2 ; Dennis, John 2 ; Mirin, Arthur A. 3 ; Taylor, Mark 4 ; Vertenstein, Mariana 2 + Show Author Affiliations ORNL National ...

  9. Proposal Title: Community Earth System Model (CESM) Tutorial

    Office of Scientific and Technical Information (OSTI)

    tutorial was taught at NCAR from 1-5 August 2011. This project hosted 79 full participants (1 accepted participant from China couldn't get a visa) selected from 180 applications. ...

  10. Plant Functional Types and Earth System Models (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    DE-AC05-00OR22725 Resource Type: Journal Article Resource Relation: Journal Name: Annals of Botany; Journal Volume: 114; Journal Issue: 1 Research Org: Oak Ridge National...

  11. 2013 Community Earth System Model (CESM) Tutorial-Proposal to...

    Office of Scientific and Technical Information (OSTI)

    THE SAME REQUEST WILL BE SENT TO BOTH NSF AND DOE TO EACH SUPPORT 35K. The third annual ... Research Sponsoring Org: USDOE Country of Publication: United States Language: English

  12. Toward an Earth System Modeling Approach to Simulate Irrigation...

    Office of Science (SC) Website

    about 87% of global freshwater withdrawals, significantly altering the global water cycle. ... demand for water resources at the regional scale over the conterminous United States. ...

  13. 2012 Community Earth System Model (CESM) Tutorial - Proposal...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  14. A Scalable and Extensible Earth System Model for Climate Change...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  15. Final Report for proposal "The Interface between Earth System...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  16. In the OSTI Collections: Earth System Models | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    ... the Chinese Academy of Sciences in Beijing, Sandia National Laboratories, and the Institute for Computational Engineering and Sciences at the University of Texas at Austin. ...

  17. Final Report for proposal "The Interface between Earth System...

    Office of Scientific and Technical Information (OSTI)

    The first step in this process is a small (25 person) workshop to identify the goals and objectives of the new working group, to discuss how it will interact with existing CESM ...

  18. 2012 Community Earth System Model (CESM) Tutorial - Proposal...

    Office of Scientific and Technical Information (OSTI)

    This document provides the agenda and list of participants for the conference. Web materials for all lectures and practical sessions available from: http:www.cesm.ucar.edu...

  19. Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments

    SciTech Connect (OSTI)

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph; Rodhe, Henning

    2014-12-08

    Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content. This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO? given in AR5, 1.54.5 K/(3.7 W m?) exceeds the range inferred from the assessed likely range of forcing, 1.22.9 K/(3.7 W m?), where 3.7 W ? denotes the forcing for doubled CO?. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.

  20. FIRST EARTH-BASED DETECTION OF A SUPERBOLIDE ON JUPITER

    SciTech Connect (OSTI)

    Hueso, R.; Perez-Hoyos, S.; Sanchez-Lavega, A.; Wesley, A.; Go, C.; Wong, M. H.; De Pater, I.; Fletcher, L. N.; Boslough, M. B. E.; Orton, G. S.; Yanamandra-Fisher, P. A.; Simon-Miller, A. A.; Djorgovski, S. G.; Edwards, M. L.; Clarke, J. T.; Noll, K. S.

    2010-10-01

    Cosmic collisions on planets cause detectable optical flashes that range from terrestrial shooting stars to bright fireballs. On 2010 June 3 a bolide in Jupiter's atmosphere was simultaneously observed from the Earth by two amateur astronomers observing Jupiter in red and blue wavelengths. The bolide appeared as a flash of 2 s duration in video recording data of the planet. The analysis of the light curve of the observations results in an estimated energy of the impact of (0.9-4.0) x 10{sup 15} J which corresponds to a colliding body of 8-13 m diameter assuming a mean density of 2 g cm{sup -3}. Images acquired a few days later by the Hubble Space Telescope and other large ground-based facilities did not show any signature of aerosol debris, temperature, or chemical composition anomaly, confirming that the body was small and destroyed in Jupiter's upper atmosphere. Several collisions of this size may happen on Jupiter on a yearly basis. A systematic study of the impact rate and size of these bolides can enable an empirical determination of the flux of meteoroids in Jupiter with implications for the populations of small bodies in the outer solar system and may allow a better quantification of the threat of impacting bodies to Earth. The serendipitous recording of this optical flash opens a new window in the observation of Jupiter with small telescopes.

  1. Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph; Rodhe, Henning

    2014-12-08

    Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content.more » This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO₂ given in AR5, 1.5–4.5 K/(3.7 W m⁻²) exceeds the range inferred from the assessed likely range of forcing, 1.2–2.9 K/(3.7 W m⁻²), where 3.7 W ⁻² denotes the forcing for doubled CO₂. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.« less

  2. Note: Portable rare-earth element analyzer using pyroelectric crystal

    SciTech Connect (OSTI)

    Imashuku, Susumu Fuyuno, Naoto; Hanasaki, Kohei; Kawai, Jun

    2013-12-15

    We report a portable rare-earth element analyzer with a palm-top size chamber including the electron source of a pyroelectric crystal and the sample stage utilizing cathodoluminescence (CL) phenomenon. The portable rare-earth element analyzer utilizing CL phenomenon is the smallest reported so far. The portable rare-earth element analyzer detected the rare-earth elements Dy, Tb, Er, and Sm of ppm order in zircon, which were not detected by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. We also performed an elemental mapping of rare-earth elements by capturing a CL image using CCD camera.

