National Library of Energy BETA

Sample records for nm mo ne

  1. Origin State>> CA CA ID ID ID IL KY MD MO NM NM NY NY OH SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MO NM NM NY NY OH SC TN TN TN, WA, CA TN TN TN TN Total Shipments by Route Lawrence Livermore National Laboratory General Atomics Batelle Energy Alliance Idaho National Laboratory Advanced Mixed Waste Treatment Project Argonne National Laboratory Paducah Gaseous Diffusion Plant Aberdeen Proving Grounds National Security Technologies Sandia National Laboratory Los Alamos National Laboratory Brookhaven National Laboratory CH2M Hill B&W West Valley, LLC Portsmouth Gaseous Diffusion Plant

  2. 19Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1939WH02: 19Ne. 1952SC15: 19Ne. 1954JO21: 19Ne. 1954NA29: 19Ne. 1957AL29: 19Ne. 1957PE12: 19Ne. 1958WE25: 19Ne. 1960JA12: 19Ne; measured not abstracted; deduced nuclear properties. 1960WA04: 19Ne; measured not abstracted; deduced nuclear properties. 1962EA02: 19Ne; measured not abstracted; deduced nuclear properties. 1964VA23: 19Ne; measured not abstracted; deduced nuclear properties. 1968GO10: 19Ne; measured T1/2. 1972LE33: 19Ne; measured K/β+ ratios.

  3. 18Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1954GO17: 18Ne. 1961BU05: 18Ne; measured not abstracted; deduced nuclear properties. 1961EC02: 18Ne; measured not abstracted; deduced nuclear properties. 1963FR10: 18Ne; measured not abstracted; deduced nuclear properties. 1965FR09: 18Ne; measured not abstracted; deduced nuclear properties. 1968GO05: 18Ne; measured Eγ, Iγ; deduced Iβ, log ft. 18F deduced levels, branching ratios. 1970AL11: 18Ne; measured T1/2; deduced log ft, β-branching. 1970AS06,

  4. BooNE: About BooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BooNE Collaboration BooNE Experiment BooNE vs MiniBooNE Interesting Facts Posters Virtual Tour Picture Gallery News Articles BooNE photo montage Technical Information BooNE...

  5. 15Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne Ground-State Decay Evaluated Data Measured Ground-State Γcm for 15Ne Adopted value: 0.59 MeV (2014WA09) Measured Mass Excess for 15Ne Adopted value: 40215 ± 69 keV (2014WA09) Measurements 2014WA09: C(17Ne, 2p)15Ne, E = 500 MeV/nucleon; measured reaction products; deduced fractional energy spectra, J, π, energy levels, atomic mass excess. 15Ne(2p); measured decay products, Ep, Ip; deduced implications for 13O + p + p system. Back to Top Back to Ground-State Decays

  6. 17Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne β+-Decay Evaluated Data Measurements 1964MC16: 17Ne; measured not abstracted; deduced nuclear properties. 1966HA22: 17Ne; deduced log ft. 1967ES02: 17Ne; measured not abstracted; deduced nuclear properties. 1967FI10: 17Ne. 1971ESZR, 1971HA05: 17Ne; measured β-delayed proton spectra, Eγ, Iγ, T1/2, pγ-coin; deduced log ft. 17F deduced levels, antianalog state, isospin mixing. 1988BO39: 17Ne(β+p), (β+α); measured T1/2, β-delayed E(p), E(α), I(p), I(α), β(particle)-coin. 17Ne deduced

  7. 16Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ne Ground-State Decay Evaluated Data Measured Ground-State Γcm for 16Ne Adopted value: 122 ± 37 keV (1993TI07) Measured Mass Excess for 16Ne Adopted value: 23996 ± 20 keV (2003AU02) Measurements 1971MAXQ: 16O(π+, π-); measured particle spectra, σ. 1977HO13: 16O(π+, π-), E = 145 MeV; measured σ; deduced Q. 16Ne deduced mass excess. 1977KEZX: 20Ne(α, 8He), E = 118 MeV; measured σ. 16Ne deduced levels, mass excess. 1978BU09: 16O(π+, π-), E = 145 MeV; measured σ. 16Ne deduced mass

  8. SciBooNE/MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ž. Pavlović Los Alamos National Laboratory Fermilab Users' Meeting, 2012 SciBooNE/MiniBooNE 2 Outline * Booster Neutrino Beamline * SciBooNE & MiniBooNE experiments * New results - MB Updated neutrino appearance analysis - MB Antineutrino appearance analysis - MB Joint Neutrino & Antineutrino appearance analysis - Joint SciBooNE/MiniBooNE numubar disappearance analysis * Future prospects 3 Booster Neutrino Beam * Horn focused beam/8GeV protons from Booster * Horn polarity → neutrino

  9. NE-23:

    Office of Legacy Management (LM)

    1 , : -2 rn; NE-23: 4 Whitr%; Ms. Theresa Schaffer 3315 S. Emerald Avenue Chicago, Illinois 60616 Dear Ms. Schaffer: . -. r ;-, .4r.-,. , ' P?;c \ \ ; . EC.. ., . The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on the former General Services Administratlon 39th Street Werehouse, Chicago, Illincis, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the Manhattan

  10. NE-20

    Office of Legacy Management (LM)

    hi v. !&-2:. /qL lo 1 OCT 2 9 1984 NE-20 -. Authorization for Remedial Action of the Ashland 2 Site, Tonawanda, New York f! Joe LaGrone, Manager Oak Ridge Operations Office Based on the Aerial Radiological Survey (Attachment 1) and a "walk-on" radiologlcal survey (Attachment 2 , excerpted from the ORNL draft report "Ground-Level Investigation of Anomalous Gamma Radiation Levels in the Tonawanda, New York, Area," January 1980), the property identified as Ashland 2 is

  11. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE MicroBooNE Investigating the field of high energy physics through experiments that ... R. Dharmapalan et al. MiniBooNE Collaboration, arXiv:1211.2258 hep-ex (2012).

  12. BooNE Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research universities, predominantly undergraduate institutions, as well as a high school physics teacher. List of Collaborators The BooNE Collaboration The BooNE Collaboration...

  13. A=20Ne (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See Energy Level Diagram for 20Ne) GENERAL: See also Table 20.6 [Table of Energy Levels] (in PDF or PS). Theory: See (GA55B, HE55F, MO56, BA57, RA57). 1. 9Be(14N, t)20Ne Qm = 6.323 See (GO58E). 2. 16O(α, γ)20Ne Qm = 4.753 An unsuccessful attempt has been made to observe the isobaric spin-forbidden transition between the T = 0 states at 7.19 MeV (J = 3-) and 1.63 MeV (J = 2+). The radiative width is < 6 x 10-3 eV, indicating an admixture of T = 1 of < 1.3 x 10-3 in 20Ne*(7.19)

  14. BooNE Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos schematic of BooNE experiment A sample event (3M animated PDF file) A cosmic ray event as displayed by the MiniBooNE detector.

  15. Mo-99

    National Nuclear Security Administration (NNSA)

    its project for domestic production of molybdenum-99 (Mo-99) without highly enriched uranium (HEU).

    Mo-99 is the parent isotope of technetium-99m, which is the most widely...

  16. Morgan Wascko Imperial College London M.O. Wascko FNAL User's Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the BooNEs Morgan Wascko Imperial College London M.O. Wascko FNAL User's Meeting M. Sorel Goals of the BooNEs * MiniBooNE: Confirm or rule out LSND * SciBooNE: * Near detector measurements for MiniBooNE * Precise cross section measurements * Especially useful for T2K 2 M.O. Wascko FNAL User's Meeting Goals of the BooNEs * MiniBooNE: Confirm or rule out LSND * SciBooNE: * Near detector measurements for MiniBooNE * Precise cross section measurements * Especially useful for T2K 2 W + ν µ n p

  17. M.O. Wascko, LSU NuInt05...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O. Wascko, LSU NuInt05 26 September, 2005 MiniBooNE CC + CCQE Ratio M.O. Wascko, LSU J.R. Monroe, Columbia CC interactions Quasi-Elastic (CCQE) Inclusive Single +...

  18. MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE MicroBooNE Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email MicroBooNE schematic drawing Figure 1: A schematic drawing of the MicroBooNE liquid argon TPC detector. The main goals of the MicroBooNE experiment are: (1) to demonstrate the capabilities of a liquid argon TPC in the reconstruction of neutrino

  19. A=19Ne (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    95TI07) (See Energy Level Diagrams for 19Ne) GENERAL: See Table Prev. Table 19.26 preview 19.26 [General Table] (in PDF or PS) and Table Prev. Table 19.27 preview 19.27 [Table of Energy Levels] (in PDF or PS) here. μg.s. = -1.88542 (8) nm (1982MA39) μ0.239 = -0.740 (8) nm (1978LEZA) 1. 19Ne(β+)19F Qm = 3.238 We adopt the half-life of 19Ne suggested by (1983AD03): 17.34 ± 0.09 s. See also (1978AJ03). The decay is principally to 19Fg.s.: see Table Prev. Table 19.29 preview 19.29 (in PDF or

  20. Mo-99

    National Nuclear Security Administration (NNSA)

    NorthStar Medical Radioisotopes to further develop its technology to produce Mo-99 via neutron capture, bringing the total NNSA support to this project to the maximum of 25...

  1. BooNE: Posters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters What's a Neutrino? How neutrinos fit into our understanding of the universe. Recipe for a Neutrino Beam Start with some protons... concocting the MiniBooNE beam. The MiniBooNE Detector Tracking the traces of neutrino interactions. Of Neutrino Mass, and Oscillation What oscillates in neutrino oscillations, and why it matters

  2. BooNE: Picture Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Picture Gallery BooNE Collaboration Members of the BooNE collaboration Civil Construction Pictorial progress of BooNE civil construction work Detector Installation Pictorial progress of MiniBooNE detector installation BooNE Scrapbook A selection from BooNE Audio Gallery Horn Concerto The Horn Concerto is a recording of the BooNE horn and the NuMI horn sounding at the same time. The rat-a-tat is BooNE; the syncopated boom is NuMI.

  3. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 05/15/2012) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1981DY03 20Ne(p, p'γ): σ for production of γ-rays threshold - 23 1.63-MeV γ-rays X4 03/15/2011 20Ne(p, pαγ): σ for production of γ-rays threshold - 23 6.13-MeV γ-rays 1975RO08 20Ne(p, γ): S-factors 0.37 - 2.10 Direct Capture (DC) → 332-keV state, DC → 2425-keV state, tail of 2425-keV state X4 04/19/2011 20Ne(p, γ): differential σ at θγ = 90° DC → 332-keV state, 332-keV state →

  4. MiniBooNE

    SciTech Connect (OSTI)

    Mahn, Kendall Brianna Mcconnel; /Columbia U.

    2007-03-01

    MiniBooNE is a short baseline neutrino experiment designed to confirm or refute the LSND observed excess of electron anti neutrinos in a muon anti neutrino beam. The experimental setup, data samples, and oscillation fit method are discussed. Although the result was not public at the time of the talk, MiniBooNE has since published results, which are discussed briefly as well.

  5. 20Ne Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20Ne(α, X) (Current as of 02/08/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1983SC17 20Ne(α, γ): deduced S-factor of capture σ 0.55 - 3.2 X4 09/15/2011 1997WI12 20Ne(α, γ): deduced primary transitions yield 1.64 - 2.65 X4 09/15/2011 1999KO34 20Ne(α, γ): γ-ray yield for the transition 1.9 - 2.8 g.s. 01/03/2012 1369 keV g.s. 10917 keV g.s., 1369 keV 11016 keV g.s. 1975KU06 20Ne(α, γ): σ 2.5 - 20 X4 09/15/2011 1968HI02 20Ne(α, γ): σ 3 - 6 X4 09/15/2011

  6. BooNE: Interesting Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interesting Facts About the BooNE experiment: BooNE is the only experiment to search the entire range covered by the LSND oscillation signal. First proposed in 1997, BooNE will be ready to collect data in summer, 2002. The BooNE collaboration is small by high energy physics standards, having 65 physicists from 13 instiutions. If BooNE detects a supernova, it will send an automatic signal to telescopes around the world describing its position. BooNE collaboration - click to enlarge About the

  7. BooNE versus MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Los Alamos LSND experiment. MiniBooNE represents the first phase for the BooNE collaboration and consists of a 1 GeV neutrino beam and a single, 800-ton mineral oil...

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Picture Gallery BooNE Collaboration Members of the BooNE collaboration Civil Construction Pictorial progress of BooNE civil construction work Detector Installation Pictorial...

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Booster Neutrino Experiment (BooNE) Goals of BooNE BooNE in a Nutshell Making Neutrinos Detecting Neutrinos

  10. US NE MA Site Consumption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NE MA Site Consumption million Btu 0 500 1,000 1,500 2,000 2,500 3,000 US NE MA ... 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours 0 250 500 750 1,000 ...

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Booster Neutrino Experiment (BooNE) BooNE vs MiniBooNE Interesting Facts Posters Virtual Tour Picture Gallery News Articles Technical Information BooNE Proposal Original...

  12. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The DOE Tours MicroBooNE! - Nov. 27, 2012

  13. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress in Delivering Beam to MiniBooNE

  14. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE In the News MicroBooNE internal newletters (password protected) National Lab Science Day (public debut of virtual MicroBooNE), Fermilab News, 042916 MicroBooNE Project ...

  15. UPdate THE NE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UPdate THE NE January 2014 Edition U.S. Department of Energy's Nuclear Energy University Programs It's not every day graduate students get to meet one of nuclear energy's most important decision makers. Integrated University Program (IUP) Fellows had this opportunity at the 2013 Winter American Nuclear Society (ANS) Meeting this past November in Washington, D.C. Department of Energy Assistant Secretary for Nuclear Energy, Dr. Pete Lyons, greeted IUP Fellows in a special meeting to discuss

  16. NE-23 W

    Office of Legacy Management (LM)

    >:-1. ,- '"CC3 . ' NE-23 .+ W h itm~ l-l& Mr. Victor 3. Canilov, Director Museum of Science and Industry East 57th Street and Lake Shore Drive Chicago, Illinois 60037 Dear kr. Danilov: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSPSIP), has reviewed information on the Museum cf Science and Industry, Chicago, Illinois, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the

  17. Santa Fe, NM 87506

    Office of Environmental Management (EM)

    July 31, 2014 Ms. Kimberly Davis Lebak Manager Los Alamos Field Office 3747 West Jemez Road, MS A316 Los Alamos, NM 87544 Mr. Pete Maggiore Assistant Manager for Environmental Operations 3747 West Jemez Road, MS A316 Los Alamos, NM 87544 Dear Ms. Lebak and Mr. Maggiore, I am pleased to enclose Recommendation 2014-02, unanimously approved by the Northern New Mexico Citizens' Advisory Board at its July 30 th meeting in Santa Fe. Please call Lee Bishop, DDFO or Menice Santistevan, Executive

  18. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciBooNE Detector TargetHorn SciBooNE constraint reduces error at MiniBooNE * Flux errors become 1-2% level: negligible for this analysis * Cross-section errors reduced, but...

  19. MiniBooNE E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from MiniBooNE * MiniBooNE * Neutrino cross-sections * Quasielastic and elastic scattering * Hadron production channels * Neutrino Oscillations * Antineutrino Oscillations...

  20. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE-darkmatter collaboration Original MiniBooNE collaboration From script reading a simple data base, last updated 2008. from inspirehep.net Booster Neutrino...

