National Library of Energy BETA

Sample records for nnsa nm albuquerque

  1. 32nd Conf. Radar Meteorology Albuquerque, NM, 2005

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    and smoothness constraints by incorporating them into a cost function yielding the 3-D wind. In this study32nd Conf. Radar Meteorology Albuquerque, NM, 2005 J1J.4 MULTIPLE DOPPLER WIND ANALYSIS component of wind velocity. Thus, there is no direct measurement of the three-dimensional (3-D) wind field

  2. Proceedings of Nuclear and Emerging Technologies for Space 2013 Albuquerque, NM, February 25-28, 2013

    E-Print Network [OSTI]

    Meunier, Michel

    Proceedings of Nuclear and Emerging Technologies for Space 2013 Albuquerque, NM, February 25 #12;Proceedings of Nuclear and Emerging Technologies for Space 2013 Albuquerque, NM, February 25-28, 2013 Paper 6722 DRAGON5: Designing Computational Schemes Dedicated to Fission Nuclear Reactors

  3. Office of Civil Rights, NNSA, NA 1.2, Albuquerque Complex

    National Nuclear Security Administration (NNSA)

    Action Code "1" - includes permanent, temporary, probationary hires, promotion into the organization, transfer from other NNSA organization, or other Federal Agency. ...

  4. Office of Civil Rights, NNSA, NA 1.2, Albuquerque Complex

    National Nuclear Security Administration (NNSA)

    retirements (voluntary, special option, and mandatory); transfer to other NNSA organization or other Federal Agency, in lieu of administrative action separations,...

  5. Office of Civil Rights, NNSA, NA 1.2, Albuquerque Complex

    National Nuclear Security Administration (NNSA)

    federal government-wide. Comparisons to Other Workforces and the Civilian Labor Force The Charts on this page depict the workforce diversity of Y-12 compared to NNSA-wide; the...

  6. Office of Civil Rights, NNSA, NA 1.2, Albuquerque Complex

    National Nuclear Security Administration (NNSA)

    2000 state of Texas CLF. Comparisons to Other Workforces and the Civilian Labor Force The Charts on this page depict the workforce diversity of PSO compared to NNSA-wide; the...

  7. Office of Civil Rights, NNSA, NA 1.2, Albuquerque Complex

    National Nuclear Security Administration (NNSA)

    2000 Missouri CLF Comparisons to Other Workforces and the Civilian Labor Force The Charts on this page depict the workforce diversity of KCSO compared to NNSA-wide; the...

  8. Office of Civil Rights, NNSA, NA 1.2, Albuquerque Complex

    National Nuclear Security Administration (NNSA)

    below, or equal to): Comparisons to Other Workforces and the Civilian Labor Force The Charts on this page depict the workforce diversity of SRSO compared to NNSA-wide; the...

  9. Proceedings of the American Solar Energy Society 98 Conference Albuquerque, NM (June 1998)

    E-Print Network [OSTI]

    Delaware, University of

    Proceedings of the American Solar Energy Society 98 Conference Albuquerque, NM (June 1998) 131.e., this is energy that does not have to #12;Proceedings of the American Solar Energy Society 98 Conference PHOTOVOLTAICS AS AN ENERGY SERVICES TECHNOLOGY: A CASE STUDY OF PV SITED AT THE UNION OF CONCERNED SCIENTISTS

  10. Proceedings of the American Solar Energy Society Solar 98 Conference Albuquerque, NM (June 1998): 231-237.

    E-Print Network [OSTI]

    Delaware, University of

    Proceedings of the American Solar Energy Society Solar 98 Conference Albuquerque, NM (June 1998 Letendre Department of Business/Economics Green Mountain College Poultney, VT 05701 and Center for Energy, CA 94596 John Byrne and Young-Doo Wang Center for Energy and Environmental Policy University

  11. NNSA

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) AugustA.MOX Adventure6145836/%2A en DOE/NNSA

  12. DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque, NM |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuel Cycle | Department| Department of EnergyNM, Production |

  13. Sandia Corporation (Albuquerque, NM)

    DOE Patents [OSTI]

    Diver, Richard B. (Albuquerque, NM)

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  14. Sandia Corporation (Albuquerque, NM)

    DOE Patents [OSTI]

    Ewsuk, Kevin G. (Albuquerque, NM); Arguello, Jr., Jose G. (Albuquerque, NM)

    2006-01-31

    A method of designing a primary geometry, such as for a forming die, to be used in a powder pressing application by using a combination of axisymmetric geometric shapes, transition radii, and transition spaces to simulate the geometry where the shapes can be selected from a predetermined list or menu of axisymmetric shapes and then developing a finite element mesh to represent the geometry. This mesh, along with material properties of the component to be designed and powder, is input to a standard deformation finite element code to evaluate the deformation characteristics of the component being designed. The user can develop the geometry interactively with a computer interface in minutes and execute a complete analysis of the deformation characteristics of the simulated component geometry.

  15. ZERH Training: Albuquerque, NM

    Broader source: Energy.gov [DOE]

    The DOE Zero Energy Ready Home is a high performance home which is so energy efficient, that a renewable energy system can offset all or most of its annual energy Consumption.US DOE Zero Energy...

  16. Calendar year 2004 annual site environmental report:Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect (OSTI)

    Montoya, Amber L.; Goering, Teresa Lynn; Wagner, Katrina; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2004. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004a). (DOE 2004a).

  17. NNSA Staff Member Receives NNSA Recognition

    SciTech Connect (OSTI)

    Specht, Elaine S.

    2013-04-01

    This article is intended for publication in the NNSA Nonproliferation and International Security (NIS) Highlights, a quarterly newsletter available in print and e-form. It will be published on the NNSA website and is intended for public release.

  18. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium,...

  19. NNSA POLICY LETTER

    National Nuclear Security Administration (NNSA)

    for the NNSA, NNSA contractors and subcontractors responsible for weapon life-cycle phases 1-7 activities (as defined in Supplemental Directive NA SD M 452.3-1, Defense...

  20. NNSA POLICY LETTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NNSA POLICY LETTER Approved: 12-11-13 QUALITY MANAGEMENT SYSTEM NATIONAL NUCLEAR SECURITY ADMINISTRATION Office of the Administrator NAP-26 CONTROLLED COPIES AVAILABLE AT:...

  1. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES),...

  2. in-situ Biaxial Rotation at Low-Temperatures in High Magnetic...

    Office of Scientific and Technical Information (OSTI)

    Sandia National Laboratories, Albuquerque, NM Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  3. Non-equilibrium electronic and phononic specific heat in systems...

    Office of Scientific and Technical Information (OSTI)

    Albuquerque, NM; Sandia National Laboratories Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  4. Template-free electrochemical synthesis of tin nanostructures...

    Office of Scientific and Technical Information (OSTI)

    Sandia National Laboratories, Albuquerque, NM Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  5. Albuquerque duo wins Supercomputing Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional KnowledgeAgenda Agenda NERSC UserAgustin MihiDecadeAlbuquerque

  6. Albuquerque Operations Office, Albuquerque, New Mexico: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Albuquerque Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents that highlight technology development activities within each of the OTD program elements. These integrated program summaries include: Volatile Organic Compounds in Non-Arid Soils, Volatile Organic Compounds in Arid Soils, Mixed Waste Landfill Integrated Demonstration, Uranium in Soils Integrated Demonstration, Characterization, Monitoring, and Sensor Technology, In Situ Remediation, Buried Waste Integrated Demonstration, Underground Storage Tank, Efficient Separations and Processing, Mixed Waste Integrated Program, Rocky Flats Compliance Program, Pollution Prevention Program, Innovation Investment Area, and Robotics Technology.

  7. Federal Asian Pacific American Council - New Mexico Chapter Albuquerque, NM

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'aExecutive Positions |EnergyFeaturesKCP5|

  8. NNSA Procurement Perspective - Joe Waddell, NNSA Senior Procurement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procurement Projects Perspective - Bob Raines, Associate Administrator for Acquisition and Project Management, NNSA Aligning Contract Incentives Subject: Cost and Price Analysis...

  9. NNSA and Small Business Partnering for Success

    Broader source: Energy.gov (indexed) [DOE]

    with NNSA Our Mission Management and security of the nation's nuclear weapons, nuclear nonproliferation, and naval reactor programs. NNSA responds to nuclear and...

  10. APRIL 2011 NNSA News Viewable.pmd

    National Nuclear Security Administration (NNSA)

    news features. There's a very strong connection between NNSA's commitment to energy efficiency and NNSA's efforts to invest in the future, implement President Obama's nuclear...

  11. Working at NNSA | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Life Extension Program NNSA Blog Pantex operator supports women in STEM luncheon NNSA Blog Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge...

  12. NNSA Graduate Program | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Life Extension Program NNSA Blog Pantex operator supports women in STEM luncheon NNSA Blog Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge...

  13. Deep Borehole Disposal of Spent Fuel. Brady, Patrick V. Abstract...

    Office of Scientific and Technical Information (OSTI)

    Spent Fuel. Brady, Patrick V. Abstract not provided. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) USDOE National Nuclear Security Administration (NNSA)...

  14. Cycling-Induced Changes in the Entropy Profiles of Lithium Cobalt...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  15. Raman Thermometry of Microdevices: Comparing Methods to Minimize...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  16. Evaluating Deformation-Induced Rotation in a Polycrystal During...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  17. Development of an Integrated Memristor/CMOS Process for Neuromorphic...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  18. Rapid Thermal Pyrolysis of Interferometrically Patterned Resist...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  19. Copper ionic liquids: Tunable ligand and anion chemistries to...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  20. Emerging Resistive Switching Memory Technologies: Overview and...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  1. Analysis of Molecular Clusters in Simulations of Lithium-Ion...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  2. Structural and Electrochemical Consequences of Lithiation/Delithiation...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  3. Organosilicon-Based Electrolytes for Long-Life Lithium Primary...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  4. A Case Study of Lean Implementation at Sandia National Laboratories...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  5. Eigenfunction Expansion of the Space-Time Dependent Neutron Survival...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  6. Dynamics of Percolative Breakdown Mechanism in Tantalum Oxide...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  7. Non-abelian fractional quantum hall effect for fault-resistant...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  8. Miniband Transport in a Two-Dimensional Electron Gas with a Strong...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  9. Toward a new metric for ranking high performance computing systems...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  10. Line-shape code comparison through modeling and fitting of experimenta...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  11. Parameterized reduced-order models using hyper-dual numbers....

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  12. Rechargeable aluminum batteries with conducting polymers as positive...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  13. Density-Dependent Carrier Dynamics in a Quantum Dots-in-a-Well...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  14. Improving the Cycling Life of Aluminum and Germanium Thin Films...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  15. A Study of the Viability of Exploiting Memory Content Similarity...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  16. Parameterized Reduced Order Models from a Single Mesh Using Hyper...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  17. Highly Ordered Tailored Three-Dimensional Hierarchical Porous...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  18. A multi-point radial photonic Doppler velocimetry (PDV) diagnostic...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  19. Biochemical Lithography - Templating of supported lipid bilayers...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  20. Nanogeochemistry: Nanostructures emergent properties and their...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  1. Dispersion control of NIR surface plasmon polariton using hyperbolic...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  2. Structure Evolution and Pulverization of Tin Nanoparticles during...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  3. Chemical Quantification of Atomic-scale EDS Maps under Thin Specimen...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  4. Influence of Analysis Method on the Experimentally Observed Capacitanc...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  5. Determination of the Limits of Quasi-Static and Dynamic Solutions...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  6. An in-situ TEM liquid cell for imaging electrode/electrolyte...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  7. Development of an improved MATLAB GUI for the prediction of coefficien...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  8. Application of the GBFP Method to Electron Partial-Wave Expansion...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  9. Three-Dimensional Modeling and Simulation of DNA Hybridization...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  10. Evidence of ion mixing increasing the thermal boundary conductance...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  11. The 'X-Prize' Approach: Double-blind Assessment of Ductile Tearing...

    Office of Scientific and Technical Information (OSTI)

    (SNL-NM), Albuquerque, NM (United States) Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  12. New Mexico Federal Executive Board awards NNSA Supervisory Contract...

    National Nuclear Security Administration (NNSA)

    Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog New Mexico Federal Executive Board awards NNSA ... New Mexico Federal Executive Board awards NNSA...

  13. NNSA TRITIUM SUPPLY CHAIN

    SciTech Connect (OSTI)

    Wyrick, Steven; Cordaro, Joseph; Founds, Nanette; Chambellan, Curtis

    2013-08-21

    Savannah River Site plays a critical role in the Tritium Production Supply Chain for the National Nuclear Security Administration (NNSA). The entire process includes: • Production of Tritium Producing Burnable Absorber Rods (TPBARs) at the Westinghouse WesDyne Nuclear Fuels Plant in Columbia, South Carolina • Production of unobligated Low Enriched Uranium (LEU) at the United States Enrichment Corporation (USEC) in Portsmouth, Ohio • Irradiation of TPBARs with the LEU at the Tennessee Valley Authority (TVA) Watts Bar Reactor • Extraction of tritium from the irradiated TPBARs at the Tritium Extraction Facility (TEF) at Savannah River Site • Processing the tritium at the Savannah River Site, which includes removal of nonhydrogen species and separation of the hydrogen isotopes of protium, deuterium and tritium.

  14. MagViz Bottled Liquid Scanner at Albuquerque International Sunport

    ScienceCinema (OSTI)

    Surko, Stephen; Dennis, Steve; Espy, Michelle

    2014-08-12

    The next-generation bottled liquid scanner, MagViz BLS, is demonstrated at the Albuquerque International Sunport, New Mexico

  15. Office of Civil Rights, NNSA, NA 1.2, Albuquerque Complex

    National Nuclear Security Administration (NNSA)

    Technical advisory services for managers, supervisors, and employees Discrimination complaints program management Alternative Dispute Resolution Program...

  16. Office of Civil Rights, NNSA, NA 1.2, Albuquerque Complex

    National Nuclear Security Administration (NNSA)

    and above the 2000 California CLF. 2011 LSO 2011 DOE 2009 Government-wide 2000 CLF The Charts on this page depict the workforce diversity of LSO compared to the Department of...

  17. Office of Civil Rights, NNSA, NA 1.2, Albuquerque Complex

    National Nuclear Security Administration (NNSA)

    CLF; and above the 2000 Nevada CLF. 2011 NSO 2011 DOE 2009 Government-wide 2000 CLF The Charts on this page depict the workforce diversity of NSO compared to the Department of...

  18. Office of Civil Rights, NNSA, NA 1.2, Albuquerque Complex

    National Nuclear Security Administration (NNSA)

    American employee on-board in 2011. 2011 LASO 2011 DOE 2009 Government-wide 2000 CLF The Charts on this page depict the workforce diversity of LASO compared to the Department of...

  19. Office of Civil Rights, NNSA, NA 1.2, Albuquerque Complex

    National Nuclear Security Administration (NNSA)

    and above the 2000 New Mexico CLF. 2011 SSO 2011 DOE 2009 Government-wide 2000 CLF The Charts on this page depict the workforce diversity of SSO compared to the Department of...

  20. Secretary Chu Celebrates NNSA's 10-Year Anniversary

    ScienceCinema (OSTI)

    Department of Energy Secretary Steven Chu

    2010-09-01

    Department of Energy Secretary Steven Chu speaks at NNSA's 10-year anniversary celebration on April 28, 2010.

  1. National Nuclear Security Administration Overview

    Office of Environmental Management (EM)

    May 11, 2011 Ahmad Al-Daouk Manager, National Security Department (NSD) National Nuclear Security Administration (NNSA) Service Center - Albuquerque, NM May 11, 2011 - Page 2...

  2. Microsoft PowerPoint - 8_JIM_CRABTREE_JOHN_BALLARD_UPDATED_NMMSSTraini...

    National Nuclear Security Administration (NNSA)

    in Albuquerque , NM at the National Training Center - 12 students from Bechtel Marine, LANL, New Brunswick Laboratory, NNSA, Pantex, and SNL NMMSS Training 2014 Schedule...

  3. Tiger Team assessment of the Sandia National Laboratories, Albuquerque

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    This report documents the Tiger Team Assessment of Sandia National Laboratories (SNL), Albuquerque, located in Albuquerque, New Mexico. SNL, Albuquerque, is operated by the Sandia Corporation (a wholly owned subsidiary of the American Telephone and Telegraph Company) for the US Department of Energy (DOE). The environmental assessment also included DOE tenant facilities at Ross Aviation, Albuquerque Microelectronics Operation, and the Central Training Academy. The assessment was conducted from April 15 to May 24, 1991, under the auspices of DOE's Office of Special Projects under the Assistant Secretary for Environment, Safety and Health (ES H). The assessment was comprehensive, encompassing ES H disciplines, management, self-assessments, and quality assurance; transportation; and waste management operations. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal SNL, Albuquerque, requirements were assessed. In addition, an evaluation of the adequacy and effectiveness of DOE and SNL, Albuquerque management of ES H programs was conducted.

  4. Albuquerque Technology Incubator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone Co Jump to:ElecVirginia:Albuquerque

  5. Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico, Calendar year 2007

    SciTech Connect (OSTI)

    Agogino, Karen; Sanchez, Rebecca

    2008-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor-operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2007. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  6. NNSA Supports Permanent Threat Reduction in Ukraine through Alternativ...

    National Nuclear Security Administration (NNSA)

    is part of NNSA's broad strategy to enhance our nation's security by keeping dangerous nuclear and radiological material safe and secure," said NNSA Principal Assistant...

  7. 2011 Annual Planning Summary for NNSA, Infrastructure and Environment...

    Energy Savers [EERE]

    NNSA, Infrastructure and Environment (NA-50) 2011 Annual Planning Summary for NNSA, Infrastructure and Environment (NA-50) The ongoing and projected Environmental Assessments and...

  8. Brigadier General (Sel.) Ronald J. Haeckel Appointed to NNSA...

    National Nuclear Security Administration (NNSA)

    (Sel.) Ronald J. Haeckel Appointed to NNSA Defense Programs Post Press Release Sep 4, 2001 Brigadier General (Sel.) Ronald J. Haeckel Appointed to NNSA Defense Programs Post (PDF...

  9. Linton Brooks Assumes Post as Deputy Administrator for NNSA Defense...

    National Nuclear Security Administration (NNSA)

    Administrator for NNSA Defense Nuclear Nonproliferation Office Press Release Oct 30, 2001 Linton Brooks Assumes Post as Deputy Administrator for NNSA Defense Nuclear...

  10. Secretary Chu, NNSA Administrator Congratulate New Los Alamos...

    Energy Savers [EERE]

    Chu, NNSA Administrator Congratulate New Los Alamos National Laboratory Director Charles F. McMillan Secretary Chu, NNSA Administrator Congratulate New Los Alamos National...

  11. NNSA Seeking Comments on Consolidated IT and Cyber Security Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NNSA Seeking Comments on Consolidated IT and Cyber Security Support Services Draft NNSA Seeking Comments on Consolidated IT and Cyber Security Support Services Draft July 17, 2013...

  12. NNSA announces winners of Stewardship Science Academic Programs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ongoing grants and cooperative agreements from NNSA's Stewardship Science Academic Alliances Program, the NNSA-supported grants from the Joint Program for High Energy Density...

  13. Energy/National Nuclear Security Administration (NNSA) Career...

    Office of Environmental Management (EM)

    Graduates EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program EnergyNational Nuclear Security Administration (NNSA) Career Pathways Program Intern...

  14. Undersecretary for Nuclear Security, NNSA and EM Officials to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Undersecretary for Nuclear Security, NNSA and EM Officials to Discuss President Obama's FY 2013 Budget Request Undersecretary for Nuclear Security, NNSA and EM Officials to Discuss...

  15. Technical Qualification Program Self-Assessment Report - NNSA...

    Office of Environmental Management (EM)

    NNSA Production Office - 2014 Technical Qualification Program Self-Assessment Report - NNSA Production Office - 2014 In preparation for the upcoming Chief for Defense Nuclear...

  16. 2013 Annual Workforce Analysis and Staffing Plan Report - NNSA...

    Office of Environmental Management (EM)

    NNSA Production Office 2013 Annual Workforce Analysis and Staffing Plan Report - NNSA Production Office Managers perform an annual workforce analysis of their organization and...

  17. NNSA issues Preliminary Notice of Violation to National Security...

    Energy Savers [EERE]

    NNSA issues Preliminary Notice of Violation to National Security Technologies, LLC, for Nuclear Safety Violations, Fact Sheet NNSA issues Preliminary Notice of Violation to...

  18. NNSA Releases Annual Stockpile Stewardship & Management Plan...

    National Nuclear Security Administration (NNSA)

    Locations Budget Our Operations Media Congressional Testimony Fact Sheets Newsletters Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  19. NNSA Sees Significant Achievements, Important Improvements in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pressreleasesrd10062012) After helping the Japanese people cope with the devastating tsunami and resulting nuclear crisis in 2011, NNSA took the lessons learned and applied...

  20. NNSA Personnel Appointments Announced Administrator Gordon Submits...

    National Nuclear Security Administration (NNSA)

    Administrator Gordon Submits Organizational Plan to Congress Press Release May 7, 2001 NNSA Personnel Appointments Announced Administrator Gordon Submits Organizational Plan...

  1. FAQS Reference Guide – NNSA Package Certification Engineer

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the February 2009 edition of DOE-STD-1026-2009, NNSA Package Certification Engineer Functional Area Qualification Standard.

  2. 1989 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Hwang, S.; Chavez, G.; Phelan, J.; Parsons, A.; Yeager, G.; Dionne, D.; Schwartz, B.; Wolff, T.; Fish, J.; Gray, C.; Thompson, D.