  3. Efficient Earth-Sheltered Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Types of Homes » Efficient Earth-Sheltered Homes Efficient Earth-Sheltered Homes This house in Tempe, Arizona, uses earth-sheltered construction methods to help decrease cooling costs. | Photo by Pamm McFadden This house in Tempe, Arizona, uses earth-sheltered construction methods to help decrease cooling costs. | Photo by Pamm McFadden If you are looking for a home with energy-efficient features that will provide a comfortable, tranquil, weather-resistant dwelling, an earth-sheltered

  4. EERE Success Story-UQM Patents Non-Rare Earth Magnet Motor under

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-Supported Project | Department of Energy UQM Patents Non-Rare Earth Magnet Motor under DOE-Supported Project EERE Success Story-UQM Patents Non-Rare Earth Magnet Motor under DOE-Supported Project April 16, 2015 - 10:29am Addthis Credit: UQM Technologies Credit: UQM Technologies Through a cooperative R&D project with the Vehicle Technologies Office (VTO), UQM Technologies, a company developing propulsion systems for electric, hybrid electric, plug-in hybrid electric and fuel cell

  5. Characterizing the elements of Earth s radiative budget: Applying uncertainty quantification to the CESM

    SciTech Connect (OSTI)

    Archibald, Richard K; Chakoumakos, Madison; Zhuang, Zibo

    2012-01-01

    Understanding and characterizing sources of uncertainty in climate modeling is an important task. Because of the ever increasing sophistication and resolution of climate modeling it is increasing important to develop uncertainty quantification methods that minimize the computational cost that occurs when these methods are added to climate modeling. This research explores the application of sparse stochastic collocation with polynomial edge detection to characterize portions of the probability space associated with the Earth s radiative budget in the Community Earth System Model (CESM). Specifically, we develop surrogate models with error estimates for a range of acceptable input parameters that predict statistical values of the Earth s radiative budget as derived from the CESM simulation. We extend these results in resolution from T31 to T42 and in parameter space increasing the degrees of freedom from two to three.

  6. Earth shelter performance and evaluation proceedings

    SciTech Connect (OSTI)

    Boyer, L.L. (ed.)

    1983-01-01

    Papers from 16 states, plus New South Wales, Australia, Alberta, Canada, and the Eastern Province of Saudi Arabia were presented in the conference. About one-third of the papers are authored by architects, nearly one-half by engineers, and the remainder are mainly by building contractors. Slightly over half of the authors are associated with universities, of which 13 are represented. The scale of the projects discussed varies from domestic, to commercial, to institutional; with an increased emphasis on passive solar inputs and earth cooling. Of the 32 papers presented, 19 were indexed separately for inclusion in the Energy Data Base. (JMT)

  7. Monitoring objects orbiting earth using satellite-based telescopes

    DOE Patents [OSTI]

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  8. Enhanced pinning in mixed rare earth-123 films

    DOE Patents [OSTI]

    Driscoll, Judith L.; Foltyn, Stephen R.

    2009-06-16

    An superconductive article and method of forming such an article is disclosed, the article including a substrate and a layer of a rare earth barium cuprate film upon the substrate, the rare earth barium cuprate film including two or more rare earth metals capable of yielding a superconductive composition where ion size variance between the two or more rare earth metals is characterized as greater than zero and less than about 10.times.10.sup.-4, and the rare earth barium cuprate film including two or more rare earth metals is further characterized as having an enhanced critical current density in comparison to a standard YBa.sub.2Cu.sub.3O.sub.y composition under identical testing conditions.

  9. Creating a Star on Earth | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Star on Earth Creating a Star on Earth March 5, 2014 - 11:45am Addthis In the video above, learn how scientists at the Princeton Plasma Physics Lab are creating a star on Earth in the National Spherical Torus Experiment (NSTX), a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas. | Video by Matty Greene, Energy Department. Ben Dotson Ben Dotson Former Project Coordinator for Digital Reform, Office of Public Affairs Matty Greene Matty Greene

  10. SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS

    DOE Patents [OSTI]

    Cowan, G.A.

    1959-08-25

    The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.

  11. DOE celebrates Earth Day | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) celebrates Earth Day Tuesday, April 22, 2014 - 4:01pm DOE today celebrated Earth Day with Community Day on the DOE Pavilion. More than 20 local green exhibitors, including various DOE departments, showcased their environmental programs. Here Fred Winter and Joyce Kim promote modernizing the grid through innovative technology. DOE celebrates Earth Day Related Topics community education environment Related News Pantex makes paper into compost Concern for the Environment

  12. What are the Rare Earths? | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What are the Rare Earths? Rare-earth metals or elements typically include scandium (Sc-21), yttrium (Y-39) and the lanthanides: lanthanum (La-57), cerium (Ce-58), praseodymium (Pr-59), neodymium (Nd-60), promethium (Pm-61), samarium (Sm-62), europium (Eu-63), gadolinium (Gd-64), terbium (Tb-65), dysprosium (Dy-66), holmium (Ho-67), erbium (Er-68), thulium (Tm-69), ytterbium (Yb-70), and lutetium (Lu-71). When alloyed with other metals, the rare-earths can provide enhanced magnetic, strength and

  13. Y-12 Earth Day | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth Day Y-12 Earth Day The mp4 video format is not supported by this browser. Download video Captions: On Time: 9:40 min. Y-12 employees celebrated Earth Day through random acts of green, including a drawing contest for children and a special song written and performed by Sam Easterling of Environment, Safety and Health. Several local organizations also provided information, including Tennessee Wildlife Resources Agency, Ijams Nature Center and the Roane County Master Gardner Association.