  1. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated collaboration list for presentations: powerpoint pdf map collaboration photo MicroBooNE organizational chart MicroBooNE contact list (password required) (IB) ...

  2. LOS ALAMOS, N.M., May 13, 2013-Today, Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domestic production of medical isotope Mo-99 moves a step closer May 13, 2013 Los Alamos team produces molybdenum-99 from irradiation of low enriched uranium solution LOS ALAMOS, N.M., May 13, 2013-Today, Los Alamos National Laboratory announced that for the first time, irradiated low-enriched uranium (LEU) fuel has been recycled and reused for molybdenum-99 (Mo-99) production, with virtually no losses in Mo-99 yields or uranium recovery. This demonstrates the viability of the separation

  3. Santa Fe, NM 87506

    Office of Environmental Management (EM)

    Large Format Carbon Enhanced VRLA Battery Test Results EESAT 2009 Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL) October 4 - 7, 2009 Seattle, Washington Presented by: Tom Hund Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear

  4. A=14Ne (1981AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1AJ01) (Not illustrated) 14Ne has not been observed. See (1976BE1V

  5. Santa Fe, NM 87506

    Office of Environmental Management (EM)

    5 Ms. Christine Gelles, Acting Manager EM-LA Field Office 3747 West Jemez Road, MS A316 Los Alamos, NM 87544 Dear Ms. Gelles, I am pleased to enclose Recommendation 2015-03, unanimously approved by the Northern New Mexico Citizens' Advisory Board at its April 8, 2015 Combined Committee meeting in Pojoaque, New Mexico. Please call Lee Bishop, Co-DDFO, Michael Gardipe, Co-DDFO, or Menice Santistevan, Executive Director, if you have questions regarding this recommendation. We look forward to the

  6. Beyond standard model searches in the MiniBooNE experiment

    SciTech Connect (OSTI)

    Katori, Teppei; Conrad, Janet M.

    2014-08-05

    The MiniBooNE experiment has contributed substantially to beyond standard model searches in the neutrino sector. The experiment was originally designed to test the Δm2<mo>~>1eV2 region of the sterile neutrino hypothesis by observing νe(ν<mo>-mo>e) charged current quasielastic signals from a νμ(ν<mo>-mo>μ) beam. MiniBooNE observed excesses of νe and ν<mo>-mo>e candidate events in neutrino and antineutrino mode, respectively. To date, these excesses have not been explained within the neutrino standard model (νSM); the standard model extended for three massive neutrinos. Confirmation is required by future experiments such as MicroBooNE. MiniBooNE also provided an opportunity for precision studies of Lorentz violation. The results set strict limits for the first time on several parameters of the standard-model extension, the generic formalism for considering Lorentz violation. Most recently, an extension to MiniBooNE running, with a beam tuned in beam-dump mode, is being performed to search for dark sector particles. In addition, this review describes these studies, demonstrating that short baseline neutrino experiments

  7. PNM Resources 2401 Aztec NE, MS-Z100

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PNM Resources 2401 Aztec NE, MS-Z100 Albuquerque, NM 87107 505-241-2025 Fax 505 241-2384 PNMResources.com October 29, 2013 Mr. Christopher Lawrence Office of Electricity Delivery and Energy Reliability (OE-20) U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Submitted electronically via email to: Christopher.Lawrence@hq.doe.gov Dear Mr. Lawrence: Subject: Department of Energy (DOE)- Improving Performance of Federal Permitting and Review of Infrastructure Projects,

  8. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interesting Facts About the Booster Neutrino Experiment (BooNE): BooNE is the only experiment to search the entire range covered by the LSND oscillation signal. First proposed in 1997, BooNE has been collecting data since August 2002. The BooNE collaboration is small by high energy physics standards, comprising 75 physicists from 16 instiutions. If BooNE detects a supernova, it will send an automatic signal to telescopes around the world describing its position. BooNE collaboration - click to

  9. ICARUS/MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) ICARUS/MicroBooNE ν ( Φ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 µ ν µ ν e ν e ν

  10. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Releases This page provides MiniBooNE data (histograms, error matrices, ntuples, etc) released in association with particular publications. Only the subset of MiniBooNE papers...

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (505) 695 8364 BooNE Experiment: contact-boone@fnal.gov Current Shifter: (505) 500 5511 Detector Enclosure: (630) 840 6881 or 6081 BooNE Collaborators and Associates:...

  12. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goals of BooNE BooNE's primary goal is to investigate the neutrino oscillation signal reported by the Los Alamos Liquid Scintillator Neutrino Detector (LSND) experiment. In 1995,...

  13. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sept. 3, 1999 - The MiniBooNE Detector: The Teletubby Design 1998: Oct. 30, 1998 - Good Physics in a Small Package June 5, 1998 - MiniBooNE Faces the PAC May 1, 1998 - The...

  14. About the MicroBooNE Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE The MicroBooNE collaboration is currently operating a large 170-ton liquid Argon Time Projection Chamber (LArTPC) that is located on the Booster neutrino beam line at...

  15. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event Excess in the MiniBooNE Search for bar numu rightarrow bar nue Oscillations", arXiv:1007.1150 hep-ex,Phys.Rev.Lett.105,181801 (2010) The following MiniBooNE...

  16. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Los Alamos LSND experiment. MiniBooNE represents the first phase for the BooNE collaboration and consists of a 1 GeV neutrino beam and a single, 800-ton mineral oil...

  17. A=14Ne (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ01) (Not illustrated) 14Ne, 14Na and 14Mg have not been observed. See (1983ANZQ

  18. A=14Ne (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91AJ01) (Not illustrated) 14Ne, 14Na and 14Mg have not been observed. See (1986AN07

  19. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Collaboration Photos Click on image to view larger version April 2016 October 2014

  20. MoS2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... mechanisms for its eventual aging and demise. Figure 3: Typical x-ray diffraction of the poorly crystalline MoS phase. (reference 5) Often transmission electron microscopy (TEM) ...

  1. A=18Ne (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (Not illustrated) Theory: See (RA57). 1. 18Ne(β+)18F Qm = 4.227 The maximum energy of the positrons is 3.2 ± 0.2 MeV, the half-life is 1.6 ± 0.2 sec: log ft = 2.9 ± 0.2 (GO54D). See also (DZ56). 2. 16O(3He, n)18Ne Qm = -2.966 See (KU53A). 3. 19F(p, 2n)18Ne Qm = -15.424 See (GO54D). 4. 20Ne(p, t)18Ne Qm = -19.812 Not reported

  2. A=17Ne (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See the Isobar Diagram for 17Ne) GENERAL: See also (1971AJ02) and Table 17.20 [Table of Energy Levels] (in PDF or PS). Theory and reviews: (1971HA1Y, 1973HA77, 1973RE17, 1975BE31). Mass of 17Ne: The mass excess of 17Ne, determined from a measurement of the Q-value of 20Ne(3He, 6He)17Ne is 16.48 ± 0.05 MeV (1970ME11, 1972CE1A). Then 17Ne - 17F = 14.53 MeV and Eb for p, 3He and α are, respectively, 1.50, 6.46 and 9.05 MeV. See also (1971AJ02). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93

  3. NM Invest | Open Energy Information

    Open Energy Info (EERE)

    Invest Jump to: navigation, search Name: NM Invest Place: Tyler, Texas Zip: 75703 Sector: Renewable Energy Product: Texas-based mezzanine investor to renewable projects, primarily...

  4. Ne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    m er of 2002, the cross sections for an 8 GeV proton beam on Be were m easured by the HARP ex perim ent at CERN. Harp Setup Intro ductio n Im po rtant s te ps s ince las t re v...

  5. MicroBooNE MicroBooNE Andrzej Szelc Yale University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE MicroBooNE Andrzej Szelc Yale University 2 Outline ● The LArTPC. ● Physics with MicroBooNE. ● The MicroBooNE detector. 3 LArTPC Operation ● Charged particles in argon create electron-ion pairs and scintillation light. ● Electrons are drifted towards the anode wires. ● Multiple anode planes together with drift time allow 3D reconstruction. ● Collected charge allows calorimetric reconstruction. time 4 US LAr R&D Program 5 MicroBooNE Physics Goals 6 MiniBooNE

  6. 9 Cr-- 1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  7. DOE - Office of Legacy Management -- Bayo Canyon NM Site - NM...

    Office of Legacy Management (LM)

    Land Surveying Preconstruction Meeting. August 13, 1982. NM.01-9 - Letter, R.L. Copper to G. Dawson. September 10, 1982. Required items for Purchase Contract 14501-01...

  8. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contents: Pion Group Home Pion Group Members Pion References Colin's Cross Section Page MiniBooNE Internal Email M. Tzanov....

  9. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Releases This page provides MiniBooNE data (histograms, error matrices, ntuples, etc) released in association with particular publications. Only the subset of MiniBooNE papers with released data are listed here. Refer to the Publications page for a complete list of MiniBooNE publications. Other MiniBooNE Data Releases: Data Released with A.A. Aguilar-Arevalo et al., "First Measurement of the Muon Antineutrino Double-Differential Charged-Current Quasielastic Cross section",

  10. A=19Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ03) (See Energy Level Diagrams for 19Ne) GENERAL: See (1972AJ02) and Table 19.24 [Table of Energy Levels] (in PDF or PS). Nuclear models: (1972EN03, 1972NE1B, 1972WE01, 1973DE13, 1977BU05). Electromagnetic transitions: (1972EN03, 1972LE06, 1973HA53, 1973PE09, 1977BU05). Special states: (1972EN03, 1972GA14, 1972HI17, 1972NE1B, 1972WE01, 1977BU05, 1977SC08). Complex reactions involving 19Ne: (1976HI05, 1977BU05). Astrophsyical questions: (1973CL1E). Muon capture: (1972MI11). Pion capture and

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scrapbook Page 2 The BooNE collaboration in winter. A tour of the construction site. Working with the BooNE Horn. BooNE in the winter A tour of the construction site. A day with the Horn Janet, Bonnie, and Jen in the Tank. Janet and Bill: the early years. Bill, Richard, Jeff, and Shawn in the midst of discussion. Preparing the tubes Janet and Bill: the early days Discussion in progress The oil tanker arrives. The final stages of oil filling. The BooNE Collaboration in the summer. The oil tanker

  12. US WNC MO Site Consumption

    Gasoline and Diesel Fuel Update (EIA)

    WNC MO Site Consumption million Btu 0 500 1,000 1,500 2,000 2,500 US WNC MO ... 9,000 12,000 15,000 US WNC MO Site Consumption kilowatthours 0 300 600 900 1,200 ...

  13. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Details This page provides information on the MiniBooNE experiment. Images are linked in their own page with captions. Additional resources are the Talks, Slides and Posters page, Publications page, and Data Release page Beamline Flux Detector Cross sections Light Propagation (Optical Model) Calibration Particle Identification BooNE photo montage

  14. A=16Ne (1982AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    82AJ01) (See the Isobar Diagram for 16Ne) GENERAL: See also (1977AJ02) and Table 16.27 [Table of Energy Levels] (in PDF or PS). Theoretical work: (1978GU10, 1978SP1C, 1981LI1M). Reviews: (1977CE05, 1979AL1J, 1980TR1E). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to an atomic mass excess of 24.02 ± 0.04 MeV for 16Ne. 16Ne is then unbound with respect to decay into 14O + 2p by 1.43 MeV and is bound with respect to decay into 15F + p by 0.04 MeV. 1. 16O(π+,

  15. A=17Ne (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93TI07) (See the Isobar Diagram for 17Ne) GENERAL: See Table Prev. Table 17.26 preview 17.26 [Table of Energy Levels] (in PDF or PS). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.928 (b) 17Ne(β+)17F → 13N + α Qm = 8.711 (c) 17Ne(β+)17F Qm = 14.529 The half-life of 17Ne has been reported as 109.0 ± 1.0 msec (1971HA05) and 109.3 ± 0.6 msec (1988BO39): the weighted mean is 109.2 ± 0.6 and we adopt it. The decay is primarily to the proton unstable states of 17F at 4.65, 5.49, 6.04 and 8.08 MeV

  16. Corrosion report for the U-Mo fuel concept

    SciTech Connect (OSTI)

    Henager, Jr., Charles H.; Bennett, Wendy D.; Doherty, Ann L.; Fuller, E. S.; Hardy, John S.; Omberg, Ronald P.

    2014-08-28

    The Fuel Cycle Research and Development (FCRD) program of the Office of Nuclear Energy (NE) has implemented a program to develop a Uranium-Molybdenum (U-Mo) metal fuel for Light Water Reactors (LWR)s. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties, which includes high thermal conductivity for less stored heat energy. With sufficient development, it may be able to provide the Light Water industry with a melt-resistant accident tolerant fuel with improved safety response. However, the corrosion of this fuel in reactor water environments needs to be further explored and optimized by additional alloying. The Pacific Northwest National Laboratory has been tasked with performing ex-reactor corrosion testing to characterize the performance of U-Mo fuel. This report documents the results of the effort to characterize and develop the U-Mo metal fuel concept for LWRs with regard to corrosion testing. The results of a simple screening test in buffered water at 30°C using surface alloyed U-10Mo is documented and discussed. The screening test was used to guide the selection of several potential alloy improvements that were found and are recommended for further testing in autoclaves to simulate PWR water conditions more closely.

  17. FY16 NE Budget Request Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 NE Budget Request Presentation FY16 NE Budget Request Presentation PDF icon Office of Nuclear Energy FY16 Budget Request Presentation More Documents & Publications FY17 NE Budget ...

  18. 2011 Annual Planning Summary for Nuclear Energy (NE) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy (NE) 2011 Annual Planning Summary for Nuclear Energy (NE) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 ...

  19. In Situ Time-Resolved Characterization of Ni-MoO2 Catalysts for the Water-Gas Shift Reaction

    SciTech Connect (OSTI)

    Wen,W.; Calderon, J.; Brito, J.; Marinkovic, N.; Hanson, J.; Rodriquez, J.

    2008-01-01

    Active catalysts for the water-gas shift (WGS, CO + H2O ? H2 + CO2) reaction were synthesized from nickel molybdates ({beta}-NiMoO4 and nH2O{center_dot}NiMoO4) as precursors, and their structural transformations were monitored using in situ time-resolved X-ray diffraction and X-ray absorption near-edge spectroscopy. In general, the nickel molybdates were not stable and underwent partial reduction in the presence of CO or CO/H2O mixtures at high temperatures. The interaction of {beta}-NiMoO4 with the WGS reactants at 500 C led to the formation of a mixture of Ni (24 nm particle size) and MoO2 (10 nm particle size). These Ni-MoO2 systems displayed good catalytic activity at 350, 400, and 500 C. At 350 and 400 C, catalytic tests revealed that the Ni-MoO2 system was much more active than isolated Ni (some activity) or isolated MoO2 (negligible activity). Thus, cooperative interactions between the admetal and oxide support were probably responsible for the high WGS activity of Ni-MoO2. In a second synthetic approach, the NiMoO4 hydrate was reduced to a mixture of metallic Ni, NiO, and amorphous molybdenum oxide by direct reaction with H2 gas at 350 C. In the first pass of the water-gas shift reaction, MoO2 appeared gradually at 500 C with a concurrent increase of the catalytic activity. For these catalysts, the particle size of Ni (4 nm) was much smaller than that of the MoO2 (13 nm). These systems were found to be much more active WGS catalysts than Cu-MoO2, which in turn is superior to commercial low-temperature Cu-ZnO catalysts.