    1990-05-01

    This 1989 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 8.8 {times} 10{sup {minus}4} mrem. The total Albuquerque population received a collective dose of 0.097 person-rem during 1989 from SNL, Albuquerque, operations. As in the previous year, SNL, Albuquerque, operations in 1989 had no adverse impact on the general public or on the environment. 46 refs., 20 figs., 31 tabs.

  3. DOE FAIR 2007 (OMB).xls

    Broader source: Energy.gov (indexed) [DOE]

    I Z 1999 40 19-05 AL NNSA NM Albuquerque US 1 P119 I Z 1999 41 19-05 AL NNSA AZ Fort Smith US 1 T999 C B 1999 42 19-05 AL NNSA AZ Fort Smith US 1 T999 I Z 1999 43 19-05 AL NNSA...

  4. NNSA Sites | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of EnergyNEW1for Acquisition and ProjectNNSA Sites

  5. NNSA Next Generation Safeguards Initiative | National Nuclear...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  6. DOE Directives and NNSA Policy Letters Enforceable under 10 C...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Directives and NNSA Policy Letters Enforceable under 10 C.F.R. Part 824 DOE Directives and NNSA Policy Letters Enforceable under 10 C.F.R. Part 824 June 26, 2015 - 2:24pm...

  7. 1990 Environmental Monitoring Report, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Hwang, S.; Yeager, G.; Wolff, T.; Parsons, A.; Dionne, D.; Massey, C.; Schwartz, B.; Fish, J.; Thompson, D. (Sandia National Labs., Albuquerque, NM (United States)); Goodrich, M. (GRAM, Inc., Albuquerque, NM (United States))

    1991-05-01

    This 1990 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 2.0 {times} 10{sup {minus}3} mrem. The total 50-mile population received a collective dose of 0.82 person-rem during 1990 from SNL, Albuquerque, operations. As in the previous year, the 1990 SNL operations had no adverse impact on the general public or on the environment. This report is prepared for the US Department of Energy in compliance with DOE Order 5400.1. 97 refs., 30 figs., 137 tabs.

  8. Line Management Perspective: National Nuclear Security Administration (NNSA)

    Broader source: Energy.gov [DOE]

    Slide Presentation by Jim McConnell, Acting Associate Administrator for Infrastructure and Operations, NNSA. Work Planning, Control and Execution.

  9. Sandia National Laboratories: Locations: Albuquerque, New Mexico: Life in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque Albuquerque Housing Education Recreation Locations Life in

  10. Sandia National Laboratories: Locations: Albuquerque, New Mexico: Visiting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque Albuquerque Housing Education Recreation Locations Life

  11. 18 th IEEE/NPSS Symposium on Fusion Engineering October 25 --29, 1999, Albuquerque, New Mexico

    E-Print Network [OSTI]

    18 th IEEE/NPSS Symposium on Fusion Engineering October 25 -- 29, 1999, Albuquerque, New Mexico, 1999, Albuquerque, New Mexico measured from tiles collected from a similar location in the TFTR vacuum

  12. 18 th IEEE/NPSS Symposium on Fusion Engineering October 25 --29, 1999, Albuquerque, New Mexico

    E-Print Network [OSTI]

    18 th IEEE/NPSS Symposium on Fusion Engineering October 25 -- 29, 1999, Albuquerque, New Mexico, 1999, Albuquerque, New Mexico System Configuration A ~ 600 gram TFTR limiter tile (Fig. 1.) which

  13. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Shyr, L.J.; Duncan, D. [eds.] [eds.; Sanchez, R.

    1996-09-01

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included.

  14. 2009 fault tolerance for extreme-scale computing workshop, Albuquerque, NM - March 19-20, 2009.

    SciTech Connect (OSTI)

    Katz, D. S.; Daly, J.; DeBardeleben, N.; Elnozahy, M.; Kramer, B.; Lathrop, S.; Nystrom, N.; Milfeld, K.; Sanielevici, S.; Scott, S.; Votta, L.; Louisiana State Univ.; Center for Exceptional Computing; LANL; IBM; Univ. of Illinois; Shodor Foundation; Pittsburgh Supercomputer Center; Texas Advanced Computing Center; ORNL; Sun Microsystems

    2009-02-01

    This is a report on the third in a series of petascale workshops co-sponsored by Blue Waters and TeraGrid to address challenges and opportunities for making effective use of emerging extreme-scale computing. This workshop was held to discuss fault tolerance on large systems for running large, possibly long-running applications. The main point of the workshop was to have systems people, middleware people (including fault-tolerance experts), and applications people talk about the issues and figure out what needs to be done, mostly at the middleware and application levels, to run such applications on the emerging petascale systems, without having faults cause large numbers of application failures. The workshop found that there is considerable interest in fault tolerance, resilience, and reliability of high-performance computing (HPC) systems in general, at all levels of HPC. The only way to recover from faults is through the use of some redundancy, either in space or in time. Redundancy in time, in the form of writing checkpoints to disk and restarting at the most recent checkpoint after a fault that cause an application to crash/halt, is the most common tool used in applications today, but there are questions about how long this can continue to be a good solution as systems and memories grow faster than I/O bandwidth to disk. There is interest in both modifications to this, such as checkpoints to memory, partial checkpoints, and message logging, and alternative ideas, such as in-memory recovery using residues. We believe that systematic exploration of these ideas holds the most promise for the scientific applications community. Fault tolerance has been an issue of discussion in the HPC community for at least the past 10 years; but much like other issues, the community has managed to put off addressing it during this period. There is a growing recognition that as systems continue to grow to petascale and beyond, the field is approaching the point where we don't have any choice but to address this through R&D efforts.

  15. DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque, NM |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE FederalTheofHeyeck, AEP,Perrin's Row, Wheat

  16. DOE Challenge Home Case Study, Palo Duro Homes, Inc., Albuquerque, NM, Production

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pState Efficiency,Energy News Media- TheEnergy wereInnovation

  17. DOE Zero Energy Ready Home Case Study 2013: Palo Duro Homes, Inc., Albuquerque, NM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY Takes 9.New Town Builders Denver, COPalo Duro

  18. New Whole-House Solutions Case Study: Artistic Homes, Albuquerque, NM

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable for PublicDepartment ofNewNewCountry |

  19. Michaela G. Farr and Joshua S. Stein Sandia National Laboratory, Albuquerque, NM, 87185, United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matterEnergyPublicatons Contact Us RingStewart! NERSCSpatial

  20. NNSA Labs host U.S. and Nuclear Non-Proliferation Treaty (NPT...

    National Nuclear Security Administration (NNSA)

    Head of Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Preparatory Commission Visits NNSA's Nevada National Security Site (NNSS) for First Time NNSA sites take home 15...

  1. NNSA Provides More Than $290 Million in Small Business Contract...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration (NNSA) today announced that it provided more than 290 million in small business obligations for federal prime contracts in fiscal year 2012. Almost 80...

  2. Date Set for Closure of Russian Nuclear Weapons Plant - NNSA...

    National Nuclear Security Administration (NNSA)

    Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  3. NNSA Partnership Successfully Removes All Remaining HEU from...

    National Nuclear Security Administration (NNSA)

    on nuclear and radiological security issues. NNSA worked with Uzbekistan's Institute of Nuclear Physics to convert its research reactor from HEU to low enriched uranium (LEU)...

  4. Undersecretary for Nuclear Security, NNSA and EM Officials to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administrator Neile Miller, Acting Assistant Secretary for Environmental Management David Huizenga, Director of the Office of Legacy Management David Geiser, NNSA Deputy...

  5. NNSA Celebrates 10 Years of Cooperation with Russia in Securing...

    National Nuclear Security Administration (NNSA)

    10 Years of Cooperation with Russia in Securing Nuclear Material December 10, 2004 NNSA Celebrates 10 Years of Cooperation with Russia in Securing Nuclear Material...

  6. 2014 Annual Planning Summary for the NNSA Global Threat Reduction...

    Energy Savers [EERE]

    Global Threat Reduction Initiative Office 2014 Annual Planning Summary for the NNSA Global Threat Reduction Initiative Office The ongoing and projected Environmental Assessments...

  7. LLNL scientist receives NNSA award for developing uncrackable...

    National Nuclear Security Administration (NNSA)

    scientist receives NNSA award for developing uncrackable code for nuclear weapons Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's Defense...

  8. National Nuclear Science Week Day 2: NNSA Showcases Nuclear Science...

    National Nuclear Security Administration (NNSA)

    2: NNSA Showcases Nuclear Science Careers | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  9. National Nuclear Science Week Day 4: NNSA Highlights Science...

    National Nuclear Security Administration (NNSA)

    4: NNSA Highlights Science of Nuclear Nonproliferation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  10. NNSA to conduct Aerial Radiation Assessment Survey over Boston...

    National Nuclear Security Administration (NNSA)

    background radiation. Officials from U.S. Department of Energy's National Nuclear Security Administration (NNSA) announced that the radiation assessment will cover...

  11. NNSA's Summary of Experiments Conducted in Support of Stockpile...

    National Nuclear Security Administration (NNSA)

    in Science and Security NNSA Announces Procurement of Penguin Computing Clusters to Support Stockpile Stewardship at National Labs Stewardship Science Academic Alliances Awards...

  12. Operated by Los Alamos National Security, LLC for NNSA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hiro Sakai (JAEA) Hiroshi Yasuoka (JAEA) Luis Balicas (NHMFL) Operated by Los Alamos National Security, LLC for NNSA * 115 heavy fermion primer * Non-universality of dopants...

  13. NNSA Announces Procurement of Penguin Computing Clusters to Support...

    National Nuclear Security Administration (NNSA)

    that enable the science needed to meet the challenges of stockpile stewardship. NNSA's new capacity computing systems, called the Commodity Technology Systems - 1 (CTS-1), will...

  14. NNSA Releases Pictures, Video of Consequence Management Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Releases Pictures, Video of Consequence Management Response Teams Deploying to Japan NNSA Releases Pictures, Video of Consequence Management Response Teams Deploying to Japan March...

  15. NNSA hosts Illinois emergency responders during technical exchange...

    National Nuclear Security Administration (NNSA)

    responders during an Aerial Measuring System (AMS) Technical Exchange meeting at NNSA's Remote Sensing Laboratory (RSL) in Las Vegas, Nev. The technical exchange consisted of...

  16. NNSA selects Consolidated Nuclear Security, LLC to manage the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selects Consolidated ... NNSA selects Consolidated Nuclear Security, LLC to manage the consolidated contract for Nuclear Production Operations Posted: January 8, 2013 - 1:20pm In a...

  17. Independent Oversight Review of the NNSA Production Office Readiness...

    Energy Savers [EERE]

    Independent Oversight Review of the NNSA Production Office Readiness Review Program February 2014 Office of Safety and Emergency Management Evaluations Office of Enforcement and...

  18. NNSA issues Preliminary Notice of Violation to National Security...

    Broader source: Energy.gov (indexed) [DOE]

    NNSA issues Preliminary Notice of Violation to National Security Technologies, LLC, for Nuclear Safety Violations On August 22, 2011, the National Nuclear Security Administration...

  19. Sandia National Laboratories: Locations: Albuquerque, New Mexico: Life in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of thePrograms: Center forFacebookFactIonAlbuquerque:

  20. Albuquerque, New Mexico: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone Co Jump to:ElecVirginia:Albuquerque

  1. NNSA Corporate CPEP Process NNSA Honeywell FM&T PER NNSA/NA-00.2

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) AugustA.MOXAdministration Continues Emergency NNSA

  2. NNSA B-Roll: MOX Facility

    ScienceCinema (OSTI)

    None

    2010-09-01

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  3. NNSA B-Roll: MOX Facility

    SciTech Connect (OSTI)

    2010-05-21

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  4. Working at NNSA | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O09Our Mission /Nuclearat NNSA |

  5. 2011 February final NNSA NEWS 2010.pmd

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O09Our Mission /Nuclearat NNSA 2011

  6. 2011 March NNSA News Viewable.pmd

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O09Our Mission /Nuclearat NNSA

  7. About NNSA | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O09Our MissionPublicationsNNSA |

  8. NNSA Production Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 2012 Guidance/%2A en20120 2014 NNSA LOS|

  9. September 2011 NNSA NEWS.pmd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|Sensitive Species Sensitive Species By avoiding

  10. CX-007093: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Postmortem Code Blue--Kansas City PlantCX(s) Applied: B3.6Date: 05/09/2011Location(s): Albuquerque, NM; Kansas City, MO, Missouri, New MexicoOffice(s): NNSA-Headquarters, Sandia Site Office

  11. 1994 Site Environmental Report Sandia National Laboratories Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Shyr, L.J.; Wiggins, T.; White, B.B.

    1995-09-01

    This 1994 report contains data from routine radiological and nonradiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum off-site dose impact from air emissions was calculated to be 1.5 x 10{sup -4} millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.012 person-rem during 1994 from the laboratories` operations. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1.

  12. JET Papers presented at the 18th Symposium on Fusion Engineering (SOFE) (Albuquerque, USA, 25th ­29th October 1999)

    E-Print Network [OSTI]

    JET Papers presented at the 18th Symposium on Fusion Engineering (SOFE) (Albuquerque, USA, 25th ­29th October 1999)

  13. NNSA Announces Recipient of $25 Million Grant to Improve Technological...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  14. NNSA: Working to Prevent Nuclear Proliferation | National Nuclear...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  15. New Mexico Federal Executive Board awards NNSA Supervisory Contract...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  16. draft Aug 5 July 2011 NNSA NEWS.pmd

    National Nuclear Security Administration (NNSA)

    head toward fall, please know how much I appreciate what you do. The dedication and commitment I see across NNSA are a constant source of pride for me, and all of you have my...

  17. NNSA and Energy Awareness Month | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  18. NNSA Applauds Y-12 for Completing Potable Water Project Ahead...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  19. NNSA Applauds Y-12 for Completing Potable Water Project Ahead...

    National Nuclear Security Administration (NNSA)

    this site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  20. NNSA Commitment to Energy Efficiency: Promoting Cool Roof Technologies...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  1. NNSA's National Laboratories Engage in Climate Modeling, Data...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  2. NNSA Supports IAEA Regional Training in Zambia on Management...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  3. NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  4. NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...

    National Nuclear Security Administration (NNSA)

    this site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  5. LANL, Sandia, Cray Set to Build Next Generation NNSA Supercomputer...

    National Nuclear Security Administration (NNSA)

    Peter Ungaro, president and CEO of Cray. "We have a long history with the Department of Energy, the NNSA and its associated laboratories, and we are pleased that the partnership...

  6. Y-12 Opens New NNSA Alarm Response Training Academy | National...

    National Nuclear Security Administration (NNSA)

    secure, and dispose of dangerous nuclear and radiological material, and related WMD technology and expertise. Follow NNSA News onFacebook, Twitter, YouTube, and Flickr. Y-12...

  7. NNSA Awards Contract for Largest Federal Wind Farm to Siemens...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  8. NNSA and IAEA Celebrate the 25th International Training Course...

    National Nuclear Security Administration (NNSA)

    host 44 people from 33 countries at the Sandia National Laboratories in Albuquerque, New Mexico, from April 20 to May 8, 2015 for the 25th International Training Course (ITC)...

  9. IEEE/NPSS Symposium on Fusion Engineering October 25 29, 1999, Albuquerque, New Mexico

    E-Print Network [OSTI]

    18 th IEEE/NPSS Symposium on Fusion Engineering October 25 ­ 29, 1999, Albuquerque, New Mexico ­ 2 Ci of tritium (as previously #12;18 th IEEE/NPSS Symposium on Fusion Engineering October 25 ­ 29

  10. IEEE/NPSS Symposium on Fusion Engineering October 25 29, 1999, Albuquerque, New Mexico

    E-Print Network [OSTI]

    18 th IEEE/NPSS Symposium on Fusion Engineering October 25 ­ 29, 1999, Albuquerque, New Mexico radiation in mixed radiation fields. #12;18 th IEEE/NPSS Symposium on Fusion Engineering October 25 ­ 29

  11. Proceedings of the American Control Conference Albuquerque, New Mexico June 1997

    E-Print Network [OSTI]

    Lynch, Nancy

    economy, environmen- tal impact, vehicle and infrastructure cost, social fairness, etc. DesignProceedings of the American Control Conference Albuquerque, New Mexico June 1997 0-7a03-3a3

  12. history

    National Nuclear Security Administration (NNSA)

    the Albuquerque Operations Office with other NNSA operations offices into the NNSA Service Center located in Albuquerque. OTS was renamed the Office of Secure Transportation...

  13. NNSA Corporate CPEP Process NNSA LOS ALAMOS NATIONAL SECURITY, LLC PER

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 2012 Guidance/%2A en20120 2014 NNSA LOS ALAMOS

  14. NNSA Corporate CPEP Process NNSA Lawrence Livermore National Security, LLC PER

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 2012 Guidance/%2A en20120 2014 NNSA LOS

  15. LSP SIMULATIONS OF THE NEUTRALIZED DRIFT COMPRESSION , D.R. Welch, ATK-MR, Albuquerque, NM 87110, USA

    E-Print Network [OSTI]

    Gilson, Erik

    of a neutralizing plasma provided by an Al arc or MEVVA source. Given adequate neutralization of the beam charge, Berkeley, CA 94720, USA E.P. Gilson, Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA Abstract the longitudinal compression of a singly-stripped K ion beam with a mean energy of 280 keV in a meter long plasma

  16. ARR/18th SOFE Presentation, Albuquerque, NM, October 1999 SiC/SiC Composite for an

    E-Print Network [OSTI]

    Raffray, A. René

    performance, high temperature blanket system - Self cooled or dual coolant (He for FW) - LiPb and Li 1999 Input Parameters · Power - Max. Heat Load = 1.5 x ARIES-RS - Total Fusion Power Same as ARIES Maximum Surface Heat Flux (MW/m2 ) 0.71 Average Surface Heat Flux (MW/m2 ) 0.6 Power to the Divertor (MW

  17. Proc. of ASME Design Automation Conference, Albuquerque, NM, September 1922, 1993, vol. 2, pp. 7380. COMPUTATIONS OF DUAL NUMBERS

    E-Print Network [OSTI]

    Cheng, Harry H.

    ) pioneered kinematic anal­ ysis of spatial mechanisms via dual numbers. Using dual numbers, Yang and Freudenstein (1963, 1964) studied kine­ matic analysis of spatial mechanisms; and Ravani and Roth (1984 in kinematics and dynamics of spatial mechanisms. Succinct formulas and equations can be derived by using dual

  18. DOE Zero Ready Home Case Study: Palo Duro Homes, Most DOE Energy Ready Homes Built, Albuquerque, NM

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report: Achievements ofCOMPOSITION OF VAPORSSeries) |ReplaceThisEngines07JanuaryPalo

  19. DOE Zero Ready Home Case Study: Palo Duro Homes, Most DOE Energy Ready Homes Built, Albuquerque, NM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY Takes 9.NewExtreme Homes & CarlOne SkyMost

  20. Administrator D'Agostino Celebrates NNSA's 10-Year Anniversary

    ScienceCinema (OSTI)

    Thomas D'Agostino

    2010-09-01

    NNSA Administrator Thomas D'Agostino highlighted the strong U.S.-Georgian cooperation on nuclear security issues during a day-long visit to the Republic of Georgia in mid-June. He briefed the media at availability at the Tbilisi airport. In April 2009, P

  1. Fourteenth ARM Science Team Meeting Proceedings, Albuquerque, New Mexico, March 22-26, 2004 Atmospheric Stratification and Radiative Transfer

    E-Print Network [OSTI]

    Lovejoy, Shaun

    Fourteenth ARM Science Team Meeting Proceedings, Albuquerque, New Mexico, March 22-26, 2004 1 Meeting Proceedings, Albuquerque, New Mexico, March 22-26, 2004 2 structures thus varies as xxx Hz = x wind data in the horizontal or balloon wind data in the vertical. The results from separate experiments

  2. 1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Fink, C.H. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Duncan, D. [ed.] [GRAM, Inc., Albuquerque, NM (United States); Sanchez, R. [Jobs Plus, Albuquerque, NM (United States)

    1997-08-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES&H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL`s line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiological effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection.

  3. SUBSURFACE CONTAMINANTS FOCUS AREA TECHNICAL ASSISTANCE TEAM DEPARTMENT OF ENERGY ALBUQUERQUE OPERATION OFFICE

    E-Print Network [OSTI]

    Hazen, Terry

    SUBSURFACE CONTAMINANTS FOCUS AREA TECHNICAL ASSISTANCE TEAM to DEPARTMENT OF ENERGY ALBUQUERQUE volumes of soil containing mixed waste. Also, examine the risk management analysis and review cover storage issue. The remaining projects would be reviewed at a later date. The SCFA Lead Laboratory Manager

  4. NNSA selects Lindsey VanNess as NA-00 Inaugural Employee of the...

    National Nuclear Security Administration (NNSA)

    for her exceptional contributions to NNSA including the benchmarking of Department of Energy plans and for crafting guidance resulting in authorship of an Enterprise-implementa...

  5. Excess Titanium from NNSA's Y-12 Plant to be Used by the Army...

    National Nuclear Security Administration (NNSA)

    Excess Titanium from NNSA's Y-12 Plant to be Used by the Army for New Generation of Protective Body Armor for Combat Troops | National Nuclear Security Administration Facebook...

  6. The Quality of Management and of the Science and Engineering at the NNSA National Security Laboratories

    Broader source: Energy.gov [DOE]

    The Quality of Management and of the Science and Engineering at the NNSA National Security Laboratories was presented to CRENEL 9/15/2014.