  14. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  15. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  16. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  17. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  18. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  19. Climate Change as Recorded in Earth Surface Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    climate change earth surface processes Climate Change as Recorded in Earth Surface Processes Not surprisingly significant changes in climate leave their imprint on the landscape. During the last glacial maximum, ~20,000 years ago ice more than a mile thick covered vast portions of the continents. When a glacier retreats due to warmer or drier climate, it may expose boulders and fresh bedrock surfaces to cosmic rays entering earth's atmosphere from space. These newly exposed surfaces are often

  20. SUSTAINABILITY NEWS DOE HQ Celebrates Earth Day 2013

    Energy Savers [EERE]

    DOE HQ Celebrates Earth Day 2013 DOE headquarters is celebrating Earth Day 2013 (April 22) with a full week of festivities. Events will be held April 22-25 at the Forrestal building and April 29-May 2 at the Germantown building. Activities include a photo contest, an environmental film series, a showcase of alternative fuel vehicles, and displays from green exhibitors. For more information and a list of events, visit DOE Earth Week's Powerpedia page at https://

  1. METHOD OF MAKING ALLOYS OF SECOND RARE EARTH SERIES METALS

    DOE Patents [OSTI]

    Baker, R.D.; Hayward, B.R.

    1963-01-01

    >This invention relates to a process for alloying the second rare earth series metals with Mo, Nb, or Zr. A halide of the rare earth metal is mixed with about 1 to 20 at.% of an oxide of Mo, Nb, or Zr. Iodine and an alkali or alkaline earth metal are added, and the resulting mixture is heated in an inert atmosphere to 350 deg C. (AEC)

  2. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  3. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  4. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of

  5. A unified initiative to harness Earth's microbiomes (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Journal Article: A unified initiative to harness Earth's microbiomes Citation Details In-Document Search Title: A unified initiative to harness Earth's microbiomes Nearly three billion years ago, photosynthetic cyanobacteria transformed Earth's atmosphere from oxygen-poor to oxygen-rich, enabling the evolution of complex life (1). Microbes shaped our evolutionary origins and their vast impact continues: they are essential constituents of animals and plants and are the most

  6. Rare Earth-Bearing Murataite Ceramics

    SciTech Connect (OSTI)

    Stefanovsky, Sergey; Stefanovsky, Olga; Yudintsev, Sergey; Nikonov, Boris

    2007-07-01

    Phase composition of the murataite-based ceramics containing 10 wt.% lanthanum, cerium, neodymium, europium, gadolinium, yttrium, zirconium oxides was studied. The ceramics were prepared by melting of oxide mixtures in 20 mL glass-carbon crucibles in air at {approx}1500 deg. C. They are composed of predominant murataite-type phases and minor extra phases: rutile, crichtonite, perovskite, ilmenite/pyrophanite, and zirconolite (in the Zr-bearing sample only). Three murataite-related phases with five- (5C), eight- (8C), and three-fold (3C) elementary fluorite unit cell are normally present in all the ceramics. These phases form core, intermediate zone, and rim of the murataite grains, respectively. They are predominant host phases for the rare earth elements whose concentrations are reduced in a row: 5C>8C>3C. Appreciate fraction of La and Ce may enter the perovskite phase. (authors)

  7. Rare earth doped zinc oxide varistors

    DOE Patents [OSTI]

    McMillan, A.D.; Modine, F.A.; Lauf, R.J.; Alim, M.A.; Mahan, G.D.; Bartkowiak, M.

    1998-12-29

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2--4.0% oxide of at least one rare earth element, 0.5--4.0% Co{sub 3}O{sub 4}, 0.05--0.4% K{sub 2}O, 0.05--0.2% Cr{sub 2}O{sub 3}, 0--0.2% CaO, 0.00005--0.01% Al{sub 2}O{sub 3}, 0--2% MnO, 0--0.05% MgO, 0--0.5% TiO{sub 3}, 0--0.2% SnO{sub 2}, 0--0.02% B{sub 2}O{sub 3}, balance ZnO. 4 figs.

  8. Rare earth doped zinc oxide varistors

    DOE Patents [OSTI]

    McMillan, April D.; Modine, Frank A.; Lauf, Robert J.; Alim, Mohammad A.; Mahan, Gerald D.; Bartkowiak, Miroslaw

    1998-01-01

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.

  9. EarthFirst Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: Tampa, Florida Zip: 33610 Product: EarthFirst Technologies is engaged in research, development and commercialization of technologies for the use alternative...

  10. Zoning for earth sheltered buildings. A guide for Minnesota communities

    SciTech Connect (OSTI)

    Not Available

    1983-08-01

    Background information on earth sheltered buildings and the zoning issues related to this construction techniques is provided. Ways to develop goals and policies on earth sheltering and integrate them into existing planning documents are outlined. Ways to eliminate prohibitions and barriers to earth-sheltered buildings from zoning language are explained. Subdivision and planned unit development (PUD) regulations designed to facilitate and encourage new developments of earth sheltered homes are considered. Model language on planning, zoning, and subdivisions and planned unit developments and a summary of the various recommendations made throughout the guidebook are included. (MHR)

  11. Trace rare earth element analysis in briny groundwaters

    SciTech Connect (OSTI)

    Laul, J.C.; Lepel, E.A.; Smith, M.R.

    1986-08-01

    A rare-earth element (REE) group separation scheme has been developed. REE data for two briny groundwaters representing Granite Wash and Wolfcamp Carbonate formations are reported. (DLC)

  12. Google Archives by Fiscal Year — Earth Day

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Corporate sites, retired Google Analytics profiles for the Earth Day site for fiscal year 2012-13.

  13. Argonne Celebrates Earth Day 2013: It's Easy Being Green

    SciTech Connect (OSTI)

    Paul Kearns; Pam Sydelko; Ray Bair; Stephen Streiffer; Brian Stephenson;

    2013-04-17

    Argonne's April 23, 2013 Earth Day celebration featured "green" R&D conducted at the lab and interactive displays and fun activities that engage the laboratory community.