  20. MiniBooNE Flux Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Neutrino Flux Prediction at MiniBooNE", arXiv:0806.1449 [hep-ex], Phys. Rev. D. 79, 072002 (2009) The following MiniBooNE information from the large flux paper in 2009 is made available to the public: Text files containing flux information for each neutrino species Positive horn polarity (neutrino-enhanced mode) Negative horn polarity (anti neutrino-enhanced mode) Contact Information For clarifications on how to use MiniBooNE public data or for enquiries about additional data not linked

  1. NE - Nuclear Energy - Energy Conservation Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NUCLEAR ENERGY (NE) ENERGY CONSERVATION PLAN NE has heavily emphasized the use of flexiplace, both regular and situational. Since approximately 56 percent of NE staff use flexiplace, our plan is based on the Forrestal/Germantown (FORS/GTN) office spaces, and flexiplace office space. There are other common sense actions and policies that will be used to improve energy efficiency in the offices at both FORS and GTN. In the FORS/GTN office space: 1. Use flexiplace to the maximum extent possible.

  2. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings This page contains links to conference proceedings submitted by members of the MiniBooNE collaboration New Guidelines for Submitting Proceedings at MiniBooNE: As of June 2007, we have changed the rules on conference proceedings. Proceedings must be read by one other MiniBooNE person (besides the author) of postdoc level or above before being submitted. Proceedings should also be sent to boone-talks@fnal.gov for archiving on this website. back to Talks page Speaker Proceedings Info

  3. The MicroBooNE Experiment - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents and Publications Public Notes See the Public Notes Page for a list of notes with results made public by the MicroBooNE collaboration. Presentations See the Talks Page for copies of slides and posters presented at conferences and workshops. MicroBooNE DocDB Like most experiments at Fermilab, MicroBooNE uses DocDB - a documents database. Much of the contents of the DocDB are restricted to members of the collaboration, but some items are public. Use the link below to enter the public

  4. 1. Hallam Nuclear Power Facility, NE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5. University of California, CA 1982 1998 6. AcidPueblo Canyons, NM 1984 1999 7. Chupadera Mesa, NM 1984 1999 8. Canonsburg, PA 1986 1999 9.Shiprock, NM 1987 2000 10. Middlesex ...

  5. Multiphonon resonant Raman scattering in MoS{sub 2}

    SciTech Connect (OSTI)

    Gołasa, K. Grzeszczyk, M.; Wysmołek, A.; Babiński, A.; Leszczyński, P.; Faugeras, C.; Nicolet, A. A. L.; Potemski, M.

    2014-03-03

    Optical emission spectrum of a resonantly (λ = 632.8 nm) excited molybdenum disulfide (MoS{sub 2}) is studied at liquid helium temperature. More than 20 peaks in the energy range spanning up to 1400 cm{sup −1} from the laser line, which are related to multiphonon resonant Raman scattering processes, are observed. The attribution of the observed lines involving basic lattice vibrational modes of MoS{sub 2} and both the longitudinal (LA(M)) and the transverse (TA(M) and/or ZA(M)) acoustic phonons from the vicinity of the high-symmetry M point of the MoS{sub 2} Brillouin zone is proposed.

  6. The NeXus data format

    SciTech Connect (OSTI)

    Könnecke, Mark; Akeroyd, Frederick A.; Bernstein, Herbert J.; Brewster, Aaron S.; Campbell, Stuart I.; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe; Jemian, Pete R.; Männicke, David; Osborn, Raymond; Peterson, Peter F.; Richter, Tobias; Suzuki, Jiro; Watts, Benjamin; Wintersberger, Eugen; Wuttke, Joachim

    2015-01-30

    NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitions for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.

  7. A=16Ne (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ04) (See the Isobar Diagram for 16Ne) GENERAL: See also (1982AJ01) and Table 16.26 [Table of Energy Levels] (in PDF or PS) here. See (1981SE1B, 1983ANZQ, 1985AN28, 1985MA1X). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to atomic mass excesses of 23.93 ± 0.08 MeV (1978KE06), 23.978 ± 0.024 MeV (1983WO01) and 24.048 ± 0.045 MeV (1980BU15) [recalculated using the (1985WA02) masses for 8He, 16O and 20Ne]. The weighted mean is 23.989 ± 0.020 MeV which is

  8. A=16Ne (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93TI07) (See the Isobar Diagram for 16Ne) GENERAL: See Table Prev. Table 16.29 preview 16.29 [General Table] (in PDF or PS) and Table Prev. Table 16.32 preview 16.32 [Table of Energy Levels] (in PDF or PS). Mass of 16Ne: The Q-values of the 20Ne(α, 8He) and 16O(π+, π-) reactions lead to atomic mass excesses of 23.93 ± 0.08 MeV (1978KE06), 23.978 ± 0.024 MeV (1983WO01) and 24.048 ± 0.045 MeV (1980BU15) [recalculated using the (1985WA02) masses for 8He, 16O and 20Ne]. The weighted mean is

  9. A=17Ne (1982AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    82AJ01) (See the Isobar Diagram for 17Ne) GENERAL: See (1977AJ02) and Table 17.22 [Table of Energy Levels] (in PDF or PS). Theory and reviews:(1975BE56, 1977CE05, 1978GU10, 1978WO1E, 1979BE1H). Other topics:(1981GR08). Mass of 17Ne: The mass excess adopted by (1977WA08) is 16.478 ± 0.026 MeV, based on unpublished data. We retain the mass excess 16.48 ± 0.05 MeV based on the evidence reviewed in (1977AJ02). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93 (b) 17Ne(β+)17F Qm = 14.53 The half-life of

  10. A=17Ne (1986AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ04) (See the Isobar Diagram for 17Ne) GENERAL: See (1982AJ01) and Table 17.20 [Table of Energy Levels] (in PDF or PS). Theory and reviews: (1983ANZQ, 1983AU1B, 1985AN28). 1. (a) 17Ne(β+)17F* → 16O + p Qm = 13.93 (b) 17Ne(β+)17F Qm = 14.53 The half-life of 17Ne is 109.0 ± 1.0 msec (1971HA05). Earlier values (see (1971AJ02)) gave a mean value of 108.0 ± 2.7 msec. The decay is primarily to the proton unstable states of 17F at 4.70, 5.52 and 6.04 MeV with Jπ = 3/2-, 3/2- and 1/2-: see

  11. UCB-NE-107 user's manual

    SciTech Connect (OSTI)

    Lee, W.W.L.

    1989-03-01

    The purpose of this manual is to provide users of UCB-NE-107 with the information necessary to use UCB-NE-107 effectively. UCB-NE-107 is a computer code for calculating the fractional rate of readily soluble radionuclides that are released from nuclear waste emplaced in water-saturated porous media. Waste placed in such environments will gradually dissolve. For many species such as actinides and rare earths, the process of dissolution is governed by the exterior flow field, and the chemical reaction rate or leaching rate. However, for readily soluble species such as /sup 135/Cs, /sup 137/Cs, and /sup 129/I, it has been observed that their dissolution rates are rapid. UCB-NE-107 is a code for calculating the release rate at the waste/rock interface, to check compliance with the US Nuclear Regulatory Commission's (USNRC) subsystem performance objective. It is an implementation of the analytic solution given below. 5 refs., 2 figs.

  12. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (numbers, plots, details) of the MiniBooNE experiment and analysis pieces. Images are linked in their own page with captions. Additional resources are the Talks, Slides and...

  13. MiniBooNE Flux Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on how to use MiniBooNE public data or for enquiries about additional data not linked from this page, please contact: Steve Brice or Richard Van de Water Acknowledgments If...

  14. The NeXus data format

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Könnecke, Mark; Akeroyd, Frederick A.; Bernstein, Herbert J.; Brewster, Aaron S.; Campbell, Stuart I.; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe; Jemian, Pete R.; Männicke, David; et al

    2015-01-30

    NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitionsmore » for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.« less

  15. MiniBooNE Cross Sections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSECTIONS(AT)fnal.gov convenors: Alessandro Curioni (alessandro.curioni(AT)yale.edu) and Sam Zeller (gzeller(AT)fnal.gov) Cross Sections at MiniBooNE, Meetings, Reference Articles,...

  16. A=20Ne (72AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ) elastic scattering. It is interpreted in terms of a quasi-molecular -particle cluster model (CO69S). See also (WA65M). 18. 17O(, n)20Ne Qm 0.588 Angular...

  17. A=18Ne (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    95TI07) (See Energy Level Diagrams for 18Ne) GENERAL: See Table Prev. Table 18.35 preview 18.35 [General Table] (in PDF or PS) and Table Prev. Table 18.36 preview 18.36 [Table of Energy Levels] (in PDF or PS). For B(E2) of 18Ne*(1.89) and other parameters see (1987RA01) and Table Prev. Table 2 preview 2 in the Introduction. 1. 18Ne(β+)18F Qm = 4.446 The half-life of 18Ne is 1672 ± 8 ms: see (1978AJ03) and (1983AD03). The decay is primarily to 18F*(0, 1.04, 1.70 MeV). In addition there is an

  18. MiniBooNE Nue Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Appearance at the m2 1 eV2 Scale", arXiv:0704.1500 hep-ex, Phys. Rev. Lett. 98, 231801 (2007) The following MiniBooNE information from the first oscillation paper in...

  19. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    elastic cross-section paper is on the archive (arXiv:1309.7257) and has been published in Phys. Rev. D91, 012004 (2015). MiniBooNE's antineutrino charged current quasi-elastic...

  20. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Anti-Neutrino Appearance at the m2 1 eV2 Scale", arXiv:0904.1958 hep-ex, Phys. Rev. Lett. 103, 111801 (2009) The following MiniBooNE information from the 2009...

  1. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters What's a Neutrino? How neutrinos fit into our understanding of the universe. Recipe for a Neutrino Beam Start with some protons... concocting the MiniBooNE beam. The...

  2. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BooNE will investigate the question of neutrino mass by searching for oscillations of muon neutrinos into electron neutrinos. This will be done by directing a muon neutrino beam...

  3. The MicroBooNE Experiment - Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact MicroBooNE Spokespeople: Bonnie Fleming, Yale email: bonnie.fleming(AT)yale.edu phone: (203) 432-3235 Sam Zeller, FNAL email: gzeller(AT)fnal.gov phone: (630) 840-6879 Collaboration Members

  4. Mo#va#on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    = a n i nherent l imita#ons of both: h ot & c old f usion r eac#ons: Hot (well--- d eformed r adioac1ve ac1nides ( Act.) t argets a re u sed a nd compound n ucleus i s q uite e xcited ) * a8empts o f g oing b eyond the r eac#ons A ct. + 48 Ca b y using h eavier p rojec#les l ike 50 Ti, 54 Cr, 58 Fe, a nd 64 Ni gave n o r esults s o f ar. * all h eavier a c#nides w ith Z>98 l ive t o s hort t hat o ne could p erform t arget w ith them. Cold ( magic n uclei a s t argets a re u sed w ith

  5. {beta} decay of {sup 26}Ne

    SciTech Connect (OSTI)

    Weissman, L.; Lisetskiy, A.F.; Arndt, O.; Dillmann, I.; Hallmann, O.; Kratz, K.L.; Pfeiffer, B.; Bergmann, U.; Cederkall, J.; Fraile, L.; Koester, U.; Franchoo, S.; Gaudefroy, L.; Sorlin, O.; Tabor, S.

    2004-11-01

    A pure neutron-rich {sup 26}Ne beam was obtained at the ISOLDE facility using isobaric selectivity. This was achieved by a combination of a plasma ion source with a cooled transfer line and subsequent mass separation. The high quality of the beam and good statistics allowed us to obtain new experimental information on the {sup 26}Ne {beta}-decay properties and resolve a contradiction between earlier experimental data and prediction of shell-model calculations.

  6. NE Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Press Releases NE Press Releases RSS July 6, 2016 Energy Department To Fund Radiochemistry Traineeship Program The Energy Department's offices of Nuclear Energy (NE) and Environmental Management (EM) are co-funding a new traineeship program in radiochemistry at Washington State University (WSU) in Pullman. June 14, 2016 Energy Department Invests $82 Million to Advanced Nuclear Technology In total, 93 projects were selected to receive funding that will help push innovative nuclear technologies

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Articles FermiNews Fermilab's biweekly magazine (several stories) Beam Line: Special Neutrino Issue A special issue of SLAC's quarterly magazine. Earth & Sky "Catching Ghost Particles": Interview with Janet Conrad Columbia Magazine "The Nature of the Neutrino": MiniBooNE and neutrinos The Los Angeles Times "It's No Small Matter": K. C. Cole's article detailing her summer 2003 stint at Fermilab working on MiniBooNE [text only]

  8. MicroBooNE Detector Move

    ScienceCinema (OSTI)

    Flemming, Bonnie; Rameika, Gina

    2014-07-15

    On Monday, June 23, 2014 the MicroBooNE detector -- a 30-ton vessel that will be used to study ghostly particles called neutrinos -- was transported three miles across the Fermilab site and gently lowered into the laboratory's Liquid-Argon Test Facility. This video documents that move, some taken with time-lapse camerad, and shows the process of getting the MicroBooNE detector to its new home.

  9. MicroBooNE Detector Stability MICROBOONE-NOTE-1013-PUB The MicroBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Detector Stability MICROBOONE-NOTE-1013-PUB The MicroBooNE Collaboration June 30, 2016 Abstract The Micro Booster Neutrino Experiment (MicroBooNE) is designed to explore the low- energy excess in the ν e event spectrum reported by the MiniBooNE experiment [1] and to measure ν-Ar cross sections in the 1 GeV energy range. The detector is a liquid argon time projection chamber with wire readout, supplemented with a light detection system based on photo-multiplier tubes (PMTs). The

  10. FY17 NE Budget Request Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY17 NE Budget Request Presentation FY17 NE Budget Request Presentation FY17 NE Budget Request Presentation (2.07 MB) More Documents & Publications FY16 NE Budget Request Presentation Office of Nuclear Energy Fiscal Year 2014 Budget Request Assessment of Small Modular Reactor Suitability for Use On or Near Air Force Space Command Installations SAND 2016-2600

  11. MiniBooNE at All Experimenter's Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    100807 MiniBooNE Status Report R.G. Van de Water 100107 MiniBooNE Status Report R.G. Van de Water 080607 MiniBooNE Status Report Steve Brice 073007 MiniBooNE Status...

  12. Cross section analyses in MiniBooNE and SciBooNE experiments

    SciTech Connect (OSTI)

    Katori, Teppei

    2015-05-15

    The MiniBooNE experiment (2002-2012) and the SciBooNE experiment (2007-2008) are modern high statistics neutrino experiments, and they developed many new ideas in neutrino cross section analyses. In this note, I discuss selected topics of these analyses.

  13. High reflectance and low stress Mo2C/Be multilayers

    DOE Patents [OSTI]

    Bajt, Sasa; Barbee, Jr., Troy W.

    2001-01-01

    A material for extreme ultraviolet (EUV) multilayers that will reflect at about 11.3 nm, have a high reflectance, low stress, and high thermal and radiation stability. The material consists of alternating layers of Mo.sub.2 C and Be deposited by DC magnetron sputtering on a substrate, such as silicon. In one example a Mo.sub.2 C/Be multilayer gave 65.2% reflectance at 11.25 nm measured at 5 degrees off normal incidence angle, and consisted of 70 bilayers with a deposition period of 5.78 nm, and was deposited at 0.83 mTorr argon (Ar) sputtering pressure, with the first and last layers being Be. The stress of the multilayer is tensile and only +88 MPa, compared to +330 MPa of a Mo/Be multilayers of the same thickness. The Mo.sub.2 C/Be multilayer was capped with carbon which produced an increase in reflectivity of about 7% over a similar multilayer with no carbon capping material, thus raising the reflectivity from 58.3% to over 65%. The multilayers were formed using either Mo.sub.2 C or Be as the first and last layers, and initial testing has shown the formation of beryllium carbide at the interfaces between the layers which both stabilizes and has a smoothing effect, and appear to be smoother than the interfaces in Mo/Be multilayers.