  7. DOE/NNSA Cites Los Alamos National Laboratory for Price Anderson...

    National Nuclear Security Administration (NNSA)

    Additional details on this and other enforcement actions are available on the Internet at http:www.eh.doe.govenforce. Media contact(s): NNSA Public Affairs (202)...

  8. Lieutenant General Frank G. Klotz, USAF (Ret) Sworn In as NNSA Administrator

    Broader source: Energy.gov [DOE]

    Secretary of Energy Ernest Moniz swore in Frank G. Klotz as the Department of Energy’s Undersecretary for Nuclear Security and NNSA Administrator.

  9. The process for integrating the NNSA knowledge base.

    SciTech Connect (OSTI)

    Wilkening, Lisa K.; Carr, Dorthe Bame; Young, Christopher John; Hampton, Jeff; Martinez, Elaine

    2009-03-01

    From 2002 through 2006, the Ground Based Nuclear Explosion Monitoring Research & Engineering (GNEMRE) program at Sandia National Laboratories defined and modified a process for merging different types of integrated research products (IRPs) from various researchers into a cohesive, well-organized collection know as the NNSA Knowledge Base, to support operational treaty monitoring. This process includes defining the KB structure, systematically and logically aggregating IRPs into a complete set, and verifying and validating that the integrated Knowledge Base works as expected.

  10. NNSA issues Preliminary Notice of Violation to National Security

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of EnergyNEW1for Acquisition and ProjectNNSA

  11. Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED

    E-Print Network [OSTI]

    to desertification #12;Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

  12. Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED

    E-Print Network [OSTI]

    Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED #12;Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED LA-UR-12-25666 Slide

  13. NNSA Administrator Thomas D'Agostino delivers remarks at DOE's Commemorative Veterans Day Program

    SciTech Connect (OSTI)

    Administrator D'Agostino

    2009-12-02

    Administrator D'Agostino, a Navy veteran, was part of a November 2009 program at DOE headquarters in Washington, D.C., celebrating Veterans Day and commemorating the 10th anniversary of the DOE Veterans Task Force. Veterans comprise nearly 30 percent of NNSA's workforce, and many NNSA employees are currently on active duty.

  14. NNSA Administrator Thomas D'Agostino delivers remarks at DOE's Commemorative Veterans Day Program

    ScienceCinema (OSTI)

    Administrator D'Agostino

    2010-09-01

    Administrator D'Agostino, a Navy veteran, was part of a November 2009 program at DOE headquarters in Washington, D.C., celebrating Veterans Day and commemorating the 10th anniversary of the DOE Veterans Task Force. Veterans comprise nearly 30 percent of NNSA's workforce, and many NNSA employees are currently on active duty.

  15. NNSA Signs Memorandum with Kuwait to Increase Cooperation on Nuclear Safeguards and Nonproliferation

    ScienceCinema (OSTI)

    Thomas D'Agostino

    2010-09-01

    On June 23, 2010, the National Nuclear Security Administration (NNSA) signed a Memorandum of Cooperation on nuclear safeguards and other nonproliferation topics with the Kuwait National Nuclear Energy Committee (KNNEC). NNSA Administrator Thomas D'Agostino and KNNEC's Secretary General, Dr. Ahmad Bishara, signed the memorandum at a ceremony at U.S. Department of Energy headquarters in Washington.

  16. 2011 January 27 Draft NNSA NEWS 2010.pmd

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O09Our Mission /Nuclearat NNSA 20111

  17. FINAL DRAFT 2011 March NNSA NEWS 2011.pmd

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'aExecutive Positions | NationalNNSA News

  18. 09-02-2010 NNSA-B-10-0364

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New02-2010 NNSA-B-10-0364 Sandia

  19. 09-22-2010 NNSA-B-10-0374

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New02-2010 NNSA-B-10-0364

  20. 10-04-2010 NNSA-B-10-0390

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New02-2010 NNSA-B-10-036456

  1. 10-05-2010 NNSA-B-10-0410

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New02-2010 NNSA-B-10-0364565-2010

  2. 11-01-2010 NNSA-B-11-0009

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New02-20101-2010 NNSA-B-11-0009

  3. FY 2010 NNSA DVAAP Report - November 17, 2010 13

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National 1NuclearNational NuclearNuclearFY 2010 NNSA

  4. Welcome to the NNSA Production Office | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN AProjectAdministration NNSA Production Office |

  5. NNSA announces 2014 sustainability awards | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof Energy MovingAdministration DecTimelineNNSA announces

  6. NNSA conducts second seismic source physics experiment | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof Energy MovingAdministration DecTimelineNNSA

  7. NNSA recognizes Knight's service to Nuclear Materials Management Team |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 National Security Complex NNSA recognizes

  8. NNSA selects Consolidated Nuclear Security, LLC to manage the consolidated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 National Security Complex NNSA

  9. NNSA, Air Force Complete Successful B61-12 Life Extension Program...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (NNSA) completed the first development flight test of a non-nuclear B61-12 gravity bomb at Tonopah Test Range in Nevada on July 1, 2015....

  10. NNSA, Air Force Complete Successful B61-12 Life Extension Program...

    National Nuclear Security Administration (NNSA)

    (NNSA) and United States Air Force completed the third development flight test of a non-nuclear B61-12 nuclear gravity bomb at Tonopah Test Range in Nevada on October...

  11. How Energy Efficiency and Nuclear Security Are Working Hand-in-Hand at NNSA

    Office of Energy Efficiency and Renewable Energy (EERE)

    At NNSA, we keep a strong connection between our commitment to energy efficiency and our efforts to invest in the future, implement President Obama’s nuclear security agenda, and improve the way we do business.

  12. NNSA Administrator Looks to Future of Nuclear Security at STRATCOM Symposium

    ScienceCinema (OSTI)

    Thomas D'Agostino

    2010-09-01

    Administrator Thomas P. DAgostino of the National Nuclear Security Administration (NNSA) discusses the future of the Nuclear Security Enterprise and its strategic deterrence mission in light of President Obamas unprecedented nuclear security agenda.

  13. Opening Statement by NNSA Administrator D'Agostino FY2012 Budget...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  14. NNSA Works to Establish a Reliable Supply of Mo-99 Produced Without...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  15. NNSA Announces Kevin W. Smith as Los Alamos Site Office Manager...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  16. Microsoft Word - HQ-#465026-v1-NNSA_SD_350_2_-_FINAL_9-6-CLEAN

    National Nuclear Security Administration (NNSA)

    and Project Management NNSA SUPPLEMENTAL DIRECTIVE Approved: 10-18-12 USE OF MANAGEMENT AND OPERATING CONTRACTOR EMPLOYEES FOR SERVICES TO THE NATIONAL NUCLEAR SECURITY...

  17. The University of New Mexico is located in Albuquerque, the largest city in New Mexico. Albuquerque is an ethnically diverse city of half a million residents that has been listed among the smartest U.S. cities and best

    E-Print Network [OSTI]

    Maccabe, Barney

    The University of New Mexico is located in Albuquerque, the largest city in New Mexico for hiking, biking, rock climbing and skiing. Photo credit: Tom Brahl Photo The University of New Mexico is the premier research university in the state of New Mexico. UNM is a Carnegie Very High Research Activity

  18. EIS-0466: Site-wide Environmental Impact Statement for Ongoing Operations at Sandia National Laboratories, Albuquerque, New Mexico

    Broader source: Energy.gov [DOE]

    This Site-Wide EIS evaluates the continued operation of the DOE/NNSA activities at Sandia National Laboratories. The SWEIS will consider a No Action Alternative, which is to continue current operations through implementation of the 1999 Record of Decision and subsequent NEPA decisions, and three action alternatives proposed for consideration.

  19. Magnetic relaxometry as applied to sensitive cancer detection...

    Office of Scientific and Technical Information (OSTI)

    Senior Scientific LLC, Albuquerque, NM (United States) Univ. of New Mexico School of Medicine, Albuquerque, NM (United States) Sandia National Lab. (SNL-NM), Albuquerque, NM...

  20. 2015 New Mexico Science Olympiad Finals Congratulations to Albuquerque Academy on winning First Place and the honor of

    E-Print Network [OSTI]

    Borchers, Brian

    2015 New Mexico Science Olympiad Finals Congratulations to Albuquerque Academy on winning First Place and the honor of representing New Mexico at the National Science Olympiad in Lincoln, Nebraska New Mexico Military Institute Anatomy & Physiology 10TH V. Sue Cleveland High School 9TH Rio Rancho

  1. SciTech Connect:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Numbers: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque...

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office,...

  3. Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA March 10, 2015 | 1UNCLASSIFIED

    E-Print Network [OSTI]

    Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA March 10 2015 #12;Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA March Security, LLC for the U.S. Department of Energy's NNSA March 10, 2015 | 3UNCLASSIFIED As a National

  4. U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA

    E-Print Network [OSTI]

    U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 1 Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 2 · General information on Fusion National Security, LLC for the DOE/NNSA Slide 3 Fusion Energy Sciences (FES) Priorities at LANL: ·Three

  5. Information Assurance Office of the CIO Security@unm.edu The University of New Mexico MSC02 1520 1 University of New Mexico Albuquerque NM 871310001

    E-Print Network [OSTI]

    New Mexico, University of

    and privacy acceptance test plans and/or even rudimentary checklists. That said, the following Applications for IT Project Leaders is to develop a firm understanding of the local data requirements, the data flow is to determine local operational requirements before reviewing and tailoring any checklists to a local

  6. CX-007090: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    United States Navy Security System UpgradesCX(s) Applied: B1.15, B2.2Date: 05/24/2011Location(s): Albuquerque, NM; Kings Bay, GA; Bangor, WA, Georgia, New Mexico, WashingtonOffice(s): NNSA-Headquarters, Sandia Site Office

  7. NNSA Supplemental Guidance: NA-1 SD G 1027 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of EnergyNEW1for Acquisition and ProjectNNSA SitesNNSA

  8. 7 -29 nm 29 -56 nm 56 -95 nm Particlenumberconcentration(#cm-3

    E-Print Network [OSTI]

    Holmén, Britt A.

    Freeway Stop-and-go ULSD n = 4 7 - 29 nm 29 - 56 nm 56 - 95 nm Pariclenumberconcentration,(#cm -3 ) 0 1e+5 2e+5 3e+5 4e+5 5e+5 Freeway Stop-and-go ULSD n = 4 Freeway Stop-and-go Particlenumberconcentration.4 miles ·Average speed: 30 mph · Fuel: ·Ultra-low sulfur diesel (ULSD) ConclusionsConclusions ELPI

  9. SEAB Memorandum on NAS Report, Aligning the Governance Structure of the NNSA Laboratories to Meet 21st Century National Security Challenges

    Broader source: Energy.gov [DOE]

    This memorandum transmits the comments of the SEAB Task Force on DOE National Laboratories on the recently released report of the Committee on Assessment of the Governance Structure of the NNSA National Security, entitled Aligning the Governance Structure of the NNSA Laboratories to Meet 21st Century National Security Challenges. That committee, chaired by Richard A. Meserve, was formed by the National Research Council in response to the FY2013 National Defense Authorization Act which directed the Administrator of the NNSA to “commission an independent assessment regarding the transition of the NNSA laboratories to multiagency, federally funded research and development centers (FFRDCs) with direct sustainment and sponsorship by multiple national security agencies.”

  10. 03-01-2010 NNSA-B-10-0110

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New Mexico (SNL/NM) proposes to10

  11. 03-08-2010 NNSA-B-10-0097

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New Mexico (SNL/NM) proposes8-2010

  12. 03-08-2010 NNSA-B-10-0131

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New Mexico (SNL/NM)

  13. 03-09-2010 NNSA-B-10-0022

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New Mexico (SNL/NM)22 Sandia

  14. 03-09-2010 NNSA-B-10-0077

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New Mexico (SNL/NM)22 Sandia77

  15. 03-09-2010 NNSA-B-10-0113

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New Mexico (SNL/NM)22 Sandia77 or

  16. 03-11-2010 NNSA-B-10-0213

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New Mexico (SNL/NM)22 Sandia77

  17. 05-05-2010 NNSA-B-09-0152

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New Mexico (SNL/NM)22

  18. 05-05-2010 NNSA-B-10-0144

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New Mexico (SNL/NM)225-05-2010

  19. 05-19-2010 NNSA-B-10-0061

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New Mexico (SNL/NM)225-05-2010 or

  20. 05-19-2010 NNSA-B-10-0126

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New Mexico (SNL/NM)225-05-2010 or

  1. 05-19-2010 NNSA-B-10-0188

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New Mexico (SNL/NM)225-05-2010

  2. 05-19-2010 NNSA-B-10-0236

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New Mexico (SNL/NM)225-05-2010236

  3. 06-07-2010 NNSA-B-10-0195

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New Mexico (SNL/NM)225-05-2010236

  4. 1998 Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Duncan, D.K.; Fink, C.H.; Sanchez, R.V.

    1999-09-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the US Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs. SNL/NM also conducts fundamental research and development to advance technology in energy research, computer science, waste management, microelectronics, materials science, and transportation safety for hazardous and nuclear components. In support of SNL's mission, the Environment, Safety and Health (ES&H) Center and the Environmental Restoration (ER) Project at SNL/NM have established extensive environmental programs to assist SNL's line organizations in meeting all applicable local, State, and Federal environmental regulations and DOE requirements. This annual report for calendar year 1998 (CY98) summarizes the compliance status of environmental regulations applicable to SNL site operations. Environmental program activities include terrestrial surveillance; ambient air and meteorological monitoring hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental remediation; oil and chemical spill prevention; and National Environmental Policy Act (NEPA) activities. This report has been prepared in compliance with DOE Order 5400.1, General Environmental Protection Program (DOE 1990).

  5. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    SciTech Connect (OSTI)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon sequestration, energy efficiency, and other energy security research projects that are being conducted under the LDRD Program at the DOE/NNSA national laboratories and under the Site Directed Research and Development Program (SDRD) at the Nevada Test Site. Speakers from DOE/NNSA, other federal agencies, the NNSA laboratories, and the private sector will provide their insights into the national security implications of emerging energy and environmental issues, and the LDRD investments in energy security at the national laboratories. Please take this opportunity to reflect upon the science and engineering needs of our country's energy demands, including those issues posed by climate change, paying attention to the innovative contributions that LDRD is providing to the nation.

  6. DOE Zero Energy Ready Home Case Study: Palo Duro Homes Inc., Albuquerque,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE FederalTheofHeyeck, AEP,Perrin's Row, Wheat Ridge,NM,

  7. Page 1 of 1 An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

    E-Print Network [OSTI]

    Department of Energy (DOE), National Nuclear Security Administration (NNSA) to recover and manage disusedPage 1 of 1 An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Date: July 28, 2014 Request for Expressions of Interest Los Alamos National

  8. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  9. Future challenges and DOE/NNSA-JAEA cooperation for the development of advanced safeguards

    SciTech Connect (OSTI)

    Stevens, Rebecca S [Los Alamos National Laboratory; Mc Clelland - Kerr, John [NNSA-NA-242; Senzaki, Masao [JAEA; Hori, Masato [JAEA

    2009-01-01

    The United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) has been cooperating with Japan on nuclear safeguards for over thirty years. DOE/NNSA has collaborated with the Japan Atomic Energy Agency (JAEA) and its predecessors in addressing the need for innovative solutions to nuclear transparency and verification issues in one of the world's most advanced nuclear fuel cycle states. This collaboration includes over ninety activities that have involved nearly every facility in the JAEA complex and many national laboratories in the U.S. complex. The partnership has yielded new technologies and approaches that have benefited international safeguards not only in Japan, but around the world. The International Atomic Energy Agency uses a number of safeguards solutions developed under this collaboration to improve its inspection efforts in Japan and elsewhere. Japanese facilities serve as test beds for emerging safeguards technologies and are setting the trend for new nuclear energy and fuel cycle development worldwide. The collaboration continues to be an essential component of U.S. safeguards outreach and is integral to the DOE/NNSA's Next Generation Safeguards Initiative. In addition to fostering international safeguards development, the cooperation is an opportunity for U.S. scientists to work in facilities that have no analog in the United States, thus providing crucial real-life experience for and aiding development of the next generation of U.S. safeguards specialists. It is also an important element of promoting regional transparency thereby building confidence in the peaceful nature of nuclear programs in the region. The successes engendered by this partnership provide a strong basis for addressing future safeguards challenges, in Japan and elsewhere. This paper summarizes these challenges and the associated cooperative efforts that are either underway or anticipated.

  10. NNSA Service Center EEO and Diversity Office FY 2009 Year-End Report

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 2012 Guidance/%2A en20120 2014 NNSA LOS|Service

  11. NNSA Sites, Labs Earn 12 R&D 100 Awards | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 2012 Guidance/%2A en20120 2014 NNSA

  12. Randy Fraser receives NNSA 2014 Security Professional of the Year award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProton DeliveryRadioactive MaterialsTechnologiesNNSA 2014

  13. Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World | National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| StanfordOfficeImplementation and

  14. Small Business Week 2011: Meyer Tool and Manufacturing provides NNSA with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|Sensitive Species3performed Steven D.Administration

  15. 248-nm photolysis of tricarbonylnitrosylcobalt

    SciTech Connect (OSTI)

    Rayner, D.M.; Nazran, A.S.; Drouin, M.; Hackett, P.A.

    1986-06-19

    Laser-based time-resolved infrared absorption spectroscopy has been applied to the study of the 248-nm photolysis of the pseudo-nickel carbonyl, tricarbonylnitrosylcobalt, in the gas phase. Co(CO)/sub 3/NO dissociates by a series of sequential ligand eliminations to give predominantly CoCO. This species reacts back with parent Co(CO)/sub 3/NO with a gas kinetic rate constant of (6.4 +/- 0.6) x 10/sup -10/ cm/sup 3/ molecule/sup -1/ s/sup -1/ to form a binuclear species, (Co/sub 2/(CO)/sub 4/NO), of unknown structure. Added CO results in the formation of Co(CO)/sub 3/ and finally Co(CO)/sub 4/. The rate constant for the reactions of CO with Co(CO) is (6.2 +/- 0.6) x 10/sup -11/ cm/sup 3/ molecule/sup -1/ s/sup -1/ which is also a lower limit for the rates of reaction of CO with Co(CO)/sub 2/ and Co(CO)/sub 3/. This behavior shows marked similarity with recent work on the other carbonyls and begins to establish a general pattern for metal carbonyl photolysis.

  16. An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Postdoctoral Program Office

    E-Print Network [OSTI]

    An Equal Opportunity Employer / Operated by Los Alamos National Security LLC for DOE/NNSA Postdoctoral Program Office P.O. Box 1663, Mail Stop M719 Los Alamos, New Mexico 87545 505-665-5306/Fax 505-667-1319 Dear Prospective Postdocs, On behalf of the Los Alamos Postdoctoral Association (LAPA), we would like

  17. Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA | UNCLASSIFIED | 1

    E-Print Network [OSTI]

    McDonald, Kirk

    Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Division -Los Alamos National Laboratory 2. Chemistry Division -Los Alamos National Laboratory 3. Idaho National Laboratory (May 21, 2014) #12;Operated by Los Alamos National Security, LLC for the U

  18. Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect (OSTI)

    Peace, Gerald L.; Goering, Timothy James (GRAM inc., Albuquerque, NM); Knight, Paul J. (Marron and Associates, Albuquerque, NM); Ashton, Thomas S. (Marron and Associates, Albuquerque, NM)

    2004-11-01

    A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant species is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.

  19. Supporting the Global Threat Reduction Initiative through Nuclear Material Recovery: Collaboration between NNSA and AREVA

    SciTech Connect (OSTI)

    Bieniawski, Andrew; Sheely, Ken; Hunter, Ian; Louvet, Thibault

    2007-07-01

    The Global Threat Reduction Initiative (GTRI) was established by the U.S. Department of Energy National Nuclear Security Administration (NNSA) in response to the growing need to comprehensively and internationally address the potential threat posed by vulnerable high-risk nuclear material. GTRI's mission is to foster international support for national programs to identify, secure, remove and/or facilitate the disposition, as quickly and expeditiously as possible, of vulnerable, high-risk nuclear and other radioactive materials around the world that pose a potential threat to the international community. Specifically, GTRI establishes international partnerships to address this global issue. To achieve these objectives, GTRI works with international, regional, and domestic partners to: (1) minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civil nuclear applications worldwide by converting research reactors to LEU fuels; (2) accelerate the removal or final disposition of vulnerable nuclear material throughout the world; (3) accelerate securing and/or removing vulnerable high-risk radiological materials throughout the world; and (4) address the 'gaps' of other programs by identifying throughout the world, recovering and facilitating permanent disposition of vulnerable high-risk nuclear material not previously addressed by other threat reduction programs. DOE desires to work with more partners, both government and industry, to develop options for the disposal of nuclear material in the most expeditious manner. This paper will present the recent success of the first Plutonium Gap Material recycling contract signed by AREVA thanks to the collaboration developed between NNSA and AREVA. Another item which will be presented and illustrates how GTRI supports government-to-industry partnership, is the willingness to consider the treatment option for Gap Materials used-fuel. This new step represents another broadening of the collaboration that already exists between NNSA and AREVA for achieving the goal of GTRI. Such collaboration was already illustrated in 2006 by the recovery of more than 45 Kg of HEU from facilities within Europe and another 15 Kg of fresh HEU were transported from Europe to the U.S. An additional 40 Kg of fresh HEU will be transported from facilities within Europe to the AREVA-CERCA facility before the end of 2007. (authors)

  20. Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D

    E-Print Network [OSTI]

    Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D - 1- PPPL Oct. 29 Colloquium October 29, 2009 Don Rej Los Alamos National Laboratory Science Program Office LA-UR 09-06728 #12;Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D - 2- PPPL Oct. 29, 2009

  1. NNSA Nonproliferation Graduate Fellowship Program Annual Report June 2008 - May 2009

    SciTech Connect (OSTI)

    Berkman, Clarissa O.; Fankhauser, Jana G.