  14. Earth Day 2016 Photo Contest Entries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conservation Community Alternative Power Energy Efficiency Climate Change Adaptation & Resilience This year's Earth Day Photo Contest had well over 150 entries. Our largest ...

  15. Thorium, uranium and rare earth elements content in lanthanide...

    Office of Scientific and Technical Information (OSTI)

    Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water ... in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas ...

  16. Helping Astronauts Back on Earth | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It has been observed that crew members returning to Earth from the International Space Station experience visual impairment and problems from intracranial pressure. This research ...

  17. DOE Announces RFI on Rare Earth Metals | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RFI on Rare Earth Metals DOE Announces RFI on Rare Earth Metals May 6, 2010 - 12:00am Addthis Washington, D.C. - The Department of Energy has released a Request for Information (RFI) soliciting information on rare earth metals and other materials used in the energy sector. The request is specifically focused on rare earth metals (e.g., lanthanum, cerium and neodymium) and several other metals including lithium and cobalt, but respondents are welcome to identify other materials of interest. These

  18. PPPL's Earth Week features Colloquium on NYC green plan, cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    York City's Office of Long Term Planning and Sustainability, gave a special Earth Day colloquium on New York City's sustainability plan and climate change. (Photo by Photo by ...

  19. Characterization and Recovery of Rare Earths from Coal and By...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Characterization and Recovery of Rare Earths from Coal and By-Products ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  20. Discovery of bridgmanite, the most abundant mineral in Earth...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite Citation Details In-Document Search Title: ...

  1. New Earth Renewable Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    New Earth Renewable Energy Inc Address: 1122 E Pike St Place: Seattle, Washington Zip: 98122 Region: Pacific Northwest Area Sector: Biomass Product: Aspires to develop inexpensive...

  2. Argonne Celebrates Earth Day 2013: It's Easy Being Green

    ScienceCinema (OSTI)

    Paul Kearns; Pam Sydelko; Ray Bair; Stephen Streiffer; Brian Stephenson;

    2013-06-10

    Argonne's April 23, 2013 Earth Day celebration featured "green" R&D conducted at the lab and interactive displays and fun activities that engage the laboratory community.

  3. Recent Drilling Activities At The Earth Power Resources Tuscarora...

    Open Energy Info (EERE)

    Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Jump to: navigation, search OpenEI Reference LibraryAdd...

  4. Earth Week 2014: Energy Department Highlights Ways Americans...

    Broader source: Energy.gov (indexed) [DOE]

    WASHINGTON -- This Earth Week, Energy Secretary Ernest Moniz, Deputy Secretary Daniel ... Monday, April 21 Secretary Moniz will convene a two-part public meeting in Providence, ...

  5. PROCESS FOR PREPARING RARE EARTH CHROMITE BASED CERAMIC MATERIALS...

    Office of Scientific and Technical Information (OSTI)

    Title: PROCESS FOR PREPARING RARE EARTH CHROMITE BASED CERAMIC MATERIALS AND THE MATERIALS OBTAINED. (in French) Authors: Elston, J. ; Roux, M. Publication Date: 1971-01-01 OSTI ...

  6. CHARACTERIZATION OF NEAR NET-SHAPE CASTABLE RARE EARTH MODIFIED...

    Office of Scientific and Technical Information (OSTI)

    CHARACTERIZATION OF NEAR NET-SHAPE CASTABLE RARE EARTH MODIFIED ALUMINUM ALLOYS FOR HIGH TEMPERATURE APPLICATION Citation Details In-Document Search Title: CHARACTERIZATION OF NEAR ...

  7. Secretary Moniz's First Pitch at Fenway for Earth Day

    Broader source: Energy.gov [DOE]

    On Earth Day, Secretary Moniz was invited to throw out the first pitch at a Red Sox game. Here's how it went.

  8. Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Raft River Geothermal Area (1984) Exploration Activity Details Location Raft River...

  9. Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River...

  10. Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River...

  11. Modeling the Earth Microbiome (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Modeling the Earth Microbiome Authors: Gilbert, J. A. ; Meyer, F. 1 ; MCS) 2 + Show Author Affiliations CLS-CI ( Publication Date: ...

  12. Resolving to Make Earth Day Last All Year

    Broader source: Energy.gov [DOE]

    With these resources, you'll be able to get your Earth Day energy campaign up and running in no time.

  13. User:Woodjr/Sandbox/GoogleEarth | Open Energy Information

    Open Energy Info (EERE)

    < User:Woodjr | Sandbox Jump to: navigation, search Demonstration of an experimental "GoogleEarth" result format for ask queries. Based on the Thematic Mapping API....

  14. Earth Tidal Analysis At East Mesa Geothermal Area (1984) | Open...

    Open Energy Info (EERE)

    is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous...

  15. Earth Tidal Analysis At Marysville Mountain Geothermal Area ...

    Open Energy Info (EERE)

    is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous...

  16. Earth curvature and atmospheric refraction effects on radar signal...

    Office of Scientific and Technical Information (OSTI)

    The earth isn't flat, and radar beams don't travel straight. This becomes more noticeable as range increases, particularly at shallow depressiongrazing angles. This report ...