  14. MiniBooNE Nue Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Appearance at the Δm2 ~1 eV2 Scale", arXiv:0704.1500 [hep-ex], Phys. Rev. Lett. 98, 231801 (2007) The following MiniBooNE information from the first oscillation paper in 2007 is made available to the public: Energy Range for Default Oscillation Fit (475 MeV - 3000 MeV reconstructed neutrino energy) ntuple file of official MiniBooNE sin2(2theta) sensitivity and upper limit curves as a function of Dm2, for a 2-neutrino muon-to-electron oscillation fit, and 90% and 3sigma confidence

  15. MiniBooNE Nuebar Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search for Electron Anti-Neutrino Appearance at the Δm2 ~1 eV2 Scale", arXiv:0904.1958 [hep-ex], Phys. Rev. Lett. 103, 111801 (2009) The following MiniBooNE information from the 2009 nuebar appearance paper is made available to the public: Energy Range: 475 MeV - 3000 MeV reconstructed neutrino energy ntuple file of MiniBooNE sin2(2theta) sensitivity and upper limit curves as a function of Dm2, for a 2-neutrino muon-to-electron antineutrino oscillation fit, and 90% and 3sigma confidence

  16. MiniBooNE Oscillation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oscillation Results and Implications Michael H. Shaevitz for the MiniBooNE Collaboration Abstract. The MiniBooNE Collaboration has reported ...rst results of a search for e appearance in a beam. With two largely independent analyses, no signi...cant excess was observed of events above background for reconstructed neutrino energies above 475 MeV and the data are consistent with no oscillations within a two neutrino appearance-only oscillation model. An excess of events (186 27 33 events) is

  17. MiniBooNE Steve Brice Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 May 2006 1 MiniBooNE Steve Brice Fermilab * Oscillation Analysis * Issues of the Past Year - Normalization - Optical Model -  0 MisIDs * Summary * Future DOE Review 17 May 2006 2 MiniBooNE Goal * Search for  e appearance in a   beam at the ~0.3% level - L=540 m ~10x LSND - E~500 MeV ~10x LSND DOE Review 17 May 2006 3 Particle ID * Identify electrons (and thus candidate  e events) from characteristic hit topology * Non-neutrino background easily removed     n p W

  18. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Milestones 2008: January 1 1E21 protons on target recorded by MiniBooNE 2007: April 10 25m absorber repaired 2006: August 23 9e16 protons delivered in a single hour (Booster champagne goal) January 18 first antineutrino beam 2004: April 26 Record week (04/19-04/26) 6.83E18 protons delivered. 2003: March 28 Record day: 9.6E17 protons delivered March 18 Record day: 8.18E17 protons delivered March 06 5.5E17 protons delivered to MiniBooNE in 1 hour. (passed the official BD 5E16 milestone) March 01

  19. MicroBooNE First Cosmic Tracks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Tracks in MicroBooNE (August 6, 2015) On August 6, 2015, we started to turn on the drift high voltage in the MicroBooNE detector for the very first time. We paused at 58 kV (this is about 1/2 of our design voltage) and immediately started to see tracks across the entire TPC. Below are some of our first images of cosmic rays and UV laser tracks (last picture) recorded by the TPC! Collection plane images: And here is one of the first images of a UV laser track in the TPC. You can tell which

  20. A=18Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    83AJ01) (See Energy Level Diagrams for 18Ne) GENERAL: See also (1978AJ03) and Table 18.21 [Table of Energy Levels] (in PDF or PS). Model calculations: (1979DA15, 1979SA31, 1980ZH01). Electromagnetic transitions: (1977HA1Z, 1979SA31, 1982LA26). Special states: (1977HE18, 1978KR1G, 1979DA15, 1979SA31, 1980OK01, 1982ZH1D). Astrophysical questions: (1978WO1E). Complex reactions involving 18Ne: (1979HE1D). Pion-induced capture and reactions (See also reaction 6.): (1977PE12, 1977SP1B, 1978BU09,

  1. A=18Ne (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See Energy Level Diagrams for 18Ne) GENERAL: See (1983AJ01) and Table 18.22 [Table of Energy Levels] (in PDF or PS). Model calculations:(1982ZH01, 1983BR29, 1984SA37, 1985RO1G). Special states:(1982ZH01, 1983BI1C, 1983BR29, 1984SA37, 1985RO1G, 1986AN10, 1986AN07). Electromagnetic transitions:(1982BR24, 1982RI04, 1983BR29, 1985AL21, 1986AN10). Astrophysical questions:(1982WI1B, 1987WI11). Complex reactions involving 18Ne:(1986HA1B). Pion capture and reactions (See also reaction

  2. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cross Sections MiniBooNE's neutrino flux (with a mean energy of ~700 MeV) dictates the type of neutrino interactions the experiment sees. At these energies, quasi-elastic (QE) and single pion production processes dominate. For MiniBooNE, the contributions from multi-pion production and deep inelastic scattering (DIS) are small. image: neutrino cross sections vs energy There are several cross sections which contribute at these energies. Here is a plot of the charged current (CC) cross section

  3. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detector The MiniBooNE tank is 12 m diameter sphere, filled with approximately 800 tons of mineral oil, CH2, which has a density of 0.845 ± 0.001 g/cm3. 1280 PMTs provide about 10% coverage of the inner tank region, and 240 PMTs cover the outer, optically isolated "veto" region in the last 1.3 m in the tank. Most of the tubes were recovered from LSND, and are 'old' tubes, some additional ones were bought for MiniBooNE, and are 'new'; differences in the new vs the old tube function are

  4. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flux The MiniBooNE neutrino flux calculations are described in detail in PRD 79, 072002 (2009) and arXiv:0806.1449 General neutrino fluxes vs true neutrino energy, for MiniBooNE: image:muon neutrino flux image:electron neutrino flux image:final muon and electron neutrino fluxes π+ production Data sets: M.G. Catanesi et al. [HARP Collaboration], ``Measurement of the production cross-section of positive pions in the collision of 8.9-GeV/c protons on beryllium,'', arXiv:hep-ex/0702024 E910

  5. 248-nm photolysis of tricarbonylnitrosylcobalt

    SciTech Connect (OSTI)

    Rayner, D.M.; Nazran, A.S.; Drouin, M.; Hackett, P.A.

    1986-06-19

    Laser-based time-resolved infrared absorption spectroscopy has been applied to the study of the 248-nm photolysis of the pseudo-nickel carbonyl, tricarbonylnitrosylcobalt, in the gas phase. Co(CO)/sub 3/NO dissociates by a series of sequential ligand eliminations to give predominantly CoCO. This species reacts back with parent Co(CO)/sub 3/NO with a gas kinetic rate constant of (6.4 +/- 0.6) x 10/sup -10/ cm/sup 3/ molecule/sup -1/ s/sup -1/ to form a binuclear species, (Co/sub 2/(CO)/sub 4/NO), of unknown structure. Added CO results in the formation of Co(CO)/sub 3/ and finally Co(CO)/sub 4/. The rate constant for the reactions of CO with Co(CO) is (6.2 +/- 0.6) x 10/sup -11/ cm/sup 3/ molecule/sup -1/ s/sup -1/ which is also a lower limit for the rates of reaction of CO with Co(CO)/sub 2/ and Co(CO)/sub 3/. This behavior shows marked similarity with recent work on the other carbonyls and begins to establish a general pattern for metal carbonyl photolysis.

  6. UCB-NE-108 user's manual

    SciTech Connect (OSTI)

    Kang, C.H.; Lee, W.W.L.

    1989-04-01

    The purpose of this manual is to provide users of UCB-NE-108 with the information necessary to use UCB-NE-108 effectively. UCB-NE-108 is a computer code for calculating the fractional release rate of readily soluble radionuclides that are released from nuclear waste emplaced in water-saturated porous media, and transported through layers of porous media. Waste placed in such environments will gradually dissolve. For many species such as actinides and rare earths, the process of dissolution is governed by the exterior flow field, and the chemical reaction rate or leaching rate. In a spent-fuel waste package the soluble cesium and iodine accumulated in fuel-cladding gaps, voids, and grain boundaries of spent fuel rods are expected to dissolve rapidly when groundwater penetrates the fuel cladding. UCB-NE-108 is a code for calculating the release rate at the interface of two layers of porous material, such as the backfill around a high-level waste package and natural rock, to check compliance with the US Nuclear Regulatory Commission's (USNRC) subsystem performance objective. It is an implementation of the analytic solution given below. 6 refs., 2 figs.

  7. MiniBooNE darkmatter collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE-DM Collaboration A.A. Aguilar-Arevalo,1 B. Batell,2 B.C. Brown,3 R. Carr,4 R. Cooper,5 P. deNiverville,6 R. Dharmapalan,7 R. Ford,3 F.G. Garcia,3 G. T. Garvey,8 J....

  8. A=16Ne (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicts M - A 25.15 0.6 MeV (CE68A: 16Ne is then unbound with respect to breakup into 14O + 2p by 2.6 MeV. See also (GO60K, GO60P, BA61F, GO61N, GO62N, GO62O, GA64A,...

  9. A=16Ne (1977AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicts M - A 25.15 0.6 MeV (1968CE1A); 16Ne is then unbound with respect to breakup into 14O + 2p by 2.6 MeV: see (1971AJ02) for the earlier work. See also (1972WA07)...

  10. A=17Ne (71AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagram for 17Ne) GENERAL: See also Table 17.22 Table of Energy Levels (in PDF or PS). Theory: (WI64E, MA65J, MA66BB). Reviews: (BA60Q, GO60P, BA61F, GO62N, GO64J, GO66J, GO66L,...

  11. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civil Construction Pictures The civil construction required for the MiniBooNE experiment consists of two independent construction projects. The Detector Construction: This project was started on October 15, 1999. The 8-GeV Beamline and Target Hall: This project started on June 7, 2000.

  12. MiniBooNE Results / MicroBooNE Status! Eric Church, Yale University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    trigger ReconstructionpID: LArSoft LAr fill w.o. evacuation Surface Running UV Laser Calibration System Spring-Summer, 2014 16 February 22, 2014 MicroBooNE ...

  13. MiniBooNE Numu/Numubar Disappearance Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for muon neutrino and antineutrino disappearance in MiniBooNE", arXiv:0903.2465 hep-ex, Phys. Rev. Lett. 103, 061802 (2009) The following MiniBooNE information from the 2009 numu...

  14. Joint MiniBooNE, SciBooNE Disappearance Analysis Gary Cheng Warren Huelsnitz

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE, SciBooNE Disappearance Analysis Gary Cheng Warren Huelsnitz Columbia University Los Alamos National Lab Fermilab 31 Aug 2012 Friday, August 31, 2012 Acknowledgements * Teppei Katori * Joe Grange * Zarko Pavlovic * Kendall Mahn and Yasuhiro Nakajima 2 * Muon Neutrino CCQE Cross Section Analysis (Phys. Rev. D81, 092005 (2010)) * Neutrino Contamination in Antineutrino Mode (Phys. Rev. D84, 072005 (2011) and arXiv: 1107.5327) * Electron Neutrino (Antineutrino) Appearance (Phys. Rev. Lett.

  15. MoS{sub 2} nanotube exfoliation as new synthesis pathway to molybdenum blue

    SciTech Connect (OSTI)

    Visic, B.; Gunde, M. Klanjsek; Kovac, J.; Iskra, I.; Jelenc, J.; Remskar, M.; Centre of Excellence Namaste, Jamova cesta 39, SI-1000 Ljubljana

    2013-02-15

    Graphical abstract: . Display Omitted Highlights: ? New synthesis approach to obtaining molybdenum blue via exfoliated MoS{sub 2} nanotubes. ? Material is prone to self assembly and is stable in high vacuum. ? Molecules are as small as 2 nm and their clusters are up to tens of nanometers. ? Change in absorption and oxidation states from the precursor MoS{sub 2}. -- Abstract: Molybdenum blue-type materials are usually obtained by partially reducing Mo{sup VI+} in acidic solutions, while in the presented method it is formed in ethanol solution of exfoliated MoS{sub 2} nanotubes, where the MoS{sub 2} flakes are the preferential location for their growth. Material was investigated by means of scanning electron and atomic force microscopy, showing the structure and self assembly, while also confirming that it is stable in high vacuum with molecules as small as 1.6 nm and the agglomerates of few tens of nanometres. The ultravioletvisible and photoelectron spectrometry show the change in absorption properties and oxidation states from MoS{sub 2} structure to molybdenum blue, while the presence of sulphur suggests that this is a new type of molybdenum blue material.

  16. Atomic oxygen interaction with nickel multilayer and antimony oxide doped MoS{sub 2} films

    SciTech Connect (OSTI)

    Dugger, M.T.

    1994-12-31

    Sputtered MoS{sub 2} is a solid lubricant capable of ultralow friction coefficients (below 0.05) load-bearing capacity. Since it exhibits low friction in vacuum, low outgassing rate, is non-migrating and lacks organic binders, this material is an attractive lubricant for space mechanisms. To exploit these new materials to their fullest potential, designers of space-based motion systems require data on the effects of atomic oxygen exposure on dense, sputtered MoS{sub 2}. This paper describes the effects of atomic oxygen in low earth orbit on the friction and surface composition of sputtered MoS{sub 2} films. Sputtered multilayer films of MoS{sub 2} with nickel (0.7 nm Ni per 10 nm MoS{sub 2}, for 1 {mu}m total film thickness), and MoS{sub 2} cosputtered with antimony oxide (nominally 2 {mu}m thick) were exposed to 2.2 to 2.5 x 10{sup 20} oxygen/cm{sup 2} over a period of 42.25 hours in earth orbit on the United States space shuttle. Identical specimens were kept as controls in desiccated storage for the duration of the mission, and another set was exposed to an equivalent fluence of atomic oxygen in the laboratory. The friction coefficient in air and vacuum, and the composition of worn surfaces, were determined prior to the shuttle flight and again after the shuttle flight. Results are described.

  17. DOE - Office of Legacy Management -- St Louis Airport - MO 01

    Office of Legacy Management (LM)

    - MO 01 FUSRAP Considered Sites St. Louis Airport, MO Alternate Name(s): Airport Site St. Louis Airport Storage Site (SLAPS) Former Robertson Storage Area Robertson Airport MO.01-1 MO.01-2 Location: Brown Road, Robertson, Missouri MO.01-2 Historical Operations: Stored uranium process residues containing uranium, radium, and thorium for the MED and AEC. MO.01-2 MO.01-3 MO.01-4 Eligibility Determination: Eligible MO.01-1 MO.01-7 Radiological Survey(s): Assessment Surveys MO.01-4 MO.01-5 Site

  18. Mo-Si alloy development

    SciTech Connect (OSTI)

    Liu, C.T.; Heatherly, L.; Wright, J.L.