    2010-03-01

    In 2009, the Nonproliferation Graduate Fellowship Program (NGFP) completed its 16th successful year in support of the NNSA’s mission by developing future leaders in nonproliferation and promoting awareness of career opportunities. We provide this annual report to review program activities from June 2008 through May 2009 - the fellowship term for the Class of 2008. Contents include: Welcome Letter Introduction The NGFP Team Program Management Highlights Class of 2008 Incoming Fellows Orientation Travel Career Development Management of the Fellows Performance Highlights Closing Ceremony Encore Performance Where They Are Now Alumnus Career Highlights: Christine Buzzard Class of 2009 Applicant Database Upgrades Fall Recruitment Activities Interviews Hiring and Clearances Introducing the Class of 2009 Class of 2010 Recruitment Strategy On the Horizon Appendix A: Class of 2009 Fellows

  2. NNSA Nonproliferation Graduate Fellowship Program Annual Report June 2009 - May 2010

    SciTech Connect (OSTI)

    Berkman, Clarissa O.; Fankhauser, Jana G.

    2011-04-01

    In 2009, the Nonproliferation Graduate Fellowship Program (NGFP) completed its 17th successful year in support of the NNSA’s mission by developing future leaders in nonproliferation and promoting awareness of career opportunities. This annual report to reviews program activities from June 2009 through May 2010 - the fellowship term for the Class of 2009. Contents include: Welcome Letter (Mission Driven: It’s all about results), Introduction, Structure of the NGFP, Program Management Highlights, Annual Lifecycle, Class of 2009 Incoming Fellows, Orientation, Global Support of the Mission, Career Development, Management of the Fellows, Performance Highlights, Closing Ceremony, Where They Are Now, Alumni Highlight - Mission Success: Exceptional Leaders from the NGFP, Class of 2009 Fall Recruitment Activities, Established Partnerships, Face-to-Face, Recruiting Results, Interviews, Hiring and Clearances, Introducing the Class of 2010, Class of 2011 Recruitment Strategy, On the Horizon, Appendix A: Class of 2010 Fellow Biographies

  3. Potential application of LIBS to NNSA next generation safeguards initiative (NGSI)

    SciTech Connect (OSTI)

    Barefield Ii, James E [Los Alamos National Laboratory; Clegg, Samuel M [Los Alamos National Laboratory; Veirs, Douglas K [Los Alamos National Laboratory; Browne, Mike [Los Alamos National Laboratory; Lopez, Leon [Los Alamos National Laboratory; Martinez, Ron [Los Alamos National Laboratory; Le, Loan [Los Alamos National Laboratory; Lamontagne, Stephen A [DOE/NNSA/NA241; Veal, Kevin [NN/ADTR

    2009-01-01

    In a climate in which states and nations have been and perhaps currently are involved in the prol iferation of nuclear materials and technologies, advanced methodologies and improvements in current measurement techniques are needed to combat new threats and increased levels of sophistication. The Department of Energy through the National Nuclear Security Administration (NNSA) has undertaken a broad review of International Safeguards. The conclusion from that review was that a comprehensive initiative to revitalize international safeguards technology and the human resource base was urgently needed to keep pace with demands and increasingly sophisticated emerging safeguards challenges. To address these challenges, NNSA launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves for the next 25 years. NGSI is designed to revitalize and strengthen the U.S. safeguards technical base, recognizing that without a robust program the United States of America will not be in a position to exercise leadership or provide the necessary support to the IAEA (International Atomic Energy Agency). International safeguards as administrated by the IAEA are the primary vehicle for verifying compliance with the peaceful use and nonproliferation of nuclear materials and technologies. Laser Induced Breakdown Spectroscopy or LIBS has the potential to support the goals of NGSI as follows: by providing (1) automated analysis in complex nuclear processing or reprocessing facilities in real-time or near real-time without sample preparation or removal, (2) isotopic and important elemental ratio (Cm/Pu, Cm/U, ... etc) analysis, and (3) centralized remote control, process monitoring, and analysis of nuclear materials in nuclear facilities at multiple locations within the facility. Potential application of LIBS to international safeguards as outlined in the NGSI will be discussed.

  4. Ultrahigh speed volumetric ophthalmic OCT imaging at 850nm and 1050nm

    E-Print Network [OSTI]

    Potsaid, Benjamin M.

    The performance and imaging characteristics of ultrahigh speed ophthalmic optical coherence tomography (OCT) are investigated. In vivo imaging results are obtained at 850nm and 1050nm using different configurations of ...

  5. Albuquerque Operations Office

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co -VANaval Ordnance,:n5.5.8GE.Adrian,_I%r

  6. Equal Employment Opportunity: Collaborating for Mission Success

    National Nuclear Security Administration (NNSA)

    87185 Albuquerque Complex (505) 845-5517 Fax (505) 845-4963 TTY 866-872-1011 http:nnsa.energy.govaboutusouroperationsmanagementandbudgetcivrights PAGE WELCOME, EQUAL...

  7. An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Los Alamos National Laboratory Fellows Position on the University of

    E-Print Network [OSTI]

    Security, LLC for the U.S. Department of Energy's NNSA technical progress, or to the threat, whetherAn Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Los Alamos National Laboratory Fellows Position on the University of California

  8. An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Los Alamos National Security, LLC Request for Information on how industry may partner with the

    E-Print Network [OSTI]

    .S. Department of Energy's NNSA Los Alamos National Security, LLC Request for Information on how industry may.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA scaling

  9. Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA U N C L A S S I F I E D

    E-Print Network [OSTI]

    Lawrence, Jon

    Slide 1 Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA U N Work at Los Alamos, supported by NSF, the State of Florida and the US D.O.E. Work at UC Irvine supported by D.O.E. under Grant No. DEFG03-03ER46036 Victor Fanelli Los Alamos National Laboratory Jon

  10. Page 1 of 1 An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

    E-Print Network [OSTI]

    Kurien, Susan

    Page 1 of 1 An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Ref: Requisition 323594 Date: December 9, 2013 Subject: Sources Sought for Architectural & Engineering Services Greetings: Los Alamos National Security, LLC (LANS), a prime contract

  11. An Equal Opportunity Employer / Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Request for Information

    E-Print Network [OSTI]

    .S. Department of Energy's NNSA ASM-SUB Request for Information Los Alamos National Laboratory Field Instruments of the Department of Energy Atmospheric Radiation Measurement (ARM) program is seeking information on how, Brazil and AMF-2 to be deployed on a NOAA Research vessel and then to Antarctica. In order to manage

  12. 100 nm Ti Au/(a) (b)

    E-Print Network [OSTI]

    Kastner, Marc A.

    f (kHz) RVb C in n CA (a) (b) (c) #12;#12;#12;20 10 0 GM(µS) 6420 VG (Volts) 0.4 0.2 0.0 GM(e 2 /h) Wide MOSFET Narrow MOSFET #12;#12;#12;#12;EF Ec Ev eVG xt Et 0.2 0.0 GM(µS) 0.40.20.0 time (s) 1.0 0Si(V) 210 time (s) 3.5 3.0 2.5 GM(µS) (c) 10 8 GM(µS) 151050 time (s) GM-aSi GM-Au (d) a-Si:H Gate 200 nm

  13. Report of the workshop on Arctic oil and gas recovery held at Sandia National Laboratories, Albuquerque, New Mexico, June 30-July 2, 1980

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-09-01

    This report is the result of a workshop on Arctic offshore oil and gas recovery, held at Sandia National Laboratories Albuquerque, New Mexico, on June 30-July 2, 1980. Research priorities for the technology related to Arctic offshore oil and gas production were defined. The workshop was preceded by a report entitled, A Review of Technology for Arctic Offshore Oil and Gas Recovery, authored by Dr. W. M. Sackinger. The mission of the workshop was to identify research priorities without considering whether the research should be conducted by government or by industry. Nevertheless, at the end of the meeting the general discussion did consider this, and the concensus was that environmental properties should certainly be of concern to the government, that implementation of petroleum operations was the province of industry, and that overlapping, coordinated areas of interest include both environment and interactions of the environment with structures, transport systems, and operations. An attempt to establish relative importance and a time frame was made after the workshop through the use of a survey form. The form and a summary of its results, and a discussion of its implications, are given.

  14. 244-nm imaging interferometric lithography A. Frauenglass, S. Smolev,a)

    E-Print Network [OSTI]

    New Mexico, University of

    , decreased feature size and improved circuit design. The National Technology Roadmap for Semiconductors. Brueck Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 in lithographic pattern definition, enabling the continuous increase in the functionality and speed of integrated

  15. Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D

    E-Print Network [OSTI]

    McDonald, Kirk

    Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D Sub-critical reactorAccelerator A S S I F I E D MYRRHA components: Accelerator #12;Slide 5 Operated by Los Alamos National Security, LLC configuration · LBE flow & cooling · Forced convection (10-20 l/s) · Tmax(LBE surface)=450°C; T

  16. 03-01-2010 NNSA-B-10-0101.PDF

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New Mexico (SNL/NM) proposes to

  17. 03-02-2010 NNSA-B-10-0161.PDF

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia National Laboratories/New Mexico (SNL/NM) proposes

  18. Photoelectron Spectroscopy of SO3 -at 355 and 266 nm

    E-Print Network [OSTI]

    Continetti, Robert E.

    Photoelectron Spectroscopy of SO3 - at 355 and 266 nm S. Dobrin, B. H. Boo, L. S. Alconcel, and R Photoelectron spectra of SO3 - were recorded at 266 and 355 nm to study photodetachment of the SO3 - anion (2 A1) to the ground state of neutral SO3 (1 A1). A long vibrational progression in the 355 nm spectrum is attributed

  19. Sandia Energy - Sandia, the Atlantic Council, and NM Water Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia, the Atlantic Council, and NM Water Resource Research Institute Sponsor Roundtable on Western Water Scarcity Home Climate Water Security Partnership News Global Climate &...

  20. NM (United States)] 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS...

    Office of Scientific and Technical Information (OSTI)

    Clayton, Steven Los Alamos National Lab. (LANL), Los Alamos, NM (United States) 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS;...

  1. QER Public Meeting Santa Fe, NM Electricity Infrastructure Transmissio...

    Broader source: Energy.gov (indexed) [DOE]

    QER Public Meeting Santa Fe, NM Electricity Infrastructure Transmission, Storage, and Distribution - Jurisdictional issues and priorities Remarks of Susan Ackerman, Chair, Oregon...

  2. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL)

    2000-01-01

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  3. RF power potential of 45 nm CMOS technology

    E-Print Network [OSTI]

    Putnam, Christopher

    This paper presents the first measurements of the RF power performance of 45 nm CMOS devices with varying device widths and layouts. We find that 45 nm CMOS can deliver a peak output power density of around 140 mW/mm with ...

  4. RF Power Potential of 45 nm CMOS Technology Usha Gogineni

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    RF Power Potential of 45 nm CMOS Technology Usha Gogineni 1 , Jesús A. del Alamo 1 devices in recent years has motivated their use in millimeter-wave power applications. Specific, VT Abstract - This paper presents the first measurements of the RF power performance of 45 nm CMOS

  5. Excerpts from the FAPAC Constitution and Bylaws Modified and...

    National Nuclear Security Administration (NNSA)

    Our Locations Albuquerque Complex Federal Asian Pacific American Council - New Mexico Chapter Albuquerque, NM Constitution And Bylaws Excerpts from the FAPAC...

  6. Albuquerque duo wins Supercomputing Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system. The Supercomputing Challenge is open to any New Mexico high-school or middle-school student. More than 330 students from 33 schools around the state spent the school year...

  7. Albuquerque trio wins Supercomputing Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional KnowledgeAgenda Agenda NERSC UserAgustin

  8. Hydrocarbon-free resonance transition 795 nm rubidium laser

    E-Print Network [OSTI]

    Wu, Sheldon Shao Quan

    2009-01-01

    and R. J. Beach, "Hydrocarbon-free resonance transition 795-a Reliable Diode-Pumped Hydrocarbon-Free 795-nm Rubidiumand R. J. Beach, "Hydrocarbon-free resonance transition 795-

  9. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01

    Performance 32 nm CPU to Ultra-Low-Power 130 nm MCU Davidboxes and smart phones to ultra-low-power 130 nm MCUs forthe energy demand for ultra-low-power MCUs is completely

  10. Life-Cycle Energy Demand of Computational Logic: From High-Performance 32nm CPU to Ultra-Low-Power 130nm MCU

    E-Print Network [OSTI]

    Bol, David; Boyd, Sarah; Dornfeld, David

    2011-01-01

    Performance 32 nm CPU to Ultra-Low-Power 130 nm MCU Davidboxes and smart phones to ultra-low-power 130 nm MCUs forthe energy demand for ultra-low-power MCUs is completely

  11. RAPID/Roadmap/19-NM-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | Roadmap JumpNV-ad-MT-daa9-NM-b <

  12. RAPID/Roadmap/19-NM-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | Roadmap JumpNV-ad-MT-daa9-NM-b <d

  13. RAPID/Roadmap/19-NM-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | Roadmap JumpNV-ad-MT-daa9-NM-b <df

  14. RAPID/Roadmap/19-NM-h | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | Roadmap JumpNV-ad-MT-daa9-NM-b <dfh

  15. RAPID/Roadmap/19-NM-j | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | Roadmap JumpNV-ad-MT-daa9-NM-b

  16. NM Junior College CATALOG YEAR 2009-Transferring from New Mexico

    E-Print Network [OSTI]

    New Mexico, University of

    2010 NM Junior College CATALOG YEAR 2009- 2010 11/9/2010 Transferring from New Mexico Junior College to the University of New Mexico #12;NMJC Course UNM Equivalent Important UNM Phone Numbers................................................................................................... http://advisement.unm.edu/ The University of New Mexico and New Mexico Junior College work closely

  17. Single Sub-20 nm Wide, Centimeter-Long Nanofluidic Channel

    E-Print Network [OSTI]

    Single Sub-20 nm Wide, Centimeter-Long Nanofluidic Channel Fabricated by Novel Nanoimprint Mold an imprint mold of a channel pattern and nanoimprint to duplicate such channel. The centimeter-long channel without additional size shrinking.17 Single channels have been fabricated by using edge patterning18 (note

  18. UNIVERSITY OF WASHINGTON NON-MATRICULATED (NM) APPLICATION

    E-Print Network [OSTI]

    Eberhard, Marc O.

    UNIVERSITY OF WASHINGTON NON-MATRICULATED (NM) APPLICATION OFFICE OF THE REGISTRAR (206) 543 order payable to the University of Washington in U.S. Funds. Return application and fee to: UNIVERSITY OF WASHINGTON, REGISTRAR'S OFFICE 225 Schmitz Hall, Box 355850 Seattle, WA 98195-5850 SOCIAL SECURITY NUMBER

  19. (plexiglass) covers (negligible transmittance at 290320 nm). NOx emission decreased

    E-Print Network [OSTI]

    (plexiglass) covers (negligible transmittance at 290­320 nm). NOx emission decreased from shoots, and the compensation point was estimated to be around 1 p.p.b. As ultraviolet radiation induces NOx emission from P exposure to ultraviolet light and NOx emission, and between the ambient con- centration of NOx and its

  20. Sub-20-nm Alignment in Nanoimprint Lithography Using Moire Fringe

    E-Print Network [OSTI]

    , as expected, independent of the size of the gap between the wafer and the imprint mold. We achieved a single control or wafer-mold mismatch compensation. With better stages, precision temperature control, and wafer-mold is insufficient; one must achieve sub-30 nm overlay alignment accuracy in addition to low defect density and high

  1. CX-006954: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Joint Sandia - University of Texas Medical Branch MicrofluidicsCX(s) Applied: B3.12Date: 08/03/2011Location(s): Albuquerque, New MexicoOffice(s): NNSA-Headquarters, Savannah River Operations Office

  2. CX-006875: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Center for Integrated Nanotechnologies Integration Laboratories: PH3 OperationsCX(s) Applied: B3.6Date: 08/16/2011Location(s): Albuquerque, New MexicoOffice(s): NNSA-Headquarters

  3. CX-006887: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Addition of Beneficial Bacteria to the Sanitary Sewer for Control of MetalsCX(s) Applied: B1.3Date: 08/03/2011Location(s): Albuquerque, New MexicoOffice(s): NNSA-Headquarters

  4. CX-006953: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mesofluidic System for Automated Proteins EnrichmentCX(s) Applied: B3.6Date: 08/03/2011Location(s): Albuquerque, New MexicoOffice(s): NNSA-Headquarters, Sandia Site Office

  5. CX-002268: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    From Sensing to Enhancing the Brain ProcessesCX(s) Applied: B3.12Date: 02/25/2010Location(s): Albuquerque, New MexicoOffice(s): NNSA-Headquarters, Sandia Site Office

  6. CX-007092: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Terrestrial Surveillance Sample CollectionCX(s) Applied: B3.1Date: 05/10/2011Location(s): Albuquerque, New MexicoOffice(s): NNSA-Headquarters, Sandia Site Office

  7. CX-006855: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rocket Centrifuge Removal (Eastern Side of TA-II)CX(s) Applied: B1.23Date: 09/12/2011Location(s): Albuquerque, New MexicoOffice(s): NNSA-Headquarters, Golden Field Office

  8. CX-007094: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Internal Fence ReconfigurationCX(s) Applied: B1.11Date: 04/13/2011Location(s): Albuquerque, California, New MexicoOffice(s): NNSA-Headquarters, National Energy Technology Laboratory

  9. My Documents\\Presentations\\IFE\\NAS\\JCF_IFE_NAS_LANL_V4Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA U N C L A S S I F I E D Slide 1

    E-Print Network [OSTI]

    targets, R&D objectives ­ R&D roadmap · Support ICF consensus opinion · Aggressive program to take us from byNNSA XP&5 )75&$!/ )75&$!!/ )75&$!!!/ Fig. 3. The Inertial Fusion Energy Roadmap

  10. High reflectivity grating waveguide coatings for 1064nm

    E-Print Network [OSTI]

    A. Bunkowski; O. Burmeister; D. Friedrich; K. Danzmann; R. Schnabel

    2006-08-01

    We propose thin single-layer grating waveguide structures to be used as high-reflectivity, but low thermal noise, alternative to conventional coatings for gravitational wave detector test mass mirrors. Grating waveguide (GWG) coatings can show a reflectivity of up to 100% with an overall thickness of less than a wavelength. We theoretically investigate GWG coatings for 1064nm based on tantala (Ta2O5) on a Silica substrate focussing on broad spectral response and low thickness.

  11. NNSA-Wide

    National Nuclear Security Administration (NNSA)

    Technical advisory services for managers, supervisors, and employees Discrimination complaints program management Alternative Dispute Resolution Program...

  12. NNSA POLICY LETTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of 29 CFR 1910.151(b); b. Medical evaluations to determine federal employees' fitness for duty (DOE O 341.1a, paragraph 4.b.(2)(c)); c. Baseline, periodic, post-incident, and...

  13. CRAD, NNSA- Maintenance (MN)

    Broader source: Energy.gov [DOE]

    CRAD for Maintenance (MN). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  14. Yoho receives NNSA Fellowship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named MineralogicalComplexSecurity/UTAna MooreYeYoho

  15. NNSA POLICY LETTER

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of Honor recipients honoredGenerationSecurityAchievement Award

  16. NNSA POLICY LETTER

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of Honor recipients honoredGenerationSecurityAchievement

  17. NNSA POLICY LETTER

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of Honor recipients honoredGenerationSecurityAchievement

  18. NNSA-01-04

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPoster Session | NationalhitsStewardship NEWS MEDIA

  19. NNSA_whitepaper.indd

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPoster Session | NationalhitsStewardship NEWSContact: For

  20. Yoho receives NNSA Fellowship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single|Yejun Feng ArgonneYieldFei

  1. NNSA orders security enhancements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof Energy

  2. Self-Nonself Discrimination in a Computer Stephanie Forrest Alan S. Perelson

    E-Print Network [OSTI]

    Somayaji, Anil

    Science 820 Los Arboles Ln. University of New Mexico Santa Fe, N.M. 87501 Albuquerque, N.M. 87131-1386 asp University of New Mexico University of New Mexico Albuquerque, N.M. 87131-1386 Albuquerque, N.M. 87131, corrupted data, etc. from other unauthorized users, viruses, etc.. We introduce a change-detection algorithm

  3. DOE - Office of Legacy Management -- LASL Tract OO - NM 06

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont,Manufacturing - OH 40 JohnTract OO - NM 06

  4. RAPID/Roadmap/1-NM-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevada <UtahMontanasource HistoryNM-a <

  5. RAPID/Roadmap/12-NM-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevada <UtahMontanasourceWA-aCA-aMT-a <NM-a

  6. RAPID/Roadmap/15-NM-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎ | RoadmapCO-ceWA-ebNM-c <

  7. RAPID/Roadmap/5-NM-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevadaa < RAPID‎f <CA-aabTX-a <AK-abNM-a

  8. RAPID/Roadmap/11-NM-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | Roadmap Jump to: navigation, search

  9. RAPID/Roadmap/14-NM-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | Roadmap JumpNV-a <CA-cID-aMT-bda

  10. RAPID/Roadmap/14-NM-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | Roadmap JumpNV-a

  11. RAPID/Roadmap/14-NM-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | Roadmap JumpNV-ad < RAPID‎ |

  12. RAPID/Roadmap/18-NM-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | Roadmap JumpNV-ad-MT-da <b

  13. RAPID/Roadmap/3-NM-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-a <CA-a <HI-ec

  14. RAPID/Roadmap/3-NM-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-a <CA-a <HI-ecc <

  15. RAPID/Roadmap/3-NM-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-a <CA-a <HI-ecc <f

  16. RAPID/Roadmap/3-NM-g | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-a <CA-a <HI-ecc <fg

  17. RAPID/Roadmap/6-NM-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-ab < RAPID‎ |c <deeb

  18. RAPID/Roadmap/7-NM-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-ab < RAPID‎

  19. RAPID/Roadmap/8-NM-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-abFD-a <

  20. NM Legislation5 (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport)Fermentativea(Patent) |centerConnectConference:NM

  1. Construction Safety Advisory Committee, Meeting Minutes- May 11, 2000

    Office of Energy Efficiency and Renewable Energy (EERE)

    Description of CSAC agenda activities during CSAC meeting in Albuquerque, NM. The meeting was held on May 11, 2000.