  17. Magnetic properties of RT2Zn20; R = rare earth, T = Fe, Co, Ru, Os and Ir

    SciTech Connect (OSTI)

    Jia, Shuang

    2008-12-15

    It is well known that rare earth intermetallic compounds have versatile, magnetic properties associated with the 4f electrons: a local moment associated with the Hund's rule ground state is formed in general, but a strongly correlated, hybridized state may also appear for specific 4f electronic configuration (eg. for rare earth elements such as Ce or Yb). On the other hand, the conduction electrons in rare earth intermetallic compounds, certainly ones associated with non hybridizing rare earths, usually manifest non-magnetic behavior and can be treated as a normal, non-interacted Fermi liquid, except for some 3d-transition metal rich binary or ternary systems which often manifest strong, itinerant, d electron dominant magnetic behavior. Of particular interest are examples in which the band filling of the conduction electrons puts the system in the vicinity of a Stoner transition: such systems, characterized as nearly or weakly ferromagnet, manifest strongly correlated electronic properties [Moriya, 1985]. For rare earth intermetallic compounds, such systems provide an additional versatility and allow for the study of the behaviors of local moments and hybridized moments which are associated with 4f electron in a correlated conduction electron background.

  18. Tunable, rare earth-doped solid state lasers

    DOE Patents [OSTI]

    Emmett, John L.; Jacobs, Ralph R.; Krupke, William F.; Weber, Marvin J.

    1980-01-01

    Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.

  19. CMI Webinar: Recycling of Rare Earth Elements: A Microbiological Approach |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute Recycling of Rare Earth Elements: A Microbiological Approach The CMI Webinar series includes a presentation CMI Webinar: Recycling of Rare Earth Elements: A Microbiological Approach by David Reed, Idaho National Laboratory (INL), on April 23, 2015. The recording of the webinar runs nearly 39 minutes (38:52

  20. Supporting our scientists with Google Earth-based UIs.

    SciTech Connect (OSTI)

    Scott, Janine

    2010-10-01

    Google Earth and Google Maps are incredibly useful for researchers looking for easily-digestible displays of data. This presentation will provide a step-by-step tutorial on how to begin using Google Earth to create tools that further the mission of the DOE national lab complex.

  1. PROCESS FOR SEPARATING AMERICIUM AND CURIUM FROM RARE EARTH ELEMENTS

    DOE Patents [OSTI]

    Baybarz, R.D.; Lloyd, M.H.

    1963-02-26

    This invention relates to methods of separating americium and curium values from rare earth values. In accordance with the invention americium, curium, and rare earth values are sorbed on an anion exchange resin. A major portion of the rare earth values are selectively stripped from the resin with a concentrated aqueous solution of lithium chloride, and americium, curium, and a minor portion of rare earth values are then stripped from the resin with a dilute aqueous solution of lithium chloride. The americium and curium values are further purified by increasing the concentration of lithium chloride in the solution to at least 8 molar and selectively extracting rare earth values from the resulting solution with a monoalkylphosphoric acid. (AEC)

  2. A limit on the presence of Earth-mass planets around a Sun-like star

    SciTech Connect (OSTI)

    Agol, Eric; Steffen, Jason H.; /Fermilab

    2006-10-01

    We present a combined analysis of all publicly available, visible HST observations of transits of the planet HD 209458b. We derive the times of transit, planet radius, inclination, period, and ephemeris. The transit times are then used to constrain the existence of secondary planets in the system. We show that planets near an Earth mass can be ruled out in low-order mean-motion resonance, while planets less than an Earth mass are ruled out in interior, 2:1 resonance. We also present a combined analysis of the transit times and 68 high precision radial velocity measurements of the system. These results are compared to theoretical predictions for the constraints that can be placed on secondary planets.

  3. GreenEarth Equities | Open Energy Information

    Open Energy Info (EERE)

    About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems...

  4. Earth: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    largest of the terrestrial planets in the Solar System in terms of diameter, mass and density." Worldwide Alternative Energy Investments The following table summarizes worldwide...

  5. White Earth Nation Biomass Fasibility Study

    Office of Environmental Management (EM)

    the opportunity to convert existing thermal and power systems at the Shooting Star Casino to ... Utilities without nuclear power generation - 25% renewable generation by 2025 * ...

  6. White Earth Nation Biomass Feasibility Study

    Office of Environmental Management (EM)

    the opportunity to convert existing thermal and power systems at the Shooting Star Casino to ... Utilities without nuclear power generation - 25% renewable generation by 2025 * ...

  7. Earth and environmental sciences annual report 1998

    SciTech Connect (OSTI)

    Younker, L

    1999-05-18

    Lawrence Livermore National Laboratory (LLNL) provides broad-based, integrated scientific and engineering capabilities to address some of the nation's top national security and environmental priorities. National security priorities are to ensure the safety and reliability of the U.S. nuclear weapons stockpile and to counter the spread of weapons of mass destruction; environmental priorities are to keep our environment healthy for the long term and to assess the consequences of environmental change. The Earth and Environmental Sciences (E&ES) Directorate at LLNL pursues applied and basic research across many disciplines to advance the technologies needed to address these national concerns. Our current work focuses on: Storage and ultimate disposition of U.S. spent reactor fuel and other nuclear materials; Assessment of the current global climate and simulation of future changes caused by humans or nature; Development of broadly applicable technologies for environmental remediation and risk reduction; Tools to support U.S. goals for verifying the international Comprehensive Nuclear-Test-Ban Treaty; subcritical tests for stockpile stewardship; Real-time assessments of the health and environmental consequences of atmospheric releases of radioactive or other hazardous materials; and Basic science research that investigates fundamental physical and chemical properties of interest to these applied research programs. For each of these areas we present an overview in this report, followed by an article featuring one project in that area. Then we delineate E&ES's resources, including workforce, facilities, and funding. Finally, we list the publications by and the awards and patents received by E&ES personnel during 1998.