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  19. A=18Ne (1972AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2AJ02) (See Energy Level Diagrams for 18Ne) GENERAL: See Table 18.23 [Table of Energy Levels] (in PDF or PS). Shell and cluster model calculations: (1957WI1E, 1969BE1T, 1970BA2E, 1970EL08, 1970HA49, 1972KA01). Electromagnetic transitions: (1970EL08, 1970HA49). Special levels: (1966MI1G, 1969KA29, 1972KA01). Pion reactions: (1965PA1F). Other theoretical calculations: (1965GO1F, 1966KE16, 1968BA2H, 1968BE1V, 1968MU1B, 1968NE1C, 1968VA1J, 1968VA24, 1969BA1Z, 1969GA1G, 1969KA29, 1969MU09, 1969RA28,

  20. A=19Ne (1983AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    83AJ01) (See Energy Level Diagrams for 19Ne) GENERAL: See (1978AJ03) and Table 19.23 [Table of Energy Levels] (in PDF or PS). Nuclear models: (1978MA2H, 1978PE09, 1978PI06, 1979DA15, 1979MA27, 1979PE16, 1982KI02). Electromagnetic transitions: (1978PE09, 1978SC19, 1979MA27, 1979PE16). Special states: (1978MA2H, 1978PE09, 1978PI06, 1978SC19, 1979DA15, 1980OK01, 1982KI02). Astrophysical questions: (1977SI1D, 1978WO1E, 1979RA1C). Applied topics: (1979AL1Q). Complex reactions involving 19Ne:

  1. A=19Ne (1987AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7AJ02) (See Energy Level Diagrams for 19Ne) GENERAL: See (1983AJ01) and Table 19.21 [Table of Energy Levels] (in PDF or PS). Nuclear models:(1983BR29, 1983PO02). Special states: (1983BI1C, 1983BR29, 1983PO02, 1986AN07). Electromagnetic transitions: (1982BR24, 1983BR29, 1985AL21). Astrophysical questions: (1981WA1Q, 1982WI1B, 1986LA07). Applications:(1982BO1N). Complex reactions involving 19Ne:(1981DE1P, 1983JA05, 1984GR08, 1985BE40, 1986GR1A, 1986HA1B, 1987RI03). Pion capture and reactions (See

  2. Highly conducting SrMoO{sub 3} thin films for microwave applications

    SciTech Connect (OSTI)

    Radetinac, Aldin Mani, Arzhang; Ziegler, Jürgen; Alff, Lambert; Komissinskiy, Philipp; Melnyk, Sergiy; Nikfalazar, Mohammad; Zheng, Yuliang; Jakoby, Rolf

    2014-09-15

    We have measured the microwave resistance of highly conducting perovskite oxide SrMoO{sub 3} thin film coplanar waveguides. The epitaxial SrMoO{sub 3} thin films were grown by pulsed laser deposition and showed low mosaicity and smooth surfaces with a root mean square roughness below 0.3 nm. Layer-by-layer growth could be achieved for film thicknesses up to 400 nm as monitored by reflection high-energy electron diffraction and confirmed by X-ray diffraction. We obtained a constant microwave resistivity of 29 μΩ·cm between 0.1 and 20 GHz by refining the frequency dependence of the transmission coefficients. Our result shows that SrMoO{sub 3} is a viable candidate as a highly conducting electrode material for all-oxide microwave electronic devices.

  3. Djurcic_MiniBooNE_NuFact2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE Results Zelimir Djurcic Zelimir Djurcic Argonne National Laboratory Argonne National Laboratory NuFact2010: 12th International Workshop on Neutrino Factories, NuFact2010: 12th International Workshop on Neutrino Factories, Superbeams Superbeams and and Beta Beams Beta Beams October 20-25, 2010. Mumbai, India October 20-25, 2010. Mumbai, India Outline Outline * * MiniBooNE MiniBooNE Experiment Description Experiment Description * * MiniBooNE MiniBooNE ' ' s s Neutrino Results Neutrino

  4. M r. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    300.955 L*Enfom Plaza, S. Iv.. Washrhington. D.C. 200242174, Tekphonc (202) 7117-03.87.cdy.43 23 September 1987 M r. Andrew Wallo, III, NE-23 Division of Facility & Site Deconnnissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES The attached elimination recommendation was prepared in accordi with your suggestion during our meeting on 22 September. The reconu includes 26 colleges and universities

  5. MicroBooNE Proposal Addendum March

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Proposal Addendum March 3, 2008 H. Chen, G. de Geronimo, J. Farrell, A. Kandasamy, F. Lanni, D. Lissauer, D. Makowiecki, J. Mead, V. Radeka, S. Rescia, J. Sondericker, B. Yu Brookhaven National Laboratory, Upton, NY L. Bugel, J. M. Conrad, Z. Djurcic, V. Nguyen, M. Shaevitz, W. Willis ‡ Columbia University, New York, NY C. James, S. Pordes, G. Rameika Fermi National Accelerator Laboratory, Batavia, IL C. Bromberg, D. Edmunds Michigan State University, Lansing, MI P. Nienaber St.

  6. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light propagation in mineral oil Though the dominant light observed in MiniBooNE is Cherenkov light, scintillation and fluorescence (here, reabsorbed Cherenkov light re-emitted) account for about 25% of the light. We model: scintillation light (yield, decay times, spectrum), fluorescence, scattering (Rayleigh, Raman), absorption, reflection (off tank walls, PMT faces) and PMT effects (single pe charge response). External measurements Scintillation from p beam (IUCF) Scintillation from cosmic mu

  7. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Identification (PID) We use hit topology and timing to identify events. Particles produce Cherenkov light in our tank, as well as some scintillation light, dependent on particle type. Two independent methods to identify electron neutrinos in MiniBooNE: Boosted Decision Trees, and Track Based. The two methods use different event reconstruction fitters. Boosted Decision Trees (BDT) Decision trees are similar to neural nets, but don't suffer from the same pathologies. To form a decision

  8. Surface Structures of Cubo-octahedral Pt-Mo Catalyst Nanoparticles from Monte Carlo Simulations

    SciTech Connect (OSTI)

    Wang, Guofeng; Van Hove, M.A.; Ross, P.N.; Baskes, M.I.

    2005-03-31

    The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 at. percent. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5 to 14 at. percent higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertices of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.

  9. SSL Demonstration: Street Lighting, Kansas City, MO

    SciTech Connect (OSTI)

    2013-08-01

    GATEWAY program report brief summarizing an SSL street lighting demonstration at nine separate installations in Kansas City, MO.

  10. Optimization of the Processing of Mo Disks

    SciTech Connect (OSTI)

    Tkac, Peter; Rotsch, David A.; Stepinski, Dominique; Makarashvili, Vakhtang; Harvey, James; Vandegrift, George F.

    2016-01-01

    The objective of this work is to decrease the processing time for irradiated disks of enriched Mo for the production of 99Mo. Results are given for the dissolution of nonirradiated Mo disks, optimization of the process for large-scale dissolution of sintered disks, optimization of the removal of the main side products (Zr and Nb) from dissolved targets, and dissolution of irradiated Mo disks.

  11. Effect of supplementation on vitamin A and zinc nutriture of children in northeast (NE) Thailand

    SciTech Connect (OSTI)

    Udomkesmalee, E.; Dhanamitta, S.; Charoenklatkul, S.; Tantipopipat, S.; Banjong, O.; Rojroongwasinkul, N.; Kramer, T.R.; Smith, J.C. Jr. USDA, Beltsville, MD )

    1991-03-11

    Previous surveys of the nutritional status of young children in NE Thailand suggested that they may benefit from vitamin A (VA) and/or zinc (Zn) supplementation. 140 children, with low plasma retinol concentrations were entered in a double-blind study. They were randomized and supplemented with either VA, Zn, VA + Zn or placebo each weekday for 6 mos. All subjects consumed their usual diet that provided adequate protein, less than recommended calories, fat, Zn and VA. Biochemical indices of VA and Zn status increased significantly. The children had adequate VA liver stores as assessed by relative dose response. Zn supplementation resulted in improvement of vision restoration time in dim light using rapid dark adaptometry. VA and Zn synergistically normalized conjunctival epithelium after a 6 mo supplementation. Data suggest that functional improvements of populations with suboptimal VA and Zn nutriture can be accomplished by supplementation with {lt}2 times of RDA of these nutrients.

  12. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    300, 955 L'E~~MI Phm.SW.:. Washin@on. LX. 200242174, T~kphonc(202)48ll. 5 7117-03.87.cdy.43 23 September 1987 cA Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES M/).0-05 pl 0.0% The attached elimination recommendation was prepared in accordance ML.05 with your suggestion during our meeting on 22 September. The recommendation flD.o-02

  13. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    9% L'Enfam Plaza, S, W.. Warhin@on, D.C. 2002ijl74j Tekphow (202) 488ddO 7117-03.87.cdy.'i3 23 September 1967 ~ s ~ Mr. Andrew Wallo, III, NE-23 Oivision of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND IJNIVFRSITIES , The attached elimination reconnnendation was prepar!ad in accordance with your suggestion during our meeting on 22 September! The recommendation includes 26 colleges and

  14. Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    suite 7900,955 L%l/onr Plaza, S. W., Washingion, D.C. 20024.?174,, Telephone: (202) 488.~ Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 7117~03.87.dy.43 23 September 1987 I j / Dear Mr. Wallo: I ELIMINATION RECOMMENDATION -- COLLEGES AND UN&ITIES I . The attached elimination recommendation was prepared in accordance with your suggestion during our meeting on 22 September!. The recommend includes 26

  15. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Author Resources The following is a randomly ordered set of useful resources for people writing MiniBooNE publications:- Have a journal in mind when first putting together the paper. Each journal has LaTeX style files that can be downloaded from their web pages. There is a nice little LaTeX macro that will put line numbers by each line of your document. This makes it much easier for people to feedback comments on the paper. To use it just put \RequirePackage{lineno} just before the

  16. A=18Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ03) (See Energy Level Diagrams for 18Ne) GENERAL: See also (1972AJ02) and Table 18.22 [Table of Energy Levels] (in PDF or PS). Model calculations: (1972EN03, 1974LO04). Electromagnetic transitions: (1970SI1J, 1972EN03, 1974LO04, 1976SH04, 1977BR03, 1977SA13). Special states: (1972EN03, 1972RA08). Muon- and pion-induced capture and reactions (See also reaction 5.): (1972MI11, 1974LI1N, 1975LI04, 1976HE1G, 1977MA2Q, 1977RO1U). Other theoretical calculations: (1970SI1J, 1972CA37, 1972RA08,

  17. CA Mr. Andrew Wallo, III, NE-23

    Office of Legacy Management (LM)

    ?9OQ, 95.5 L'E&nt Plaza, SW.. W.ashin@.m, D.C. 20024.2174, Tekphone: (202) 488AQOO 7117-03.B7.cdy.43 23 September 1987 CA Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Oepartment of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES zh/ ! o-01 lM!tl5 ML)!o-05 PI 77!0> The attached elimination recoannendation was prepared in accordance . -1 rlL.0~ with your suggestion during our meeting on

  18. BooNE: Booster Neutrino Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline Proton beam 8.89 GeV/c protons from the Fermilab Booster are incident on a beryllium target. The beam is modeled with measured mean position and angle with Gaussian smearing. MiniBooNE simulates the effects of varying the spread in the beam and different focus points of the beam. The typical proton beam contains 4 x 10¹² protons delivered in a spill approximately 1.6 µs in duration. The absolute number of protons on target (p.o.t) is measured by two toroids upstream of the target.

  19. Measurement of the direct CP -violating parameter ACP in the decay D<mo>+ stretchy='false'>→mo>K<mo>-mo>π<mo>+mo>π+>

    SciTech Connect (OSTI)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M. -A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2014-12-01

    We measure the direct CP-violating parameter ACP for the decay of the charged charm meson, Dmo>+ stretchy="false">→mo>Kmo>-mo>πmo>+mo>πmo>+> (and charge conjugate), using the full 10.4 fbmo>->1 sample of ppmo accent="true" stretchy="false">¯mo> collisions at smo>=>1.96 TeV collected by the D0 detector at the Fermilab Tevatron collider. We extract the raw reconstructed charge asymmetry by fitting the invariant mass distributions for the sum and difference of charge-specific samples. This quantity is then corrected for detector-related asymmetries using data-driven methods and for possible physics asymmetries (from Bmo stretchy="false">→mo

  20. Prospects for antineutrino running at MiniBooNE

    SciTech Connect (OSTI)

    Wascko, M.O.; /Louisiana State U.

    2006-02-01

    MiniBooNE began running in antineutrino mode on 19 January, 2006. We describe the sensitivity of MiniBooNE to LSND-like {bar {nu}}{sub e} oscillations and outline a program of antineutrino cross-section measurements necessary for the next generation of neutrino oscillation experiments. We describe three independent methods of constraining wrong-sign (neutrino) backgrounds in an antineutrino beam, and their application to the MiniBooNE antineutrino analyses.

  1. The MicroBooNE Experiment - About the Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Goals MicroBooNE will collect neutrino interactions using the Booster Neutrino Beam at Fermilab and produce the first neutrino cross section measurements on argon in the 1 GeV energy range. MicroBooNE will also explore the currently unexplained excess of low energy electromagnetic events observed in the MiniBooNE experiment. Click here for public plots and physics distributions.

  2. A=19Ne (1959AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See Energy Level Diagram for 19Ne) GENERAL: See also Table 19.9 [Table of Energy Levels] (in PDF or PS). Theory: See (EL55A, RE55, RE55B, RA57, RE58). 1. 19Ne(β+)19F Qm = 3.256 The positron end point is 2.18 ± 0.03 (SC52A), 2.23 ± 0.05 (AL57), 2.24 ± 0.01 MeV (WE58B). The half-life is 17.4 ± 0.2 sec (HE59), 17.7 ± 0.1 (PE57), 18.3 ± 0.5 (AL57), 18.5 ± 0.5 (SC52A), 19 ± 1 (NA54B), 19.5 ± 1.0 (WE58B), 20.3 ± 0.5 sec (WH39). The absence of low-energy γ-rays (see 19F) indicates

  3. The MicroBooNE Experiment - Getting Started

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started on MicroBooNE Welcome to MicroBooNE! This page is designed to help new MicroBooNE collaborators find their way around the experiment and Fermilab. Table of Contents Fermilab ID, Computing Accounts, and Required Training Visas for non-US Citizens Traveling to Fermilab Housing/Hotels Getting Around Communication within the Collaboration Software Getting Help Step One First, make sure the PI of your institution has sent an email to the MicroBooNE spokespeople letting them know that

  4. FAPAC-NM Executive Board | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Our Locations Albuquerque Complex Federal Asian Pacific American Council - New Mexico Chapter Albuquerque, NM FAPAC-NM Executive Board FAPAC-NM Executive Board "Promoting...