  2. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    National Labs., Albuquerque, NM (USA)","USDOE","17 WIND ENERGY; DARRIEUS ROTORS; TURBINE BLADES; AERODYNAMICS; AIRFOILS; COMPARATIVE EVALUATIONS; DATA COMPILATION;...

  3. Calendar year 2003 annual site environmental report for Sandia National Laboratories, New Mexico.

    SciTech Connect (OSTI)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2004-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2003. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, ''Environmental Protection Program'' (DOE 2003a) and DOE Order 231.1 Chg.2, ''Environment, Safety, and Health Reporting'' (DOE 1996).

  4. EUV actinic defect inspection and defect printability at the sub-32 nm half pitch

    E-Print Network [OSTI]

    Huh, Sungmin

    2010-01-01

    5) Binary Binary Attenuated PSM Specification' LlCDICD=20%0.3/0.5) Binary Attenuated PSM -&-22nmHP ~16nmHP o~~~~~~~~~~

  5. SelfNonself Discrimination in a Computer \\Lambda Stephanie Forrest Alan S. Perelson

    E-Print Network [OSTI]

    New Mexico, University of

    . of Computer Science 820 Los Arboles Ln. University of New Mexico Santa Fe, N.M. 87501 Albuquerque, N.M. 87131. of Computer Science University of New Mexico University of New Mexico Albuquerque, N.M. 87131­1386 Albuquerque (legitimate users, corrupted data, etc.) from other (unauthorized users, viruses, etc.). We introduce a change

  6. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

    E-Print Network [OSTI]

    Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company Corporation, Albuquerque, NM, USA 15) EG&G, Albuquerque, NM, USA 16) Omicron, Albuquerque, NM, USA 17) Fusion #12;Z-Pinch is the newest of the three major drivers for IFE 1999 Snowmass Fusion Summer Study, IAEA

  7. FY09 assessment of mercury reduction at SNL/NM.

    SciTech Connect (OSTI)

    McCord, Samuel Adam

    2010-02-01

    This assessment takes the result of the FY08 performance target baseline of mercury at Sandia National Laboratories/New Mexico, and records the steps taken in FY09 to collect additional data, encourage the voluntary reduction of mercury, and measure success. Elemental (metallic) mercury and all of its compounds are toxic, and exposure to excessive levels can permanently damage or fatally injure the brain and kidneys. Elemental mercury can also be absorbed through the skin and cause allergic reactions. Ingestion of inorganic mercury compounds can cause severe renal and gastrointestinal damage. Organic compounds of mercury such as methyl mercury, created when elemental mercury enters the environment, are considered the most toxic forms of the element. Exposures to very small amounts of these compounds can result in devastating neurological damage and death.1 SNL/NM is required to report annually on the site wide inventory of mercury for the Environmental Protection Agency's (EPA) Toxics Release Inventory (TRI) Program, as the site's inventory is excess of the ten pound reportable threshold quantity. In the fiscal year 2008 (FY08) Pollution Prevention Program Plan, Section 5.3 Reduction of Environmental Releases, a performance target stated was to establish a baseline of mercury, its principle uses, and annual quantity or inventory. This was accomplished on July 29, 2008 by recording the current status of mercury in the Chemical Information System (CIS).

  8. Transport of triplet excitons along continuous 100 nm polyfluorene chains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xi, Liang; Bird, Matthew; Mauro, Gina; Asaoka, Sadayuki; Cook, Andrew R.; Chen, Hung -Cheng; Miller, John R.

    2014-12-03

    Triplet excitons created in poly-2,7-(9,9-dihexyl)fluorene (pF) chains with end trap groups in solution are efficiently transported to and captured by the end groups. The triplets explore the entire lengths of the chains, even for ~100 nm long chains enabling determination of the completeness of end capping. The results show that the chains continuous: they may contain transient barriers or traps, such as those from fluctuations of dihedral angles, but are free of major defects that stop motion of the triplets. Quantitative determinations are aided by the addition of a strong electron donor, TMPD, which removes absorption bands of the end-trappedmore »triplets. For chains having at least one end trap, triplet capture is quantitative on the 1 µs timescale imposed by the use of the donor. Fractions of chains having no end traps were 0.15 for pF samples with anthraquinone (AQ) end traps and 0.063 with naphthylimide (NI) end traps. These determinations agreed with measurements by NMR for short (« less

  9. High Resolution Irradiance Spectrum from 300 to 1000 nm

    E-Print Network [OSTI]

    Robert L. Kurucz

    2006-05-01

    The FTS scans that made up the Kitt Peak Solar Flux Atlas by Kurucz, Furenlid, Brault, and Testerman (1984) have been re-reduced. An approximate telluric atmospheric model was determined for each FTS scan. Large-scale features produced by O3 and O2 dimer were computed and divided out. The solar continuum level was found by fitting a smooth curve to high points in each scan. The scans were normalized to the fitted continuum to produce a residual flux spectrum for each FTS scan. The telluric line spectrum was computed using HITRAN and other line data for H2O, O2, and CO2. The line parameters were adjusted for an approximate match to the observed spectra. The scans were divided by the computed telluric spectra to produce residual irradiance spectra. Artifacts from wavelength mismatches, deep lines, etc, were removed by hand and replaced by linear interpolation. Overlapping scans were fitted together to make a continuous spectrum from 300 to 1000 nm. All the above steps were iterative. The monochromatic error varies from 0.1 to 1.0 percent. The residual spectrum was calibrated two different ways: First by normalizing it to the continuum of theoretical solar model ASUN (Kurucz 1992), and second, by degrading the spectrum to the resolution of the observed irradiance (Thuillier et al. 2004) to determine a normalization function that was then applied to the high resolution spectrum.

  10. Calendar year 2003 : annual site enviromental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    SciTech Connect (OSTI)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2004-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2003. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2003) and DOE Order 231.1 Chg 2., Environment, Safety, and Health Reporting (DOE 1996).

  11. Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    SciTech Connect (OSTI)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2003-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

  12. Calendar year 2007 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii,

    SciTech Connect (OSTI)

    Agogino, Karen; Sanchez, Rebecca

    2008-09-30

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE)/National Nuclear Security Administration (NNSA), through the Sandia Site Offi ce (SSO), in Albuquerque, NM, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Washington Group International subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2007. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Site Offi ce (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting Manual (DOE 2007).

  13. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.

    SciTech Connect (OSTI)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

  14. Transport of Triplet Excitons along Continuous 100 nm Polyfluorene Chains

    SciTech Connect (OSTI)

    Xi, L.; Bird, M.; Mauro, G.; Asaoka, S.; Cook, A. R.; Chen, H. -C.; Miller, J. R

    2014-10-03

    Triplet excitons created in poly-2,7-(9,9-dihexyl)fluorene (pF) chains with end trap groups in solution are efficiently transported to and captured by the end groups. The triplets explore the entire lengths of the chains, even for ~100 nm long chains enabling determination of the completeness of end capping. The results show that the chains continuous: they may contain transient barriers or traps, such as those from fluctuations of dihedral angles, but are free of major defects that stop motion of the triplets. Quantitative determinations are aided by the addition of a strong electron donor, TMPD, which removes absorption bands of the end-trapped triplets. For chains having at least one end trap, triplet capture is quantitative on the 1 µs timescale imposed by the use of the donor. Fractions of chains having no end traps were 0.15 for pF samples with anthraquinone (AQ) end traps and 0.063 with naphthylimide (NI) end traps. These determinations agreed with measurements by NMR for short (<40 polymer repeat units (PRU)) chains, where NMR determinations are accurate. The results find no evidence for traps or barriers to transport of triplets, and places limits on the possible presence of defects as impenetrable barriers to less than one per 300 PRU. The present results present a paradigm different from the current consensus, derived from observations of singlet excitons, that conjugated chains are divided into “segments,” perhaps by some kind of defects. For the present pF chains, the segmentation either does not apply to triplet excitons or is transient so that the defects are healed or surmounted in times much shorter than 1 µs. Triplets on chains without end trap groups transfer to chains with end traps on a slower time scale. Rate constants for these bimolecular triplet transfer reactions were found to increase with the length of the accepting chain, as did rate constants for triplet transfer to the chains from small molecules like biphenyl. A second set of polyfluorenes with 2-butyloctyl side chains was found to have a much lower completeness of end capping

  15. Efficient Excitation of Gain-Saturated Sub-9-nm-Wavelength Tabletop Soft-X-Ray Lasers and Lasing Down to 7.36 nm

    SciTech Connect (OSTI)

    Alessi, David [Colorado State University, Fort Collins; Wang, Yong [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins; Yin, Liang [Colorado State University, Fort Collins; Martz, Dale [Colorado State University, Fort Collins; Woolston, Mark [Colorado State University, Fort Collins; Liu, Yanwei [University of California, Berkeley & LBNL; Berrill, Mark A [ORNL; Jorge, Rocca [Colorado State University, Fort Collins

    2011-01-01

    We have demonstrated the efficient generation of sub-9-nm-wavelength picosecond laser pulses of microjoule energy at 1-Hz repetition rate with a tabletop laser. Gain-saturated lasing was obtained at =8.85 nm in nickel-like lanthanum ions excited by collisional electron-impact excitation in a precreated plasma column heated by a picosecond optical laser pulse of 4-J energy. Furthermore, isoelectronic scaling along the lanthanide series resulted in lasing at wavelengths as short as =7.36 nm. Simulations show that the collisionally broadened atomic transitions in these dense plasmas can support the amplification of subpicosecond soft-x-ray laser pulses.

  16. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    SciTech Connect (OSTI)

    Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica; Tisa, Simone; Zappa, Franco [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)] [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 ?m active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  17. The SEMATECH Berkeley MET: extending EUV learning to 16-nm half pitch

    SciTech Connect (OSTI)

    Anderson, Christopher N.; Baclea-an, Lorie Mae; Denham, Paul E.; George, Simi; Goldberg, Kenneth A.; Jones, Michael; Smith, Nathan; Wallow, Thomas; Montgomery, Warren; Naulleau, Patrick P.

    2011-03-18

    Several high-performing resists identified in the past two years have been exposed at the 0.3-numerical-aperture (NA) SEMATECH Berkeley Microfield Exposure Tool (BMET) with an engineered dipole illumination optimized for 18-nm half pitch. Five chemically amplified platforms were found to support 20-nm dense patterning at a film thickness of approximately 45 nm. At 19-nm half pitch, however, scattered bridging kept all of these resists from cleanly resolving larger areas of dense features. At 18-nm half pitch, none of the resists were are able to cleanly resolve a single line within a bulk pattern. With this same illumination a directly imageable metal oxide hardmask showed excellent performance from 22-nm half pitch to 17-nm half pitch, and good performance at 16-nm half pitch, closely following the predicted aerial image contrast. This indicates that observed limitations of the chemically amplified resists are indeed coming from the resist and not from a shortcoming of the exposure tool. The imageable hardmask was also exposed using a Pseudo Phase-Shift-Mask technique and achieved clean printing of 15-nm half pitch lines and modulation all the way down to the theoretical 12.5-nm resolution limit of the 0.3-NA SEMATECH BMET.

  18. Albuquerque Journal: Brewing a better, healthier beer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in response to rapid changes in geomagnetic and solar activity. x Jamming to the earthquake shake September, 27 2015 - In this image, tightly packed disks subjected to an...

  19. NNMCAB Board Minutes: March 2014 Albuquerque

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minutes of the March 26, 2014 Board meeting at Sandia Presentation LANL, Chromium in Mortandad Canyon, Dave McInroy, Danny Katzman

  20. Albuquerque Journal: Brewing a better, healthier beer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R ARBrewing a

  1. Albuquerque Complex | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act RecoveryTechnologiesAffiliates JCESRAlbuquerque

  2. Albuquerque Roundtable Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslie PezzulloAgendaChampion:PlansAlbany

  3. Development of bottom-emitting 1300 nm vertical-cavity surface...

    Office of Scientific and Technical Information (OSTI)

    1300 nm vertical-cavity surface-emitting lasers. No abstract prepared. Authors: Fish, M. A. 1 ; Serkland, Darwin Keith ; Guilfoyle, Peter S. 1 ; Stone, Richard V. 1 ;...

  4. The SEMATECH Berkeley MET pushing EUV development beyond 22-nm half pitch

    SciTech Connect (OSTI)

    Naulleau, P.; Anderson, C. N.; Backlea-an, L.-M.; Chan, D.; Denham, P.; George, S.; Goldberg, K. A.; Hoef, B.; Jones, G.; Koh, C.; La Fontaine, B.; McClinton, B.; Miyakawa, R.; Montgomery, W.; Rekawa, S.; Wallow, T.

    2010-03-18

    Microfield exposure tools (METs) play a crucial role in the development of extreme ultraviolet (EUV) resists and masks, One of these tools is the SEMATECH Berkeley 0.3 numerical aperture (NA) MET, Using conventional illumination this tool is limited to approximately 22-nm half pitch resolution. However, resolution enhancement techniques have been used to push the patterning capabilities of this tool to half pitches of 18 nm and below, This resolution was achieved in a new imageable hard mask which also supports contact printing down to 22 nm with conventional illumination. Along with resolution, line-edge roughness is another crucial hurdle facing EUV resists, Much of the resist LER, however, can be attributed to the mask. We have shown that intenssionally aggressive mask cleaning on an older generation mask causes correlated LER in photoresist to increase from 3.4 nm to 4,0 nm, We have also shown that new generation EUV masks (100 pm of substrate roughness) can achieve correlated LER values of 1.1 nm, a 3x improvement over the correlated LER of older generation EUV masks (230 pm of substrate roughness), Finally, a 0.5-NA MET has been proposed that will address the needs of EUV development at the 16-nm node and beyond, The tool will support an ultimate resolution of 8 nm half-pitch and generalized printing using conventional illumination down to 12 nm half pitch.

  5. LOS ALAMOS, N.M., Nov. 19, 2013-Researchers at Los Alamos National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    virus spread and evolution studied through computer modeling November 19, 2013 LOS ALAMOS, N.M., Nov. 19, 2013-Researchers at Los Alamos National Laboratory are investigating the...

  6. Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy

    SciTech Connect (OSTI)

    Chao, W.; Kim, J.; Rekawa, S.; Fischer, P.; Anderson, E. H.

    2009-06-05

    To extend soft x-ray microscopy to a resolution of order 10 nm or better, we developed a new nanofabrication process for Fresnel zone plate lenses. The new process, based on the double patterning technique, has enabled us to fabricate high quality gold zone plates with 12 nm outer zones. Testing of the zone plate with the full-field transmission x-ray microscope, XM-1, in Berkeley, showed that the lens clearly resolved 12 nm lines and spaces. This result represents a significant step towards 10 nm resolution and beyond.

  7. Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy

    E-Print Network [OSTI]

    Chao, W.

    2010-01-01

    of 12 nm Resolution Fresnel Zone Plate Lens based Soft X-raynanofabrication process for Fresnel zone plate lenses. Theoptical performance of Fresnel zone plate lens based imaging

  8. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste Arnold Bill Walter Brady Patrick Vane Abstract not provided Sandia National Laboratories SNL NM Albuquerque NM United States USDOE National...

  9. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Spent Fuel Brady Patrick V Abstract not provided Sandia National Laboratories SNL NM Albuquerque NM United States USDOE National Nuclear Security...

  10. Deep Borehole Disposal of Nuclear Waste. Arnold, Bill Walter...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Waste. Arnold, Bill Walter; Brady, Patrick Vane. Abstract not provided. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) USDOE National Nuclear...

  11. Controlled placement of colloidal quantum dots in sub-15 nm clusters

    E-Print Network [OSTI]

    Han, Hee-Sun

    We demonstrated a technique to control the placement of 6 nm-diameter CdSe and 5 nm-diameter CdSe/CdZnS colloidal quantum dots (QDs) through electron-beam lithography. This QD-placement technique resulted in an average of ...

  12. RF Power Potential of 90 nm CMOS: Device Options, Performance, and Reliability

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    of the RF power potential of the various device options offered in a state-of-the-art 90 nm CMOS foundry and reliability. In a modern foundry process, in addition to the nominal digital devices, it is common to offer in a foundry process. Technology The technology that has been studied in this work is a foundry 90 nm CMOS

  13. Photophysics of O2 excited by tunable laser radiation around 193 nm B. L. G. Bakkera)

    E-Print Network [OSTI]

    Nijmegen, University of

    Photophysics of O2 excited by tunable laser radiation around 193 nm B. L. G. Bakkera) and D. H and the velocity map imaging technique. Angular and kinetic energy distributions of the product O ions and O(3 P2 by tunable radiation around 193 nm, a wavelength falling within the Schumann­Runge bands,1 the dominant

  14. Coherence and Linewidth Studies of a 4-nm High Power FEL

    E-Print Network [OSTI]

    Fawley, W.M.

    2008-01-01

    bandwidth for a single-pass FEL amplifier initiated by SASE.Studies of a 4-nm High Power FEL W.M. Fawley, A.M. Sessler,Studies of a 4-nm High Power FEL W. M. Fawley and A. M.

  15. Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator

    E-Print Network [OSTI]

    Adany, Peter; Price, E. Shane; Johnson, Carey K.; Zhang, Run; Hui, Rongqing

    2009-03-13

    is demonstrated using the soliton self-frequency shift in a photonic crystal fiber. By dynamically controlling the optical power into the fiber, this system switches the wavelength of 100 fs pulses from 900 nm to beyond 1120 nm with less than 5??s time...

  16. Construction of a 1014.8nm fiber amplifier for quadrupling into the UV 

    E-Print Network [OSTI]

    Giuoco, Frank Joseph

    2004-09-30

    A fiber amplifier is constructed at 1014.8nm and then frequency doubled to produce 507.4nm. This could then be frequency doubled again to produce 253.7 radiation. The fiber amplifier consists of Ytterbium doped double-clad fiber cooled to low...

  17. New Mexico Tribal Leader Forum and Community-Scale Workshop for...

    Broader source: Energy.gov (indexed) [DOE]

    7, 2015 8:00AM MDT to July 29, 2015 5:00PM MDT Albuquerque, New Mexico Pueblo Cultural Center 2401 12th St. NW Albuquerque, NM 87104 Tribal Leader Forum on Tribal Energy and...

  18. Superconducting nanowire single-photon detectors at a wavelength of 940 nm

    E-Print Network [OSTI]

    Zhang, W J; You, L X; He, Y H; Zhang, L; Liu, X Y; Yang, X Y; Wu, J J; Guo, Q; Chen, S J; Wang, Z; Xie, X M

    2015-01-01

    We develop single-photon detectors comprising single-mode fiber-coupled superconducting nanowires, with high system detection efficiencies at a wavelength of 940 nm. The detector comprises a 6.5-nm-thick, 110-nm-wide NbN nanowire meander fabricated onto a Si substrate with a distributed Bragg reflector for enhancing the optical absorptance. We demonstrate that, via the design of a low filling factor (1/3) and active area ({\\Phi} = 10 {\\mu}m), the system reaches a detection efficiency of ~60% with a dark count rate of 10 Hz, a recovery time <12 ns, and a timing jitter of ~50 ps.

  19. Rare-earth plasma extreme ultraviolet sources at 6.5-6.7 nm

    SciTech Connect (OSTI)

    Otsuka, Takamitsu; Higashiguchi, Takeshi; Yugami, Noboru; Yatagai, Toyohiko [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Kilbane, Deirdre; White, John; Dunne, Padraig; O'Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Jiang, Weihua [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan); Endo, Akira [Forschungszentrum Dresden, Bautzner Landstrs. 400, D-01328 Dresden (Germany)

    2010-09-13

    We have demonstrated a laser-produced plasma extreme ultraviolet source operating in the 6.5-6.7 nm region based on rare-earth targets of Gd and Tb coupled with a Mo/B{sub 4}C multilayer mirror. Multiply charged ions produce strong resonance emission lines, which combine to yield an intense unresolved transition array. The spectra of these resonant lines around 6.7 nm (in-band: 6.7 nm {+-}1%) suggest that the in-band emission increases with increased plasma volume by suppressing the plasma hydrodynamic expansion loss at an electron temperature of about 50 eV, resulting in maximized emission.

  20. NNSA Corporate CPEP Process NNSA LOS ALAMOS NATIONAL SECURITY...

    National Nuclear Security Administration (NNSA)

    a positive review of the Lujan Center after a difficult recovery from an off-site contamination issue, and has received four R&D 100 Awards demonstrating the continued vibrancy...

  1. NNSA Corporate CPEP Process NNSA Lawrence Livermore National...

    National Nuclear Security Administration (NNSA)

    NNSANA-00.2 Page 1 of 23 Executive Summary This report was produced by the Department of EnergyNational Nuclear Security Administration (DOENNSA), Livermore Field Office (LFO)...