  8. The effects of refraction on transit transmission spectroscopy: application to Earth-like exoplanets

    SciTech Connect (OSTI)

    Misra, Amit; Meadows, Victoria; Crisp, Dave

    2014-09-01

    We quantify the effects of refraction in transit transmission spectroscopy on spectral absorption features and on temporal variations that could be used to obtain altitude-dependent spectra for planets orbiting stars of different stellar types. We validate our model against altitude-dependent transmission spectra of the Earth from ATMOS and against lunar eclipse spectra from Pallé et al. We perform detectability studies to show the potential effects of refraction on hypothetical observations of Earth analogs with the James Webb Space Telescope NIRSPEC. Due to refraction, there will be a maximum tangent pressure level that can be probed during transit for each given planet-star system. We show that because of refraction, for an Earth-analog planet orbiting in the habitable zone of a Sun-like star only the top 0.3 bars of the atmosphere can be probed, leading to a decrease in the signal-to-noise ratio (S/N) of absorption features by 60%, while for an Earth-analog planet orbiting in the habitable zone of an M5V star it is possible to probe almost the entire atmosphere with minimal decreases in S/N. We also show that refraction can result in temporal variations in the transit transmission spectrum which may provide a way to obtain altitude-dependent spectra of exoplanet atmospheres. Additionally, the variations prior to ingress and subsequent to egress provide a way to probe pressures greater than the maximum tangent pressure that can be probed during transit. Therefore, probing the maximum range of atmospheric altitudes, and in particular the near-surface environment of an Earth-analog exoplanet, will require looking at out-of-transit refracted light in addition to the in-transit spectrum.

  9. New Model of Earth's Interior Reveals Clues to Hotspot Volcanoes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Model of Earth's Interior Reveals Clues to Hotspot Volcanoes New Model of Earth's Interior Reveals Clues to Hotspot Volcanoes October 29, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov volcanic-hotspots1.jpg This 3D view of the top 1,000 kilometers of Earth's mantle beneath the central Pacific shows the relationship between seismically-slow "plumes" and channels imaged in the UC Berkeley study. Green cones on the ocean floor mark islands associated with "hotspot"

  10. Two-dimensional heat transfer from earth-sheltered buildings

    SciTech Connect (OSTI)

    Krarti, M. (Steven Winter Associates, Inc., Norwalk, CT (US)); Claridge, D.E. (Texas A and M Univ., College Station, TX (USA). Dept. of Mechanical Engineering)

    1990-02-01

    This paper describes use of the interzone temperature profile estimation (or ITPE) technique, an analytical calculation procedure to predict heat transfer within earth in contact with a structure. The solutions governing steady-state and steady-periodic heat conduction are derived for rectangular earth-sheltered buildings. The procedure accepts continuously variable values of geometric dimensions, insulation levels, and constant soil thermal characteristics and considers the presence of a finite water table level. Soil temperature profiles are shown for both steady-state and steady periodic conditions. The effects of insulation and water table depth on the heat losses from an earth-sheltered building envelope are discussed.

  11. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  12. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  13. The Iron Spin Transition in the Earth's Lower Mantle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Iron Spin Transition in the Earth's Lower Mantle The Iron Spin Transition in the Earth's Lower Mantle Print Wednesday, 30 April 2008 00:00 It is now known that the iron present in minerals of the lower mantle of the Earth undergoes a pressure-induced transition with pairing of the spins of its 3d electrons. A team from the University of California, Berkeley, Tel Aviv University, and Lawrence Livermore National Laboratory has used x-ray diffraction at very high pressure to investigate the

  14. How Will We Explore Earth's Final Frontier? | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explore Earth's Final Frontier? Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Invention Factory: How Will We Explore Earth's Final Frontier? In this episode of Invention Factory, we uncover the mysteries of the earth's final frontier, the oceans. From creating machines that work at extreme depths, to mapping and

  15. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  16. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  17. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  18. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron grains in the Earth's inner core comes from x-ray spectroscopy and diffraction

  19. Evidence for a Weak Iron Core at Earth's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for a Weak Iron Core at Earth's Center Evidence for a Weak Iron Core at Earth's Center Print Wednesday, 30 April 2014 00:00 Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial plane-why? One theory is that the grains of iron that make up most of the solid inner core could be aligned in a way that transmits waves more efficiently in one direction than the other. Recent evidence for this "texturing" of iron

  20. Join the Bradbury at an Earth Day event

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Join the Bradbury at an Earth Day event Join the Bradbury at an Earth Day event WHEN: Apr 23, 2016 10:00 AM - 2:00 PM WHERE: Los Alamos Nature Center (PEEC) 2600 Canyon Road, Los Alamos, NM 87544, USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Nature owes some of its bright colors (think iridescent peacock feathers) to thin films In addition to other Lab representatives at the Pajarito Environmental Education Center (PEEC) for Earth Day,

  1. At 85, Mr. Rare Earth is Retiring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    At 85, Mr. Rare Earth is Retiring At 85, Mr. Rare Earth is Retiring February 19, 2016 - 11:00am Addthis We first talked to Dr. Gschneider back in 2013 for one of our <a href="/node/609731">"10 Questions with a Scientist"</a> blogs. Today he looks back at over 60 years of studying rare earth metals. We first talked to Dr. Gschneider back in 2013 for one of our "10 Questions with a Scientist" blogs. Today he looks back at over 60 years of studying rare

  2. Rare-earth-free magnet made from cheap materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare-earth-free magnet Rare-earth-free magnet made from cheap materials Researchers create a powerful permanent magnet out of iron and nitrogen as part of a program to cut the need for rare-earth metals May 17, 2016 Mars (a) 2 × 1016/cm2 fluence, embedded dots can be observed (rich N region), with a diameter of 20 nm, separated by 140 to 200 nm; (b) 8 × 1016/cm2 fluence, besides embedded dots, obvious cracks appeared; (c) 1 × 1017/cm2 fluence, an obvious microstructure is generated, with