  5. DOE - Office of Legacy Management -- Washington University - MO 07

    Office of Legacy Management (LM)

    Washington University - MO 07 FUSRAP Considered Sites Site: WASHINGTON UNIVERSITY (MO.07 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: St. Louis , Missouri MO.07-1 Evaluation Year: 1987 MO.07-1 Site Operations: Activities were limited to programs involving relatively small quantities of radionuclides and chemicals in a controlled environment. MO.07-3 MO.07-1 Site Disposition: Eliminated - Potential for contamination remote MO.07-1

  6. A=20Ne (1978AJ03)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ03) (See Energy Level Diagrams for 20Ne) GENERAL: See also (1972AJ02) and Table 20.18 [Table of Energy Levels] (in PDF or PS). Shell model: (1970CR1A, 1971DE56, 1971RA1B, 1971ZO1A, 1972AB12, 1972AR1F, 1972AS13, 1972BO38, 1972BR1G, 1972JA24, 1972KA39, 1972KA67, 1972KH08, 1972KR1D, 1972KU1F, 1972LE13, 1972LE38, 1972MA07, 1972NI14, 1972RE03, 1972SA1B, 1972VO09, 1972WH04, 1973CO03, 1973DH1A, 1973EL04, 1973EN1C, 1973GI09, 1973HA05, 1973HE1F, 1973IC01, 1973IR01, 1973MA1K, 1973MC06, 1973MC1E,

  7. DOE - Office of Legacy Management -- Latty Avenue Site - MO 04

    Office of Legacy Management (LM)

    Latty Avenue Site - MO 04 FUSRAP Considered Sites Latty Avenue Site, MO Alternate Name(s): Futura Coatings Futura Chemical Company Facility Hazelwood Interim Storage Site (HISS) Former Cotter Site, Latty Avenue Properties Contemporary Metals Corp. Continental Mining and Milling MO.04-1 MO.04-2 MO.04-5 MO.04-6 MO.06-8 MO.06-11 Location: 9200 Latty Avenue, Hazelwood, Missouri MO.04-1 Historical Operations: Received, stored, and processed uranium residues for the AEC. Storage and processing were

  8. NE-23 List of California Sites NE-23 Hattie Car-well, SAN/NSQA Division

    Office of Legacy Management (LM)

    NE-23 Hattie Car-well, SAN/NSQA Division Attached for your information is the list of California sites we identified in our search of Manhattdn Engineer District records for the Formerly Utilized Sites Remedial Action Program (FUSRAP). None of the facilities listed qualified"fbr'FUSRAP:'~- The only site in California,that was included in FUSRAP was Gilman Hall on the University of California-Berkeley Campus. All California sites that are in our Surplus Facilities Management Prcgram are

  9. Mo99 Production Plant Layout

    SciTech Connect (OSTI)

    Woloshun, Keith Albert; Dale, Gregory E.; Naranjo, Angela Carol

    2015-06-25

    The NorthStar Medical Technologies 99Mo production facility configuration is envisioned to be 8 accelerator pairs irradiating 7 100Mo targets (one spare accelerator pair undergoing maintenance while the other 7 pairs are irradiating targets). The required shielding in every direction for the accelerators is initially estimated to be 10 feet of concrete. With the accelerator pairs on one (ground) level and spaced with the required shielding between adjacent pairs, the only practical path for target insertion and removal while minimizing floor space is vertical. The current scheme then requires a target vertical lift of nominally 10 feet through a shield stack. It is envisioned that the lift will be directly into a hot cell where an activated target can be removed from its holder and a new target attached and lowered. The hot cell is on a rail system so that a single hot cell can service all active target locations, as well as deliver the ready targets to the separations lab. On this rail system, coupled to the hot cell, will be a helium recovery and clean-up system. All helium coolant equipment is located on the upper level near to the target removal point.

  10. Neutrino Scattering Results from MiniBooNE R. Tayloe, Indiana...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino Scattering Results from MiniBooNE R. Tayloe, Indiana U. ECT workshop Trento, Italy, 1211 Outline: introduction, motivation MiniBooNE experiment MiniBooNE ...

  11. Radiation Tolerance of 65nm CMOS Transistors

    SciTech Connect (OSTI)

    Krohn, M.; Bentele, B.; Christian, D. C.; Cumalat, J. P.; Deptuch, G.; Fahim, F.; Hoff, J.; Shenai, A.; Wagner, S. R.

    2015-12-11

    We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately -20C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.

  12. Radiation Tolerance of 65nm CMOS Transistors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krohn, M.; Bentele, B.; Christian, D. C.; Cumalat, J. P.; Deptuch, G.; Fahim, F.; Hoff, J.; Shenai, A.; Wagner, S. R.

    2015-12-11

    We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately -20°C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.

  13. An accumulator/compressor ring for Ne+ ions (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    An accumulatorcompressor ring for Ne+ ions Citation Details In-Document Search Title: An accumulatorcompressor ring for Ne+ ions The primary goal of the High Energy Density ...

  14. DOE - Office of Legacy Management -- Petrolite Corp - MO 08

    Office of Legacy Management (LM)

    Petrolite Corp - MO 08 FUSRAP Considered Sites Site: PETROLITE CORP (MO.08) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: St. Louis , Missouri MO.08-1 Evaluation Year: 1987 MO.08-4 Site Operations: Research involving test quantities of radioactive materials. MO.08-2 Site Disposition: Eliminated - Licensed - Potential for contamination remote MO.08-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled:

  15. Djurcic_MiniBooNE_NuFact2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Zelimir Djurcic Argonne National Laboratory NuFact2011: 13th International Workshop on Neutrino Factories, Super Beams and Beta Beams August 1-6, 2011. Geneva, Switzerland 1 Outline * MiniBooNE Experiment Description * MiniBooNE s Neutrino Results * (New) MiniBooNE s Anti-neutrino Results * Summary 2 This signal looks very different from the others... * Much higher !m 2 = 0.1 - 10 eV 2 * Much smaller mixing angle * Only one experiment! In SM there are only 3 neutrinos !m 13 !m 12 !m 23 2

  16. MiniBooNE Numu/Numubar Disappearance Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Search for muon neutrino and antineutrino disappearance in MiniBooNE", arXiv:0903.2465 [hep-ex], Phys. Rev. Lett. 103, 061802 (2009) The following MiniBooNE information from the 2009 numu and numubar disappearance paper is made available to the public: Numu Disappearance ntuple file of MiniBooNE numu 90% confidence level sensitivity as a function of Dm2, for a 2-neutrino numu -> nux ocillation fit. The file contains 141 rows, with two columns: Dm2 value in the range 0.4 < Dm2 (eV2)

  17. DOE-NE-STD-1004-92 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NE-STD-1004-92 DOE-NE-STD-1004-92 July 27, 2005 Root Cause Analysis Guidance Document Standard became Inactive This document is a guide for root cause analysis specified by DOE Order 5000.3A, "Occurrence Reporting and Processing of Operations Information." Causal factors identify program control deficiencies and guide early corrective actions. As such, root cause analysis is central to DOE Order 5000.3A. DOE-NE-STD-1004-92, Root Cause Analysis Guidance Document (689.62 KB) More

  18. Tuning the electronic structure of monolayer graphene/ Mo S 2...

    Office of Scientific and Technical Information (OSTI)

    Tuning the electronic structure of monolayer graphene Mo S 2 van der Waals ... Title: Tuning the electronic structure of monolayer graphene Mo S 2 van der Waals ...

  19. Update to M&O Contractor Model Subcontract entitled "Standard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    M&O Contractor Model Subcontract entitled "Standard Research Subcontract (Educational Institution or Nonprofit Organization)" Update to M&O Contractor Model Subcontract entitled ...

  20. Missouri Department of National Resources Energy Center Mo DNR...

    Open Energy Info (EERE)

    Department of National Resources Energy Center Mo DNR Jump to: navigation, search Name: Missouri Department of National Resources Energy Center (Mo DNR) Place: Jefferson City,...

  1. Demonstration of LED Street Lighting in Kansas City, MO (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Demonstration of LED Street Lighting in Kansas City, MO Citation Details In-Document Search Title: Demonstration of LED Street Lighting in Kansas City, MO Nine ...

  2. DOE - Office of Legacy Management -- West Lake Landfill - MO...

    Office of Legacy Management (LM)

    Lake Landfill - MO 05 FUSRAP Considered Sites Site: West Lake Landfill (MO.05) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

  3. New Oscillation Results From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intrinsic e 20 Background prediction Intrinsic nue External measurements - HARP p+Be for - Sanford-Wang fits to world K + K 0 data MiniBooNE data...

  4. {alpha}-cluster states in N{ne}Z nuclei

    SciTech Connect (OSTI)

    Goldberg, V. Z.; Rogachev, G. V.

    2012-10-20

    The importance of studies of {alpha}-Cluster structure in N{ne}Z light nuclei is discussed. Spin-parity assignments for the low-lying levels in {sup 10}C are suggested.

  5. MiniBooNE/LSND Neutrino Oscillation Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. Sorel (IFIC - CSIC & U. Valencia) Workshop on Beyond Three Family Neutrino Oscillations May 3-4, 2011, LNGS (Italy) 1. LSND e (1993-2001) 2. MiniBooNE ...

  6. MicroBooNE Project Critical Decision Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Decisions for MicroBooNE Documents CD-0 Mission Need CD-1 Selection of Alternatives CD-2/3a Performance Baseline and Long Lead Procurements CD-3b Start of Construction

  7. The MicroBooNE Project - Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    posted in the MicroBooNE DocDB, private access user-name is reviewer, password on request. ... Password access to these pages is necessary, user-name is reviewer, password on request. ...

  8. MiniBooNE LowE Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excess of Electron-Like Events From a 1 GeV Neutrino Beam", arXiv:0812.2243 hep-ex, Phys. Rev. Lett. 102, 101802 (2009) The following MiniBooNE information from the 2009...

  9. MiniBooNE QE Cross Section Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Quasielastic Double Differential Cross section", arXiv:1002:2680 hep-ex, Phys. Rev. D81, 092005 (2010) The following MiniBooNE information from the 2010 CCQE cross...

  10. NE NEET-Reactor Materials Award Summaries May 2016.pdf

    Office of Environmental Management (EM)

    Idaho National Laboratory | Department of Energy NE & EERE Working Together: 5 Facts About the New Energy Innovation Lab at Idaho National Laboratory NE & EERE Working Together: 5 Facts About the New Energy Innovation Lab at Idaho National Laboratory April 24, 2014 - 5:57pm Addthis The Energy Innovation Laboratory at the Energy Department’s Idaho National Laboratory was dedicated earlier this week. The new facility enables researchers to tackle some of the most pressing

  11. MiniBooNE_LoNu_Shaevitz.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MiniBooNE MiniBooNE Oscillation Results Oscillation Results and Future and Future Prospects Prospects Mike Mike Shaevitz Shaevitz - Columbia University - Columbia University 6th International Workshop on Low Energy Neutrino Physics 6th International Workshop on Low Energy Neutrino Physics Seoul National University Seoul National University ( ( Nov. 9 - 12, 2011) Nov. 9 - 12, 2011) 2 Neutrino Oscillation Summary Confirmed by K2K and Minos accelerator neutrino exps Confirmed by Kamland reactor

  12. Neutral Current Elastic Interactions in MiniBooNE

    SciTech Connect (OSTI)

    Dharmapalan, Ranjan; /Alabama U.

    2011-10-01

    Neutral Current Elastic (NCE) interactions in MiniBooNE are discussed. In the neutrino mode MiniBooNE reported: the flux averaged NCE differential cross section as a function of four-momentum transferred squared, an axial mass (M{sub A}) measurement, and a measurement of the strange quark spin content of the nucleon, {Delta}s. In the antineutrino mode we present the background-subtracted data which is compared with the Monte Carlo predictions.

  13. High Precision Measurement of the 19Ne Lifetime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Precision Measurement of the 19 Ne Lifetime by Leah Jacklyn Broussard Department of Physics Duke University Date: Approved: Albert Young Calvin Howell Kate Scholberg Berndt Mueller John Thomas Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2012 Abstract (Nuclear physics) High Precision Measurement of the 19 Ne Lifetime by Leah Jacklyn Broussard Department of Physics

  14. Thermophysical Properties of U-10MO Alloy

    SciTech Connect (OSTI)

    A. M. Phillips; G. S. Mickum; D. E. Burkes

    2010-11-01

    This report provides an overview of thermophysical properties of unirradiated uranium alloyed with ten weight percent molybdenum (U 10Mo), with particular focus on those material properties needed for modeling of new fuels for HPRRs (High Performance Research Reactors). The report contains both historical data available in the literature on U-10Mo, as well as more recent results conducted by the Global Threat Reduction Initiative fuel development program. The main use of the report is intended as a standard U-10Mo alloy properties reference for reactor models and simulations.

  15. Photo Album Of FAPAC - NM Activities | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Our Locations Albuquerque Complex Federal Asian Pacific American Council - New Mexico Chapter Albuquerque, NM Photo Album Of FAPAC - NM Activities Photo Album Of FAPAC -...

  16. Mo Year Report Period: EIA ID NUMBER:

    U.S. Energy Information Administration (EIA) Indexed Site

    Mo Year Report Period: EIA ID NUMBER: http:www.eia.govsurveyformeia14instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https:...

  17. MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor microcavity organic light emitting diodes

    SciTech Connect (OSTI)

    Liu, R.; Xu, Chun; Biswas, Rana; Shinar, Joseph; Shinar, Ruth

    2011-09-01

    Multicolor microcavity ({mu}C) organic light-emitting diode (OLED) arrays were fabricated simply by controlling the hole injection and spacer MoO{sub 3} layer thickness. The normal emission was tunable from {approx}490 to 640 nm and can be further expanded. A compact, integrated spectrometer with two-dimensional combinatorial arrays of {mu}C OLEDs was realized. The MoO{sub 3} yields more efficient and stable devices, revealing a new breakdown mechanism. The pixel current density reaches {approx}4 A/cm{sup 2} and a maximal normal brightness {approx}140 000 Cd/m{sup 2}, which improves photoluminescence-based sensing and absorption measurements.

  18. Radiation Stability of Mo2Zr Phase as an Interaction Product in U-10M0/Zr/Al 6061 Monolithic Fuel Plate

    SciTech Connect (OSTI)

    Jian Gan; Brandon D. Miller; Dennis D. Keiser; Daniel M. Wachs; W. Sprowes; Y. H. Sohn; M. Kirk

    2015-04-01

    Abstract Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (< 20% U-235 enrichment). These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the two that is known to be problematic under irradiation. However, the Zr also interacts with the U-10Mo and Al-6061 cladding during fuel fabrication to produce a variety of interaction phases. The results from recent post-irradiation-examination (PIE) of the irradiated monolithic fuel plates suggested that the microstructural development of the U-10Mo/Zr interaction phases under irradiation may have an impact on fuel performance. The Mo2Zr phase has been identified as a major interaction product at the interface of U-10Mo and Zr. TEM in-situ irradiation with 500 keV Kr ions at 200 ?C temperature to 2?1016 ions/cm2 was carried out to investigate its radiation stability. The Mo2Zr undergoes a radiation-induced structural change, from a large cubic (cF24, a0 = 0.7588 nm) to a small bcc cubic (cI2, a0 = 0.3185 nm), along with an estimated 11.3% volume contraction without changing its composition. The Mo2Zr phase demonstrated exceptional radiation tolerance with the development of dislocation showing no evidence of bubble formation. The irradiation to the same ion dose with the reduced ion energy at 250 keV reveals a high concentration of small bubbles (< 2 nm) as a result of increased Kr ion retention in the sample. .

  19. Electrical properties of a-C:Mo films produced by dual-cathode filtered cathodic arc plasma deposition

    SciTech Connect (OSTI)

    Sansongsiri, Sakon; Anders, Andre; Yodsombat, Banchob

    2008-01-20

    Molybdenum-containing amorphous carbon (a-C:Mo) thin films were prepared using a dual-cathode filtered cathodic arc plasma source with a molybdenum and a carbon (graphite) cathode. The Mo content in the films was controlled by varying the deposition pulse ratio of Mo and C. Film sheet resistance was measured in situ at process temperature, which was close to room temperature, as well as ex situ as a function of temperature (300-515 K) in ambient air. Film resistivity and electrical activation energy were derived for different Mo and C ratios and substrate bias. Film thickness was in the range 8-28 nm. Film resistivity varied from 3.55x10-4 Omega m to 2.27x10-6 Omega m when the Mo/C pulse ratio was increased from 0.05 to 0.4, with no substrate bias applied. With carbon-selective bias, the film resistivity was in the range of 4.59x10-2 and 4.05 Omega m at a Mo/C pulse ratio of 0.05. The electrical activation energy decreased from 3.80x10-2 to 3.36x10-4 eV when the Mo/C pulse ratio was increased in the absence of bias, and from 0.19 to 0.14 eV for carbon-selective bias conditions. The resistivity of the film shifts systematically with the amounts of Mo and upon application of substrate bias voltage. The intensity ratio of the Raman D-peak and G-peak (ID/IG) correlated with the pre-exponential factor (sigma 0) which included charge carrier density and density of states.