  2. NNSA Procurement Perspective - Joe Waddell, NNSA Senior Procurement

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of EnergyNEW1

  3. Electron-beam-induced deposition of 3-nm-half-pitch patterns on bulk Si

    E-Print Network [OSTI]

    van Oven, J. C.

    This paper demonstrates electron-beam-induced deposition of few-nm-width dense features on bulk samples by using a scanning electron-beam lithography system. To optimize the resultant features, three steps were taken: (1) ...

  4. Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency

    E-Print Network [OSTI]

    Hu, Xiaolong

    We developed a fiber-coupled superconducting nanowire single-photon detector system in a close-cycled cryocooler and achieved 24% and 22% system detection efficiencies at wavelengths of 1550 and 1315 nm, respectively. The ...

  5. Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography

    E-Print Network [OSTI]

    Berggren, Karl K.

    The authors, demonstrated that 4.5-nm-half-pitch structures could be achieved using electron-beam lithography, followed by salty development. They also hypothesized a development mechanism for hydrogen silsesquioxane, ...

  6. Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors

    E-Print Network [OSTI]

    Najafi, Faraz

    We investigated the timing jitter of superconducting nanowire avalanche photodetectors (SNAPs, also referred to as cascade-switching superconducting single-photon detectors) based on 30-nm-wide nanowires. At bias currents ...

  7. Sub-20nm substrate patterning using a self-assembled nanocrystal template

    E-Print Network [OSTI]

    Tabone, Ryan C

    2005-01-01

    A hexagonally close-packed monolayer of lead selenide quantum dots is presented as a template for patterning with a tunable resolution from 2 to 20nm. Spin-casting and micro-contact printing are resolved as methods of ...

  8. High energy femtosecond fiber laser at 1018 nm and high power Cherenkov radiation generation

    E-Print Network [OSTI]

    Yang, Hongyu, S.M. Massachusetts Institute of Technology

    2014-01-01

    Two novel laser systems for ultrafast applications have been designed and built. For the seeding of a high energy cryogenically cooled Yb:YLF laser, a novel 1018 nm fiber laser system is demonstrated. It produces >35 nJ ...

  9. Comprehensive inverse modeling for the study of carrier transport models in sub-50nm MOSFETs

    E-Print Network [OSTI]

    Djomehri, Ihsan Jahed, 1976-

    2002-01-01

    Direct quantitative 2-D characterization of sub-50 nm MOSFETs continues to be elusive. This research develops a comprehensive indirect inverse modeling technique for extracting 2-D device topology using combined log(I)-V ...

  10. Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm

    E-Print Network [OSTI]

    Smith, Arlee V

    2015-01-01

    We use a detailed numerical model of stimulated thermal Rayleigh scattering to compute mode instability thresholds in Tm$^{3+}$-doped fiber amplifiers. The fiber amplifies 2040 nm light using a 790 nm pump. The cross-relaxation process is strong, permitting power efficiencies of 60%. The predicted instability thresholds are compared with those in similar Yb$^{3+}$-doped fiber amplifiers with 976 nm pump and 1060 nm signal, and are found to be higher, even though the heat load is much higher in Tm-doped amplifiers. The higher threshold in the Tm-doped fiber is attributed to its longer signal wavelength, and to stronger gain saturation, due in part to cross-relaxation heating.

  11. LOS ALAMOS, N.M., June 18, 2014-Los Alamos National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fukushima with cosmic rays should speed cleanup June 18, 2014 Los Alamos to partner with Toshiba to remotely and safely peer inside nuclear reactors LOS ALAMOS, N.M., June 18,...

  12. Investigation of a Polarization Controller in Titanium Diffused Lithium Niobate Waveguide near 1530 nm Wavelength 

    E-Print Network [OSTI]

    Sung, Won Ju

    2013-12-10

    Optical polarization control in Ti diffused channel waveguides onto LiNbO_(3) substrates have been investigated near 1530 nm wavelength regime by utilizing electro-optic effects of the substrate material. A device configuration composed of two...

  13. Carbon nanotube assisted formation of sub-50 nm polymeric nano-structures

    E-Print Network [OSTI]

    Lee, Chia-Hua

    2008-01-01

    A novel processing method was developed for sub-50 nm structures by integrating quantum dots (QDs) on patterned polymer substrates. Poly(styrene-alt-maleic anhydride) (PSMa) was prepared by the initiated chemical vapor ...

  14. A 674 nm external cavity diode laser for a ??Sr? ion trap

    E-Print Network [OSTI]

    Thon, Susanna M. (Susanna Mitrani)

    2005-01-01

    Atomic ion traps are a promising candidate for scalable quantum information processing. In this thesis, a 674 nm extended cavity diode laser is built to address an optical quantum bit in ??Sr? with the goal of testing such ...

  15. David Telles wins NNSA Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding Low-Cost2 DOE HQSiteoC.Publications ContactDavid Telles

  16. CRAD, NNSA- Emergency Preparedness (EP)

    Broader source: Energy.gov [DOE]

    CRAD for Emergency Preparedness (EP). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  17. Gordon wins NNSA Safety Professional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Year award March 12, 2009 LOS ALAMOS, New Mexico, March 12, 2009-Laboratory Chief Electrical Safety Officer Lloyd Gordon received the 2008 National Nuclear Security...

  18. CRAD, NNSA- ISMS Implementation (FRAM)

    Broader source: Energy.gov [DOE]

    CRAD for ISMS Implementation (FRAM). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  19. CRAD, NNSA- ISMS Implementation (Contracts)

    Broader source: Energy.gov [DOE]

    CRAD for ISMS Implementation (Contracts). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  20. CRAD, NNSA- Safety Basis (SB)

    Broader source: Energy.gov [DOE]

    CRAD for Safety Basis (SB). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  1. NNSA and Defense Nuclear Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact: JanetSite |Customs | National Nuclearand Defense

  2. NNSA Staff Appointments.PDF

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of Honor recipientsAdministration LEUNuclearContacts: For

  3. NNSA | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 2012 Guidance/%2A en20120 201415-16 | National|

  4. LANL's Torres is NNSA Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource and Job Event InLANLRecovery Act Job

  5. NNSA NEWS OCTOBER 2010.pmd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof Energy Moving BasicSecurityAdministration00 National090

  6. NNSA Corporate CPEP Process NNSA Honeywell FM&T PER NNSA/NA-00...

    National Nuclear Security Administration (NNSA)

    "meets expectations." Cyber Security - Honeywell's AOP metrics for Q4 and the year were Green, no issues. All AOP milestones were delivered on time. Cyber Security completed...

  7. Polarization-Independent and High-Efficiency Dielectric Metasurfaces Spanning 600-800 nm Wavelengths

    E-Print Network [OSTI]

    Li, Qi-Tong; Wang, Bo; Gan, Fengyuan; Chen, Jianjun; Chu, Weiguo; Xiao, Yun-Feng; Gong, Qihuang; Li, Yan

    2015-01-01

    Artificial metasurfaces are capable of completely manipulating the phase, amplitude, and polarization of light with high spatial resolutions. The emerging design based on high-index and low-loss dielectrics has led to the realization of novel metasurfaces with high transmissions, but these devices usually operate at the limited bandwidth, and are sensitive to the incident polarization. Here, for the first time we report experimentally the polarization-independent and high-efficiency dielectric metasurfaces spanning the visible wavelengths about 200 nm, which are of importance for novel flat optical devices operating over a broad spectrum. The diffraction efficiencies of the gradient metasurfaces consisting of the multi-fold symmetric nano-crystalline silicon nanopillars are up to 93% at 670 nm, and exceed 75% at the wavelengths from 600 to 800 nm for the two orthogonally polarized incidences. These dielectric metasurfaces hold great potential to replace prisms, lenses and other conventional optical elements.

  8. Highly Unidirectional Uniform Optical Grating Couplers, Fabricated in Standard 45nm SOI-CMOS Foundry Process

    E-Print Network [OSTI]

    Uroševi?, Stevan Lj

    2014-01-01

    This paper defines new structures of highly unidirectional uniform optical grating couplers which are all within constraints of the standard 45nm SOI-CMOS foundry process. Analysis in terms of unidirectivity and coupling efficiency is done. Maximum achieved unidirectivity (power radiation in one direction) is 98%. Unidirectional uniform gratings are fabricated in the standard 45nm SOI-CMOS foundry process. These gratings are measured and compared, using the new method of comparison, with typical bidirectional uniform gratings fabricated in the same process, in terms of coupling efficiency (in this case unidirectivity) with the standard singlemode fiber. For both types of gratings spectrum is given, measured with optical spectrum analyzer.

  9. A 4 to 0.1 nm FEL Based on the SLAC Linac

    SciTech Connect (OSTI)

    Pellegrini, C.; /UCLA

    2012-06-05

    The author show that using existing electron gun technology and a high energy linac like the one at SLAC, it is possible to build a Free Electron Laser operating around the 4 nm water window. A modest improvement in the gun performance would further allow to extend the FEL to the 0.1 nm region. Such a system would produce radiation with a brightness many order of magnitude above that of any synchrotron radiation source, existing or under construction, with laser power in the multigawatt region and subpicosecond pulse length.

  10. Accurate value for the absorption coefficient of silicon at 633 nm

    SciTech Connect (OSTI)

    Geist, J.; Schaefer, A.R.; Song, J.F.; Wang, Y.H.; Zalewski, E.F.

    1990-01-01

    High-accuracy transmission measurements at an optical wavelength of 633 nm and mechanical measurements of the thickness of a 13 micrometer thick silicon-crystal film have been used to calculate the absorption and extinction coefficients of silicon at 633 nm. The results are 3105 + or - 62/cm and 0.01564 + or - 0.00031, respectively. These results are about 15% less than current handbook data for the same quantities, but are in good agreement with a recent fit to one set of data described in the literature.

  11. Measurement of the quantum efficiency of TMAE and TEA from threshold to 120 nm

    SciTech Connect (OSTI)

    Holroyd, R.A.; Preses, J.M.; Woody, C.L.; Johnson, R.A.

    1986-01-01

    Several existing and planned high energy physics experiments incorporate detectors which use either TMAE (tetrakis-dimethylaminoethylene) or TEA (triethylamine) as their photosensitive agent. Understanding the operation of these devices requires knowledge of the absolute photoionization quantum efficiencies and absorption lengths of TMAE and TEA. In an experiment performed at the National Synchrotron Light source at Brookhaven National Laboratory, we have measured these parameters from 120 nm to 280 nm. The quantum efficiencies were normalized to the known photoionization yields of benzene and cis-2-butene. The results of these measurements and details of the experiment are presented in this paper.

  12. Per Capita Consumption The NM.S calculation of per capita consumption is

    E-Print Network [OSTI]

    capita consumption of fresh and frozen products was 10.5 pounds, 0.1 pound more than 1999. .resh in the world. Fish and Fishery Products Apparent Consumption Average 1995-1997 (LiveWeightEquivalent) 3,400 3Per Capita Consumption 85 The NM.S calculation of per capita consumption is based

  13. THz-TDS systems for 1560-nm-wavelength-laser operation Masato Suzuki1

    E-Print Network [OSTI]

    Tonouchi, Masayoshi

    THz-TDS systems for 1560-nm-wavelength-laser operation Masato Suzuki1 , Ken-ichi Fujii2 for new applications. It is expected that THz-TDS systems for 1.5 µm laser operation have advantages,11] The next stage of development of THz system for 1.5 µm operation requires a prototype of compact THz system

  14. Effects of amines on formation of sub-3 nm particles and their subsequent growth

    E-Print Network [OSTI]

    measured with a particle size magnifier (PSM). Our observations provide the laboratory evidence that amines) in a fast flow nucleation reactor coupled with a particle sizing magnifier (PSM), a butanol-based ultrafine ionization mass spectrometers (CIMS). The PSM, coupled with a CPC, can count particles as small as $1 nm

  15. Experimental Implementation of 1310-nm Differential Phase Shift QKD System with Up-conversion Detectors

    E-Print Network [OSTI]

    ), the 1-bit Michelson Interferometer (b), and the up-conversion unit (c). LD VOAPM TRCV WDM WDM TCSPCTRCV- conversion Unit. LD: CW laser Diode; EOM: Electric-optic Modulator; PM: Phase Modulator; VOA: VariableExperimental Implementation of 1310-nm Differential Phase Shift QKD System with Up-conversion

  16. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    SciTech Connect (OSTI)

    Momblona, C.; Malinkiewicz, O.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Bolink, H. J.; Edri, E.

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.

  17. Microsecond gain-switched master oscillator power amplifier (1958 nm) with high pulse energy

    SciTech Connect (OSTI)

    Ke Yin; Weiqiang Yang; Bin Zhang; Ying Li; Jing Hou [College of Opto-electric Science and Engineering, National University of Defense Technology, Changsha 410073, Hunan (China)

    2014-02-28

    An all-fibre master oscillator power amplifier (MOPA) emitting high-energy pulses at 1958 nm is presented. The seed laser is a microsecond gain-switched thulium-doped fibre laser (TDFL) pumped with a commercial 1550-nm pulsed fibre laser. The TDFL operates at a repetition rate f in the range of 10 to 100 kHz. The two-stage thulium-doped fibre amplifier is built to scale the energy of the pulses generated by the seed laser. The maximum output pulse energy higher than 0.5 mJ at 10 kHz is achieved which is comparable with the theoretical maximum extractable pulse energy. The slope efficiency of the second stage amplifier with respect to the pump power is 30.4% at f = 10 kHz. The wavelength of the output pulse laser is centred near 1958 nm at a spectral width of 0.25 nm after amplification. Neither nonlinear effects nor significant amplified spontaneous emission (ASE) is observed in the amplification experiments. (lasers)

  18. 2 Gbps SerDes Design Based on IBM Cu-11 (130nm) Standard Cell Technology

    E-Print Network [OSTI]

    Draper, Jeff

    2 Gbps SerDes Design Based on IBM Cu-11 (130nm) Standard Cell Technology Rashed Zafar Bhatti EE Denneau IBM T.J. Watson Research Center Yorktown Heights, NY 10598 denneau@us.ibm.com Jeff Draper of jitter. Power consumption of the proposed SerDes design is 30 mW per serial link targeted to IBM Cu-11

  19. 180-nm CMOS Wideband Capacitor-free Inductively Coupled Power Receiver and Charger

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    180-nm CMOS Wideband Capacitor-free Inductively Coupled Power Receiver and Charger Orlando Lazaro.lazaro@ece.gatech.edu, rincon-mora@gatech.edu Abstract: Wireless microsystems like biomedical implants and embedded sensors life is short. Periodically coupling power wirelessly is one way of replenishing onboard batteries

  20. SI-BASED UNRELEASED HYBRID MEMS-CMOS RESONATORS IN 32NM TECHNOLOGY

    E-Print Network [OSTI]

    Reif, Rafael

    SI-BASED UNRELEASED HYBRID MEMS-CMOS RESONATORS IN 32NM TECHNOLOGY Radhika Marathe*, Wentao Wang*, and Dana Weinstein HybridMEMS Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA *authors before the presence of parasitics. This enables RF-MEMS resonators at orders of magnitude higher

  1. FIRST LASING AT 32 NM OF THE VUV-FEL AT DESY S. Schreiber

    E-Print Network [OSTI]

    FIRST LASING AT 32 NM OF THE VUV-FEL AT DESY S. Schreiber , DESY, Hamburg, Germany for the VUV-FEL team Abstract The VUV-FEL is a free electron laser user facility being commissioned at DESY. It is based on the TTF-FEL, which was in operation until end of 2002 providing a photon beam for two pilot

  2. An EUV Fresnel zoneplate mask-imaging microscope for lithography generations reaching 8 nm

    E-Print Network [OSTI]

    An EUV Fresnel zoneplate mask-imaging microscope for lithography generations reaching 8 nm Kenneth lithography design rules. The proposed microscope features an array of user-selectable Fresnel zoneplate-EUV, Fresnel zoneplate microscope, the AIT has been in the vanguard of high-resolution EUV mask imaging

  3. A high-power 626 nm diode laser system for Beryllium ion trapping

    E-Print Network [OSTI]

    H. Ball; M. W. Lee; S. D. Gensemer; M. J. Biercuk

    2013-04-07

    We describe a high-power, frequency-tunable, external cavity diode laser (ECDL) system near 626 nm useful for laser cooling of trapped $^9$Be$^+$ ions. A commercial single-mode laser diode with rated power output of 170 mW at 635 nm is cooled to $\\approx - 31$ C, and a single longitudinal mode is selected via the Littrow configuration. In our setup, involving multiple stages of thermoelectric cooling, we are able to obtain $\\approx$130 mW near 626 nm, sufficient for efficient frequency doubling to the required Doppler cooling wavelengths near 313 nm in ionized Beryllium. In order to improve nonlinear frequency conversion efficiency, we achieve larger useful power via injection locking of a slave laser. In this way the entirety of the slave output power is available for frequency doubling, while analysis may be performed on the master output. We believe that this simple laser system addresses a key need in the ion trapping community and dramatically reduces the cost and complexity associated with Beryllium ion trapping experiments.

  4. Performance of a High-Concentration Erbium-Doped Fiber Amplifier with 100 nm Amplification Bandwidth

    SciTech Connect (OSTI)

    Hajireza, P.; Shahabuddin, N. S.; Abbasi-Zargaleh, S.; Emami, S. D.; Abdul-Rashid, H. A.; Yusoff, Z. [Center for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia)

    2010-07-07

    Increasing demand for higher bandwidth has driven the need for higher Wavelength Division Multiplexing (WDM) channels. One of the requirements to achieve this is a broadband amplifier. This paper reports the performance of a broadband, compact, high-concentration and silica-based erbium-doped fiber amplifier. The amplifier optimized to a 2.15 m long erbium-doped fiber with erbium ion concentration of 2000 ppm. The gain spectrum of the amplifier has a measured amplification bandwidth of 100 nm using a 980 nm laser diode with power of 150 mW. This silica-based EDFA shows lower noise figure, higher gain and wider bandwidth in shorter wavelengths compared to Bismuth-based EDFA with higher erbium ion concentration of 3250 ppm at equivalent EDF length. The silica-based EDF shows peak gain at 22 dB and amplification bandwidth between 1520 nm and 1620 nm. The lowest noise figure is 5 dB. The gain is further improved with the implementation of enhanced EDFA configurations.

  5. Sapphire (0 0 0 1) surface modifications induced by long-pulse 1054 nm laser irradiation

    E-Print Network [OSTI]

    Ma, Chi

    Sapphire (0 0 0 1) surface modifications induced by long-pulse 1054 nm laser irradiation Sheng fluences. Due to high temperature and elevated non-hydrostatic stresses upon laser irradiation, damage Elsevier B.V. All rights reserved. Keywords: Sapphire; Laser irradiation; Spall; Fracture; Twinning

  6. Excitation cross section of erbium-doped GaN waveguides under 980?nm optical pumping

    E-Print Network [OSTI]

    Hui, Rongqing; Xie, R.; Feng, I.-W.; Sun, Z. Y.; Lin, J. Y.; Jiang, H. X.

    2014-08-04

    Excitation cross section of erbium-doped GaN waveguides is measured to be approximately 2.2×10?21cm2 at 980?nm pumping wavelength. This cross section value is found relatively insensitive to the crystalline quality of ...

  7. Applications of Sr Isotopes in Archaeology N.M. Slovak and A. Paytan

    E-Print Network [OSTI]

    Paytan, Adina

    an introduction to the fundamental principles, approaches, applications, and future directions of radiogenic stron of 86 Sr/88 Sr in natural N.M. Slovak (*) Department of Behavioral Sciences, Santa Rosa Junior College Sr/86 Sr signatures. M. Baskaran (ed.), Handbook of Environmental Isotope Geochemistry, Advances

  8. Double patterning HSQ processes of zone plates for 10 nm diffraction limitedperformance

    SciTech Connect (OSTI)

    Chao, Weilun; Kim, Jihoon; Anderson, Erik H.; Fischer, Peter; Rekawa, Senajith; Attwood, David T.