  3. Annual review of earth and planetary sciences. Vol. 19

    SciTech Connect (OSTI)

    Wetherill, G.W.; Albee, A.L.; Burke, K.C. (Carnegie Inst. of Washington, DC (United States) California Inst. of Tech., Pasadena (United States) National Research Council, Washington, DC (United States))

    1991-01-01

    Various review papers on earth and planetary sciences are presented. The individual topics addressed include: tectonics of the New Guinea area, interpretation of ancient Eolian and dunes, seismic tomography of the earth's mantle, shock modification and chemistry and planetary geologic processes, the significance of evaporites, the magnetosphere, untangling the effects of burial alteration and ancient soil formation. Also discussed are: pressure-temperature-time paths, fractals in rock physics, earthquake prediction, rings in the ocean, applications of Be{minus}10 to problems in the earth sciences, measurement of crustal deformation using the GPS, physics and physical mechanisms of nuclear winter, experiemental determination of bed-form stability.

  4. Celebrate Earth Day with Secretary Chu | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Celebrate Earth Day with Secretary Chu Celebrate Earth Day with Secretary Chu April 16, 2012 - 5:51pm Q&A What would you ask Secretary Chu about the environmental benefits of transitioning to a clean energy economy? Ask Us Addthis Celebrate Earth Day with Secretary Chu Amanda Scott Amanda Scott Former Managing Editor, Energy.gov How can I participate? Tweet questions @energy with the hashtag #AskEnergy. Email questions to newmedia@hq.doe.gov. This Friday, April 20, at 10:45am ET, join us for

  5. U.S. Rare Earth Magnet Patents Table © 6-28-2016 page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...itasaku-gun, JAPAN) Rare earth bonded magnet Abstract A rare earth bonded magnet is provided which is produced such that a mixture which comprises: a rare earth magnet powder; a ...

  6. U.S. Rare Earth Magnet Patents Table © 3-1-2016 page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare Earth Magnet Patents Table 3-1-2016 page 1 Disclaimer: This U.S. Rare Earth Magnet Patents Table contains a sample of the rare earth-magnet patents issued by the U.S. ...

  7. How Will You Encourage Your Coworkers to Save Energy this Earth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Will You Encourage Your Coworkers to Save Energy this Earth Day? How Will You Encourage Your Coworkers to Save Energy this Earth Day? March 24, 2011 - 7:30am Addthis Earth Day is ...

  8. ARPA-E Workshop on Rare Earth and Critical Materials | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARPA-E Workshop on Rare Earth and Critical Materials ARPA-E Workshop on Rare Earth and Critical Materials ARPA-E Workshop on Rare Earth and Critical Materials, December 6, 2010 PDF...

  9. High power laser perforating tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  10. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ultrahigh pressures of the deep Earth at ALS Beamline 12.2.2 while conducting in situ x-ray diffraction experiments to probe changes in crystal orientations. Rocks Flow in the...

  11. How Are You Celebrating Earth Day? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    this month, to save energy and money? If you're looking for ideas, check out the Office of Energy Efficiency and Renewable Energy's Earth Day website for energy saving ideas, or ...

  12. Submit Your Home Energy Efficiency Questions Now for Earth Day...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Saver for tips and advice on ways to save energy and money. Addthis Related Articles This Earth Day, Get Your Energy-Saving Questions Answered Submit Your Home Energy ...

  13. Mineral Deformation at Earth's Core-Mantle Boundary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this...

  14. New Model of Earth's Interior Reveals Clues to Hotspot Volcanoes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    +1 510 495 2402, lvu@lbl.gov volcanic-hotspots1.jpg This 3D view of the top 1,000 kilometers of Earth's mantle beneath the central Pacific shows the relationship between...

  15. Underground helium travels to the Earth's surface via aquifers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tweet EmailPrint Before it can put the party in party balloons, helium is carried from deep within the Earth's crust to the surface via aquifers, according to new research...

  16. DOE Science Showcase - Rare Earth Metal Research from DOE Databases...

    Office of Scientific and Technical Information (OSTI)

    Energy - LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells Science.gov - H.R.4866 - Rare Earths Supply-Chain Technology and Resources Transformation Act ...

  17. Blue Earth County, Minnesota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Earth County is a county in Minnesota. Its FIPS County Code is 013. It is classified as...

  18. METHOD OF SEPARATING RARE EARTHS BY ION EXCHANGE

    DOE Patents [OSTI]

    Spedding, F.H.; Powell, J.E.

    1960-10-18

    A process is given for separating yttrium and rare earth values having atomic numbers of from 57 through 60 and 68 through 71 from an aqueous solution whose pH value can range from 1 to 9. All rare earths and yttrium are first adsorbed on a cation exchange resin, and they are then eluted with a solution of N-hydroxyethylethylenediaminetriacetic acid (HEDTA) in the order of decreasing atomic number, yttrium behaving like element 61; the effluents are collected in fractions. The HEDTA is recovered by elution with ammonia solution and the resin is regenerated with sulfuric acid. Rare earths are precipitated from the various effluents with oxalic acid, and each supernatant is passed over cation exchange resin for adsorption of HEDTA and nonprecipitated rare earths: the oxalic acid is not retained by the resin.

  19. What if Every Day was Earth Day? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    There is no better way to celebrate the Earth than by spending more time outside enjoying it. Perhaps go for an evening run outside rather than on a treadmill at the gym, take the ...