  20. Magnetic Force Microscopy Study of Zr2Co11 -Based Nanocrystalline Materials: Effect of Mo Addition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Lanping; Jin, Yunlong; Zhang, Wenyong; Sellmyer, David J.

    2015-01-01

    Tmore » he addition of Molybdenum was used to modify the nanostructure and enhance coercivity of rare-earth-free Zr2Co11-based nanocrystalline permanent magnets. he effect of Mo addition on magnetic domain structures of melt spun nanocrystalline Zr16Co84-xMox(x=0, 0.5, 1, 1.5, and 2.0) ribbons has been investigated. It was found that magnetic properties and local domain structures are strongly influenced by Mo doping. he coercivity of the samples increases with the increase in Mo content (x≤1.5). he maximum energy product(BH)maxincreases with increasingxfrom 0.5 MGOe forx=0to a maximum value of 4.2 MGOe forx=1.5. he smallest domain size with a relatively short magnetic correlation length of 128 nm and largest root-mean-square phase shiftΦrmsvalue of 0.66° are observed for thex=1.5. he optimal Mo addition promotes magnetic domain structure refinement and thus leads to a significant increase in coercivity and energy product in this sample.« less

  1. THE SPECTRUM OF THORIUM FROM 250 nm TO 5500 nm: RITZ WAVELENGTHS AND OPTIMIZED ENERGY LEVELS

    SciTech Connect (OSTI)

    Redman, Stephen L.; Nave, Gillian; Sansonetti, Craig J.

    2014-03-01

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists to re-optimize the energy levels of neutral, singly, and doubly ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19, 874 thorium lines between 250 nm and 5500 nm (40, 000 cm{sup –1} to 1800 cm{sup –1}). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer and Engleman and typographical errors and incorrect classifications in Kerber et al. We also found a large scatter with respect to the thorium line list of Lovis and Pepe. We anticipate that our Ritz wavelengths will lead to improved measurement accuracy for current and future spectrographs that make use of thorium-argon or thorium-neon lamps as calibration standards.

  2. MiniBooNE Antineutrino Data Van Nguyen Columbia University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moriond EW 2008 Coherent NC π 0 Production in the MiniBooNE Antineutrino Data Van Nguyen Columbia University for the MiniBooNE collaboration Moriond EW 2008 2 Moriond EW 2008 At low energy, NC π 0 's can be created through resonant and coherent production:  Resonant NC π 0 production:  Coherent NC π 0 production: (Signature: π 0 which is highly forward-going) NC π 0 Production 3 Moriond EW 2008 Why study coherent NC π 0 production? ➔ NC π 0 events are the dominant bgd to osc

  3. Exclusive Neutrino Cross Sections From MiniBooNE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exclusive Neutrino Cross Sections From MiniBooNE Martin Tzanov University of Colorado PANIC 2008, 9-14 November, Eilat, ISRAEL Martin Tzanov, PANIC 2008 Neutrino Cross Sections Today * Precise knowledge needed for precise oscillation measurements. * Cross section well measured above 20 GeV. * Few measurements below 20 GeV. * 20-30 years old bubble chamber experiments (mostly H 2 , D 2 ). * Neutral current cross sections are even less understood. ν CC world data CC world data ν T2K, BooNE K2K,

  4. The MicroBooNE Experiment - About the Detector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Detector Cryostat delivered Assembly Photos The MicroBooNE time projection chamber (TPC) was assembled at Fermilab in 2012-2013, sealed in the cryostat at the end of 2013, and installed in the Liquid Argon Test Facilty (LArTF) in the Booster neutrino beamline in June 2014. Watch a video of the MicroBooNE detector move! Please check Assembly Photos for a slide-show of the effort These same photos are posted here in a simpler format Photos of Wires Taken from inside the cryostat in April 2015

  5. The MicroBooNE Experiment - At Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE at Work At Work Now The Getting Started Page holds links to help find your way around Fermilab services and prepare for working on the experiment. The MicroBooNE Contact List contains contact information for collaboration members. The Working Groups Page is a portal to these sub-sites. The Operations Page is a portal to the running detector. The Meetings Page lists the current regular meeting time slots, and also lists the collaboration meeting dates with links to the DocDB for past

  6. The MicroBooNE Experiment - Conference Talks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Talks and Posters Once you have given a MicroBooNE presentation, please send your talk to Sam Zeller so it can be archived. If you have written proceedings to accompany your talk, please upload them to the MicroBooNE DocDB and send the document number to Sam. Also, remember that conference proceedings are required by Fermilab policy to be submitted to the Fermilab Technical Publications archive. Instructions for doing that are here. Click here for Future talks. Conference Presentations Speaker

  7. The MicroBooNE Experiment - Public Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Notes Page Back to the Publications Page 7/4/16 MICROBOONE-NOTE-1019-PUB Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber 7/4/16 MICROBOONE-NOTE-1017-PUB A Method to Extract the Charge Distribution Arriving at the TPC Wire Planes in MicroBooNE 7/4/16 MICROBOONE-NOTE-1016-PUB Noise Characterization and Filtering in the MicroBooNE TPC 7/4/16 MICROBOONE-NOTE-1015-PUB The Pandora multi-algorithm approach to automated pattern recognition in LAr

  8. DOE - Office of Legacy Management -- Trinity Test Site - NM 17

    Office of Legacy Management (LM)

    Trinity Test Site - NM 17 FUSRAP Considered Sites Site: TRINITY TEST SITE (NM.17 ) Eliminated from consideration under FUSRAP - U.S. Army controls site Designated Name: Not Designated Alternate Name: None Location: missile range - 30 miles west of Carrizozo , White Sands , New Mexico NM.17-1 Evaluation Year: 1985 NM.17-1 Site Operations: Detonation of the first atomic bomb occurred at this site. NM.17-1 Site Disposition: Eliminated NM.17-1 Radioactive Materials Handled: Yes Primary Radioactive

  9. Appearance Results from MiniBooNE Georgia Karagiorgi Columbia University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appearance Results from MiniBooNE Georgia Karagiorgi Columbia University WIN'11 - Cape Town, South Africa 2 Outline of this talk: -- The LSND excess signal: Evidence for high-Δm 2 oscillations -- The MiniBooNE experiment -- MiniBooNE neutrino mode oscillation results: LSND signature refuted -- MiniBooNE antineutrino mode oscillation results: LSND signature confrmed ? -- Light sterile neutrino oscillations: Where we stand today -- Future searches: MiniBooNE, MicroBooNE 1993 -1998 1998 2001

  10. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    SciTech Connect (OSTI)

    Schulthess, Jason

    2014-09-01

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  11. Oxidation, Reduction, and Condensation of Alcohols over (MO3)3 (M=Mo, W) Nanoclusters

    SciTech Connect (OSTI)

    Fang, Zongtang; Li, Zhenjun; Kelley, Matthew S.; Kay, Bruce D.; Li, Shenggang; Hennigan, Jamie M.; Rousseau, Roger J.; Dohnalek, Zdenek; Dixon, David A.

    2014-10-02

    The reactions of deuterated methanol, ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol and t-butanol over cyclic (MO3)3 (M = Mo, W) clusters were studied experimentally with temperature programmed desorption (TPD) and theoretically with coupled cluster CCSD(T) theory and density functional theory. The reactions of two alcohols per M3O9 cluster are required to provide agreement with experiment for D2O release, dehydrogenation and dehydration. The reaction begins with the elimination of water by proton transfers and forms an intermediate dialkoxy species which can undergo further reaction. Dehydration proceeds by a ? hydrogen transfer to a terminal M=O. Dehydrogenation takes place via an ? hydrogen transfer to an adjacent MoVI = O atom or a WVI metal center with redox involved for M = Mo and no redox for M = W. The two channels have comparable activation energies. H/D exchange to produce alcohols can take place after olefin is released or via the dialkoxy species depending on the alcohol and the cluster. The Lewis acidity of the metal center with WVI being larger than MoVI results in the increased reactivity of W3O9 over Mo3O9 for dehydrogenation and dehydration.

  12. Elastic modulus of phases in Ti–Mo alloys

    SciTech Connect (OSTI)

    Zhang, Wei-dong; Liu, Yong; Wu, Hong; Song, Min; Zhang, Tuo-yang; Lan, Xiao-dong; Yao, Tian-hang

    2015-08-15

    In this work, a series of binary Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were prepared using non-consumable arc melting. The microstructures were investigated by X-ray diffraction and transmission electron microscope, and the elastic modulus was evaluated by nanoindentation testing technique. The evolution of the volume fractions of ω phase was investigated using X-ray photoelectron spectroscopy. The results indicated that the phase constitution and elastic modulus of the Ti–Mo alloys are sensitive to the Mo content. Ti–3.2Mo and Ti–8Mo alloys containing only α and β phases, respectively, have a low elastic modulus. In contrast, Ti–4.5Mo, Ti–6Mo, Ti–7Mo alloys, with different contents of ω phase, have a high elastic modulus. A simple micromechanical model was used to calculate the elastic modulus of ω phase (E{sub ω}), which was determined to be 174.354 GPa. - Highlights: • Ti–Mo alloys with the Mo contents ranging from 3.2 to 12 at.% were investigated. • XPS was used to investigate the volume fractions of ω phase. • The elastic modulus of Ti–Mo alloys is sensitive to the Mo content. • The elastic modulus of ω phase was determined to be 174.354 GPa.

  13. Ion Exclusion by Sub 2-nm Carbon Nanotube Pores (Conference)...

    Office of Scientific and Technical Information (OSTI)

    Conference: Ion Exclusion by Sub 2-nm Carbon Nanotube Pores Citation Details In-Document Search Title: Ion Exclusion by Sub 2-nm Carbon Nanotube Pores Carbon nanotubes offer an ...

  14. RAPID/Roadmap/3-NM-d | Open Energy Information

    Open Energy Info (EERE)

    including an advanced annual rental installment. In addition, the developer must enter into the bid lease within 30 days. 19.2.9.12.A NMAC. 3-NM-d.13 to 3 NM-d.14 - Business...

  15. RAPID/Roadmap/3-NM-f | Open Energy Information

    Open Energy Info (EERE)

    from the NMDOT by contemplating affects the project may have on cultural andor environmental resources. 3-NM-f Public Highway Utility Accommodation Permit.pdf 3-NM-f Public...

  16. New Mexico Non-Taxable Transaction Certificate (NM NTTC) Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexico Non-Taxable Transaction Certificate (NM NTTC) Request This form is for vendors of Los Alamos National Laboratory. To request a NM Non-Taxable Transaction Certificate (NTTC),...

  17. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; et al

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environmentsmore » for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.« less

  18. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    SciTech Connect (OSTI)

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; Schrimpf, R. D.; Labello, R.; Nichols, J.; Weeden-Wright, S. L.

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environments for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.

  19. DOE-NE Small Business Voucher Program Launched

    Broader source: Energy.gov [DOE]

    As part of the Gateway for Accelerated Innovation in Nuclear (GAIN) initiative, the NE Voucher program will provide up to $2 million in this pilot year for access to expertise, knowledge, and facilities of the National Laboratories and our partner facilities to help advance nuclear energy technologies.

  20. Nu2010_MiniBooNE_Osc.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Most importantly, not a region of LE where LSND observed a significant signal Energy in MiniBooNE MeV 1250 475 333 MB Neutrino mode LE (mMeV) "LSND sweet spot" LSND * 6.5E20 ...

  1. Paving the Way to Nanoelectronics 16 nm and Smaller

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paving the Way to Nanoelectronics 16 nm and Smaller Paving the Way to Nanoelectronics 16 nm and Smaller Print Wednesday, 30 March 2011 00:00 As the nanoelectronics industry pushes towards feature sizes of 22 nm and smaller, conventional single-exposure refractive lithography systems used to print circuit patterns onto computer chips will no longer be feasible. Extreme ultraviolet (EUV) lithography, utilizing reflective optics and 13-nm-wavelength light to print chips, is the leading candidate to

  2. ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era Citation Details In-Document Search Title: ReNeW: Magnetic Fusion Energy Research Needs for the ITER Era Authors: ...

  3. DOE-NE Light Water Reactor Sustainability Program and EPRI Long...

    Office of Environmental Management (EM)

    DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program - Joint Research and Development Plan DOE-NE Light Water Reactor Sustainability Program and ...

  4. Photoluminescence properties of a new orange–red emitting Sm{sup 3+}-doped Y{sub 2}Mo{sub 4}O{sub 15} phosphor

    SciTech Connect (OSTI)

    Deng, Huajuan; Zhao, Ze; Wang, Jing; Hei, Zhoufei; Li, Mengxue; Noh, Hyeon Mi; Jeong, Jung Hyun; Yu, Ruijin

    2015-08-15

    A series of novel Y{sub 2}Mo{sub 4}O{sub 15}:xSm{sup 3+} ( (0.01 ≤ x ≤ 0.20) phosphors for white light-emitting (W-LEDs) were successfully prepared by the solid state reaction technology at 973 K for 12 h. X-ray diffraction and photoluminescence spectra were utilized to characterize the structure and luminescence properties of the as-synthesized phosphors. The emission spectra of the Y{sub 2}Mo{sub 4}O{sub 15}:Sm{sup 3+} phosphors consisted of some sharp emission peaks of Sm{sup 3+} ions centered at 565 nm, 605 nm, 650 nm, and 712 nm. The strongest one is located at 605 nm due to {sup 4}G{sub 5/2}–{sup 6}H{sub 7/2} transition of Sm{sup 3+}, generating bright orange–red light. The optimum dopant concentration of Sm{sup 3+} ions in Y{sub 2}Mo{sub 4}O{sub 15}:xSm{sup 3+} is around 5 mol% and the critical transfer distance of Sm{sup 3+} is calculated as 23.32 Å. The CIE chromaticity coordinates of the Y{sub 2}Mo{sub 4}O{sub 15}:0.05Sm{sup 3+} phosphors were located in the orange reddish region. The Y{sub 2}Mo{sub 4}O{sub 15}:Sm{sup 3+} phosphors may be potentially used as red phosphors for white light-emitting diodes. - Graphical abstract: The excitation spectrum of Y{sub 2}Mo{sub 4}O{sub 15}:Sm{sup 3+} is composed of a broad band and some sharp f–f transitions. Under 407 nm excitation, the phosphor presents some sharp emission peaks of Sm{sup 3+} ions. - Highlights: • An orange–red emitting Y{sub 2}Mo{sub 4}O{sub 15}:Sm{sup 3+} phosphor has been firstly synthesized. • Their structures, luminescent properties have also been investigated. • The optical absorption edge for the molybdate lies around 325 nm. • The CIE chromaticity coordinates were located in the orange reddish region.

  5. Accelerator Production Options for 99MO

    SciTech Connect (OSTI)

    Bertsche, Kirk; /SLAC

    2010-08-25

    Shortages of {sup 99}Mo, the most commonly used diagnostic medical isotope, have caused great concern and have prompted numerous suggestions for alternate production methods. A wide variety of accelerator-based approaches have been suggested. In this paper we survey and compare the various accelerator-based approaches.

  6. Morgan Wascko Imperial College London MiniBooNE's First Neutrino Oscillation Result

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wascko Imperial College London MiniBooNE's First Neutrino Oscillation Result Morgan Wascko CalTech Physics Research Conference 26 April, 2007 Outline * A short course in the physics of ν oscillations * What are neutrinos? Oscillations? * ν oscillation landscape * MiniBooNE * Experiment description * MiniBooNE's First Results * Neutrino Physics Big Picture * Next Steps for the Field * What has MiniBooNE told us? 2 Morgan Wascko CalTech Physics Research Conference 26 April, 2007 * Particle

  7. RESULTS OF THE MiniBooNE NEUTRINO OSCILLATION SEARCH E. D. Zimmerman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RESULTS OF THE MiniBooNE NEUTRINO OSCILLATION SEARCH E. D. Zimmerman University of Colorado American Physical Society Meeting Jacksonville, April 16, 2007 Results of the MiniBooNE Neutrino Oscillation Search * Introduction to MiniBooNE * The oscillation analysis * The initial results and their implications * The next steps MiniBooNE: E898 at Fermilab * Purpose is to test LSND with: * Higher energy * Different beam * Different oscillation signature * Different systematics * L=500 meters, E=0.5-1

  8. Intermetallic phase formation and breakdown of Mo diffusion barriers in Ni-Mo-Cu and Ni-Mo-Monel 400 diffusion triads

    SciTech Connect (OSTI)

    Shueh, Y.

    1988-01-01

    The purpose of this research was to study the kinetics of compound formation and the interdiffusion behavior of a sacrificial type diffusion barrier in a model system. Ni-Mo diffusion couples were annealed in an inert atmosphere at 950-1050{degree}C for 5-300 hours. Ni-Mo-Cu and Ni-Mo-Monel 400 diffusion triads with varied thicknesses of Mo layers sandwiched by Ni and C or Monel 400 disks were annealed under the same conditions. Parabolic growth of the intermetallic phase, {beta}, was observed at 1000{degree}C and 1050{degree}C in the semi-infinite Ni-Mo diffusion couple an din the Ni-Mo-Cu diffusion triad when a finite thickness of the Mo layer remained. The {beta} phase exhibited more or less planar morphology except in the case of some extremely rugged interfaces which were associated with grain boundaries adjacent to these interfaces. Dissociation and recession of the compound layer in Ni-Mo-Cu diffusion triads initiated when the Mo layer was nearly consumed. The product phases of the dissociation reaction are consistent with those predicted from the Ni-Mo-Cu ternary phase diagram. Numerical methods based on a finite difference technique, and an analytical solution based on diffusion controlled parabolic growth and quasi-steady-state approximation in the {beta} phase region were used to analyze the results.

  9. Role of SrMoO{sub 4} in Sr{sub 2}MgMoO{sub 6} synthesis

    SciTech Connect (OSTI)

    Vasala, S.; Yamauchi, H.; Karppinen, M.

    2011-05-15

    Here we investigate the elemental and phase compositions during the solid-state synthesis of the promising SOFC-anode material, Sr{sub 2}MgMoO{sub 6}, and demonstrate that molybdenum does not notably evaporate under the normal synthesis conditions with temperatures up to 1200 {sup o}C due to the formation of SrMoO{sub 4} as an intermediate product at low temperatures, below 600 {sup o}C. However, partial decomposition of the Sr{sub 2}MgMoO{sub 6} phase becomes evident at the higher temperatures ({approx}1500 {sup o}C). The effect of SrMoO{sub 4} on the electrical conductivity of Sr{sub 2}MgMoO{sub 6} is evaluated by preparing a series of Sr{sub 2}MgMoO{sub 6} samples with different amounts of additional SrMoO{sub 4}. Under the reducing operation conditions of an SOFC anode the insulating SrMoO{sub 4} phase is apparently reduced to the highly conductive SrMoO{sub 3} phase. Percolation takes place with 20-30 wt% of SrMoO{sub 4} in a Sr{sub 2}MgMoO{sub 6} matrix, with a notable increase in electrical conductivity after reduction. Conductivity values of 14, 60 and 160 S/cm are determined at 800 {sup o}C in 5% H{sub 2}/Ar for the Sr{sub 2}MgMoO{sub 6} samples with 30, 40 and 50 wt% of added SrMoO{sub 4}, respectively. -- Graphical abstract: SrMoO{sub 4} is formed at low temperatures during the synthesis of Sr{sub 2}MgMoO{sub 6}, which prevents the volatilization of Mo from typical precursor mixtures of this promising SOFC anode material. SrMoO{sub 4} is insulating and it is often found as an impurity in Sr{sub 2}MgMoO{sub 6} samples. It is however readily reduced to highly conducting SrMoO{sub 3}. Composites of Sr{sub 2}MgMoO{sub 6} and SrMoO{sub 3} show increased electrical conductivities compared to pure Sr{sub 2}MgMoO{sub 6} under the reductive operation conditions of an SOFC anode. Display Omitted Highlights: {yields} Sr{sub 2}MgMoO{sub 6} is a promising SOFC anode material. {yields} During the Sr{sub 2}MgMoO{sub 6} synthesis SrMoO{sub 4} is formed at low

  10. Facile deposition of Ag{sub 3}PO{sub 4} on graphene-like MoS{sub 2} nanosheets for highly efficient photocatalysis

    SciTech Connect (OSTI)

    Wang, Peifu; Shi, Penghui; Hong, Yuanchen; Zhou, Xuejun; Yao, Weifeng

    2015-02-15

    Graphical abstract: The photocatalytic performance of Ag{sub 3}PO{sub 4} was highly improved by the in situ deposition of Ag{sub 3}PO{sub 4} particles on graphene-like MoS{sub 2} nanosheets. - Highlights: A novel composite photocatalyst was synthesized by depositing Ag{sub 3}PO{sub 4} on the graphene-like MoS{sub 2} nanosheets. Ag{sub 3}PO{sub 4}/MoS{sub 2} photocatalyst exhibited a high photocatalytic activity for RhB degradation. Graphene-like MoS{sub 2} nanosheets. MoS{sub 2} nanosheets play an important role in photocatalytic activity by serving as an effective acceptor of the photogenerated carriers. - Abstract: A facile method for the in situ deposition of Ag{sub 3}PO{sub 4} on graphene-like MoS{sub 2} nanosheets was developed to improve the photocatalytic performance of Ag{sub 3}PO{sub 4} catalysts. The heterostructure of Ag{sub 3}PO{sub 4}/MoS{sub 2} composites was characterized by using X-ray diffraction spectra (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The prepared Ag{sub 3}PO{sub 4}/MoS{sub 2} photocatalyst exhibited a much higher photocatalytic activity than that of Ag{sub 3}PO{sub 4} for the degradation of Rhodamine B (RhB) under visible light irradiation (>400 nm). The improved photocatalytic activity of Ag{sub 3}PO{sub 4}/MoS{sub 2} is attributed to the efficient separation of photogenerated electronhole pairs in the composite. This result provides a new perspective on the design of high-performance photocatalysts which is promising for energy applications.

  11. Overview of DOE-NE Proliferation and Terrorism Risk Assessment

    SciTech Connect (OSTI)

    Sadasivan, Pratap

    2012-08-24

    Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism. The goal is to enable the use of risk information to inform NE R&D program planning. The PTRA program supports DOE-NE's goal of using risk information to inform R&D program planning. The FY12 PTRA program is focused on terrorism risk. The program includes a mix of innovative methods that support the general practice of risk assessments, and selected applications.

  12. MICROBOONE PHYSICS Ben Carls Fermilab MicroBooNE Physics Outline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHYSICS Ben Carls Fermilab MicroBooNE Physics Outline * The detector and beam - MicroBooNE TPC - Booster and NuMI beams at Fermilab * Oscillation physics - Shed light on the MiniBooNE low energy excess * Low energy neutrino cross sections * Non-accelerator topics - Supernova neutrino detection - Proton decay backgrounds 2 B. Carls, Fermilab MicroBooNE Physics MicroBooNE Detector * 60 ton fiducial volume (of 170 tons total) liquid Argon TPC * TPC consists of 3 planes of wires; vertical Y, ±60°

  13. Microsoft PowerPoint - TAUP_07_MiniBooNE.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MinibooNE Oscillation Results and Implications Mike Shaevitz Columbia University for the MiniBooNE Collaboration 2 Outline * MiniBooNE Experiment and Analysis Techniques * MiniBooNE First Oscillation Result * Going Beyond the First Result * Future Plans and Prospects 3 LSND observed a (~3.8σ) excess of⎯ν e events in a pure⎯ν μ beam: 87.9 ± 22.4 ± 6.0 events MiniBooNE was Prompted by the Positive LSND Result Oscillation Probability: ( ) (0.264 0.067 0.045)% e P μ ν ν → = ± ± The

  14. Microsoft PowerPoint - MiniBooNE Neutrino 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oscillation Searches Steve Brice (Fermilab) for the MiniBooNE Collaboration Neutrino 2008 Neutrino 2008 Steve Brice (FNAL) 2 Outline * Electron Neutrino Appearance - Oscillation Result - π 0 Rate Measurement - Combining Analyses - Compatibility of High ∆m 2 Measurements - Low Energy Electron Candidate Excess - Data from NuMI Beam * Muon Neutrino Disappearance * Anti-Electron Neutrino Appearance * Summary Neutrino 2008 Steve Brice (FNAL) 3 2 National Laboratories, 14 Universities, 80

  15. Intense femtosecond photoexcitation of bulk and monolayer MoS{sub 2}

    SciTech Connect (OSTI)

    Paradisanos, I.; Fotakis, C.; Kymakis, E.; Kioseoglou, G.; Stratakis, E.

    2014-07-28

    The effect of femtosecond laser irradiation on bulk and single-layer MoS{sub 2} on silicon oxide is studied. Optical, field emission scanning electron microscopy and Raman microscopy were used to quantify the damage. The intensity of A{sub 1g} and E{sub 2g}{sup 1} vibrational modes was recorded as a function of the number of irradiation pulses. The observed behavior was attributed to laser-induced bond breaking and subsequent atoms removal due to electronic excitations. The single-pulse optical damage threshold was determined for the monolayer and bulk under 800 nm and 1030 nm pulsed laser irradiation, and the role of two-photon versus one photon absorption effects is discussed.

  16. Paving the Way to Nanoelectronics 16 nm and Smaller

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paving the Way to Nanoelectronics 16 nm and Smaller Print As the nanoelectronics industry pushes towards feature sizes of 22 nm and smaller, conventional single-exposure refractive lithography systems used to print circuit patterns onto computer chips will no longer be feasible. Extreme ultraviolet (EUV) lithography, utilizing reflective optics and 13-nm-wavelength light to print chips, is the leading candidate to meet the industry's future needs. Despite strong progress in EUV lithography over

  17. Paving the Way to Nanoelectronics 16 nm and Smaller

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paving the Way to Nanoelectronics 16 nm and Smaller Print As the nanoelectronics industry pushes towards feature sizes of 22 nm and smaller, conventional single-exposure refractive lithography systems used to print circuit patterns onto computer chips will no longer be feasible. Extreme ultraviolet (EUV) lithography, utilizing reflective optics and 13-nm-wavelength light to print chips, is the leading candidate to meet the industry's future needs. Despite strong progress in EUV lithography over

  18. Paving the Way to Nanoelectronics 16 nm and Smaller

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paving the Way to Nanoelectronics 16 nm and Smaller Print As the nanoelectronics industry pushes towards feature sizes of 22 nm and smaller, conventional single-exposure refractive lithography systems used to print circuit patterns onto computer chips will no longer be feasible. Extreme ultraviolet (EUV) lithography, utilizing reflective optics and 13-nm-wavelength light to print chips, is the leading candidate to meet the industry's future needs. Despite strong progress in EUV lithography over

  19. Paving the Way to Nanoelectronics 16 nm and Smaller

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paving the Way to Nanoelectronics 16 nm and Smaller Print As the nanoelectronics industry pushes towards feature sizes of 22 nm and smaller, conventional single-exposure refractive lithography systems used to print circuit patterns onto computer chips will no longer be feasible. Extreme ultraviolet (EUV) lithography, utilizing reflective optics and 13-nm-wavelength light to print chips, is the leading candidate to meet the industry's future needs. Despite strong progress in EUV lithography over

  20. Paving the Way to Nanoelectronics 16 nm and Smaller

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paving the Way to Nanoelectronics 16 nm and Smaller Print As the nanoelectronics industry pushes towards feature sizes of 22 nm and smaller, conventional single-exposure refractive lithography systems used to print circuit patterns onto computer chips will no longer be feasible. Extreme ultraviolet (EUV) lithography, utilizing reflective optics and 13-nm-wavelength light to print chips, is the leading candidate to meet the industry's future needs. Despite strong progress in EUV lithography over

  1. Paving the Way to Nanoelectronics 16 nm and Smaller

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paving the Way to Nanoelectronics 16 nm and Smaller Print As the nanoelectronics industry pushes towards feature sizes of 22 nm and smaller, conventional single-exposure refractive lithography systems used to print circuit patterns onto computer chips will no longer be feasible. Extreme ultraviolet (EUV) lithography, utilizing reflective optics and 13-nm-wavelength light to print chips, is the leading candidate to meet the industry's future needs. Despite strong progress in EUV lithography over

  2. Mo-99 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Mo-99 DOE/NNSA Successfully Establishes Uranium Lease and Takeback Program to Support Critical Medical Isotope Production In January 2016, the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) successfully established the Uranium Lease and Take-Back (ULTB) program, as directed in the American Medical Isotopes Production Act of 2012, to support the commercial production of the medical... NNSA's work aids in fight against cancer World Cancer Day encourages citizens

  3. RAPID/Roadmap/3-NM-a | Open Energy Information

    Open Energy Info (EERE)

    State Land Office (NMSLO) to develop geothermal resources on state lands under the New Mexico Geothermal Resources Act and regulations promulgated in N.M. Admin. Code part...

  4. Structure of a novel 13 nm dodecahedral nanocage assembled from...

    Office of Scientific and Technical Information (OSTI)

    Structure of a novel 13 nm dodecahedral nanocage assembled from a redesigned bacterial microcompartment shell protein Citation Details In-Document Search Title: Structure of a ...

  5. RAPID/Roadmap/15-NM-a | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit - Construction Permit (15-NM-a) This flowchart illustrates the process...

  6. RAPID/Roadmap/15-NM-c | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit - Operating Permit (15-NM-c) This flowchart illustrates the process for...

  7. RAPID/Roadmap/15-NM-b | Open Energy Information

    Open Energy Info (EERE)

    BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Air Quality Permit - Accelerated Construction Permit Review (15-NM-b) The developer may...

  8. Paving the Way to Nanoelectronics 16 nm and Smaller

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will no longer be feasible. Extreme ultraviolet (EUV) lithography, utilizing reflective optics and 13-nm-wavelength light to print chips, is the leading candidate to meet the...

  9. RAPID/Roadmap/5-NM-a | Open Energy Information

    Open Energy Info (EERE)

    Hydropower Solar Tools Contribute Contact Us Drilling and Well Development (5-NM-a) The Oil Conservation Division of the New Mexico Energy, Minerals and Natural Resources...

  10. RAPID/Roadmap/7-NM-c | Open Energy Information

    Open Energy Info (EERE)

    NM-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...