    2009-01-09

    In e-beam lithography, fabrication of sub-20 nm dense structures is challenging. While there is a constant effort to develop higher resolution resist processes, the progress of increasing pattern density is slow. For zone plates, consisting of dense lines and spaces, the outermost zone width has been limited to slightly less than 20 nm due to effects such as low aerial image contrast, forward scattering, intrinsic resist resolution, and development issues. To circumvent these effects, we have successfully developed a new double patterning HSQ process, and as a result, we have fabricated zone plates of 10 and 12 nm using the process. We previously developed a double patterning process in which a dense zone plate pattern is sub-divided into two semi-isolated, complementary zone set patterns. These patterns are fabricated separately and then overlaid with high accuracy to yield the desired pattern. The key to success with this process is the accuracy of the overlay. For diffraction-limited zone plates, accuracy better than one-third of the smallest zone width is needed. In our previous work, the zone set patterns were formed using PMMA and gold electroplating, which were overlaid and aligned to the zero-level mark layer with sub-pixel accuracy using our internally developed algorithm. The complete zone plate fabrication was conducted in-house. With this process, we successfully fabricated zone plates of 15 nm outermost zone. Using this zone plate, we were able to achieve sub-15 nm resolution at 1.52 nm wavelength, the highest resolution ever demonstrated in optical microscopy at that time. We attempted to extend the process to fabricating 12 nm and smaller zones. However, the modest PMMA contrast, combined with a relatively large electron beam size compared to the target feature sized limited the process latitude. To overcome this problem, we developed a new overlay process based on high resolution negative tone resist of hydrogen silsesquioxane (HSQ). With the development in TMAH at 45 C, we can reliably achieve zone width as small as 8 nm with negligible line edge roughness in the semi-dense zone set. Such narrow zones in HSQ, however, detach easily from the gold plating base substrate needed for the electroplating step. We developed a process to condition the gold substrate with (3-mercaptopropyl) trimethoxysilane, or 3-MTP, which can form a homogeneous hydroxylation surface on gold surface and bond with hydroxyl in HSQ. Fig 2 shows the basic process steps of the double patterning HSQ process. Unlike the PMMA process, both zone sets are formed in HSQ and overlaid, and the complete zone plate pattern is converted to gold using electroplating in the final step. Using the new process, we successfully realized zone plates of 10 nm and 12 nm outermost zones. Fig. 3 shows the SEM micrographs of the zone plates outer regions. The zone plates are 30 nm thick in gold. To the best of our knowledge, these zone plates have the smallest zonal features ever fabricated using e-beam lithography. The complete zone plate fabrication was conducted in-house, using our vector scan electron beam lithography tool, the Nanowriter, which has a measured beam diameter of 6.5 nm (FWHM) at 100 keV. An internally developed, sub-pixel alignment algorithm, based on auto/cross-correlation methods, was used for the overlay. A 12 nm zone plate was tested with a full-field transmission x-ray microscope at the LBNL's Advanced Light Source. Fig. 4 shows an x-ray image of a 40 nm thick gold radial spoke pattern taken with the zone plate at 1.75 nm wavelength (707eV, FeL3 edge), along with the scanning transmission electron micrograph of same object. Numerous small features in the object can be seen in the x-ray image. Data analysis indicates that a near diffraction limited performance was achieved using the zone plate. In our presentation, we will discuss the details and subtleties of the overlay fabrication as well as the zone plate image results.

  9. Effect of Key Parameters on the Photocatalytic Oxidation of Toluene at Low Concentrations in Air under 254 + 185 nm UV Irradiation

    E-Print Network [OSTI]

    Quici, Natalia

    2010-01-01

    under 254 + 185 nm UV Irradiation Natalia Quici, a,b Maríaunder 254 + 185 nm UV Irradiation Natalia Quici, a,b Maríaunder 254 + 185 nm irradiation was investigated using a

  10. THE INFRARED SPECTRUM OF URANIUM HOLLOW CATHODE LAMPS FROM 850 nm to 4000 nm: WAVENUMBERS AND LINE IDENTIFICATIONS FROM FOURIER TRANSFORM SPECTRA

    SciTech Connect (OSTI)

    Redman, Stephen L.; Ramsey, Lawrence W.; Mahadevan, Suvrath [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Lawler, James E. [Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706 (United States); Nave, Gillian [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2011-08-01

    We provide new measurements of wavenumbers and line identifications of 10, 100 U I and U II near-infrared (NIR) emission lines between 2500 cm{sup -1} and 12, 000 cm{sup -1} (4000-850 nm) using archival Fourier transform spectrometer spectra from the National Solar Observatory. This line list includes isolated uranium lines in the Y, J, H, K, and L bands (0.9-1.1 {mu}m, 1.2-1.35 {mu}m, 1.5-1.65 {mu}m, 2.0-2.4 {mu}m, and 3.0-4.0 {mu}m, respectively), and provides six times as many calibration lines as thorium in the NIR spectral range. The line lists we provide enable inexpensive, commercially available uranium hollow cathode lamps to be used for high-precision wavelength calibration of existing and future high-resolution NIR spectrographs.

  11. MAGNETIC FIELDS OF AN ACTIVE REGION FILAMENT FROM FULL STOKES ANALYSIS OF Si I 1082.7 nm AND He I 1083.0 nm

    SciTech Connect (OSTI)

    Xu, Z.; Liu, Y.

    2012-04-20

    Vector magnetic fields of an active region filament in the photosphere and upper chromosphere are obtained from spectro-polarimetric observations recorded with the Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope. We apply Milne-Eddington inversions on full Stokes vectors of the photospheric Si I 1082.7 nm and the upper chromospheric He I triplet at 1083.0 nm to obtain the magnetic field vector and velocity maps in two atmosphere layers. We find that (1) a complete filament was already present in H{alpha} at the beginning of the TIP II data acquisition. Only a partially formed one, composed of multiple small threads, was present in He I. (2) The AR filament comprises two sections. One shows strong magnetic field intensities, about 600-800 G in the upper chromosphere and 800-1000 G in the photosphere. The other exhibits only comparatively weak magnetic field strengths in both layers. (3) The Stokes V signal is indicative of a dip in the magnetic field strength close to the chromospheric PIL. (4) In the chromosphere, consistent upflows are found along the PIL flanked by downflows. (5) The transversal magnetic field is nearly parallel to the PIL in the photosphere and inclined by 20 Degree-Sign -30 Degree-Sign in the chromosphere. (6) The chromospheric magnetic field around the filament is found to be in normal configuration, while the photospheric field presents a concave magnetic topology. The observations are consistent with the emergence of a flux rope with a subsequent formation of a filament.

  12. Calibration of Spherically Bent Crystals used in X-Ray Spectroscopy...

    Office of Scientific and Technical Information (OSTI)

    NM. Research Org: Sandia National Laboratories Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of Publication: United States Language: English...

  13. Stable formation of ultrahigh power-density 248 nm channels in Xe cluster targets

    SciTech Connect (OSTI)

    Borisov, Alex B.; Racz, Ervin; Khan, Shahab F.; Poopalasingam, Sankar; McCorkindale, John C.; Boguta, John; Longworth, James W.; Rhodes, Charles K.

    2012-07-11

    The optimization of relativistic and ponderomotive self-channeling of ultra-powerful 248 nm laser pulses launched in underdense plasmas with an appropriate longitudinal gradient in the electron density profile located at the initial stage of the self-channeling leads to (1) stable channel formation and (2) highly efficient power compression producing power densities in the 10{sup 19}-10{sup 20} W/cm{sup 3} range. The comparison of theoretical studies with experimental results involving the correlation of (a) Thomson images of the electron density with (b) x-ray images of the channel morphology demonstrates that more than 90% of the incident 248 nm power can be trapped in stable channels and that this stable propagation can be extended to power levels significantly exceeding the critical power of the self-channeling process.

  14. A InGaN/GaN quantum dot green ({lambda}=524 nm) laser

    SciTech Connect (OSTI)

    Zhang Meng; Banerjee, Animesh; Lee, Chi-Sen; Hinckley, John M.; Bhattacharya, Pallab

    2011-05-30

    The characteristics of self-organized InGaN/GaN quantum dot lasers are reported. The laser heterostructures were grown on c-plane GaN substrates by plasma-assisted molecular beam epitaxy and the laser facets were formed by focused ion beam etching with gallium. Emission above threshold is characterized by a peak at 524 nm (green) and linewidth of 0.7 nm. The lowest measured threshold current density is 1.2 kA/cm{sup 2} at 278 K. The slope and wall plug efficiencies are 0.74 W/A and {approx}1.1%, respectively, at 1.3 kA/cm{sup 2}. The value of T{sub 0}=233 K in the temperature range of 260-300 K.

  15. 32.8-nm X-ray laser produced in a krypton cluster jet

    SciTech Connect (OSTI)

    Ivanova, E P; Vinokhodov, A Yu

    2013-12-31

    We have interpreted the well-known experimental quantum yield data for a 32.8-nm X-ray laser operating at the 3d{sup 9}4d (J = 0) – 3d{sup 9}4p (J = 1) transition of Kr{sup 8+} with the use of gaseous krypton or a krypton cluster jet. Proceeding from our model we propose a novel scheme for the 32.8-nm laser produced in a krypton cluster jet. The quantum yield is shown to saturate for a plasma length of ?300 ?m, a krypton ion density n{sub Kr} ? (4 – 9) × 10{sup 19} cm{sup -3}, and an electron temperature Te ? 5000 eV. In this case, the energy conversion coefficient amounts to ?5 × 10{sup -3} of the pump pulse energy. We propose the experimental setup for producing a highefficiency subpicosecond X-ray laser in a krypton cluster jet. (lasers)

  16. Promethium-doped phosphate glass laser at 933 and 1098 nm

    SciTech Connect (OSTI)

    Krupke, W.F.; Shinn, M.D.; Kirchoff, T.A.; Finch, C.B.; Boatner, L.A.

    1987-12-28

    A promethium (Pm/sup 3 +/) laser has been demonstrated for the first time. Trivalent promethium 147 doped into a lead-indium-phosphate glass etalon was used to produce room-temperature four-level laser emission at wavelengths of 933 and 1098 nm. Spectroscopic and kinetic measurements have shown that Pm/sup 3 +/ is similar to Nd/sup 3 +/ as a laser active ion.

  17. Geothermal Electric Plant Planned in N.M. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive Compensation References:SequestrationElectric Plant Planned in N.M.

  18. Effects of amines on formation of sub-3 nm particles and their subsequent growth

    SciTech Connect (OSTI)

    Yu H.; McGraw R.; Lee S.-H.

    2012-01-28

    Field observations and quantum chemical calculations suggest that amines can be important for formation of nanometer size particles. Amines and ammonia often have common atmospheric emission sources and the similar chemical and physical properties. While the effects of ammonia on aerosol nucleation have been previously investigated, laboratory studies of homogeneous nucleation involving amines are lacking. We have made kinetics studies of multicomponent nucleation (MCN) with sulfuric acid, water, ammonia and amines under conditions relevant to the atmosphere. Low concentrations of aerosol precursors were measured with chemical ionization mass spectrometers (CIMS) to provide constrained precursor concentrations needed for nucleation. Particle sizes larger than {approx}2 nm were measured with a nano-differential mobility analyzer (nano-DMA), and number concentrations of particles larger than {approx}1 nm were measured with a particle size magnifier (PSM). Our observations provide the laboratory evidence that amines indeed can participate in aerosol nucleation and growth at the molecular cluster level. The enhancement of particle number concentrations due to several atmospherically relevant amine compounds and ammonia were related to the basicity of these compounds, indicating that acid-base reactions may contribute to the formation of sub-3 nm particles.

  19. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    multiplex short tandem repeat STR amplification and second strand cDNA synthesis Public Library of Science Sandia National Laboratories SNL Albuquerque NM and Livermore CA United...

  20. PCR Bartsch, Michael S. [Sandia National Lab. (SNL-CA), Livermore...

    Office of Scientific and Technical Information (OSTI)

    short tandem repeat (STR) amplification, and second strand cDNA synthesis. Public Library of Science Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA...

  1. DOE Zero Energy Ready Home Case Study: Palo Duro Homes Inc.,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    production home has advance framed walls, a spray foamed attic, an air source heat pump, and an HRV. Palo Duro Homes, Inc.- Albuquerque, NM More Documents & Publications...

  2. When printing a copy of any digitized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printed March 1979 A USER'S MANUAL FOR THE COMPUTER CODE PAREP * Timothy M. Leonard Civil Engineering Research Facility University of New Mexico Albuquerque, NM Abstract This...

  3. Submission Format for IMS2004 (Title in 18-point Times font)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automating the Sandia Advanced Interoperability Test Protocols Jay Johnson 1 and Bob Fox 2 1 Sandia National Laboratories, Albuquerque, NM, 87185, USA 2 Loggerware, Rancho Cordova,...

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States)...

  5. Inverter testing at Sandia National Laboratories Ginn, J.W.;...

    Office of Scientific and Technical Information (OSTI)

    National Labs., Albuquerque, NM (United States). Photovoltaic System Components Dept. 14 SOLAR ENERGY; INVERTERS; PHOTOVOLTAIC POWER PLANTS; PHOTOVOLTAIC POWER SUPPLIES; POWER...

  6. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    G Sandia National Labs Albuquerque NM United States Photovoltaic System Components Dept SOLAR ENERGY INVERTERS PHOTOVOLTAIC POWER PLANTS PHOTOVOLTAIC POWER SUPPLIES POWER...

  7. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Labs., Albuquerque, NM (United States)","DOE; USDOE, Washington, DC (United States)","14 SOLAR ENERGY; 99 GENERAL AND MISCELLANEOUSMATHEMATICS, COMPUTING, AND INFORMATION...

  8. Sandia National Laboratories: Working with Sandia: Procurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    one 2-year option period. Science Applications International Corporation (SAIC) 2440 Alamo Ave SE, Ste 100, Albuquerque, NM 87106 Phone: 505-259-9011 Contract for Mission...

  9. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Albuquerque, NM, USA, 21 Jan 1981","DOEEEGTP (USDOE Office of Energy Efficiency and Renewable Energy Geothermal Tech Pgm)","Not Available","15 GEOTHERMAL ENERGY; BOREHOLES;...

  10. Other Participants 1991 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Laboratory Lab Team, Rocky Flats Lab Team, Pacific Northwest Laboratory Lab Team, Solar Energy Research Institute La Cueva High School , Albuquerque , NM Lake Forest High...

  11. New Mexico Renewable Energy Project Development and Finance Workshop...

    Broader source: Energy.gov (indexed) [DOE]

    New Mexico Renewable Energy Project Development and Finance Workshop AGENDA July 28-29, 2015 Pueblo Cultural Center 2401 12th Street Northwest Albuquerque, NM 87104 Learning...

  12. A Computational Study of the Aerodynamics and Aeroacoustics of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories, Albuquerque, NM, 87185-1124, USA C. Eric Lynch and Marilyn J. Smith Georgia Institute of Technology, Atlanta, Georgia, 30332-0150, USA This work...

  13. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States)...

  14. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    National Labs., Albuquerque, NM (USA)","Not Available","15 GEOTHERMAL ENERGY; 03 NATURAL GAS; 02 PETROLEUM; 58 GEOSCIENCES; BOREHOLES; EXPLOSIVE FRACTURING; TUFF; EXPERIMENTAL...

  15. Inorganic Metal Fluorite Materials as Novel Adsorbents for Gaseous...

    Office of Scientific and Technical Information (OSTI)

    Type: Conference Resource Relation: Conference: International high level radioacvtive waste management conference held April 28 - May 2, 2013 in Albuquerque, NM.; Related...

  16. Influence of Advanced Fuel Cycles on Uncertainty in the Performance...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Proposed for presentation at the International High-Level Radioactive Waste Management Conference held April 28 - May 2, 2013 in Albuquerque, NM...

  17. DOE Zero Energy Ready Home Case Study: Palo Duro Homes Inc.,...

    Energy Savers [EERE]

    production home has advance framed walls, a spray foamed attic, an air source heat pump, and an HRV. Palo Duro Homes, Inc.- Albuquerque, NM More Documents &...

  18. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    CONTROL OF MECHANICALLY ACTIVATED POLYMERSOME FUSION FACTORS AFFECTING FUSION Henderson Ian M Paxton Walter F Abstract not provided Sandia National Laboratories SNL NM Albuquerque...

  19. CONTROL OF MECHANICALLY ACTIVATED POLYMERSOME FUSION: FACTORS...

    Office of Scientific and Technical Information (OSTI)

    MECHANICALLY ACTIVATED POLYMERSOME FUSION: FACTORS AFFECTING FUSION. Henderson, Ian M.; Paxton, Walter F Abstract not provided. Sandia National Laboratories (SNL-NM), Albuquerque,...

  20. Uranium and other heavy metals in the plant-animal-human food chain near abandoned mining sites and structures in an American Indian community in northwestern New Mexico

    E-Print Network [OSTI]

    Samuel-Nakamura, Christine

    2013-01-01

    of risk maps to minimize uranium exposures in the NavajoThe Navajo people and uranium mining. Albuquerque, NM:toxicity of natural uranium: A review. Reviews on

  1. Wave Energy Converter Effects on Nearshore Wave Propagation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Converter Effects on Nearshore Wave Propagation Jesse Roberts 1 , Grace Chang *2 , Craig Jones *3 Sandia National Laboratories 1515 Eubank SE, Albuquerque, NM 87123 USA 1...

  2. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Downloaded 235 times Category Energy Security, MEPV, Photovoltaic, Renewable Energy, Solar Energy location Sandia National Laboratories, Albuquerque, NM author Gregory N....

  3. High Resolution Lithium Mapping Using Fe State of Charge in Energy...

    Office of Scientific and Technical Information (OSTI)

    Bartelt, Norman C. ; Kotula, Paul G. 1 ; Fenton, Kyle R 1 ; Sullivan, John P. ; Chueh, William + Show Author Affiliations (Sandia National Laboratories, Albuquerque, NM)...

  4. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Petroleum Engineering Dept Howarth S M Sandia National Labs Albuquerque NM United States NUCLEAR FUELS WIPP RESERVOIR ROCK ANHYDRITE PERMEABILITY MEASURING METHODS SITE...

  5. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Inc., Albuquerque, NM (United States)","USDOE Office of Environmental Restoration and Waste Management, Washington, DC (United States)","56 BIOLOGY AND MEDICINE, APPLIED...

  6. Evaluation of methods for measuring relative permeability of...

    Office of Scientific and Technical Information (OSTI)

    Dept.; Howarth, S.M. Sandia National Labs., Albuquerque, NM (United States) 05 NUCLEAR FUELS; WIPP; RESERVOIR ROCK; ANHYDRITE; PERMEABILITY; MEASURING METHODS; SITE...

  7. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Labs., Albuquerque, NM (United States)","USDOE, Washington, DC (United States)","05 NUCLEAR FUELS; WIPP; RESERVOIR ROCK; ANHYDRITE; PERMEABILITY; MEASURING METHODS; SITE...

  8. SAND2014-1805C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Albuquerque, NM, U.S. 1 Corresponding author: ardallm@gmail.com ABSTRACT Wave energy resource characterization efforts are critical for developing knowledge of the...

  9. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    393 Arizona State Univ. Phoenix, AZ Lawrence Livermore National Lab (support FWP) - Livermore, CA Sandia National Lab (support FWP) - Albuquerque, NM and Livermore, CA FESCC...

  10. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Albuquerque, N.M. The entry, titled "Martensitic Transformation in an Austenitic Stainless Steel Single Crystal," won in the color microscopy category. Metallography is...

  11. H. J. Sutherland, "Frequency Domain Analysis of the Fatigue Loads on Typical Wind Turbine Blades," J. of Solar Energy Engineering, Transactions of ASME, Vol. 118, November, 1996,

    E-Print Network [OSTI]

    ," J. of Solar Energy Engineering, Transactions of ASME, Vol. 118, November, 1996, pp. 204 Energy Technology Sandia National Laboratories Albuquerque, NM 87107 ABSTRACT The fatigue analysis

  12. Unknown

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Albuquerque, NM 87185 ABSTRACT The LIFE2 computer code is a fatiguefracture analysis code that is specialized to the analysis of wind turbine components. The...

  13. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    The Science of Battery Degradation.","Sullivan, John P; Fenton, Kyle R Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas Sandia...

  14. CX-007089: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dynamic Integrated Compression Experimental Facility: Three-Inch Light Gas Gun & Small Pulser - OperationsCX(s) Applied: B3.6, B3.10Date: 05/25/2011Location(s): Albuquerque, New MexicoOffice(s): NNSA-Headquarters, Sandia Site Office

  15. Formation of 15 nm scale Coulomb blockade structures in silicon by electron beam lithography with a bilayer resist process

    E-Print Network [OSTI]

    ) wafers with 400 nm buried oxide layers pre- pared by Smart CutTM technology were used. The device region was thinned down to 30 nm by dry oxidation and then the top oxide layer was etched down to a thickness of 20 oxide layer and patterned for formation of EBL markers for e-beam lithogra- phy. After patterning marker

  16. Light trapping in a 30-nm organic photovoltaic cell for efficient carrier collection and light absorption

    E-Print Network [OSTI]

    Tsai, Cheng-Chia; Banerjee, Ashish; Osgood, Richard M; Englund, Dirk

    2012-01-01

    We describe surface patterning strategies that permit high photon-collection efficiency together with high carrier-collection efficiency in an ultra-thin planar heterojunction organic photovoltaic cell. Optimized designs reach up to 50% photon collection efficiency in a P3HT layer of only 30 nm, representing a 3- to 5-fold improvement over an unpatterned cell of the same thickness. We compare the enhancement of light confinement in the active layer with an ITO top layer for TE and TM polarized light, and demonstrate that the light absorption can increase by a factor of 2 due to a gap-plasmon mode in the active layer.

  17. Stable gain-switched thulium fiber laser with 140 nm tuning range

    E-Print Network [OSTI]

    Wang, Fengqiu; Kelleher, Edmund; Guo, Guoxiang; Li, Yao; Xu, Yongbing; Zhu, Shining

    2015-01-01

    We demonstrate a gain-switched thulium fiber laser that can be continuously tuned over 140 nm, while maintaining stable nanosecond single-pulse operation. To the best of our knowledge, this system represents the broadest tuning range for a gain-switched fiber laser. The system simplicity and wideband wavelength tunability combined with the ability to control the temporal characteristics of the gain-switched pulses mean this is a versatile source highly suited to a wide range of applications in the eye-safe region of the infrared, including spectroscopy, sensing and material processing, as well as being a practical seed source for pumping nonlinear processes.

  18. Quantitative analysis of reptation of partially extended DNA in sub-30 nm nanoslits

    E-Print Network [OSTI]

    Jia-Wei Yeh; K. K. Sriram; Alessandro Taloni; Yeng-Long Chen; Chia-Fu Chou

    2015-02-18

    We observed reptation of single DNA molecules in fused silica nanoslits of sub-30 nm height. The reptation behavior and the effect of confinement are quantitatively characterized using orientation correlation and transverse fluctuation analysis. We show tube-like polymer motion arises for a tense polymer under strong quasi-2D confinement and interaction with surface- passivating polyvinylpyrrolidone (PVP) molecules in nanoslits, while etching- induced device surface roughness, chip bonding materials and DNA-intercalated dye-surface interaction, play minor roles. These findings have strong implications for the effect of surface modification in nanofluidic systems with potential applications for single molecule DNA analysis.

  19. 1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier

    SciTech Connect (OSTI)

    Nguyen, Ba-Son [Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Lin, Jen-Fin [Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Perng, Dung-Ching, E-mail: dcperng@ee.ncku.edu.tw [Institute of Microelectronics and Electrical Engineering Department, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China)

    2014-02-24

    We demonstrate the thinnest ever reported Cu diffusion barrier, a 1-nm-thick graphene tri-layer. X-ray diffraction patterns and Raman spectra show that the graphene is thermally stable at up to 750?°C against Cu diffusion. Transmission electron microscopy images show that there was no inter-diffusion in the Cu/graphene/Si structure. Raman analyses indicate that the graphene may have degraded into a nanocrystalline structure at 750?°C. At 800?°C, the perfect carbon structure was damaged, and thus the barrier failed. The results of this study suggest that graphene could be the ultimate Cu interconnect diffusion barrier.

  20. Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam

    SciTech Connect (OSTI)

    Davies, A., E-mail: adavies@lle.rochester.edu; Haberberger, D.; Boni, R.; Ivancic, S.; Brown, R.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-11-15

    A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4? (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry.

  1. Prototype Active Silicon Sensor in 150 nm HR-CMOS Technology for ATLAS Inner Detector Upgrade

    E-Print Network [OSTI]

    Rymaszewski, Piotr; Breugnon, Patrick; Godiot, Stépahnie; Gonella, Laura; Hemperek, Tomasz; Hirono, Toko; Hügging, Fabian; Krüger, Hans; Liu, Jian; Pangaud, Patrick; Peric, Ivan; Rozanov, Alexandre; Wang, Anqing; Wermes, Norbert

    2016-01-01

    The LHC Phase-II upgrade will lead to a significant increase in luminosity, which in turn will bring new challenges for the operation of inner tracking detectors. A possible solution is to use active silicon sensors, taking advantage of commercial CMOS technologies. Currently ATLAS R&D programme is qualifying a few commercial technologies in terms of suitability for this task. In this paper a prototype designed in one of them (LFoundry 150 nm process) will be discussed. The chip architecture will be described, including different pixel types incorporated into the design, followed by simulation and measurement results.

  2. Prototype Active Silicon Sensor in 150 nm HR-CMOS Technology for ATLAS Inner Detector Upgrade

    E-Print Network [OSTI]

    Piotr Rymaszewski; Marlon Barbero; Patrick Breugnon; Stépahnie Godiot; Laura Gonella; Tomasz Hemperek; Toko Hirono; Fabian Hügging; Hans Krüger; Jian Liu; Patrick Pangaud; Ivan Peric; Alexandre Rozanov; Anqing Wang; Norbert Wermes

    2016-01-04

    The LHC Phase-II upgrade will lead to a significant increase in luminosity, which in turn will bring new challenges for the operation of inner tracking detectors. A possible solution is to use active silicon sensors, taking advantage of commercial CMOS technologies. Currently ATLAS R&D programme is qualifying a few commercial technologies in terms of suitability for this task. In this paper a prototype designed in one of them (LFoundry 150 nm process) will be discussed. The chip architecture will be described, including different pixel types incorporated into the design, followed by simulation and measurement results.

  3. Damage thresholds of thin film materials and high reflectors at 248 nm

    SciTech Connect (OSTI)

    Rainer, F.; Lowdermilk, W.H.; Milam, D.; Carniglia, C.K.; Hart, T.T.; Lichtenstein, T.L.

    1982-01-01

    Twenty-ns, 248-nm KrF laser pulses were used to measure laser damage thresholds for halfwave-thick layers of 15 oxide and fluoride coating materials, and for high reflectance coatings made with 13 combinations of these materials. The damage thresholds of the reflectors and single-layer films were compared to measurements of several properties of the halfwave-thick films to determine whether measurements of these properties of single-layer films to determine whether measurements of these properties of single-layer films were useful for identifying materials for fabrication of damage resistant coatings.

  4. DOE - Office of Legacy Management -- Shiprock Mill Site - NM 0-04

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co - OH 51SavannahMill Site - NM 0-04

  5. File:USDA-CE-Production-GIFmaps-NM.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages RecentTempCampApplicationWorksheet 2011.pdf JumpTransmissionKY.pdfND.pdf JumpNM.pdf

  6. Quantum yield for carbon monoxide production in the 248 nm photodissociation of carbonyl sulfide (OCS)

    SciTech Connect (OSTI)

    Zhao, Z.; Stickel, R.E.; Wine, P.H. [Georgia Institute of Technology, Atlanta, GA (United States)] [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-03-01

    Tunable diode laser absorption spectroscopy has been coupled with excimer laser flash photolysis to measure the quantum yield for CO production from 248 nm photodissociation of carbonyl sulfide (OCS) relative to the well known quantum yield for CO production from 248 nm photolysis of phosgene (Cl{sub 2}CO). The temporal resolution of the experiments was sufficient to distinguish CO formed directly by photodissociation from that formed by subsequent S({sup 3}P{sub j}) reaction with OCS. Under the experimental conditions employed, CO formation via the fast S({sup 1}D{sub 2})+OCS reaction was minimal. Measurements at 297K and total pressures from 4 to 100 Torr N{sub 2}+N{sub 2}O show the CO yield to be greater than 0.95 and most likely unity. This result suggests that the contribution of OCS as a precursor to the lower stratospheric sulfate aerosol layer is somewhat larger than previously thought. 25 refs., 1 fig., 2 tabs.

  7. Two-photon laser excitation of trapped 232Th+ ions via the 402 nm resonance line

    E-Print Network [OSTI]

    Herrera-Sancho, O A; Zimmermann, K; Tamm, Chr; Peik, E; Taichenachev, A V; Yudin, V I; Glowacki, P

    2012-01-01

    Experiments on one- and two-photon laser excitation of 232Th+ ions in a radiofrequency ion trap are reported. As the first excitation step, the strongest resonance line at 402 nm from the 6d^2 7s J=3/2 ground state to the 6d7s7p J=5/2 state at 24874 cm^{-1} is driven by radiation from an extended cavity diode laser. Spontaneous decay of the intermediate state populates a number of low-lying metastable states, thus limiting the excited state population and fluorescence signal obtainable with continuous laser excitation. We study the collisional quenching efficiency of helium, argon, and nitrogen buffer gases, and the effect of repumping laser excitation from the three lowest-lying metastable levels. The experimental results are compared with a four-level rate equation model, that allows us to deduce quenching rates for these buffer gases. Using laser radiation at 399 nm for the second step, we demonstrate two-photon excitation to the state at 49960 cm^{-1}, among the highest-lying classified levels of Th+. Thi...

  8. Variation of the Mn I 539.4 nm line with the solar cycle

    E-Print Network [OSTI]

    Danilovic, S; Livingston, W; Krivova, N; Vince, I

    2015-01-01

    As a part of the long-term program at Kitt Peak National Observatory (KPNO), the Mn I 539.4 nm line has been observed for nearly three solar cycles using the McMath telescope and the 13.5 m spectrograph in double-pass mode. These full-disk spectrophotometric observations revealed an unusually strong change of this line's parameters over the solar cycle. Optical pumping by the Mg II k line was originally proposed to explain these variations. More recent studies have proposed that this is not required and that the magnetic variability might explain it. Magnetic variability is also the mechanism that drives the changes in total solar irradiance variations (TSI). With this work we investigate this proposition quantitatively by using using the model SATIRE-S. We applied exactly the same model atmospheres and value of the free parameter as were used in previous solar irradiance reconstructions to now model the variation in the Mn I 539.4 nm line profile and in neighboring Fe I lines. We compared the results of the ...

  9. MICROMAGNETIC STUDIES OF THE TRANSITION BETWEEN VORTEX AND SINGLE-DOMAIN STATES IN SUB-100 NM NANODOTS 

    E-Print Network [OSTI]

    King, Andrew

    2012-04-26

    20 40 60 80 100 120 140 To ta l E ne rg y (e V ) Vortex-­?Core Posi2on (nm) Total Energy vs. Vortex-­?Core Posi2on 65 nm Diameter Iron Dot 0 kOe 0.5 kOe 17... B ar ri er (e V ) Applied Field (kOe) Energy Barriers vs. Applied Field 40 nm Diameter Iron Dot Vortex Annihila:on Vortex Nuclea:on 21 FIG. 8. Energy barriers plotted versus applied...

  10. Assembly of Sub-10-nm Block Copolymer Patterns with Mixed Morphology and Period Using Electron Irradiation and Solvent Annealing

    E-Print Network [OSTI]

    Son, Jeong Gon

    Block copolymer self-assembly generates patterns with periodicity in the ?10–100 nm range and is increasingly recognized as a route to lithographic patterning beyond the resolution of photolithography. Block copolymers ...

  11. High-order harmonic generation in atomic hydrogen at 248 nm: Dipole-moment versus acceleration spectrum

    E-Print Network [OSTI]

    Jiang, Tsin-Fu; Chu, Shih-I

    1992-12-01

    We present a study of the high-order harmonic-generation (HG) spectra of atomic hydrogen at 248 nm based on the Fourier transform of the expectation values of the induced dipole moment and acceleration. The calculations ...

  12. EUV light source with high brightness at 13.5 nm

    SciTech Connect (OSTI)

    Borisov, V M; Prokof'ev, A V; Khristoforov, O B [State Research Center of Russian Federation 'Troitsk Institute for Innovation and Fusion Research', Troitsk, Moscow Region (Russian Federation); Koshelev, K N [Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow (Russian Federation); Khadzhiyskiy, F Yu [EUV Labs, Ltd., Troitsk, Moscow (Russian Federation)

    2014-11-30

    The results of the studies on the development of a highbrightness radiation source in the extreme ultraviolet (EUV) range are presented. The source is intended for using in projection EUV lithography, EUV mask inspection, for the EUV metrology, etc. Novel approaches to creating a light source on the basis of Z-pinch in xenon allowed the maximal brightness [130 W(mm{sup 2} sr){sup -1}] to be achieved in the vicinity of plasma for this type of radiation sources within the 2% spectral band centred at the wavelength of 13.5 nm that corresponds to the maximal reflection of multilayer Mo/Si mirrors. In this spectral band the radiation power achieves 190 W in the solid angle of 2? at a pulse repetition rate of 1.9 kHz and an electric power of 20 kW, injected into the discharge. (laser applications and other topics in quantum electronics)

  13. Ion generation and CPC detection efficiency studies in sub 3-nm size range

    SciTech Connect (OSTI)

    Kangasluoma, J.; Junninen, H.; Sipilae, M.; Kulmala, M.; Petaejae, T. [Department of Physics, P.O. Box 64, 00014, University of Helsinki, Helsinki (Finland); Lehtipalo, K. [Department of Physics, P.O. Box 64, 00014, University of Helsinki, Helsinki (Finland); Airmodus Ltd., Finland, Gustaf Haellstroemin katu 2 A, 00560 Helsinki (Finland); Mikkilae, J.; Vanhanen, J. [Airmodus Ltd., Finland, Gustaf Haellstroemin katu 2 A, 00560 Helsinki (Finland); Attoui, M. [University Paris Est Creteil, University Paris-Diderot, LISA, UMR CNRS 7583 (France); Worsnop, D. [Department of Physics, P.O. Box 64, 00014, University of Helsinki, Helsinki (Finland) and Aerodyne Research Inc., Billerica, MA (United States)

    2013-05-24

    We studied the chemical composition of commonly used condensation particle counter calibration ions with a mass spectrometer and found that in our calibration setup the negatively charged ammonium sulphate, sodium chloride and tungsten oxide are the least contaminated whereas silver on both positive and negative and the three mentioned earlier in positive mode are contaminated with organics. We report cut-off diameters for Airmodus Particle Size Magnifier (PSM) 1.1, 1.3, 1.4, 1.6 and 1.6-1.8 nm for negative sodium chloride, ammonium sulphate, tungsten oxide, silver and positive organics, respectively. To study the effect of sample relative humidity on detection efficiency of the PSM we used different humidities in the differential mobility analyzer sheath flow and found that with increasing relative humidity also the detection efficiency of the PSM increases.

  14. Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments

    SciTech Connect (OSTI)

    Rosenberg, Danna; Peterson, Charles G; Dallmann, Nicholas; Hughes, Richard J; Mccabe, Kevin P; Nordholt, Jane E; Tyagi, Hush T; Peters, Nicholas A; Toliver, Paul; Chapman, Thomas E; Runser, Robert J; Mcnown, Scott R

    2008-01-01

    To move beyond dedicated links and networks, quantum communications signals must be integrated into networks carrying classical optical channels at power levels many orders of magnitude higher than the quantum signals themselves. We demonstrate transmission of a 1550-nm quantum channel with up to two simultaneous 200-GHz spaced classical telecom channels, using ROADM (reconfigurable optical <1dd drop multiplexer) technology for multiplexing and routing quantum and classical signals. The quantum channel is used to perform quantum key distribution (QKD) in the presence of noise generated as a by-product of the co-propagation of classical channels. We demonstrate that the dominant noise mechanism can arise from either four-wave mixing or spontaneous Raman scattering, depending on the optical path characteristics as well <1S the classical channel parameters. We quantity these impairments and discuss mitigation strategies.

  15. Time and spectrum-resolving multiphoton correlator for 300–900 nm

    SciTech Connect (OSTI)

    Johnsen, Kelsey D.; Thibault, Marilyne; Jennewein, Thomas; Kolenderski, Piotr; Scarcella, Carmelo; Tosi, Alberto

    2014-10-14

    We demonstrate a single-photon sensitive spectrometer in the visible range, which allows us to perform time-resolved and multi-photon spectral correlation measurements at room temperature. It is based on a monochromator composed of two gratings, collimation optics, and an array of single photon avalanche diodes. The time resolution can reach 110 ps and the spectral resolution is 2 nm/pixel, limited by the design of the monochromator. This technique can easily be combined with commercial monochromators and can be useful for joint spectrum measurements of two photons emitted in the process of parametric down conversion, as well as time-resolved spectrum measurements in optical coherence tomography or medical physics applications.

  16. Final report on LDRD project : single-photon-sensitive imaging detector arrays at 1600 nm.

    SciTech Connect (OSTI)

    Childs, Kenton David; Serkland, Darwin Keith; Geib, Kent Martin; Hawkins, Samuel D.; Carroll, Malcolm S.; Klem, John Frederick; Sheng, Josephine Juin-Jye; Patel, Rupal K.; Bolles, Desta; Bauer, Tom M.; Koudelka, Robert

    2006-11-01

    The key need that this project has addressed is a short-wave infrared light detector for ranging (LIDAR) imaging at temperatures greater than 100K, as desired by nonproliferation and work for other customers. Several novel device structures to improve avalanche photodiodes (APDs) were fabricated to achieve the desired APD performance. A primary challenge to achieving high sensitivity APDs at 1550 nm is that the small band-gap materials (e.g., InGaAs or Ge) necessary to detect low-energy photons exhibit higher dark counts and higher multiplication noise compared to materials like silicon. To overcome these historical problems APDs were designed and fabricated using separate absorption and multiplication (SAM) regions. The absorption regions used (InGaAs or Ge) to leverage these materials 1550 nm sensitivity. Geiger mode detection was chosen to circumvent gain noise issues in the III-V and Ge multiplication regions, while a novel Ge/Si device was built to examine the utility of transferring photoelectrons in a silicon multiplication region. Silicon is known to have very good analog and GM multiplication properties. The proposed devices represented a high-risk for high-reward approach. Therefore one primary goal of this work was to experimentally resolve uncertainty about the novel APD structures. This work specifically examined three different designs. An InGaAs/InAlAs Geiger mode (GM) structure was proposed for the superior multiplication properties of the InAlAs. The hypothesis to be tested in this structure was whether InAlAs really presented an advantage in GM. A Ge/Si SAM was proposed representing the best possible multiplication material (i.e., silicon), however, significant uncertainty existed about both the Ge material quality and the ability to transfer photoelectrons across the Ge/Si interface. Finally a third pure germanium GM structure was proposed because bulk germanium has been reported to have better dark count properties. However, significant uncertainty existed about the quantum efficiency at 1550 nm the necessary operating temperature. This project has resulted in several conclusions after fabrication and measurement of the proposed structures. We have successfully demonstrated the Ge/Si proof-of-concept in producing high analog gain in a silicon region while absorbing in a Ge region. This has included significant Ge processing infrastructure development at Sandia. However, sensitivity is limited at low temperatures due to high dark currents that we ascribe to tunneling. This leaves remaining uncertainty about whether this structure can achieve the desired performance with further development. GM detection in InGaAs/InAlAs, Ge/Si, Si and pure Ge devices fabricated at Sandia was shown to overcome gain noise challenges, which represents critical learning that will enable Sandia to respond to future single photon detection needs. However, challenges to the operation of these devices in GM remain. The InAlAs multiplication region was not found to be significantly superior to current InP regions for GM, however, improved multiplication region design of InGaAs/InP APDs has been highlighted. For Ge GM detectors it still remains unclear whether an optimal trade-off of parameters can achieve the necessary sensitivity at 1550 nm. To further examine these remaining questions, as well as other application spaces for these technologies, funding for an Intelligence Community post-doc was awarded this year.

  17. Emission parameters and thermal management of single high-power 980-nm laser diodes

    SciTech Connect (OSTI)

    Bezotosnyi, V V; Krokhin, O N; Oleshchenko, V A; Pevtsov, V F; Popov, Yu M; Cheshev, E A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-02-28

    We report emission parameters of high-power cw 980-nm laser diodes (LDs) with a stripe contact width of 100 ?m. On copper heat sinks of the C-mount type, a reliable output power of 10 W is obtained at a pump current of 10 A. Using a heat flow model derived from analysis of calculated and measured overall efficiencies at pump currents up to 20 A, we examine the possibility of raising the reliable power limit of a modified high-power LD mounted on heat sinks of the F-mount type using submounts with optimised geometric parameters and high thermal conductivity. The possibility of increasing the maximum reliable cw output power to 20 W with the use of similar laser crystals is discussed. (lasers)

  18. Automated Coronal Hole Detection using He I 1083 nm Spectroheliograms and Photospheric Magnetograms

    E-Print Network [OSTI]

    C. J. Henney; J. W. Harvey

    2007-01-05

    A method for automated coronal hole detection using He I 1083 nm spectroheliograms and photospheric magnetograms is presented here. The unique line formation of the helium line allows for the detection of regions associated with solar coronal holes with minimal line-of-sight obscuration across the observed solar disk. The automated detection algorithm utilizes morphological image analysis, thresholding and smoothing to estimate the location, boundaries, polarity and flux of candidate coronal hole regions. The algorithm utilizes thresholds based on mean values determined from over 10 years of the Kitt Peak Vacuum Telescope daily hand-drawn coronal hole images. A comparison between the automatically created and hand-drawn images for a 11-year period beginning in 1992 is outlined. In addition, the creation of synoptic maps using the daily automated coronal hole images is also discussed.

  19. Oxygen in Galactic Disk Stars: non-LTE abundances from the 777 nm O I triplet

    E-Print Network [OSTI]

    I. Ramirez; C. Allende Prieto; D. L. Lambert

    2005-06-29

    Oxygen abundances for a large sample of dwarf and giant stars kinematically selected to be part of the Galactic thin and thick disks have been determined from a non-LTE analysis of the O I triplet lines at 777 nm. The abundance analysis was performed using the infrared flux method temperature scale, trigonometric surface gravities, and accurate atomic data. Within this framework, the ionization balance of iron lines could not be satisfied and so we adopted the iron abundances from Fe II lines only given that they are relatively less sensitive to changes in the atmospheric parameters. We show the resulting [O/Fe] vs. [Fe/H] relationship and briefly discuss its implications.

  20. The photodissociation of oxetane at 193 nm as the reverse of the Paterno-Buchi reaction

    SciTech Connect (OSTI)

    Lee, Shih-Huang [National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China)

    2009-12-14

    We investigated the photodissociation of oxetane (1,3-trimethylene oxide) at 193.3 nm in a molecular-beam apparatus using photofragment-translational spectroscopy and selective photoionization. We measured time-of-flight (TOF) spectra and angular anisotropy parameters {beta}(t) as a function of flight time of products at m/z=26-30 u utilizing photoionization energies from 9.8 to 14.8 eV. The TOF distributions of the products alter greatly with the employed photon energy, whereas their {beta}(t) distributions are insensitive to the photon energy. Dissociation to H{sub 2}CO+C{sub 2}H{sub 4} is the major channel in the title reaction. Three distinct dissociation paths with branching ratios 0.923:0.058:0.019 are responsible for the three features observed in the distribution of kinetic energy released in the channel H{sub 2}CO+C{sub 2}H{sub 4}. The observation of H{sub 2} and H atoms, {approx}1% in branching, indicates that products H{sub 2}CO and C{sub 2}H{sub 4} spontaneously decompose to only a small extent. Most HCO, C{sub 2}H{sub 3}, and C{sub 2}H{sub 2} ions originate from dissociative photoionization of products H{sub 2}CO and C{sub 2}H{sub 4}. Except atomic H and H{sub 2}, the photoproducts have large angular anisotropies, {beta}{>=}-0.8, which reflects rapid dissociation of oxetane following optical excitation at 193.3 nm. The mechanisms of dissociation of oxetane are addressed. Our results confirm the quantum-chemical calculations of Palmer et al. and provide profound insight into the Paterno-Buchi reaction.