  20. Earth-Abundant Cu-based Chalcogenide Materials as Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic (PV) conversion is demonstrated for the first time in Cu 3 PSe 4 , a member ... Earth-Abundant Cu-based Chalcogenide Materials as Photovoltaic Absorbers Research Details ...

  1. Rare-earth nanoparticles for catalysis | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing new materials based on these two elements is expected to impact favorably the supply chain of the more scarce rare earths. The SULI student in this program will work...

  2. PPPL Scientists Bring Mysterious Process Down to Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PPPL) sends 10,000 volts of electricity into a chamber filled with hydrogen gas. ... Researchers at PPPL have brought this basic process down to earth in miniature where it ...

  3. Earth Sciences Division annual report 1981. [Lead abstract

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences. (KRM)

  4. Watch a Rare Earth Elements Event Live This Morning | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs From 9:30am to noon ET today you can tune into a live discussion on "rare earth ...

  5. ORNL Licenses Rare Earth Magnet Recycling Process to Momentum Technologies

    Broader source: Energy.gov [DOE]

    The Department of Energy’s Oak Ridge National Laboratory and Momentum Technologies have signed a non-exclusive licensing agreement for an ORNL process designed to recover rare earth magnets from used computer hard drives.

  6. Rare Earths -- The Fraternal Fifteen | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For an up-to-date review of the rare earth elements, which is more technical, see the 2012 articles by Karl A. Gschneidner, Jr. and Vitalij K. Pecharsky in the Encyclopedia ...

  7. The Ames Process for Rare Earth Metals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ames Process for Rare Earth Metals The Ames Process for the preparation of high purity ... If we rearrange the order of elements from increasing atomic weight to increasing boiling ...

  8. Happy Earth Day from the Office of Nuclear Energy

    Broader source: Energy.gov [DOE]

    This Earth Day I want to take the opportunity to reflect on some of the ways the Office of Nuclear Energy has been working to innovate nuclear technologies, with the goals of supporting U.S. low...

  9. Efficient Earth-Sheltered Homes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to be limited because of the position of the home's windows, and courtyard drainage and snow removal should be carefully thought through during design. Bermed Earth-Sheltered Homes...

  10. Formation of rare earth carbonates using supercritical carbon dioxide

    DOE Patents [OSTI]

    Fernando, Quintus; Yanagihara, Naohisa; Dyke, James T.; Vemulapalli, Krishna

    1991-09-03

    The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

  11. Interpretation of earth tide response of three deep, confined...

    Open Energy Info (EERE)

    sfrom earth tide response. Except for the fact that barometric changes act both on the water surface in the well and on the aquifer as a whole while stress changes associated...

  12. Redox Active Catalysts Utilizing Earth Abundant Metals | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Active Catalysts Utilizing Earth Abundant Metals 14 Mar 2014 Ryan Trovitch has recently joined the team of the BISfuel PIs. He is an Assistant Professor at the Department of...

  13. Geothermal Energy: Clean Power from the Earth's Heat | Open Energy...

    Open Energy Info (EERE)

    from the Earth into the atmosphere is enormous-equivalent to ten times the annual energy consumption of the United States and more than that needed to power all nations of the...

  14. COLLOQUIUM: Human Impacts on the Earth's Geologic Carbon Cycle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 15, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Human Impacts on ... Human Impacts on the Earth's Geologic Carbon Cycle Colloquium Committee: The Princeton ...

  15. DOE Science Showcase - Rare Earth Metal Research from DOE Databases...

    Office of Scientific and Technical Information (OSTI)

    Energy Citations Database - Intermultiplet transitions in rare-earth metals DOE Green Energy - LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells ...

  16. Iron-Nitride Alloy Magnets: Transformation Enabled Nitride Magnets Absent Rare Earths (TEN Mare)

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Case Western is developing a highly magnetic iron-nitride alloy to use in the magnets that power electric motors found in EVs and renewable power generators. This would reduce the overall price of the motor by eliminating the expensive imported rare earth minerals typically found in todays best commercial magnets. The iron-nitride powder is sourced from abundant and inexpensive materials found in the U.S. The ultimate goal of this project is to demonstrate this new magnet system, which contains no rare earths, in a prototype electric motor. This could significantly reduce the amount of greenhouse gases emitted in the U.S. each year by encouraging the use of clean alternatives to oil and coal.

  17. Energy-efficient buildings with earth-shelter protection. Proceedings

    SciTech Connect (OSTI)

    Boyer, L.L.; Grondzik, W.T.; Sterling, R.L.; Baggs, S.A. (eds.)

    1983-01-01

    Climate and proximity to the equator as well as acceptance of the concept made Australia a logical place for an international conference on the energy-efficiency opportunities of earth-sheltered buildings. Papers presented at the conference are grouped under 10 general topics: earth environment, landscape/site, passive solar integration, hazard protection, design process, livability/acceptance, interior environment, energy conservation, performance simulation, and structural variations. Sixty-two papers were separately abstracted for the Department of Energy's Data Base.

  18. VERDE: Visualizing Energy Resources Dynamically on Earth - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search VERDE: Visualizing Energy Resources Dynamically on Earth Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryVERDE is a software application utilizing the Google Earth(c) platform to provide real time visualization of the electric power grid.DescriptionVERDE is capable of layering different types of information on

  19. Geophysics-based method of locating a stationary earth object

    DOE Patents [OSTI]

    Daily, Michael R.; Rohde, Steven B.; Novak, James L.

    2008-05-20

    A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

  20. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet

    Office of Scientific and Technical Information (OSTI)

    interfaces: A comprehensive study of Gd/Ni (Journal Article) | SciTech Connect Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni Citation Details In-Document Search Title: Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition